]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/trace/ring_buffer.c
tracing: Introduce trace event injection
[mirror_ubuntu-jammy-kernel.git] / kernel / trace / ring_buffer.c
CommitLineData
bcea3f96 1// SPDX-License-Identifier: GPL-2.0
7a8e76a3
SR
2/*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
af658dca 7#include <linux/trace_events.h>
7a8e76a3 8#include <linux/ring_buffer.h>
14131f2f 9#include <linux/trace_clock.h>
e6017571 10#include <linux/sched/clock.h>
0b07436d 11#include <linux/trace_seq.h>
7a8e76a3 12#include <linux/spinlock.h>
15693458 13#include <linux/irq_work.h>
7a8e76a3 14#include <linux/uaccess.h>
a81bd80a 15#include <linux/hardirq.h>
6c43e554 16#include <linux/kthread.h> /* for self test */
7a8e76a3
SR
17#include <linux/module.h>
18#include <linux/percpu.h>
19#include <linux/mutex.h>
6c43e554 20#include <linux/delay.h>
5a0e3ad6 21#include <linux/slab.h>
7a8e76a3
SR
22#include <linux/init.h>
23#include <linux/hash.h>
24#include <linux/list.h>
554f786e 25#include <linux/cpu.h>
927e56db 26#include <linux/oom.h>
7a8e76a3 27
79615760 28#include <asm/local.h>
182e9f5f 29
83f40318
VN
30static void update_pages_handler(struct work_struct *work);
31
d1b182a8
SR
32/*
33 * The ring buffer header is special. We must manually up keep it.
34 */
35int ring_buffer_print_entry_header(struct trace_seq *s)
36{
c0cd93aa
SRRH
37 trace_seq_puts(s, "# compressed entry header\n");
38 trace_seq_puts(s, "\ttype_len : 5 bits\n");
39 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
40 trace_seq_puts(s, "\tarray : 32 bits\n");
41 trace_seq_putc(s, '\n');
42 trace_seq_printf(s, "\tpadding : type == %d\n",
43 RINGBUF_TYPE_PADDING);
44 trace_seq_printf(s, "\ttime_extend : type == %d\n",
45 RINGBUF_TYPE_TIME_EXTEND);
dc4e2801
TZ
46 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
47 RINGBUF_TYPE_TIME_STAMP);
c0cd93aa
SRRH
48 trace_seq_printf(s, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50
51 return !trace_seq_has_overflowed(s);
d1b182a8
SR
52}
53
5cc98548
SR
54/*
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
59 *
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
63 *
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
67 *
68 * Here's some silly ASCII art.
69 *
70 * +------+
71 * |reader| RING BUFFER
72 * |page |
73 * +------+ +---+ +---+ +---+
74 * | |-->| |-->| |
75 * +---+ +---+ +---+
76 * ^ |
77 * | |
78 * +---------------+
79 *
80 *
81 * +------+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
85 * | |-->| |-->| |
86 * +---+ +---+ +---+
87 * ^ |
88 * | |
89 * +---------------+
90 *
91 *
92 * +------+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
96 * ^ | |-->| |-->| |
97 * | +---+ +---+ +---+
98 * | |
99 * | |
100 * +------------------------------+
101 *
102 *
103 * +------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
107 * ^ | | | |-->| |
108 * | New +---+ +---+ +---+
109 * | Reader------^ |
110 * | page |
111 * +------------------------------+
112 *
113 *
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
117 *
118 * We will be using cmpxchg soon to make all this lockless.
119 *
120 */
121
499e5470
SR
122/* Used for individual buffers (after the counter) */
123#define RB_BUFFER_OFF (1 << 20)
a3583244 124
499e5470 125#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3 126
e3d6bf0a 127#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 128#define RB_ALIGNMENT 4U
334d4169 129#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 130#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
86b3de60 131#define RB_ALIGN_DATA __aligned(RB_ALIGNMENT)
649508f6 132
334d4169
LJ
133/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
134#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
135
136enum {
137 RB_LEN_TIME_EXTEND = 8,
dc4e2801 138 RB_LEN_TIME_STAMP = 8,
7a8e76a3
SR
139};
140
69d1b839
SR
141#define skip_time_extend(event) \
142 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
143
dc4e2801
TZ
144#define extended_time(event) \
145 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
146
2d622719
TZ
147static inline int rb_null_event(struct ring_buffer_event *event)
148{
a1863c21 149 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
150}
151
152static void rb_event_set_padding(struct ring_buffer_event *event)
153{
a1863c21 154 /* padding has a NULL time_delta */
334d4169 155 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
156 event->time_delta = 0;
157}
158
34a148bf 159static unsigned
2d622719 160rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
161{
162 unsigned length;
163
334d4169
LJ
164 if (event->type_len)
165 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
166 else
167 length = event->array[0];
168 return length + RB_EVNT_HDR_SIZE;
169}
170
69d1b839
SR
171/*
172 * Return the length of the given event. Will return
173 * the length of the time extend if the event is a
174 * time extend.
175 */
176static inline unsigned
2d622719
TZ
177rb_event_length(struct ring_buffer_event *event)
178{
334d4169 179 switch (event->type_len) {
7a8e76a3 180 case RINGBUF_TYPE_PADDING:
2d622719
TZ
181 if (rb_null_event(event))
182 /* undefined */
183 return -1;
334d4169 184 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
185
186 case RINGBUF_TYPE_TIME_EXTEND:
187 return RB_LEN_TIME_EXTEND;
188
189 case RINGBUF_TYPE_TIME_STAMP:
190 return RB_LEN_TIME_STAMP;
191
192 case RINGBUF_TYPE_DATA:
2d622719 193 return rb_event_data_length(event);
7a8e76a3
SR
194 default:
195 BUG();
196 }
197 /* not hit */
198 return 0;
199}
200
69d1b839
SR
201/*
202 * Return total length of time extend and data,
203 * or just the event length for all other events.
204 */
205static inline unsigned
206rb_event_ts_length(struct ring_buffer_event *event)
207{
208 unsigned len = 0;
209
dc4e2801 210 if (extended_time(event)) {
69d1b839
SR
211 /* time extends include the data event after it */
212 len = RB_LEN_TIME_EXTEND;
213 event = skip_time_extend(event);
214 }
215 return len + rb_event_length(event);
216}
217
7a8e76a3
SR
218/**
219 * ring_buffer_event_length - return the length of the event
220 * @event: the event to get the length of
69d1b839
SR
221 *
222 * Returns the size of the data load of a data event.
223 * If the event is something other than a data event, it
224 * returns the size of the event itself. With the exception
225 * of a TIME EXTEND, where it still returns the size of the
226 * data load of the data event after it.
7a8e76a3
SR
227 */
228unsigned ring_buffer_event_length(struct ring_buffer_event *event)
229{
69d1b839
SR
230 unsigned length;
231
dc4e2801 232 if (extended_time(event))
69d1b839
SR
233 event = skip_time_extend(event);
234
235 length = rb_event_length(event);
334d4169 236 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
237 return length;
238 length -= RB_EVNT_HDR_SIZE;
239 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
240 length -= sizeof(event->array[0]);
241 return length;
7a8e76a3 242}
c4f50183 243EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
244
245/* inline for ring buffer fast paths */
929ddbf3 246static __always_inline void *
7a8e76a3
SR
247rb_event_data(struct ring_buffer_event *event)
248{
dc4e2801 249 if (extended_time(event))
69d1b839 250 event = skip_time_extend(event);
334d4169 251 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 252 /* If length is in len field, then array[0] has the data */
334d4169 253 if (event->type_len)
7a8e76a3
SR
254 return (void *)&event->array[0];
255 /* Otherwise length is in array[0] and array[1] has the data */
256 return (void *)&event->array[1];
257}
258
259/**
260 * ring_buffer_event_data - return the data of the event
261 * @event: the event to get the data from
262 */
263void *ring_buffer_event_data(struct ring_buffer_event *event)
264{
265 return rb_event_data(event);
266}
c4f50183 267EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
268
269#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 270 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
271
272#define TS_SHIFT 27
273#define TS_MASK ((1ULL << TS_SHIFT) - 1)
274#define TS_DELTA_TEST (~TS_MASK)
275
dc4e2801
TZ
276/**
277 * ring_buffer_event_time_stamp - return the event's extended timestamp
278 * @event: the event to get the timestamp of
279 *
280 * Returns the extended timestamp associated with a data event.
281 * An extended time_stamp is a 64-bit timestamp represented
282 * internally in a special way that makes the best use of space
283 * contained within a ring buffer event. This function decodes
284 * it and maps it to a straight u64 value.
285 */
286u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
287{
288 u64 ts;
289
290 ts = event->array[0];
291 ts <<= TS_SHIFT;
292 ts += event->time_delta;
293
294 return ts;
295}
296
66a8cb95
SR
297/* Flag when events were overwritten */
298#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
299/* Missed count stored at end */
300#define RB_MISSED_STORED (1 << 30)
66a8cb95 301
45d8b80c
SRV
302#define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED)
303
abc9b56d 304struct buffer_data_page {
e4c2ce82 305 u64 time_stamp; /* page time stamp */
c3706f00 306 local_t commit; /* write committed index */
649508f6 307 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
308};
309
77ae365e
SR
310/*
311 * Note, the buffer_page list must be first. The buffer pages
312 * are allocated in cache lines, which means that each buffer
313 * page will be at the beginning of a cache line, and thus
314 * the least significant bits will be zero. We use this to
315 * add flags in the list struct pointers, to make the ring buffer
316 * lockless.
317 */
abc9b56d 318struct buffer_page {
778c55d4 319 struct list_head list; /* list of buffer pages */
abc9b56d 320 local_t write; /* index for next write */
6f807acd 321 unsigned read; /* index for next read */
778c55d4 322 local_t entries; /* entries on this page */
ff0ff84a 323 unsigned long real_end; /* real end of data */
abc9b56d 324 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
325};
326
77ae365e
SR
327/*
328 * The buffer page counters, write and entries, must be reset
329 * atomically when crossing page boundaries. To synchronize this
330 * update, two counters are inserted into the number. One is
331 * the actual counter for the write position or count on the page.
332 *
333 * The other is a counter of updaters. Before an update happens
334 * the update partition of the counter is incremented. This will
335 * allow the updater to update the counter atomically.
336 *
337 * The counter is 20 bits, and the state data is 12.
338 */
339#define RB_WRITE_MASK 0xfffff
340#define RB_WRITE_INTCNT (1 << 20)
341
044fa782 342static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 343{
044fa782 344 local_set(&bpage->commit, 0);
abc9b56d
SR
345}
346
ed56829c
SR
347/*
348 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
349 * this issue out.
350 */
34a148bf 351static void free_buffer_page(struct buffer_page *bpage)
ed56829c 352{
34a148bf 353 free_page((unsigned long)bpage->page);
e4c2ce82 354 kfree(bpage);
ed56829c
SR
355}
356
7a8e76a3
SR
357/*
358 * We need to fit the time_stamp delta into 27 bits.
359 */
360static inline int test_time_stamp(u64 delta)
361{
362 if (delta & TS_DELTA_TEST)
363 return 1;
364 return 0;
365}
366
474d32b6 367#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 368
be957c44
SR
369/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
370#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
371
d1b182a8
SR
372int ring_buffer_print_page_header(struct trace_seq *s)
373{
374 struct buffer_data_page field;
c0cd93aa
SRRH
375
376 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
377 "offset:0;\tsize:%u;\tsigned:%u;\n",
378 (unsigned int)sizeof(field.time_stamp),
379 (unsigned int)is_signed_type(u64));
380
381 trace_seq_printf(s, "\tfield: local_t commit;\t"
382 "offset:%u;\tsize:%u;\tsigned:%u;\n",
383 (unsigned int)offsetof(typeof(field), commit),
384 (unsigned int)sizeof(field.commit),
385 (unsigned int)is_signed_type(long));
386
387 trace_seq_printf(s, "\tfield: int overwrite;\t"
388 "offset:%u;\tsize:%u;\tsigned:%u;\n",
389 (unsigned int)offsetof(typeof(field), commit),
390 1,
391 (unsigned int)is_signed_type(long));
392
393 trace_seq_printf(s, "\tfield: char data;\t"
394 "offset:%u;\tsize:%u;\tsigned:%u;\n",
395 (unsigned int)offsetof(typeof(field), data),
396 (unsigned int)BUF_PAGE_SIZE,
397 (unsigned int)is_signed_type(char));
398
399 return !trace_seq_has_overflowed(s);
d1b182a8
SR
400}
401
15693458
SRRH
402struct rb_irq_work {
403 struct irq_work work;
404 wait_queue_head_t waiters;
1e0d6714 405 wait_queue_head_t full_waiters;
15693458 406 bool waiters_pending;
1e0d6714
SRRH
407 bool full_waiters_pending;
408 bool wakeup_full;
15693458
SRRH
409};
410
fcc742ea
SRRH
411/*
412 * Structure to hold event state and handle nested events.
413 */
414struct rb_event_info {
415 u64 ts;
416 u64 delta;
417 unsigned long length;
418 struct buffer_page *tail_page;
419 int add_timestamp;
420};
421
a497adb4
SRRH
422/*
423 * Used for which event context the event is in.
424 * NMI = 0
425 * IRQ = 1
426 * SOFTIRQ = 2
427 * NORMAL = 3
428 *
429 * See trace_recursive_lock() comment below for more details.
430 */
431enum {
432 RB_CTX_NMI,
433 RB_CTX_IRQ,
434 RB_CTX_SOFTIRQ,
435 RB_CTX_NORMAL,
436 RB_CTX_MAX
437};
438
7a8e76a3
SR
439/*
440 * head_page == tail_page && head == tail then buffer is empty.
441 */
442struct ring_buffer_per_cpu {
443 int cpu;
985023de 444 atomic_t record_disabled;
7a8e76a3 445 struct ring_buffer *buffer;
5389f6fa 446 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 447 arch_spinlock_t lock;
7a8e76a3 448 struct lock_class_key lock_key;
73a757e6 449 struct buffer_data_page *free_page;
9b94a8fb 450 unsigned long nr_pages;
58a09ec6 451 unsigned int current_context;
3adc54fa 452 struct list_head *pages;
6f807acd
SR
453 struct buffer_page *head_page; /* read from head */
454 struct buffer_page *tail_page; /* write to tail */
c3706f00 455 struct buffer_page *commit_page; /* committed pages */
d769041f 456 struct buffer_page *reader_page;
66a8cb95
SR
457 unsigned long lost_events;
458 unsigned long last_overrun;
8e012066 459 unsigned long nest;
c64e148a 460 local_t entries_bytes;
e4906eff 461 local_t entries;
884bfe89
SP
462 local_t overrun;
463 local_t commit_overrun;
464 local_t dropped_events;
fa743953
SR
465 local_t committing;
466 local_t commits;
2c2b0a78
SRV
467 local_t pages_touched;
468 local_t pages_read;
03329f99 469 long last_pages_touch;
2c2b0a78 470 size_t shortest_full;
77ae365e 471 unsigned long read;
c64e148a 472 unsigned long read_bytes;
7a8e76a3
SR
473 u64 write_stamp;
474 u64 read_stamp;
438ced17 475 /* ring buffer pages to update, > 0 to add, < 0 to remove */
9b94a8fb 476 long nr_pages_to_update;
438ced17 477 struct list_head new_pages; /* new pages to add */
83f40318 478 struct work_struct update_pages_work;
05fdd70d 479 struct completion update_done;
15693458
SRRH
480
481 struct rb_irq_work irq_work;
7a8e76a3
SR
482};
483
484struct ring_buffer {
7a8e76a3
SR
485 unsigned flags;
486 int cpus;
7a8e76a3 487 atomic_t record_disabled;
83f40318 488 atomic_t resize_disabled;
00f62f61 489 cpumask_var_t cpumask;
7a8e76a3 490
1f8a6a10
PZ
491 struct lock_class_key *reader_lock_key;
492
7a8e76a3
SR
493 struct mutex mutex;
494
495 struct ring_buffer_per_cpu **buffers;
554f786e 496
b32614c0 497 struct hlist_node node;
37886f6a 498 u64 (*clock)(void);
15693458
SRRH
499
500 struct rb_irq_work irq_work;
00b41452 501 bool time_stamp_abs;
7a8e76a3
SR
502};
503
504struct ring_buffer_iter {
505 struct ring_buffer_per_cpu *cpu_buffer;
506 unsigned long head;
507 struct buffer_page *head_page;
492a74f4
SR
508 struct buffer_page *cache_reader_page;
509 unsigned long cache_read;
7a8e76a3
SR
510 u64 read_stamp;
511};
512
2c2b0a78
SRV
513/**
514 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
515 * @buffer: The ring_buffer to get the number of pages from
516 * @cpu: The cpu of the ring_buffer to get the number of pages from
517 *
518 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
519 */
520size_t ring_buffer_nr_pages(struct ring_buffer *buffer, int cpu)
521{
522 return buffer->buffers[cpu]->nr_pages;
523}
524
525/**
526 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
527 * @buffer: The ring_buffer to get the number of pages from
528 * @cpu: The cpu of the ring_buffer to get the number of pages from
529 *
530 * Returns the number of pages that have content in the ring buffer.
531 */
532size_t ring_buffer_nr_dirty_pages(struct ring_buffer *buffer, int cpu)
533{
534 size_t read;
535 size_t cnt;
536
537 read = local_read(&buffer->buffers[cpu]->pages_read);
538 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
539 /* The reader can read an empty page, but not more than that */
540 if (cnt < read) {
541 WARN_ON_ONCE(read > cnt + 1);
542 return 0;
543 }
544
545 return cnt - read;
546}
547
15693458
SRRH
548/*
549 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
550 *
551 * Schedules a delayed work to wake up any task that is blocked on the
552 * ring buffer waiters queue.
553 */
554static void rb_wake_up_waiters(struct irq_work *work)
555{
556 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
557
558 wake_up_all(&rbwork->waiters);
1e0d6714
SRRH
559 if (rbwork->wakeup_full) {
560 rbwork->wakeup_full = false;
561 wake_up_all(&rbwork->full_waiters);
562 }
15693458
SRRH
563}
564
565/**
566 * ring_buffer_wait - wait for input to the ring buffer
567 * @buffer: buffer to wait on
568 * @cpu: the cpu buffer to wait on
e30f53aa 569 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
15693458
SRRH
570 *
571 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
572 * as data is added to any of the @buffer's cpu buffers. Otherwise
573 * it will wait for data to be added to a specific cpu buffer.
574 */
2c2b0a78 575int ring_buffer_wait(struct ring_buffer *buffer, int cpu, int full)
15693458 576{
e30f53aa 577 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
15693458
SRRH
578 DEFINE_WAIT(wait);
579 struct rb_irq_work *work;
e30f53aa 580 int ret = 0;
15693458
SRRH
581
582 /*
583 * Depending on what the caller is waiting for, either any
584 * data in any cpu buffer, or a specific buffer, put the
585 * caller on the appropriate wait queue.
586 */
1e0d6714 587 if (cpu == RING_BUFFER_ALL_CPUS) {
15693458 588 work = &buffer->irq_work;
1e0d6714 589 /* Full only makes sense on per cpu reads */
2c2b0a78 590 full = 0;
1e0d6714 591 } else {
8b8b3683
SRRH
592 if (!cpumask_test_cpu(cpu, buffer->cpumask))
593 return -ENODEV;
15693458
SRRH
594 cpu_buffer = buffer->buffers[cpu];
595 work = &cpu_buffer->irq_work;
596 }
597
598
e30f53aa 599 while (true) {
1e0d6714
SRRH
600 if (full)
601 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
602 else
603 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
e30f53aa
RV
604
605 /*
606 * The events can happen in critical sections where
607 * checking a work queue can cause deadlocks.
608 * After adding a task to the queue, this flag is set
609 * only to notify events to try to wake up the queue
610 * using irq_work.
611 *
612 * We don't clear it even if the buffer is no longer
613 * empty. The flag only causes the next event to run
614 * irq_work to do the work queue wake up. The worse
615 * that can happen if we race with !trace_empty() is that
616 * an event will cause an irq_work to try to wake up
617 * an empty queue.
618 *
619 * There's no reason to protect this flag either, as
620 * the work queue and irq_work logic will do the necessary
621 * synchronization for the wake ups. The only thing
622 * that is necessary is that the wake up happens after
623 * a task has been queued. It's OK for spurious wake ups.
624 */
1e0d6714
SRRH
625 if (full)
626 work->full_waiters_pending = true;
627 else
628 work->waiters_pending = true;
e30f53aa
RV
629
630 if (signal_pending(current)) {
631 ret = -EINTR;
632 break;
633 }
634
635 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
636 break;
637
638 if (cpu != RING_BUFFER_ALL_CPUS &&
639 !ring_buffer_empty_cpu(buffer, cpu)) {
640 unsigned long flags;
641 bool pagebusy;
2c2b0a78
SRV
642 size_t nr_pages;
643 size_t dirty;
e30f53aa
RV
644
645 if (!full)
646 break;
647
648 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
649 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2c2b0a78
SRV
650 nr_pages = cpu_buffer->nr_pages;
651 dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
652 if (!cpu_buffer->shortest_full ||
653 cpu_buffer->shortest_full < full)
654 cpu_buffer->shortest_full = full;
e30f53aa 655 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2c2b0a78
SRV
656 if (!pagebusy &&
657 (!nr_pages || (dirty * 100) > full * nr_pages))
e30f53aa
RV
658 break;
659 }
15693458 660
15693458 661 schedule();
e30f53aa 662 }
15693458 663
1e0d6714
SRRH
664 if (full)
665 finish_wait(&work->full_waiters, &wait);
666 else
667 finish_wait(&work->waiters, &wait);
e30f53aa
RV
668
669 return ret;
15693458
SRRH
670}
671
672/**
673 * ring_buffer_poll_wait - poll on buffer input
674 * @buffer: buffer to wait on
675 * @cpu: the cpu buffer to wait on
676 * @filp: the file descriptor
677 * @poll_table: The poll descriptor
678 *
679 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
680 * as data is added to any of the @buffer's cpu buffers. Otherwise
681 * it will wait for data to be added to a specific cpu buffer.
682 *
a9a08845 683 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
15693458
SRRH
684 * zero otherwise.
685 */
ecf92700 686__poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
15693458
SRRH
687 struct file *filp, poll_table *poll_table)
688{
689 struct ring_buffer_per_cpu *cpu_buffer;
690 struct rb_irq_work *work;
691
15693458
SRRH
692 if (cpu == RING_BUFFER_ALL_CPUS)
693 work = &buffer->irq_work;
694 else {
6721cb60
SRRH
695 if (!cpumask_test_cpu(cpu, buffer->cpumask))
696 return -EINVAL;
697
15693458
SRRH
698 cpu_buffer = buffer->buffers[cpu];
699 work = &cpu_buffer->irq_work;
700 }
701
15693458 702 poll_wait(filp, &work->waiters, poll_table);
4ce97dbf
JB
703 work->waiters_pending = true;
704 /*
705 * There's a tight race between setting the waiters_pending and
706 * checking if the ring buffer is empty. Once the waiters_pending bit
707 * is set, the next event will wake the task up, but we can get stuck
708 * if there's only a single event in.
709 *
710 * FIXME: Ideally, we need a memory barrier on the writer side as well,
711 * but adding a memory barrier to all events will cause too much of a
712 * performance hit in the fast path. We only need a memory barrier when
713 * the buffer goes from empty to having content. But as this race is
714 * extremely small, and it's not a problem if another event comes in, we
715 * will fix it later.
716 */
717 smp_mb();
15693458
SRRH
718
719 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
720 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
a9a08845 721 return EPOLLIN | EPOLLRDNORM;
15693458
SRRH
722 return 0;
723}
724
f536aafc 725/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
726#define RB_WARN_ON(b, cond) \
727 ({ \
728 int _____ret = unlikely(cond); \
729 if (_____ret) { \
730 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
731 struct ring_buffer_per_cpu *__b = \
732 (void *)b; \
733 atomic_inc(&__b->buffer->record_disabled); \
734 } else \
735 atomic_inc(&b->record_disabled); \
736 WARN_ON(1); \
737 } \
738 _____ret; \
3e89c7bb 739 })
f536aafc 740
37886f6a
SR
741/* Up this if you want to test the TIME_EXTENTS and normalization */
742#define DEBUG_SHIFT 0
743
6d3f1e12 744static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
745{
746 /* shift to debug/test normalization and TIME_EXTENTS */
747 return buffer->clock() << DEBUG_SHIFT;
748}
749
37886f6a
SR
750u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
751{
752 u64 time;
753
754 preempt_disable_notrace();
6d3f1e12 755 time = rb_time_stamp(buffer);
d6097c9e 756 preempt_enable_notrace();
37886f6a
SR
757
758 return time;
759}
760EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
761
762void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
763 int cpu, u64 *ts)
764{
765 /* Just stupid testing the normalize function and deltas */
766 *ts >>= DEBUG_SHIFT;
767}
768EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
769
77ae365e
SR
770/*
771 * Making the ring buffer lockless makes things tricky.
772 * Although writes only happen on the CPU that they are on,
773 * and they only need to worry about interrupts. Reads can
774 * happen on any CPU.
775 *
776 * The reader page is always off the ring buffer, but when the
777 * reader finishes with a page, it needs to swap its page with
778 * a new one from the buffer. The reader needs to take from
779 * the head (writes go to the tail). But if a writer is in overwrite
780 * mode and wraps, it must push the head page forward.
781 *
782 * Here lies the problem.
783 *
784 * The reader must be careful to replace only the head page, and
785 * not another one. As described at the top of the file in the
786 * ASCII art, the reader sets its old page to point to the next
787 * page after head. It then sets the page after head to point to
788 * the old reader page. But if the writer moves the head page
789 * during this operation, the reader could end up with the tail.
790 *
791 * We use cmpxchg to help prevent this race. We also do something
792 * special with the page before head. We set the LSB to 1.
793 *
794 * When the writer must push the page forward, it will clear the
795 * bit that points to the head page, move the head, and then set
796 * the bit that points to the new head page.
797 *
798 * We also don't want an interrupt coming in and moving the head
799 * page on another writer. Thus we use the second LSB to catch
800 * that too. Thus:
801 *
802 * head->list->prev->next bit 1 bit 0
803 * ------- -------
804 * Normal page 0 0
805 * Points to head page 0 1
806 * New head page 1 0
807 *
808 * Note we can not trust the prev pointer of the head page, because:
809 *
810 * +----+ +-----+ +-----+
811 * | |------>| T |---X--->| N |
812 * | |<------| | | |
813 * +----+ +-----+ +-----+
814 * ^ ^ |
815 * | +-----+ | |
816 * +----------| R |----------+ |
817 * | |<-----------+
818 * +-----+
819 *
820 * Key: ---X--> HEAD flag set in pointer
821 * T Tail page
822 * R Reader page
823 * N Next page
824 *
825 * (see __rb_reserve_next() to see where this happens)
826 *
827 * What the above shows is that the reader just swapped out
828 * the reader page with a page in the buffer, but before it
829 * could make the new header point back to the new page added
830 * it was preempted by a writer. The writer moved forward onto
831 * the new page added by the reader and is about to move forward
832 * again.
833 *
834 * You can see, it is legitimate for the previous pointer of
835 * the head (or any page) not to point back to itself. But only
6167c205 836 * temporarily.
77ae365e
SR
837 */
838
839#define RB_PAGE_NORMAL 0UL
840#define RB_PAGE_HEAD 1UL
841#define RB_PAGE_UPDATE 2UL
842
843
844#define RB_FLAG_MASK 3UL
845
846/* PAGE_MOVED is not part of the mask */
847#define RB_PAGE_MOVED 4UL
848
849/*
850 * rb_list_head - remove any bit
851 */
852static struct list_head *rb_list_head(struct list_head *list)
853{
854 unsigned long val = (unsigned long)list;
855
856 return (struct list_head *)(val & ~RB_FLAG_MASK);
857}
858
859/*
6d3f1e12 860 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
861 *
862 * Because the reader may move the head_page pointer, we can
863 * not trust what the head page is (it may be pointing to
864 * the reader page). But if the next page is a header page,
865 * its flags will be non zero.
866 */
42b16b3f 867static inline int
77ae365e
SR
868rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
869 struct buffer_page *page, struct list_head *list)
870{
871 unsigned long val;
872
873 val = (unsigned long)list->next;
874
875 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
876 return RB_PAGE_MOVED;
877
878 return val & RB_FLAG_MASK;
879}
880
881/*
882 * rb_is_reader_page
883 *
884 * The unique thing about the reader page, is that, if the
885 * writer is ever on it, the previous pointer never points
886 * back to the reader page.
887 */
06ca3209 888static bool rb_is_reader_page(struct buffer_page *page)
77ae365e
SR
889{
890 struct list_head *list = page->list.prev;
891
892 return rb_list_head(list->next) != &page->list;
893}
894
895/*
896 * rb_set_list_to_head - set a list_head to be pointing to head.
897 */
898static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
899 struct list_head *list)
900{
901 unsigned long *ptr;
902
903 ptr = (unsigned long *)&list->next;
904 *ptr |= RB_PAGE_HEAD;
905 *ptr &= ~RB_PAGE_UPDATE;
906}
907
908/*
909 * rb_head_page_activate - sets up head page
910 */
911static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
912{
913 struct buffer_page *head;
914
915 head = cpu_buffer->head_page;
916 if (!head)
917 return;
918
919 /*
920 * Set the previous list pointer to have the HEAD flag.
921 */
922 rb_set_list_to_head(cpu_buffer, head->list.prev);
923}
924
925static void rb_list_head_clear(struct list_head *list)
926{
927 unsigned long *ptr = (unsigned long *)&list->next;
928
929 *ptr &= ~RB_FLAG_MASK;
930}
931
932/*
6167c205 933 * rb_head_page_deactivate - clears head page ptr (for free list)
77ae365e
SR
934 */
935static void
936rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
937{
938 struct list_head *hd;
939
940 /* Go through the whole list and clear any pointers found. */
941 rb_list_head_clear(cpu_buffer->pages);
942
943 list_for_each(hd, cpu_buffer->pages)
944 rb_list_head_clear(hd);
945}
946
947static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
948 struct buffer_page *head,
949 struct buffer_page *prev,
950 int old_flag, int new_flag)
951{
952 struct list_head *list;
953 unsigned long val = (unsigned long)&head->list;
954 unsigned long ret;
955
956 list = &prev->list;
957
958 val &= ~RB_FLAG_MASK;
959
08a40816
SR
960 ret = cmpxchg((unsigned long *)&list->next,
961 val | old_flag, val | new_flag);
77ae365e
SR
962
963 /* check if the reader took the page */
964 if ((ret & ~RB_FLAG_MASK) != val)
965 return RB_PAGE_MOVED;
966
967 return ret & RB_FLAG_MASK;
968}
969
970static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
971 struct buffer_page *head,
972 struct buffer_page *prev,
973 int old_flag)
974{
975 return rb_head_page_set(cpu_buffer, head, prev,
976 old_flag, RB_PAGE_UPDATE);
977}
978
979static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
980 struct buffer_page *head,
981 struct buffer_page *prev,
982 int old_flag)
983{
984 return rb_head_page_set(cpu_buffer, head, prev,
985 old_flag, RB_PAGE_HEAD);
986}
987
988static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
989 struct buffer_page *head,
990 struct buffer_page *prev,
991 int old_flag)
992{
993 return rb_head_page_set(cpu_buffer, head, prev,
994 old_flag, RB_PAGE_NORMAL);
995}
996
997static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
998 struct buffer_page **bpage)
999{
1000 struct list_head *p = rb_list_head((*bpage)->list.next);
1001
1002 *bpage = list_entry(p, struct buffer_page, list);
1003}
1004
1005static struct buffer_page *
1006rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1007{
1008 struct buffer_page *head;
1009 struct buffer_page *page;
1010 struct list_head *list;
1011 int i;
1012
1013 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1014 return NULL;
1015
1016 /* sanity check */
1017 list = cpu_buffer->pages;
1018 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1019 return NULL;
1020
1021 page = head = cpu_buffer->head_page;
1022 /*
1023 * It is possible that the writer moves the header behind
1024 * where we started, and we miss in one loop.
1025 * A second loop should grab the header, but we'll do
1026 * three loops just because I'm paranoid.
1027 */
1028 for (i = 0; i < 3; i++) {
1029 do {
1030 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1031 cpu_buffer->head_page = page;
1032 return page;
1033 }
1034 rb_inc_page(cpu_buffer, &page);
1035 } while (page != head);
1036 }
1037
1038 RB_WARN_ON(cpu_buffer, 1);
1039
1040 return NULL;
1041}
1042
1043static int rb_head_page_replace(struct buffer_page *old,
1044 struct buffer_page *new)
1045{
1046 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1047 unsigned long val;
1048 unsigned long ret;
1049
1050 val = *ptr & ~RB_FLAG_MASK;
1051 val |= RB_PAGE_HEAD;
1052
08a40816 1053 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
1054
1055 return ret == val;
1056}
1057
1058/*
1059 * rb_tail_page_update - move the tail page forward
77ae365e 1060 */
70004986 1061static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
77ae365e
SR
1062 struct buffer_page *tail_page,
1063 struct buffer_page *next_page)
1064{
77ae365e
SR
1065 unsigned long old_entries;
1066 unsigned long old_write;
77ae365e
SR
1067
1068 /*
1069 * The tail page now needs to be moved forward.
1070 *
1071 * We need to reset the tail page, but without messing
1072 * with possible erasing of data brought in by interrupts
1073 * that have moved the tail page and are currently on it.
1074 *
1075 * We add a counter to the write field to denote this.
1076 */
1077 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1078 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1079
2c2b0a78 1080 local_inc(&cpu_buffer->pages_touched);
77ae365e
SR
1081 /*
1082 * Just make sure we have seen our old_write and synchronize
1083 * with any interrupts that come in.
1084 */
1085 barrier();
1086
1087 /*
1088 * If the tail page is still the same as what we think
1089 * it is, then it is up to us to update the tail
1090 * pointer.
1091 */
8573636e 1092 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
77ae365e
SR
1093 /* Zero the write counter */
1094 unsigned long val = old_write & ~RB_WRITE_MASK;
1095 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1096
1097 /*
1098 * This will only succeed if an interrupt did
1099 * not come in and change it. In which case, we
1100 * do not want to modify it.
da706d8b
LJ
1101 *
1102 * We add (void) to let the compiler know that we do not care
1103 * about the return value of these functions. We use the
1104 * cmpxchg to only update if an interrupt did not already
1105 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1106 */
da706d8b
LJ
1107 (void)local_cmpxchg(&next_page->write, old_write, val);
1108 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1109
1110 /*
1111 * No need to worry about races with clearing out the commit.
1112 * it only can increment when a commit takes place. But that
1113 * only happens in the outer most nested commit.
1114 */
1115 local_set(&next_page->page->commit, 0);
1116
70004986
SRRH
1117 /* Again, either we update tail_page or an interrupt does */
1118 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
77ae365e 1119 }
77ae365e
SR
1120}
1121
1122static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1123 struct buffer_page *bpage)
1124{
1125 unsigned long val = (unsigned long)bpage;
1126
1127 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1128 return 1;
1129
1130 return 0;
1131}
1132
1133/**
1134 * rb_check_list - make sure a pointer to a list has the last bits zero
1135 */
1136static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1137 struct list_head *list)
1138{
1139 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1140 return 1;
1141 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1142 return 1;
1143 return 0;
1144}
1145
7a8e76a3 1146/**
d611851b 1147 * rb_check_pages - integrity check of buffer pages
7a8e76a3
SR
1148 * @cpu_buffer: CPU buffer with pages to test
1149 *
c3706f00 1150 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1151 * been corrupted.
1152 */
1153static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1154{
3adc54fa 1155 struct list_head *head = cpu_buffer->pages;
044fa782 1156 struct buffer_page *bpage, *tmp;
7a8e76a3 1157
308f7eeb
SR
1158 /* Reset the head page if it exists */
1159 if (cpu_buffer->head_page)
1160 rb_set_head_page(cpu_buffer);
1161
77ae365e
SR
1162 rb_head_page_deactivate(cpu_buffer);
1163
3e89c7bb
SR
1164 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1165 return -1;
1166 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1167 return -1;
7a8e76a3 1168
77ae365e
SR
1169 if (rb_check_list(cpu_buffer, head))
1170 return -1;
1171
044fa782 1172 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1173 if (RB_WARN_ON(cpu_buffer,
044fa782 1174 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1175 return -1;
1176 if (RB_WARN_ON(cpu_buffer,
044fa782 1177 bpage->list.prev->next != &bpage->list))
3e89c7bb 1178 return -1;
77ae365e
SR
1179 if (rb_check_list(cpu_buffer, &bpage->list))
1180 return -1;
7a8e76a3
SR
1181 }
1182
77ae365e
SR
1183 rb_head_page_activate(cpu_buffer);
1184
7a8e76a3
SR
1185 return 0;
1186}
1187
9b94a8fb 1188static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1189{
044fa782 1190 struct buffer_page *bpage, *tmp;
927e56db
SRV
1191 bool user_thread = current->mm != NULL;
1192 gfp_t mflags;
9b94a8fb 1193 long i;
3adc54fa 1194
927e56db
SRV
1195 /*
1196 * Check if the available memory is there first.
1197 * Note, si_mem_available() only gives us a rough estimate of available
1198 * memory. It may not be accurate. But we don't care, we just want
1199 * to prevent doing any allocation when it is obvious that it is
1200 * not going to succeed.
1201 */
2a872fa4
SRV
1202 i = si_mem_available();
1203 if (i < nr_pages)
1204 return -ENOMEM;
1205
927e56db
SRV
1206 /*
1207 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1208 * gracefully without invoking oom-killer and the system is not
1209 * destabilized.
1210 */
1211 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1212
1213 /*
1214 * If a user thread allocates too much, and si_mem_available()
1215 * reports there's enough memory, even though there is not.
1216 * Make sure the OOM killer kills this thread. This can happen
1217 * even with RETRY_MAYFAIL because another task may be doing
1218 * an allocation after this task has taken all memory.
1219 * This is the task the OOM killer needs to take out during this
1220 * loop, even if it was triggered by an allocation somewhere else.
1221 */
1222 if (user_thread)
1223 set_current_oom_origin();
7a8e76a3 1224 for (i = 0; i < nr_pages; i++) {
7ea59064 1225 struct page *page;
927e56db 1226
044fa782 1227 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
927e56db 1228 mflags, cpu_to_node(cpu));
044fa782 1229 if (!bpage)
e4c2ce82 1230 goto free_pages;
77ae365e 1231
438ced17 1232 list_add(&bpage->list, pages);
77ae365e 1233
927e56db 1234 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
7ea59064 1235 if (!page)
7a8e76a3 1236 goto free_pages;
7ea59064 1237 bpage->page = page_address(page);
044fa782 1238 rb_init_page(bpage->page);
927e56db
SRV
1239
1240 if (user_thread && fatal_signal_pending(current))
1241 goto free_pages;
7a8e76a3 1242 }
927e56db
SRV
1243 if (user_thread)
1244 clear_current_oom_origin();
7a8e76a3 1245
438ced17
VN
1246 return 0;
1247
1248free_pages:
1249 list_for_each_entry_safe(bpage, tmp, pages, list) {
1250 list_del_init(&bpage->list);
1251 free_buffer_page(bpage);
1252 }
927e56db
SRV
1253 if (user_thread)
1254 clear_current_oom_origin();
438ced17
VN
1255
1256 return -ENOMEM;
1257}
1258
1259static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
9b94a8fb 1260 unsigned long nr_pages)
438ced17
VN
1261{
1262 LIST_HEAD(pages);
1263
1264 WARN_ON(!nr_pages);
1265
1266 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1267 return -ENOMEM;
1268
3adc54fa
SR
1269 /*
1270 * The ring buffer page list is a circular list that does not
1271 * start and end with a list head. All page list items point to
1272 * other pages.
1273 */
1274 cpu_buffer->pages = pages.next;
1275 list_del(&pages);
7a8e76a3 1276
438ced17
VN
1277 cpu_buffer->nr_pages = nr_pages;
1278
7a8e76a3
SR
1279 rb_check_pages(cpu_buffer);
1280
1281 return 0;
7a8e76a3
SR
1282}
1283
1284static struct ring_buffer_per_cpu *
9b94a8fb 1285rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
7a8e76a3
SR
1286{
1287 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1288 struct buffer_page *bpage;
7ea59064 1289 struct page *page;
7a8e76a3
SR
1290 int ret;
1291
1292 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1293 GFP_KERNEL, cpu_to_node(cpu));
1294 if (!cpu_buffer)
1295 return NULL;
1296
1297 cpu_buffer->cpu = cpu;
1298 cpu_buffer->buffer = buffer;
5389f6fa 1299 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1300 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1301 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1302 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1303 init_completion(&cpu_buffer->update_done);
15693458 1304 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1305 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1e0d6714 1306 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
7a8e76a3 1307
044fa782 1308 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1309 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1310 if (!bpage)
e4c2ce82
SR
1311 goto fail_free_buffer;
1312
77ae365e
SR
1313 rb_check_bpage(cpu_buffer, bpage);
1314
044fa782 1315 cpu_buffer->reader_page = bpage;
7ea59064
VN
1316 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1317 if (!page)
e4c2ce82 1318 goto fail_free_reader;
7ea59064 1319 bpage->page = page_address(page);
044fa782 1320 rb_init_page(bpage->page);
e4c2ce82 1321
d769041f 1322 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1323 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1324
438ced17 1325 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1326 if (ret < 0)
d769041f 1327 goto fail_free_reader;
7a8e76a3
SR
1328
1329 cpu_buffer->head_page
3adc54fa 1330 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1331 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1332
77ae365e
SR
1333 rb_head_page_activate(cpu_buffer);
1334
7a8e76a3
SR
1335 return cpu_buffer;
1336
d769041f
SR
1337 fail_free_reader:
1338 free_buffer_page(cpu_buffer->reader_page);
1339
7a8e76a3
SR
1340 fail_free_buffer:
1341 kfree(cpu_buffer);
1342 return NULL;
1343}
1344
1345static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1346{
3adc54fa 1347 struct list_head *head = cpu_buffer->pages;
044fa782 1348 struct buffer_page *bpage, *tmp;
7a8e76a3 1349
d769041f
SR
1350 free_buffer_page(cpu_buffer->reader_page);
1351
77ae365e
SR
1352 rb_head_page_deactivate(cpu_buffer);
1353
3adc54fa
SR
1354 if (head) {
1355 list_for_each_entry_safe(bpage, tmp, head, list) {
1356 list_del_init(&bpage->list);
1357 free_buffer_page(bpage);
1358 }
1359 bpage = list_entry(head, struct buffer_page, list);
044fa782 1360 free_buffer_page(bpage);
7a8e76a3 1361 }
3adc54fa 1362
7a8e76a3
SR
1363 kfree(cpu_buffer);
1364}
1365
1366/**
d611851b 1367 * __ring_buffer_alloc - allocate a new ring_buffer
68814b58 1368 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1369 * @flags: attributes to set for the ring buffer.
1370 *
1371 * Currently the only flag that is available is the RB_FL_OVERWRITE
1372 * flag. This flag means that the buffer will overwrite old data
1373 * when the buffer wraps. If this flag is not set, the buffer will
1374 * drop data when the tail hits the head.
1375 */
1f8a6a10
PZ
1376struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1377 struct lock_class_key *key)
7a8e76a3
SR
1378{
1379 struct ring_buffer *buffer;
9b94a8fb 1380 long nr_pages;
7a8e76a3 1381 int bsize;
9b94a8fb 1382 int cpu;
b32614c0 1383 int ret;
7a8e76a3
SR
1384
1385 /* keep it in its own cache line */
1386 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1387 GFP_KERNEL);
1388 if (!buffer)
1389 return NULL;
1390
b18cc3de 1391 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
9e01c1b7
RR
1392 goto fail_free_buffer;
1393
438ced17 1394 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1395 buffer->flags = flags;
37886f6a 1396 buffer->clock = trace_clock_local;
1f8a6a10 1397 buffer->reader_lock_key = key;
7a8e76a3 1398
15693458 1399 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1400 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1401
7a8e76a3 1402 /* need at least two pages */
438ced17
VN
1403 if (nr_pages < 2)
1404 nr_pages = 2;
7a8e76a3 1405
7a8e76a3
SR
1406 buffer->cpus = nr_cpu_ids;
1407
1408 bsize = sizeof(void *) * nr_cpu_ids;
1409 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1410 GFP_KERNEL);
1411 if (!buffer->buffers)
9e01c1b7 1412 goto fail_free_cpumask;
7a8e76a3 1413
b32614c0
SAS
1414 cpu = raw_smp_processor_id();
1415 cpumask_set_cpu(cpu, buffer->cpumask);
1416 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1417 if (!buffer->buffers[cpu])
1418 goto fail_free_buffers;
7a8e76a3 1419
b32614c0
SAS
1420 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1421 if (ret < 0)
1422 goto fail_free_buffers;
554f786e 1423
7a8e76a3
SR
1424 mutex_init(&buffer->mutex);
1425
1426 return buffer;
1427
1428 fail_free_buffers:
1429 for_each_buffer_cpu(buffer, cpu) {
1430 if (buffer->buffers[cpu])
1431 rb_free_cpu_buffer(buffer->buffers[cpu]);
1432 }
1433 kfree(buffer->buffers);
1434
9e01c1b7
RR
1435 fail_free_cpumask:
1436 free_cpumask_var(buffer->cpumask);
1437
7a8e76a3
SR
1438 fail_free_buffer:
1439 kfree(buffer);
1440 return NULL;
1441}
1f8a6a10 1442EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1443
1444/**
1445 * ring_buffer_free - free a ring buffer.
1446 * @buffer: the buffer to free.
1447 */
1448void
1449ring_buffer_free(struct ring_buffer *buffer)
1450{
1451 int cpu;
1452
b32614c0 1453 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
554f786e 1454
7a8e76a3
SR
1455 for_each_buffer_cpu(buffer, cpu)
1456 rb_free_cpu_buffer(buffer->buffers[cpu]);
1457
bd3f0221 1458 kfree(buffer->buffers);
9e01c1b7
RR
1459 free_cpumask_var(buffer->cpumask);
1460
7a8e76a3
SR
1461 kfree(buffer);
1462}
c4f50183 1463EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1464
37886f6a
SR
1465void ring_buffer_set_clock(struct ring_buffer *buffer,
1466 u64 (*clock)(void))
1467{
1468 buffer->clock = clock;
1469}
1470
00b41452
TZ
1471void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs)
1472{
1473 buffer->time_stamp_abs = abs;
1474}
1475
1476bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer)
1477{
1478 return buffer->time_stamp_abs;
1479}
1480
7a8e76a3
SR
1481static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1482
83f40318
VN
1483static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1484{
1485 return local_read(&bpage->entries) & RB_WRITE_MASK;
1486}
1487
1488static inline unsigned long rb_page_write(struct buffer_page *bpage)
1489{
1490 return local_read(&bpage->write) & RB_WRITE_MASK;
1491}
1492
5040b4b7 1493static int
9b94a8fb 1494rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
7a8e76a3 1495{
83f40318
VN
1496 struct list_head *tail_page, *to_remove, *next_page;
1497 struct buffer_page *to_remove_page, *tmp_iter_page;
1498 struct buffer_page *last_page, *first_page;
9b94a8fb 1499 unsigned long nr_removed;
83f40318
VN
1500 unsigned long head_bit;
1501 int page_entries;
1502
1503 head_bit = 0;
7a8e76a3 1504
5389f6fa 1505 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1506 atomic_inc(&cpu_buffer->record_disabled);
1507 /*
1508 * We don't race with the readers since we have acquired the reader
1509 * lock. We also don't race with writers after disabling recording.
1510 * This makes it easy to figure out the first and the last page to be
1511 * removed from the list. We unlink all the pages in between including
1512 * the first and last pages. This is done in a busy loop so that we
1513 * lose the least number of traces.
1514 * The pages are freed after we restart recording and unlock readers.
1515 */
1516 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1517
83f40318
VN
1518 /*
1519 * tail page might be on reader page, we remove the next page
1520 * from the ring buffer
1521 */
1522 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1523 tail_page = rb_list_head(tail_page->next);
1524 to_remove = tail_page;
1525
1526 /* start of pages to remove */
1527 first_page = list_entry(rb_list_head(to_remove->next),
1528 struct buffer_page, list);
1529
1530 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1531 to_remove = rb_list_head(to_remove)->next;
1532 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1533 }
7a8e76a3 1534
83f40318 1535 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1536
83f40318
VN
1537 /*
1538 * Now we remove all pages between tail_page and next_page.
1539 * Make sure that we have head_bit value preserved for the
1540 * next page
1541 */
1542 tail_page->next = (struct list_head *)((unsigned long)next_page |
1543 head_bit);
1544 next_page = rb_list_head(next_page);
1545 next_page->prev = tail_page;
1546
1547 /* make sure pages points to a valid page in the ring buffer */
1548 cpu_buffer->pages = next_page;
1549
1550 /* update head page */
1551 if (head_bit)
1552 cpu_buffer->head_page = list_entry(next_page,
1553 struct buffer_page, list);
1554
1555 /*
1556 * change read pointer to make sure any read iterators reset
1557 * themselves
1558 */
1559 cpu_buffer->read = 0;
1560
1561 /* pages are removed, resume tracing and then free the pages */
1562 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1563 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1564
1565 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1566
1567 /* last buffer page to remove */
1568 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1569 list);
1570 tmp_iter_page = first_page;
1571
1572 do {
83f36555
VN
1573 cond_resched();
1574
83f40318
VN
1575 to_remove_page = tmp_iter_page;
1576 rb_inc_page(cpu_buffer, &tmp_iter_page);
1577
1578 /* update the counters */
1579 page_entries = rb_page_entries(to_remove_page);
1580 if (page_entries) {
1581 /*
1582 * If something was added to this page, it was full
1583 * since it is not the tail page. So we deduct the
1584 * bytes consumed in ring buffer from here.
48fdc72f 1585 * Increment overrun to account for the lost events.
83f40318 1586 */
48fdc72f 1587 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1588 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1589 }
1590
1591 /*
1592 * We have already removed references to this list item, just
1593 * free up the buffer_page and its page
1594 */
1595 free_buffer_page(to_remove_page);
1596 nr_removed--;
1597
1598 } while (to_remove_page != last_page);
1599
1600 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1601
1602 return nr_removed == 0;
7a8e76a3
SR
1603}
1604
5040b4b7
VN
1605static int
1606rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1607{
5040b4b7
VN
1608 struct list_head *pages = &cpu_buffer->new_pages;
1609 int retries, success;
7a8e76a3 1610
5389f6fa 1611 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1612 /*
1613 * We are holding the reader lock, so the reader page won't be swapped
1614 * in the ring buffer. Now we are racing with the writer trying to
1615 * move head page and the tail page.
1616 * We are going to adapt the reader page update process where:
1617 * 1. We first splice the start and end of list of new pages between
1618 * the head page and its previous page.
1619 * 2. We cmpxchg the prev_page->next to point from head page to the
1620 * start of new pages list.
1621 * 3. Finally, we update the head->prev to the end of new list.
1622 *
1623 * We will try this process 10 times, to make sure that we don't keep
1624 * spinning.
1625 */
1626 retries = 10;
1627 success = 0;
1628 while (retries--) {
1629 struct list_head *head_page, *prev_page, *r;
1630 struct list_head *last_page, *first_page;
1631 struct list_head *head_page_with_bit;
77ae365e 1632
5040b4b7 1633 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1634 if (!head_page)
1635 break;
5040b4b7
VN
1636 prev_page = head_page->prev;
1637
1638 first_page = pages->next;
1639 last_page = pages->prev;
1640
1641 head_page_with_bit = (struct list_head *)
1642 ((unsigned long)head_page | RB_PAGE_HEAD);
1643
1644 last_page->next = head_page_with_bit;
1645 first_page->prev = prev_page;
1646
1647 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1648
1649 if (r == head_page_with_bit) {
1650 /*
1651 * yay, we replaced the page pointer to our new list,
1652 * now, we just have to update to head page's prev
1653 * pointer to point to end of list
1654 */
1655 head_page->prev = last_page;
1656 success = 1;
1657 break;
1658 }
7a8e76a3 1659 }
7a8e76a3 1660
5040b4b7
VN
1661 if (success)
1662 INIT_LIST_HEAD(pages);
1663 /*
1664 * If we weren't successful in adding in new pages, warn and stop
1665 * tracing
1666 */
1667 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1668 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1669
1670 /* free pages if they weren't inserted */
1671 if (!success) {
1672 struct buffer_page *bpage, *tmp;
1673 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1674 list) {
1675 list_del_init(&bpage->list);
1676 free_buffer_page(bpage);
1677 }
1678 }
1679 return success;
7a8e76a3
SR
1680}
1681
83f40318 1682static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1683{
5040b4b7
VN
1684 int success;
1685
438ced17 1686 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1687 success = rb_insert_pages(cpu_buffer);
438ced17 1688 else
5040b4b7
VN
1689 success = rb_remove_pages(cpu_buffer,
1690 -cpu_buffer->nr_pages_to_update);
83f40318 1691
5040b4b7
VN
1692 if (success)
1693 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1694}
1695
1696static void update_pages_handler(struct work_struct *work)
1697{
1698 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1699 struct ring_buffer_per_cpu, update_pages_work);
1700 rb_update_pages(cpu_buffer);
05fdd70d 1701 complete(&cpu_buffer->update_done);
438ced17
VN
1702}
1703
7a8e76a3
SR
1704/**
1705 * ring_buffer_resize - resize the ring buffer
1706 * @buffer: the buffer to resize.
1707 * @size: the new size.
d611851b 1708 * @cpu_id: the cpu buffer to resize
7a8e76a3 1709 *
7a8e76a3
SR
1710 * Minimum size is 2 * BUF_PAGE_SIZE.
1711 *
83f40318 1712 * Returns 0 on success and < 0 on failure.
7a8e76a3 1713 */
438ced17
VN
1714int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1715 int cpu_id)
7a8e76a3
SR
1716{
1717 struct ring_buffer_per_cpu *cpu_buffer;
9b94a8fb 1718 unsigned long nr_pages;
83f40318 1719 int cpu, err = 0;
7a8e76a3 1720
ee51a1de
IM
1721 /*
1722 * Always succeed at resizing a non-existent buffer:
1723 */
1724 if (!buffer)
1725 return size;
1726
6a31e1f1
SR
1727 /* Make sure the requested buffer exists */
1728 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1729 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1730 return size;
1731
59643d15 1732 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3
SR
1733
1734 /* we need a minimum of two pages */
59643d15
SRRH
1735 if (nr_pages < 2)
1736 nr_pages = 2;
7a8e76a3 1737
59643d15 1738 size = nr_pages * BUF_PAGE_SIZE;
18421015 1739
83f40318
VN
1740 /*
1741 * Don't succeed if resizing is disabled, as a reader might be
1742 * manipulating the ring buffer and is expecting a sane state while
1743 * this is true.
1744 */
1745 if (atomic_read(&buffer->resize_disabled))
1746 return -EBUSY;
18421015 1747
83f40318 1748 /* prevent another thread from changing buffer sizes */
7a8e76a3 1749 mutex_lock(&buffer->mutex);
7a8e76a3 1750
438ced17
VN
1751 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1752 /* calculate the pages to update */
7a8e76a3
SR
1753 for_each_buffer_cpu(buffer, cpu) {
1754 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1755
438ced17
VN
1756 cpu_buffer->nr_pages_to_update = nr_pages -
1757 cpu_buffer->nr_pages;
438ced17
VN
1758 /*
1759 * nothing more to do for removing pages or no update
1760 */
1761 if (cpu_buffer->nr_pages_to_update <= 0)
1762 continue;
d7ec4bfe 1763 /*
438ced17
VN
1764 * to add pages, make sure all new pages can be
1765 * allocated without receiving ENOMEM
d7ec4bfe 1766 */
438ced17
VN
1767 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1768 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1769 &cpu_buffer->new_pages, cpu)) {
438ced17 1770 /* not enough memory for new pages */
83f40318
VN
1771 err = -ENOMEM;
1772 goto out_err;
1773 }
1774 }
1775
1776 get_online_cpus();
1777 /*
1778 * Fire off all the required work handlers
05fdd70d 1779 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1780 * since we can change their buffer sizes without any race.
1781 */
1782 for_each_buffer_cpu(buffer, cpu) {
1783 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1784 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1785 continue;
1786
021c5b34
CM
1787 /* Can't run something on an offline CPU. */
1788 if (!cpu_online(cpu)) {
f5eb5588
SRRH
1789 rb_update_pages(cpu_buffer);
1790 cpu_buffer->nr_pages_to_update = 0;
1791 } else {
05fdd70d
VN
1792 schedule_work_on(cpu,
1793 &cpu_buffer->update_pages_work);
f5eb5588 1794 }
7a8e76a3 1795 }
7a8e76a3 1796
438ced17
VN
1797 /* wait for all the updates to complete */
1798 for_each_buffer_cpu(buffer, cpu) {
1799 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1800 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1801 continue;
1802
05fdd70d
VN
1803 if (cpu_online(cpu))
1804 wait_for_completion(&cpu_buffer->update_done);
83f40318 1805 cpu_buffer->nr_pages_to_update = 0;
438ced17 1806 }
83f40318
VN
1807
1808 put_online_cpus();
438ced17 1809 } else {
6167c205 1810 /* Make sure this CPU has been initialized */
8e49f418
VN
1811 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1812 goto out;
1813
438ced17 1814 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1815
438ced17
VN
1816 if (nr_pages == cpu_buffer->nr_pages)
1817 goto out;
7a8e76a3 1818
438ced17
VN
1819 cpu_buffer->nr_pages_to_update = nr_pages -
1820 cpu_buffer->nr_pages;
1821
1822 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1823 if (cpu_buffer->nr_pages_to_update > 0 &&
1824 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1825 &cpu_buffer->new_pages, cpu_id)) {
1826 err = -ENOMEM;
1827 goto out_err;
1828 }
438ced17 1829
83f40318
VN
1830 get_online_cpus();
1831
021c5b34
CM
1832 /* Can't run something on an offline CPU. */
1833 if (!cpu_online(cpu_id))
f5eb5588
SRRH
1834 rb_update_pages(cpu_buffer);
1835 else {
83f40318
VN
1836 schedule_work_on(cpu_id,
1837 &cpu_buffer->update_pages_work);
05fdd70d 1838 wait_for_completion(&cpu_buffer->update_done);
f5eb5588 1839 }
83f40318 1840
83f40318 1841 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1842 put_online_cpus();
438ced17 1843 }
7a8e76a3
SR
1844
1845 out:
659f451f
SR
1846 /*
1847 * The ring buffer resize can happen with the ring buffer
1848 * enabled, so that the update disturbs the tracing as little
1849 * as possible. But if the buffer is disabled, we do not need
1850 * to worry about that, and we can take the time to verify
1851 * that the buffer is not corrupt.
1852 */
1853 if (atomic_read(&buffer->record_disabled)) {
1854 atomic_inc(&buffer->record_disabled);
1855 /*
1856 * Even though the buffer was disabled, we must make sure
1857 * that it is truly disabled before calling rb_check_pages.
1858 * There could have been a race between checking
1859 * record_disable and incrementing it.
1860 */
74401729 1861 synchronize_rcu();
659f451f
SR
1862 for_each_buffer_cpu(buffer, cpu) {
1863 cpu_buffer = buffer->buffers[cpu];
1864 rb_check_pages(cpu_buffer);
1865 }
1866 atomic_dec(&buffer->record_disabled);
1867 }
1868
7a8e76a3 1869 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1870 return size;
1871
83f40318 1872 out_err:
438ced17
VN
1873 for_each_buffer_cpu(buffer, cpu) {
1874 struct buffer_page *bpage, *tmp;
83f40318 1875
438ced17 1876 cpu_buffer = buffer->buffers[cpu];
438ced17 1877 cpu_buffer->nr_pages_to_update = 0;
83f40318 1878
438ced17
VN
1879 if (list_empty(&cpu_buffer->new_pages))
1880 continue;
83f40318 1881
438ced17
VN
1882 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1883 list) {
1884 list_del_init(&bpage->list);
1885 free_buffer_page(bpage);
1886 }
7a8e76a3 1887 }
641d2f63 1888 mutex_unlock(&buffer->mutex);
83f40318 1889 return err;
7a8e76a3 1890}
c4f50183 1891EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1892
750912fa
DS
1893void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1894{
1895 mutex_lock(&buffer->mutex);
1896 if (val)
1897 buffer->flags |= RB_FL_OVERWRITE;
1898 else
1899 buffer->flags &= ~RB_FL_OVERWRITE;
1900 mutex_unlock(&buffer->mutex);
1901}
1902EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1903
2289d567 1904static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1905{
044fa782 1906 return bpage->page->data + index;
7a8e76a3
SR
1907}
1908
2289d567 1909static __always_inline struct ring_buffer_event *
d769041f 1910rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1911{
6f807acd
SR
1912 return __rb_page_index(cpu_buffer->reader_page,
1913 cpu_buffer->reader_page->read);
1914}
1915
2289d567 1916static __always_inline struct ring_buffer_event *
7a8e76a3
SR
1917rb_iter_head_event(struct ring_buffer_iter *iter)
1918{
6f807acd 1919 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1920}
1921
2289d567 1922static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
bf41a158 1923{
abc9b56d 1924 return local_read(&bpage->page->commit);
bf41a158
SR
1925}
1926
25985edc 1927/* Size is determined by what has been committed */
2289d567 1928static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
bf41a158
SR
1929{
1930 return rb_page_commit(bpage);
1931}
1932
2289d567 1933static __always_inline unsigned
bf41a158
SR
1934rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1935{
1936 return rb_page_commit(cpu_buffer->commit_page);
1937}
1938
2289d567 1939static __always_inline unsigned
bf41a158
SR
1940rb_event_index(struct ring_buffer_event *event)
1941{
1942 unsigned long addr = (unsigned long)event;
1943
22f470f8 1944 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1945}
1946
34a148bf 1947static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1948{
1949 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1950
1951 /*
1952 * The iterator could be on the reader page (it starts there).
1953 * But the head could have moved, since the reader was
1954 * found. Check for this case and assign the iterator
1955 * to the head page instead of next.
1956 */
1957 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1958 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1959 else
1960 rb_inc_page(cpu_buffer, &iter->head_page);
1961
abc9b56d 1962 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1963 iter->head = 0;
1964}
1965
77ae365e
SR
1966/*
1967 * rb_handle_head_page - writer hit the head page
1968 *
1969 * Returns: +1 to retry page
1970 * 0 to continue
1971 * -1 on error
1972 */
1973static int
1974rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1975 struct buffer_page *tail_page,
1976 struct buffer_page *next_page)
1977{
1978 struct buffer_page *new_head;
1979 int entries;
1980 int type;
1981 int ret;
1982
1983 entries = rb_page_entries(next_page);
1984
1985 /*
1986 * The hard part is here. We need to move the head
1987 * forward, and protect against both readers on
1988 * other CPUs and writers coming in via interrupts.
1989 */
1990 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1991 RB_PAGE_HEAD);
1992
1993 /*
1994 * type can be one of four:
1995 * NORMAL - an interrupt already moved it for us
1996 * HEAD - we are the first to get here.
1997 * UPDATE - we are the interrupt interrupting
1998 * a current move.
1999 * MOVED - a reader on another CPU moved the next
2000 * pointer to its reader page. Give up
2001 * and try again.
2002 */
2003
2004 switch (type) {
2005 case RB_PAGE_HEAD:
2006 /*
2007 * We changed the head to UPDATE, thus
2008 * it is our responsibility to update
2009 * the counters.
2010 */
2011 local_add(entries, &cpu_buffer->overrun);
c64e148a 2012 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
2013
2014 /*
2015 * The entries will be zeroed out when we move the
2016 * tail page.
2017 */
2018
2019 /* still more to do */
2020 break;
2021
2022 case RB_PAGE_UPDATE:
2023 /*
2024 * This is an interrupt that interrupt the
2025 * previous update. Still more to do.
2026 */
2027 break;
2028 case RB_PAGE_NORMAL:
2029 /*
2030 * An interrupt came in before the update
2031 * and processed this for us.
2032 * Nothing left to do.
2033 */
2034 return 1;
2035 case RB_PAGE_MOVED:
2036 /*
2037 * The reader is on another CPU and just did
2038 * a swap with our next_page.
2039 * Try again.
2040 */
2041 return 1;
2042 default:
2043 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2044 return -1;
2045 }
2046
2047 /*
2048 * Now that we are here, the old head pointer is
2049 * set to UPDATE. This will keep the reader from
2050 * swapping the head page with the reader page.
2051 * The reader (on another CPU) will spin till
2052 * we are finished.
2053 *
2054 * We just need to protect against interrupts
2055 * doing the job. We will set the next pointer
2056 * to HEAD. After that, we set the old pointer
2057 * to NORMAL, but only if it was HEAD before.
2058 * otherwise we are an interrupt, and only
2059 * want the outer most commit to reset it.
2060 */
2061 new_head = next_page;
2062 rb_inc_page(cpu_buffer, &new_head);
2063
2064 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2065 RB_PAGE_NORMAL);
2066
2067 /*
2068 * Valid returns are:
2069 * HEAD - an interrupt came in and already set it.
2070 * NORMAL - One of two things:
2071 * 1) We really set it.
2072 * 2) A bunch of interrupts came in and moved
2073 * the page forward again.
2074 */
2075 switch (ret) {
2076 case RB_PAGE_HEAD:
2077 case RB_PAGE_NORMAL:
2078 /* OK */
2079 break;
2080 default:
2081 RB_WARN_ON(cpu_buffer, 1);
2082 return -1;
2083 }
2084
2085 /*
2086 * It is possible that an interrupt came in,
2087 * set the head up, then more interrupts came in
2088 * and moved it again. When we get back here,
2089 * the page would have been set to NORMAL but we
2090 * just set it back to HEAD.
2091 *
2092 * How do you detect this? Well, if that happened
2093 * the tail page would have moved.
2094 */
2095 if (ret == RB_PAGE_NORMAL) {
8573636e
SRRH
2096 struct buffer_page *buffer_tail_page;
2097
2098 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
77ae365e
SR
2099 /*
2100 * If the tail had moved passed next, then we need
2101 * to reset the pointer.
2102 */
8573636e
SRRH
2103 if (buffer_tail_page != tail_page &&
2104 buffer_tail_page != next_page)
77ae365e
SR
2105 rb_head_page_set_normal(cpu_buffer, new_head,
2106 next_page,
2107 RB_PAGE_HEAD);
2108 }
2109
2110 /*
2111 * If this was the outer most commit (the one that
2112 * changed the original pointer from HEAD to UPDATE),
2113 * then it is up to us to reset it to NORMAL.
2114 */
2115 if (type == RB_PAGE_HEAD) {
2116 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2117 tail_page,
2118 RB_PAGE_UPDATE);
2119 if (RB_WARN_ON(cpu_buffer,
2120 ret != RB_PAGE_UPDATE))
2121 return -1;
2122 }
2123
2124 return 0;
2125}
2126
c7b09308
SR
2127static inline void
2128rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2129 unsigned long tail, struct rb_event_info *info)
c7b09308 2130{
fcc742ea 2131 struct buffer_page *tail_page = info->tail_page;
c7b09308 2132 struct ring_buffer_event *event;
fcc742ea 2133 unsigned long length = info->length;
c7b09308
SR
2134
2135 /*
2136 * Only the event that crossed the page boundary
2137 * must fill the old tail_page with padding.
2138 */
2139 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2140 /*
2141 * If the page was filled, then we still need
2142 * to update the real_end. Reset it to zero
2143 * and the reader will ignore it.
2144 */
2145 if (tail == BUF_PAGE_SIZE)
2146 tail_page->real_end = 0;
2147
c7b09308
SR
2148 local_sub(length, &tail_page->write);
2149 return;
2150 }
2151
2152 event = __rb_page_index(tail_page, tail);
2153
c64e148a
VN
2154 /* account for padding bytes */
2155 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2156
ff0ff84a
SR
2157 /*
2158 * Save the original length to the meta data.
2159 * This will be used by the reader to add lost event
2160 * counter.
2161 */
2162 tail_page->real_end = tail;
2163
c7b09308
SR
2164 /*
2165 * If this event is bigger than the minimum size, then
2166 * we need to be careful that we don't subtract the
2167 * write counter enough to allow another writer to slip
2168 * in on this page.
2169 * We put in a discarded commit instead, to make sure
2170 * that this space is not used again.
2171 *
2172 * If we are less than the minimum size, we don't need to
2173 * worry about it.
2174 */
2175 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2176 /* No room for any events */
2177
2178 /* Mark the rest of the page with padding */
2179 rb_event_set_padding(event);
2180
2181 /* Set the write back to the previous setting */
2182 local_sub(length, &tail_page->write);
2183 return;
2184 }
2185
2186 /* Put in a discarded event */
2187 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2188 event->type_len = RINGBUF_TYPE_PADDING;
2189 /* time delta must be non zero */
2190 event->time_delta = 1;
c7b09308
SR
2191
2192 /* Set write to end of buffer */
2193 length = (tail + length) - BUF_PAGE_SIZE;
2194 local_sub(length, &tail_page->write);
2195}
6634ff26 2196
4239c38f
SRRH
2197static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2198
747e94ae
SR
2199/*
2200 * This is the slow path, force gcc not to inline it.
2201 */
2202static noinline struct ring_buffer_event *
6634ff26 2203rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2204 unsigned long tail, struct rb_event_info *info)
7a8e76a3 2205{
fcc742ea 2206 struct buffer_page *tail_page = info->tail_page;
5a50e33c 2207 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2208 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2209 struct buffer_page *next_page;
2210 int ret;
aa20ae84
SR
2211
2212 next_page = tail_page;
2213
aa20ae84
SR
2214 rb_inc_page(cpu_buffer, &next_page);
2215
aa20ae84
SR
2216 /*
2217 * If for some reason, we had an interrupt storm that made
2218 * it all the way around the buffer, bail, and warn
2219 * about it.
2220 */
2221 if (unlikely(next_page == commit_page)) {
77ae365e 2222 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2223 goto out_reset;
2224 }
2225
77ae365e
SR
2226 /*
2227 * This is where the fun begins!
2228 *
2229 * We are fighting against races between a reader that
2230 * could be on another CPU trying to swap its reader
2231 * page with the buffer head.
2232 *
2233 * We are also fighting against interrupts coming in and
2234 * moving the head or tail on us as well.
2235 *
2236 * If the next page is the head page then we have filled
2237 * the buffer, unless the commit page is still on the
2238 * reader page.
2239 */
2240 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2241
77ae365e
SR
2242 /*
2243 * If the commit is not on the reader page, then
2244 * move the header page.
2245 */
2246 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2247 /*
2248 * If we are not in overwrite mode,
2249 * this is easy, just stop here.
2250 */
884bfe89
SP
2251 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2252 local_inc(&cpu_buffer->dropped_events);
77ae365e 2253 goto out_reset;
884bfe89 2254 }
77ae365e
SR
2255
2256 ret = rb_handle_head_page(cpu_buffer,
2257 tail_page,
2258 next_page);
2259 if (ret < 0)
2260 goto out_reset;
2261 if (ret)
2262 goto out_again;
2263 } else {
2264 /*
2265 * We need to be careful here too. The
2266 * commit page could still be on the reader
2267 * page. We could have a small buffer, and
2268 * have filled up the buffer with events
2269 * from interrupts and such, and wrapped.
2270 *
2271 * Note, if the tail page is also the on the
2272 * reader_page, we let it move out.
2273 */
2274 if (unlikely((cpu_buffer->commit_page !=
2275 cpu_buffer->tail_page) &&
2276 (cpu_buffer->commit_page ==
2277 cpu_buffer->reader_page))) {
2278 local_inc(&cpu_buffer->commit_overrun);
2279 goto out_reset;
2280 }
aa20ae84
SR
2281 }
2282 }
2283
70004986 2284 rb_tail_page_update(cpu_buffer, tail_page, next_page);
aa20ae84 2285
77ae365e 2286 out_again:
aa20ae84 2287
fcc742ea 2288 rb_reset_tail(cpu_buffer, tail, info);
aa20ae84 2289
4239c38f
SRRH
2290 /* Commit what we have for now. */
2291 rb_end_commit(cpu_buffer);
2292 /* rb_end_commit() decs committing */
2293 local_inc(&cpu_buffer->committing);
2294
aa20ae84
SR
2295 /* fail and let the caller try again */
2296 return ERR_PTR(-EAGAIN);
2297
45141d46 2298 out_reset:
6f3b3440 2299 /* reset write */
fcc742ea 2300 rb_reset_tail(cpu_buffer, tail, info);
6f3b3440 2301
bf41a158 2302 return NULL;
7a8e76a3
SR
2303}
2304
d90fd774
SRRH
2305/* Slow path, do not inline */
2306static noinline struct ring_buffer_event *
dc4e2801 2307rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
9826b273 2308{
dc4e2801
TZ
2309 if (abs)
2310 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2311 else
2312 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
9826b273 2313
dc4e2801
TZ
2314 /* Not the first event on the page, or not delta? */
2315 if (abs || rb_event_index(event)) {
d90fd774
SRRH
2316 event->time_delta = delta & TS_MASK;
2317 event->array[0] = delta >> TS_SHIFT;
2318 } else {
2319 /* nope, just zero it */
2320 event->time_delta = 0;
2321 event->array[0] = 0;
2322 }
a4543a2f 2323
d90fd774
SRRH
2324 return skip_time_extend(event);
2325}
a4543a2f 2326
cdb2a0a9 2327static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
b7dc42fd
SRRH
2328 struct ring_buffer_event *event);
2329
d90fd774
SRRH
2330/**
2331 * rb_update_event - update event type and data
2332 * @event: the event to update
2333 * @type: the type of event
2334 * @length: the size of the event field in the ring buffer
2335 *
2336 * Update the type and data fields of the event. The length
2337 * is the actual size that is written to the ring buffer,
2338 * and with this, we can determine what to place into the
2339 * data field.
2340 */
b7dc42fd 2341static void
d90fd774
SRRH
2342rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2343 struct ring_buffer_event *event,
2344 struct rb_event_info *info)
2345{
2346 unsigned length = info->length;
2347 u64 delta = info->delta;
a4543a2f 2348
b7dc42fd
SRRH
2349 /* Only a commit updates the timestamp */
2350 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2351 delta = 0;
2352
a4543a2f 2353 /*
d90fd774 2354 * If we need to add a timestamp, then we
6167c205 2355 * add it to the start of the reserved space.
a4543a2f 2356 */
d90fd774 2357 if (unlikely(info->add_timestamp)) {
dc4e2801
TZ
2358 bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2359
2360 event = rb_add_time_stamp(event, info->delta, abs);
d90fd774
SRRH
2361 length -= RB_LEN_TIME_EXTEND;
2362 delta = 0;
a4543a2f
SRRH
2363 }
2364
d90fd774
SRRH
2365 event->time_delta = delta;
2366 length -= RB_EVNT_HDR_SIZE;
86b3de60 2367 if (length > RB_MAX_SMALL_DATA) {
d90fd774
SRRH
2368 event->type_len = 0;
2369 event->array[0] = length;
2370 } else
2371 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2372}
2373
2374static unsigned rb_calculate_event_length(unsigned length)
2375{
2376 struct ring_buffer_event event; /* Used only for sizeof array */
2377
2378 /* zero length can cause confusions */
2379 if (!length)
2380 length++;
2381
86b3de60 2382 if (length > RB_MAX_SMALL_DATA)
d90fd774
SRRH
2383 length += sizeof(event.array[0]);
2384
2385 length += RB_EVNT_HDR_SIZE;
86b3de60 2386 length = ALIGN(length, RB_ALIGNMENT);
d90fd774
SRRH
2387
2388 /*
2389 * In case the time delta is larger than the 27 bits for it
2390 * in the header, we need to add a timestamp. If another
2391 * event comes in when trying to discard this one to increase
2392 * the length, then the timestamp will be added in the allocated
2393 * space of this event. If length is bigger than the size needed
2394 * for the TIME_EXTEND, then padding has to be used. The events
2395 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2396 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2397 * As length is a multiple of 4, we only need to worry if it
2398 * is 12 (RB_LEN_TIME_EXTEND + 4).
2399 */
2400 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2401 length += RB_ALIGNMENT;
2402
2403 return length;
2404}
2405
2406#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2407static inline bool sched_clock_stable(void)
2408{
2409 return true;
2410}
2411#endif
2412
2413static inline int
2414rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2415 struct ring_buffer_event *event)
2416{
2417 unsigned long new_index, old_index;
2418 struct buffer_page *bpage;
2419 unsigned long index;
2420 unsigned long addr;
2421
2422 new_index = rb_event_index(event);
2423 old_index = new_index + rb_event_ts_length(event);
2424 addr = (unsigned long)event;
2425 addr &= PAGE_MASK;
2426
8573636e 2427 bpage = READ_ONCE(cpu_buffer->tail_page);
d90fd774
SRRH
2428
2429 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2430 unsigned long write_mask =
2431 local_read(&bpage->write) & ~RB_WRITE_MASK;
2432 unsigned long event_length = rb_event_length(event);
2433 /*
2434 * This is on the tail page. It is possible that
2435 * a write could come in and move the tail page
2436 * and write to the next page. That is fine
2437 * because we just shorten what is on this page.
2438 */
2439 old_index += write_mask;
2440 new_index += write_mask;
2441 index = local_cmpxchg(&bpage->write, old_index, new_index);
2442 if (index == old_index) {
2443 /* update counters */
2444 local_sub(event_length, &cpu_buffer->entries_bytes);
2445 return 1;
2446 }
2447 }
2448
2449 /* could not discard */
2450 return 0;
2451}
2452
2453static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2454{
2455 local_inc(&cpu_buffer->committing);
2456 local_inc(&cpu_buffer->commits);
2457}
2458
38e11df1 2459static __always_inline void
d90fd774
SRRH
2460rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2461{
2462 unsigned long max_count;
2463
2464 /*
2465 * We only race with interrupts and NMIs on this CPU.
2466 * If we own the commit event, then we can commit
2467 * all others that interrupted us, since the interruptions
2468 * are in stack format (they finish before they come
2469 * back to us). This allows us to do a simple loop to
2470 * assign the commit to the tail.
2471 */
2472 again:
2473 max_count = cpu_buffer->nr_pages * 100;
2474
8573636e 2475 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
d90fd774
SRRH
2476 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2477 return;
2478 if (RB_WARN_ON(cpu_buffer,
2479 rb_is_reader_page(cpu_buffer->tail_page)))
2480 return;
2481 local_set(&cpu_buffer->commit_page->page->commit,
2482 rb_page_write(cpu_buffer->commit_page));
2483 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
70004986
SRRH
2484 /* Only update the write stamp if the page has an event */
2485 if (rb_page_write(cpu_buffer->commit_page))
2486 cpu_buffer->write_stamp =
2487 cpu_buffer->commit_page->page->time_stamp;
d90fd774
SRRH
2488 /* add barrier to keep gcc from optimizing too much */
2489 barrier();
2490 }
2491 while (rb_commit_index(cpu_buffer) !=
2492 rb_page_write(cpu_buffer->commit_page)) {
2493
2494 local_set(&cpu_buffer->commit_page->page->commit,
2495 rb_page_write(cpu_buffer->commit_page));
2496 RB_WARN_ON(cpu_buffer,
2497 local_read(&cpu_buffer->commit_page->page->commit) &
2498 ~RB_WRITE_MASK);
2499 barrier();
2500 }
2501
2502 /* again, keep gcc from optimizing */
2503 barrier();
2504
2505 /*
2506 * If an interrupt came in just after the first while loop
2507 * and pushed the tail page forward, we will be left with
2508 * a dangling commit that will never go forward.
2509 */
8573636e 2510 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
d90fd774
SRRH
2511 goto again;
2512}
2513
38e11df1 2514static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
d90fd774
SRRH
2515{
2516 unsigned long commits;
2517
2518 if (RB_WARN_ON(cpu_buffer,
2519 !local_read(&cpu_buffer->committing)))
2520 return;
2521
2522 again:
2523 commits = local_read(&cpu_buffer->commits);
2524 /* synchronize with interrupts */
2525 barrier();
2526 if (local_read(&cpu_buffer->committing) == 1)
2527 rb_set_commit_to_write(cpu_buffer);
2528
2529 local_dec(&cpu_buffer->committing);
2530
2531 /* synchronize with interrupts */
2532 barrier();
2533
2534 /*
2535 * Need to account for interrupts coming in between the
2536 * updating of the commit page and the clearing of the
2537 * committing counter.
2538 */
2539 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2540 !local_read(&cpu_buffer->committing)) {
2541 local_inc(&cpu_buffer->committing);
2542 goto again;
2543 }
2544}
2545
2546static inline void rb_event_discard(struct ring_buffer_event *event)
2547{
dc4e2801 2548 if (extended_time(event))
d90fd774
SRRH
2549 event = skip_time_extend(event);
2550
2551 /* array[0] holds the actual length for the discarded event */
2552 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2553 event->type_len = RINGBUF_TYPE_PADDING;
2554 /* time delta must be non zero */
2555 if (!event->time_delta)
2556 event->time_delta = 1;
2557}
2558
babe3fce 2559static __always_inline bool
d90fd774
SRRH
2560rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2561 struct ring_buffer_event *event)
2562{
2563 unsigned long addr = (unsigned long)event;
2564 unsigned long index;
2565
2566 index = rb_event_index(event);
2567 addr &= PAGE_MASK;
2568
2569 return cpu_buffer->commit_page->page == (void *)addr &&
2570 rb_commit_index(cpu_buffer) == index;
2571}
2572
babe3fce 2573static __always_inline void
d90fd774
SRRH
2574rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2575 struct ring_buffer_event *event)
2576{
2577 u64 delta;
2578
2579 /*
2580 * The event first in the commit queue updates the
2581 * time stamp.
2582 */
2583 if (rb_event_is_commit(cpu_buffer, event)) {
2584 /*
2585 * A commit event that is first on a page
2586 * updates the write timestamp with the page stamp
2587 */
2588 if (!rb_event_index(event))
2589 cpu_buffer->write_stamp =
2590 cpu_buffer->commit_page->page->time_stamp;
2591 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
dc4e2801 2592 delta = ring_buffer_event_time_stamp(event);
d90fd774 2593 cpu_buffer->write_stamp += delta;
dc4e2801
TZ
2594 } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2595 delta = ring_buffer_event_time_stamp(event);
2596 cpu_buffer->write_stamp = delta;
d90fd774
SRRH
2597 } else
2598 cpu_buffer->write_stamp += event->time_delta;
2599 }
2600}
2601
2602static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2603 struct ring_buffer_event *event)
2604{
2605 local_inc(&cpu_buffer->entries);
2606 rb_update_write_stamp(cpu_buffer, event);
2607 rb_end_commit(cpu_buffer);
2608}
2609
2610static __always_inline void
2611rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2612{
03329f99
SRV
2613 size_t nr_pages;
2614 size_t dirty;
2615 size_t full;
d90fd774
SRRH
2616
2617 if (buffer->irq_work.waiters_pending) {
2618 buffer->irq_work.waiters_pending = false;
2619 /* irq_work_queue() supplies it's own memory barriers */
2620 irq_work_queue(&buffer->irq_work.work);
2621 }
2622
2623 if (cpu_buffer->irq_work.waiters_pending) {
2624 cpu_buffer->irq_work.waiters_pending = false;
2625 /* irq_work_queue() supplies it's own memory barriers */
2626 irq_work_queue(&cpu_buffer->irq_work.work);
2627 }
2628
03329f99
SRV
2629 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2630 return;
d90fd774 2631
03329f99
SRV
2632 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2633 return;
2c2b0a78 2634
03329f99
SRV
2635 if (!cpu_buffer->irq_work.full_waiters_pending)
2636 return;
2c2b0a78 2637
03329f99
SRV
2638 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2639
2640 full = cpu_buffer->shortest_full;
2641 nr_pages = cpu_buffer->nr_pages;
2642 dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2643 if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2644 return;
2645
2646 cpu_buffer->irq_work.wakeup_full = true;
2647 cpu_buffer->irq_work.full_waiters_pending = false;
2648 /* irq_work_queue() supplies it's own memory barriers */
2649 irq_work_queue(&cpu_buffer->irq_work.work);
d90fd774
SRRH
2650}
2651
2652/*
2653 * The lock and unlock are done within a preempt disable section.
2654 * The current_context per_cpu variable can only be modified
2655 * by the current task between lock and unlock. But it can
a0e3a18f
SRV
2656 * be modified more than once via an interrupt. To pass this
2657 * information from the lock to the unlock without having to
2658 * access the 'in_interrupt()' functions again (which do show
2659 * a bit of overhead in something as critical as function tracing,
2660 * we use a bitmask trick.
d90fd774 2661 *
a0e3a18f
SRV
2662 * bit 0 = NMI context
2663 * bit 1 = IRQ context
2664 * bit 2 = SoftIRQ context
2665 * bit 3 = normal context.
d90fd774 2666 *
a0e3a18f
SRV
2667 * This works because this is the order of contexts that can
2668 * preempt other contexts. A SoftIRQ never preempts an IRQ
2669 * context.
2670 *
2671 * When the context is determined, the corresponding bit is
2672 * checked and set (if it was set, then a recursion of that context
2673 * happened).
2674 *
2675 * On unlock, we need to clear this bit. To do so, just subtract
2676 * 1 from the current_context and AND it to itself.
2677 *
2678 * (binary)
2679 * 101 - 1 = 100
2680 * 101 & 100 = 100 (clearing bit zero)
2681 *
2682 * 1010 - 1 = 1001
2683 * 1010 & 1001 = 1000 (clearing bit 1)
2684 *
2685 * The least significant bit can be cleared this way, and it
2686 * just so happens that it is the same bit corresponding to
2687 * the current context.
d90fd774
SRRH
2688 */
2689
2690static __always_inline int
2691trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2692{
a0e3a18f
SRV
2693 unsigned int val = cpu_buffer->current_context;
2694 unsigned long pc = preempt_count();
2695 int bit;
2696
2697 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2698 bit = RB_CTX_NORMAL;
2699 else
2700 bit = pc & NMI_MASK ? RB_CTX_NMI :
0164e0d7 2701 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
a0e3a18f 2702
8e012066 2703 if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
d90fd774
SRRH
2704 return 1;
2705
8e012066 2706 val |= (1 << (bit + cpu_buffer->nest));
a0e3a18f 2707 cpu_buffer->current_context = val;
d90fd774
SRRH
2708
2709 return 0;
2710}
2711
2712static __always_inline void
2713trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2714{
8e012066
SRV
2715 cpu_buffer->current_context &=
2716 cpu_buffer->current_context - (1 << cpu_buffer->nest);
2717}
2718
2719/* The recursive locking above uses 4 bits */
2720#define NESTED_BITS 4
2721
2722/**
2723 * ring_buffer_nest_start - Allow to trace while nested
2724 * @buffer: The ring buffer to modify
2725 *
6167c205 2726 * The ring buffer has a safety mechanism to prevent recursion.
8e012066
SRV
2727 * But there may be a case where a trace needs to be done while
2728 * tracing something else. In this case, calling this function
2729 * will allow this function to nest within a currently active
2730 * ring_buffer_lock_reserve().
2731 *
2732 * Call this function before calling another ring_buffer_lock_reserve() and
2733 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2734 */
2735void ring_buffer_nest_start(struct ring_buffer *buffer)
2736{
2737 struct ring_buffer_per_cpu *cpu_buffer;
2738 int cpu;
2739
2740 /* Enabled by ring_buffer_nest_end() */
2741 preempt_disable_notrace();
2742 cpu = raw_smp_processor_id();
2743 cpu_buffer = buffer->buffers[cpu];
6167c205 2744 /* This is the shift value for the above recursive locking */
8e012066
SRV
2745 cpu_buffer->nest += NESTED_BITS;
2746}
2747
2748/**
2749 * ring_buffer_nest_end - Allow to trace while nested
2750 * @buffer: The ring buffer to modify
2751 *
2752 * Must be called after ring_buffer_nest_start() and after the
2753 * ring_buffer_unlock_commit().
2754 */
2755void ring_buffer_nest_end(struct ring_buffer *buffer)
2756{
2757 struct ring_buffer_per_cpu *cpu_buffer;
2758 int cpu;
2759
2760 /* disabled by ring_buffer_nest_start() */
2761 cpu = raw_smp_processor_id();
2762 cpu_buffer = buffer->buffers[cpu];
6167c205 2763 /* This is the shift value for the above recursive locking */
8e012066
SRV
2764 cpu_buffer->nest -= NESTED_BITS;
2765 preempt_enable_notrace();
d90fd774
SRRH
2766}
2767
2768/**
2769 * ring_buffer_unlock_commit - commit a reserved
2770 * @buffer: The buffer to commit to
2771 * @event: The event pointer to commit.
2772 *
2773 * This commits the data to the ring buffer, and releases any locks held.
2774 *
2775 * Must be paired with ring_buffer_lock_reserve.
2776 */
2777int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2778 struct ring_buffer_event *event)
2779{
2780 struct ring_buffer_per_cpu *cpu_buffer;
2781 int cpu = raw_smp_processor_id();
2782
2783 cpu_buffer = buffer->buffers[cpu];
2784
2785 rb_commit(cpu_buffer, event);
2786
2787 rb_wakeups(buffer, cpu_buffer);
2788
2789 trace_recursive_unlock(cpu_buffer);
2790
2791 preempt_enable_notrace();
2792
2793 return 0;
2794}
2795EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2796
2797static noinline void
2798rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
d90fd774
SRRH
2799 struct rb_event_info *info)
2800{
d90fd774
SRRH
2801 WARN_ONCE(info->delta > (1ULL << 59),
2802 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2803 (unsigned long long)info->delta,
2804 (unsigned long long)info->ts,
2805 (unsigned long long)cpu_buffer->write_stamp,
2806 sched_clock_stable() ? "" :
2807 "If you just came from a suspend/resume,\n"
2808 "please switch to the trace global clock:\n"
913ea4d0
CW
2809 " echo global > /sys/kernel/debug/tracing/trace_clock\n"
2810 "or add trace_clock=global to the kernel command line\n");
b7dc42fd 2811 info->add_timestamp = 1;
9826b273
SRRH
2812}
2813
6634ff26
SR
2814static struct ring_buffer_event *
2815__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2816 struct rb_event_info *info)
6634ff26 2817{
6634ff26 2818 struct ring_buffer_event *event;
fcc742ea 2819 struct buffer_page *tail_page;
6634ff26 2820 unsigned long tail, write;
b7dc42fd
SRRH
2821
2822 /*
2823 * If the time delta since the last event is too big to
2824 * hold in the time field of the event, then we append a
2825 * TIME EXTEND event ahead of the data event.
2826 */
2827 if (unlikely(info->add_timestamp))
2828 info->length += RB_LEN_TIME_EXTEND;
69d1b839 2829
8573636e
SRRH
2830 /* Don't let the compiler play games with cpu_buffer->tail_page */
2831 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
fcc742ea 2832 write = local_add_return(info->length, &tail_page->write);
77ae365e
SR
2833
2834 /* set write to only the index of the write */
2835 write &= RB_WRITE_MASK;
fcc742ea 2836 tail = write - info->length;
6634ff26 2837
6634ff26 2838 /*
a4543a2f 2839 * If this is the first commit on the page, then it has the same
b7dc42fd 2840 * timestamp as the page itself.
6634ff26 2841 */
dc4e2801 2842 if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
a4543a2f
SRRH
2843 info->delta = 0;
2844
b7dc42fd
SRRH
2845 /* See if we shot pass the end of this buffer page */
2846 if (unlikely(write > BUF_PAGE_SIZE))
2847 return rb_move_tail(cpu_buffer, tail, info);
a4543a2f 2848
b7dc42fd
SRRH
2849 /* We reserved something on the buffer */
2850
2851 event = __rb_page_index(tail_page, tail);
a4543a2f
SRRH
2852 rb_update_event(cpu_buffer, event, info);
2853
2854 local_inc(&tail_page->entries);
6634ff26 2855
b7dc42fd
SRRH
2856 /*
2857 * If this is the first commit on the page, then update
2858 * its timestamp.
2859 */
2860 if (!tail)
2861 tail_page->page->time_stamp = info->ts;
2862
c64e148a 2863 /* account for these added bytes */
fcc742ea 2864 local_add(info->length, &cpu_buffer->entries_bytes);
c64e148a 2865
6634ff26
SR
2866 return event;
2867}
2868
fa7ffb39 2869static __always_inline struct ring_buffer_event *
62f0b3eb
SR
2870rb_reserve_next_event(struct ring_buffer *buffer,
2871 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2872 unsigned long length)
7a8e76a3
SR
2873{
2874 struct ring_buffer_event *event;
fcc742ea 2875 struct rb_event_info info;
818e3dd3 2876 int nr_loops = 0;
b7dc42fd 2877 u64 diff;
7a8e76a3 2878
fa743953
SR
2879 rb_start_commit(cpu_buffer);
2880
85bac32c 2881#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2882 /*
2883 * Due to the ability to swap a cpu buffer from a buffer
2884 * it is possible it was swapped before we committed.
2885 * (committing stops a swap). We check for it here and
2886 * if it happened, we have to fail the write.
2887 */
2888 barrier();
6aa7de05 2889 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
62f0b3eb
SR
2890 local_dec(&cpu_buffer->committing);
2891 local_dec(&cpu_buffer->commits);
2892 return NULL;
2893 }
85bac32c 2894#endif
b7dc42fd 2895
fcc742ea 2896 info.length = rb_calculate_event_length(length);
a4543a2f 2897 again:
b7dc42fd
SRRH
2898 info.add_timestamp = 0;
2899 info.delta = 0;
2900
818e3dd3
SR
2901 /*
2902 * We allow for interrupts to reenter here and do a trace.
2903 * If one does, it will cause this original code to loop
2904 * back here. Even with heavy interrupts happening, this
2905 * should only happen a few times in a row. If this happens
2906 * 1000 times in a row, there must be either an interrupt
2907 * storm or we have something buggy.
2908 * Bail!
2909 */
3e89c7bb 2910 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2911 goto out_fail;
818e3dd3 2912
b7dc42fd
SRRH
2913 info.ts = rb_time_stamp(cpu_buffer->buffer);
2914 diff = info.ts - cpu_buffer->write_stamp;
2915
2916 /* make sure this diff is calculated here */
2917 barrier();
2918
dc4e2801
TZ
2919 if (ring_buffer_time_stamp_abs(buffer)) {
2920 info.delta = info.ts;
2921 rb_handle_timestamp(cpu_buffer, &info);
2922 } else /* Did the write stamp get updated already? */
2923 if (likely(info.ts >= cpu_buffer->write_stamp)) {
b7dc42fd
SRRH
2924 info.delta = diff;
2925 if (unlikely(test_time_stamp(info.delta)))
2926 rb_handle_timestamp(cpu_buffer, &info);
2927 }
2928
fcc742ea
SRRH
2929 event = __rb_reserve_next(cpu_buffer, &info);
2930
bd1b7cd3
SRRH
2931 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2932 if (info.add_timestamp)
2933 info.length -= RB_LEN_TIME_EXTEND;
bf41a158 2934 goto again;
bd1b7cd3 2935 }
bf41a158 2936
fa743953
SR
2937 if (!event)
2938 goto out_fail;
7a8e76a3 2939
7a8e76a3 2940 return event;
fa743953
SR
2941
2942 out_fail:
2943 rb_end_commit(cpu_buffer);
2944 return NULL;
7a8e76a3
SR
2945}
2946
2947/**
2948 * ring_buffer_lock_reserve - reserve a part of the buffer
2949 * @buffer: the ring buffer to reserve from
2950 * @length: the length of the data to reserve (excluding event header)
7a8e76a3 2951 *
6167c205 2952 * Returns a reserved event on the ring buffer to copy directly to.
7a8e76a3
SR
2953 * The user of this interface will need to get the body to write into
2954 * and can use the ring_buffer_event_data() interface.
2955 *
2956 * The length is the length of the data needed, not the event length
2957 * which also includes the event header.
2958 *
2959 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2960 * If NULL is returned, then nothing has been allocated or locked.
2961 */
2962struct ring_buffer_event *
0a987751 2963ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2964{
2965 struct ring_buffer_per_cpu *cpu_buffer;
2966 struct ring_buffer_event *event;
5168ae50 2967 int cpu;
7a8e76a3 2968
bf41a158 2969 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2970 preempt_disable_notrace();
bf41a158 2971
3205f806 2972 if (unlikely(atomic_read(&buffer->record_disabled)))
58a09ec6 2973 goto out;
261842b7 2974
7a8e76a3
SR
2975 cpu = raw_smp_processor_id();
2976
3205f806 2977 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
d769041f 2978 goto out;
7a8e76a3
SR
2979
2980 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 2981
3205f806 2982 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
d769041f 2983 goto out;
7a8e76a3 2984
3205f806 2985 if (unlikely(length > BUF_MAX_DATA_SIZE))
bf41a158 2986 goto out;
7a8e76a3 2987
58a09ec6
SRRH
2988 if (unlikely(trace_recursive_lock(cpu_buffer)))
2989 goto out;
2990
62f0b3eb 2991 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2992 if (!event)
58a09ec6 2993 goto out_unlock;
7a8e76a3
SR
2994
2995 return event;
2996
58a09ec6
SRRH
2997 out_unlock:
2998 trace_recursive_unlock(cpu_buffer);
d769041f 2999 out:
5168ae50 3000 preempt_enable_notrace();
7a8e76a3
SR
3001 return NULL;
3002}
c4f50183 3003EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 3004
a1863c21
SR
3005/*
3006 * Decrement the entries to the page that an event is on.
3007 * The event does not even need to exist, only the pointer
3008 * to the page it is on. This may only be called before the commit
3009 * takes place.
3010 */
3011static inline void
3012rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3013 struct ring_buffer_event *event)
3014{
3015 unsigned long addr = (unsigned long)event;
3016 struct buffer_page *bpage = cpu_buffer->commit_page;
3017 struct buffer_page *start;
3018
3019 addr &= PAGE_MASK;
3020
3021 /* Do the likely case first */
3022 if (likely(bpage->page == (void *)addr)) {
3023 local_dec(&bpage->entries);
3024 return;
3025 }
3026
3027 /*
3028 * Because the commit page may be on the reader page we
3029 * start with the next page and check the end loop there.
3030 */
3031 rb_inc_page(cpu_buffer, &bpage);
3032 start = bpage;
3033 do {
3034 if (bpage->page == (void *)addr) {
3035 local_dec(&bpage->entries);
3036 return;
3037 }
3038 rb_inc_page(cpu_buffer, &bpage);
3039 } while (bpage != start);
3040
3041 /* commit not part of this buffer?? */
3042 RB_WARN_ON(cpu_buffer, 1);
3043}
3044
fa1b47dd
SR
3045/**
3046 * ring_buffer_commit_discard - discard an event that has not been committed
3047 * @buffer: the ring buffer
3048 * @event: non committed event to discard
3049 *
dc892f73
SR
3050 * Sometimes an event that is in the ring buffer needs to be ignored.
3051 * This function lets the user discard an event in the ring buffer
3052 * and then that event will not be read later.
3053 *
6167c205 3054 * This function only works if it is called before the item has been
dc892f73 3055 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
3056 * if another event has not been added behind it.
3057 *
3058 * If another event has been added behind it, it will set the event
3059 * up as discarded, and perform the commit.
3060 *
3061 * If this function is called, do not call ring_buffer_unlock_commit on
3062 * the event.
3063 */
3064void ring_buffer_discard_commit(struct ring_buffer *buffer,
3065 struct ring_buffer_event *event)
3066{
3067 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
3068 int cpu;
3069
3070 /* The event is discarded regardless */
f3b9aae1 3071 rb_event_discard(event);
fa1b47dd 3072
fa743953
SR
3073 cpu = smp_processor_id();
3074 cpu_buffer = buffer->buffers[cpu];
3075
fa1b47dd
SR
3076 /*
3077 * This must only be called if the event has not been
3078 * committed yet. Thus we can assume that preemption
3079 * is still disabled.
3080 */
fa743953 3081 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 3082
a1863c21 3083 rb_decrement_entry(cpu_buffer, event);
0f2541d2 3084 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 3085 goto out;
fa1b47dd
SR
3086
3087 /*
3088 * The commit is still visible by the reader, so we
a1863c21 3089 * must still update the timestamp.
fa1b47dd 3090 */
a1863c21 3091 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 3092 out:
fa743953 3093 rb_end_commit(cpu_buffer);
fa1b47dd 3094
58a09ec6 3095 trace_recursive_unlock(cpu_buffer);
f3b9aae1 3096
5168ae50 3097 preempt_enable_notrace();
fa1b47dd
SR
3098
3099}
3100EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3101
7a8e76a3
SR
3102/**
3103 * ring_buffer_write - write data to the buffer without reserving
3104 * @buffer: The ring buffer to write to.
3105 * @length: The length of the data being written (excluding the event header)
3106 * @data: The data to write to the buffer.
3107 *
3108 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3109 * one function. If you already have the data to write to the buffer, it
3110 * may be easier to simply call this function.
3111 *
3112 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3113 * and not the length of the event which would hold the header.
3114 */
3115int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
3116 unsigned long length,
3117 void *data)
7a8e76a3
SR
3118{
3119 struct ring_buffer_per_cpu *cpu_buffer;
3120 struct ring_buffer_event *event;
7a8e76a3
SR
3121 void *body;
3122 int ret = -EBUSY;
5168ae50 3123 int cpu;
7a8e76a3 3124
5168ae50 3125 preempt_disable_notrace();
bf41a158 3126
52fbe9cd
LJ
3127 if (atomic_read(&buffer->record_disabled))
3128 goto out;
3129
7a8e76a3
SR
3130 cpu = raw_smp_processor_id();
3131
9e01c1b7 3132 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 3133 goto out;
7a8e76a3
SR
3134
3135 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
3136
3137 if (atomic_read(&cpu_buffer->record_disabled))
3138 goto out;
3139
be957c44
SR
3140 if (length > BUF_MAX_DATA_SIZE)
3141 goto out;
3142
985e871b
SRRH
3143 if (unlikely(trace_recursive_lock(cpu_buffer)))
3144 goto out;
3145
62f0b3eb 3146 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 3147 if (!event)
985e871b 3148 goto out_unlock;
7a8e76a3
SR
3149
3150 body = rb_event_data(event);
3151
3152 memcpy(body, data, length);
3153
3154 rb_commit(cpu_buffer, event);
3155
15693458
SRRH
3156 rb_wakeups(buffer, cpu_buffer);
3157
7a8e76a3 3158 ret = 0;
985e871b
SRRH
3159
3160 out_unlock:
3161 trace_recursive_unlock(cpu_buffer);
3162
7a8e76a3 3163 out:
5168ae50 3164 preempt_enable_notrace();
7a8e76a3
SR
3165
3166 return ret;
3167}
c4f50183 3168EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 3169
da58834c 3170static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
3171{
3172 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 3173 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
3174 struct buffer_page *commit = cpu_buffer->commit_page;
3175
77ae365e
SR
3176 /* In case of error, head will be NULL */
3177 if (unlikely(!head))
da58834c 3178 return true;
77ae365e 3179
bf41a158
SR
3180 return reader->read == rb_page_commit(reader) &&
3181 (commit == reader ||
3182 (commit == head &&
3183 head->read == rb_page_commit(commit)));
3184}
3185
7a8e76a3
SR
3186/**
3187 * ring_buffer_record_disable - stop all writes into the buffer
3188 * @buffer: The ring buffer to stop writes to.
3189 *
3190 * This prevents all writes to the buffer. Any attempt to write
3191 * to the buffer after this will fail and return NULL.
3192 *
74401729 3193 * The caller should call synchronize_rcu() after this.
7a8e76a3
SR
3194 */
3195void ring_buffer_record_disable(struct ring_buffer *buffer)
3196{
3197 atomic_inc(&buffer->record_disabled);
3198}
c4f50183 3199EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3200
3201/**
3202 * ring_buffer_record_enable - enable writes to the buffer
3203 * @buffer: The ring buffer to enable writes
3204 *
3205 * Note, multiple disables will need the same number of enables
c41b20e7 3206 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3207 */
3208void ring_buffer_record_enable(struct ring_buffer *buffer)
3209{
3210 atomic_dec(&buffer->record_disabled);
3211}
c4f50183 3212EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3213
499e5470
SR
3214/**
3215 * ring_buffer_record_off - stop all writes into the buffer
3216 * @buffer: The ring buffer to stop writes to.
3217 *
3218 * This prevents all writes to the buffer. Any attempt to write
3219 * to the buffer after this will fail and return NULL.
3220 *
3221 * This is different than ring_buffer_record_disable() as
87abb3b1 3222 * it works like an on/off switch, where as the disable() version
499e5470
SR
3223 * must be paired with a enable().
3224 */
3225void ring_buffer_record_off(struct ring_buffer *buffer)
3226{
3227 unsigned int rd;
3228 unsigned int new_rd;
3229
3230 do {
3231 rd = atomic_read(&buffer->record_disabled);
3232 new_rd = rd | RB_BUFFER_OFF;
3233 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3234}
3235EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3236
3237/**
3238 * ring_buffer_record_on - restart writes into the buffer
3239 * @buffer: The ring buffer to start writes to.
3240 *
3241 * This enables all writes to the buffer that was disabled by
3242 * ring_buffer_record_off().
3243 *
3244 * This is different than ring_buffer_record_enable() as
87abb3b1 3245 * it works like an on/off switch, where as the enable() version
499e5470
SR
3246 * must be paired with a disable().
3247 */
3248void ring_buffer_record_on(struct ring_buffer *buffer)
3249{
3250 unsigned int rd;
3251 unsigned int new_rd;
3252
3253 do {
3254 rd = atomic_read(&buffer->record_disabled);
3255 new_rd = rd & ~RB_BUFFER_OFF;
3256 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3257}
3258EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3259
3260/**
3261 * ring_buffer_record_is_on - return true if the ring buffer can write
3262 * @buffer: The ring buffer to see if write is enabled
3263 *
3264 * Returns true if the ring buffer is in a state that it accepts writes.
3265 */
3ebea280 3266bool ring_buffer_record_is_on(struct ring_buffer *buffer)
499e5470
SR
3267{
3268 return !atomic_read(&buffer->record_disabled);
3269}
3270
73c8d894
MH
3271/**
3272 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3273 * @buffer: The ring buffer to see if write is set enabled
3274 *
3275 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3276 * Note that this does NOT mean it is in a writable state.
3277 *
3278 * It may return true when the ring buffer has been disabled by
3279 * ring_buffer_record_disable(), as that is a temporary disabling of
3280 * the ring buffer.
3281 */
d7224c0e 3282bool ring_buffer_record_is_set_on(struct ring_buffer *buffer)
73c8d894
MH
3283{
3284 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3285}
3286
7a8e76a3
SR
3287/**
3288 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3289 * @buffer: The ring buffer to stop writes to.
3290 * @cpu: The CPU buffer to stop
3291 *
3292 * This prevents all writes to the buffer. Any attempt to write
3293 * to the buffer after this will fail and return NULL.
3294 *
74401729 3295 * The caller should call synchronize_rcu() after this.
7a8e76a3
SR
3296 */
3297void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3298{
3299 struct ring_buffer_per_cpu *cpu_buffer;
3300
9e01c1b7 3301 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3302 return;
7a8e76a3
SR
3303
3304 cpu_buffer = buffer->buffers[cpu];
3305 atomic_inc(&cpu_buffer->record_disabled);
3306}
c4f50183 3307EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3308
3309/**
3310 * ring_buffer_record_enable_cpu - enable writes to the buffer
3311 * @buffer: The ring buffer to enable writes
3312 * @cpu: The CPU to enable.
3313 *
3314 * Note, multiple disables will need the same number of enables
c41b20e7 3315 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3316 */
3317void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3318{
3319 struct ring_buffer_per_cpu *cpu_buffer;
3320
9e01c1b7 3321 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3322 return;
7a8e76a3
SR
3323
3324 cpu_buffer = buffer->buffers[cpu];
3325 atomic_dec(&cpu_buffer->record_disabled);
3326}
c4f50183 3327EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3328
f6195aa0
SR
3329/*
3330 * The total entries in the ring buffer is the running counter
3331 * of entries entered into the ring buffer, minus the sum of
3332 * the entries read from the ring buffer and the number of
3333 * entries that were overwritten.
3334 */
3335static inline unsigned long
3336rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3337{
3338 return local_read(&cpu_buffer->entries) -
3339 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3340}
3341
c64e148a
VN
3342/**
3343 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3344 * @buffer: The ring buffer
3345 * @cpu: The per CPU buffer to read from.
3346 */
50ecf2c3 3347u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3348{
3349 unsigned long flags;
3350 struct ring_buffer_per_cpu *cpu_buffer;
3351 struct buffer_page *bpage;
da830e58 3352 u64 ret = 0;
c64e148a
VN
3353
3354 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3355 return 0;
3356
3357 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3358 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3359 /*
3360 * if the tail is on reader_page, oldest time stamp is on the reader
3361 * page
3362 */
3363 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3364 bpage = cpu_buffer->reader_page;
3365 else
3366 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3367 if (bpage)
3368 ret = bpage->page->time_stamp;
7115e3fc 3369 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3370
3371 return ret;
3372}
3373EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3374
3375/**
3376 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3377 * @buffer: The ring buffer
3378 * @cpu: The per CPU buffer to read from.
3379 */
3380unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3381{
3382 struct ring_buffer_per_cpu *cpu_buffer;
3383 unsigned long ret;
3384
3385 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3386 return 0;
3387
3388 cpu_buffer = buffer->buffers[cpu];
3389 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3390
3391 return ret;
3392}
3393EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3394
7a8e76a3
SR
3395/**
3396 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3397 * @buffer: The ring buffer
3398 * @cpu: The per CPU buffer to get the entries from.
3399 */
3400unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3401{
3402 struct ring_buffer_per_cpu *cpu_buffer;
3403
9e01c1b7 3404 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3405 return 0;
7a8e76a3
SR
3406
3407 cpu_buffer = buffer->buffers[cpu];
554f786e 3408
f6195aa0 3409 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3410}
c4f50183 3411EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3412
3413/**
884bfe89
SP
3414 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3415 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3416 * @buffer: The ring buffer
3417 * @cpu: The per CPU buffer to get the number of overruns from
3418 */
3419unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3420{
3421 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3422 unsigned long ret;
7a8e76a3 3423
9e01c1b7 3424 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3425 return 0;
7a8e76a3
SR
3426
3427 cpu_buffer = buffer->buffers[cpu];
77ae365e 3428 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3429
3430 return ret;
7a8e76a3 3431}
c4f50183 3432EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3433
f0d2c681 3434/**
884bfe89
SP
3435 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3436 * commits failing due to the buffer wrapping around while there are uncommitted
3437 * events, such as during an interrupt storm.
f0d2c681
SR
3438 * @buffer: The ring buffer
3439 * @cpu: The per CPU buffer to get the number of overruns from
3440 */
3441unsigned long
3442ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3443{
3444 struct ring_buffer_per_cpu *cpu_buffer;
3445 unsigned long ret;
3446
3447 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3448 return 0;
3449
3450 cpu_buffer = buffer->buffers[cpu];
77ae365e 3451 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3452
3453 return ret;
3454}
3455EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3456
884bfe89
SP
3457/**
3458 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3459 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3460 * @buffer: The ring buffer
3461 * @cpu: The per CPU buffer to get the number of overruns from
3462 */
3463unsigned long
3464ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3465{
3466 struct ring_buffer_per_cpu *cpu_buffer;
3467 unsigned long ret;
3468
3469 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3470 return 0;
3471
3472 cpu_buffer = buffer->buffers[cpu];
3473 ret = local_read(&cpu_buffer->dropped_events);
3474
3475 return ret;
3476}
3477EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3478
ad964704
SRRH
3479/**
3480 * ring_buffer_read_events_cpu - get the number of events successfully read
3481 * @buffer: The ring buffer
3482 * @cpu: The per CPU buffer to get the number of events read
3483 */
3484unsigned long
3485ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3486{
3487 struct ring_buffer_per_cpu *cpu_buffer;
3488
3489 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3490 return 0;
3491
3492 cpu_buffer = buffer->buffers[cpu];
3493 return cpu_buffer->read;
3494}
3495EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3496
7a8e76a3
SR
3497/**
3498 * ring_buffer_entries - get the number of entries in a buffer
3499 * @buffer: The ring buffer
3500 *
3501 * Returns the total number of entries in the ring buffer
3502 * (all CPU entries)
3503 */
3504unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3505{
3506 struct ring_buffer_per_cpu *cpu_buffer;
3507 unsigned long entries = 0;
3508 int cpu;
3509
3510 /* if you care about this being correct, lock the buffer */
3511 for_each_buffer_cpu(buffer, cpu) {
3512 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3513 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3514 }
3515
3516 return entries;
3517}
c4f50183 3518EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3519
3520/**
67b394f7 3521 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3522 * @buffer: The ring buffer
3523 *
3524 * Returns the total number of overruns in the ring buffer
3525 * (all CPU entries)
3526 */
3527unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3528{
3529 struct ring_buffer_per_cpu *cpu_buffer;
3530 unsigned long overruns = 0;
3531 int cpu;
3532
3533 /* if you care about this being correct, lock the buffer */
3534 for_each_buffer_cpu(buffer, cpu) {
3535 cpu_buffer = buffer->buffers[cpu];
77ae365e 3536 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3537 }
3538
3539 return overruns;
3540}
c4f50183 3541EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3542
642edba5 3543static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3544{
3545 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3546
d769041f 3547 /* Iterator usage is expected to have record disabled */
651e22f2
SRRH
3548 iter->head_page = cpu_buffer->reader_page;
3549 iter->head = cpu_buffer->reader_page->read;
3550
3551 iter->cache_reader_page = iter->head_page;
24607f11 3552 iter->cache_read = cpu_buffer->read;
651e22f2 3553
d769041f
SR
3554 if (iter->head)
3555 iter->read_stamp = cpu_buffer->read_stamp;
3556 else
abc9b56d 3557 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 3558}
f83c9d0f 3559
642edba5
SR
3560/**
3561 * ring_buffer_iter_reset - reset an iterator
3562 * @iter: The iterator to reset
3563 *
3564 * Resets the iterator, so that it will start from the beginning
3565 * again.
3566 */
3567void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3568{
554f786e 3569 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3570 unsigned long flags;
3571
554f786e
SR
3572 if (!iter)
3573 return;
3574
3575 cpu_buffer = iter->cpu_buffer;
3576
5389f6fa 3577 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3578 rb_iter_reset(iter);
5389f6fa 3579 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3580}
c4f50183 3581EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3582
3583/**
3584 * ring_buffer_iter_empty - check if an iterator has no more to read
3585 * @iter: The iterator to check
3586 */
3587int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3588{
3589 struct ring_buffer_per_cpu *cpu_buffer;
78f7a45d
SRV
3590 struct buffer_page *reader;
3591 struct buffer_page *head_page;
3592 struct buffer_page *commit_page;
3593 unsigned commit;
7a8e76a3
SR
3594
3595 cpu_buffer = iter->cpu_buffer;
3596
78f7a45d
SRV
3597 /* Remember, trace recording is off when iterator is in use */
3598 reader = cpu_buffer->reader_page;
3599 head_page = cpu_buffer->head_page;
3600 commit_page = cpu_buffer->commit_page;
3601 commit = rb_page_commit(commit_page);
3602
3603 return ((iter->head_page == commit_page && iter->head == commit) ||
3604 (iter->head_page == reader && commit_page == head_page &&
3605 head_page->read == commit &&
3606 iter->head == rb_page_commit(cpu_buffer->reader_page)));
7a8e76a3 3607}
c4f50183 3608EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3609
3610static void
3611rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3612 struct ring_buffer_event *event)
3613{
3614 u64 delta;
3615
334d4169 3616 switch (event->type_len) {
7a8e76a3
SR
3617 case RINGBUF_TYPE_PADDING:
3618 return;
3619
3620 case RINGBUF_TYPE_TIME_EXTEND:
dc4e2801 3621 delta = ring_buffer_event_time_stamp(event);
7a8e76a3
SR
3622 cpu_buffer->read_stamp += delta;
3623 return;
3624
3625 case RINGBUF_TYPE_TIME_STAMP:
dc4e2801
TZ
3626 delta = ring_buffer_event_time_stamp(event);
3627 cpu_buffer->read_stamp = delta;
7a8e76a3
SR
3628 return;
3629
3630 case RINGBUF_TYPE_DATA:
3631 cpu_buffer->read_stamp += event->time_delta;
3632 return;
3633
3634 default:
3635 BUG();
3636 }
3637 return;
3638}
3639
3640static void
3641rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3642 struct ring_buffer_event *event)
3643{
3644 u64 delta;
3645
334d4169 3646 switch (event->type_len) {
7a8e76a3
SR
3647 case RINGBUF_TYPE_PADDING:
3648 return;
3649
3650 case RINGBUF_TYPE_TIME_EXTEND:
dc4e2801 3651 delta = ring_buffer_event_time_stamp(event);
7a8e76a3
SR
3652 iter->read_stamp += delta;
3653 return;
3654
3655 case RINGBUF_TYPE_TIME_STAMP:
dc4e2801
TZ
3656 delta = ring_buffer_event_time_stamp(event);
3657 iter->read_stamp = delta;
7a8e76a3
SR
3658 return;
3659
3660 case RINGBUF_TYPE_DATA:
3661 iter->read_stamp += event->time_delta;
3662 return;
3663
3664 default:
3665 BUG();
3666 }
3667 return;
3668}
3669
d769041f
SR
3670static struct buffer_page *
3671rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3672{
d769041f 3673 struct buffer_page *reader = NULL;
66a8cb95 3674 unsigned long overwrite;
d769041f 3675 unsigned long flags;
818e3dd3 3676 int nr_loops = 0;
77ae365e 3677 int ret;
d769041f 3678
3e03fb7f 3679 local_irq_save(flags);
0199c4e6 3680 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3681
3682 again:
818e3dd3
SR
3683 /*
3684 * This should normally only loop twice. But because the
3685 * start of the reader inserts an empty page, it causes
3686 * a case where we will loop three times. There should be no
3687 * reason to loop four times (that I know of).
3688 */
3e89c7bb 3689 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3690 reader = NULL;
3691 goto out;
3692 }
3693
d769041f
SR
3694 reader = cpu_buffer->reader_page;
3695
3696 /* If there's more to read, return this page */
bf41a158 3697 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3698 goto out;
3699
3700 /* Never should we have an index greater than the size */
3e89c7bb
SR
3701 if (RB_WARN_ON(cpu_buffer,
3702 cpu_buffer->reader_page->read > rb_page_size(reader)))
3703 goto out;
d769041f
SR
3704
3705 /* check if we caught up to the tail */
3706 reader = NULL;
bf41a158 3707 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3708 goto out;
7a8e76a3 3709
a5fb8331
SR
3710 /* Don't bother swapping if the ring buffer is empty */
3711 if (rb_num_of_entries(cpu_buffer) == 0)
3712 goto out;
3713
7a8e76a3 3714 /*
d769041f 3715 * Reset the reader page to size zero.
7a8e76a3 3716 */
77ae365e
SR
3717 local_set(&cpu_buffer->reader_page->write, 0);
3718 local_set(&cpu_buffer->reader_page->entries, 0);
3719 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3720 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3721
77ae365e
SR
3722 spin:
3723 /*
3724 * Splice the empty reader page into the list around the head.
3725 */
3726 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3727 if (!reader)
3728 goto out;
0e1ff5d7 3729 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3730 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3731
3adc54fa
SR
3732 /*
3733 * cpu_buffer->pages just needs to point to the buffer, it
3734 * has no specific buffer page to point to. Lets move it out
25985edc 3735 * of our way so we don't accidentally swap it.
3adc54fa
SR
3736 */
3737 cpu_buffer->pages = reader->list.prev;
3738
77ae365e
SR
3739 /* The reader page will be pointing to the new head */
3740 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3741
66a8cb95
SR
3742 /*
3743 * We want to make sure we read the overruns after we set up our
3744 * pointers to the next object. The writer side does a
3745 * cmpxchg to cross pages which acts as the mb on the writer
3746 * side. Note, the reader will constantly fail the swap
3747 * while the writer is updating the pointers, so this
3748 * guarantees that the overwrite recorded here is the one we
3749 * want to compare with the last_overrun.
3750 */
3751 smp_mb();
3752 overwrite = local_read(&(cpu_buffer->overrun));
3753
77ae365e
SR
3754 /*
3755 * Here's the tricky part.
3756 *
3757 * We need to move the pointer past the header page.
3758 * But we can only do that if a writer is not currently
3759 * moving it. The page before the header page has the
3760 * flag bit '1' set if it is pointing to the page we want.
3761 * but if the writer is in the process of moving it
3762 * than it will be '2' or already moved '0'.
3763 */
3764
3765 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3766
3767 /*
77ae365e 3768 * If we did not convert it, then we must try again.
7a8e76a3 3769 */
77ae365e
SR
3770 if (!ret)
3771 goto spin;
7a8e76a3 3772
77ae365e 3773 /*
2c2b0a78 3774 * Yay! We succeeded in replacing the page.
77ae365e
SR
3775 *
3776 * Now make the new head point back to the reader page.
3777 */
5ded3dc6 3778 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3779 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f 3780
2c2b0a78
SRV
3781 local_inc(&cpu_buffer->pages_read);
3782
d769041f
SR
3783 /* Finally update the reader page to the new head */
3784 cpu_buffer->reader_page = reader;
b81f472a 3785 cpu_buffer->reader_page->read = 0;
d769041f 3786
66a8cb95
SR
3787 if (overwrite != cpu_buffer->last_overrun) {
3788 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3789 cpu_buffer->last_overrun = overwrite;
3790 }
3791
d769041f
SR
3792 goto again;
3793
3794 out:
b81f472a
SRRH
3795 /* Update the read_stamp on the first event */
3796 if (reader && reader->read == 0)
3797 cpu_buffer->read_stamp = reader->page->time_stamp;
3798
0199c4e6 3799 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3800 local_irq_restore(flags);
d769041f
SR
3801
3802 return reader;
3803}
3804
3805static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3806{
3807 struct ring_buffer_event *event;
3808 struct buffer_page *reader;
3809 unsigned length;
3810
3811 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3812
d769041f 3813 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3814 if (RB_WARN_ON(cpu_buffer, !reader))
3815 return;
7a8e76a3 3816
d769041f
SR
3817 event = rb_reader_event(cpu_buffer);
3818
a1863c21 3819 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3820 cpu_buffer->read++;
d769041f
SR
3821
3822 rb_update_read_stamp(cpu_buffer, event);
3823
3824 length = rb_event_length(event);
6f807acd 3825 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3826}
3827
3828static void rb_advance_iter(struct ring_buffer_iter *iter)
3829{
7a8e76a3
SR
3830 struct ring_buffer_per_cpu *cpu_buffer;
3831 struct ring_buffer_event *event;
3832 unsigned length;
3833
3834 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3835
3836 /*
3837 * Check if we are at the end of the buffer.
3838 */
bf41a158 3839 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3840 /* discarded commits can make the page empty */
3841 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3842 return;
d769041f 3843 rb_inc_iter(iter);
7a8e76a3
SR
3844 return;
3845 }
3846
3847 event = rb_iter_head_event(iter);
3848
3849 length = rb_event_length(event);
3850
3851 /*
3852 * This should not be called to advance the header if we are
3853 * at the tail of the buffer.
3854 */
3e89c7bb 3855 if (RB_WARN_ON(cpu_buffer,
f536aafc 3856 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3857 (iter->head + length > rb_commit_index(cpu_buffer))))
3858 return;
7a8e76a3
SR
3859
3860 rb_update_iter_read_stamp(iter, event);
3861
3862 iter->head += length;
3863
3864 /* check for end of page padding */
bf41a158
SR
3865 if ((iter->head >= rb_page_size(iter->head_page)) &&
3866 (iter->head_page != cpu_buffer->commit_page))
771e0384 3867 rb_inc_iter(iter);
7a8e76a3
SR
3868}
3869
66a8cb95
SR
3870static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3871{
3872 return cpu_buffer->lost_events;
3873}
3874
f83c9d0f 3875static struct ring_buffer_event *
66a8cb95
SR
3876rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3877 unsigned long *lost_events)
7a8e76a3 3878{
7a8e76a3 3879 struct ring_buffer_event *event;
d769041f 3880 struct buffer_page *reader;
818e3dd3 3881 int nr_loops = 0;
7a8e76a3 3882
dc4e2801
TZ
3883 if (ts)
3884 *ts = 0;
7a8e76a3 3885 again:
818e3dd3 3886 /*
69d1b839
SR
3887 * We repeat when a time extend is encountered.
3888 * Since the time extend is always attached to a data event,
3889 * we should never loop more than once.
3890 * (We never hit the following condition more than twice).
818e3dd3 3891 */
69d1b839 3892 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3893 return NULL;
818e3dd3 3894
d769041f
SR
3895 reader = rb_get_reader_page(cpu_buffer);
3896 if (!reader)
7a8e76a3
SR
3897 return NULL;
3898
d769041f 3899 event = rb_reader_event(cpu_buffer);
7a8e76a3 3900
334d4169 3901 switch (event->type_len) {
7a8e76a3 3902 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3903 if (rb_null_event(event))
3904 RB_WARN_ON(cpu_buffer, 1);
3905 /*
3906 * Because the writer could be discarding every
3907 * event it creates (which would probably be bad)
3908 * if we were to go back to "again" then we may never
3909 * catch up, and will trigger the warn on, or lock
3910 * the box. Return the padding, and we will release
3911 * the current locks, and try again.
3912 */
2d622719 3913 return event;
7a8e76a3
SR
3914
3915 case RINGBUF_TYPE_TIME_EXTEND:
3916 /* Internal data, OK to advance */
d769041f 3917 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3918 goto again;
3919
3920 case RINGBUF_TYPE_TIME_STAMP:
dc4e2801
TZ
3921 if (ts) {
3922 *ts = ring_buffer_event_time_stamp(event);
3923 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3924 cpu_buffer->cpu, ts);
3925 }
3926 /* Internal data, OK to advance */
d769041f 3927 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3928 goto again;
3929
3930 case RINGBUF_TYPE_DATA:
dc4e2801 3931 if (ts && !(*ts)) {
7a8e76a3 3932 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3933 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3934 cpu_buffer->cpu, ts);
7a8e76a3 3935 }
66a8cb95
SR
3936 if (lost_events)
3937 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3938 return event;
3939
3940 default:
3941 BUG();
3942 }
3943
3944 return NULL;
3945}
c4f50183 3946EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3947
f83c9d0f
SR
3948static struct ring_buffer_event *
3949rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3950{
3951 struct ring_buffer *buffer;
3952 struct ring_buffer_per_cpu *cpu_buffer;
3953 struct ring_buffer_event *event;
818e3dd3 3954 int nr_loops = 0;
7a8e76a3 3955
dc4e2801
TZ
3956 if (ts)
3957 *ts = 0;
3958
7a8e76a3
SR
3959 cpu_buffer = iter->cpu_buffer;
3960 buffer = cpu_buffer->buffer;
3961
492a74f4
SR
3962 /*
3963 * Check if someone performed a consuming read to
3964 * the buffer. A consuming read invalidates the iterator
3965 * and we need to reset the iterator in this case.
3966 */
3967 if (unlikely(iter->cache_read != cpu_buffer->read ||
3968 iter->cache_reader_page != cpu_buffer->reader_page))
3969 rb_iter_reset(iter);
3970
7a8e76a3 3971 again:
3c05d748
SR
3972 if (ring_buffer_iter_empty(iter))
3973 return NULL;
3974
818e3dd3 3975 /*
021de3d9
SRRH
3976 * We repeat when a time extend is encountered or we hit
3977 * the end of the page. Since the time extend is always attached
3978 * to a data event, we should never loop more than three times.
3979 * Once for going to next page, once on time extend, and
3980 * finally once to get the event.
3981 * (We never hit the following condition more than thrice).
818e3dd3 3982 */
021de3d9 3983 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
818e3dd3 3984 return NULL;
818e3dd3 3985
7a8e76a3
SR
3986 if (rb_per_cpu_empty(cpu_buffer))
3987 return NULL;
3988
10e83fd0 3989 if (iter->head >= rb_page_size(iter->head_page)) {
3c05d748
SR
3990 rb_inc_iter(iter);
3991 goto again;
3992 }
3993
7a8e76a3
SR
3994 event = rb_iter_head_event(iter);
3995
334d4169 3996 switch (event->type_len) {
7a8e76a3 3997 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3998 if (rb_null_event(event)) {
3999 rb_inc_iter(iter);
4000 goto again;
4001 }
4002 rb_advance_iter(iter);
4003 return event;
7a8e76a3
SR
4004
4005 case RINGBUF_TYPE_TIME_EXTEND:
4006 /* Internal data, OK to advance */
4007 rb_advance_iter(iter);
4008 goto again;
4009
4010 case RINGBUF_TYPE_TIME_STAMP:
dc4e2801
TZ
4011 if (ts) {
4012 *ts = ring_buffer_event_time_stamp(event);
4013 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4014 cpu_buffer->cpu, ts);
4015 }
4016 /* Internal data, OK to advance */
7a8e76a3
SR
4017 rb_advance_iter(iter);
4018 goto again;
4019
4020 case RINGBUF_TYPE_DATA:
dc4e2801 4021 if (ts && !(*ts)) {
7a8e76a3 4022 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
4023 ring_buffer_normalize_time_stamp(buffer,
4024 cpu_buffer->cpu, ts);
7a8e76a3
SR
4025 }
4026 return event;
4027
4028 default:
4029 BUG();
4030 }
4031
4032 return NULL;
4033}
c4f50183 4034EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 4035
289a5a25 4036static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
8d707e8e 4037{
289a5a25
SRRH
4038 if (likely(!in_nmi())) {
4039 raw_spin_lock(&cpu_buffer->reader_lock);
4040 return true;
4041 }
4042
8d707e8e
SR
4043 /*
4044 * If an NMI die dumps out the content of the ring buffer
289a5a25
SRRH
4045 * trylock must be used to prevent a deadlock if the NMI
4046 * preempted a task that holds the ring buffer locks. If
4047 * we get the lock then all is fine, if not, then continue
4048 * to do the read, but this can corrupt the ring buffer,
4049 * so it must be permanently disabled from future writes.
4050 * Reading from NMI is a oneshot deal.
8d707e8e 4051 */
289a5a25
SRRH
4052 if (raw_spin_trylock(&cpu_buffer->reader_lock))
4053 return true;
8d707e8e 4054
289a5a25
SRRH
4055 /* Continue without locking, but disable the ring buffer */
4056 atomic_inc(&cpu_buffer->record_disabled);
4057 return false;
4058}
4059
4060static inline void
4061rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4062{
4063 if (likely(locked))
4064 raw_spin_unlock(&cpu_buffer->reader_lock);
4065 return;
8d707e8e
SR
4066}
4067
f83c9d0f
SR
4068/**
4069 * ring_buffer_peek - peek at the next event to be read
4070 * @buffer: The ring buffer to read
4071 * @cpu: The cpu to peak at
4072 * @ts: The timestamp counter of this event.
66a8cb95 4073 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
4074 *
4075 * This will return the event that will be read next, but does
4076 * not consume the data.
4077 */
4078struct ring_buffer_event *
66a8cb95
SR
4079ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
4080 unsigned long *lost_events)
f83c9d0f
SR
4081{
4082 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 4083 struct ring_buffer_event *event;
f83c9d0f 4084 unsigned long flags;
289a5a25 4085 bool dolock;
f83c9d0f 4086
554f786e 4087 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4088 return NULL;
554f786e 4089
2d622719 4090 again:
8d707e8e 4091 local_irq_save(flags);
289a5a25 4092 dolock = rb_reader_lock(cpu_buffer);
66a8cb95 4093 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
4094 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4095 rb_advance_reader(cpu_buffer);
289a5a25 4096 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 4097 local_irq_restore(flags);
f83c9d0f 4098
1b959e18 4099 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 4100 goto again;
2d622719 4101
f83c9d0f
SR
4102 return event;
4103}
4104
4105/**
4106 * ring_buffer_iter_peek - peek at the next event to be read
4107 * @iter: The ring buffer iterator
4108 * @ts: The timestamp counter of this event.
4109 *
4110 * This will return the event that will be read next, but does
4111 * not increment the iterator.
4112 */
4113struct ring_buffer_event *
4114ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4115{
4116 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4117 struct ring_buffer_event *event;
4118 unsigned long flags;
4119
2d622719 4120 again:
5389f6fa 4121 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4122 event = rb_iter_peek(iter, ts);
5389f6fa 4123 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 4124
1b959e18 4125 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 4126 goto again;
2d622719 4127
f83c9d0f
SR
4128 return event;
4129}
4130
7a8e76a3
SR
4131/**
4132 * ring_buffer_consume - return an event and consume it
4133 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
4134 * @cpu: the cpu to read the buffer from
4135 * @ts: a variable to store the timestamp (may be NULL)
4136 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
4137 *
4138 * Returns the next event in the ring buffer, and that event is consumed.
4139 * Meaning, that sequential reads will keep returning a different event,
4140 * and eventually empty the ring buffer if the producer is slower.
4141 */
4142struct ring_buffer_event *
66a8cb95
SR
4143ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4144 unsigned long *lost_events)
7a8e76a3 4145{
554f786e
SR
4146 struct ring_buffer_per_cpu *cpu_buffer;
4147 struct ring_buffer_event *event = NULL;
f83c9d0f 4148 unsigned long flags;
289a5a25 4149 bool dolock;
7a8e76a3 4150
2d622719 4151 again:
554f786e
SR
4152 /* might be called in atomic */
4153 preempt_disable();
4154
9e01c1b7 4155 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 4156 goto out;
7a8e76a3 4157
554f786e 4158 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4159 local_irq_save(flags);
289a5a25 4160 dolock = rb_reader_lock(cpu_buffer);
f83c9d0f 4161
66a8cb95
SR
4162 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4163 if (event) {
4164 cpu_buffer->lost_events = 0;
469535a5 4165 rb_advance_reader(cpu_buffer);
66a8cb95 4166 }
7a8e76a3 4167
289a5a25 4168 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 4169 local_irq_restore(flags);
f83c9d0f 4170
554f786e
SR
4171 out:
4172 preempt_enable();
4173
1b959e18 4174 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 4175 goto again;
2d622719 4176
7a8e76a3
SR
4177 return event;
4178}
c4f50183 4179EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
4180
4181/**
72c9ddfd 4182 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
4183 * @buffer: The ring buffer to read from
4184 * @cpu: The cpu buffer to iterate over
31b265b3 4185 * @flags: gfp flags to use for memory allocation
7a8e76a3 4186 *
72c9ddfd
DM
4187 * This performs the initial preparations necessary to iterate
4188 * through the buffer. Memory is allocated, buffer recording
4189 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 4190 *
6167c205 4191 * Disabling buffer recording prevents the reading from being
72c9ddfd
DM
4192 * corrupted. This is not a consuming read, so a producer is not
4193 * expected.
4194 *
4195 * After a sequence of ring_buffer_read_prepare calls, the user is
d611851b 4196 * expected to make at least one call to ring_buffer_read_prepare_sync.
72c9ddfd
DM
4197 * Afterwards, ring_buffer_read_start is invoked to get things going
4198 * for real.
4199 *
d611851b 4200 * This overall must be paired with ring_buffer_read_finish.
7a8e76a3
SR
4201 */
4202struct ring_buffer_iter *
31b265b3 4203ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu, gfp_t flags)
7a8e76a3
SR
4204{
4205 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 4206 struct ring_buffer_iter *iter;
7a8e76a3 4207
9e01c1b7 4208 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4209 return NULL;
7a8e76a3 4210
31b265b3 4211 iter = kmalloc(sizeof(*iter), flags);
7a8e76a3 4212 if (!iter)
8aabee57 4213 return NULL;
7a8e76a3
SR
4214
4215 cpu_buffer = buffer->buffers[cpu];
4216
4217 iter->cpu_buffer = cpu_buffer;
4218
83f40318 4219 atomic_inc(&buffer->resize_disabled);
7a8e76a3 4220 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
4221
4222 return iter;
4223}
4224EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4225
4226/**
4227 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4228 *
4229 * All previously invoked ring_buffer_read_prepare calls to prepare
4230 * iterators will be synchronized. Afterwards, read_buffer_read_start
4231 * calls on those iterators are allowed.
4232 */
4233void
4234ring_buffer_read_prepare_sync(void)
4235{
74401729 4236 synchronize_rcu();
72c9ddfd
DM
4237}
4238EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4239
4240/**
4241 * ring_buffer_read_start - start a non consuming read of the buffer
4242 * @iter: The iterator returned by ring_buffer_read_prepare
4243 *
4244 * This finalizes the startup of an iteration through the buffer.
4245 * The iterator comes from a call to ring_buffer_read_prepare and
4246 * an intervening ring_buffer_read_prepare_sync must have been
4247 * performed.
4248 *
d611851b 4249 * Must be paired with ring_buffer_read_finish.
72c9ddfd
DM
4250 */
4251void
4252ring_buffer_read_start(struct ring_buffer_iter *iter)
4253{
4254 struct ring_buffer_per_cpu *cpu_buffer;
4255 unsigned long flags;
4256
4257 if (!iter)
4258 return;
4259
4260 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4261
5389f6fa 4262 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4263 arch_spin_lock(&cpu_buffer->lock);
642edba5 4264 rb_iter_reset(iter);
0199c4e6 4265 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4266 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4267}
c4f50183 4268EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4269
4270/**
d611851b 4271 * ring_buffer_read_finish - finish reading the iterator of the buffer
7a8e76a3
SR
4272 * @iter: The iterator retrieved by ring_buffer_start
4273 *
4274 * This re-enables the recording to the buffer, and frees the
4275 * iterator.
4276 */
4277void
4278ring_buffer_read_finish(struct ring_buffer_iter *iter)
4279{
4280 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4281 unsigned long flags;
7a8e76a3 4282
659f451f
SR
4283 /*
4284 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4285 * to check the integrity of the ring buffer.
4286 * Must prevent readers from trying to read, as the check
4287 * clears the HEAD page and readers require it.
659f451f 4288 */
9366c1ba 4289 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4290 rb_check_pages(cpu_buffer);
9366c1ba 4291 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4292
7a8e76a3 4293 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4294 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4295 kfree(iter);
4296}
c4f50183 4297EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4298
4299/**
4300 * ring_buffer_read - read the next item in the ring buffer by the iterator
4301 * @iter: The ring buffer iterator
4302 * @ts: The time stamp of the event read.
4303 *
4304 * This reads the next event in the ring buffer and increments the iterator.
4305 */
4306struct ring_buffer_event *
4307ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4308{
4309 struct ring_buffer_event *event;
f83c9d0f
SR
4310 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4311 unsigned long flags;
7a8e76a3 4312
5389f6fa 4313 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4314 again:
f83c9d0f 4315 event = rb_iter_peek(iter, ts);
7a8e76a3 4316 if (!event)
f83c9d0f 4317 goto out;
7a8e76a3 4318
7e9391cf
SR
4319 if (event->type_len == RINGBUF_TYPE_PADDING)
4320 goto again;
4321
7a8e76a3 4322 rb_advance_iter(iter);
f83c9d0f 4323 out:
5389f6fa 4324 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4325
4326 return event;
4327}
c4f50183 4328EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4329
4330/**
4331 * ring_buffer_size - return the size of the ring buffer (in bytes)
4332 * @buffer: The ring buffer.
4333 */
438ced17 4334unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4335{
438ced17
VN
4336 /*
4337 * Earlier, this method returned
4338 * BUF_PAGE_SIZE * buffer->nr_pages
4339 * Since the nr_pages field is now removed, we have converted this to
4340 * return the per cpu buffer value.
4341 */
4342 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4343 return 0;
4344
4345 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4346}
c4f50183 4347EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4348
4349static void
4350rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4351{
77ae365e
SR
4352 rb_head_page_deactivate(cpu_buffer);
4353
7a8e76a3 4354 cpu_buffer->head_page
3adc54fa 4355 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4356 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4357 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4358 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4359
6f807acd 4360 cpu_buffer->head_page->read = 0;
bf41a158
SR
4361
4362 cpu_buffer->tail_page = cpu_buffer->head_page;
4363 cpu_buffer->commit_page = cpu_buffer->head_page;
4364
4365 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4366 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4367 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4368 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4369 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4370 cpu_buffer->reader_page->read = 0;
7a8e76a3 4371
c64e148a 4372 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4373 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4374 local_set(&cpu_buffer->commit_overrun, 0);
4375 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4376 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4377 local_set(&cpu_buffer->committing, 0);
4378 local_set(&cpu_buffer->commits, 0);
2c2b0a78
SRV
4379 local_set(&cpu_buffer->pages_touched, 0);
4380 local_set(&cpu_buffer->pages_read, 0);
03329f99 4381 cpu_buffer->last_pages_touch = 0;
2c2b0a78 4382 cpu_buffer->shortest_full = 0;
77ae365e 4383 cpu_buffer->read = 0;
c64e148a 4384 cpu_buffer->read_bytes = 0;
69507c06
SR
4385
4386 cpu_buffer->write_stamp = 0;
4387 cpu_buffer->read_stamp = 0;
77ae365e 4388
66a8cb95
SR
4389 cpu_buffer->lost_events = 0;
4390 cpu_buffer->last_overrun = 0;
4391
77ae365e 4392 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4393}
4394
4395/**
4396 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4397 * @buffer: The ring buffer to reset a per cpu buffer of
4398 * @cpu: The CPU buffer to be reset
4399 */
4400void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4401{
4402 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4403 unsigned long flags;
4404
9e01c1b7 4405 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4406 return;
7a8e76a3 4407
83f40318 4408 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4409 atomic_inc(&cpu_buffer->record_disabled);
4410
83f40318 4411 /* Make sure all commits have finished */
74401729 4412 synchronize_rcu();
83f40318 4413
5389f6fa 4414 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4415
41b6a95d
SR
4416 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4417 goto out;
4418
0199c4e6 4419 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4420
4421 rb_reset_cpu(cpu_buffer);
4422
0199c4e6 4423 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4424
41b6a95d 4425 out:
5389f6fa 4426 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4427
4428 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4429 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4430}
c4f50183 4431EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4432
4433/**
4434 * ring_buffer_reset - reset a ring buffer
4435 * @buffer: The ring buffer to reset all cpu buffers
4436 */
4437void ring_buffer_reset(struct ring_buffer *buffer)
4438{
7a8e76a3
SR
4439 int cpu;
4440
7a8e76a3 4441 for_each_buffer_cpu(buffer, cpu)
d769041f 4442 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4443}
c4f50183 4444EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4445
4446/**
4447 * rind_buffer_empty - is the ring buffer empty?
4448 * @buffer: The ring buffer to test
4449 */
3d4e204d 4450bool ring_buffer_empty(struct ring_buffer *buffer)
7a8e76a3
SR
4451{
4452 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4453 unsigned long flags;
289a5a25 4454 bool dolock;
7a8e76a3 4455 int cpu;
d4788207 4456 int ret;
7a8e76a3
SR
4457
4458 /* yes this is racy, but if you don't like the race, lock the buffer */
4459 for_each_buffer_cpu(buffer, cpu) {
4460 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4461 local_irq_save(flags);
289a5a25 4462 dolock = rb_reader_lock(cpu_buffer);
d4788207 4463 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 4464 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e
SR
4465 local_irq_restore(flags);
4466
d4788207 4467 if (!ret)
3d4e204d 4468 return false;
7a8e76a3 4469 }
554f786e 4470
3d4e204d 4471 return true;
7a8e76a3 4472}
c4f50183 4473EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4474
4475/**
4476 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4477 * @buffer: The ring buffer
4478 * @cpu: The CPU buffer to test
4479 */
3d4e204d 4480bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
4481{
4482 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4483 unsigned long flags;
289a5a25 4484 bool dolock;
8aabee57 4485 int ret;
7a8e76a3 4486
9e01c1b7 4487 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3d4e204d 4488 return true;
7a8e76a3
SR
4489
4490 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4491 local_irq_save(flags);
289a5a25 4492 dolock = rb_reader_lock(cpu_buffer);
554f786e 4493 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 4494 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 4495 local_irq_restore(flags);
554f786e
SR
4496
4497 return ret;
7a8e76a3 4498}
c4f50183 4499EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4500
85bac32c 4501#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4502/**
4503 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4504 * @buffer_a: One buffer to swap with
4505 * @buffer_b: The other buffer to swap with
4506 *
4507 * This function is useful for tracers that want to take a "snapshot"
4508 * of a CPU buffer and has another back up buffer lying around.
4509 * it is expected that the tracer handles the cpu buffer not being
4510 * used at the moment.
4511 */
4512int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4513 struct ring_buffer *buffer_b, int cpu)
4514{
4515 struct ring_buffer_per_cpu *cpu_buffer_a;
4516 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4517 int ret = -EINVAL;
4518
9e01c1b7
RR
4519 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4520 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4521 goto out;
7a8e76a3 4522
438ced17
VN
4523 cpu_buffer_a = buffer_a->buffers[cpu];
4524 cpu_buffer_b = buffer_b->buffers[cpu];
4525
7a8e76a3 4526 /* At least make sure the two buffers are somewhat the same */
438ced17 4527 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4528 goto out;
4529
4530 ret = -EAGAIN;
7a8e76a3 4531
97b17efe 4532 if (atomic_read(&buffer_a->record_disabled))
554f786e 4533 goto out;
97b17efe
SR
4534
4535 if (atomic_read(&buffer_b->record_disabled))
554f786e 4536 goto out;
97b17efe 4537
97b17efe 4538 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4539 goto out;
97b17efe
SR
4540
4541 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4542 goto out;
97b17efe 4543
7a8e76a3 4544 /*
74401729 4545 * We can't do a synchronize_rcu here because this
7a8e76a3
SR
4546 * function can be called in atomic context.
4547 * Normally this will be called from the same CPU as cpu.
4548 * If not it's up to the caller to protect this.
4549 */
4550 atomic_inc(&cpu_buffer_a->record_disabled);
4551 atomic_inc(&cpu_buffer_b->record_disabled);
4552
98277991
SR
4553 ret = -EBUSY;
4554 if (local_read(&cpu_buffer_a->committing))
4555 goto out_dec;
4556 if (local_read(&cpu_buffer_b->committing))
4557 goto out_dec;
4558
7a8e76a3
SR
4559 buffer_a->buffers[cpu] = cpu_buffer_b;
4560 buffer_b->buffers[cpu] = cpu_buffer_a;
4561
4562 cpu_buffer_b->buffer = buffer_a;
4563 cpu_buffer_a->buffer = buffer_b;
4564
98277991
SR
4565 ret = 0;
4566
4567out_dec:
7a8e76a3
SR
4568 atomic_dec(&cpu_buffer_a->record_disabled);
4569 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4570out:
554f786e 4571 return ret;
7a8e76a3 4572}
c4f50183 4573EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4574#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4575
8789a9e7
SR
4576/**
4577 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4578 * @buffer: the buffer to allocate for.
d611851b 4579 * @cpu: the cpu buffer to allocate.
8789a9e7
SR
4580 *
4581 * This function is used in conjunction with ring_buffer_read_page.
4582 * When reading a full page from the ring buffer, these functions
4583 * can be used to speed up the process. The calling function should
4584 * allocate a few pages first with this function. Then when it
4585 * needs to get pages from the ring buffer, it passes the result
4586 * of this function into ring_buffer_read_page, which will swap
4587 * the page that was allocated, with the read page of the buffer.
4588 *
4589 * Returns:
a7e52ad7 4590 * The page allocated, or ERR_PTR
8789a9e7 4591 */
7ea59064 4592void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4593{
a7e52ad7 4594 struct ring_buffer_per_cpu *cpu_buffer;
73a757e6
SRV
4595 struct buffer_data_page *bpage = NULL;
4596 unsigned long flags;
7ea59064 4597 struct page *page;
8789a9e7 4598
a7e52ad7
SRV
4599 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4600 return ERR_PTR(-ENODEV);
4601
4602 cpu_buffer = buffer->buffers[cpu];
73a757e6
SRV
4603 local_irq_save(flags);
4604 arch_spin_lock(&cpu_buffer->lock);
4605
4606 if (cpu_buffer->free_page) {
4607 bpage = cpu_buffer->free_page;
4608 cpu_buffer->free_page = NULL;
4609 }
4610
4611 arch_spin_unlock(&cpu_buffer->lock);
4612 local_irq_restore(flags);
4613
4614 if (bpage)
4615 goto out;
4616
d7ec4bfe
VN
4617 page = alloc_pages_node(cpu_to_node(cpu),
4618 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4619 if (!page)
a7e52ad7 4620 return ERR_PTR(-ENOMEM);
8789a9e7 4621
7ea59064 4622 bpage = page_address(page);
8789a9e7 4623
73a757e6 4624 out:
ef7a4a16
SR
4625 rb_init_page(bpage);
4626
044fa782 4627 return bpage;
8789a9e7 4628}
d6ce96da 4629EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4630
4631/**
4632 * ring_buffer_free_read_page - free an allocated read page
4633 * @buffer: the buffer the page was allocate for
73a757e6 4634 * @cpu: the cpu buffer the page came from
8789a9e7
SR
4635 * @data: the page to free
4636 *
4637 * Free a page allocated from ring_buffer_alloc_read_page.
4638 */
73a757e6 4639void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
8789a9e7 4640{
73a757e6
SRV
4641 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4642 struct buffer_data_page *bpage = data;
ae415fa4 4643 struct page *page = virt_to_page(bpage);
73a757e6
SRV
4644 unsigned long flags;
4645
ae415fa4
SRV
4646 /* If the page is still in use someplace else, we can't reuse it */
4647 if (page_ref_count(page) > 1)
4648 goto out;
4649
73a757e6
SRV
4650 local_irq_save(flags);
4651 arch_spin_lock(&cpu_buffer->lock);
4652
4653 if (!cpu_buffer->free_page) {
4654 cpu_buffer->free_page = bpage;
4655 bpage = NULL;
4656 }
4657
4658 arch_spin_unlock(&cpu_buffer->lock);
4659 local_irq_restore(flags);
4660
ae415fa4 4661 out:
73a757e6 4662 free_page((unsigned long)bpage);
8789a9e7 4663}
d6ce96da 4664EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4665
4666/**
4667 * ring_buffer_read_page - extract a page from the ring buffer
4668 * @buffer: buffer to extract from
4669 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4670 * @len: amount to extract
8789a9e7
SR
4671 * @cpu: the cpu of the buffer to extract
4672 * @full: should the extraction only happen when the page is full.
4673 *
4674 * This function will pull out a page from the ring buffer and consume it.
4675 * @data_page must be the address of the variable that was returned
4676 * from ring_buffer_alloc_read_page. This is because the page might be used
4677 * to swap with a page in the ring buffer.
4678 *
4679 * for example:
d611851b 4680 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
a7e52ad7
SRV
4681 * if (IS_ERR(rpage))
4682 * return PTR_ERR(rpage);
ef7a4a16 4683 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4684 * if (ret >= 0)
4685 * process_page(rpage, ret);
8789a9e7
SR
4686 *
4687 * When @full is set, the function will not return true unless
4688 * the writer is off the reader page.
4689 *
4690 * Note: it is up to the calling functions to handle sleeps and wakeups.
4691 * The ring buffer can be used anywhere in the kernel and can not
4692 * blindly call wake_up. The layer that uses the ring buffer must be
4693 * responsible for that.
4694 *
4695 * Returns:
667d2412
LJ
4696 * >=0 if data has been transferred, returns the offset of consumed data.
4697 * <0 if no data has been transferred.
8789a9e7
SR
4698 */
4699int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4700 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4701{
4702 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4703 struct ring_buffer_event *event;
044fa782 4704 struct buffer_data_page *bpage;
ef7a4a16 4705 struct buffer_page *reader;
ff0ff84a 4706 unsigned long missed_events;
8789a9e7 4707 unsigned long flags;
ef7a4a16 4708 unsigned int commit;
667d2412 4709 unsigned int read;
4f3640f8 4710 u64 save_timestamp;
667d2412 4711 int ret = -1;
8789a9e7 4712
554f786e
SR
4713 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4714 goto out;
4715
474d32b6
SR
4716 /*
4717 * If len is not big enough to hold the page header, then
4718 * we can not copy anything.
4719 */
4720 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4721 goto out;
474d32b6
SR
4722
4723 len -= BUF_PAGE_HDR_SIZE;
4724
8789a9e7 4725 if (!data_page)
554f786e 4726 goto out;
8789a9e7 4727
044fa782
SR
4728 bpage = *data_page;
4729 if (!bpage)
554f786e 4730 goto out;
8789a9e7 4731
5389f6fa 4732 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4733
ef7a4a16
SR
4734 reader = rb_get_reader_page(cpu_buffer);
4735 if (!reader)
554f786e 4736 goto out_unlock;
8789a9e7 4737
ef7a4a16
SR
4738 event = rb_reader_event(cpu_buffer);
4739
4740 read = reader->read;
4741 commit = rb_page_commit(reader);
667d2412 4742
66a8cb95 4743 /* Check if any events were dropped */
ff0ff84a 4744 missed_events = cpu_buffer->lost_events;
66a8cb95 4745
8789a9e7 4746 /*
474d32b6
SR
4747 * If this page has been partially read or
4748 * if len is not big enough to read the rest of the page or
4749 * a writer is still on the page, then
4750 * we must copy the data from the page to the buffer.
4751 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4752 */
474d32b6 4753 if (read || (len < (commit - read)) ||
ef7a4a16 4754 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4755 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4756 unsigned int rpos = read;
4757 unsigned int pos = 0;
ef7a4a16 4758 unsigned int size;
8789a9e7
SR
4759
4760 if (full)
554f786e 4761 goto out_unlock;
8789a9e7 4762
ef7a4a16
SR
4763 if (len > (commit - read))
4764 len = (commit - read);
4765
69d1b839
SR
4766 /* Always keep the time extend and data together */
4767 size = rb_event_ts_length(event);
ef7a4a16
SR
4768
4769 if (len < size)
554f786e 4770 goto out_unlock;
ef7a4a16 4771
4f3640f8
SR
4772 /* save the current timestamp, since the user will need it */
4773 save_timestamp = cpu_buffer->read_stamp;
4774
ef7a4a16
SR
4775 /* Need to copy one event at a time */
4776 do {
e1e35927
DS
4777 /* We need the size of one event, because
4778 * rb_advance_reader only advances by one event,
4779 * whereas rb_event_ts_length may include the size of
4780 * one or two events.
4781 * We have already ensured there's enough space if this
4782 * is a time extend. */
4783 size = rb_event_length(event);
474d32b6 4784 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4785
4786 len -= size;
4787
4788 rb_advance_reader(cpu_buffer);
474d32b6
SR
4789 rpos = reader->read;
4790 pos += size;
ef7a4a16 4791
18fab912
HY
4792 if (rpos >= commit)
4793 break;
4794
ef7a4a16 4795 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4796 /* Always keep the time extend and data together */
4797 size = rb_event_ts_length(event);
e1e35927 4798 } while (len >= size);
667d2412
LJ
4799
4800 /* update bpage */
ef7a4a16 4801 local_set(&bpage->commit, pos);
4f3640f8 4802 bpage->time_stamp = save_timestamp;
ef7a4a16 4803
474d32b6
SR
4804 /* we copied everything to the beginning */
4805 read = 0;
8789a9e7 4806 } else {
afbab76a 4807 /* update the entry counter */
77ae365e 4808 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4809 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4810
8789a9e7 4811 /* swap the pages */
044fa782 4812 rb_init_page(bpage);
ef7a4a16
SR
4813 bpage = reader->page;
4814 reader->page = *data_page;
4815 local_set(&reader->write, 0);
778c55d4 4816 local_set(&reader->entries, 0);
ef7a4a16 4817 reader->read = 0;
044fa782 4818 *data_page = bpage;
ff0ff84a
SR
4819
4820 /*
4821 * Use the real_end for the data size,
4822 * This gives us a chance to store the lost events
4823 * on the page.
4824 */
4825 if (reader->real_end)
4826 local_set(&bpage->commit, reader->real_end);
8789a9e7 4827 }
667d2412 4828 ret = read;
8789a9e7 4829
66a8cb95 4830 cpu_buffer->lost_events = 0;
2711ca23
SR
4831
4832 commit = local_read(&bpage->commit);
66a8cb95
SR
4833 /*
4834 * Set a flag in the commit field if we lost events
4835 */
ff0ff84a 4836 if (missed_events) {
ff0ff84a
SR
4837 /* If there is room at the end of the page to save the
4838 * missed events, then record it there.
4839 */
4840 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4841 memcpy(&bpage->data[commit], &missed_events,
4842 sizeof(missed_events));
4843 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4844 commit += sizeof(missed_events);
ff0ff84a 4845 }
66a8cb95 4846 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4847 }
66a8cb95 4848
2711ca23
SR
4849 /*
4850 * This page may be off to user land. Zero it out here.
4851 */
4852 if (commit < BUF_PAGE_SIZE)
4853 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4854
554f786e 4855 out_unlock:
5389f6fa 4856 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4857
554f786e 4858 out:
8789a9e7
SR
4859 return ret;
4860}
d6ce96da 4861EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4862
b32614c0
SAS
4863/*
4864 * We only allocate new buffers, never free them if the CPU goes down.
4865 * If we were to free the buffer, then the user would lose any trace that was in
4866 * the buffer.
4867 */
4868int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
554f786e 4869{
b32614c0 4870 struct ring_buffer *buffer;
9b94a8fb
SRRH
4871 long nr_pages_same;
4872 int cpu_i;
4873 unsigned long nr_pages;
554f786e 4874
b32614c0
SAS
4875 buffer = container_of(node, struct ring_buffer, node);
4876 if (cpumask_test_cpu(cpu, buffer->cpumask))
4877 return 0;
4878
4879 nr_pages = 0;
4880 nr_pages_same = 1;
4881 /* check if all cpu sizes are same */
4882 for_each_buffer_cpu(buffer, cpu_i) {
4883 /* fill in the size from first enabled cpu */
4884 if (nr_pages == 0)
4885 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4886 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4887 nr_pages_same = 0;
4888 break;
554f786e 4889 }
554f786e 4890 }
b32614c0
SAS
4891 /* allocate minimum pages, user can later expand it */
4892 if (!nr_pages_same)
4893 nr_pages = 2;
4894 buffer->buffers[cpu] =
4895 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4896 if (!buffer->buffers[cpu]) {
4897 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4898 cpu);
4899 return -ENOMEM;
4900 }
4901 smp_wmb();
4902 cpumask_set_cpu(cpu, buffer->cpumask);
4903 return 0;
554f786e 4904}
6c43e554
SRRH
4905
4906#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4907/*
4908 * This is a basic integrity check of the ring buffer.
4909 * Late in the boot cycle this test will run when configured in.
4910 * It will kick off a thread per CPU that will go into a loop
4911 * writing to the per cpu ring buffer various sizes of data.
4912 * Some of the data will be large items, some small.
4913 *
4914 * Another thread is created that goes into a spin, sending out
4915 * IPIs to the other CPUs to also write into the ring buffer.
4916 * this is to test the nesting ability of the buffer.
4917 *
4918 * Basic stats are recorded and reported. If something in the
4919 * ring buffer should happen that's not expected, a big warning
4920 * is displayed and all ring buffers are disabled.
4921 */
4922static struct task_struct *rb_threads[NR_CPUS] __initdata;
4923
4924struct rb_test_data {
4925 struct ring_buffer *buffer;
4926 unsigned long events;
4927 unsigned long bytes_written;
4928 unsigned long bytes_alloc;
4929 unsigned long bytes_dropped;
4930 unsigned long events_nested;
4931 unsigned long bytes_written_nested;
4932 unsigned long bytes_alloc_nested;
4933 unsigned long bytes_dropped_nested;
4934 int min_size_nested;
4935 int max_size_nested;
4936 int max_size;
4937 int min_size;
4938 int cpu;
4939 int cnt;
4940};
4941
4942static struct rb_test_data rb_data[NR_CPUS] __initdata;
4943
4944/* 1 meg per cpu */
4945#define RB_TEST_BUFFER_SIZE 1048576
4946
4947static char rb_string[] __initdata =
4948 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4949 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4950 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4951
4952static bool rb_test_started __initdata;
4953
4954struct rb_item {
4955 int size;
4956 char str[];
4957};
4958
4959static __init int rb_write_something(struct rb_test_data *data, bool nested)
4960{
4961 struct ring_buffer_event *event;
4962 struct rb_item *item;
4963 bool started;
4964 int event_len;
4965 int size;
4966 int len;
4967 int cnt;
4968
4969 /* Have nested writes different that what is written */
4970 cnt = data->cnt + (nested ? 27 : 0);
4971
4972 /* Multiply cnt by ~e, to make some unique increment */
40ed29b3 4973 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
6c43e554
SRRH
4974
4975 len = size + sizeof(struct rb_item);
4976
4977 started = rb_test_started;
4978 /* read rb_test_started before checking buffer enabled */
4979 smp_rmb();
4980
4981 event = ring_buffer_lock_reserve(data->buffer, len);
4982 if (!event) {
4983 /* Ignore dropped events before test starts. */
4984 if (started) {
4985 if (nested)
4986 data->bytes_dropped += len;
4987 else
4988 data->bytes_dropped_nested += len;
4989 }
4990 return len;
4991 }
4992
4993 event_len = ring_buffer_event_length(event);
4994
4995 if (RB_WARN_ON(data->buffer, event_len < len))
4996 goto out;
4997
4998 item = ring_buffer_event_data(event);
4999 item->size = size;
5000 memcpy(item->str, rb_string, size);
5001
5002 if (nested) {
5003 data->bytes_alloc_nested += event_len;
5004 data->bytes_written_nested += len;
5005 data->events_nested++;
5006 if (!data->min_size_nested || len < data->min_size_nested)
5007 data->min_size_nested = len;
5008 if (len > data->max_size_nested)
5009 data->max_size_nested = len;
5010 } else {
5011 data->bytes_alloc += event_len;
5012 data->bytes_written += len;
5013 data->events++;
5014 if (!data->min_size || len < data->min_size)
5015 data->max_size = len;
5016 if (len > data->max_size)
5017 data->max_size = len;
5018 }
5019
5020 out:
5021 ring_buffer_unlock_commit(data->buffer, event);
5022
5023 return 0;
5024}
5025
5026static __init int rb_test(void *arg)
5027{
5028 struct rb_test_data *data = arg;
5029
5030 while (!kthread_should_stop()) {
5031 rb_write_something(data, false);
5032 data->cnt++;
5033
5034 set_current_state(TASK_INTERRUPTIBLE);
5035 /* Now sleep between a min of 100-300us and a max of 1ms */
5036 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5037 }
5038
5039 return 0;
5040}
5041
5042static __init void rb_ipi(void *ignore)
5043{
5044 struct rb_test_data *data;
5045 int cpu = smp_processor_id();
5046
5047 data = &rb_data[cpu];
5048 rb_write_something(data, true);
5049}
5050
5051static __init int rb_hammer_test(void *arg)
5052{
5053 while (!kthread_should_stop()) {
5054
5055 /* Send an IPI to all cpus to write data! */
5056 smp_call_function(rb_ipi, NULL, 1);
5057 /* No sleep, but for non preempt, let others run */
5058 schedule();
5059 }
5060
5061 return 0;
5062}
5063
5064static __init int test_ringbuffer(void)
5065{
5066 struct task_struct *rb_hammer;
5067 struct ring_buffer *buffer;
5068 int cpu;
5069 int ret = 0;
5070
5071 pr_info("Running ring buffer tests...\n");
5072
5073 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5074 if (WARN_ON(!buffer))
5075 return 0;
5076
5077 /* Disable buffer so that threads can't write to it yet */
5078 ring_buffer_record_off(buffer);
5079
5080 for_each_online_cpu(cpu) {
5081 rb_data[cpu].buffer = buffer;
5082 rb_data[cpu].cpu = cpu;
5083 rb_data[cpu].cnt = cpu;
5084 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5085 "rbtester/%d", cpu);
62277de7 5086 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6c43e554 5087 pr_cont("FAILED\n");
62277de7 5088 ret = PTR_ERR(rb_threads[cpu]);
6c43e554
SRRH
5089 goto out_free;
5090 }
5091
5092 kthread_bind(rb_threads[cpu], cpu);
5093 wake_up_process(rb_threads[cpu]);
5094 }
5095
5096 /* Now create the rb hammer! */
5097 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
62277de7 5098 if (WARN_ON(IS_ERR(rb_hammer))) {
6c43e554 5099 pr_cont("FAILED\n");
62277de7 5100 ret = PTR_ERR(rb_hammer);
6c43e554
SRRH
5101 goto out_free;
5102 }
5103
5104 ring_buffer_record_on(buffer);
5105 /*
5106 * Show buffer is enabled before setting rb_test_started.
5107 * Yes there's a small race window where events could be
5108 * dropped and the thread wont catch it. But when a ring
5109 * buffer gets enabled, there will always be some kind of
5110 * delay before other CPUs see it. Thus, we don't care about
5111 * those dropped events. We care about events dropped after
5112 * the threads see that the buffer is active.
5113 */
5114 smp_wmb();
5115 rb_test_started = true;
5116
5117 set_current_state(TASK_INTERRUPTIBLE);
5118 /* Just run for 10 seconds */;
5119 schedule_timeout(10 * HZ);
5120
5121 kthread_stop(rb_hammer);
5122
5123 out_free:
5124 for_each_online_cpu(cpu) {
5125 if (!rb_threads[cpu])
5126 break;
5127 kthread_stop(rb_threads[cpu]);
5128 }
5129 if (ret) {
5130 ring_buffer_free(buffer);
5131 return ret;
5132 }
5133
5134 /* Report! */
5135 pr_info("finished\n");
5136 for_each_online_cpu(cpu) {
5137 struct ring_buffer_event *event;
5138 struct rb_test_data *data = &rb_data[cpu];
5139 struct rb_item *item;
5140 unsigned long total_events;
5141 unsigned long total_dropped;
5142 unsigned long total_written;
5143 unsigned long total_alloc;
5144 unsigned long total_read = 0;
5145 unsigned long total_size = 0;
5146 unsigned long total_len = 0;
5147 unsigned long total_lost = 0;
5148 unsigned long lost;
5149 int big_event_size;
5150 int small_event_size;
5151
5152 ret = -1;
5153
5154 total_events = data->events + data->events_nested;
5155 total_written = data->bytes_written + data->bytes_written_nested;
5156 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5157 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5158
5159 big_event_size = data->max_size + data->max_size_nested;
5160 small_event_size = data->min_size + data->min_size_nested;
5161
5162 pr_info("CPU %d:\n", cpu);
5163 pr_info(" events: %ld\n", total_events);
5164 pr_info(" dropped bytes: %ld\n", total_dropped);
5165 pr_info(" alloced bytes: %ld\n", total_alloc);
5166 pr_info(" written bytes: %ld\n", total_written);
5167 pr_info(" biggest event: %d\n", big_event_size);
5168 pr_info(" smallest event: %d\n", small_event_size);
5169
5170 if (RB_WARN_ON(buffer, total_dropped))
5171 break;
5172
5173 ret = 0;
5174
5175 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5176 total_lost += lost;
5177 item = ring_buffer_event_data(event);
5178 total_len += ring_buffer_event_length(event);
5179 total_size += item->size + sizeof(struct rb_item);
5180 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5181 pr_info("FAILED!\n");
5182 pr_info("buffer had: %.*s\n", item->size, item->str);
5183 pr_info("expected: %.*s\n", item->size, rb_string);
5184 RB_WARN_ON(buffer, 1);
5185 ret = -1;
5186 break;
5187 }
5188 total_read++;
5189 }
5190 if (ret)
5191 break;
5192
5193 ret = -1;
5194
5195 pr_info(" read events: %ld\n", total_read);
5196 pr_info(" lost events: %ld\n", total_lost);
5197 pr_info(" total events: %ld\n", total_lost + total_read);
5198 pr_info(" recorded len bytes: %ld\n", total_len);
5199 pr_info(" recorded size bytes: %ld\n", total_size);
5200 if (total_lost)
5201 pr_info(" With dropped events, record len and size may not match\n"
5202 " alloced and written from above\n");
5203 if (!total_lost) {
5204 if (RB_WARN_ON(buffer, total_len != total_alloc ||
5205 total_size != total_written))
5206 break;
5207 }
5208 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5209 break;
5210
5211 ret = 0;
5212 }
5213 if (!ret)
5214 pr_info("Ring buffer PASSED!\n");
5215
5216 ring_buffer_free(buffer);
5217 return 0;
5218}
5219
5220late_initcall(test_ringbuffer);
5221#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */