]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/trace/ring_buffer.c
tracing: Use a no_filter_buffering_ref to stop using the filter buffer
[mirror_ubuntu-jammy-kernel.git] / kernel / trace / ring_buffer.c
CommitLineData
bcea3f96 1// SPDX-License-Identifier: GPL-2.0
7a8e76a3
SR
2/*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
28575c61 7#include <linux/trace_recursion.h>
af658dca 8#include <linux/trace_events.h>
7a8e76a3 9#include <linux/ring_buffer.h>
14131f2f 10#include <linux/trace_clock.h>
e6017571 11#include <linux/sched/clock.h>
0b07436d 12#include <linux/trace_seq.h>
7a8e76a3 13#include <linux/spinlock.h>
15693458 14#include <linux/irq_work.h>
a356646a 15#include <linux/security.h>
7a8e76a3 16#include <linux/uaccess.h>
a81bd80a 17#include <linux/hardirq.h>
6c43e554 18#include <linux/kthread.h> /* for self test */
7a8e76a3
SR
19#include <linux/module.h>
20#include <linux/percpu.h>
21#include <linux/mutex.h>
6c43e554 22#include <linux/delay.h>
5a0e3ad6 23#include <linux/slab.h>
7a8e76a3
SR
24#include <linux/init.h>
25#include <linux/hash.h>
26#include <linux/list.h>
554f786e 27#include <linux/cpu.h>
927e56db 28#include <linux/oom.h>
7a8e76a3 29
79615760 30#include <asm/local.h>
182e9f5f 31
83f40318
VN
32static void update_pages_handler(struct work_struct *work);
33
d1b182a8
SR
34/*
35 * The ring buffer header is special. We must manually up keep it.
36 */
37int ring_buffer_print_entry_header(struct trace_seq *s)
38{
c0cd93aa
SRRH
39 trace_seq_puts(s, "# compressed entry header\n");
40 trace_seq_puts(s, "\ttype_len : 5 bits\n");
41 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
42 trace_seq_puts(s, "\tarray : 32 bits\n");
43 trace_seq_putc(s, '\n');
44 trace_seq_printf(s, "\tpadding : type == %d\n",
45 RINGBUF_TYPE_PADDING);
46 trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 RINGBUF_TYPE_TIME_EXTEND);
dc4e2801
TZ
48 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
49 RINGBUF_TYPE_TIME_STAMP);
c0cd93aa
SRRH
50 trace_seq_printf(s, "\tdata max type_len == %d\n",
51 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
52
53 return !trace_seq_has_overflowed(s);
d1b182a8
SR
54}
55
5cc98548
SR
56/*
57 * The ring buffer is made up of a list of pages. A separate list of pages is
58 * allocated for each CPU. A writer may only write to a buffer that is
59 * associated with the CPU it is currently executing on. A reader may read
60 * from any per cpu buffer.
61 *
62 * The reader is special. For each per cpu buffer, the reader has its own
63 * reader page. When a reader has read the entire reader page, this reader
64 * page is swapped with another page in the ring buffer.
65 *
66 * Now, as long as the writer is off the reader page, the reader can do what
67 * ever it wants with that page. The writer will never write to that page
68 * again (as long as it is out of the ring buffer).
69 *
70 * Here's some silly ASCII art.
71 *
72 * +------+
73 * |reader| RING BUFFER
74 * |page |
75 * +------+ +---+ +---+ +---+
76 * | |-->| |-->| |
77 * +---+ +---+ +---+
78 * ^ |
79 * | |
80 * +---------------+
81 *
82 *
83 * +------+
84 * |reader| RING BUFFER
85 * |page |------------------v
86 * +------+ +---+ +---+ +---+
87 * | |-->| |-->| |
88 * +---+ +---+ +---+
89 * ^ |
90 * | |
91 * +---------------+
92 *
93 *
94 * +------+
95 * |reader| RING BUFFER
96 * |page |------------------v
97 * +------+ +---+ +---+ +---+
98 * ^ | |-->| |-->| |
99 * | +---+ +---+ +---+
100 * | |
101 * | |
102 * +------------------------------+
103 *
104 *
105 * +------+
106 * |buffer| RING BUFFER
107 * |page |------------------v
108 * +------+ +---+ +---+ +---+
109 * ^ | | | |-->| |
110 * | New +---+ +---+ +---+
111 * | Reader------^ |
112 * | page |
113 * +------------------------------+
114 *
115 *
116 * After we make this swap, the reader can hand this page off to the splice
117 * code and be done with it. It can even allocate a new page if it needs to
118 * and swap that into the ring buffer.
119 *
120 * We will be using cmpxchg soon to make all this lockless.
121 *
122 */
123
499e5470
SR
124/* Used for individual buffers (after the counter) */
125#define RB_BUFFER_OFF (1 << 20)
a3583244 126
499e5470 127#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3 128
e3d6bf0a 129#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 130#define RB_ALIGNMENT 4U
334d4169 131#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 132#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
adab66b7
SRV
133
134#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
135# define RB_FORCE_8BYTE_ALIGNMENT 0
136# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
137#else
138# define RB_FORCE_8BYTE_ALIGNMENT 1
139# define RB_ARCH_ALIGNMENT 8U
140#endif
141
142#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
649508f6 143
334d4169
LJ
144/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
145#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
146
147enum {
148 RB_LEN_TIME_EXTEND = 8,
dc4e2801 149 RB_LEN_TIME_STAMP = 8,
7a8e76a3
SR
150};
151
69d1b839
SR
152#define skip_time_extend(event) \
153 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
154
dc4e2801
TZ
155#define extended_time(event) \
156 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
157
2d622719
TZ
158static inline int rb_null_event(struct ring_buffer_event *event)
159{
a1863c21 160 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
161}
162
163static void rb_event_set_padding(struct ring_buffer_event *event)
164{
a1863c21 165 /* padding has a NULL time_delta */
334d4169 166 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
167 event->time_delta = 0;
168}
169
34a148bf 170static unsigned
2d622719 171rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
172{
173 unsigned length;
174
334d4169
LJ
175 if (event->type_len)
176 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
177 else
178 length = event->array[0];
179 return length + RB_EVNT_HDR_SIZE;
180}
181
69d1b839
SR
182/*
183 * Return the length of the given event. Will return
184 * the length of the time extend if the event is a
185 * time extend.
186 */
187static inline unsigned
2d622719
TZ
188rb_event_length(struct ring_buffer_event *event)
189{
334d4169 190 switch (event->type_len) {
7a8e76a3 191 case RINGBUF_TYPE_PADDING:
2d622719
TZ
192 if (rb_null_event(event))
193 /* undefined */
194 return -1;
334d4169 195 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
196
197 case RINGBUF_TYPE_TIME_EXTEND:
198 return RB_LEN_TIME_EXTEND;
199
200 case RINGBUF_TYPE_TIME_STAMP:
201 return RB_LEN_TIME_STAMP;
202
203 case RINGBUF_TYPE_DATA:
2d622719 204 return rb_event_data_length(event);
7a8e76a3 205 default:
da4d401a 206 WARN_ON_ONCE(1);
7a8e76a3
SR
207 }
208 /* not hit */
209 return 0;
210}
211
69d1b839
SR
212/*
213 * Return total length of time extend and data,
214 * or just the event length for all other events.
215 */
216static inline unsigned
217rb_event_ts_length(struct ring_buffer_event *event)
218{
219 unsigned len = 0;
220
dc4e2801 221 if (extended_time(event)) {
69d1b839
SR
222 /* time extends include the data event after it */
223 len = RB_LEN_TIME_EXTEND;
224 event = skip_time_extend(event);
225 }
226 return len + rb_event_length(event);
227}
228
7a8e76a3
SR
229/**
230 * ring_buffer_event_length - return the length of the event
231 * @event: the event to get the length of
69d1b839
SR
232 *
233 * Returns the size of the data load of a data event.
234 * If the event is something other than a data event, it
235 * returns the size of the event itself. With the exception
236 * of a TIME EXTEND, where it still returns the size of the
237 * data load of the data event after it.
7a8e76a3
SR
238 */
239unsigned ring_buffer_event_length(struct ring_buffer_event *event)
240{
69d1b839
SR
241 unsigned length;
242
dc4e2801 243 if (extended_time(event))
69d1b839
SR
244 event = skip_time_extend(event);
245
246 length = rb_event_length(event);
334d4169 247 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
248 return length;
249 length -= RB_EVNT_HDR_SIZE;
250 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
251 length -= sizeof(event->array[0]);
252 return length;
7a8e76a3 253}
c4f50183 254EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
255
256/* inline for ring buffer fast paths */
929ddbf3 257static __always_inline void *
7a8e76a3
SR
258rb_event_data(struct ring_buffer_event *event)
259{
dc4e2801 260 if (extended_time(event))
69d1b839 261 event = skip_time_extend(event);
da4d401a 262 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 263 /* If length is in len field, then array[0] has the data */
334d4169 264 if (event->type_len)
7a8e76a3
SR
265 return (void *)&event->array[0];
266 /* Otherwise length is in array[0] and array[1] has the data */
267 return (void *)&event->array[1];
268}
269
270/**
271 * ring_buffer_event_data - return the data of the event
272 * @event: the event to get the data from
273 */
274void *ring_buffer_event_data(struct ring_buffer_event *event)
275{
276 return rb_event_data(event);
277}
c4f50183 278EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
279
280#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 281 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3 282
b23d7a5f
NP
283#define for_each_online_buffer_cpu(buffer, cpu) \
284 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
285
7a8e76a3
SR
286#define TS_SHIFT 27
287#define TS_MASK ((1ULL << TS_SHIFT) - 1)
288#define TS_DELTA_TEST (~TS_MASK)
289
e20044f7
SRV
290static u64 rb_event_time_stamp(struct ring_buffer_event *event)
291{
292 u64 ts;
293
294 ts = event->array[0];
295 ts <<= TS_SHIFT;
296 ts += event->time_delta;
297
298 return ts;
299}
300
66a8cb95
SR
301/* Flag when events were overwritten */
302#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
303/* Missed count stored at end */
304#define RB_MISSED_STORED (1 << 30)
66a8cb95 305
abc9b56d 306struct buffer_data_page {
e4c2ce82 307 u64 time_stamp; /* page time stamp */
c3706f00 308 local_t commit; /* write committed index */
649508f6 309 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
310};
311
77ae365e
SR
312/*
313 * Note, the buffer_page list must be first. The buffer pages
314 * are allocated in cache lines, which means that each buffer
315 * page will be at the beginning of a cache line, and thus
316 * the least significant bits will be zero. We use this to
317 * add flags in the list struct pointers, to make the ring buffer
318 * lockless.
319 */
abc9b56d 320struct buffer_page {
778c55d4 321 struct list_head list; /* list of buffer pages */
abc9b56d 322 local_t write; /* index for next write */
6f807acd 323 unsigned read; /* index for next read */
778c55d4 324 local_t entries; /* entries on this page */
ff0ff84a 325 unsigned long real_end; /* real end of data */
abc9b56d 326 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
327};
328
77ae365e
SR
329/*
330 * The buffer page counters, write and entries, must be reset
331 * atomically when crossing page boundaries. To synchronize this
332 * update, two counters are inserted into the number. One is
333 * the actual counter for the write position or count on the page.
334 *
335 * The other is a counter of updaters. Before an update happens
336 * the update partition of the counter is incremented. This will
337 * allow the updater to update the counter atomically.
338 *
339 * The counter is 20 bits, and the state data is 12.
340 */
341#define RB_WRITE_MASK 0xfffff
342#define RB_WRITE_INTCNT (1 << 20)
343
044fa782 344static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 345{
044fa782 346 local_set(&bpage->commit, 0);
abc9b56d
SR
347}
348
ed56829c
SR
349/*
350 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
351 * this issue out.
352 */
34a148bf 353static void free_buffer_page(struct buffer_page *bpage)
ed56829c 354{
34a148bf 355 free_page((unsigned long)bpage->page);
e4c2ce82 356 kfree(bpage);
ed56829c
SR
357}
358
7a8e76a3
SR
359/*
360 * We need to fit the time_stamp delta into 27 bits.
361 */
362static inline int test_time_stamp(u64 delta)
363{
364 if (delta & TS_DELTA_TEST)
365 return 1;
366 return 0;
367}
368
474d32b6 369#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 370
be957c44
SR
371/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
372#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
373
d1b182a8
SR
374int ring_buffer_print_page_header(struct trace_seq *s)
375{
376 struct buffer_data_page field;
c0cd93aa
SRRH
377
378 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
379 "offset:0;\tsize:%u;\tsigned:%u;\n",
380 (unsigned int)sizeof(field.time_stamp),
381 (unsigned int)is_signed_type(u64));
382
383 trace_seq_printf(s, "\tfield: local_t commit;\t"
384 "offset:%u;\tsize:%u;\tsigned:%u;\n",
385 (unsigned int)offsetof(typeof(field), commit),
386 (unsigned int)sizeof(field.commit),
387 (unsigned int)is_signed_type(long));
388
389 trace_seq_printf(s, "\tfield: int overwrite;\t"
390 "offset:%u;\tsize:%u;\tsigned:%u;\n",
391 (unsigned int)offsetof(typeof(field), commit),
392 1,
393 (unsigned int)is_signed_type(long));
394
395 trace_seq_printf(s, "\tfield: char data;\t"
396 "offset:%u;\tsize:%u;\tsigned:%u;\n",
397 (unsigned int)offsetof(typeof(field), data),
398 (unsigned int)BUF_PAGE_SIZE,
399 (unsigned int)is_signed_type(char));
400
401 return !trace_seq_has_overflowed(s);
d1b182a8
SR
402}
403
15693458
SRRH
404struct rb_irq_work {
405 struct irq_work work;
406 wait_queue_head_t waiters;
1e0d6714 407 wait_queue_head_t full_waiters;
15693458 408 bool waiters_pending;
1e0d6714
SRRH
409 bool full_waiters_pending;
410 bool wakeup_full;
15693458
SRRH
411};
412
fcc742ea
SRRH
413/*
414 * Structure to hold event state and handle nested events.
415 */
416struct rb_event_info {
417 u64 ts;
418 u64 delta;
58fbc3c6
SRV
419 u64 before;
420 u64 after;
fcc742ea
SRRH
421 unsigned long length;
422 struct buffer_page *tail_page;
423 int add_timestamp;
424};
425
a389d86f
SRV
426/*
427 * Used for the add_timestamp
428 * NONE
7c4b4a51
SRV
429 * EXTEND - wants a time extend
430 * ABSOLUTE - the buffer requests all events to have absolute time stamps
a389d86f
SRV
431 * FORCE - force a full time stamp.
432 */
433enum {
7c4b4a51
SRV
434 RB_ADD_STAMP_NONE = 0,
435 RB_ADD_STAMP_EXTEND = BIT(1),
436 RB_ADD_STAMP_ABSOLUTE = BIT(2),
437 RB_ADD_STAMP_FORCE = BIT(3)
a389d86f 438};
a497adb4
SRRH
439/*
440 * Used for which event context the event is in.
b02414c8
SRV
441 * TRANSITION = 0
442 * NMI = 1
443 * IRQ = 2
444 * SOFTIRQ = 3
445 * NORMAL = 4
a497adb4
SRRH
446 *
447 * See trace_recursive_lock() comment below for more details.
448 */
449enum {
b02414c8 450 RB_CTX_TRANSITION,
a497adb4
SRRH
451 RB_CTX_NMI,
452 RB_CTX_IRQ,
453 RB_CTX_SOFTIRQ,
454 RB_CTX_NORMAL,
455 RB_CTX_MAX
456};
457
10464b4a
SRV
458#if BITS_PER_LONG == 32
459#define RB_TIME_32
460#endif
461
462/* To test on 64 bit machines */
463//#define RB_TIME_32
464
465#ifdef RB_TIME_32
466
467struct rb_time_struct {
468 local_t cnt;
469 local_t top;
470 local_t bottom;
471};
472#else
473#include <asm/local64.h>
474struct rb_time_struct {
475 local64_t time;
476};
477#endif
478typedef struct rb_time_struct rb_time_t;
479
8672e494
SRV
480#define MAX_NEST 5
481
7a8e76a3
SR
482/*
483 * head_page == tail_page && head == tail then buffer is empty.
484 */
485struct ring_buffer_per_cpu {
486 int cpu;
985023de 487 atomic_t record_disabled;
07b8b10e 488 atomic_t resize_disabled;
13292494 489 struct trace_buffer *buffer;
5389f6fa 490 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 491 arch_spinlock_t lock;
7a8e76a3 492 struct lock_class_key lock_key;
73a757e6 493 struct buffer_data_page *free_page;
9b94a8fb 494 unsigned long nr_pages;
58a09ec6 495 unsigned int current_context;
3adc54fa 496 struct list_head *pages;
6f807acd
SR
497 struct buffer_page *head_page; /* read from head */
498 struct buffer_page *tail_page; /* write to tail */
c3706f00 499 struct buffer_page *commit_page; /* committed pages */
d769041f 500 struct buffer_page *reader_page;
66a8cb95
SR
501 unsigned long lost_events;
502 unsigned long last_overrun;
8e012066 503 unsigned long nest;
c64e148a 504 local_t entries_bytes;
e4906eff 505 local_t entries;
884bfe89
SP
506 local_t overrun;
507 local_t commit_overrun;
508 local_t dropped_events;
fa743953
SR
509 local_t committing;
510 local_t commits;
2c2b0a78
SRV
511 local_t pages_touched;
512 local_t pages_read;
03329f99 513 long last_pages_touch;
2c2b0a78 514 size_t shortest_full;
77ae365e 515 unsigned long read;
c64e148a 516 unsigned long read_bytes;
10464b4a
SRV
517 rb_time_t write_stamp;
518 rb_time_t before_stamp;
8672e494 519 u64 event_stamp[MAX_NEST];
7a8e76a3 520 u64 read_stamp;
438ced17 521 /* ring buffer pages to update, > 0 to add, < 0 to remove */
9b94a8fb 522 long nr_pages_to_update;
438ced17 523 struct list_head new_pages; /* new pages to add */
83f40318 524 struct work_struct update_pages_work;
05fdd70d 525 struct completion update_done;
15693458
SRRH
526
527 struct rb_irq_work irq_work;
7a8e76a3
SR
528};
529
13292494 530struct trace_buffer {
7a8e76a3
SR
531 unsigned flags;
532 int cpus;
7a8e76a3 533 atomic_t record_disabled;
00f62f61 534 cpumask_var_t cpumask;
7a8e76a3 535
1f8a6a10
PZ
536 struct lock_class_key *reader_lock_key;
537
7a8e76a3
SR
538 struct mutex mutex;
539
540 struct ring_buffer_per_cpu **buffers;
554f786e 541
b32614c0 542 struct hlist_node node;
37886f6a 543 u64 (*clock)(void);
15693458
SRRH
544
545 struct rb_irq_work irq_work;
00b41452 546 bool time_stamp_abs;
7a8e76a3
SR
547};
548
549struct ring_buffer_iter {
550 struct ring_buffer_per_cpu *cpu_buffer;
551 unsigned long head;
785888c5 552 unsigned long next_event;
7a8e76a3 553 struct buffer_page *head_page;
492a74f4
SR
554 struct buffer_page *cache_reader_page;
555 unsigned long cache_read;
7a8e76a3 556 u64 read_stamp;
28e3fc56 557 u64 page_stamp;
785888c5 558 struct ring_buffer_event *event;
c9b7a4a7 559 int missed_events;
7a8e76a3
SR
560};
561
10464b4a
SRV
562#ifdef RB_TIME_32
563
564/*
565 * On 32 bit machines, local64_t is very expensive. As the ring
566 * buffer doesn't need all the features of a true 64 bit atomic,
567 * on 32 bit, it uses these functions (64 still uses local64_t).
568 *
569 * For the ring buffer, 64 bit required operations for the time is
570 * the following:
571 *
572 * - Only need 59 bits (uses 60 to make it even).
573 * - Reads may fail if it interrupted a modification of the time stamp.
574 * It will succeed if it did not interrupt another write even if
575 * the read itself is interrupted by a write.
576 * It returns whether it was successful or not.
577 *
578 * - Writes always succeed and will overwrite other writes and writes
579 * that were done by events interrupting the current write.
580 *
581 * - A write followed by a read of the same time stamp will always succeed,
582 * but may not contain the same value.
583 *
584 * - A cmpxchg will fail if it interrupted another write or cmpxchg.
585 * Other than that, it acts like a normal cmpxchg.
586 *
587 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
588 * (bottom being the least significant 30 bits of the 60 bit time stamp).
589 *
590 * The two most significant bits of each half holds a 2 bit counter (0-3).
591 * Each update will increment this counter by one.
592 * When reading the top and bottom, if the two counter bits match then the
593 * top and bottom together make a valid 60 bit number.
594 */
595#define RB_TIME_SHIFT 30
596#define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
597
598static inline int rb_time_cnt(unsigned long val)
599{
600 return (val >> RB_TIME_SHIFT) & 3;
601}
602
603static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
604{
605 u64 val;
606
607 val = top & RB_TIME_VAL_MASK;
608 val <<= RB_TIME_SHIFT;
609 val |= bottom & RB_TIME_VAL_MASK;
610
611 return val;
612}
613
614static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
615{
616 unsigned long top, bottom;
617 unsigned long c;
618
619 /*
620 * If the read is interrupted by a write, then the cnt will
621 * be different. Loop until both top and bottom have been read
622 * without interruption.
623 */
624 do {
625 c = local_read(&t->cnt);
626 top = local_read(&t->top);
627 bottom = local_read(&t->bottom);
628 } while (c != local_read(&t->cnt));
629
630 *cnt = rb_time_cnt(top);
631
632 /* If top and bottom counts don't match, this interrupted a write */
633 if (*cnt != rb_time_cnt(bottom))
634 return false;
635
636 *ret = rb_time_val(top, bottom);
637 return true;
638}
639
640static bool rb_time_read(rb_time_t *t, u64 *ret)
641{
642 unsigned long cnt;
643
644 return __rb_time_read(t, ret, &cnt);
645}
646
647static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
648{
649 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
650}
651
652static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom)
653{
654 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
655 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
656}
657
658static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
659{
660 val = rb_time_val_cnt(val, cnt);
661 local_set(t, val);
662}
663
664static void rb_time_set(rb_time_t *t, u64 val)
665{
666 unsigned long cnt, top, bottom;
667
668 rb_time_split(val, &top, &bottom);
669
670 /* Writes always succeed with a valid number even if it gets interrupted. */
671 do {
672 cnt = local_inc_return(&t->cnt);
673 rb_time_val_set(&t->top, top, cnt);
674 rb_time_val_set(&t->bottom, bottom, cnt);
675 } while (cnt != local_read(&t->cnt));
676}
677
678static inline bool
679rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
680{
681 unsigned long ret;
682
683 ret = local_cmpxchg(l, expect, set);
684 return ret == expect;
685}
686
687static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
688{
689 unsigned long cnt, top, bottom;
690 unsigned long cnt2, top2, bottom2;
691 u64 val;
692
693 /* The cmpxchg always fails if it interrupted an update */
694 if (!__rb_time_read(t, &val, &cnt2))
695 return false;
696
697 if (val != expect)
698 return false;
699
700 cnt = local_read(&t->cnt);
701 if ((cnt & 3) != cnt2)
702 return false;
703
704 cnt2 = cnt + 1;
705
706 rb_time_split(val, &top, &bottom);
707 top = rb_time_val_cnt(top, cnt);
708 bottom = rb_time_val_cnt(bottom, cnt);
709
710 rb_time_split(set, &top2, &bottom2);
711 top2 = rb_time_val_cnt(top2, cnt2);
712 bottom2 = rb_time_val_cnt(bottom2, cnt2);
713
714 if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
715 return false;
716 if (!rb_time_read_cmpxchg(&t->top, top, top2))
717 return false;
718 if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
719 return false;
720 return true;
721}
722
723#else /* 64 bits */
724
725/* local64_t always succeeds */
726
727static inline bool rb_time_read(rb_time_t *t, u64 *ret)
728{
729 *ret = local64_read(&t->time);
730 return true;
731}
732static void rb_time_set(rb_time_t *t, u64 val)
733{
734 local64_set(&t->time, val);
735}
736
737static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
738{
739 u64 val;
740 val = local64_cmpxchg(&t->time, expect, set);
741 return val == expect;
742}
743#endif
744
efe6196a
SRV
745static inline u64 rb_time_stamp(struct trace_buffer *buffer);
746
747/**
748 * ring_buffer_event_time_stamp - return the event's current time stamp
749 * @buffer: The buffer that the event is on
750 * @event: the event to get the time stamp of
751 *
752 * Note, this must be called after @event is reserved, and before it is
753 * committed to the ring buffer. And must be called from the same
754 * context where the event was reserved (normal, softirq, irq, etc).
755 *
756 * Returns the time stamp associated with the current event.
757 * If the event has an extended time stamp, then that is used as
758 * the time stamp to return.
759 * In the highly unlikely case that the event was nested more than
760 * the max nesting, then the write_stamp of the buffer is returned,
761 * otherwise current time is returned, but that really neither of
762 * the last two cases should ever happen.
763 */
764u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
765 struct ring_buffer_event *event)
766{
767 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
768 unsigned int nest;
769 u64 ts;
770
771 /* If the event includes an absolute time, then just use that */
772 if (event->type_len == RINGBUF_TYPE_TIME_STAMP)
773 return rb_event_time_stamp(event);
774
775 /* Read the current saved nesting level time stamp */
776 nest = local_read(&cpu_buffer->committing) - 1;
777 if (likely(nest < MAX_NEST))
778 return cpu_buffer->event_stamp[nest];
779
780 WARN_ON_ONCE(1);
781
782 /* Can only fail on 32 bit */
783 if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
784 /* Screw it, just read the current time */
785 ts = rb_time_stamp(cpu_buffer->buffer);
786
787 return ts;
788}
789
2c2b0a78
SRV
790/**
791 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
792 * @buffer: The ring_buffer to get the number of pages from
793 * @cpu: The cpu of the ring_buffer to get the number of pages from
794 *
795 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
796 */
13292494 797size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
2c2b0a78
SRV
798{
799 return buffer->buffers[cpu]->nr_pages;
800}
801
802/**
803 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
804 * @buffer: The ring_buffer to get the number of pages from
805 * @cpu: The cpu of the ring_buffer to get the number of pages from
806 *
807 * Returns the number of pages that have content in the ring buffer.
808 */
13292494 809size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
2c2b0a78
SRV
810{
811 size_t read;
812 size_t cnt;
813
814 read = local_read(&buffer->buffers[cpu]->pages_read);
815 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
816 /* The reader can read an empty page, but not more than that */
817 if (cnt < read) {
818 WARN_ON_ONCE(read > cnt + 1);
819 return 0;
820 }
821
822 return cnt - read;
823}
824
15693458
SRRH
825/*
826 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
827 *
828 * Schedules a delayed work to wake up any task that is blocked on the
829 * ring buffer waiters queue.
830 */
831static void rb_wake_up_waiters(struct irq_work *work)
832{
833 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
834
835 wake_up_all(&rbwork->waiters);
1e0d6714
SRRH
836 if (rbwork->wakeup_full) {
837 rbwork->wakeup_full = false;
838 wake_up_all(&rbwork->full_waiters);
839 }
15693458
SRRH
840}
841
842/**
843 * ring_buffer_wait - wait for input to the ring buffer
844 * @buffer: buffer to wait on
845 * @cpu: the cpu buffer to wait on
e1981f75 846 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
15693458
SRRH
847 *
848 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
849 * as data is added to any of the @buffer's cpu buffers. Otherwise
850 * it will wait for data to be added to a specific cpu buffer.
851 */
13292494 852int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
15693458 853{
3f649ab7 854 struct ring_buffer_per_cpu *cpu_buffer;
15693458
SRRH
855 DEFINE_WAIT(wait);
856 struct rb_irq_work *work;
e30f53aa 857 int ret = 0;
15693458
SRRH
858
859 /*
860 * Depending on what the caller is waiting for, either any
861 * data in any cpu buffer, or a specific buffer, put the
862 * caller on the appropriate wait queue.
863 */
1e0d6714 864 if (cpu == RING_BUFFER_ALL_CPUS) {
15693458 865 work = &buffer->irq_work;
1e0d6714 866 /* Full only makes sense on per cpu reads */
2c2b0a78 867 full = 0;
1e0d6714 868 } else {
8b8b3683
SRRH
869 if (!cpumask_test_cpu(cpu, buffer->cpumask))
870 return -ENODEV;
15693458
SRRH
871 cpu_buffer = buffer->buffers[cpu];
872 work = &cpu_buffer->irq_work;
873 }
874
875
e30f53aa 876 while (true) {
1e0d6714
SRRH
877 if (full)
878 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
879 else
880 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
e30f53aa
RV
881
882 /*
883 * The events can happen in critical sections where
884 * checking a work queue can cause deadlocks.
885 * After adding a task to the queue, this flag is set
886 * only to notify events to try to wake up the queue
887 * using irq_work.
888 *
889 * We don't clear it even if the buffer is no longer
890 * empty. The flag only causes the next event to run
891 * irq_work to do the work queue wake up. The worse
892 * that can happen if we race with !trace_empty() is that
893 * an event will cause an irq_work to try to wake up
894 * an empty queue.
895 *
896 * There's no reason to protect this flag either, as
897 * the work queue and irq_work logic will do the necessary
898 * synchronization for the wake ups. The only thing
899 * that is necessary is that the wake up happens after
900 * a task has been queued. It's OK for spurious wake ups.
901 */
1e0d6714
SRRH
902 if (full)
903 work->full_waiters_pending = true;
904 else
905 work->waiters_pending = true;
e30f53aa
RV
906
907 if (signal_pending(current)) {
908 ret = -EINTR;
909 break;
910 }
911
912 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
913 break;
914
915 if (cpu != RING_BUFFER_ALL_CPUS &&
916 !ring_buffer_empty_cpu(buffer, cpu)) {
917 unsigned long flags;
918 bool pagebusy;
2c2b0a78
SRV
919 size_t nr_pages;
920 size_t dirty;
e30f53aa
RV
921
922 if (!full)
923 break;
924
925 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
926 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2c2b0a78
SRV
927 nr_pages = cpu_buffer->nr_pages;
928 dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
929 if (!cpu_buffer->shortest_full ||
930 cpu_buffer->shortest_full < full)
931 cpu_buffer->shortest_full = full;
e30f53aa 932 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2c2b0a78
SRV
933 if (!pagebusy &&
934 (!nr_pages || (dirty * 100) > full * nr_pages))
e30f53aa
RV
935 break;
936 }
15693458 937
15693458 938 schedule();
e30f53aa 939 }
15693458 940
1e0d6714
SRRH
941 if (full)
942 finish_wait(&work->full_waiters, &wait);
943 else
944 finish_wait(&work->waiters, &wait);
e30f53aa
RV
945
946 return ret;
15693458
SRRH
947}
948
949/**
950 * ring_buffer_poll_wait - poll on buffer input
951 * @buffer: buffer to wait on
952 * @cpu: the cpu buffer to wait on
953 * @filp: the file descriptor
954 * @poll_table: The poll descriptor
955 *
956 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
957 * as data is added to any of the @buffer's cpu buffers. Otherwise
958 * it will wait for data to be added to a specific cpu buffer.
959 *
a9a08845 960 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
15693458
SRRH
961 * zero otherwise.
962 */
13292494 963__poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
15693458
SRRH
964 struct file *filp, poll_table *poll_table)
965{
966 struct ring_buffer_per_cpu *cpu_buffer;
967 struct rb_irq_work *work;
968
15693458
SRRH
969 if (cpu == RING_BUFFER_ALL_CPUS)
970 work = &buffer->irq_work;
971 else {
6721cb60
SRRH
972 if (!cpumask_test_cpu(cpu, buffer->cpumask))
973 return -EINVAL;
974
15693458
SRRH
975 cpu_buffer = buffer->buffers[cpu];
976 work = &cpu_buffer->irq_work;
977 }
978
15693458 979 poll_wait(filp, &work->waiters, poll_table);
4ce97dbf
JB
980 work->waiters_pending = true;
981 /*
982 * There's a tight race between setting the waiters_pending and
983 * checking if the ring buffer is empty. Once the waiters_pending bit
984 * is set, the next event will wake the task up, but we can get stuck
985 * if there's only a single event in.
986 *
987 * FIXME: Ideally, we need a memory barrier on the writer side as well,
988 * but adding a memory barrier to all events will cause too much of a
989 * performance hit in the fast path. We only need a memory barrier when
990 * the buffer goes from empty to having content. But as this race is
991 * extremely small, and it's not a problem if another event comes in, we
992 * will fix it later.
993 */
994 smp_mb();
15693458
SRRH
995
996 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
997 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
a9a08845 998 return EPOLLIN | EPOLLRDNORM;
15693458
SRRH
999 return 0;
1000}
1001
f536aafc 1002/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
1003#define RB_WARN_ON(b, cond) \
1004 ({ \
1005 int _____ret = unlikely(cond); \
1006 if (_____ret) { \
1007 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1008 struct ring_buffer_per_cpu *__b = \
1009 (void *)b; \
1010 atomic_inc(&__b->buffer->record_disabled); \
1011 } else \
1012 atomic_inc(&b->record_disabled); \
1013 WARN_ON(1); \
1014 } \
1015 _____ret; \
3e89c7bb 1016 })
f536aafc 1017
37886f6a
SR
1018/* Up this if you want to test the TIME_EXTENTS and normalization */
1019#define DEBUG_SHIFT 0
1020
13292494 1021static inline u64 rb_time_stamp(struct trace_buffer *buffer)
88eb0125 1022{
bbeba3e5
SRV
1023 u64 ts;
1024
1025 /* Skip retpolines :-( */
1026 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1027 ts = trace_clock_local();
1028 else
1029 ts = buffer->clock();
1030
88eb0125 1031 /* shift to debug/test normalization and TIME_EXTENTS */
bbeba3e5 1032 return ts << DEBUG_SHIFT;
88eb0125
SR
1033}
1034
13292494 1035u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
37886f6a
SR
1036{
1037 u64 time;
1038
1039 preempt_disable_notrace();
6d3f1e12 1040 time = rb_time_stamp(buffer);
d6097c9e 1041 preempt_enable_notrace();
37886f6a
SR
1042
1043 return time;
1044}
1045EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1046
13292494 1047void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
37886f6a
SR
1048 int cpu, u64 *ts)
1049{
1050 /* Just stupid testing the normalize function and deltas */
1051 *ts >>= DEBUG_SHIFT;
1052}
1053EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1054
77ae365e
SR
1055/*
1056 * Making the ring buffer lockless makes things tricky.
1057 * Although writes only happen on the CPU that they are on,
1058 * and they only need to worry about interrupts. Reads can
1059 * happen on any CPU.
1060 *
1061 * The reader page is always off the ring buffer, but when the
1062 * reader finishes with a page, it needs to swap its page with
1063 * a new one from the buffer. The reader needs to take from
1064 * the head (writes go to the tail). But if a writer is in overwrite
1065 * mode and wraps, it must push the head page forward.
1066 *
1067 * Here lies the problem.
1068 *
1069 * The reader must be careful to replace only the head page, and
1070 * not another one. As described at the top of the file in the
1071 * ASCII art, the reader sets its old page to point to the next
1072 * page after head. It then sets the page after head to point to
1073 * the old reader page. But if the writer moves the head page
1074 * during this operation, the reader could end up with the tail.
1075 *
1076 * We use cmpxchg to help prevent this race. We also do something
1077 * special with the page before head. We set the LSB to 1.
1078 *
1079 * When the writer must push the page forward, it will clear the
1080 * bit that points to the head page, move the head, and then set
1081 * the bit that points to the new head page.
1082 *
1083 * We also don't want an interrupt coming in and moving the head
1084 * page on another writer. Thus we use the second LSB to catch
1085 * that too. Thus:
1086 *
1087 * head->list->prev->next bit 1 bit 0
1088 * ------- -------
1089 * Normal page 0 0
1090 * Points to head page 0 1
1091 * New head page 1 0
1092 *
1093 * Note we can not trust the prev pointer of the head page, because:
1094 *
1095 * +----+ +-----+ +-----+
1096 * | |------>| T |---X--->| N |
1097 * | |<------| | | |
1098 * +----+ +-----+ +-----+
1099 * ^ ^ |
1100 * | +-----+ | |
1101 * +----------| R |----------+ |
1102 * | |<-----------+
1103 * +-----+
1104 *
1105 * Key: ---X--> HEAD flag set in pointer
1106 * T Tail page
1107 * R Reader page
1108 * N Next page
1109 *
1110 * (see __rb_reserve_next() to see where this happens)
1111 *
1112 * What the above shows is that the reader just swapped out
1113 * the reader page with a page in the buffer, but before it
1114 * could make the new header point back to the new page added
1115 * it was preempted by a writer. The writer moved forward onto
1116 * the new page added by the reader and is about to move forward
1117 * again.
1118 *
1119 * You can see, it is legitimate for the previous pointer of
1120 * the head (or any page) not to point back to itself. But only
6167c205 1121 * temporarily.
77ae365e
SR
1122 */
1123
1124#define RB_PAGE_NORMAL 0UL
1125#define RB_PAGE_HEAD 1UL
1126#define RB_PAGE_UPDATE 2UL
1127
1128
1129#define RB_FLAG_MASK 3UL
1130
1131/* PAGE_MOVED is not part of the mask */
1132#define RB_PAGE_MOVED 4UL
1133
1134/*
1135 * rb_list_head - remove any bit
1136 */
1137static struct list_head *rb_list_head(struct list_head *list)
1138{
1139 unsigned long val = (unsigned long)list;
1140
1141 return (struct list_head *)(val & ~RB_FLAG_MASK);
1142}
1143
1144/*
6d3f1e12 1145 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
1146 *
1147 * Because the reader may move the head_page pointer, we can
1148 * not trust what the head page is (it may be pointing to
1149 * the reader page). But if the next page is a header page,
1150 * its flags will be non zero.
1151 */
42b16b3f 1152static inline int
6689bed3 1153rb_is_head_page(struct buffer_page *page, struct list_head *list)
77ae365e
SR
1154{
1155 unsigned long val;
1156
1157 val = (unsigned long)list->next;
1158
1159 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1160 return RB_PAGE_MOVED;
1161
1162 return val & RB_FLAG_MASK;
1163}
1164
1165/*
1166 * rb_is_reader_page
1167 *
1168 * The unique thing about the reader page, is that, if the
1169 * writer is ever on it, the previous pointer never points
1170 * back to the reader page.
1171 */
06ca3209 1172static bool rb_is_reader_page(struct buffer_page *page)
77ae365e
SR
1173{
1174 struct list_head *list = page->list.prev;
1175
1176 return rb_list_head(list->next) != &page->list;
1177}
1178
1179/*
1180 * rb_set_list_to_head - set a list_head to be pointing to head.
1181 */
6689bed3 1182static void rb_set_list_to_head(struct list_head *list)
77ae365e
SR
1183{
1184 unsigned long *ptr;
1185
1186 ptr = (unsigned long *)&list->next;
1187 *ptr |= RB_PAGE_HEAD;
1188 *ptr &= ~RB_PAGE_UPDATE;
1189}
1190
1191/*
1192 * rb_head_page_activate - sets up head page
1193 */
1194static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1195{
1196 struct buffer_page *head;
1197
1198 head = cpu_buffer->head_page;
1199 if (!head)
1200 return;
1201
1202 /*
1203 * Set the previous list pointer to have the HEAD flag.
1204 */
6689bed3 1205 rb_set_list_to_head(head->list.prev);
77ae365e
SR
1206}
1207
1208static void rb_list_head_clear(struct list_head *list)
1209{
1210 unsigned long *ptr = (unsigned long *)&list->next;
1211
1212 *ptr &= ~RB_FLAG_MASK;
1213}
1214
1215/*
6167c205 1216 * rb_head_page_deactivate - clears head page ptr (for free list)
77ae365e
SR
1217 */
1218static void
1219rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1220{
1221 struct list_head *hd;
1222
1223 /* Go through the whole list and clear any pointers found. */
1224 rb_list_head_clear(cpu_buffer->pages);
1225
1226 list_for_each(hd, cpu_buffer->pages)
1227 rb_list_head_clear(hd);
1228}
1229
1230static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1231 struct buffer_page *head,
1232 struct buffer_page *prev,
1233 int old_flag, int new_flag)
1234{
1235 struct list_head *list;
1236 unsigned long val = (unsigned long)&head->list;
1237 unsigned long ret;
1238
1239 list = &prev->list;
1240
1241 val &= ~RB_FLAG_MASK;
1242
08a40816
SR
1243 ret = cmpxchg((unsigned long *)&list->next,
1244 val | old_flag, val | new_flag);
77ae365e
SR
1245
1246 /* check if the reader took the page */
1247 if ((ret & ~RB_FLAG_MASK) != val)
1248 return RB_PAGE_MOVED;
1249
1250 return ret & RB_FLAG_MASK;
1251}
1252
1253static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1254 struct buffer_page *head,
1255 struct buffer_page *prev,
1256 int old_flag)
1257{
1258 return rb_head_page_set(cpu_buffer, head, prev,
1259 old_flag, RB_PAGE_UPDATE);
1260}
1261
1262static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1263 struct buffer_page *head,
1264 struct buffer_page *prev,
1265 int old_flag)
1266{
1267 return rb_head_page_set(cpu_buffer, head, prev,
1268 old_flag, RB_PAGE_HEAD);
1269}
1270
1271static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1272 struct buffer_page *head,
1273 struct buffer_page *prev,
1274 int old_flag)
1275{
1276 return rb_head_page_set(cpu_buffer, head, prev,
1277 old_flag, RB_PAGE_NORMAL);
1278}
1279
6689bed3 1280static inline void rb_inc_page(struct buffer_page **bpage)
77ae365e
SR
1281{
1282 struct list_head *p = rb_list_head((*bpage)->list.next);
1283
1284 *bpage = list_entry(p, struct buffer_page, list);
1285}
1286
1287static struct buffer_page *
1288rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1289{
1290 struct buffer_page *head;
1291 struct buffer_page *page;
1292 struct list_head *list;
1293 int i;
1294
1295 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1296 return NULL;
1297
1298 /* sanity check */
1299 list = cpu_buffer->pages;
1300 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1301 return NULL;
1302
1303 page = head = cpu_buffer->head_page;
1304 /*
1305 * It is possible that the writer moves the header behind
1306 * where we started, and we miss in one loop.
1307 * A second loop should grab the header, but we'll do
1308 * three loops just because I'm paranoid.
1309 */
1310 for (i = 0; i < 3; i++) {
1311 do {
6689bed3 1312 if (rb_is_head_page(page, page->list.prev)) {
77ae365e
SR
1313 cpu_buffer->head_page = page;
1314 return page;
1315 }
6689bed3 1316 rb_inc_page(&page);
77ae365e
SR
1317 } while (page != head);
1318 }
1319
1320 RB_WARN_ON(cpu_buffer, 1);
1321
1322 return NULL;
1323}
1324
1325static int rb_head_page_replace(struct buffer_page *old,
1326 struct buffer_page *new)
1327{
1328 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1329 unsigned long val;
1330 unsigned long ret;
1331
1332 val = *ptr & ~RB_FLAG_MASK;
1333 val |= RB_PAGE_HEAD;
1334
08a40816 1335 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
1336
1337 return ret == val;
1338}
1339
1340/*
1341 * rb_tail_page_update - move the tail page forward
77ae365e 1342 */
70004986 1343static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
77ae365e
SR
1344 struct buffer_page *tail_page,
1345 struct buffer_page *next_page)
1346{
77ae365e
SR
1347 unsigned long old_entries;
1348 unsigned long old_write;
77ae365e
SR
1349
1350 /*
1351 * The tail page now needs to be moved forward.
1352 *
1353 * We need to reset the tail page, but without messing
1354 * with possible erasing of data brought in by interrupts
1355 * that have moved the tail page and are currently on it.
1356 *
1357 * We add a counter to the write field to denote this.
1358 */
1359 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1360 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1361
2c2b0a78 1362 local_inc(&cpu_buffer->pages_touched);
77ae365e
SR
1363 /*
1364 * Just make sure we have seen our old_write and synchronize
1365 * with any interrupts that come in.
1366 */
1367 barrier();
1368
1369 /*
1370 * If the tail page is still the same as what we think
1371 * it is, then it is up to us to update the tail
1372 * pointer.
1373 */
8573636e 1374 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
77ae365e
SR
1375 /* Zero the write counter */
1376 unsigned long val = old_write & ~RB_WRITE_MASK;
1377 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1378
1379 /*
1380 * This will only succeed if an interrupt did
1381 * not come in and change it. In which case, we
1382 * do not want to modify it.
da706d8b
LJ
1383 *
1384 * We add (void) to let the compiler know that we do not care
1385 * about the return value of these functions. We use the
1386 * cmpxchg to only update if an interrupt did not already
1387 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1388 */
da706d8b
LJ
1389 (void)local_cmpxchg(&next_page->write, old_write, val);
1390 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1391
1392 /*
1393 * No need to worry about races with clearing out the commit.
1394 * it only can increment when a commit takes place. But that
1395 * only happens in the outer most nested commit.
1396 */
1397 local_set(&next_page->page->commit, 0);
1398
70004986
SRRH
1399 /* Again, either we update tail_page or an interrupt does */
1400 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
77ae365e 1401 }
77ae365e
SR
1402}
1403
1404static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1405 struct buffer_page *bpage)
1406{
1407 unsigned long val = (unsigned long)bpage;
1408
1409 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1410 return 1;
1411
1412 return 0;
1413}
1414
1415/**
1416 * rb_check_list - make sure a pointer to a list has the last bits zero
1417 */
1418static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1419 struct list_head *list)
1420{
1421 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1422 return 1;
1423 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1424 return 1;
1425 return 0;
1426}
1427
7a8e76a3 1428/**
d611851b 1429 * rb_check_pages - integrity check of buffer pages
7a8e76a3
SR
1430 * @cpu_buffer: CPU buffer with pages to test
1431 *
c3706f00 1432 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1433 * been corrupted.
1434 */
1435static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1436{
3adc54fa 1437 struct list_head *head = cpu_buffer->pages;
044fa782 1438 struct buffer_page *bpage, *tmp;
7a8e76a3 1439
308f7eeb
SR
1440 /* Reset the head page if it exists */
1441 if (cpu_buffer->head_page)
1442 rb_set_head_page(cpu_buffer);
1443
77ae365e
SR
1444 rb_head_page_deactivate(cpu_buffer);
1445
3e89c7bb
SR
1446 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1447 return -1;
1448 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1449 return -1;
7a8e76a3 1450
77ae365e
SR
1451 if (rb_check_list(cpu_buffer, head))
1452 return -1;
1453
044fa782 1454 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1455 if (RB_WARN_ON(cpu_buffer,
044fa782 1456 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1457 return -1;
1458 if (RB_WARN_ON(cpu_buffer,
044fa782 1459 bpage->list.prev->next != &bpage->list))
3e89c7bb 1460 return -1;
77ae365e
SR
1461 if (rb_check_list(cpu_buffer, &bpage->list))
1462 return -1;
7a8e76a3
SR
1463 }
1464
77ae365e
SR
1465 rb_head_page_activate(cpu_buffer);
1466
7a8e76a3
SR
1467 return 0;
1468}
1469
74e2afc6
QH
1470static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1471 long nr_pages, struct list_head *pages)
7a8e76a3 1472{
044fa782 1473 struct buffer_page *bpage, *tmp;
927e56db
SRV
1474 bool user_thread = current->mm != NULL;
1475 gfp_t mflags;
9b94a8fb 1476 long i;
3adc54fa 1477
927e56db
SRV
1478 /*
1479 * Check if the available memory is there first.
1480 * Note, si_mem_available() only gives us a rough estimate of available
1481 * memory. It may not be accurate. But we don't care, we just want
1482 * to prevent doing any allocation when it is obvious that it is
1483 * not going to succeed.
1484 */
2a872fa4
SRV
1485 i = si_mem_available();
1486 if (i < nr_pages)
1487 return -ENOMEM;
1488
927e56db
SRV
1489 /*
1490 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1491 * gracefully without invoking oom-killer and the system is not
1492 * destabilized.
1493 */
1494 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1495
1496 /*
1497 * If a user thread allocates too much, and si_mem_available()
1498 * reports there's enough memory, even though there is not.
1499 * Make sure the OOM killer kills this thread. This can happen
1500 * even with RETRY_MAYFAIL because another task may be doing
1501 * an allocation after this task has taken all memory.
1502 * This is the task the OOM killer needs to take out during this
1503 * loop, even if it was triggered by an allocation somewhere else.
1504 */
1505 if (user_thread)
1506 set_current_oom_origin();
7a8e76a3 1507 for (i = 0; i < nr_pages; i++) {
7ea59064 1508 struct page *page;
927e56db 1509
044fa782 1510 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
74e2afc6 1511 mflags, cpu_to_node(cpu_buffer->cpu));
044fa782 1512 if (!bpage)
e4c2ce82 1513 goto free_pages;
77ae365e 1514
74e2afc6
QH
1515 rb_check_bpage(cpu_buffer, bpage);
1516
438ced17 1517 list_add(&bpage->list, pages);
77ae365e 1518
74e2afc6 1519 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
7ea59064 1520 if (!page)
7a8e76a3 1521 goto free_pages;
7ea59064 1522 bpage->page = page_address(page);
044fa782 1523 rb_init_page(bpage->page);
927e56db
SRV
1524
1525 if (user_thread && fatal_signal_pending(current))
1526 goto free_pages;
7a8e76a3 1527 }
927e56db
SRV
1528 if (user_thread)
1529 clear_current_oom_origin();
7a8e76a3 1530
438ced17
VN
1531 return 0;
1532
1533free_pages:
1534 list_for_each_entry_safe(bpage, tmp, pages, list) {
1535 list_del_init(&bpage->list);
1536 free_buffer_page(bpage);
1537 }
927e56db
SRV
1538 if (user_thread)
1539 clear_current_oom_origin();
438ced17
VN
1540
1541 return -ENOMEM;
1542}
1543
1544static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
9b94a8fb 1545 unsigned long nr_pages)
438ced17
VN
1546{
1547 LIST_HEAD(pages);
1548
1549 WARN_ON(!nr_pages);
1550
74e2afc6 1551 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
438ced17
VN
1552 return -ENOMEM;
1553
3adc54fa
SR
1554 /*
1555 * The ring buffer page list is a circular list that does not
1556 * start and end with a list head. All page list items point to
1557 * other pages.
1558 */
1559 cpu_buffer->pages = pages.next;
1560 list_del(&pages);
7a8e76a3 1561
438ced17
VN
1562 cpu_buffer->nr_pages = nr_pages;
1563
7a8e76a3
SR
1564 rb_check_pages(cpu_buffer);
1565
1566 return 0;
7a8e76a3
SR
1567}
1568
1569static struct ring_buffer_per_cpu *
13292494 1570rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
7a8e76a3
SR
1571{
1572 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1573 struct buffer_page *bpage;
7ea59064 1574 struct page *page;
7a8e76a3
SR
1575 int ret;
1576
1577 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1578 GFP_KERNEL, cpu_to_node(cpu));
1579 if (!cpu_buffer)
1580 return NULL;
1581
1582 cpu_buffer->cpu = cpu;
1583 cpu_buffer->buffer = buffer;
5389f6fa 1584 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1585 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1586 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1587 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1588 init_completion(&cpu_buffer->update_done);
15693458 1589 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1590 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1e0d6714 1591 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
7a8e76a3 1592
044fa782 1593 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1594 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1595 if (!bpage)
e4c2ce82
SR
1596 goto fail_free_buffer;
1597
77ae365e
SR
1598 rb_check_bpage(cpu_buffer, bpage);
1599
044fa782 1600 cpu_buffer->reader_page = bpage;
7ea59064
VN
1601 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1602 if (!page)
e4c2ce82 1603 goto fail_free_reader;
7ea59064 1604 bpage->page = page_address(page);
044fa782 1605 rb_init_page(bpage->page);
e4c2ce82 1606
d769041f 1607 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1608 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1609
438ced17 1610 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1611 if (ret < 0)
d769041f 1612 goto fail_free_reader;
7a8e76a3
SR
1613
1614 cpu_buffer->head_page
3adc54fa 1615 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1616 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1617
77ae365e
SR
1618 rb_head_page_activate(cpu_buffer);
1619
7a8e76a3
SR
1620 return cpu_buffer;
1621
d769041f
SR
1622 fail_free_reader:
1623 free_buffer_page(cpu_buffer->reader_page);
1624
7a8e76a3
SR
1625 fail_free_buffer:
1626 kfree(cpu_buffer);
1627 return NULL;
1628}
1629
1630static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1631{
3adc54fa 1632 struct list_head *head = cpu_buffer->pages;
044fa782 1633 struct buffer_page *bpage, *tmp;
7a8e76a3 1634
d769041f
SR
1635 free_buffer_page(cpu_buffer->reader_page);
1636
77ae365e
SR
1637 rb_head_page_deactivate(cpu_buffer);
1638
3adc54fa
SR
1639 if (head) {
1640 list_for_each_entry_safe(bpage, tmp, head, list) {
1641 list_del_init(&bpage->list);
1642 free_buffer_page(bpage);
1643 }
1644 bpage = list_entry(head, struct buffer_page, list);
044fa782 1645 free_buffer_page(bpage);
7a8e76a3 1646 }
3adc54fa 1647
7a8e76a3
SR
1648 kfree(cpu_buffer);
1649}
1650
1651/**
d611851b 1652 * __ring_buffer_alloc - allocate a new ring_buffer
68814b58 1653 * @size: the size in bytes per cpu that is needed.
7a8e76a3 1654 * @flags: attributes to set for the ring buffer.
59e7cffe 1655 * @key: ring buffer reader_lock_key.
7a8e76a3
SR
1656 *
1657 * Currently the only flag that is available is the RB_FL_OVERWRITE
1658 * flag. This flag means that the buffer will overwrite old data
1659 * when the buffer wraps. If this flag is not set, the buffer will
1660 * drop data when the tail hits the head.
1661 */
13292494 1662struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1f8a6a10 1663 struct lock_class_key *key)
7a8e76a3 1664{
13292494 1665 struct trace_buffer *buffer;
9b94a8fb 1666 long nr_pages;
7a8e76a3 1667 int bsize;
9b94a8fb 1668 int cpu;
b32614c0 1669 int ret;
7a8e76a3
SR
1670
1671 /* keep it in its own cache line */
1672 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1673 GFP_KERNEL);
1674 if (!buffer)
1675 return NULL;
1676
b18cc3de 1677 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
9e01c1b7
RR
1678 goto fail_free_buffer;
1679
438ced17 1680 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1681 buffer->flags = flags;
37886f6a 1682 buffer->clock = trace_clock_local;
1f8a6a10 1683 buffer->reader_lock_key = key;
7a8e76a3 1684
15693458 1685 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1686 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1687
7a8e76a3 1688 /* need at least two pages */
438ced17
VN
1689 if (nr_pages < 2)
1690 nr_pages = 2;
7a8e76a3 1691
7a8e76a3
SR
1692 buffer->cpus = nr_cpu_ids;
1693
1694 bsize = sizeof(void *) * nr_cpu_ids;
1695 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1696 GFP_KERNEL);
1697 if (!buffer->buffers)
9e01c1b7 1698 goto fail_free_cpumask;
7a8e76a3 1699
b32614c0
SAS
1700 cpu = raw_smp_processor_id();
1701 cpumask_set_cpu(cpu, buffer->cpumask);
1702 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1703 if (!buffer->buffers[cpu])
1704 goto fail_free_buffers;
7a8e76a3 1705
b32614c0
SAS
1706 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1707 if (ret < 0)
1708 goto fail_free_buffers;
554f786e 1709
7a8e76a3
SR
1710 mutex_init(&buffer->mutex);
1711
1712 return buffer;
1713
1714 fail_free_buffers:
1715 for_each_buffer_cpu(buffer, cpu) {
1716 if (buffer->buffers[cpu])
1717 rb_free_cpu_buffer(buffer->buffers[cpu]);
1718 }
1719 kfree(buffer->buffers);
1720
9e01c1b7
RR
1721 fail_free_cpumask:
1722 free_cpumask_var(buffer->cpumask);
1723
7a8e76a3
SR
1724 fail_free_buffer:
1725 kfree(buffer);
1726 return NULL;
1727}
1f8a6a10 1728EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1729
1730/**
1731 * ring_buffer_free - free a ring buffer.
1732 * @buffer: the buffer to free.
1733 */
1734void
13292494 1735ring_buffer_free(struct trace_buffer *buffer)
7a8e76a3
SR
1736{
1737 int cpu;
1738
b32614c0 1739 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
554f786e 1740
7a8e76a3
SR
1741 for_each_buffer_cpu(buffer, cpu)
1742 rb_free_cpu_buffer(buffer->buffers[cpu]);
1743
bd3f0221 1744 kfree(buffer->buffers);
9e01c1b7
RR
1745 free_cpumask_var(buffer->cpumask);
1746
7a8e76a3
SR
1747 kfree(buffer);
1748}
c4f50183 1749EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1750
13292494 1751void ring_buffer_set_clock(struct trace_buffer *buffer,
37886f6a
SR
1752 u64 (*clock)(void))
1753{
1754 buffer->clock = clock;
1755}
1756
13292494 1757void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
00b41452
TZ
1758{
1759 buffer->time_stamp_abs = abs;
1760}
1761
13292494 1762bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
00b41452
TZ
1763{
1764 return buffer->time_stamp_abs;
1765}
1766
7a8e76a3
SR
1767static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1768
83f40318
VN
1769static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1770{
1771 return local_read(&bpage->entries) & RB_WRITE_MASK;
1772}
1773
1774static inline unsigned long rb_page_write(struct buffer_page *bpage)
1775{
1776 return local_read(&bpage->write) & RB_WRITE_MASK;
1777}
1778
5040b4b7 1779static int
9b94a8fb 1780rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
7a8e76a3 1781{
83f40318
VN
1782 struct list_head *tail_page, *to_remove, *next_page;
1783 struct buffer_page *to_remove_page, *tmp_iter_page;
1784 struct buffer_page *last_page, *first_page;
9b94a8fb 1785 unsigned long nr_removed;
83f40318
VN
1786 unsigned long head_bit;
1787 int page_entries;
1788
1789 head_bit = 0;
7a8e76a3 1790
5389f6fa 1791 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1792 atomic_inc(&cpu_buffer->record_disabled);
1793 /*
1794 * We don't race with the readers since we have acquired the reader
1795 * lock. We also don't race with writers after disabling recording.
1796 * This makes it easy to figure out the first and the last page to be
1797 * removed from the list. We unlink all the pages in between including
1798 * the first and last pages. This is done in a busy loop so that we
1799 * lose the least number of traces.
1800 * The pages are freed after we restart recording and unlock readers.
1801 */
1802 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1803
83f40318
VN
1804 /*
1805 * tail page might be on reader page, we remove the next page
1806 * from the ring buffer
1807 */
1808 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1809 tail_page = rb_list_head(tail_page->next);
1810 to_remove = tail_page;
1811
1812 /* start of pages to remove */
1813 first_page = list_entry(rb_list_head(to_remove->next),
1814 struct buffer_page, list);
1815
1816 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1817 to_remove = rb_list_head(to_remove)->next;
1818 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1819 }
7a8e76a3 1820
83f40318 1821 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1822
83f40318
VN
1823 /*
1824 * Now we remove all pages between tail_page and next_page.
1825 * Make sure that we have head_bit value preserved for the
1826 * next page
1827 */
1828 tail_page->next = (struct list_head *)((unsigned long)next_page |
1829 head_bit);
1830 next_page = rb_list_head(next_page);
1831 next_page->prev = tail_page;
1832
1833 /* make sure pages points to a valid page in the ring buffer */
1834 cpu_buffer->pages = next_page;
1835
1836 /* update head page */
1837 if (head_bit)
1838 cpu_buffer->head_page = list_entry(next_page,
1839 struct buffer_page, list);
1840
1841 /*
1842 * change read pointer to make sure any read iterators reset
1843 * themselves
1844 */
1845 cpu_buffer->read = 0;
1846
1847 /* pages are removed, resume tracing and then free the pages */
1848 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1849 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1850
1851 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1852
1853 /* last buffer page to remove */
1854 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1855 list);
1856 tmp_iter_page = first_page;
1857
1858 do {
83f36555
VN
1859 cond_resched();
1860
83f40318 1861 to_remove_page = tmp_iter_page;
6689bed3 1862 rb_inc_page(&tmp_iter_page);
83f40318
VN
1863
1864 /* update the counters */
1865 page_entries = rb_page_entries(to_remove_page);
1866 if (page_entries) {
1867 /*
1868 * If something was added to this page, it was full
1869 * since it is not the tail page. So we deduct the
1870 * bytes consumed in ring buffer from here.
48fdc72f 1871 * Increment overrun to account for the lost events.
83f40318 1872 */
48fdc72f 1873 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1874 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1875 }
1876
1877 /*
1878 * We have already removed references to this list item, just
1879 * free up the buffer_page and its page
1880 */
1881 free_buffer_page(to_remove_page);
1882 nr_removed--;
1883
1884 } while (to_remove_page != last_page);
1885
1886 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1887
1888 return nr_removed == 0;
7a8e76a3
SR
1889}
1890
5040b4b7
VN
1891static int
1892rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1893{
5040b4b7
VN
1894 struct list_head *pages = &cpu_buffer->new_pages;
1895 int retries, success;
7a8e76a3 1896
5389f6fa 1897 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1898 /*
1899 * We are holding the reader lock, so the reader page won't be swapped
1900 * in the ring buffer. Now we are racing with the writer trying to
1901 * move head page and the tail page.
1902 * We are going to adapt the reader page update process where:
1903 * 1. We first splice the start and end of list of new pages between
1904 * the head page and its previous page.
1905 * 2. We cmpxchg the prev_page->next to point from head page to the
1906 * start of new pages list.
1907 * 3. Finally, we update the head->prev to the end of new list.
1908 *
1909 * We will try this process 10 times, to make sure that we don't keep
1910 * spinning.
1911 */
1912 retries = 10;
1913 success = 0;
1914 while (retries--) {
1915 struct list_head *head_page, *prev_page, *r;
1916 struct list_head *last_page, *first_page;
1917 struct list_head *head_page_with_bit;
77ae365e 1918
5040b4b7 1919 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1920 if (!head_page)
1921 break;
5040b4b7
VN
1922 prev_page = head_page->prev;
1923
1924 first_page = pages->next;
1925 last_page = pages->prev;
1926
1927 head_page_with_bit = (struct list_head *)
1928 ((unsigned long)head_page | RB_PAGE_HEAD);
1929
1930 last_page->next = head_page_with_bit;
1931 first_page->prev = prev_page;
1932
1933 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1934
1935 if (r == head_page_with_bit) {
1936 /*
1937 * yay, we replaced the page pointer to our new list,
1938 * now, we just have to update to head page's prev
1939 * pointer to point to end of list
1940 */
1941 head_page->prev = last_page;
1942 success = 1;
1943 break;
1944 }
7a8e76a3 1945 }
7a8e76a3 1946
5040b4b7
VN
1947 if (success)
1948 INIT_LIST_HEAD(pages);
1949 /*
1950 * If we weren't successful in adding in new pages, warn and stop
1951 * tracing
1952 */
1953 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1954 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1955
1956 /* free pages if they weren't inserted */
1957 if (!success) {
1958 struct buffer_page *bpage, *tmp;
1959 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1960 list) {
1961 list_del_init(&bpage->list);
1962 free_buffer_page(bpage);
1963 }
1964 }
1965 return success;
7a8e76a3
SR
1966}
1967
83f40318 1968static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1969{
5040b4b7
VN
1970 int success;
1971
438ced17 1972 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1973 success = rb_insert_pages(cpu_buffer);
438ced17 1974 else
5040b4b7
VN
1975 success = rb_remove_pages(cpu_buffer,
1976 -cpu_buffer->nr_pages_to_update);
83f40318 1977
5040b4b7
VN
1978 if (success)
1979 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1980}
1981
1982static void update_pages_handler(struct work_struct *work)
1983{
1984 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1985 struct ring_buffer_per_cpu, update_pages_work);
1986 rb_update_pages(cpu_buffer);
05fdd70d 1987 complete(&cpu_buffer->update_done);
438ced17
VN
1988}
1989
7a8e76a3
SR
1990/**
1991 * ring_buffer_resize - resize the ring buffer
1992 * @buffer: the buffer to resize.
1993 * @size: the new size.
d611851b 1994 * @cpu_id: the cpu buffer to resize
7a8e76a3 1995 *
7a8e76a3
SR
1996 * Minimum size is 2 * BUF_PAGE_SIZE.
1997 *
83f40318 1998 * Returns 0 on success and < 0 on failure.
7a8e76a3 1999 */
13292494 2000int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
438ced17 2001 int cpu_id)
7a8e76a3
SR
2002{
2003 struct ring_buffer_per_cpu *cpu_buffer;
9b94a8fb 2004 unsigned long nr_pages;
0a1754b2 2005 int cpu, err;
7a8e76a3 2006
ee51a1de
IM
2007 /*
2008 * Always succeed at resizing a non-existent buffer:
2009 */
2010 if (!buffer)
0a1754b2 2011 return 0;
ee51a1de 2012
6a31e1f1
SR
2013 /* Make sure the requested buffer exists */
2014 if (cpu_id != RING_BUFFER_ALL_CPUS &&
2015 !cpumask_test_cpu(cpu_id, buffer->cpumask))
0a1754b2 2016 return 0;
6a31e1f1 2017
59643d15 2018 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3
SR
2019
2020 /* we need a minimum of two pages */
59643d15
SRRH
2021 if (nr_pages < 2)
2022 nr_pages = 2;
7a8e76a3 2023
83f40318 2024 /* prevent another thread from changing buffer sizes */
7a8e76a3 2025 mutex_lock(&buffer->mutex);
7a8e76a3 2026
07b8b10e 2027
438ced17 2028 if (cpu_id == RING_BUFFER_ALL_CPUS) {
07b8b10e
SRV
2029 /*
2030 * Don't succeed if resizing is disabled, as a reader might be
2031 * manipulating the ring buffer and is expecting a sane state while
2032 * this is true.
2033 */
2034 for_each_buffer_cpu(buffer, cpu) {
2035 cpu_buffer = buffer->buffers[cpu];
2036 if (atomic_read(&cpu_buffer->resize_disabled)) {
2037 err = -EBUSY;
2038 goto out_err_unlock;
2039 }
2040 }
2041
438ced17 2042 /* calculate the pages to update */
7a8e76a3
SR
2043 for_each_buffer_cpu(buffer, cpu) {
2044 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 2045
438ced17
VN
2046 cpu_buffer->nr_pages_to_update = nr_pages -
2047 cpu_buffer->nr_pages;
438ced17
VN
2048 /*
2049 * nothing more to do for removing pages or no update
2050 */
2051 if (cpu_buffer->nr_pages_to_update <= 0)
2052 continue;
d7ec4bfe 2053 /*
438ced17
VN
2054 * to add pages, make sure all new pages can be
2055 * allocated without receiving ENOMEM
d7ec4bfe 2056 */
438ced17 2057 INIT_LIST_HEAD(&cpu_buffer->new_pages);
74e2afc6
QH
2058 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2059 &cpu_buffer->new_pages)) {
438ced17 2060 /* not enough memory for new pages */
83f40318
VN
2061 err = -ENOMEM;
2062 goto out_err;
2063 }
2064 }
2065
2066 get_online_cpus();
2067 /*
2068 * Fire off all the required work handlers
05fdd70d 2069 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
2070 * since we can change their buffer sizes without any race.
2071 */
2072 for_each_buffer_cpu(buffer, cpu) {
2073 cpu_buffer = buffer->buffers[cpu];
05fdd70d 2074 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
2075 continue;
2076
021c5b34
CM
2077 /* Can't run something on an offline CPU. */
2078 if (!cpu_online(cpu)) {
f5eb5588
SRRH
2079 rb_update_pages(cpu_buffer);
2080 cpu_buffer->nr_pages_to_update = 0;
2081 } else {
05fdd70d
VN
2082 schedule_work_on(cpu,
2083 &cpu_buffer->update_pages_work);
f5eb5588 2084 }
7a8e76a3 2085 }
7a8e76a3 2086
438ced17
VN
2087 /* wait for all the updates to complete */
2088 for_each_buffer_cpu(buffer, cpu) {
2089 cpu_buffer = buffer->buffers[cpu];
05fdd70d 2090 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
2091 continue;
2092
05fdd70d
VN
2093 if (cpu_online(cpu))
2094 wait_for_completion(&cpu_buffer->update_done);
83f40318 2095 cpu_buffer->nr_pages_to_update = 0;
438ced17 2096 }
83f40318
VN
2097
2098 put_online_cpus();
438ced17
VN
2099 } else {
2100 cpu_buffer = buffer->buffers[cpu_id];
83f40318 2101
438ced17
VN
2102 if (nr_pages == cpu_buffer->nr_pages)
2103 goto out;
7a8e76a3 2104
07b8b10e
SRV
2105 /*
2106 * Don't succeed if resizing is disabled, as a reader might be
2107 * manipulating the ring buffer and is expecting a sane state while
2108 * this is true.
2109 */
2110 if (atomic_read(&cpu_buffer->resize_disabled)) {
2111 err = -EBUSY;
2112 goto out_err_unlock;
2113 }
2114
438ced17
VN
2115 cpu_buffer->nr_pages_to_update = nr_pages -
2116 cpu_buffer->nr_pages;
2117
2118 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2119 if (cpu_buffer->nr_pages_to_update > 0 &&
74e2afc6
QH
2120 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2121 &cpu_buffer->new_pages)) {
83f40318
VN
2122 err = -ENOMEM;
2123 goto out_err;
2124 }
438ced17 2125
83f40318
VN
2126 get_online_cpus();
2127
021c5b34
CM
2128 /* Can't run something on an offline CPU. */
2129 if (!cpu_online(cpu_id))
f5eb5588
SRRH
2130 rb_update_pages(cpu_buffer);
2131 else {
83f40318
VN
2132 schedule_work_on(cpu_id,
2133 &cpu_buffer->update_pages_work);
05fdd70d 2134 wait_for_completion(&cpu_buffer->update_done);
f5eb5588 2135 }
83f40318 2136
83f40318 2137 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 2138 put_online_cpus();
438ced17 2139 }
7a8e76a3
SR
2140
2141 out:
659f451f
SR
2142 /*
2143 * The ring buffer resize can happen with the ring buffer
2144 * enabled, so that the update disturbs the tracing as little
2145 * as possible. But if the buffer is disabled, we do not need
2146 * to worry about that, and we can take the time to verify
2147 * that the buffer is not corrupt.
2148 */
2149 if (atomic_read(&buffer->record_disabled)) {
2150 atomic_inc(&buffer->record_disabled);
2151 /*
2152 * Even though the buffer was disabled, we must make sure
2153 * that it is truly disabled before calling rb_check_pages.
2154 * There could have been a race between checking
2155 * record_disable and incrementing it.
2156 */
74401729 2157 synchronize_rcu();
659f451f
SR
2158 for_each_buffer_cpu(buffer, cpu) {
2159 cpu_buffer = buffer->buffers[cpu];
2160 rb_check_pages(cpu_buffer);
2161 }
2162 atomic_dec(&buffer->record_disabled);
2163 }
2164
7a8e76a3 2165 mutex_unlock(&buffer->mutex);
0a1754b2 2166 return 0;
7a8e76a3 2167
83f40318 2168 out_err:
438ced17
VN
2169 for_each_buffer_cpu(buffer, cpu) {
2170 struct buffer_page *bpage, *tmp;
83f40318 2171
438ced17 2172 cpu_buffer = buffer->buffers[cpu];
438ced17 2173 cpu_buffer->nr_pages_to_update = 0;
83f40318 2174
438ced17
VN
2175 if (list_empty(&cpu_buffer->new_pages))
2176 continue;
83f40318 2177
438ced17
VN
2178 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2179 list) {
2180 list_del_init(&bpage->list);
2181 free_buffer_page(bpage);
2182 }
7a8e76a3 2183 }
07b8b10e 2184 out_err_unlock:
641d2f63 2185 mutex_unlock(&buffer->mutex);
83f40318 2186 return err;
7a8e76a3 2187}
c4f50183 2188EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 2189
13292494 2190void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
750912fa
DS
2191{
2192 mutex_lock(&buffer->mutex);
2193 if (val)
2194 buffer->flags |= RB_FL_OVERWRITE;
2195 else
2196 buffer->flags &= ~RB_FL_OVERWRITE;
2197 mutex_unlock(&buffer->mutex);
2198}
2199EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2200
2289d567 2201static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 2202{
044fa782 2203 return bpage->page->data + index;
7a8e76a3
SR
2204}
2205
2289d567 2206static __always_inline struct ring_buffer_event *
d769041f 2207rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 2208{
6f807acd
SR
2209 return __rb_page_index(cpu_buffer->reader_page,
2210 cpu_buffer->reader_page->read);
2211}
2212
785888c5 2213static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
7a8e76a3 2214{
785888c5 2215 return local_read(&bpage->page->commit);
7a8e76a3
SR
2216}
2217
785888c5
SRV
2218static struct ring_buffer_event *
2219rb_iter_head_event(struct ring_buffer_iter *iter)
bf41a158 2220{
785888c5
SRV
2221 struct ring_buffer_event *event;
2222 struct buffer_page *iter_head_page = iter->head_page;
2223 unsigned long commit;
2224 unsigned length;
2225
153368ce
SRV
2226 if (iter->head != iter->next_event)
2227 return iter->event;
2228
785888c5
SRV
2229 /*
2230 * When the writer goes across pages, it issues a cmpxchg which
2231 * is a mb(), which will synchronize with the rmb here.
2232 * (see rb_tail_page_update() and __rb_reserve_next())
2233 */
2234 commit = rb_page_commit(iter_head_page);
2235 smp_rmb();
2236 event = __rb_page_index(iter_head_page, iter->head);
2237 length = rb_event_length(event);
2238
2239 /*
2240 * READ_ONCE() doesn't work on functions and we don't want the
2241 * compiler doing any crazy optimizations with length.
2242 */
2243 barrier();
2244
2245 if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2246 /* Writer corrupted the read? */
2247 goto reset;
2248
2249 memcpy(iter->event, event, length);
2250 /*
2251 * If the page stamp is still the same after this rmb() then the
2252 * event was safely copied without the writer entering the page.
2253 */
2254 smp_rmb();
2255
2256 /* Make sure the page didn't change since we read this */
2257 if (iter->page_stamp != iter_head_page->page->time_stamp ||
2258 commit > rb_page_commit(iter_head_page))
2259 goto reset;
2260
2261 iter->next_event = iter->head + length;
2262 return iter->event;
2263 reset:
2264 /* Reset to the beginning */
2265 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2266 iter->head = 0;
2267 iter->next_event = 0;
c9b7a4a7 2268 iter->missed_events = 1;
785888c5 2269 return NULL;
bf41a158
SR
2270}
2271
25985edc 2272/* Size is determined by what has been committed */
2289d567 2273static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
bf41a158
SR
2274{
2275 return rb_page_commit(bpage);
2276}
2277
2289d567 2278static __always_inline unsigned
bf41a158
SR
2279rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2280{
2281 return rb_page_commit(cpu_buffer->commit_page);
2282}
2283
2289d567 2284static __always_inline unsigned
bf41a158
SR
2285rb_event_index(struct ring_buffer_event *event)
2286{
2287 unsigned long addr = (unsigned long)event;
2288
22f470f8 2289 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
2290}
2291
34a148bf 2292static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
2293{
2294 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2295
2296 /*
2297 * The iterator could be on the reader page (it starts there).
2298 * But the head could have moved, since the reader was
2299 * found. Check for this case and assign the iterator
2300 * to the head page instead of next.
2301 */
2302 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 2303 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f 2304 else
6689bed3 2305 rb_inc_page(&iter->head_page);
d769041f 2306
28e3fc56 2307 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3 2308 iter->head = 0;
785888c5 2309 iter->next_event = 0;
7a8e76a3
SR
2310}
2311
77ae365e
SR
2312/*
2313 * rb_handle_head_page - writer hit the head page
2314 *
2315 * Returns: +1 to retry page
2316 * 0 to continue
2317 * -1 on error
2318 */
2319static int
2320rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2321 struct buffer_page *tail_page,
2322 struct buffer_page *next_page)
2323{
2324 struct buffer_page *new_head;
2325 int entries;
2326 int type;
2327 int ret;
2328
2329 entries = rb_page_entries(next_page);
2330
2331 /*
2332 * The hard part is here. We need to move the head
2333 * forward, and protect against both readers on
2334 * other CPUs and writers coming in via interrupts.
2335 */
2336 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2337 RB_PAGE_HEAD);
2338
2339 /*
2340 * type can be one of four:
2341 * NORMAL - an interrupt already moved it for us
2342 * HEAD - we are the first to get here.
2343 * UPDATE - we are the interrupt interrupting
2344 * a current move.
2345 * MOVED - a reader on another CPU moved the next
2346 * pointer to its reader page. Give up
2347 * and try again.
2348 */
2349
2350 switch (type) {
2351 case RB_PAGE_HEAD:
2352 /*
2353 * We changed the head to UPDATE, thus
2354 * it is our responsibility to update
2355 * the counters.
2356 */
2357 local_add(entries, &cpu_buffer->overrun);
c64e148a 2358 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
2359
2360 /*
2361 * The entries will be zeroed out when we move the
2362 * tail page.
2363 */
2364
2365 /* still more to do */
2366 break;
2367
2368 case RB_PAGE_UPDATE:
2369 /*
2370 * This is an interrupt that interrupt the
2371 * previous update. Still more to do.
2372 */
2373 break;
2374 case RB_PAGE_NORMAL:
2375 /*
2376 * An interrupt came in before the update
2377 * and processed this for us.
2378 * Nothing left to do.
2379 */
2380 return 1;
2381 case RB_PAGE_MOVED:
2382 /*
2383 * The reader is on another CPU and just did
2384 * a swap with our next_page.
2385 * Try again.
2386 */
2387 return 1;
2388 default:
2389 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2390 return -1;
2391 }
2392
2393 /*
2394 * Now that we are here, the old head pointer is
2395 * set to UPDATE. This will keep the reader from
2396 * swapping the head page with the reader page.
2397 * The reader (on another CPU) will spin till
2398 * we are finished.
2399 *
2400 * We just need to protect against interrupts
2401 * doing the job. We will set the next pointer
2402 * to HEAD. After that, we set the old pointer
2403 * to NORMAL, but only if it was HEAD before.
2404 * otherwise we are an interrupt, and only
2405 * want the outer most commit to reset it.
2406 */
2407 new_head = next_page;
6689bed3 2408 rb_inc_page(&new_head);
77ae365e
SR
2409
2410 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2411 RB_PAGE_NORMAL);
2412
2413 /*
2414 * Valid returns are:
2415 * HEAD - an interrupt came in and already set it.
2416 * NORMAL - One of two things:
2417 * 1) We really set it.
2418 * 2) A bunch of interrupts came in and moved
2419 * the page forward again.
2420 */
2421 switch (ret) {
2422 case RB_PAGE_HEAD:
2423 case RB_PAGE_NORMAL:
2424 /* OK */
2425 break;
2426 default:
2427 RB_WARN_ON(cpu_buffer, 1);
2428 return -1;
2429 }
2430
2431 /*
2432 * It is possible that an interrupt came in,
2433 * set the head up, then more interrupts came in
2434 * and moved it again. When we get back here,
2435 * the page would have been set to NORMAL but we
2436 * just set it back to HEAD.
2437 *
2438 * How do you detect this? Well, if that happened
2439 * the tail page would have moved.
2440 */
2441 if (ret == RB_PAGE_NORMAL) {
8573636e
SRRH
2442 struct buffer_page *buffer_tail_page;
2443
2444 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
77ae365e
SR
2445 /*
2446 * If the tail had moved passed next, then we need
2447 * to reset the pointer.
2448 */
8573636e
SRRH
2449 if (buffer_tail_page != tail_page &&
2450 buffer_tail_page != next_page)
77ae365e
SR
2451 rb_head_page_set_normal(cpu_buffer, new_head,
2452 next_page,
2453 RB_PAGE_HEAD);
2454 }
2455
2456 /*
2457 * If this was the outer most commit (the one that
2458 * changed the original pointer from HEAD to UPDATE),
2459 * then it is up to us to reset it to NORMAL.
2460 */
2461 if (type == RB_PAGE_HEAD) {
2462 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2463 tail_page,
2464 RB_PAGE_UPDATE);
2465 if (RB_WARN_ON(cpu_buffer,
2466 ret != RB_PAGE_UPDATE))
2467 return -1;
2468 }
2469
2470 return 0;
2471}
2472
c7b09308
SR
2473static inline void
2474rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2475 unsigned long tail, struct rb_event_info *info)
c7b09308 2476{
fcc742ea 2477 struct buffer_page *tail_page = info->tail_page;
c7b09308 2478 struct ring_buffer_event *event;
fcc742ea 2479 unsigned long length = info->length;
c7b09308
SR
2480
2481 /*
2482 * Only the event that crossed the page boundary
2483 * must fill the old tail_page with padding.
2484 */
2485 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2486 /*
2487 * If the page was filled, then we still need
2488 * to update the real_end. Reset it to zero
2489 * and the reader will ignore it.
2490 */
2491 if (tail == BUF_PAGE_SIZE)
2492 tail_page->real_end = 0;
2493
c7b09308
SR
2494 local_sub(length, &tail_page->write);
2495 return;
2496 }
2497
2498 event = __rb_page_index(tail_page, tail);
2499
c64e148a
VN
2500 /* account for padding bytes */
2501 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2502
ff0ff84a
SR
2503 /*
2504 * Save the original length to the meta data.
2505 * This will be used by the reader to add lost event
2506 * counter.
2507 */
2508 tail_page->real_end = tail;
2509
c7b09308
SR
2510 /*
2511 * If this event is bigger than the minimum size, then
2512 * we need to be careful that we don't subtract the
2513 * write counter enough to allow another writer to slip
2514 * in on this page.
2515 * We put in a discarded commit instead, to make sure
2516 * that this space is not used again.
2517 *
2518 * If we are less than the minimum size, we don't need to
2519 * worry about it.
2520 */
2521 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2522 /* No room for any events */
2523
2524 /* Mark the rest of the page with padding */
2525 rb_event_set_padding(event);
2526
2527 /* Set the write back to the previous setting */
2528 local_sub(length, &tail_page->write);
2529 return;
2530 }
2531
2532 /* Put in a discarded event */
2533 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2534 event->type_len = RINGBUF_TYPE_PADDING;
2535 /* time delta must be non zero */
2536 event->time_delta = 1;
c7b09308
SR
2537
2538 /* Set write to end of buffer */
2539 length = (tail + length) - BUF_PAGE_SIZE;
2540 local_sub(length, &tail_page->write);
2541}
6634ff26 2542
4239c38f
SRRH
2543static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2544
747e94ae
SR
2545/*
2546 * This is the slow path, force gcc not to inline it.
2547 */
2548static noinline struct ring_buffer_event *
6634ff26 2549rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2550 unsigned long tail, struct rb_event_info *info)
7a8e76a3 2551{
fcc742ea 2552 struct buffer_page *tail_page = info->tail_page;
5a50e33c 2553 struct buffer_page *commit_page = cpu_buffer->commit_page;
13292494 2554 struct trace_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2555 struct buffer_page *next_page;
2556 int ret;
aa20ae84
SR
2557
2558 next_page = tail_page;
2559
6689bed3 2560 rb_inc_page(&next_page);
aa20ae84 2561
aa20ae84
SR
2562 /*
2563 * If for some reason, we had an interrupt storm that made
2564 * it all the way around the buffer, bail, and warn
2565 * about it.
2566 */
2567 if (unlikely(next_page == commit_page)) {
77ae365e 2568 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2569 goto out_reset;
2570 }
2571
77ae365e
SR
2572 /*
2573 * This is where the fun begins!
2574 *
2575 * We are fighting against races between a reader that
2576 * could be on another CPU trying to swap its reader
2577 * page with the buffer head.
2578 *
2579 * We are also fighting against interrupts coming in and
2580 * moving the head or tail on us as well.
2581 *
2582 * If the next page is the head page then we have filled
2583 * the buffer, unless the commit page is still on the
2584 * reader page.
2585 */
6689bed3 2586 if (rb_is_head_page(next_page, &tail_page->list)) {
aa20ae84 2587
77ae365e
SR
2588 /*
2589 * If the commit is not on the reader page, then
2590 * move the header page.
2591 */
2592 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2593 /*
2594 * If we are not in overwrite mode,
2595 * this is easy, just stop here.
2596 */
884bfe89
SP
2597 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2598 local_inc(&cpu_buffer->dropped_events);
77ae365e 2599 goto out_reset;
884bfe89 2600 }
77ae365e
SR
2601
2602 ret = rb_handle_head_page(cpu_buffer,
2603 tail_page,
2604 next_page);
2605 if (ret < 0)
2606 goto out_reset;
2607 if (ret)
2608 goto out_again;
2609 } else {
2610 /*
2611 * We need to be careful here too. The
2612 * commit page could still be on the reader
2613 * page. We could have a small buffer, and
2614 * have filled up the buffer with events
2615 * from interrupts and such, and wrapped.
2616 *
c6358bac 2617 * Note, if the tail page is also on the
77ae365e
SR
2618 * reader_page, we let it move out.
2619 */
2620 if (unlikely((cpu_buffer->commit_page !=
2621 cpu_buffer->tail_page) &&
2622 (cpu_buffer->commit_page ==
2623 cpu_buffer->reader_page))) {
2624 local_inc(&cpu_buffer->commit_overrun);
2625 goto out_reset;
2626 }
aa20ae84
SR
2627 }
2628 }
2629
70004986 2630 rb_tail_page_update(cpu_buffer, tail_page, next_page);
aa20ae84 2631
77ae365e 2632 out_again:
aa20ae84 2633
fcc742ea 2634 rb_reset_tail(cpu_buffer, tail, info);
aa20ae84 2635
4239c38f
SRRH
2636 /* Commit what we have for now. */
2637 rb_end_commit(cpu_buffer);
2638 /* rb_end_commit() decs committing */
2639 local_inc(&cpu_buffer->committing);
2640
aa20ae84
SR
2641 /* fail and let the caller try again */
2642 return ERR_PTR(-EAGAIN);
2643
45141d46 2644 out_reset:
6f3b3440 2645 /* reset write */
fcc742ea 2646 rb_reset_tail(cpu_buffer, tail, info);
6f3b3440 2647
bf41a158 2648 return NULL;
7a8e76a3
SR
2649}
2650
74e87937
SRV
2651/* Slow path */
2652static struct ring_buffer_event *
dc4e2801 2653rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
9826b273 2654{
dc4e2801
TZ
2655 if (abs)
2656 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2657 else
2658 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
9826b273 2659
dc4e2801
TZ
2660 /* Not the first event on the page, or not delta? */
2661 if (abs || rb_event_index(event)) {
d90fd774
SRRH
2662 event->time_delta = delta & TS_MASK;
2663 event->array[0] = delta >> TS_SHIFT;
2664 } else {
2665 /* nope, just zero it */
2666 event->time_delta = 0;
2667 event->array[0] = 0;
2668 }
a4543a2f 2669
d90fd774
SRRH
2670 return skip_time_extend(event);
2671}
a4543a2f 2672
58fbc3c6
SRV
2673#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2674static inline bool sched_clock_stable(void)
2675{
2676 return true;
2677}
2678#endif
2679
74e87937 2680static void
58fbc3c6
SRV
2681rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2682 struct rb_event_info *info)
2683{
2684 u64 write_stamp;
2685
29ce2451 2686 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
58fbc3c6
SRV
2687 (unsigned long long)info->delta,
2688 (unsigned long long)info->ts,
2689 (unsigned long long)info->before,
2690 (unsigned long long)info->after,
2691 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2692 sched_clock_stable() ? "" :
2693 "If you just came from a suspend/resume,\n"
2694 "please switch to the trace global clock:\n"
2695 " echo global > /sys/kernel/debug/tracing/trace_clock\n"
2696 "or add trace_clock=global to the kernel command line\n");
2697}
2698
74e87937
SRV
2699static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2700 struct ring_buffer_event **event,
2701 struct rb_event_info *info,
2702 u64 *delta,
2703 unsigned int *length)
2704{
2705 bool abs = info->add_timestamp &
2706 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2707
29ce2451
SRV
2708 if (unlikely(info->delta > (1ULL << 59))) {
2709 /* did the clock go backwards */
2710 if (info->before == info->after && info->before > info->ts) {
2711 /* not interrupted */
2712 static int once;
2713
2714 /*
2715 * This is possible with a recalibrating of the TSC.
2716 * Do not produce a call stack, but just report it.
2717 */
2718 if (!once) {
2719 once++;
2720 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2721 info->before, info->ts);
2722 }
2723 } else
2724 rb_check_timestamp(cpu_buffer, info);
2725 if (!abs)
2726 info->delta = 0;
2727 }
74e87937
SRV
2728 *event = rb_add_time_stamp(*event, info->delta, abs);
2729 *length -= RB_LEN_TIME_EXTEND;
2730 *delta = 0;
2731}
2732
d90fd774
SRRH
2733/**
2734 * rb_update_event - update event type and data
cfc585a4 2735 * @cpu_buffer: The per cpu buffer of the @event
d90fd774 2736 * @event: the event to update
cfc585a4 2737 * @info: The info to update the @event with (contains length and delta)
d90fd774 2738 *
cfc585a4 2739 * Update the type and data fields of the @event. The length
d90fd774
SRRH
2740 * is the actual size that is written to the ring buffer,
2741 * and with this, we can determine what to place into the
2742 * data field.
2743 */
b7dc42fd 2744static void
d90fd774
SRRH
2745rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2746 struct ring_buffer_event *event,
2747 struct rb_event_info *info)
2748{
2749 unsigned length = info->length;
2750 u64 delta = info->delta;
8672e494
SRV
2751 unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2752
2753 if (nest < MAX_NEST)
2754 cpu_buffer->event_stamp[nest] = info->ts;
a4543a2f
SRRH
2755
2756 /*
d90fd774 2757 * If we need to add a timestamp, then we
6167c205 2758 * add it to the start of the reserved space.
a4543a2f 2759 */
74e87937
SRV
2760 if (unlikely(info->add_timestamp))
2761 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
a4543a2f 2762
d90fd774
SRRH
2763 event->time_delta = delta;
2764 length -= RB_EVNT_HDR_SIZE;
adab66b7 2765 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
d90fd774
SRRH
2766 event->type_len = 0;
2767 event->array[0] = length;
2768 } else
2769 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2770}
2771
2772static unsigned rb_calculate_event_length(unsigned length)
2773{
2774 struct ring_buffer_event event; /* Used only for sizeof array */
2775
2776 /* zero length can cause confusions */
2777 if (!length)
2778 length++;
2779
adab66b7 2780 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
d90fd774
SRRH
2781 length += sizeof(event.array[0]);
2782
2783 length += RB_EVNT_HDR_SIZE;
adab66b7 2784 length = ALIGN(length, RB_ARCH_ALIGNMENT);
d90fd774
SRRH
2785
2786 /*
2787 * In case the time delta is larger than the 27 bits for it
2788 * in the header, we need to add a timestamp. If another
2789 * event comes in when trying to discard this one to increase
2790 * the length, then the timestamp will be added in the allocated
2791 * space of this event. If length is bigger than the size needed
2792 * for the TIME_EXTEND, then padding has to be used. The events
2793 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2794 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2795 * As length is a multiple of 4, we only need to worry if it
2796 * is 12 (RB_LEN_TIME_EXTEND + 4).
2797 */
2798 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2799 length += RB_ALIGNMENT;
2800
2801 return length;
2802}
2803
a389d86f
SRV
2804static u64 rb_time_delta(struct ring_buffer_event *event)
2805{
2806 switch (event->type_len) {
2807 case RINGBUF_TYPE_PADDING:
2808 return 0;
2809
2810 case RINGBUF_TYPE_TIME_EXTEND:
e20044f7 2811 return rb_event_time_stamp(event);
a389d86f
SRV
2812
2813 case RINGBUF_TYPE_TIME_STAMP:
2814 return 0;
2815
2816 case RINGBUF_TYPE_DATA:
2817 return event->time_delta;
2818 default:
2819 return 0;
2820 }
d90fd774 2821}
d90fd774
SRRH
2822
2823static inline int
2824rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2825 struct ring_buffer_event *event)
2826{
2827 unsigned long new_index, old_index;
2828 struct buffer_page *bpage;
2829 unsigned long index;
2830 unsigned long addr;
a389d86f
SRV
2831 u64 write_stamp;
2832 u64 delta;
d90fd774
SRRH
2833
2834 new_index = rb_event_index(event);
2835 old_index = new_index + rb_event_ts_length(event);
2836 addr = (unsigned long)event;
2837 addr &= PAGE_MASK;
2838
8573636e 2839 bpage = READ_ONCE(cpu_buffer->tail_page);
d90fd774 2840
a389d86f
SRV
2841 delta = rb_time_delta(event);
2842
10464b4a
SRV
2843 if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2844 return 0;
a389d86f
SRV
2845
2846 /* Make sure the write stamp is read before testing the location */
2847 barrier();
2848
d90fd774
SRRH
2849 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2850 unsigned long write_mask =
2851 local_read(&bpage->write) & ~RB_WRITE_MASK;
2852 unsigned long event_length = rb_event_length(event);
a389d86f 2853
a389d86f 2854 /* Something came in, can't discard */
10464b4a
SRV
2855 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2856 write_stamp, write_stamp - delta))
a389d86f
SRV
2857 return 0;
2858
6f6be606
SRV
2859 /*
2860 * It's possible that the event time delta is zero
2861 * (has the same time stamp as the previous event)
2862 * in which case write_stamp and before_stamp could
2863 * be the same. In such a case, force before_stamp
2864 * to be different than write_stamp. It doesn't
2865 * matter what it is, as long as its different.
2866 */
2867 if (!delta)
2868 rb_time_set(&cpu_buffer->before_stamp, 0);
2869
a389d86f
SRV
2870 /*
2871 * If an event were to come in now, it would see that the
2872 * write_stamp and the before_stamp are different, and assume
2873 * that this event just added itself before updating
2874 * the write stamp. The interrupting event will fix the
2875 * write stamp for us, and use the before stamp as its delta.
2876 */
2877
d90fd774
SRRH
2878 /*
2879 * This is on the tail page. It is possible that
2880 * a write could come in and move the tail page
2881 * and write to the next page. That is fine
2882 * because we just shorten what is on this page.
2883 */
2884 old_index += write_mask;
2885 new_index += write_mask;
2886 index = local_cmpxchg(&bpage->write, old_index, new_index);
2887 if (index == old_index) {
2888 /* update counters */
2889 local_sub(event_length, &cpu_buffer->entries_bytes);
2890 return 1;
2891 }
2892 }
2893
2894 /* could not discard */
2895 return 0;
2896}
2897
2898static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2899{
2900 local_inc(&cpu_buffer->committing);
2901 local_inc(&cpu_buffer->commits);
2902}
2903
38e11df1 2904static __always_inline void
d90fd774
SRRH
2905rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2906{
2907 unsigned long max_count;
2908
2909 /*
2910 * We only race with interrupts and NMIs on this CPU.
2911 * If we own the commit event, then we can commit
2912 * all others that interrupted us, since the interruptions
2913 * are in stack format (they finish before they come
2914 * back to us). This allows us to do a simple loop to
2915 * assign the commit to the tail.
2916 */
2917 again:
2918 max_count = cpu_buffer->nr_pages * 100;
2919
8573636e 2920 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
d90fd774
SRRH
2921 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2922 return;
2923 if (RB_WARN_ON(cpu_buffer,
2924 rb_is_reader_page(cpu_buffer->tail_page)))
2925 return;
2926 local_set(&cpu_buffer->commit_page->page->commit,
2927 rb_page_write(cpu_buffer->commit_page));
6689bed3 2928 rb_inc_page(&cpu_buffer->commit_page);
d90fd774
SRRH
2929 /* add barrier to keep gcc from optimizing too much */
2930 barrier();
2931 }
2932 while (rb_commit_index(cpu_buffer) !=
2933 rb_page_write(cpu_buffer->commit_page)) {
2934
2935 local_set(&cpu_buffer->commit_page->page->commit,
2936 rb_page_write(cpu_buffer->commit_page));
2937 RB_WARN_ON(cpu_buffer,
2938 local_read(&cpu_buffer->commit_page->page->commit) &
2939 ~RB_WRITE_MASK);
2940 barrier();
2941 }
2942
2943 /* again, keep gcc from optimizing */
2944 barrier();
2945
2946 /*
2947 * If an interrupt came in just after the first while loop
2948 * and pushed the tail page forward, we will be left with
2949 * a dangling commit that will never go forward.
2950 */
8573636e 2951 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
d90fd774
SRRH
2952 goto again;
2953}
2954
38e11df1 2955static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
d90fd774
SRRH
2956{
2957 unsigned long commits;
2958
2959 if (RB_WARN_ON(cpu_buffer,
2960 !local_read(&cpu_buffer->committing)))
2961 return;
2962
2963 again:
2964 commits = local_read(&cpu_buffer->commits);
2965 /* synchronize with interrupts */
2966 barrier();
2967 if (local_read(&cpu_buffer->committing) == 1)
2968 rb_set_commit_to_write(cpu_buffer);
2969
2970 local_dec(&cpu_buffer->committing);
2971
2972 /* synchronize with interrupts */
2973 barrier();
2974
2975 /*
2976 * Need to account for interrupts coming in between the
2977 * updating of the commit page and the clearing of the
2978 * committing counter.
2979 */
2980 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2981 !local_read(&cpu_buffer->committing)) {
2982 local_inc(&cpu_buffer->committing);
2983 goto again;
2984 }
2985}
2986
2987static inline void rb_event_discard(struct ring_buffer_event *event)
2988{
dc4e2801 2989 if (extended_time(event))
d90fd774
SRRH
2990 event = skip_time_extend(event);
2991
2992 /* array[0] holds the actual length for the discarded event */
2993 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2994 event->type_len = RINGBUF_TYPE_PADDING;
2995 /* time delta must be non zero */
2996 if (!event->time_delta)
2997 event->time_delta = 1;
2998}
2999
d90fd774
SRRH
3000static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
3001 struct ring_buffer_event *event)
3002{
3003 local_inc(&cpu_buffer->entries);
d90fd774
SRRH
3004 rb_end_commit(cpu_buffer);
3005}
3006
3007static __always_inline void
13292494 3008rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
d90fd774 3009{
03329f99
SRV
3010 size_t nr_pages;
3011 size_t dirty;
3012 size_t full;
d90fd774
SRRH
3013
3014 if (buffer->irq_work.waiters_pending) {
3015 buffer->irq_work.waiters_pending = false;
3016 /* irq_work_queue() supplies it's own memory barriers */
3017 irq_work_queue(&buffer->irq_work.work);
3018 }
3019
3020 if (cpu_buffer->irq_work.waiters_pending) {
3021 cpu_buffer->irq_work.waiters_pending = false;
3022 /* irq_work_queue() supplies it's own memory barriers */
3023 irq_work_queue(&cpu_buffer->irq_work.work);
3024 }
3025
03329f99
SRV
3026 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3027 return;
d90fd774 3028
03329f99
SRV
3029 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3030 return;
2c2b0a78 3031
03329f99
SRV
3032 if (!cpu_buffer->irq_work.full_waiters_pending)
3033 return;
2c2b0a78 3034
03329f99
SRV
3035 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3036
3037 full = cpu_buffer->shortest_full;
3038 nr_pages = cpu_buffer->nr_pages;
3039 dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
3040 if (full && nr_pages && (dirty * 100) <= full * nr_pages)
3041 return;
3042
3043 cpu_buffer->irq_work.wakeup_full = true;
3044 cpu_buffer->irq_work.full_waiters_pending = false;
3045 /* irq_work_queue() supplies it's own memory barriers */
3046 irq_work_queue(&cpu_buffer->irq_work.work);
d90fd774
SRRH
3047}
3048
28575c61
SRV
3049#ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3050# define do_ring_buffer_record_recursion() \
3051 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3052#else
3053# define do_ring_buffer_record_recursion() do { } while (0)
3054#endif
3055
d90fd774
SRRH
3056/*
3057 * The lock and unlock are done within a preempt disable section.
3058 * The current_context per_cpu variable can only be modified
3059 * by the current task between lock and unlock. But it can
a0e3a18f
SRV
3060 * be modified more than once via an interrupt. To pass this
3061 * information from the lock to the unlock without having to
3062 * access the 'in_interrupt()' functions again (which do show
3063 * a bit of overhead in something as critical as function tracing,
3064 * we use a bitmask trick.
d90fd774 3065 *
b02414c8
SRV
3066 * bit 1 = NMI context
3067 * bit 2 = IRQ context
3068 * bit 3 = SoftIRQ context
3069 * bit 4 = normal context.
d90fd774 3070 *
a0e3a18f
SRV
3071 * This works because this is the order of contexts that can
3072 * preempt other contexts. A SoftIRQ never preempts an IRQ
3073 * context.
3074 *
3075 * When the context is determined, the corresponding bit is
3076 * checked and set (if it was set, then a recursion of that context
3077 * happened).
3078 *
3079 * On unlock, we need to clear this bit. To do so, just subtract
3080 * 1 from the current_context and AND it to itself.
3081 *
3082 * (binary)
3083 * 101 - 1 = 100
3084 * 101 & 100 = 100 (clearing bit zero)
3085 *
3086 * 1010 - 1 = 1001
3087 * 1010 & 1001 = 1000 (clearing bit 1)
3088 *
3089 * The least significant bit can be cleared this way, and it
3090 * just so happens that it is the same bit corresponding to
3091 * the current context.
b02414c8
SRV
3092 *
3093 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3094 * is set when a recursion is detected at the current context, and if
3095 * the TRANSITION bit is already set, it will fail the recursion.
3096 * This is needed because there's a lag between the changing of
3097 * interrupt context and updating the preempt count. In this case,
3098 * a false positive will be found. To handle this, one extra recursion
3099 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3100 * bit is already set, then it is considered a recursion and the function
3101 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3102 *
3103 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3104 * to be cleared. Even if it wasn't the context that set it. That is,
3105 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3106 * is called before preempt_count() is updated, since the check will
3107 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3108 * NMI then comes in, it will set the NMI bit, but when the NMI code
3109 * does the trace_recursive_unlock() it will clear the TRANSTION bit
3110 * and leave the NMI bit set. But this is fine, because the interrupt
3111 * code that set the TRANSITION bit will then clear the NMI bit when it
3112 * calls trace_recursive_unlock(). If another NMI comes in, it will
3113 * set the TRANSITION bit and continue.
3114 *
3115 * Note: The TRANSITION bit only handles a single transition between context.
d90fd774
SRRH
3116 */
3117
3118static __always_inline int
3119trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3120{
a0e3a18f
SRV
3121 unsigned int val = cpu_buffer->current_context;
3122 unsigned long pc = preempt_count();
3123 int bit;
3124
3125 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
3126 bit = RB_CTX_NORMAL;
3127 else
3128 bit = pc & NMI_MASK ? RB_CTX_NMI :
0164e0d7 3129 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
a0e3a18f 3130
b02414c8
SRV
3131 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3132 /*
3133 * It is possible that this was called by transitioning
3134 * between interrupt context, and preempt_count() has not
3135 * been updated yet. In this case, use the TRANSITION bit.
3136 */
3137 bit = RB_CTX_TRANSITION;
28575c61
SRV
3138 if (val & (1 << (bit + cpu_buffer->nest))) {
3139 do_ring_buffer_record_recursion();
b02414c8 3140 return 1;
28575c61 3141 }
b02414c8 3142 }
d90fd774 3143
8e012066 3144 val |= (1 << (bit + cpu_buffer->nest));
a0e3a18f 3145 cpu_buffer->current_context = val;
d90fd774
SRRH
3146
3147 return 0;
3148}
3149
3150static __always_inline void
3151trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3152{
8e012066
SRV
3153 cpu_buffer->current_context &=
3154 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3155}
3156
b02414c8
SRV
3157/* The recursive locking above uses 5 bits */
3158#define NESTED_BITS 5
8e012066
SRV
3159
3160/**
3161 * ring_buffer_nest_start - Allow to trace while nested
3162 * @buffer: The ring buffer to modify
3163 *
6167c205 3164 * The ring buffer has a safety mechanism to prevent recursion.
8e012066
SRV
3165 * But there may be a case where a trace needs to be done while
3166 * tracing something else. In this case, calling this function
3167 * will allow this function to nest within a currently active
3168 * ring_buffer_lock_reserve().
3169 *
3170 * Call this function before calling another ring_buffer_lock_reserve() and
3171 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3172 */
13292494 3173void ring_buffer_nest_start(struct trace_buffer *buffer)
8e012066
SRV
3174{
3175 struct ring_buffer_per_cpu *cpu_buffer;
3176 int cpu;
3177
3178 /* Enabled by ring_buffer_nest_end() */
3179 preempt_disable_notrace();
3180 cpu = raw_smp_processor_id();
3181 cpu_buffer = buffer->buffers[cpu];
6167c205 3182 /* This is the shift value for the above recursive locking */
8e012066
SRV
3183 cpu_buffer->nest += NESTED_BITS;
3184}
3185
3186/**
3187 * ring_buffer_nest_end - Allow to trace while nested
3188 * @buffer: The ring buffer to modify
3189 *
3190 * Must be called after ring_buffer_nest_start() and after the
3191 * ring_buffer_unlock_commit().
3192 */
13292494 3193void ring_buffer_nest_end(struct trace_buffer *buffer)
8e012066
SRV
3194{
3195 struct ring_buffer_per_cpu *cpu_buffer;
3196 int cpu;
3197
3198 /* disabled by ring_buffer_nest_start() */
3199 cpu = raw_smp_processor_id();
3200 cpu_buffer = buffer->buffers[cpu];
6167c205 3201 /* This is the shift value for the above recursive locking */
8e012066
SRV
3202 cpu_buffer->nest -= NESTED_BITS;
3203 preempt_enable_notrace();
d90fd774
SRRH
3204}
3205
3206/**
3207 * ring_buffer_unlock_commit - commit a reserved
3208 * @buffer: The buffer to commit to
3209 * @event: The event pointer to commit.
3210 *
3211 * This commits the data to the ring buffer, and releases any locks held.
3212 *
3213 * Must be paired with ring_buffer_lock_reserve.
3214 */
13292494 3215int ring_buffer_unlock_commit(struct trace_buffer *buffer,
d90fd774
SRRH
3216 struct ring_buffer_event *event)
3217{
3218 struct ring_buffer_per_cpu *cpu_buffer;
3219 int cpu = raw_smp_processor_id();
3220
3221 cpu_buffer = buffer->buffers[cpu];
3222
3223 rb_commit(cpu_buffer, event);
3224
3225 rb_wakeups(buffer, cpu_buffer);
3226
3227 trace_recursive_unlock(cpu_buffer);
3228
3229 preempt_enable_notrace();
3230
3231 return 0;
3232}
3233EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3234
5b7be9c7
SRV
3235/* Special value to validate all deltas on a page. */
3236#define CHECK_FULL_PAGE 1L
3237
3238#ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3239static void dump_buffer_page(struct buffer_data_page *bpage,
3240 struct rb_event_info *info,
3241 unsigned long tail)
3242{
3243 struct ring_buffer_event *event;
3244 u64 ts, delta;
3245 int e;
3246
3247 ts = bpage->time_stamp;
3248 pr_warn(" [%lld] PAGE TIME STAMP\n", ts);
3249
3250 for (e = 0; e < tail; e += rb_event_length(event)) {
3251
3252 event = (struct ring_buffer_event *)(bpage->data + e);
3253
3254 switch (event->type_len) {
3255
3256 case RINGBUF_TYPE_TIME_EXTEND:
e20044f7 3257 delta = rb_event_time_stamp(event);
5b7be9c7
SRV
3258 ts += delta;
3259 pr_warn(" [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3260 break;
3261
3262 case RINGBUF_TYPE_TIME_STAMP:
e20044f7 3263 delta = rb_event_time_stamp(event);
5b7be9c7
SRV
3264 ts = delta;
3265 pr_warn(" [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3266 break;
3267
3268 case RINGBUF_TYPE_PADDING:
3269 ts += event->time_delta;
3270 pr_warn(" [%lld] delta:%d PADDING\n", ts, event->time_delta);
3271 break;
3272
3273 case RINGBUF_TYPE_DATA:
3274 ts += event->time_delta;
3275 pr_warn(" [%lld] delta:%d\n", ts, event->time_delta);
3276 break;
3277
3278 default:
3279 break;
3280 }
3281 }
3282}
3283
3284static DEFINE_PER_CPU(atomic_t, checking);
3285static atomic_t ts_dump;
3286
3287/*
3288 * Check if the current event time stamp matches the deltas on
3289 * the buffer page.
3290 */
3291static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3292 struct rb_event_info *info,
3293 unsigned long tail)
3294{
3295 struct ring_buffer_event *event;
3296 struct buffer_data_page *bpage;
3297 u64 ts, delta;
3298 bool full = false;
3299 int e;
3300
3301 bpage = info->tail_page->page;
3302
3303 if (tail == CHECK_FULL_PAGE) {
3304 full = true;
3305 tail = local_read(&bpage->commit);
3306 } else if (info->add_timestamp &
3307 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3308 /* Ignore events with absolute time stamps */
3309 return;
3310 }
3311
3312 /*
3313 * Do not check the first event (skip possible extends too).
3314 * Also do not check if previous events have not been committed.
3315 */
3316 if (tail <= 8 || tail > local_read(&bpage->commit))
3317 return;
3318
3319 /*
3320 * If this interrupted another event,
3321 */
3322 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3323 goto out;
3324
3325 ts = bpage->time_stamp;
3326
3327 for (e = 0; e < tail; e += rb_event_length(event)) {
3328
3329 event = (struct ring_buffer_event *)(bpage->data + e);
3330
3331 switch (event->type_len) {
3332
3333 case RINGBUF_TYPE_TIME_EXTEND:
e20044f7 3334 delta = rb_event_time_stamp(event);
5b7be9c7
SRV
3335 ts += delta;
3336 break;
3337
3338 case RINGBUF_TYPE_TIME_STAMP:
e20044f7 3339 delta = rb_event_time_stamp(event);
5b7be9c7
SRV
3340 ts = delta;
3341 break;
3342
3343 case RINGBUF_TYPE_PADDING:
3344 if (event->time_delta == 1)
3345 break;
3346 /* fall through */
3347 case RINGBUF_TYPE_DATA:
3348 ts += event->time_delta;
3349 break;
3350
3351 default:
3352 RB_WARN_ON(cpu_buffer, 1);
3353 }
3354 }
3355 if ((full && ts > info->ts) ||
3356 (!full && ts + info->delta != info->ts)) {
3357 /* If another report is happening, ignore this one */
3358 if (atomic_inc_return(&ts_dump) != 1) {
3359 atomic_dec(&ts_dump);
3360 goto out;
3361 }
3362 atomic_inc(&cpu_buffer->record_disabled);
6549de1f
SRV
3363 /* There's some cases in boot up that this can happen */
3364 WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3365 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3366 cpu_buffer->cpu,
3367 ts + info->delta, info->ts, info->delta,
3368 info->before, info->after,
3369 full ? " (full)" : "");
5b7be9c7
SRV
3370 dump_buffer_page(bpage, info, tail);
3371 atomic_dec(&ts_dump);
3372 /* Do not re-enable checking */
3373 return;
3374 }
3375out:
3376 atomic_dec(this_cpu_ptr(&checking));
3377}
3378#else
3379static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3380 struct rb_event_info *info,
3381 unsigned long tail)
3382{
3383}
3384#endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3385
6634ff26
SR
3386static struct ring_buffer_event *
3387__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 3388 struct rb_event_info *info)
6634ff26 3389{
6634ff26 3390 struct ring_buffer_event *event;
fcc742ea 3391 struct buffer_page *tail_page;
a389d86f 3392 unsigned long tail, write, w;
10464b4a
SRV
3393 bool a_ok;
3394 bool b_ok;
69d1b839 3395
8573636e
SRRH
3396 /* Don't let the compiler play games with cpu_buffer->tail_page */
3397 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
a389d86f
SRV
3398
3399 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK;
3400 barrier();
58fbc3c6
SRV
3401 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3402 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
a389d86f
SRV
3403 barrier();
3404 info->ts = rb_time_stamp(cpu_buffer->buffer);
3405
58fbc3c6 3406 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
a389d86f 3407 info->delta = info->ts;
a389d86f 3408 } else {
58fbc3c6
SRV
3409 /*
3410 * If interrupting an event time update, we may need an
3411 * absolute timestamp.
3412 * Don't bother if this is the start of a new page (w == 0).
3413 */
3414 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3415 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3416 info->length += RB_LEN_TIME_EXTEND;
3417 } else {
3418 info->delta = info->ts - info->after;
3419 if (unlikely(test_time_stamp(info->delta))) {
3420 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3421 info->length += RB_LEN_TIME_EXTEND;
3422 }
10464b4a 3423 }
7c4b4a51 3424 }
b7dc42fd 3425
10464b4a 3426 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts);
a389d86f
SRV
3427
3428 /*C*/ write = local_add_return(info->length, &tail_page->write);
77ae365e
SR
3429
3430 /* set write to only the index of the write */
3431 write &= RB_WRITE_MASK;
a389d86f 3432
fcc742ea 3433 tail = write - info->length;
6634ff26 3434
a389d86f
SRV
3435 /* See if we shot pass the end of this buffer page */
3436 if (unlikely(write > BUF_PAGE_SIZE)) {
68e10d5f
SRV
3437 /* before and after may now different, fix it up*/
3438 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3439 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3440 if (a_ok && b_ok && info->before != info->after)
3441 (void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3442 info->before, info->after);
5b7be9c7
SRV
3443 if (a_ok && b_ok)
3444 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
a389d86f
SRV
3445 return rb_move_tail(cpu_buffer, tail, info);
3446 }
3447
3448 if (likely(tail == w)) {
3449 u64 save_before;
10464b4a 3450 bool s_ok;
a389d86f
SRV
3451
3452 /* Nothing interrupted us between A and C */
10464b4a 3453 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts);
a389d86f 3454 barrier();
10464b4a
SRV
3455 /*E*/ s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3456 RB_WARN_ON(cpu_buffer, !s_ok);
7c4b4a51
SRV
3457 if (likely(!(info->add_timestamp &
3458 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
a389d86f 3459 /* This did not interrupt any time update */
58fbc3c6 3460 info->delta = info->ts - info->after;
a389d86f 3461 else
82db909e 3462 /* Just use full timestamp for interrupting event */
a389d86f
SRV
3463 info->delta = info->ts;
3464 barrier();
5b7be9c7 3465 check_buffer(cpu_buffer, info, tail);
a389d86f
SRV
3466 if (unlikely(info->ts != save_before)) {
3467 /* SLOW PATH - Interrupted between C and E */
3468
58fbc3c6 3469 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
10464b4a
SRV
3470 RB_WARN_ON(cpu_buffer, !a_ok);
3471
a389d86f 3472 /* Write stamp must only go forward */
58fbc3c6 3473 if (save_before > info->after) {
a389d86f
SRV
3474 /*
3475 * We do not care about the result, only that
3476 * it gets updated atomically.
3477 */
58fbc3c6
SRV
3478 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3479 info->after, save_before);
a389d86f
SRV
3480 }
3481 }
3482 } else {
3483 u64 ts;
3484 /* SLOW PATH - Interrupted between A and C */
58fbc3c6 3485 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
10464b4a
SRV
3486 /* Was interrupted before here, write_stamp must be valid */
3487 RB_WARN_ON(cpu_buffer, !a_ok);
a389d86f
SRV
3488 ts = rb_time_stamp(cpu_buffer->buffer);
3489 barrier();
3490 /*E*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
8785f51a
AR
3491 info->after < ts &&
3492 rb_time_cmpxchg(&cpu_buffer->write_stamp,
3493 info->after, ts)) {
a389d86f 3494 /* Nothing came after this event between C and E */
58fbc3c6 3495 info->delta = ts - info->after;
a389d86f
SRV
3496 } else {
3497 /*
82db909e 3498 * Interrupted between C and E:
a389d86f
SRV
3499 * Lost the previous events time stamp. Just set the
3500 * delta to zero, and this will be the same time as
3501 * the event this event interrupted. And the events that
3502 * came after this will still be correct (as they would
3503 * have built their delta on the previous event.
3504 */
3505 info->delta = 0;
3506 }
8672e494 3507 info->ts = ts;
7c4b4a51 3508 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
a389d86f
SRV
3509 }
3510
6634ff26 3511 /*
a4543a2f 3512 * If this is the first commit on the page, then it has the same
b7dc42fd 3513 * timestamp as the page itself.
6634ff26 3514 */
7c4b4a51
SRV
3515 if (unlikely(!tail && !(info->add_timestamp &
3516 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
a4543a2f
SRRH
3517 info->delta = 0;
3518
b7dc42fd
SRRH
3519 /* We reserved something on the buffer */
3520
3521 event = __rb_page_index(tail_page, tail);
a4543a2f
SRRH
3522 rb_update_event(cpu_buffer, event, info);
3523
3524 local_inc(&tail_page->entries);
6634ff26 3525
b7dc42fd
SRRH
3526 /*
3527 * If this is the first commit on the page, then update
3528 * its timestamp.
3529 */
75b21c6d 3530 if (unlikely(!tail))
b7dc42fd
SRRH
3531 tail_page->page->time_stamp = info->ts;
3532
c64e148a 3533 /* account for these added bytes */
fcc742ea 3534 local_add(info->length, &cpu_buffer->entries_bytes);
c64e148a 3535
6634ff26
SR
3536 return event;
3537}
3538
fa7ffb39 3539static __always_inline struct ring_buffer_event *
13292494 3540rb_reserve_next_event(struct trace_buffer *buffer,
62f0b3eb 3541 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 3542 unsigned long length)
7a8e76a3
SR
3543{
3544 struct ring_buffer_event *event;
fcc742ea 3545 struct rb_event_info info;
818e3dd3 3546 int nr_loops = 0;
58fbc3c6 3547 int add_ts_default;
7a8e76a3 3548
fa743953 3549 rb_start_commit(cpu_buffer);
a389d86f 3550 /* The commit page can not change after this */
fa743953 3551
85bac32c 3552#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
3553 /*
3554 * Due to the ability to swap a cpu buffer from a buffer
3555 * it is possible it was swapped before we committed.
3556 * (committing stops a swap). We check for it here and
3557 * if it happened, we have to fail the write.
3558 */
3559 barrier();
6aa7de05 3560 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
62f0b3eb
SR
3561 local_dec(&cpu_buffer->committing);
3562 local_dec(&cpu_buffer->commits);
3563 return NULL;
3564 }
85bac32c 3565#endif
b7dc42fd 3566
fcc742ea 3567 info.length = rb_calculate_event_length(length);
58fbc3c6
SRV
3568
3569 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3570 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3571 info.length += RB_LEN_TIME_EXTEND;
3572 } else {
3573 add_ts_default = RB_ADD_STAMP_NONE;
3574 }
3575
a4543a2f 3576 again:
58fbc3c6 3577 info.add_timestamp = add_ts_default;
b7dc42fd
SRRH
3578 info.delta = 0;
3579
818e3dd3
SR
3580 /*
3581 * We allow for interrupts to reenter here and do a trace.
3582 * If one does, it will cause this original code to loop
3583 * back here. Even with heavy interrupts happening, this
3584 * should only happen a few times in a row. If this happens
3585 * 1000 times in a row, there must be either an interrupt
3586 * storm or we have something buggy.
3587 * Bail!
3588 */
3e89c7bb 3589 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 3590 goto out_fail;
818e3dd3 3591
fcc742ea
SRRH
3592 event = __rb_reserve_next(cpu_buffer, &info);
3593
bd1b7cd3 3594 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
58fbc3c6 3595 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
bd1b7cd3 3596 info.length -= RB_LEN_TIME_EXTEND;
bf41a158 3597 goto again;
bd1b7cd3 3598 }
bf41a158 3599
a389d86f
SRV
3600 if (likely(event))
3601 return event;
fa743953
SR
3602 out_fail:
3603 rb_end_commit(cpu_buffer);
3604 return NULL;
7a8e76a3
SR
3605}
3606
3607/**
3608 * ring_buffer_lock_reserve - reserve a part of the buffer
3609 * @buffer: the ring buffer to reserve from
3610 * @length: the length of the data to reserve (excluding event header)
7a8e76a3 3611 *
6167c205 3612 * Returns a reserved event on the ring buffer to copy directly to.
7a8e76a3
SR
3613 * The user of this interface will need to get the body to write into
3614 * and can use the ring_buffer_event_data() interface.
3615 *
3616 * The length is the length of the data needed, not the event length
3617 * which also includes the event header.
3618 *
3619 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3620 * If NULL is returned, then nothing has been allocated or locked.
3621 */
3622struct ring_buffer_event *
13292494 3623ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
7a8e76a3
SR
3624{
3625 struct ring_buffer_per_cpu *cpu_buffer;
3626 struct ring_buffer_event *event;
5168ae50 3627 int cpu;
7a8e76a3 3628
bf41a158 3629 /* If we are tracing schedule, we don't want to recurse */
5168ae50 3630 preempt_disable_notrace();
bf41a158 3631
3205f806 3632 if (unlikely(atomic_read(&buffer->record_disabled)))
58a09ec6 3633 goto out;
261842b7 3634
7a8e76a3
SR
3635 cpu = raw_smp_processor_id();
3636
3205f806 3637 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
d769041f 3638 goto out;
7a8e76a3
SR
3639
3640 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 3641
3205f806 3642 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
d769041f 3643 goto out;
7a8e76a3 3644
3205f806 3645 if (unlikely(length > BUF_MAX_DATA_SIZE))
bf41a158 3646 goto out;
7a8e76a3 3647
58a09ec6
SRRH
3648 if (unlikely(trace_recursive_lock(cpu_buffer)))
3649 goto out;
3650
62f0b3eb 3651 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 3652 if (!event)
58a09ec6 3653 goto out_unlock;
7a8e76a3
SR
3654
3655 return event;
3656
58a09ec6
SRRH
3657 out_unlock:
3658 trace_recursive_unlock(cpu_buffer);
d769041f 3659 out:
5168ae50 3660 preempt_enable_notrace();
7a8e76a3
SR
3661 return NULL;
3662}
c4f50183 3663EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 3664
a1863c21
SR
3665/*
3666 * Decrement the entries to the page that an event is on.
3667 * The event does not even need to exist, only the pointer
3668 * to the page it is on. This may only be called before the commit
3669 * takes place.
3670 */
3671static inline void
3672rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3673 struct ring_buffer_event *event)
3674{
3675 unsigned long addr = (unsigned long)event;
3676 struct buffer_page *bpage = cpu_buffer->commit_page;
3677 struct buffer_page *start;
3678
3679 addr &= PAGE_MASK;
3680
3681 /* Do the likely case first */
3682 if (likely(bpage->page == (void *)addr)) {
3683 local_dec(&bpage->entries);
3684 return;
3685 }
3686
3687 /*
3688 * Because the commit page may be on the reader page we
3689 * start with the next page and check the end loop there.
3690 */
6689bed3 3691 rb_inc_page(&bpage);
a1863c21
SR
3692 start = bpage;
3693 do {
3694 if (bpage->page == (void *)addr) {
3695 local_dec(&bpage->entries);
3696 return;
3697 }
6689bed3 3698 rb_inc_page(&bpage);
a1863c21
SR
3699 } while (bpage != start);
3700
3701 /* commit not part of this buffer?? */
3702 RB_WARN_ON(cpu_buffer, 1);
3703}
3704
fa1b47dd 3705/**
88883490 3706 * ring_buffer_discard_commit - discard an event that has not been committed
fa1b47dd
SR
3707 * @buffer: the ring buffer
3708 * @event: non committed event to discard
3709 *
dc892f73
SR
3710 * Sometimes an event that is in the ring buffer needs to be ignored.
3711 * This function lets the user discard an event in the ring buffer
3712 * and then that event will not be read later.
3713 *
6167c205 3714 * This function only works if it is called before the item has been
dc892f73 3715 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
3716 * if another event has not been added behind it.
3717 *
3718 * If another event has been added behind it, it will set the event
3719 * up as discarded, and perform the commit.
3720 *
3721 * If this function is called, do not call ring_buffer_unlock_commit on
3722 * the event.
3723 */
13292494 3724void ring_buffer_discard_commit(struct trace_buffer *buffer,
fa1b47dd
SR
3725 struct ring_buffer_event *event)
3726{
3727 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
3728 int cpu;
3729
3730 /* The event is discarded regardless */
f3b9aae1 3731 rb_event_discard(event);
fa1b47dd 3732
fa743953
SR
3733 cpu = smp_processor_id();
3734 cpu_buffer = buffer->buffers[cpu];
3735
fa1b47dd
SR
3736 /*
3737 * This must only be called if the event has not been
3738 * committed yet. Thus we can assume that preemption
3739 * is still disabled.
3740 */
fa743953 3741 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 3742
a1863c21 3743 rb_decrement_entry(cpu_buffer, event);
0f2541d2 3744 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 3745 goto out;
fa1b47dd 3746
fa1b47dd 3747 out:
fa743953 3748 rb_end_commit(cpu_buffer);
fa1b47dd 3749
58a09ec6 3750 trace_recursive_unlock(cpu_buffer);
f3b9aae1 3751
5168ae50 3752 preempt_enable_notrace();
fa1b47dd
SR
3753
3754}
3755EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3756
7a8e76a3
SR
3757/**
3758 * ring_buffer_write - write data to the buffer without reserving
3759 * @buffer: The ring buffer to write to.
3760 * @length: The length of the data being written (excluding the event header)
3761 * @data: The data to write to the buffer.
3762 *
3763 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3764 * one function. If you already have the data to write to the buffer, it
3765 * may be easier to simply call this function.
3766 *
3767 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3768 * and not the length of the event which would hold the header.
3769 */
13292494 3770int ring_buffer_write(struct trace_buffer *buffer,
01e3e710
DS
3771 unsigned long length,
3772 void *data)
7a8e76a3
SR
3773{
3774 struct ring_buffer_per_cpu *cpu_buffer;
3775 struct ring_buffer_event *event;
7a8e76a3
SR
3776 void *body;
3777 int ret = -EBUSY;
5168ae50 3778 int cpu;
7a8e76a3 3779
5168ae50 3780 preempt_disable_notrace();
bf41a158 3781
52fbe9cd
LJ
3782 if (atomic_read(&buffer->record_disabled))
3783 goto out;
3784
7a8e76a3
SR
3785 cpu = raw_smp_processor_id();
3786
9e01c1b7 3787 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 3788 goto out;
7a8e76a3
SR
3789
3790 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
3791
3792 if (atomic_read(&cpu_buffer->record_disabled))
3793 goto out;
3794
be957c44
SR
3795 if (length > BUF_MAX_DATA_SIZE)
3796 goto out;
3797
985e871b
SRRH
3798 if (unlikely(trace_recursive_lock(cpu_buffer)))
3799 goto out;
3800
62f0b3eb 3801 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 3802 if (!event)
985e871b 3803 goto out_unlock;
7a8e76a3
SR
3804
3805 body = rb_event_data(event);
3806
3807 memcpy(body, data, length);
3808
3809 rb_commit(cpu_buffer, event);
3810
15693458
SRRH
3811 rb_wakeups(buffer, cpu_buffer);
3812
7a8e76a3 3813 ret = 0;
985e871b
SRRH
3814
3815 out_unlock:
3816 trace_recursive_unlock(cpu_buffer);
3817
7a8e76a3 3818 out:
5168ae50 3819 preempt_enable_notrace();
7a8e76a3
SR
3820
3821 return ret;
3822}
c4f50183 3823EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 3824
da58834c 3825static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
3826{
3827 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 3828 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
3829 struct buffer_page *commit = cpu_buffer->commit_page;
3830
77ae365e
SR
3831 /* In case of error, head will be NULL */
3832 if (unlikely(!head))
da58834c 3833 return true;
77ae365e 3834
bf41a158
SR
3835 return reader->read == rb_page_commit(reader) &&
3836 (commit == reader ||
3837 (commit == head &&
3838 head->read == rb_page_commit(commit)));
3839}
3840
7a8e76a3
SR
3841/**
3842 * ring_buffer_record_disable - stop all writes into the buffer
3843 * @buffer: The ring buffer to stop writes to.
3844 *
3845 * This prevents all writes to the buffer. Any attempt to write
3846 * to the buffer after this will fail and return NULL.
3847 *
74401729 3848 * The caller should call synchronize_rcu() after this.
7a8e76a3 3849 */
13292494 3850void ring_buffer_record_disable(struct trace_buffer *buffer)
7a8e76a3
SR
3851{
3852 atomic_inc(&buffer->record_disabled);
3853}
c4f50183 3854EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3855
3856/**
3857 * ring_buffer_record_enable - enable writes to the buffer
3858 * @buffer: The ring buffer to enable writes
3859 *
3860 * Note, multiple disables will need the same number of enables
c41b20e7 3861 * to truly enable the writing (much like preempt_disable).
7a8e76a3 3862 */
13292494 3863void ring_buffer_record_enable(struct trace_buffer *buffer)
7a8e76a3
SR
3864{
3865 atomic_dec(&buffer->record_disabled);
3866}
c4f50183 3867EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3868
499e5470
SR
3869/**
3870 * ring_buffer_record_off - stop all writes into the buffer
3871 * @buffer: The ring buffer to stop writes to.
3872 *
3873 * This prevents all writes to the buffer. Any attempt to write
3874 * to the buffer after this will fail and return NULL.
3875 *
3876 * This is different than ring_buffer_record_disable() as
87abb3b1 3877 * it works like an on/off switch, where as the disable() version
499e5470
SR
3878 * must be paired with a enable().
3879 */
13292494 3880void ring_buffer_record_off(struct trace_buffer *buffer)
499e5470
SR
3881{
3882 unsigned int rd;
3883 unsigned int new_rd;
3884
3885 do {
3886 rd = atomic_read(&buffer->record_disabled);
3887 new_rd = rd | RB_BUFFER_OFF;
3888 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3889}
3890EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3891
3892/**
3893 * ring_buffer_record_on - restart writes into the buffer
3894 * @buffer: The ring buffer to start writes to.
3895 *
3896 * This enables all writes to the buffer that was disabled by
3897 * ring_buffer_record_off().
3898 *
3899 * This is different than ring_buffer_record_enable() as
87abb3b1 3900 * it works like an on/off switch, where as the enable() version
499e5470
SR
3901 * must be paired with a disable().
3902 */
13292494 3903void ring_buffer_record_on(struct trace_buffer *buffer)
499e5470
SR
3904{
3905 unsigned int rd;
3906 unsigned int new_rd;
3907
3908 do {
3909 rd = atomic_read(&buffer->record_disabled);
3910 new_rd = rd & ~RB_BUFFER_OFF;
3911 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3912}
3913EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3914
3915/**
3916 * ring_buffer_record_is_on - return true if the ring buffer can write
3917 * @buffer: The ring buffer to see if write is enabled
3918 *
3919 * Returns true if the ring buffer is in a state that it accepts writes.
3920 */
13292494 3921bool ring_buffer_record_is_on(struct trace_buffer *buffer)
499e5470
SR
3922{
3923 return !atomic_read(&buffer->record_disabled);
3924}
3925
73c8d894
MH
3926/**
3927 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3928 * @buffer: The ring buffer to see if write is set enabled
3929 *
3930 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3931 * Note that this does NOT mean it is in a writable state.
3932 *
3933 * It may return true when the ring buffer has been disabled by
3934 * ring_buffer_record_disable(), as that is a temporary disabling of
3935 * the ring buffer.
3936 */
13292494 3937bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
73c8d894
MH
3938{
3939 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3940}
3941
7a8e76a3
SR
3942/**
3943 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3944 * @buffer: The ring buffer to stop writes to.
3945 * @cpu: The CPU buffer to stop
3946 *
3947 * This prevents all writes to the buffer. Any attempt to write
3948 * to the buffer after this will fail and return NULL.
3949 *
74401729 3950 * The caller should call synchronize_rcu() after this.
7a8e76a3 3951 */
13292494 3952void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
7a8e76a3
SR
3953{
3954 struct ring_buffer_per_cpu *cpu_buffer;
3955
9e01c1b7 3956 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3957 return;
7a8e76a3
SR
3958
3959 cpu_buffer = buffer->buffers[cpu];
3960 atomic_inc(&cpu_buffer->record_disabled);
3961}
c4f50183 3962EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3963
3964/**
3965 * ring_buffer_record_enable_cpu - enable writes to the buffer
3966 * @buffer: The ring buffer to enable writes
3967 * @cpu: The CPU to enable.
3968 *
3969 * Note, multiple disables will need the same number of enables
c41b20e7 3970 * to truly enable the writing (much like preempt_disable).
7a8e76a3 3971 */
13292494 3972void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
7a8e76a3
SR
3973{
3974 struct ring_buffer_per_cpu *cpu_buffer;
3975
9e01c1b7 3976 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3977 return;
7a8e76a3
SR
3978
3979 cpu_buffer = buffer->buffers[cpu];
3980 atomic_dec(&cpu_buffer->record_disabled);
3981}
c4f50183 3982EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3983
f6195aa0
SR
3984/*
3985 * The total entries in the ring buffer is the running counter
3986 * of entries entered into the ring buffer, minus the sum of
3987 * the entries read from the ring buffer and the number of
3988 * entries that were overwritten.
3989 */
3990static inline unsigned long
3991rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3992{
3993 return local_read(&cpu_buffer->entries) -
3994 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3995}
3996
c64e148a
VN
3997/**
3998 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3999 * @buffer: The ring buffer
4000 * @cpu: The per CPU buffer to read from.
4001 */
13292494 4002u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
c64e148a
VN
4003{
4004 unsigned long flags;
4005 struct ring_buffer_per_cpu *cpu_buffer;
4006 struct buffer_page *bpage;
da830e58 4007 u64 ret = 0;
c64e148a
VN
4008
4009 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4010 return 0;
4011
4012 cpu_buffer = buffer->buffers[cpu];
7115e3fc 4013 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
4014 /*
4015 * if the tail is on reader_page, oldest time stamp is on the reader
4016 * page
4017 */
4018 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4019 bpage = cpu_buffer->reader_page;
4020 else
4021 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
4022 if (bpage)
4023 ret = bpage->page->time_stamp;
7115e3fc 4024 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
4025
4026 return ret;
4027}
4028EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4029
4030/**
4031 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
4032 * @buffer: The ring buffer
4033 * @cpu: The per CPU buffer to read from.
4034 */
13292494 4035unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
c64e148a
VN
4036{
4037 struct ring_buffer_per_cpu *cpu_buffer;
4038 unsigned long ret;
4039
4040 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4041 return 0;
4042
4043 cpu_buffer = buffer->buffers[cpu];
4044 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4045
4046 return ret;
4047}
4048EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4049
7a8e76a3
SR
4050/**
4051 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4052 * @buffer: The ring buffer
4053 * @cpu: The per CPU buffer to get the entries from.
4054 */
13292494 4055unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
7a8e76a3
SR
4056{
4057 struct ring_buffer_per_cpu *cpu_buffer;
4058
9e01c1b7 4059 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4060 return 0;
7a8e76a3
SR
4061
4062 cpu_buffer = buffer->buffers[cpu];
554f786e 4063
f6195aa0 4064 return rb_num_of_entries(cpu_buffer);
7a8e76a3 4065}
c4f50183 4066EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
4067
4068/**
884bfe89
SP
4069 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4070 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
4071 * @buffer: The ring buffer
4072 * @cpu: The per CPU buffer to get the number of overruns from
4073 */
13292494 4074unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
7a8e76a3
SR
4075{
4076 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 4077 unsigned long ret;
7a8e76a3 4078
9e01c1b7 4079 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4080 return 0;
7a8e76a3
SR
4081
4082 cpu_buffer = buffer->buffers[cpu];
77ae365e 4083 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
4084
4085 return ret;
7a8e76a3 4086}
c4f50183 4087EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 4088
f0d2c681 4089/**
884bfe89
SP
4090 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4091 * commits failing due to the buffer wrapping around while there are uncommitted
4092 * events, such as during an interrupt storm.
f0d2c681
SR
4093 * @buffer: The ring buffer
4094 * @cpu: The per CPU buffer to get the number of overruns from
4095 */
4096unsigned long
13292494 4097ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
f0d2c681
SR
4098{
4099 struct ring_buffer_per_cpu *cpu_buffer;
4100 unsigned long ret;
4101
4102 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4103 return 0;
4104
4105 cpu_buffer = buffer->buffers[cpu];
77ae365e 4106 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
4107
4108 return ret;
4109}
4110EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4111
884bfe89
SP
4112/**
4113 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4114 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4115 * @buffer: The ring buffer
4116 * @cpu: The per CPU buffer to get the number of overruns from
4117 */
4118unsigned long
13292494 4119ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
884bfe89
SP
4120{
4121 struct ring_buffer_per_cpu *cpu_buffer;
4122 unsigned long ret;
4123
4124 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4125 return 0;
4126
4127 cpu_buffer = buffer->buffers[cpu];
4128 ret = local_read(&cpu_buffer->dropped_events);
4129
4130 return ret;
4131}
4132EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4133
ad964704
SRRH
4134/**
4135 * ring_buffer_read_events_cpu - get the number of events successfully read
4136 * @buffer: The ring buffer
4137 * @cpu: The per CPU buffer to get the number of events read
4138 */
4139unsigned long
13292494 4140ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
ad964704
SRRH
4141{
4142 struct ring_buffer_per_cpu *cpu_buffer;
4143
4144 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4145 return 0;
4146
4147 cpu_buffer = buffer->buffers[cpu];
4148 return cpu_buffer->read;
4149}
4150EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4151
7a8e76a3
SR
4152/**
4153 * ring_buffer_entries - get the number of entries in a buffer
4154 * @buffer: The ring buffer
4155 *
4156 * Returns the total number of entries in the ring buffer
4157 * (all CPU entries)
4158 */
13292494 4159unsigned long ring_buffer_entries(struct trace_buffer *buffer)
7a8e76a3
SR
4160{
4161 struct ring_buffer_per_cpu *cpu_buffer;
4162 unsigned long entries = 0;
4163 int cpu;
4164
4165 /* if you care about this being correct, lock the buffer */
4166 for_each_buffer_cpu(buffer, cpu) {
4167 cpu_buffer = buffer->buffers[cpu];
f6195aa0 4168 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
4169 }
4170
4171 return entries;
4172}
c4f50183 4173EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
4174
4175/**
67b394f7 4176 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
4177 * @buffer: The ring buffer
4178 *
4179 * Returns the total number of overruns in the ring buffer
4180 * (all CPU entries)
4181 */
13292494 4182unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
7a8e76a3
SR
4183{
4184 struct ring_buffer_per_cpu *cpu_buffer;
4185 unsigned long overruns = 0;
4186 int cpu;
4187
4188 /* if you care about this being correct, lock the buffer */
4189 for_each_buffer_cpu(buffer, cpu) {
4190 cpu_buffer = buffer->buffers[cpu];
77ae365e 4191 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
4192 }
4193
4194 return overruns;
4195}
c4f50183 4196EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 4197
642edba5 4198static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
4199{
4200 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4201
d769041f 4202 /* Iterator usage is expected to have record disabled */
651e22f2
SRRH
4203 iter->head_page = cpu_buffer->reader_page;
4204 iter->head = cpu_buffer->reader_page->read;
785888c5 4205 iter->next_event = iter->head;
651e22f2
SRRH
4206
4207 iter->cache_reader_page = iter->head_page;
24607f11 4208 iter->cache_read = cpu_buffer->read;
651e22f2 4209
28e3fc56 4210 if (iter->head) {
d769041f 4211 iter->read_stamp = cpu_buffer->read_stamp;
28e3fc56
SRV
4212 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4213 } else {
abc9b56d 4214 iter->read_stamp = iter->head_page->page->time_stamp;
28e3fc56
SRV
4215 iter->page_stamp = iter->read_stamp;
4216 }
642edba5 4217}
f83c9d0f 4218
642edba5
SR
4219/**
4220 * ring_buffer_iter_reset - reset an iterator
4221 * @iter: The iterator to reset
4222 *
4223 * Resets the iterator, so that it will start from the beginning
4224 * again.
4225 */
4226void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4227{
554f786e 4228 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
4229 unsigned long flags;
4230
554f786e
SR
4231 if (!iter)
4232 return;
4233
4234 cpu_buffer = iter->cpu_buffer;
4235
5389f6fa 4236 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 4237 rb_iter_reset(iter);
5389f6fa 4238 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4239}
c4f50183 4240EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
4241
4242/**
4243 * ring_buffer_iter_empty - check if an iterator has no more to read
4244 * @iter: The iterator to check
4245 */
4246int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4247{
4248 struct ring_buffer_per_cpu *cpu_buffer;
78f7a45d
SRV
4249 struct buffer_page *reader;
4250 struct buffer_page *head_page;
4251 struct buffer_page *commit_page;
ead6ecfd 4252 struct buffer_page *curr_commit_page;
78f7a45d 4253 unsigned commit;
ead6ecfd
SRV
4254 u64 curr_commit_ts;
4255 u64 commit_ts;
7a8e76a3
SR
4256
4257 cpu_buffer = iter->cpu_buffer;
78f7a45d
SRV
4258 reader = cpu_buffer->reader_page;
4259 head_page = cpu_buffer->head_page;
4260 commit_page = cpu_buffer->commit_page;
ead6ecfd
SRV
4261 commit_ts = commit_page->page->time_stamp;
4262
4263 /*
4264 * When the writer goes across pages, it issues a cmpxchg which
4265 * is a mb(), which will synchronize with the rmb here.
4266 * (see rb_tail_page_update())
4267 */
4268 smp_rmb();
78f7a45d 4269 commit = rb_page_commit(commit_page);
ead6ecfd
SRV
4270 /* We want to make sure that the commit page doesn't change */
4271 smp_rmb();
4272
4273 /* Make sure commit page didn't change */
4274 curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4275 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4276
4277 /* If the commit page changed, then there's more data */
4278 if (curr_commit_page != commit_page ||
4279 curr_commit_ts != commit_ts)
4280 return 0;
78f7a45d 4281
ead6ecfd 4282 /* Still racy, as it may return a false positive, but that's OK */
785888c5 4283 return ((iter->head_page == commit_page && iter->head >= commit) ||
78f7a45d
SRV
4284 (iter->head_page == reader && commit_page == head_page &&
4285 head_page->read == commit &&
4286 iter->head == rb_page_commit(cpu_buffer->reader_page)));
7a8e76a3 4287}
c4f50183 4288EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
4289
4290static void
4291rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4292 struct ring_buffer_event *event)
4293{
4294 u64 delta;
4295
334d4169 4296 switch (event->type_len) {
7a8e76a3
SR
4297 case RINGBUF_TYPE_PADDING:
4298 return;
4299
4300 case RINGBUF_TYPE_TIME_EXTEND:
e20044f7 4301 delta = rb_event_time_stamp(event);
7a8e76a3
SR
4302 cpu_buffer->read_stamp += delta;
4303 return;
4304
4305 case RINGBUF_TYPE_TIME_STAMP:
e20044f7 4306 delta = rb_event_time_stamp(event);
dc4e2801 4307 cpu_buffer->read_stamp = delta;
7a8e76a3
SR
4308 return;
4309
4310 case RINGBUF_TYPE_DATA:
4311 cpu_buffer->read_stamp += event->time_delta;
4312 return;
4313
4314 default:
da4d401a 4315 RB_WARN_ON(cpu_buffer, 1);
7a8e76a3
SR
4316 }
4317 return;
4318}
4319
4320static void
4321rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4322 struct ring_buffer_event *event)
4323{
4324 u64 delta;
4325
334d4169 4326 switch (event->type_len) {
7a8e76a3
SR
4327 case RINGBUF_TYPE_PADDING:
4328 return;
4329
4330 case RINGBUF_TYPE_TIME_EXTEND:
e20044f7 4331 delta = rb_event_time_stamp(event);
7a8e76a3
SR
4332 iter->read_stamp += delta;
4333 return;
4334
4335 case RINGBUF_TYPE_TIME_STAMP:
e20044f7 4336 delta = rb_event_time_stamp(event);
dc4e2801 4337 iter->read_stamp = delta;
7a8e76a3
SR
4338 return;
4339
4340 case RINGBUF_TYPE_DATA:
4341 iter->read_stamp += event->time_delta;
4342 return;
4343
4344 default:
da4d401a 4345 RB_WARN_ON(iter->cpu_buffer, 1);
7a8e76a3
SR
4346 }
4347 return;
4348}
4349
d769041f
SR
4350static struct buffer_page *
4351rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 4352{
d769041f 4353 struct buffer_page *reader = NULL;
66a8cb95 4354 unsigned long overwrite;
d769041f 4355 unsigned long flags;
818e3dd3 4356 int nr_loops = 0;
77ae365e 4357 int ret;
d769041f 4358
3e03fb7f 4359 local_irq_save(flags);
0199c4e6 4360 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
4361
4362 again:
818e3dd3
SR
4363 /*
4364 * This should normally only loop twice. But because the
4365 * start of the reader inserts an empty page, it causes
4366 * a case where we will loop three times. There should be no
4367 * reason to loop four times (that I know of).
4368 */
3e89c7bb 4369 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
4370 reader = NULL;
4371 goto out;
4372 }
4373
d769041f
SR
4374 reader = cpu_buffer->reader_page;
4375
4376 /* If there's more to read, return this page */
bf41a158 4377 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
4378 goto out;
4379
4380 /* Never should we have an index greater than the size */
3e89c7bb
SR
4381 if (RB_WARN_ON(cpu_buffer,
4382 cpu_buffer->reader_page->read > rb_page_size(reader)))
4383 goto out;
d769041f
SR
4384
4385 /* check if we caught up to the tail */
4386 reader = NULL;
bf41a158 4387 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 4388 goto out;
7a8e76a3 4389
a5fb8331
SR
4390 /* Don't bother swapping if the ring buffer is empty */
4391 if (rb_num_of_entries(cpu_buffer) == 0)
4392 goto out;
4393
7a8e76a3 4394 /*
d769041f 4395 * Reset the reader page to size zero.
7a8e76a3 4396 */
77ae365e
SR
4397 local_set(&cpu_buffer->reader_page->write, 0);
4398 local_set(&cpu_buffer->reader_page->entries, 0);
4399 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 4400 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 4401
77ae365e
SR
4402 spin:
4403 /*
4404 * Splice the empty reader page into the list around the head.
4405 */
4406 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
4407 if (!reader)
4408 goto out;
0e1ff5d7 4409 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 4410 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 4411
3adc54fa
SR
4412 /*
4413 * cpu_buffer->pages just needs to point to the buffer, it
4414 * has no specific buffer page to point to. Lets move it out
25985edc 4415 * of our way so we don't accidentally swap it.
3adc54fa
SR
4416 */
4417 cpu_buffer->pages = reader->list.prev;
4418
77ae365e 4419 /* The reader page will be pointing to the new head */
6689bed3 4420 rb_set_list_to_head(&cpu_buffer->reader_page->list);
7a8e76a3 4421
66a8cb95
SR
4422 /*
4423 * We want to make sure we read the overruns after we set up our
4424 * pointers to the next object. The writer side does a
4425 * cmpxchg to cross pages which acts as the mb on the writer
4426 * side. Note, the reader will constantly fail the swap
4427 * while the writer is updating the pointers, so this
4428 * guarantees that the overwrite recorded here is the one we
4429 * want to compare with the last_overrun.
4430 */
4431 smp_mb();
4432 overwrite = local_read(&(cpu_buffer->overrun));
4433
77ae365e
SR
4434 /*
4435 * Here's the tricky part.
4436 *
4437 * We need to move the pointer past the header page.
4438 * But we can only do that if a writer is not currently
4439 * moving it. The page before the header page has the
4440 * flag bit '1' set if it is pointing to the page we want.
4441 * but if the writer is in the process of moving it
4442 * than it will be '2' or already moved '0'.
4443 */
4444
4445 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
4446
4447 /*
77ae365e 4448 * If we did not convert it, then we must try again.
7a8e76a3 4449 */
77ae365e
SR
4450 if (!ret)
4451 goto spin;
7a8e76a3 4452
77ae365e 4453 /*
2c2b0a78 4454 * Yay! We succeeded in replacing the page.
77ae365e
SR
4455 *
4456 * Now make the new head point back to the reader page.
4457 */
5ded3dc6 4458 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
6689bed3 4459 rb_inc_page(&cpu_buffer->head_page);
d769041f 4460
2c2b0a78
SRV
4461 local_inc(&cpu_buffer->pages_read);
4462
d769041f
SR
4463 /* Finally update the reader page to the new head */
4464 cpu_buffer->reader_page = reader;
b81f472a 4465 cpu_buffer->reader_page->read = 0;
d769041f 4466
66a8cb95
SR
4467 if (overwrite != cpu_buffer->last_overrun) {
4468 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4469 cpu_buffer->last_overrun = overwrite;
4470 }
4471
d769041f
SR
4472 goto again;
4473
4474 out:
b81f472a
SRRH
4475 /* Update the read_stamp on the first event */
4476 if (reader && reader->read == 0)
4477 cpu_buffer->read_stamp = reader->page->time_stamp;
4478
0199c4e6 4479 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 4480 local_irq_restore(flags);
d769041f
SR
4481
4482 return reader;
4483}
4484
4485static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4486{
4487 struct ring_buffer_event *event;
4488 struct buffer_page *reader;
4489 unsigned length;
4490
4491 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 4492
d769041f 4493 /* This function should not be called when buffer is empty */
3e89c7bb
SR
4494 if (RB_WARN_ON(cpu_buffer, !reader))
4495 return;
7a8e76a3 4496
d769041f
SR
4497 event = rb_reader_event(cpu_buffer);
4498
a1863c21 4499 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 4500 cpu_buffer->read++;
d769041f
SR
4501
4502 rb_update_read_stamp(cpu_buffer, event);
4503
4504 length = rb_event_length(event);
6f807acd 4505 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
4506}
4507
4508static void rb_advance_iter(struct ring_buffer_iter *iter)
4509{
7a8e76a3 4510 struct ring_buffer_per_cpu *cpu_buffer;
7a8e76a3
SR
4511
4512 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4513
785888c5
SRV
4514 /* If head == next_event then we need to jump to the next event */
4515 if (iter->head == iter->next_event) {
4516 /* If the event gets overwritten again, there's nothing to do */
4517 if (rb_iter_head_event(iter) == NULL)
4518 return;
4519 }
4520
4521 iter->head = iter->next_event;
4522
7a8e76a3
SR
4523 /*
4524 * Check if we are at the end of the buffer.
4525 */
785888c5 4526 if (iter->next_event >= rb_page_size(iter->head_page)) {
ea05b57c
SR
4527 /* discarded commits can make the page empty */
4528 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 4529 return;
d769041f 4530 rb_inc_iter(iter);
7a8e76a3
SR
4531 return;
4532 }
4533
785888c5 4534 rb_update_iter_read_stamp(iter, iter->event);
7a8e76a3
SR
4535}
4536
66a8cb95
SR
4537static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4538{
4539 return cpu_buffer->lost_events;
4540}
4541
f83c9d0f 4542static struct ring_buffer_event *
66a8cb95
SR
4543rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4544 unsigned long *lost_events)
7a8e76a3 4545{
7a8e76a3 4546 struct ring_buffer_event *event;
d769041f 4547 struct buffer_page *reader;
818e3dd3 4548 int nr_loops = 0;
7a8e76a3 4549
dc4e2801
TZ
4550 if (ts)
4551 *ts = 0;
7a8e76a3 4552 again:
818e3dd3 4553 /*
69d1b839
SR
4554 * We repeat when a time extend is encountered.
4555 * Since the time extend is always attached to a data event,
4556 * we should never loop more than once.
4557 * (We never hit the following condition more than twice).
818e3dd3 4558 */
69d1b839 4559 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 4560 return NULL;
818e3dd3 4561
d769041f
SR
4562 reader = rb_get_reader_page(cpu_buffer);
4563 if (!reader)
7a8e76a3
SR
4564 return NULL;
4565
d769041f 4566 event = rb_reader_event(cpu_buffer);
7a8e76a3 4567
334d4169 4568 switch (event->type_len) {
7a8e76a3 4569 case RINGBUF_TYPE_PADDING:
2d622719
TZ
4570 if (rb_null_event(event))
4571 RB_WARN_ON(cpu_buffer, 1);
4572 /*
4573 * Because the writer could be discarding every
4574 * event it creates (which would probably be bad)
4575 * if we were to go back to "again" then we may never
4576 * catch up, and will trigger the warn on, or lock
4577 * the box. Return the padding, and we will release
4578 * the current locks, and try again.
4579 */
2d622719 4580 return event;
7a8e76a3
SR
4581
4582 case RINGBUF_TYPE_TIME_EXTEND:
4583 /* Internal data, OK to advance */
d769041f 4584 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
4585 goto again;
4586
4587 case RINGBUF_TYPE_TIME_STAMP:
dc4e2801 4588 if (ts) {
e20044f7 4589 *ts = rb_event_time_stamp(event);
dc4e2801
TZ
4590 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4591 cpu_buffer->cpu, ts);
4592 }
4593 /* Internal data, OK to advance */
d769041f 4594 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
4595 goto again;
4596
4597 case RINGBUF_TYPE_DATA:
dc4e2801 4598 if (ts && !(*ts)) {
7a8e76a3 4599 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 4600 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 4601 cpu_buffer->cpu, ts);
7a8e76a3 4602 }
66a8cb95
SR
4603 if (lost_events)
4604 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
4605 return event;
4606
4607 default:
da4d401a 4608 RB_WARN_ON(cpu_buffer, 1);
7a8e76a3
SR
4609 }
4610
4611 return NULL;
4612}
c4f50183 4613EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 4614
f83c9d0f
SR
4615static struct ring_buffer_event *
4616rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3 4617{
13292494 4618 struct trace_buffer *buffer;
7a8e76a3
SR
4619 struct ring_buffer_per_cpu *cpu_buffer;
4620 struct ring_buffer_event *event;
818e3dd3 4621 int nr_loops = 0;
7a8e76a3 4622
dc4e2801
TZ
4623 if (ts)
4624 *ts = 0;
4625
7a8e76a3
SR
4626 cpu_buffer = iter->cpu_buffer;
4627 buffer = cpu_buffer->buffer;
4628
492a74f4
SR
4629 /*
4630 * Check if someone performed a consuming read to
4631 * the buffer. A consuming read invalidates the iterator
4632 * and we need to reset the iterator in this case.
4633 */
4634 if (unlikely(iter->cache_read != cpu_buffer->read ||
4635 iter->cache_reader_page != cpu_buffer->reader_page))
4636 rb_iter_reset(iter);
4637
7a8e76a3 4638 again:
3c05d748
SR
4639 if (ring_buffer_iter_empty(iter))
4640 return NULL;
4641
818e3dd3 4642 /*
3d2353de
SRV
4643 * As the writer can mess with what the iterator is trying
4644 * to read, just give up if we fail to get an event after
4645 * three tries. The iterator is not as reliable when reading
4646 * the ring buffer with an active write as the consumer is.
4647 * Do not warn if the three failures is reached.
818e3dd3 4648 */
3d2353de 4649 if (++nr_loops > 3)
818e3dd3 4650 return NULL;
818e3dd3 4651
7a8e76a3
SR
4652 if (rb_per_cpu_empty(cpu_buffer))
4653 return NULL;
4654
10e83fd0 4655 if (iter->head >= rb_page_size(iter->head_page)) {
3c05d748
SR
4656 rb_inc_iter(iter);
4657 goto again;
4658 }
4659
7a8e76a3 4660 event = rb_iter_head_event(iter);
3d2353de 4661 if (!event)
785888c5 4662 goto again;
7a8e76a3 4663
334d4169 4664 switch (event->type_len) {
7a8e76a3 4665 case RINGBUF_TYPE_PADDING:
2d622719
TZ
4666 if (rb_null_event(event)) {
4667 rb_inc_iter(iter);
4668 goto again;
4669 }
4670 rb_advance_iter(iter);
4671 return event;
7a8e76a3
SR
4672
4673 case RINGBUF_TYPE_TIME_EXTEND:
4674 /* Internal data, OK to advance */
4675 rb_advance_iter(iter);
4676 goto again;
4677
4678 case RINGBUF_TYPE_TIME_STAMP:
dc4e2801 4679 if (ts) {
e20044f7 4680 *ts = rb_event_time_stamp(event);
dc4e2801
TZ
4681 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4682 cpu_buffer->cpu, ts);
4683 }
4684 /* Internal data, OK to advance */
7a8e76a3
SR
4685 rb_advance_iter(iter);
4686 goto again;
4687
4688 case RINGBUF_TYPE_DATA:
dc4e2801 4689 if (ts && !(*ts)) {
7a8e76a3 4690 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
4691 ring_buffer_normalize_time_stamp(buffer,
4692 cpu_buffer->cpu, ts);
7a8e76a3
SR
4693 }
4694 return event;
4695
4696 default:
da4d401a 4697 RB_WARN_ON(cpu_buffer, 1);
7a8e76a3
SR
4698 }
4699
4700 return NULL;
4701}
c4f50183 4702EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 4703
289a5a25 4704static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
8d707e8e 4705{
289a5a25
SRRH
4706 if (likely(!in_nmi())) {
4707 raw_spin_lock(&cpu_buffer->reader_lock);
4708 return true;
4709 }
4710
8d707e8e
SR
4711 /*
4712 * If an NMI die dumps out the content of the ring buffer
289a5a25
SRRH
4713 * trylock must be used to prevent a deadlock if the NMI
4714 * preempted a task that holds the ring buffer locks. If
4715 * we get the lock then all is fine, if not, then continue
4716 * to do the read, but this can corrupt the ring buffer,
4717 * so it must be permanently disabled from future writes.
4718 * Reading from NMI is a oneshot deal.
8d707e8e 4719 */
289a5a25
SRRH
4720 if (raw_spin_trylock(&cpu_buffer->reader_lock))
4721 return true;
8d707e8e 4722
289a5a25
SRRH
4723 /* Continue without locking, but disable the ring buffer */
4724 atomic_inc(&cpu_buffer->record_disabled);
4725 return false;
4726}
4727
4728static inline void
4729rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4730{
4731 if (likely(locked))
4732 raw_spin_unlock(&cpu_buffer->reader_lock);
4733 return;
8d707e8e
SR
4734}
4735
f83c9d0f
SR
4736/**
4737 * ring_buffer_peek - peek at the next event to be read
4738 * @buffer: The ring buffer to read
4739 * @cpu: The cpu to peak at
4740 * @ts: The timestamp counter of this event.
66a8cb95 4741 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
4742 *
4743 * This will return the event that will be read next, but does
4744 * not consume the data.
4745 */
4746struct ring_buffer_event *
13292494 4747ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
66a8cb95 4748 unsigned long *lost_events)
f83c9d0f
SR
4749{
4750 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 4751 struct ring_buffer_event *event;
f83c9d0f 4752 unsigned long flags;
289a5a25 4753 bool dolock;
f83c9d0f 4754
554f786e 4755 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4756 return NULL;
554f786e 4757
2d622719 4758 again:
8d707e8e 4759 local_irq_save(flags);
289a5a25 4760 dolock = rb_reader_lock(cpu_buffer);
66a8cb95 4761 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
4762 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4763 rb_advance_reader(cpu_buffer);
289a5a25 4764 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 4765 local_irq_restore(flags);
f83c9d0f 4766
1b959e18 4767 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 4768 goto again;
2d622719 4769
f83c9d0f
SR
4770 return event;
4771}
4772
c9b7a4a7
SRV
4773/** ring_buffer_iter_dropped - report if there are dropped events
4774 * @iter: The ring buffer iterator
4775 *
4776 * Returns true if there was dropped events since the last peek.
4777 */
4778bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4779{
4780 bool ret = iter->missed_events != 0;
4781
4782 iter->missed_events = 0;
4783 return ret;
4784}
4785EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4786
f83c9d0f
SR
4787/**
4788 * ring_buffer_iter_peek - peek at the next event to be read
4789 * @iter: The ring buffer iterator
4790 * @ts: The timestamp counter of this event.
4791 *
4792 * This will return the event that will be read next, but does
4793 * not increment the iterator.
4794 */
4795struct ring_buffer_event *
4796ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4797{
4798 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4799 struct ring_buffer_event *event;
4800 unsigned long flags;
4801
2d622719 4802 again:
5389f6fa 4803 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4804 event = rb_iter_peek(iter, ts);
5389f6fa 4805 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 4806
1b959e18 4807 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 4808 goto again;
2d622719 4809
f83c9d0f
SR
4810 return event;
4811}
4812
7a8e76a3
SR
4813/**
4814 * ring_buffer_consume - return an event and consume it
4815 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
4816 * @cpu: the cpu to read the buffer from
4817 * @ts: a variable to store the timestamp (may be NULL)
4818 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
4819 *
4820 * Returns the next event in the ring buffer, and that event is consumed.
4821 * Meaning, that sequential reads will keep returning a different event,
4822 * and eventually empty the ring buffer if the producer is slower.
4823 */
4824struct ring_buffer_event *
13292494 4825ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
66a8cb95 4826 unsigned long *lost_events)
7a8e76a3 4827{
554f786e
SR
4828 struct ring_buffer_per_cpu *cpu_buffer;
4829 struct ring_buffer_event *event = NULL;
f83c9d0f 4830 unsigned long flags;
289a5a25 4831 bool dolock;
7a8e76a3 4832
2d622719 4833 again:
554f786e
SR
4834 /* might be called in atomic */
4835 preempt_disable();
4836
9e01c1b7 4837 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 4838 goto out;
7a8e76a3 4839
554f786e 4840 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4841 local_irq_save(flags);
289a5a25 4842 dolock = rb_reader_lock(cpu_buffer);
f83c9d0f 4843
66a8cb95
SR
4844 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4845 if (event) {
4846 cpu_buffer->lost_events = 0;
469535a5 4847 rb_advance_reader(cpu_buffer);
66a8cb95 4848 }
7a8e76a3 4849
289a5a25 4850 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 4851 local_irq_restore(flags);
f83c9d0f 4852
554f786e
SR
4853 out:
4854 preempt_enable();
4855
1b959e18 4856 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 4857 goto again;
2d622719 4858
7a8e76a3
SR
4859 return event;
4860}
c4f50183 4861EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
4862
4863/**
72c9ddfd 4864 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
4865 * @buffer: The ring buffer to read from
4866 * @cpu: The cpu buffer to iterate over
31b265b3 4867 * @flags: gfp flags to use for memory allocation
7a8e76a3 4868 *
72c9ddfd
DM
4869 * This performs the initial preparations necessary to iterate
4870 * through the buffer. Memory is allocated, buffer recording
4871 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 4872 *
6167c205 4873 * Disabling buffer recording prevents the reading from being
72c9ddfd
DM
4874 * corrupted. This is not a consuming read, so a producer is not
4875 * expected.
4876 *
4877 * After a sequence of ring_buffer_read_prepare calls, the user is
d611851b 4878 * expected to make at least one call to ring_buffer_read_prepare_sync.
72c9ddfd
DM
4879 * Afterwards, ring_buffer_read_start is invoked to get things going
4880 * for real.
4881 *
d611851b 4882 * This overall must be paired with ring_buffer_read_finish.
7a8e76a3
SR
4883 */
4884struct ring_buffer_iter *
13292494 4885ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
7a8e76a3
SR
4886{
4887 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 4888 struct ring_buffer_iter *iter;
7a8e76a3 4889
9e01c1b7 4890 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4891 return NULL;
7a8e76a3 4892
785888c5 4893 iter = kzalloc(sizeof(*iter), flags);
7a8e76a3 4894 if (!iter)
8aabee57 4895 return NULL;
7a8e76a3 4896
785888c5
SRV
4897 iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4898 if (!iter->event) {
4899 kfree(iter);
4900 return NULL;
4901 }
4902
7a8e76a3
SR
4903 cpu_buffer = buffer->buffers[cpu];
4904
4905 iter->cpu_buffer = cpu_buffer;
4906
07b8b10e 4907 atomic_inc(&cpu_buffer->resize_disabled);
72c9ddfd
DM
4908
4909 return iter;
4910}
4911EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4912
4913/**
4914 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4915 *
4916 * All previously invoked ring_buffer_read_prepare calls to prepare
4917 * iterators will be synchronized. Afterwards, read_buffer_read_start
4918 * calls on those iterators are allowed.
4919 */
4920void
4921ring_buffer_read_prepare_sync(void)
4922{
74401729 4923 synchronize_rcu();
72c9ddfd
DM
4924}
4925EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4926
4927/**
4928 * ring_buffer_read_start - start a non consuming read of the buffer
4929 * @iter: The iterator returned by ring_buffer_read_prepare
4930 *
4931 * This finalizes the startup of an iteration through the buffer.
4932 * The iterator comes from a call to ring_buffer_read_prepare and
4933 * an intervening ring_buffer_read_prepare_sync must have been
4934 * performed.
4935 *
d611851b 4936 * Must be paired with ring_buffer_read_finish.
72c9ddfd
DM
4937 */
4938void
4939ring_buffer_read_start(struct ring_buffer_iter *iter)
4940{
4941 struct ring_buffer_per_cpu *cpu_buffer;
4942 unsigned long flags;
4943
4944 if (!iter)
4945 return;
4946
4947 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4948
5389f6fa 4949 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4950 arch_spin_lock(&cpu_buffer->lock);
642edba5 4951 rb_iter_reset(iter);
0199c4e6 4952 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4953 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4954}
c4f50183 4955EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4956
4957/**
d611851b 4958 * ring_buffer_read_finish - finish reading the iterator of the buffer
7a8e76a3
SR
4959 * @iter: The iterator retrieved by ring_buffer_start
4960 *
4961 * This re-enables the recording to the buffer, and frees the
4962 * iterator.
4963 */
4964void
4965ring_buffer_read_finish(struct ring_buffer_iter *iter)
4966{
4967 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4968 unsigned long flags;
7a8e76a3 4969
659f451f
SR
4970 /*
4971 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4972 * to check the integrity of the ring buffer.
4973 * Must prevent readers from trying to read, as the check
4974 * clears the HEAD page and readers require it.
659f451f 4975 */
9366c1ba 4976 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4977 rb_check_pages(cpu_buffer);
9366c1ba 4978 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4979
07b8b10e 4980 atomic_dec(&cpu_buffer->resize_disabled);
785888c5 4981 kfree(iter->event);
7a8e76a3
SR
4982 kfree(iter);
4983}
c4f50183 4984EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4985
4986/**
bc1a72af 4987 * ring_buffer_iter_advance - advance the iterator to the next location
7a8e76a3 4988 * @iter: The ring buffer iterator
7a8e76a3 4989 *
bc1a72af
SRV
4990 * Move the location of the iterator such that the next read will
4991 * be the next location of the iterator.
7a8e76a3 4992 */
bc1a72af 4993void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
7a8e76a3 4994{
f83c9d0f
SR
4995 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4996 unsigned long flags;
7a8e76a3 4997
5389f6fa 4998 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4999
7a8e76a3
SR
5000 rb_advance_iter(iter);
5001
bc1a72af 5002 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 5003}
bc1a72af 5004EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
7a8e76a3
SR
5005
5006/**
5007 * ring_buffer_size - return the size of the ring buffer (in bytes)
5008 * @buffer: The ring buffer.
59e7cffe 5009 * @cpu: The CPU to get ring buffer size from.
7a8e76a3 5010 */
13292494 5011unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
7a8e76a3 5012{
438ced17
VN
5013 /*
5014 * Earlier, this method returned
5015 * BUF_PAGE_SIZE * buffer->nr_pages
5016 * Since the nr_pages field is now removed, we have converted this to
5017 * return the per cpu buffer value.
5018 */
5019 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5020 return 0;
5021
5022 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 5023}
c4f50183 5024EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
5025
5026static void
5027rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5028{
77ae365e
SR
5029 rb_head_page_deactivate(cpu_buffer);
5030
7a8e76a3 5031 cpu_buffer->head_page
3adc54fa 5032 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 5033 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 5034 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 5035 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 5036
6f807acd 5037 cpu_buffer->head_page->read = 0;
bf41a158
SR
5038
5039 cpu_buffer->tail_page = cpu_buffer->head_page;
5040 cpu_buffer->commit_page = cpu_buffer->head_page;
5041
5042 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 5043 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 5044 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 5045 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 5046 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 5047 cpu_buffer->reader_page->read = 0;
7a8e76a3 5048
c64e148a 5049 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 5050 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
5051 local_set(&cpu_buffer->commit_overrun, 0);
5052 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 5053 local_set(&cpu_buffer->entries, 0);
fa743953
SR
5054 local_set(&cpu_buffer->committing, 0);
5055 local_set(&cpu_buffer->commits, 0);
2c2b0a78
SRV
5056 local_set(&cpu_buffer->pages_touched, 0);
5057 local_set(&cpu_buffer->pages_read, 0);
03329f99 5058 cpu_buffer->last_pages_touch = 0;
2c2b0a78 5059 cpu_buffer->shortest_full = 0;
77ae365e 5060 cpu_buffer->read = 0;
c64e148a 5061 cpu_buffer->read_bytes = 0;
69507c06 5062
10464b4a
SRV
5063 rb_time_set(&cpu_buffer->write_stamp, 0);
5064 rb_time_set(&cpu_buffer->before_stamp, 0);
77ae365e 5065
8672e494
SRV
5066 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5067
66a8cb95
SR
5068 cpu_buffer->lost_events = 0;
5069 cpu_buffer->last_overrun = 0;
5070
77ae365e 5071 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
5072}
5073
b23d7a5f
NP
5074/* Must have disabled the cpu buffer then done a synchronize_rcu */
5075static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5076{
5077 unsigned long flags;
5078
5079 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5080
5081 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5082 goto out;
5083
5084 arch_spin_lock(&cpu_buffer->lock);
5085
5086 rb_reset_cpu(cpu_buffer);
5087
5088 arch_spin_unlock(&cpu_buffer->lock);
5089
5090 out:
5091 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5092}
5093
7a8e76a3
SR
5094/**
5095 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5096 * @buffer: The ring buffer to reset a per cpu buffer of
5097 * @cpu: The CPU buffer to be reset
5098 */
13292494 5099void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
7a8e76a3
SR
5100{
5101 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
7a8e76a3 5102
9e01c1b7 5103 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 5104 return;
7a8e76a3 5105
bbeb9746
GK
5106 /* prevent another thread from changing buffer sizes */
5107 mutex_lock(&buffer->mutex);
5108
07b8b10e 5109 atomic_inc(&cpu_buffer->resize_disabled);
41ede23e
SR
5110 atomic_inc(&cpu_buffer->record_disabled);
5111
83f40318 5112 /* Make sure all commits have finished */
74401729 5113 synchronize_rcu();
83f40318 5114
b23d7a5f 5115 reset_disabled_cpu_buffer(cpu_buffer);
f83c9d0f 5116
b23d7a5f
NP
5117 atomic_dec(&cpu_buffer->record_disabled);
5118 atomic_dec(&cpu_buffer->resize_disabled);
bbeb9746
GK
5119
5120 mutex_unlock(&buffer->mutex);
b23d7a5f
NP
5121}
5122EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
41b6a95d 5123
b23d7a5f
NP
5124/**
5125 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5126 * @buffer: The ring buffer to reset a per cpu buffer of
5127 * @cpu: The CPU buffer to be reset
5128 */
5129void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5130{
5131 struct ring_buffer_per_cpu *cpu_buffer;
5132 int cpu;
7a8e76a3 5133
bbeb9746
GK
5134 /* prevent another thread from changing buffer sizes */
5135 mutex_lock(&buffer->mutex);
5136
b23d7a5f
NP
5137 for_each_online_buffer_cpu(buffer, cpu) {
5138 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 5139
b23d7a5f
NP
5140 atomic_inc(&cpu_buffer->resize_disabled);
5141 atomic_inc(&cpu_buffer->record_disabled);
5142 }
f83c9d0f 5143
b23d7a5f
NP
5144 /* Make sure all commits have finished */
5145 synchronize_rcu();
41ede23e 5146
b23d7a5f
NP
5147 for_each_online_buffer_cpu(buffer, cpu) {
5148 cpu_buffer = buffer->buffers[cpu];
5149
5150 reset_disabled_cpu_buffer(cpu_buffer);
5151
5152 atomic_dec(&cpu_buffer->record_disabled);
5153 atomic_dec(&cpu_buffer->resize_disabled);
5154 }
bbeb9746
GK
5155
5156 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
5157}
5158
5159/**
5160 * ring_buffer_reset - reset a ring buffer
5161 * @buffer: The ring buffer to reset all cpu buffers
5162 */
13292494 5163void ring_buffer_reset(struct trace_buffer *buffer)
7a8e76a3 5164{
b23d7a5f 5165 struct ring_buffer_per_cpu *cpu_buffer;
7a8e76a3
SR
5166 int cpu;
5167
b23d7a5f
NP
5168 for_each_buffer_cpu(buffer, cpu) {
5169 cpu_buffer = buffer->buffers[cpu];
5170
5171 atomic_inc(&cpu_buffer->resize_disabled);
5172 atomic_inc(&cpu_buffer->record_disabled);
5173 }
5174
5175 /* Make sure all commits have finished */
5176 synchronize_rcu();
5177
5178 for_each_buffer_cpu(buffer, cpu) {
5179 cpu_buffer = buffer->buffers[cpu];
5180
5181 reset_disabled_cpu_buffer(cpu_buffer);
5182
5183 atomic_dec(&cpu_buffer->record_disabled);
5184 atomic_dec(&cpu_buffer->resize_disabled);
5185 }
7a8e76a3 5186}
c4f50183 5187EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
5188
5189/**
5190 * rind_buffer_empty - is the ring buffer empty?
5191 * @buffer: The ring buffer to test
5192 */
13292494 5193bool ring_buffer_empty(struct trace_buffer *buffer)
7a8e76a3
SR
5194{
5195 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 5196 unsigned long flags;
289a5a25 5197 bool dolock;
7a8e76a3 5198 int cpu;
d4788207 5199 int ret;
7a8e76a3
SR
5200
5201 /* yes this is racy, but if you don't like the race, lock the buffer */
5202 for_each_buffer_cpu(buffer, cpu) {
5203 cpu_buffer = buffer->buffers[cpu];
8d707e8e 5204 local_irq_save(flags);
289a5a25 5205 dolock = rb_reader_lock(cpu_buffer);
d4788207 5206 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 5207 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e
SR
5208 local_irq_restore(flags);
5209
d4788207 5210 if (!ret)
3d4e204d 5211 return false;
7a8e76a3 5212 }
554f786e 5213
3d4e204d 5214 return true;
7a8e76a3 5215}
c4f50183 5216EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
5217
5218/**
5219 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5220 * @buffer: The ring buffer
5221 * @cpu: The CPU buffer to test
5222 */
13292494 5223bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
7a8e76a3
SR
5224{
5225 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 5226 unsigned long flags;
289a5a25 5227 bool dolock;
8aabee57 5228 int ret;
7a8e76a3 5229
9e01c1b7 5230 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3d4e204d 5231 return true;
7a8e76a3
SR
5232
5233 cpu_buffer = buffer->buffers[cpu];
8d707e8e 5234 local_irq_save(flags);
289a5a25 5235 dolock = rb_reader_lock(cpu_buffer);
554f786e 5236 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 5237 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 5238 local_irq_restore(flags);
554f786e
SR
5239
5240 return ret;
7a8e76a3 5241}
c4f50183 5242EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 5243
85bac32c 5244#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
5245/**
5246 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5247 * @buffer_a: One buffer to swap with
5248 * @buffer_b: The other buffer to swap with
59e7cffe 5249 * @cpu: the CPU of the buffers to swap
7a8e76a3
SR
5250 *
5251 * This function is useful for tracers that want to take a "snapshot"
5252 * of a CPU buffer and has another back up buffer lying around.
5253 * it is expected that the tracer handles the cpu buffer not being
5254 * used at the moment.
5255 */
13292494
SRV
5256int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5257 struct trace_buffer *buffer_b, int cpu)
7a8e76a3
SR
5258{
5259 struct ring_buffer_per_cpu *cpu_buffer_a;
5260 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
5261 int ret = -EINVAL;
5262
9e01c1b7
RR
5263 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5264 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 5265 goto out;
7a8e76a3 5266
438ced17
VN
5267 cpu_buffer_a = buffer_a->buffers[cpu];
5268 cpu_buffer_b = buffer_b->buffers[cpu];
5269
7a8e76a3 5270 /* At least make sure the two buffers are somewhat the same */
438ced17 5271 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
5272 goto out;
5273
5274 ret = -EAGAIN;
7a8e76a3 5275
97b17efe 5276 if (atomic_read(&buffer_a->record_disabled))
554f786e 5277 goto out;
97b17efe
SR
5278
5279 if (atomic_read(&buffer_b->record_disabled))
554f786e 5280 goto out;
97b17efe 5281
97b17efe 5282 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 5283 goto out;
97b17efe
SR
5284
5285 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 5286 goto out;
97b17efe 5287
7a8e76a3 5288 /*
74401729 5289 * We can't do a synchronize_rcu here because this
7a8e76a3
SR
5290 * function can be called in atomic context.
5291 * Normally this will be called from the same CPU as cpu.
5292 * If not it's up to the caller to protect this.
5293 */
5294 atomic_inc(&cpu_buffer_a->record_disabled);
5295 atomic_inc(&cpu_buffer_b->record_disabled);
5296
98277991
SR
5297 ret = -EBUSY;
5298 if (local_read(&cpu_buffer_a->committing))
5299 goto out_dec;
5300 if (local_read(&cpu_buffer_b->committing))
5301 goto out_dec;
5302
7a8e76a3
SR
5303 buffer_a->buffers[cpu] = cpu_buffer_b;
5304 buffer_b->buffers[cpu] = cpu_buffer_a;
5305
5306 cpu_buffer_b->buffer = buffer_a;
5307 cpu_buffer_a->buffer = buffer_b;
5308
98277991
SR
5309 ret = 0;
5310
5311out_dec:
7a8e76a3
SR
5312 atomic_dec(&cpu_buffer_a->record_disabled);
5313 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 5314out:
554f786e 5315 return ret;
7a8e76a3 5316}
c4f50183 5317EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 5318#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 5319
8789a9e7
SR
5320/**
5321 * ring_buffer_alloc_read_page - allocate a page to read from buffer
5322 * @buffer: the buffer to allocate for.
d611851b 5323 * @cpu: the cpu buffer to allocate.
8789a9e7
SR
5324 *
5325 * This function is used in conjunction with ring_buffer_read_page.
5326 * When reading a full page from the ring buffer, these functions
5327 * can be used to speed up the process. The calling function should
5328 * allocate a few pages first with this function. Then when it
5329 * needs to get pages from the ring buffer, it passes the result
5330 * of this function into ring_buffer_read_page, which will swap
5331 * the page that was allocated, with the read page of the buffer.
5332 *
5333 * Returns:
a7e52ad7 5334 * The page allocated, or ERR_PTR
8789a9e7 5335 */
13292494 5336void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
8789a9e7 5337{
a7e52ad7 5338 struct ring_buffer_per_cpu *cpu_buffer;
73a757e6
SRV
5339 struct buffer_data_page *bpage = NULL;
5340 unsigned long flags;
7ea59064 5341 struct page *page;
8789a9e7 5342
a7e52ad7
SRV
5343 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5344 return ERR_PTR(-ENODEV);
5345
5346 cpu_buffer = buffer->buffers[cpu];
73a757e6
SRV
5347 local_irq_save(flags);
5348 arch_spin_lock(&cpu_buffer->lock);
5349
5350 if (cpu_buffer->free_page) {
5351 bpage = cpu_buffer->free_page;
5352 cpu_buffer->free_page = NULL;
5353 }
5354
5355 arch_spin_unlock(&cpu_buffer->lock);
5356 local_irq_restore(flags);
5357
5358 if (bpage)
5359 goto out;
5360
d7ec4bfe
VN
5361 page = alloc_pages_node(cpu_to_node(cpu),
5362 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 5363 if (!page)
a7e52ad7 5364 return ERR_PTR(-ENOMEM);
8789a9e7 5365
7ea59064 5366 bpage = page_address(page);
8789a9e7 5367
73a757e6 5368 out:
ef7a4a16
SR
5369 rb_init_page(bpage);
5370
044fa782 5371 return bpage;
8789a9e7 5372}
d6ce96da 5373EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
5374
5375/**
5376 * ring_buffer_free_read_page - free an allocated read page
5377 * @buffer: the buffer the page was allocate for
73a757e6 5378 * @cpu: the cpu buffer the page came from
8789a9e7
SR
5379 * @data: the page to free
5380 *
5381 * Free a page allocated from ring_buffer_alloc_read_page.
5382 */
13292494 5383void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
8789a9e7 5384{
73a757e6
SRV
5385 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5386 struct buffer_data_page *bpage = data;
ae415fa4 5387 struct page *page = virt_to_page(bpage);
73a757e6
SRV
5388 unsigned long flags;
5389
ae415fa4
SRV
5390 /* If the page is still in use someplace else, we can't reuse it */
5391 if (page_ref_count(page) > 1)
5392 goto out;
5393
73a757e6
SRV
5394 local_irq_save(flags);
5395 arch_spin_lock(&cpu_buffer->lock);
5396
5397 if (!cpu_buffer->free_page) {
5398 cpu_buffer->free_page = bpage;
5399 bpage = NULL;
5400 }
5401
5402 arch_spin_unlock(&cpu_buffer->lock);
5403 local_irq_restore(flags);
5404
ae415fa4 5405 out:
73a757e6 5406 free_page((unsigned long)bpage);
8789a9e7 5407}
d6ce96da 5408EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
5409
5410/**
5411 * ring_buffer_read_page - extract a page from the ring buffer
5412 * @buffer: buffer to extract from
5413 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 5414 * @len: amount to extract
8789a9e7
SR
5415 * @cpu: the cpu of the buffer to extract
5416 * @full: should the extraction only happen when the page is full.
5417 *
5418 * This function will pull out a page from the ring buffer and consume it.
5419 * @data_page must be the address of the variable that was returned
5420 * from ring_buffer_alloc_read_page. This is because the page might be used
5421 * to swap with a page in the ring buffer.
5422 *
5423 * for example:
d611851b 5424 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
a7e52ad7
SRV
5425 * if (IS_ERR(rpage))
5426 * return PTR_ERR(rpage);
ef7a4a16 5427 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
5428 * if (ret >= 0)
5429 * process_page(rpage, ret);
8789a9e7
SR
5430 *
5431 * When @full is set, the function will not return true unless
5432 * the writer is off the reader page.
5433 *
5434 * Note: it is up to the calling functions to handle sleeps and wakeups.
5435 * The ring buffer can be used anywhere in the kernel and can not
5436 * blindly call wake_up. The layer that uses the ring buffer must be
5437 * responsible for that.
5438 *
5439 * Returns:
667d2412
LJ
5440 * >=0 if data has been transferred, returns the offset of consumed data.
5441 * <0 if no data has been transferred.
8789a9e7 5442 */
13292494 5443int ring_buffer_read_page(struct trace_buffer *buffer,
ef7a4a16 5444 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
5445{
5446 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5447 struct ring_buffer_event *event;
044fa782 5448 struct buffer_data_page *bpage;
ef7a4a16 5449 struct buffer_page *reader;
ff0ff84a 5450 unsigned long missed_events;
8789a9e7 5451 unsigned long flags;
ef7a4a16 5452 unsigned int commit;
667d2412 5453 unsigned int read;
4f3640f8 5454 u64 save_timestamp;
667d2412 5455 int ret = -1;
8789a9e7 5456
554f786e
SR
5457 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5458 goto out;
5459
474d32b6
SR
5460 /*
5461 * If len is not big enough to hold the page header, then
5462 * we can not copy anything.
5463 */
5464 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 5465 goto out;
474d32b6
SR
5466
5467 len -= BUF_PAGE_HDR_SIZE;
5468
8789a9e7 5469 if (!data_page)
554f786e 5470 goto out;
8789a9e7 5471
044fa782
SR
5472 bpage = *data_page;
5473 if (!bpage)
554f786e 5474 goto out;
8789a9e7 5475
5389f6fa 5476 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 5477
ef7a4a16
SR
5478 reader = rb_get_reader_page(cpu_buffer);
5479 if (!reader)
554f786e 5480 goto out_unlock;
8789a9e7 5481
ef7a4a16
SR
5482 event = rb_reader_event(cpu_buffer);
5483
5484 read = reader->read;
5485 commit = rb_page_commit(reader);
667d2412 5486
66a8cb95 5487 /* Check if any events were dropped */
ff0ff84a 5488 missed_events = cpu_buffer->lost_events;
66a8cb95 5489
8789a9e7 5490 /*
474d32b6
SR
5491 * If this page has been partially read or
5492 * if len is not big enough to read the rest of the page or
5493 * a writer is still on the page, then
5494 * we must copy the data from the page to the buffer.
5495 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 5496 */
474d32b6 5497 if (read || (len < (commit - read)) ||
ef7a4a16 5498 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 5499 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
5500 unsigned int rpos = read;
5501 unsigned int pos = 0;
ef7a4a16 5502 unsigned int size;
8789a9e7
SR
5503
5504 if (full)
554f786e 5505 goto out_unlock;
8789a9e7 5506
ef7a4a16
SR
5507 if (len > (commit - read))
5508 len = (commit - read);
5509
69d1b839
SR
5510 /* Always keep the time extend and data together */
5511 size = rb_event_ts_length(event);
ef7a4a16
SR
5512
5513 if (len < size)
554f786e 5514 goto out_unlock;
ef7a4a16 5515
4f3640f8
SR
5516 /* save the current timestamp, since the user will need it */
5517 save_timestamp = cpu_buffer->read_stamp;
5518
ef7a4a16
SR
5519 /* Need to copy one event at a time */
5520 do {
e1e35927
DS
5521 /* We need the size of one event, because
5522 * rb_advance_reader only advances by one event,
5523 * whereas rb_event_ts_length may include the size of
5524 * one or two events.
5525 * We have already ensured there's enough space if this
5526 * is a time extend. */
5527 size = rb_event_length(event);
474d32b6 5528 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
5529
5530 len -= size;
5531
5532 rb_advance_reader(cpu_buffer);
474d32b6
SR
5533 rpos = reader->read;
5534 pos += size;
ef7a4a16 5535
18fab912
HY
5536 if (rpos >= commit)
5537 break;
5538
ef7a4a16 5539 event = rb_reader_event(cpu_buffer);
69d1b839
SR
5540 /* Always keep the time extend and data together */
5541 size = rb_event_ts_length(event);
e1e35927 5542 } while (len >= size);
667d2412
LJ
5543
5544 /* update bpage */
ef7a4a16 5545 local_set(&bpage->commit, pos);
4f3640f8 5546 bpage->time_stamp = save_timestamp;
ef7a4a16 5547
474d32b6
SR
5548 /* we copied everything to the beginning */
5549 read = 0;
8789a9e7 5550 } else {
afbab76a 5551 /* update the entry counter */
77ae365e 5552 cpu_buffer->read += rb_page_entries(reader);
c64e148a 5553 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 5554
8789a9e7 5555 /* swap the pages */
044fa782 5556 rb_init_page(bpage);
ef7a4a16
SR
5557 bpage = reader->page;
5558 reader->page = *data_page;
5559 local_set(&reader->write, 0);
778c55d4 5560 local_set(&reader->entries, 0);
ef7a4a16 5561 reader->read = 0;
044fa782 5562 *data_page = bpage;
ff0ff84a
SR
5563
5564 /*
5565 * Use the real_end for the data size,
5566 * This gives us a chance to store the lost events
5567 * on the page.
5568 */
5569 if (reader->real_end)
5570 local_set(&bpage->commit, reader->real_end);
8789a9e7 5571 }
667d2412 5572 ret = read;
8789a9e7 5573
66a8cb95 5574 cpu_buffer->lost_events = 0;
2711ca23
SR
5575
5576 commit = local_read(&bpage->commit);
66a8cb95
SR
5577 /*
5578 * Set a flag in the commit field if we lost events
5579 */
ff0ff84a 5580 if (missed_events) {
ff0ff84a
SR
5581 /* If there is room at the end of the page to save the
5582 * missed events, then record it there.
5583 */
5584 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5585 memcpy(&bpage->data[commit], &missed_events,
5586 sizeof(missed_events));
5587 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 5588 commit += sizeof(missed_events);
ff0ff84a 5589 }
66a8cb95 5590 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 5591 }
66a8cb95 5592
2711ca23
SR
5593 /*
5594 * This page may be off to user land. Zero it out here.
5595 */
5596 if (commit < BUF_PAGE_SIZE)
5597 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5598
554f786e 5599 out_unlock:
5389f6fa 5600 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 5601
554f786e 5602 out:
8789a9e7
SR
5603 return ret;
5604}
d6ce96da 5605EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 5606
b32614c0
SAS
5607/*
5608 * We only allocate new buffers, never free them if the CPU goes down.
5609 * If we were to free the buffer, then the user would lose any trace that was in
5610 * the buffer.
5611 */
5612int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
554f786e 5613{
13292494 5614 struct trace_buffer *buffer;
9b94a8fb
SRRH
5615 long nr_pages_same;
5616 int cpu_i;
5617 unsigned long nr_pages;
554f786e 5618
13292494 5619 buffer = container_of(node, struct trace_buffer, node);
b32614c0
SAS
5620 if (cpumask_test_cpu(cpu, buffer->cpumask))
5621 return 0;
5622
5623 nr_pages = 0;
5624 nr_pages_same = 1;
5625 /* check if all cpu sizes are same */
5626 for_each_buffer_cpu(buffer, cpu_i) {
5627 /* fill in the size from first enabled cpu */
5628 if (nr_pages == 0)
5629 nr_pages = buffer->buffers[cpu_i]->nr_pages;
5630 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5631 nr_pages_same = 0;
5632 break;
554f786e 5633 }
554f786e 5634 }
b32614c0
SAS
5635 /* allocate minimum pages, user can later expand it */
5636 if (!nr_pages_same)
5637 nr_pages = 2;
5638 buffer->buffers[cpu] =
5639 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5640 if (!buffer->buffers[cpu]) {
5641 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5642 cpu);
5643 return -ENOMEM;
5644 }
5645 smp_wmb();
5646 cpumask_set_cpu(cpu, buffer->cpumask);
5647 return 0;
554f786e 5648}
6c43e554
SRRH
5649
5650#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5651/*
5652 * This is a basic integrity check of the ring buffer.
5653 * Late in the boot cycle this test will run when configured in.
5654 * It will kick off a thread per CPU that will go into a loop
5655 * writing to the per cpu ring buffer various sizes of data.
5656 * Some of the data will be large items, some small.
5657 *
5658 * Another thread is created that goes into a spin, sending out
5659 * IPIs to the other CPUs to also write into the ring buffer.
5660 * this is to test the nesting ability of the buffer.
5661 *
5662 * Basic stats are recorded and reported. If something in the
5663 * ring buffer should happen that's not expected, a big warning
5664 * is displayed and all ring buffers are disabled.
5665 */
5666static struct task_struct *rb_threads[NR_CPUS] __initdata;
5667
5668struct rb_test_data {
13292494 5669 struct trace_buffer *buffer;
6c43e554
SRRH
5670 unsigned long events;
5671 unsigned long bytes_written;
5672 unsigned long bytes_alloc;
5673 unsigned long bytes_dropped;
5674 unsigned long events_nested;
5675 unsigned long bytes_written_nested;
5676 unsigned long bytes_alloc_nested;
5677 unsigned long bytes_dropped_nested;
5678 int min_size_nested;
5679 int max_size_nested;
5680 int max_size;
5681 int min_size;
5682 int cpu;
5683 int cnt;
5684};
5685
5686static struct rb_test_data rb_data[NR_CPUS] __initdata;
5687
5688/* 1 meg per cpu */
5689#define RB_TEST_BUFFER_SIZE 1048576
5690
5691static char rb_string[] __initdata =
5692 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5693 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5694 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5695
5696static bool rb_test_started __initdata;
5697
5698struct rb_item {
5699 int size;
5700 char str[];
5701};
5702
5703static __init int rb_write_something(struct rb_test_data *data, bool nested)
5704{
5705 struct ring_buffer_event *event;
5706 struct rb_item *item;
5707 bool started;
5708 int event_len;
5709 int size;
5710 int len;
5711 int cnt;
5712
5713 /* Have nested writes different that what is written */
5714 cnt = data->cnt + (nested ? 27 : 0);
5715
5716 /* Multiply cnt by ~e, to make some unique increment */
40ed29b3 5717 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
6c43e554
SRRH
5718
5719 len = size + sizeof(struct rb_item);
5720
5721 started = rb_test_started;
5722 /* read rb_test_started before checking buffer enabled */
5723 smp_rmb();
5724
5725 event = ring_buffer_lock_reserve(data->buffer, len);
5726 if (!event) {
5727 /* Ignore dropped events before test starts. */
5728 if (started) {
5729 if (nested)
5730 data->bytes_dropped += len;
5731 else
5732 data->bytes_dropped_nested += len;
5733 }
5734 return len;
5735 }
5736
5737 event_len = ring_buffer_event_length(event);
5738
5739 if (RB_WARN_ON(data->buffer, event_len < len))
5740 goto out;
5741
5742 item = ring_buffer_event_data(event);
5743 item->size = size;
5744 memcpy(item->str, rb_string, size);
5745
5746 if (nested) {
5747 data->bytes_alloc_nested += event_len;
5748 data->bytes_written_nested += len;
5749 data->events_nested++;
5750 if (!data->min_size_nested || len < data->min_size_nested)
5751 data->min_size_nested = len;
5752 if (len > data->max_size_nested)
5753 data->max_size_nested = len;
5754 } else {
5755 data->bytes_alloc += event_len;
5756 data->bytes_written += len;
5757 data->events++;
5758 if (!data->min_size || len < data->min_size)
5759 data->max_size = len;
5760 if (len > data->max_size)
5761 data->max_size = len;
5762 }
5763
5764 out:
5765 ring_buffer_unlock_commit(data->buffer, event);
5766
5767 return 0;
5768}
5769
5770static __init int rb_test(void *arg)
5771{
5772 struct rb_test_data *data = arg;
5773
5774 while (!kthread_should_stop()) {
5775 rb_write_something(data, false);
5776 data->cnt++;
5777
5778 set_current_state(TASK_INTERRUPTIBLE);
5779 /* Now sleep between a min of 100-300us and a max of 1ms */
5780 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5781 }
5782
5783 return 0;
5784}
5785
5786static __init void rb_ipi(void *ignore)
5787{
5788 struct rb_test_data *data;
5789 int cpu = smp_processor_id();
5790
5791 data = &rb_data[cpu];
5792 rb_write_something(data, true);
5793}
5794
5795static __init int rb_hammer_test(void *arg)
5796{
5797 while (!kthread_should_stop()) {
5798
5799 /* Send an IPI to all cpus to write data! */
5800 smp_call_function(rb_ipi, NULL, 1);
5801 /* No sleep, but for non preempt, let others run */
5802 schedule();
5803 }
5804
5805 return 0;
5806}
5807
5808static __init int test_ringbuffer(void)
5809{
5810 struct task_struct *rb_hammer;
13292494 5811 struct trace_buffer *buffer;
6c43e554
SRRH
5812 int cpu;
5813 int ret = 0;
5814
a356646a 5815 if (security_locked_down(LOCKDOWN_TRACEFS)) {
ee195452 5816 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
a356646a
SRV
5817 return 0;
5818 }
5819
6c43e554
SRRH
5820 pr_info("Running ring buffer tests...\n");
5821
5822 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5823 if (WARN_ON(!buffer))
5824 return 0;
5825
5826 /* Disable buffer so that threads can't write to it yet */
5827 ring_buffer_record_off(buffer);
5828
5829 for_each_online_cpu(cpu) {
5830 rb_data[cpu].buffer = buffer;
5831 rb_data[cpu].cpu = cpu;
5832 rb_data[cpu].cnt = cpu;
5833 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5834 "rbtester/%d", cpu);
62277de7 5835 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6c43e554 5836 pr_cont("FAILED\n");
62277de7 5837 ret = PTR_ERR(rb_threads[cpu]);
6c43e554
SRRH
5838 goto out_free;
5839 }
5840
5841 kthread_bind(rb_threads[cpu], cpu);
5842 wake_up_process(rb_threads[cpu]);
5843 }
5844
5845 /* Now create the rb hammer! */
5846 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
62277de7 5847 if (WARN_ON(IS_ERR(rb_hammer))) {
6c43e554 5848 pr_cont("FAILED\n");
62277de7 5849 ret = PTR_ERR(rb_hammer);
6c43e554
SRRH
5850 goto out_free;
5851 }
5852
5853 ring_buffer_record_on(buffer);
5854 /*
5855 * Show buffer is enabled before setting rb_test_started.
5856 * Yes there's a small race window where events could be
5857 * dropped and the thread wont catch it. But when a ring
5858 * buffer gets enabled, there will always be some kind of
5859 * delay before other CPUs see it. Thus, we don't care about
5860 * those dropped events. We care about events dropped after
5861 * the threads see that the buffer is active.
5862 */
5863 smp_wmb();
5864 rb_test_started = true;
5865
5866 set_current_state(TASK_INTERRUPTIBLE);
5867 /* Just run for 10 seconds */;
5868 schedule_timeout(10 * HZ);
5869
5870 kthread_stop(rb_hammer);
5871
5872 out_free:
5873 for_each_online_cpu(cpu) {
5874 if (!rb_threads[cpu])
5875 break;
5876 kthread_stop(rb_threads[cpu]);
5877 }
5878 if (ret) {
5879 ring_buffer_free(buffer);
5880 return ret;
5881 }
5882
5883 /* Report! */
5884 pr_info("finished\n");
5885 for_each_online_cpu(cpu) {
5886 struct ring_buffer_event *event;
5887 struct rb_test_data *data = &rb_data[cpu];
5888 struct rb_item *item;
5889 unsigned long total_events;
5890 unsigned long total_dropped;
5891 unsigned long total_written;
5892 unsigned long total_alloc;
5893 unsigned long total_read = 0;
5894 unsigned long total_size = 0;
5895 unsigned long total_len = 0;
5896 unsigned long total_lost = 0;
5897 unsigned long lost;
5898 int big_event_size;
5899 int small_event_size;
5900
5901 ret = -1;
5902
5903 total_events = data->events + data->events_nested;
5904 total_written = data->bytes_written + data->bytes_written_nested;
5905 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5906 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5907
5908 big_event_size = data->max_size + data->max_size_nested;
5909 small_event_size = data->min_size + data->min_size_nested;
5910
5911 pr_info("CPU %d:\n", cpu);
5912 pr_info(" events: %ld\n", total_events);
5913 pr_info(" dropped bytes: %ld\n", total_dropped);
5914 pr_info(" alloced bytes: %ld\n", total_alloc);
5915 pr_info(" written bytes: %ld\n", total_written);
5916 pr_info(" biggest event: %d\n", big_event_size);
5917 pr_info(" smallest event: %d\n", small_event_size);
5918
5919 if (RB_WARN_ON(buffer, total_dropped))
5920 break;
5921
5922 ret = 0;
5923
5924 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5925 total_lost += lost;
5926 item = ring_buffer_event_data(event);
5927 total_len += ring_buffer_event_length(event);
5928 total_size += item->size + sizeof(struct rb_item);
5929 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5930 pr_info("FAILED!\n");
5931 pr_info("buffer had: %.*s\n", item->size, item->str);
5932 pr_info("expected: %.*s\n", item->size, rb_string);
5933 RB_WARN_ON(buffer, 1);
5934 ret = -1;
5935 break;
5936 }
5937 total_read++;
5938 }
5939 if (ret)
5940 break;
5941
5942 ret = -1;
5943
5944 pr_info(" read events: %ld\n", total_read);
5945 pr_info(" lost events: %ld\n", total_lost);
5946 pr_info(" total events: %ld\n", total_lost + total_read);
5947 pr_info(" recorded len bytes: %ld\n", total_len);
5948 pr_info(" recorded size bytes: %ld\n", total_size);
5949 if (total_lost)
5950 pr_info(" With dropped events, record len and size may not match\n"
5951 " alloced and written from above\n");
5952 if (!total_lost) {
5953 if (RB_WARN_ON(buffer, total_len != total_alloc ||
5954 total_size != total_written))
5955 break;
5956 }
5957 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5958 break;
5959
5960 ret = 0;
5961 }
5962 if (!ret)
5963 pr_info("Ring buffer PASSED!\n");
5964
5965 ring_buffer_free(buffer);
5966 return 0;
5967}
5968
5969late_initcall(test_ringbuffer);
5970#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */