]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/trace/ring_buffer.c
tracing: Remove __init from __trace_early_add_new_event()
[mirror_ubuntu-jammy-kernel.git] / kernel / trace / ring_buffer.c
CommitLineData
bcea3f96 1// SPDX-License-Identifier: GPL-2.0
7a8e76a3
SR
2/*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
af658dca 7#include <linux/trace_events.h>
7a8e76a3 8#include <linux/ring_buffer.h>
14131f2f 9#include <linux/trace_clock.h>
e6017571 10#include <linux/sched/clock.h>
0b07436d 11#include <linux/trace_seq.h>
7a8e76a3 12#include <linux/spinlock.h>
15693458 13#include <linux/irq_work.h>
a356646a 14#include <linux/security.h>
7a8e76a3 15#include <linux/uaccess.h>
a81bd80a 16#include <linux/hardirq.h>
6c43e554 17#include <linux/kthread.h> /* for self test */
7a8e76a3
SR
18#include <linux/module.h>
19#include <linux/percpu.h>
20#include <linux/mutex.h>
6c43e554 21#include <linux/delay.h>
5a0e3ad6 22#include <linux/slab.h>
7a8e76a3
SR
23#include <linux/init.h>
24#include <linux/hash.h>
25#include <linux/list.h>
554f786e 26#include <linux/cpu.h>
927e56db 27#include <linux/oom.h>
7a8e76a3 28
79615760 29#include <asm/local.h>
182e9f5f 30
83f40318
VN
31static void update_pages_handler(struct work_struct *work);
32
d1b182a8
SR
33/*
34 * The ring buffer header is special. We must manually up keep it.
35 */
36int ring_buffer_print_entry_header(struct trace_seq *s)
37{
c0cd93aa
SRRH
38 trace_seq_puts(s, "# compressed entry header\n");
39 trace_seq_puts(s, "\ttype_len : 5 bits\n");
40 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
41 trace_seq_puts(s, "\tarray : 32 bits\n");
42 trace_seq_putc(s, '\n');
43 trace_seq_printf(s, "\tpadding : type == %d\n",
44 RINGBUF_TYPE_PADDING);
45 trace_seq_printf(s, "\ttime_extend : type == %d\n",
46 RINGBUF_TYPE_TIME_EXTEND);
dc4e2801
TZ
47 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
48 RINGBUF_TYPE_TIME_STAMP);
c0cd93aa
SRRH
49 trace_seq_printf(s, "\tdata max type_len == %d\n",
50 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
51
52 return !trace_seq_has_overflowed(s);
d1b182a8
SR
53}
54
5cc98548
SR
55/*
56 * The ring buffer is made up of a list of pages. A separate list of pages is
57 * allocated for each CPU. A writer may only write to a buffer that is
58 * associated with the CPU it is currently executing on. A reader may read
59 * from any per cpu buffer.
60 *
61 * The reader is special. For each per cpu buffer, the reader has its own
62 * reader page. When a reader has read the entire reader page, this reader
63 * page is swapped with another page in the ring buffer.
64 *
65 * Now, as long as the writer is off the reader page, the reader can do what
66 * ever it wants with that page. The writer will never write to that page
67 * again (as long as it is out of the ring buffer).
68 *
69 * Here's some silly ASCII art.
70 *
71 * +------+
72 * |reader| RING BUFFER
73 * |page |
74 * +------+ +---+ +---+ +---+
75 * | |-->| |-->| |
76 * +---+ +---+ +---+
77 * ^ |
78 * | |
79 * +---------------+
80 *
81 *
82 * +------+
83 * |reader| RING BUFFER
84 * |page |------------------v
85 * +------+ +---+ +---+ +---+
86 * | |-->| |-->| |
87 * +---+ +---+ +---+
88 * ^ |
89 * | |
90 * +---------------+
91 *
92 *
93 * +------+
94 * |reader| RING BUFFER
95 * |page |------------------v
96 * +------+ +---+ +---+ +---+
97 * ^ | |-->| |-->| |
98 * | +---+ +---+ +---+
99 * | |
100 * | |
101 * +------------------------------+
102 *
103 *
104 * +------+
105 * |buffer| RING BUFFER
106 * |page |------------------v
107 * +------+ +---+ +---+ +---+
108 * ^ | | | |-->| |
109 * | New +---+ +---+ +---+
110 * | Reader------^ |
111 * | page |
112 * +------------------------------+
113 *
114 *
115 * After we make this swap, the reader can hand this page off to the splice
116 * code and be done with it. It can even allocate a new page if it needs to
117 * and swap that into the ring buffer.
118 *
119 * We will be using cmpxchg soon to make all this lockless.
120 *
121 */
122
499e5470
SR
123/* Used for individual buffers (after the counter) */
124#define RB_BUFFER_OFF (1 << 20)
a3583244 125
499e5470 126#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3 127
e3d6bf0a 128#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 129#define RB_ALIGNMENT 4U
334d4169 130#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 131#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
86b3de60 132#define RB_ALIGN_DATA __aligned(RB_ALIGNMENT)
649508f6 133
334d4169
LJ
134/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
135#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
136
137enum {
138 RB_LEN_TIME_EXTEND = 8,
dc4e2801 139 RB_LEN_TIME_STAMP = 8,
7a8e76a3
SR
140};
141
69d1b839
SR
142#define skip_time_extend(event) \
143 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
144
dc4e2801
TZ
145#define extended_time(event) \
146 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
147
2d622719
TZ
148static inline int rb_null_event(struct ring_buffer_event *event)
149{
a1863c21 150 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
151}
152
153static void rb_event_set_padding(struct ring_buffer_event *event)
154{
a1863c21 155 /* padding has a NULL time_delta */
334d4169 156 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
157 event->time_delta = 0;
158}
159
34a148bf 160static unsigned
2d622719 161rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
162{
163 unsigned length;
164
334d4169
LJ
165 if (event->type_len)
166 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
167 else
168 length = event->array[0];
169 return length + RB_EVNT_HDR_SIZE;
170}
171
69d1b839
SR
172/*
173 * Return the length of the given event. Will return
174 * the length of the time extend if the event is a
175 * time extend.
176 */
177static inline unsigned
2d622719
TZ
178rb_event_length(struct ring_buffer_event *event)
179{
334d4169 180 switch (event->type_len) {
7a8e76a3 181 case RINGBUF_TYPE_PADDING:
2d622719
TZ
182 if (rb_null_event(event))
183 /* undefined */
184 return -1;
334d4169 185 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
186
187 case RINGBUF_TYPE_TIME_EXTEND:
188 return RB_LEN_TIME_EXTEND;
189
190 case RINGBUF_TYPE_TIME_STAMP:
191 return RB_LEN_TIME_STAMP;
192
193 case RINGBUF_TYPE_DATA:
2d622719 194 return rb_event_data_length(event);
7a8e76a3 195 default:
da4d401a 196 WARN_ON_ONCE(1);
7a8e76a3
SR
197 }
198 /* not hit */
199 return 0;
200}
201
69d1b839
SR
202/*
203 * Return total length of time extend and data,
204 * or just the event length for all other events.
205 */
206static inline unsigned
207rb_event_ts_length(struct ring_buffer_event *event)
208{
209 unsigned len = 0;
210
dc4e2801 211 if (extended_time(event)) {
69d1b839
SR
212 /* time extends include the data event after it */
213 len = RB_LEN_TIME_EXTEND;
214 event = skip_time_extend(event);
215 }
216 return len + rb_event_length(event);
217}
218
7a8e76a3
SR
219/**
220 * ring_buffer_event_length - return the length of the event
221 * @event: the event to get the length of
69d1b839
SR
222 *
223 * Returns the size of the data load of a data event.
224 * If the event is something other than a data event, it
225 * returns the size of the event itself. With the exception
226 * of a TIME EXTEND, where it still returns the size of the
227 * data load of the data event after it.
7a8e76a3
SR
228 */
229unsigned ring_buffer_event_length(struct ring_buffer_event *event)
230{
69d1b839
SR
231 unsigned length;
232
dc4e2801 233 if (extended_time(event))
69d1b839
SR
234 event = skip_time_extend(event);
235
236 length = rb_event_length(event);
334d4169 237 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
238 return length;
239 length -= RB_EVNT_HDR_SIZE;
240 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
241 length -= sizeof(event->array[0]);
242 return length;
7a8e76a3 243}
c4f50183 244EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
245
246/* inline for ring buffer fast paths */
929ddbf3 247static __always_inline void *
7a8e76a3
SR
248rb_event_data(struct ring_buffer_event *event)
249{
dc4e2801 250 if (extended_time(event))
69d1b839 251 event = skip_time_extend(event);
da4d401a 252 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 253 /* If length is in len field, then array[0] has the data */
334d4169 254 if (event->type_len)
7a8e76a3
SR
255 return (void *)&event->array[0];
256 /* Otherwise length is in array[0] and array[1] has the data */
257 return (void *)&event->array[1];
258}
259
260/**
261 * ring_buffer_event_data - return the data of the event
262 * @event: the event to get the data from
263 */
264void *ring_buffer_event_data(struct ring_buffer_event *event)
265{
266 return rb_event_data(event);
267}
c4f50183 268EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
269
270#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 271 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3 272
b23d7a5f
NP
273#define for_each_online_buffer_cpu(buffer, cpu) \
274 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
275
7a8e76a3
SR
276#define TS_SHIFT 27
277#define TS_MASK ((1ULL << TS_SHIFT) - 1)
278#define TS_DELTA_TEST (~TS_MASK)
279
dc4e2801
TZ
280/**
281 * ring_buffer_event_time_stamp - return the event's extended timestamp
282 * @event: the event to get the timestamp of
283 *
284 * Returns the extended timestamp associated with a data event.
285 * An extended time_stamp is a 64-bit timestamp represented
286 * internally in a special way that makes the best use of space
287 * contained within a ring buffer event. This function decodes
288 * it and maps it to a straight u64 value.
289 */
290u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
291{
292 u64 ts;
293
294 ts = event->array[0];
295 ts <<= TS_SHIFT;
296 ts += event->time_delta;
297
298 return ts;
299}
300
66a8cb95
SR
301/* Flag when events were overwritten */
302#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
303/* Missed count stored at end */
304#define RB_MISSED_STORED (1 << 30)
66a8cb95 305
abc9b56d 306struct buffer_data_page {
e4c2ce82 307 u64 time_stamp; /* page time stamp */
c3706f00 308 local_t commit; /* write committed index */
649508f6 309 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
310};
311
77ae365e
SR
312/*
313 * Note, the buffer_page list must be first. The buffer pages
314 * are allocated in cache lines, which means that each buffer
315 * page will be at the beginning of a cache line, and thus
316 * the least significant bits will be zero. We use this to
317 * add flags in the list struct pointers, to make the ring buffer
318 * lockless.
319 */
abc9b56d 320struct buffer_page {
778c55d4 321 struct list_head list; /* list of buffer pages */
abc9b56d 322 local_t write; /* index for next write */
6f807acd 323 unsigned read; /* index for next read */
778c55d4 324 local_t entries; /* entries on this page */
ff0ff84a 325 unsigned long real_end; /* real end of data */
abc9b56d 326 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
327};
328
77ae365e
SR
329/*
330 * The buffer page counters, write and entries, must be reset
331 * atomically when crossing page boundaries. To synchronize this
332 * update, two counters are inserted into the number. One is
333 * the actual counter for the write position or count on the page.
334 *
335 * The other is a counter of updaters. Before an update happens
336 * the update partition of the counter is incremented. This will
337 * allow the updater to update the counter atomically.
338 *
339 * The counter is 20 bits, and the state data is 12.
340 */
341#define RB_WRITE_MASK 0xfffff
342#define RB_WRITE_INTCNT (1 << 20)
343
044fa782 344static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 345{
044fa782 346 local_set(&bpage->commit, 0);
abc9b56d
SR
347}
348
ed56829c
SR
349/*
350 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
351 * this issue out.
352 */
34a148bf 353static void free_buffer_page(struct buffer_page *bpage)
ed56829c 354{
34a148bf 355 free_page((unsigned long)bpage->page);
e4c2ce82 356 kfree(bpage);
ed56829c
SR
357}
358
7a8e76a3
SR
359/*
360 * We need to fit the time_stamp delta into 27 bits.
361 */
362static inline int test_time_stamp(u64 delta)
363{
364 if (delta & TS_DELTA_TEST)
365 return 1;
366 return 0;
367}
368
474d32b6 369#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 370
be957c44
SR
371/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
372#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
373
d1b182a8
SR
374int ring_buffer_print_page_header(struct trace_seq *s)
375{
376 struct buffer_data_page field;
c0cd93aa
SRRH
377
378 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
379 "offset:0;\tsize:%u;\tsigned:%u;\n",
380 (unsigned int)sizeof(field.time_stamp),
381 (unsigned int)is_signed_type(u64));
382
383 trace_seq_printf(s, "\tfield: local_t commit;\t"
384 "offset:%u;\tsize:%u;\tsigned:%u;\n",
385 (unsigned int)offsetof(typeof(field), commit),
386 (unsigned int)sizeof(field.commit),
387 (unsigned int)is_signed_type(long));
388
389 trace_seq_printf(s, "\tfield: int overwrite;\t"
390 "offset:%u;\tsize:%u;\tsigned:%u;\n",
391 (unsigned int)offsetof(typeof(field), commit),
392 1,
393 (unsigned int)is_signed_type(long));
394
395 trace_seq_printf(s, "\tfield: char data;\t"
396 "offset:%u;\tsize:%u;\tsigned:%u;\n",
397 (unsigned int)offsetof(typeof(field), data),
398 (unsigned int)BUF_PAGE_SIZE,
399 (unsigned int)is_signed_type(char));
400
401 return !trace_seq_has_overflowed(s);
d1b182a8
SR
402}
403
15693458
SRRH
404struct rb_irq_work {
405 struct irq_work work;
406 wait_queue_head_t waiters;
1e0d6714 407 wait_queue_head_t full_waiters;
15693458 408 bool waiters_pending;
1e0d6714
SRRH
409 bool full_waiters_pending;
410 bool wakeup_full;
15693458
SRRH
411};
412
fcc742ea
SRRH
413/*
414 * Structure to hold event state and handle nested events.
415 */
416struct rb_event_info {
417 u64 ts;
418 u64 delta;
58fbc3c6
SRV
419 u64 before;
420 u64 after;
fcc742ea
SRRH
421 unsigned long length;
422 struct buffer_page *tail_page;
423 int add_timestamp;
424};
425
a389d86f
SRV
426/*
427 * Used for the add_timestamp
428 * NONE
7c4b4a51
SRV
429 * EXTEND - wants a time extend
430 * ABSOLUTE - the buffer requests all events to have absolute time stamps
a389d86f
SRV
431 * FORCE - force a full time stamp.
432 */
433enum {
7c4b4a51
SRV
434 RB_ADD_STAMP_NONE = 0,
435 RB_ADD_STAMP_EXTEND = BIT(1),
436 RB_ADD_STAMP_ABSOLUTE = BIT(2),
437 RB_ADD_STAMP_FORCE = BIT(3)
a389d86f 438};
a497adb4
SRRH
439/*
440 * Used for which event context the event is in.
441 * NMI = 0
442 * IRQ = 1
443 * SOFTIRQ = 2
444 * NORMAL = 3
445 *
446 * See trace_recursive_lock() comment below for more details.
447 */
448enum {
449 RB_CTX_NMI,
450 RB_CTX_IRQ,
451 RB_CTX_SOFTIRQ,
452 RB_CTX_NORMAL,
453 RB_CTX_MAX
454};
455
10464b4a
SRV
456#if BITS_PER_LONG == 32
457#define RB_TIME_32
458#endif
459
460/* To test on 64 bit machines */
461//#define RB_TIME_32
462
463#ifdef RB_TIME_32
464
465struct rb_time_struct {
466 local_t cnt;
467 local_t top;
468 local_t bottom;
469};
470#else
471#include <asm/local64.h>
472struct rb_time_struct {
473 local64_t time;
474};
475#endif
476typedef struct rb_time_struct rb_time_t;
477
7a8e76a3
SR
478/*
479 * head_page == tail_page && head == tail then buffer is empty.
480 */
481struct ring_buffer_per_cpu {
482 int cpu;
985023de 483 atomic_t record_disabled;
07b8b10e 484 atomic_t resize_disabled;
13292494 485 struct trace_buffer *buffer;
5389f6fa 486 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 487 arch_spinlock_t lock;
7a8e76a3 488 struct lock_class_key lock_key;
73a757e6 489 struct buffer_data_page *free_page;
9b94a8fb 490 unsigned long nr_pages;
58a09ec6 491 unsigned int current_context;
3adc54fa 492 struct list_head *pages;
6f807acd
SR
493 struct buffer_page *head_page; /* read from head */
494 struct buffer_page *tail_page; /* write to tail */
c3706f00 495 struct buffer_page *commit_page; /* committed pages */
d769041f 496 struct buffer_page *reader_page;
66a8cb95
SR
497 unsigned long lost_events;
498 unsigned long last_overrun;
8e012066 499 unsigned long nest;
c64e148a 500 local_t entries_bytes;
e4906eff 501 local_t entries;
884bfe89
SP
502 local_t overrun;
503 local_t commit_overrun;
504 local_t dropped_events;
fa743953
SR
505 local_t committing;
506 local_t commits;
2c2b0a78
SRV
507 local_t pages_touched;
508 local_t pages_read;
03329f99 509 long last_pages_touch;
2c2b0a78 510 size_t shortest_full;
77ae365e 511 unsigned long read;
c64e148a 512 unsigned long read_bytes;
10464b4a
SRV
513 rb_time_t write_stamp;
514 rb_time_t before_stamp;
7a8e76a3 515 u64 read_stamp;
438ced17 516 /* ring buffer pages to update, > 0 to add, < 0 to remove */
9b94a8fb 517 long nr_pages_to_update;
438ced17 518 struct list_head new_pages; /* new pages to add */
83f40318 519 struct work_struct update_pages_work;
05fdd70d 520 struct completion update_done;
15693458
SRRH
521
522 struct rb_irq_work irq_work;
7a8e76a3
SR
523};
524
13292494 525struct trace_buffer {
7a8e76a3
SR
526 unsigned flags;
527 int cpus;
7a8e76a3 528 atomic_t record_disabled;
00f62f61 529 cpumask_var_t cpumask;
7a8e76a3 530
1f8a6a10
PZ
531 struct lock_class_key *reader_lock_key;
532
7a8e76a3
SR
533 struct mutex mutex;
534
535 struct ring_buffer_per_cpu **buffers;
554f786e 536
b32614c0 537 struct hlist_node node;
37886f6a 538 u64 (*clock)(void);
15693458
SRRH
539
540 struct rb_irq_work irq_work;
00b41452 541 bool time_stamp_abs;
7a8e76a3
SR
542};
543
544struct ring_buffer_iter {
545 struct ring_buffer_per_cpu *cpu_buffer;
546 unsigned long head;
785888c5 547 unsigned long next_event;
7a8e76a3 548 struct buffer_page *head_page;
492a74f4
SR
549 struct buffer_page *cache_reader_page;
550 unsigned long cache_read;
7a8e76a3 551 u64 read_stamp;
28e3fc56 552 u64 page_stamp;
785888c5 553 struct ring_buffer_event *event;
c9b7a4a7 554 int missed_events;
7a8e76a3
SR
555};
556
10464b4a
SRV
557#ifdef RB_TIME_32
558
559/*
560 * On 32 bit machines, local64_t is very expensive. As the ring
561 * buffer doesn't need all the features of a true 64 bit atomic,
562 * on 32 bit, it uses these functions (64 still uses local64_t).
563 *
564 * For the ring buffer, 64 bit required operations for the time is
565 * the following:
566 *
567 * - Only need 59 bits (uses 60 to make it even).
568 * - Reads may fail if it interrupted a modification of the time stamp.
569 * It will succeed if it did not interrupt another write even if
570 * the read itself is interrupted by a write.
571 * It returns whether it was successful or not.
572 *
573 * - Writes always succeed and will overwrite other writes and writes
574 * that were done by events interrupting the current write.
575 *
576 * - A write followed by a read of the same time stamp will always succeed,
577 * but may not contain the same value.
578 *
579 * - A cmpxchg will fail if it interrupted another write or cmpxchg.
580 * Other than that, it acts like a normal cmpxchg.
581 *
582 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
583 * (bottom being the least significant 30 bits of the 60 bit time stamp).
584 *
585 * The two most significant bits of each half holds a 2 bit counter (0-3).
586 * Each update will increment this counter by one.
587 * When reading the top and bottom, if the two counter bits match then the
588 * top and bottom together make a valid 60 bit number.
589 */
590#define RB_TIME_SHIFT 30
591#define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
592
593static inline int rb_time_cnt(unsigned long val)
594{
595 return (val >> RB_TIME_SHIFT) & 3;
596}
597
598static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
599{
600 u64 val;
601
602 val = top & RB_TIME_VAL_MASK;
603 val <<= RB_TIME_SHIFT;
604 val |= bottom & RB_TIME_VAL_MASK;
605
606 return val;
607}
608
609static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
610{
611 unsigned long top, bottom;
612 unsigned long c;
613
614 /*
615 * If the read is interrupted by a write, then the cnt will
616 * be different. Loop until both top and bottom have been read
617 * without interruption.
618 */
619 do {
620 c = local_read(&t->cnt);
621 top = local_read(&t->top);
622 bottom = local_read(&t->bottom);
623 } while (c != local_read(&t->cnt));
624
625 *cnt = rb_time_cnt(top);
626
627 /* If top and bottom counts don't match, this interrupted a write */
628 if (*cnt != rb_time_cnt(bottom))
629 return false;
630
631 *ret = rb_time_val(top, bottom);
632 return true;
633}
634
635static bool rb_time_read(rb_time_t *t, u64 *ret)
636{
637 unsigned long cnt;
638
639 return __rb_time_read(t, ret, &cnt);
640}
641
642static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
643{
644 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
645}
646
647static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom)
648{
649 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
650 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
651}
652
653static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
654{
655 val = rb_time_val_cnt(val, cnt);
656 local_set(t, val);
657}
658
659static void rb_time_set(rb_time_t *t, u64 val)
660{
661 unsigned long cnt, top, bottom;
662
663 rb_time_split(val, &top, &bottom);
664
665 /* Writes always succeed with a valid number even if it gets interrupted. */
666 do {
667 cnt = local_inc_return(&t->cnt);
668 rb_time_val_set(&t->top, top, cnt);
669 rb_time_val_set(&t->bottom, bottom, cnt);
670 } while (cnt != local_read(&t->cnt));
671}
672
673static inline bool
674rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
675{
676 unsigned long ret;
677
678 ret = local_cmpxchg(l, expect, set);
679 return ret == expect;
680}
681
682static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
683{
684 unsigned long cnt, top, bottom;
685 unsigned long cnt2, top2, bottom2;
686 u64 val;
687
688 /* The cmpxchg always fails if it interrupted an update */
689 if (!__rb_time_read(t, &val, &cnt2))
690 return false;
691
692 if (val != expect)
693 return false;
694
695 cnt = local_read(&t->cnt);
696 if ((cnt & 3) != cnt2)
697 return false;
698
699 cnt2 = cnt + 1;
700
701 rb_time_split(val, &top, &bottom);
702 top = rb_time_val_cnt(top, cnt);
703 bottom = rb_time_val_cnt(bottom, cnt);
704
705 rb_time_split(set, &top2, &bottom2);
706 top2 = rb_time_val_cnt(top2, cnt2);
707 bottom2 = rb_time_val_cnt(bottom2, cnt2);
708
709 if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
710 return false;
711 if (!rb_time_read_cmpxchg(&t->top, top, top2))
712 return false;
713 if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
714 return false;
715 return true;
716}
717
718#else /* 64 bits */
719
720/* local64_t always succeeds */
721
722static inline bool rb_time_read(rb_time_t *t, u64 *ret)
723{
724 *ret = local64_read(&t->time);
725 return true;
726}
727static void rb_time_set(rb_time_t *t, u64 val)
728{
729 local64_set(&t->time, val);
730}
731
732static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
733{
734 u64 val;
735 val = local64_cmpxchg(&t->time, expect, set);
736 return val == expect;
737}
738#endif
739
2c2b0a78
SRV
740/**
741 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
742 * @buffer: The ring_buffer to get the number of pages from
743 * @cpu: The cpu of the ring_buffer to get the number of pages from
744 *
745 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
746 */
13292494 747size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
2c2b0a78
SRV
748{
749 return buffer->buffers[cpu]->nr_pages;
750}
751
752/**
753 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
754 * @buffer: The ring_buffer to get the number of pages from
755 * @cpu: The cpu of the ring_buffer to get the number of pages from
756 *
757 * Returns the number of pages that have content in the ring buffer.
758 */
13292494 759size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
2c2b0a78
SRV
760{
761 size_t read;
762 size_t cnt;
763
764 read = local_read(&buffer->buffers[cpu]->pages_read);
765 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
766 /* The reader can read an empty page, but not more than that */
767 if (cnt < read) {
768 WARN_ON_ONCE(read > cnt + 1);
769 return 0;
770 }
771
772 return cnt - read;
773}
774
15693458
SRRH
775/*
776 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
777 *
778 * Schedules a delayed work to wake up any task that is blocked on the
779 * ring buffer waiters queue.
780 */
781static void rb_wake_up_waiters(struct irq_work *work)
782{
783 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
784
785 wake_up_all(&rbwork->waiters);
1e0d6714
SRRH
786 if (rbwork->wakeup_full) {
787 rbwork->wakeup_full = false;
788 wake_up_all(&rbwork->full_waiters);
789 }
15693458
SRRH
790}
791
792/**
793 * ring_buffer_wait - wait for input to the ring buffer
794 * @buffer: buffer to wait on
795 * @cpu: the cpu buffer to wait on
e30f53aa 796 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
15693458
SRRH
797 *
798 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
799 * as data is added to any of the @buffer's cpu buffers. Otherwise
800 * it will wait for data to be added to a specific cpu buffer.
801 */
13292494 802int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
15693458 803{
3f649ab7 804 struct ring_buffer_per_cpu *cpu_buffer;
15693458
SRRH
805 DEFINE_WAIT(wait);
806 struct rb_irq_work *work;
e30f53aa 807 int ret = 0;
15693458
SRRH
808
809 /*
810 * Depending on what the caller is waiting for, either any
811 * data in any cpu buffer, or a specific buffer, put the
812 * caller on the appropriate wait queue.
813 */
1e0d6714 814 if (cpu == RING_BUFFER_ALL_CPUS) {
15693458 815 work = &buffer->irq_work;
1e0d6714 816 /* Full only makes sense on per cpu reads */
2c2b0a78 817 full = 0;
1e0d6714 818 } else {
8b8b3683
SRRH
819 if (!cpumask_test_cpu(cpu, buffer->cpumask))
820 return -ENODEV;
15693458
SRRH
821 cpu_buffer = buffer->buffers[cpu];
822 work = &cpu_buffer->irq_work;
823 }
824
825
e30f53aa 826 while (true) {
1e0d6714
SRRH
827 if (full)
828 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
829 else
830 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
e30f53aa
RV
831
832 /*
833 * The events can happen in critical sections where
834 * checking a work queue can cause deadlocks.
835 * After adding a task to the queue, this flag is set
836 * only to notify events to try to wake up the queue
837 * using irq_work.
838 *
839 * We don't clear it even if the buffer is no longer
840 * empty. The flag only causes the next event to run
841 * irq_work to do the work queue wake up. The worse
842 * that can happen if we race with !trace_empty() is that
843 * an event will cause an irq_work to try to wake up
844 * an empty queue.
845 *
846 * There's no reason to protect this flag either, as
847 * the work queue and irq_work logic will do the necessary
848 * synchronization for the wake ups. The only thing
849 * that is necessary is that the wake up happens after
850 * a task has been queued. It's OK for spurious wake ups.
851 */
1e0d6714
SRRH
852 if (full)
853 work->full_waiters_pending = true;
854 else
855 work->waiters_pending = true;
e30f53aa
RV
856
857 if (signal_pending(current)) {
858 ret = -EINTR;
859 break;
860 }
861
862 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
863 break;
864
865 if (cpu != RING_BUFFER_ALL_CPUS &&
866 !ring_buffer_empty_cpu(buffer, cpu)) {
867 unsigned long flags;
868 bool pagebusy;
2c2b0a78
SRV
869 size_t nr_pages;
870 size_t dirty;
e30f53aa
RV
871
872 if (!full)
873 break;
874
875 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
876 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2c2b0a78
SRV
877 nr_pages = cpu_buffer->nr_pages;
878 dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
879 if (!cpu_buffer->shortest_full ||
880 cpu_buffer->shortest_full < full)
881 cpu_buffer->shortest_full = full;
e30f53aa 882 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2c2b0a78
SRV
883 if (!pagebusy &&
884 (!nr_pages || (dirty * 100) > full * nr_pages))
e30f53aa
RV
885 break;
886 }
15693458 887
15693458 888 schedule();
e30f53aa 889 }
15693458 890
1e0d6714
SRRH
891 if (full)
892 finish_wait(&work->full_waiters, &wait);
893 else
894 finish_wait(&work->waiters, &wait);
e30f53aa
RV
895
896 return ret;
15693458
SRRH
897}
898
899/**
900 * ring_buffer_poll_wait - poll on buffer input
901 * @buffer: buffer to wait on
902 * @cpu: the cpu buffer to wait on
903 * @filp: the file descriptor
904 * @poll_table: The poll descriptor
905 *
906 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
907 * as data is added to any of the @buffer's cpu buffers. Otherwise
908 * it will wait for data to be added to a specific cpu buffer.
909 *
a9a08845 910 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
15693458
SRRH
911 * zero otherwise.
912 */
13292494 913__poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
15693458
SRRH
914 struct file *filp, poll_table *poll_table)
915{
916 struct ring_buffer_per_cpu *cpu_buffer;
917 struct rb_irq_work *work;
918
15693458
SRRH
919 if (cpu == RING_BUFFER_ALL_CPUS)
920 work = &buffer->irq_work;
921 else {
6721cb60
SRRH
922 if (!cpumask_test_cpu(cpu, buffer->cpumask))
923 return -EINVAL;
924
15693458
SRRH
925 cpu_buffer = buffer->buffers[cpu];
926 work = &cpu_buffer->irq_work;
927 }
928
15693458 929 poll_wait(filp, &work->waiters, poll_table);
4ce97dbf
JB
930 work->waiters_pending = true;
931 /*
932 * There's a tight race between setting the waiters_pending and
933 * checking if the ring buffer is empty. Once the waiters_pending bit
934 * is set, the next event will wake the task up, but we can get stuck
935 * if there's only a single event in.
936 *
937 * FIXME: Ideally, we need a memory barrier on the writer side as well,
938 * but adding a memory barrier to all events will cause too much of a
939 * performance hit in the fast path. We only need a memory barrier when
940 * the buffer goes from empty to having content. But as this race is
941 * extremely small, and it's not a problem if another event comes in, we
942 * will fix it later.
943 */
944 smp_mb();
15693458
SRRH
945
946 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
947 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
a9a08845 948 return EPOLLIN | EPOLLRDNORM;
15693458
SRRH
949 return 0;
950}
951
f536aafc 952/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
953#define RB_WARN_ON(b, cond) \
954 ({ \
955 int _____ret = unlikely(cond); \
956 if (_____ret) { \
957 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
958 struct ring_buffer_per_cpu *__b = \
959 (void *)b; \
960 atomic_inc(&__b->buffer->record_disabled); \
961 } else \
962 atomic_inc(&b->record_disabled); \
963 WARN_ON(1); \
964 } \
965 _____ret; \
3e89c7bb 966 })
f536aafc 967
37886f6a
SR
968/* Up this if you want to test the TIME_EXTENTS and normalization */
969#define DEBUG_SHIFT 0
970
13292494 971static inline u64 rb_time_stamp(struct trace_buffer *buffer)
88eb0125 972{
bbeba3e5
SRV
973 u64 ts;
974
975 /* Skip retpolines :-( */
976 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
977 ts = trace_clock_local();
978 else
979 ts = buffer->clock();
980
88eb0125 981 /* shift to debug/test normalization and TIME_EXTENTS */
bbeba3e5 982 return ts << DEBUG_SHIFT;
88eb0125
SR
983}
984
13292494 985u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
37886f6a
SR
986{
987 u64 time;
988
989 preempt_disable_notrace();
6d3f1e12 990 time = rb_time_stamp(buffer);
d6097c9e 991 preempt_enable_notrace();
37886f6a
SR
992
993 return time;
994}
995EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
996
13292494 997void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
37886f6a
SR
998 int cpu, u64 *ts)
999{
1000 /* Just stupid testing the normalize function and deltas */
1001 *ts >>= DEBUG_SHIFT;
1002}
1003EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1004
77ae365e
SR
1005/*
1006 * Making the ring buffer lockless makes things tricky.
1007 * Although writes only happen on the CPU that they are on,
1008 * and they only need to worry about interrupts. Reads can
1009 * happen on any CPU.
1010 *
1011 * The reader page is always off the ring buffer, but when the
1012 * reader finishes with a page, it needs to swap its page with
1013 * a new one from the buffer. The reader needs to take from
1014 * the head (writes go to the tail). But if a writer is in overwrite
1015 * mode and wraps, it must push the head page forward.
1016 *
1017 * Here lies the problem.
1018 *
1019 * The reader must be careful to replace only the head page, and
1020 * not another one. As described at the top of the file in the
1021 * ASCII art, the reader sets its old page to point to the next
1022 * page after head. It then sets the page after head to point to
1023 * the old reader page. But if the writer moves the head page
1024 * during this operation, the reader could end up with the tail.
1025 *
1026 * We use cmpxchg to help prevent this race. We also do something
1027 * special with the page before head. We set the LSB to 1.
1028 *
1029 * When the writer must push the page forward, it will clear the
1030 * bit that points to the head page, move the head, and then set
1031 * the bit that points to the new head page.
1032 *
1033 * We also don't want an interrupt coming in and moving the head
1034 * page on another writer. Thus we use the second LSB to catch
1035 * that too. Thus:
1036 *
1037 * head->list->prev->next bit 1 bit 0
1038 * ------- -------
1039 * Normal page 0 0
1040 * Points to head page 0 1
1041 * New head page 1 0
1042 *
1043 * Note we can not trust the prev pointer of the head page, because:
1044 *
1045 * +----+ +-----+ +-----+
1046 * | |------>| T |---X--->| N |
1047 * | |<------| | | |
1048 * +----+ +-----+ +-----+
1049 * ^ ^ |
1050 * | +-----+ | |
1051 * +----------| R |----------+ |
1052 * | |<-----------+
1053 * +-----+
1054 *
1055 * Key: ---X--> HEAD flag set in pointer
1056 * T Tail page
1057 * R Reader page
1058 * N Next page
1059 *
1060 * (see __rb_reserve_next() to see where this happens)
1061 *
1062 * What the above shows is that the reader just swapped out
1063 * the reader page with a page in the buffer, but before it
1064 * could make the new header point back to the new page added
1065 * it was preempted by a writer. The writer moved forward onto
1066 * the new page added by the reader and is about to move forward
1067 * again.
1068 *
1069 * You can see, it is legitimate for the previous pointer of
1070 * the head (or any page) not to point back to itself. But only
6167c205 1071 * temporarily.
77ae365e
SR
1072 */
1073
1074#define RB_PAGE_NORMAL 0UL
1075#define RB_PAGE_HEAD 1UL
1076#define RB_PAGE_UPDATE 2UL
1077
1078
1079#define RB_FLAG_MASK 3UL
1080
1081/* PAGE_MOVED is not part of the mask */
1082#define RB_PAGE_MOVED 4UL
1083
1084/*
1085 * rb_list_head - remove any bit
1086 */
1087static struct list_head *rb_list_head(struct list_head *list)
1088{
1089 unsigned long val = (unsigned long)list;
1090
1091 return (struct list_head *)(val & ~RB_FLAG_MASK);
1092}
1093
1094/*
6d3f1e12 1095 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
1096 *
1097 * Because the reader may move the head_page pointer, we can
1098 * not trust what the head page is (it may be pointing to
1099 * the reader page). But if the next page is a header page,
1100 * its flags will be non zero.
1101 */
42b16b3f 1102static inline int
77ae365e
SR
1103rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1104 struct buffer_page *page, struct list_head *list)
1105{
1106 unsigned long val;
1107
1108 val = (unsigned long)list->next;
1109
1110 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1111 return RB_PAGE_MOVED;
1112
1113 return val & RB_FLAG_MASK;
1114}
1115
1116/*
1117 * rb_is_reader_page
1118 *
1119 * The unique thing about the reader page, is that, if the
1120 * writer is ever on it, the previous pointer never points
1121 * back to the reader page.
1122 */
06ca3209 1123static bool rb_is_reader_page(struct buffer_page *page)
77ae365e
SR
1124{
1125 struct list_head *list = page->list.prev;
1126
1127 return rb_list_head(list->next) != &page->list;
1128}
1129
1130/*
1131 * rb_set_list_to_head - set a list_head to be pointing to head.
1132 */
1133static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
1134 struct list_head *list)
1135{
1136 unsigned long *ptr;
1137
1138 ptr = (unsigned long *)&list->next;
1139 *ptr |= RB_PAGE_HEAD;
1140 *ptr &= ~RB_PAGE_UPDATE;
1141}
1142
1143/*
1144 * rb_head_page_activate - sets up head page
1145 */
1146static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1147{
1148 struct buffer_page *head;
1149
1150 head = cpu_buffer->head_page;
1151 if (!head)
1152 return;
1153
1154 /*
1155 * Set the previous list pointer to have the HEAD flag.
1156 */
1157 rb_set_list_to_head(cpu_buffer, head->list.prev);
1158}
1159
1160static void rb_list_head_clear(struct list_head *list)
1161{
1162 unsigned long *ptr = (unsigned long *)&list->next;
1163
1164 *ptr &= ~RB_FLAG_MASK;
1165}
1166
1167/*
6167c205 1168 * rb_head_page_deactivate - clears head page ptr (for free list)
77ae365e
SR
1169 */
1170static void
1171rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1172{
1173 struct list_head *hd;
1174
1175 /* Go through the whole list and clear any pointers found. */
1176 rb_list_head_clear(cpu_buffer->pages);
1177
1178 list_for_each(hd, cpu_buffer->pages)
1179 rb_list_head_clear(hd);
1180}
1181
1182static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1183 struct buffer_page *head,
1184 struct buffer_page *prev,
1185 int old_flag, int new_flag)
1186{
1187 struct list_head *list;
1188 unsigned long val = (unsigned long)&head->list;
1189 unsigned long ret;
1190
1191 list = &prev->list;
1192
1193 val &= ~RB_FLAG_MASK;
1194
08a40816
SR
1195 ret = cmpxchg((unsigned long *)&list->next,
1196 val | old_flag, val | new_flag);
77ae365e
SR
1197
1198 /* check if the reader took the page */
1199 if ((ret & ~RB_FLAG_MASK) != val)
1200 return RB_PAGE_MOVED;
1201
1202 return ret & RB_FLAG_MASK;
1203}
1204
1205static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1206 struct buffer_page *head,
1207 struct buffer_page *prev,
1208 int old_flag)
1209{
1210 return rb_head_page_set(cpu_buffer, head, prev,
1211 old_flag, RB_PAGE_UPDATE);
1212}
1213
1214static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1215 struct buffer_page *head,
1216 struct buffer_page *prev,
1217 int old_flag)
1218{
1219 return rb_head_page_set(cpu_buffer, head, prev,
1220 old_flag, RB_PAGE_HEAD);
1221}
1222
1223static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1224 struct buffer_page *head,
1225 struct buffer_page *prev,
1226 int old_flag)
1227{
1228 return rb_head_page_set(cpu_buffer, head, prev,
1229 old_flag, RB_PAGE_NORMAL);
1230}
1231
1232static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1233 struct buffer_page **bpage)
1234{
1235 struct list_head *p = rb_list_head((*bpage)->list.next);
1236
1237 *bpage = list_entry(p, struct buffer_page, list);
1238}
1239
1240static struct buffer_page *
1241rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1242{
1243 struct buffer_page *head;
1244 struct buffer_page *page;
1245 struct list_head *list;
1246 int i;
1247
1248 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1249 return NULL;
1250
1251 /* sanity check */
1252 list = cpu_buffer->pages;
1253 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1254 return NULL;
1255
1256 page = head = cpu_buffer->head_page;
1257 /*
1258 * It is possible that the writer moves the header behind
1259 * where we started, and we miss in one loop.
1260 * A second loop should grab the header, but we'll do
1261 * three loops just because I'm paranoid.
1262 */
1263 for (i = 0; i < 3; i++) {
1264 do {
1265 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1266 cpu_buffer->head_page = page;
1267 return page;
1268 }
1269 rb_inc_page(cpu_buffer, &page);
1270 } while (page != head);
1271 }
1272
1273 RB_WARN_ON(cpu_buffer, 1);
1274
1275 return NULL;
1276}
1277
1278static int rb_head_page_replace(struct buffer_page *old,
1279 struct buffer_page *new)
1280{
1281 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1282 unsigned long val;
1283 unsigned long ret;
1284
1285 val = *ptr & ~RB_FLAG_MASK;
1286 val |= RB_PAGE_HEAD;
1287
08a40816 1288 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
1289
1290 return ret == val;
1291}
1292
1293/*
1294 * rb_tail_page_update - move the tail page forward
77ae365e 1295 */
70004986 1296static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
77ae365e
SR
1297 struct buffer_page *tail_page,
1298 struct buffer_page *next_page)
1299{
77ae365e
SR
1300 unsigned long old_entries;
1301 unsigned long old_write;
77ae365e
SR
1302
1303 /*
1304 * The tail page now needs to be moved forward.
1305 *
1306 * We need to reset the tail page, but without messing
1307 * with possible erasing of data brought in by interrupts
1308 * that have moved the tail page and are currently on it.
1309 *
1310 * We add a counter to the write field to denote this.
1311 */
1312 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1313 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1314
2c2b0a78 1315 local_inc(&cpu_buffer->pages_touched);
77ae365e
SR
1316 /*
1317 * Just make sure we have seen our old_write and synchronize
1318 * with any interrupts that come in.
1319 */
1320 barrier();
1321
1322 /*
1323 * If the tail page is still the same as what we think
1324 * it is, then it is up to us to update the tail
1325 * pointer.
1326 */
8573636e 1327 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
77ae365e
SR
1328 /* Zero the write counter */
1329 unsigned long val = old_write & ~RB_WRITE_MASK;
1330 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1331
1332 /*
1333 * This will only succeed if an interrupt did
1334 * not come in and change it. In which case, we
1335 * do not want to modify it.
da706d8b
LJ
1336 *
1337 * We add (void) to let the compiler know that we do not care
1338 * about the return value of these functions. We use the
1339 * cmpxchg to only update if an interrupt did not already
1340 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1341 */
da706d8b
LJ
1342 (void)local_cmpxchg(&next_page->write, old_write, val);
1343 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1344
1345 /*
1346 * No need to worry about races with clearing out the commit.
1347 * it only can increment when a commit takes place. But that
1348 * only happens in the outer most nested commit.
1349 */
1350 local_set(&next_page->page->commit, 0);
1351
70004986
SRRH
1352 /* Again, either we update tail_page or an interrupt does */
1353 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
77ae365e 1354 }
77ae365e
SR
1355}
1356
1357static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1358 struct buffer_page *bpage)
1359{
1360 unsigned long val = (unsigned long)bpage;
1361
1362 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1363 return 1;
1364
1365 return 0;
1366}
1367
1368/**
1369 * rb_check_list - make sure a pointer to a list has the last bits zero
1370 */
1371static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1372 struct list_head *list)
1373{
1374 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1375 return 1;
1376 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1377 return 1;
1378 return 0;
1379}
1380
7a8e76a3 1381/**
d611851b 1382 * rb_check_pages - integrity check of buffer pages
7a8e76a3
SR
1383 * @cpu_buffer: CPU buffer with pages to test
1384 *
c3706f00 1385 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1386 * been corrupted.
1387 */
1388static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1389{
3adc54fa 1390 struct list_head *head = cpu_buffer->pages;
044fa782 1391 struct buffer_page *bpage, *tmp;
7a8e76a3 1392
308f7eeb
SR
1393 /* Reset the head page if it exists */
1394 if (cpu_buffer->head_page)
1395 rb_set_head_page(cpu_buffer);
1396
77ae365e
SR
1397 rb_head_page_deactivate(cpu_buffer);
1398
3e89c7bb
SR
1399 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1400 return -1;
1401 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1402 return -1;
7a8e76a3 1403
77ae365e
SR
1404 if (rb_check_list(cpu_buffer, head))
1405 return -1;
1406
044fa782 1407 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1408 if (RB_WARN_ON(cpu_buffer,
044fa782 1409 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1410 return -1;
1411 if (RB_WARN_ON(cpu_buffer,
044fa782 1412 bpage->list.prev->next != &bpage->list))
3e89c7bb 1413 return -1;
77ae365e
SR
1414 if (rb_check_list(cpu_buffer, &bpage->list))
1415 return -1;
7a8e76a3
SR
1416 }
1417
77ae365e
SR
1418 rb_head_page_activate(cpu_buffer);
1419
7a8e76a3
SR
1420 return 0;
1421}
1422
9b94a8fb 1423static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1424{
044fa782 1425 struct buffer_page *bpage, *tmp;
927e56db
SRV
1426 bool user_thread = current->mm != NULL;
1427 gfp_t mflags;
9b94a8fb 1428 long i;
3adc54fa 1429
927e56db
SRV
1430 /*
1431 * Check if the available memory is there first.
1432 * Note, si_mem_available() only gives us a rough estimate of available
1433 * memory. It may not be accurate. But we don't care, we just want
1434 * to prevent doing any allocation when it is obvious that it is
1435 * not going to succeed.
1436 */
2a872fa4
SRV
1437 i = si_mem_available();
1438 if (i < nr_pages)
1439 return -ENOMEM;
1440
927e56db
SRV
1441 /*
1442 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1443 * gracefully without invoking oom-killer and the system is not
1444 * destabilized.
1445 */
1446 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1447
1448 /*
1449 * If a user thread allocates too much, and si_mem_available()
1450 * reports there's enough memory, even though there is not.
1451 * Make sure the OOM killer kills this thread. This can happen
1452 * even with RETRY_MAYFAIL because another task may be doing
1453 * an allocation after this task has taken all memory.
1454 * This is the task the OOM killer needs to take out during this
1455 * loop, even if it was triggered by an allocation somewhere else.
1456 */
1457 if (user_thread)
1458 set_current_oom_origin();
7a8e76a3 1459 for (i = 0; i < nr_pages; i++) {
7ea59064 1460 struct page *page;
927e56db 1461
044fa782 1462 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
927e56db 1463 mflags, cpu_to_node(cpu));
044fa782 1464 if (!bpage)
e4c2ce82 1465 goto free_pages;
77ae365e 1466
438ced17 1467 list_add(&bpage->list, pages);
77ae365e 1468
927e56db 1469 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
7ea59064 1470 if (!page)
7a8e76a3 1471 goto free_pages;
7ea59064 1472 bpage->page = page_address(page);
044fa782 1473 rb_init_page(bpage->page);
927e56db
SRV
1474
1475 if (user_thread && fatal_signal_pending(current))
1476 goto free_pages;
7a8e76a3 1477 }
927e56db
SRV
1478 if (user_thread)
1479 clear_current_oom_origin();
7a8e76a3 1480
438ced17
VN
1481 return 0;
1482
1483free_pages:
1484 list_for_each_entry_safe(bpage, tmp, pages, list) {
1485 list_del_init(&bpage->list);
1486 free_buffer_page(bpage);
1487 }
927e56db
SRV
1488 if (user_thread)
1489 clear_current_oom_origin();
438ced17
VN
1490
1491 return -ENOMEM;
1492}
1493
1494static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
9b94a8fb 1495 unsigned long nr_pages)
438ced17
VN
1496{
1497 LIST_HEAD(pages);
1498
1499 WARN_ON(!nr_pages);
1500
1501 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1502 return -ENOMEM;
1503
3adc54fa
SR
1504 /*
1505 * The ring buffer page list is a circular list that does not
1506 * start and end with a list head. All page list items point to
1507 * other pages.
1508 */
1509 cpu_buffer->pages = pages.next;
1510 list_del(&pages);
7a8e76a3 1511
438ced17
VN
1512 cpu_buffer->nr_pages = nr_pages;
1513
7a8e76a3
SR
1514 rb_check_pages(cpu_buffer);
1515
1516 return 0;
7a8e76a3
SR
1517}
1518
1519static struct ring_buffer_per_cpu *
13292494 1520rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
7a8e76a3
SR
1521{
1522 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1523 struct buffer_page *bpage;
7ea59064 1524 struct page *page;
7a8e76a3
SR
1525 int ret;
1526
1527 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1528 GFP_KERNEL, cpu_to_node(cpu));
1529 if (!cpu_buffer)
1530 return NULL;
1531
1532 cpu_buffer->cpu = cpu;
1533 cpu_buffer->buffer = buffer;
5389f6fa 1534 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1535 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1536 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1537 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1538 init_completion(&cpu_buffer->update_done);
15693458 1539 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1540 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1e0d6714 1541 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
7a8e76a3 1542
044fa782 1543 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1544 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1545 if (!bpage)
e4c2ce82
SR
1546 goto fail_free_buffer;
1547
77ae365e
SR
1548 rb_check_bpage(cpu_buffer, bpage);
1549
044fa782 1550 cpu_buffer->reader_page = bpage;
7ea59064
VN
1551 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1552 if (!page)
e4c2ce82 1553 goto fail_free_reader;
7ea59064 1554 bpage->page = page_address(page);
044fa782 1555 rb_init_page(bpage->page);
e4c2ce82 1556
d769041f 1557 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1558 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1559
438ced17 1560 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1561 if (ret < 0)
d769041f 1562 goto fail_free_reader;
7a8e76a3
SR
1563
1564 cpu_buffer->head_page
3adc54fa 1565 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1566 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1567
77ae365e
SR
1568 rb_head_page_activate(cpu_buffer);
1569
7a8e76a3
SR
1570 return cpu_buffer;
1571
d769041f
SR
1572 fail_free_reader:
1573 free_buffer_page(cpu_buffer->reader_page);
1574
7a8e76a3
SR
1575 fail_free_buffer:
1576 kfree(cpu_buffer);
1577 return NULL;
1578}
1579
1580static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1581{
3adc54fa 1582 struct list_head *head = cpu_buffer->pages;
044fa782 1583 struct buffer_page *bpage, *tmp;
7a8e76a3 1584
d769041f
SR
1585 free_buffer_page(cpu_buffer->reader_page);
1586
77ae365e
SR
1587 rb_head_page_deactivate(cpu_buffer);
1588
3adc54fa
SR
1589 if (head) {
1590 list_for_each_entry_safe(bpage, tmp, head, list) {
1591 list_del_init(&bpage->list);
1592 free_buffer_page(bpage);
1593 }
1594 bpage = list_entry(head, struct buffer_page, list);
044fa782 1595 free_buffer_page(bpage);
7a8e76a3 1596 }
3adc54fa 1597
7a8e76a3
SR
1598 kfree(cpu_buffer);
1599}
1600
1601/**
d611851b 1602 * __ring_buffer_alloc - allocate a new ring_buffer
68814b58 1603 * @size: the size in bytes per cpu that is needed.
7a8e76a3 1604 * @flags: attributes to set for the ring buffer.
59e7cffe 1605 * @key: ring buffer reader_lock_key.
7a8e76a3
SR
1606 *
1607 * Currently the only flag that is available is the RB_FL_OVERWRITE
1608 * flag. This flag means that the buffer will overwrite old data
1609 * when the buffer wraps. If this flag is not set, the buffer will
1610 * drop data when the tail hits the head.
1611 */
13292494 1612struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1f8a6a10 1613 struct lock_class_key *key)
7a8e76a3 1614{
13292494 1615 struct trace_buffer *buffer;
9b94a8fb 1616 long nr_pages;
7a8e76a3 1617 int bsize;
9b94a8fb 1618 int cpu;
b32614c0 1619 int ret;
7a8e76a3
SR
1620
1621 /* keep it in its own cache line */
1622 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1623 GFP_KERNEL);
1624 if (!buffer)
1625 return NULL;
1626
b18cc3de 1627 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
9e01c1b7
RR
1628 goto fail_free_buffer;
1629
438ced17 1630 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1631 buffer->flags = flags;
37886f6a 1632 buffer->clock = trace_clock_local;
1f8a6a10 1633 buffer->reader_lock_key = key;
7a8e76a3 1634
15693458 1635 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1636 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1637
7a8e76a3 1638 /* need at least two pages */
438ced17
VN
1639 if (nr_pages < 2)
1640 nr_pages = 2;
7a8e76a3 1641
7a8e76a3
SR
1642 buffer->cpus = nr_cpu_ids;
1643
1644 bsize = sizeof(void *) * nr_cpu_ids;
1645 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1646 GFP_KERNEL);
1647 if (!buffer->buffers)
9e01c1b7 1648 goto fail_free_cpumask;
7a8e76a3 1649
b32614c0
SAS
1650 cpu = raw_smp_processor_id();
1651 cpumask_set_cpu(cpu, buffer->cpumask);
1652 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1653 if (!buffer->buffers[cpu])
1654 goto fail_free_buffers;
7a8e76a3 1655
b32614c0
SAS
1656 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1657 if (ret < 0)
1658 goto fail_free_buffers;
554f786e 1659
7a8e76a3
SR
1660 mutex_init(&buffer->mutex);
1661
1662 return buffer;
1663
1664 fail_free_buffers:
1665 for_each_buffer_cpu(buffer, cpu) {
1666 if (buffer->buffers[cpu])
1667 rb_free_cpu_buffer(buffer->buffers[cpu]);
1668 }
1669 kfree(buffer->buffers);
1670
9e01c1b7
RR
1671 fail_free_cpumask:
1672 free_cpumask_var(buffer->cpumask);
1673
7a8e76a3
SR
1674 fail_free_buffer:
1675 kfree(buffer);
1676 return NULL;
1677}
1f8a6a10 1678EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1679
1680/**
1681 * ring_buffer_free - free a ring buffer.
1682 * @buffer: the buffer to free.
1683 */
1684void
13292494 1685ring_buffer_free(struct trace_buffer *buffer)
7a8e76a3
SR
1686{
1687 int cpu;
1688
b32614c0 1689 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
554f786e 1690
7a8e76a3
SR
1691 for_each_buffer_cpu(buffer, cpu)
1692 rb_free_cpu_buffer(buffer->buffers[cpu]);
1693
bd3f0221 1694 kfree(buffer->buffers);
9e01c1b7
RR
1695 free_cpumask_var(buffer->cpumask);
1696
7a8e76a3
SR
1697 kfree(buffer);
1698}
c4f50183 1699EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1700
13292494 1701void ring_buffer_set_clock(struct trace_buffer *buffer,
37886f6a
SR
1702 u64 (*clock)(void))
1703{
1704 buffer->clock = clock;
1705}
1706
13292494 1707void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
00b41452
TZ
1708{
1709 buffer->time_stamp_abs = abs;
1710}
1711
13292494 1712bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
00b41452
TZ
1713{
1714 return buffer->time_stamp_abs;
1715}
1716
7a8e76a3
SR
1717static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1718
83f40318
VN
1719static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1720{
1721 return local_read(&bpage->entries) & RB_WRITE_MASK;
1722}
1723
1724static inline unsigned long rb_page_write(struct buffer_page *bpage)
1725{
1726 return local_read(&bpage->write) & RB_WRITE_MASK;
1727}
1728
5040b4b7 1729static int
9b94a8fb 1730rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
7a8e76a3 1731{
83f40318
VN
1732 struct list_head *tail_page, *to_remove, *next_page;
1733 struct buffer_page *to_remove_page, *tmp_iter_page;
1734 struct buffer_page *last_page, *first_page;
9b94a8fb 1735 unsigned long nr_removed;
83f40318
VN
1736 unsigned long head_bit;
1737 int page_entries;
1738
1739 head_bit = 0;
7a8e76a3 1740
5389f6fa 1741 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1742 atomic_inc(&cpu_buffer->record_disabled);
1743 /*
1744 * We don't race with the readers since we have acquired the reader
1745 * lock. We also don't race with writers after disabling recording.
1746 * This makes it easy to figure out the first and the last page to be
1747 * removed from the list. We unlink all the pages in between including
1748 * the first and last pages. This is done in a busy loop so that we
1749 * lose the least number of traces.
1750 * The pages are freed after we restart recording and unlock readers.
1751 */
1752 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1753
83f40318
VN
1754 /*
1755 * tail page might be on reader page, we remove the next page
1756 * from the ring buffer
1757 */
1758 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1759 tail_page = rb_list_head(tail_page->next);
1760 to_remove = tail_page;
1761
1762 /* start of pages to remove */
1763 first_page = list_entry(rb_list_head(to_remove->next),
1764 struct buffer_page, list);
1765
1766 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1767 to_remove = rb_list_head(to_remove)->next;
1768 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1769 }
7a8e76a3 1770
83f40318 1771 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1772
83f40318
VN
1773 /*
1774 * Now we remove all pages between tail_page and next_page.
1775 * Make sure that we have head_bit value preserved for the
1776 * next page
1777 */
1778 tail_page->next = (struct list_head *)((unsigned long)next_page |
1779 head_bit);
1780 next_page = rb_list_head(next_page);
1781 next_page->prev = tail_page;
1782
1783 /* make sure pages points to a valid page in the ring buffer */
1784 cpu_buffer->pages = next_page;
1785
1786 /* update head page */
1787 if (head_bit)
1788 cpu_buffer->head_page = list_entry(next_page,
1789 struct buffer_page, list);
1790
1791 /*
1792 * change read pointer to make sure any read iterators reset
1793 * themselves
1794 */
1795 cpu_buffer->read = 0;
1796
1797 /* pages are removed, resume tracing and then free the pages */
1798 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1799 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1800
1801 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1802
1803 /* last buffer page to remove */
1804 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1805 list);
1806 tmp_iter_page = first_page;
1807
1808 do {
83f36555
VN
1809 cond_resched();
1810
83f40318
VN
1811 to_remove_page = tmp_iter_page;
1812 rb_inc_page(cpu_buffer, &tmp_iter_page);
1813
1814 /* update the counters */
1815 page_entries = rb_page_entries(to_remove_page);
1816 if (page_entries) {
1817 /*
1818 * If something was added to this page, it was full
1819 * since it is not the tail page. So we deduct the
1820 * bytes consumed in ring buffer from here.
48fdc72f 1821 * Increment overrun to account for the lost events.
83f40318 1822 */
48fdc72f 1823 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1824 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1825 }
1826
1827 /*
1828 * We have already removed references to this list item, just
1829 * free up the buffer_page and its page
1830 */
1831 free_buffer_page(to_remove_page);
1832 nr_removed--;
1833
1834 } while (to_remove_page != last_page);
1835
1836 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1837
1838 return nr_removed == 0;
7a8e76a3
SR
1839}
1840
5040b4b7
VN
1841static int
1842rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1843{
5040b4b7
VN
1844 struct list_head *pages = &cpu_buffer->new_pages;
1845 int retries, success;
7a8e76a3 1846
5389f6fa 1847 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1848 /*
1849 * We are holding the reader lock, so the reader page won't be swapped
1850 * in the ring buffer. Now we are racing with the writer trying to
1851 * move head page and the tail page.
1852 * We are going to adapt the reader page update process where:
1853 * 1. We first splice the start and end of list of new pages between
1854 * the head page and its previous page.
1855 * 2. We cmpxchg the prev_page->next to point from head page to the
1856 * start of new pages list.
1857 * 3. Finally, we update the head->prev to the end of new list.
1858 *
1859 * We will try this process 10 times, to make sure that we don't keep
1860 * spinning.
1861 */
1862 retries = 10;
1863 success = 0;
1864 while (retries--) {
1865 struct list_head *head_page, *prev_page, *r;
1866 struct list_head *last_page, *first_page;
1867 struct list_head *head_page_with_bit;
77ae365e 1868
5040b4b7 1869 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1870 if (!head_page)
1871 break;
5040b4b7
VN
1872 prev_page = head_page->prev;
1873
1874 first_page = pages->next;
1875 last_page = pages->prev;
1876
1877 head_page_with_bit = (struct list_head *)
1878 ((unsigned long)head_page | RB_PAGE_HEAD);
1879
1880 last_page->next = head_page_with_bit;
1881 first_page->prev = prev_page;
1882
1883 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1884
1885 if (r == head_page_with_bit) {
1886 /*
1887 * yay, we replaced the page pointer to our new list,
1888 * now, we just have to update to head page's prev
1889 * pointer to point to end of list
1890 */
1891 head_page->prev = last_page;
1892 success = 1;
1893 break;
1894 }
7a8e76a3 1895 }
7a8e76a3 1896
5040b4b7
VN
1897 if (success)
1898 INIT_LIST_HEAD(pages);
1899 /*
1900 * If we weren't successful in adding in new pages, warn and stop
1901 * tracing
1902 */
1903 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1904 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1905
1906 /* free pages if they weren't inserted */
1907 if (!success) {
1908 struct buffer_page *bpage, *tmp;
1909 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1910 list) {
1911 list_del_init(&bpage->list);
1912 free_buffer_page(bpage);
1913 }
1914 }
1915 return success;
7a8e76a3
SR
1916}
1917
83f40318 1918static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1919{
5040b4b7
VN
1920 int success;
1921
438ced17 1922 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1923 success = rb_insert_pages(cpu_buffer);
438ced17 1924 else
5040b4b7
VN
1925 success = rb_remove_pages(cpu_buffer,
1926 -cpu_buffer->nr_pages_to_update);
83f40318 1927
5040b4b7
VN
1928 if (success)
1929 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1930}
1931
1932static void update_pages_handler(struct work_struct *work)
1933{
1934 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1935 struct ring_buffer_per_cpu, update_pages_work);
1936 rb_update_pages(cpu_buffer);
05fdd70d 1937 complete(&cpu_buffer->update_done);
438ced17
VN
1938}
1939
7a8e76a3
SR
1940/**
1941 * ring_buffer_resize - resize the ring buffer
1942 * @buffer: the buffer to resize.
1943 * @size: the new size.
d611851b 1944 * @cpu_id: the cpu buffer to resize
7a8e76a3 1945 *
7a8e76a3
SR
1946 * Minimum size is 2 * BUF_PAGE_SIZE.
1947 *
83f40318 1948 * Returns 0 on success and < 0 on failure.
7a8e76a3 1949 */
13292494 1950int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
438ced17 1951 int cpu_id)
7a8e76a3
SR
1952{
1953 struct ring_buffer_per_cpu *cpu_buffer;
9b94a8fb 1954 unsigned long nr_pages;
83f40318 1955 int cpu, err = 0;
7a8e76a3 1956
ee51a1de
IM
1957 /*
1958 * Always succeed at resizing a non-existent buffer:
1959 */
1960 if (!buffer)
1961 return size;
1962
6a31e1f1
SR
1963 /* Make sure the requested buffer exists */
1964 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1965 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1966 return size;
1967
59643d15 1968 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3
SR
1969
1970 /* we need a minimum of two pages */
59643d15
SRRH
1971 if (nr_pages < 2)
1972 nr_pages = 2;
7a8e76a3 1973
59643d15 1974 size = nr_pages * BUF_PAGE_SIZE;
18421015 1975
83f40318 1976 /* prevent another thread from changing buffer sizes */
7a8e76a3 1977 mutex_lock(&buffer->mutex);
7a8e76a3 1978
07b8b10e 1979
438ced17 1980 if (cpu_id == RING_BUFFER_ALL_CPUS) {
07b8b10e
SRV
1981 /*
1982 * Don't succeed if resizing is disabled, as a reader might be
1983 * manipulating the ring buffer and is expecting a sane state while
1984 * this is true.
1985 */
1986 for_each_buffer_cpu(buffer, cpu) {
1987 cpu_buffer = buffer->buffers[cpu];
1988 if (atomic_read(&cpu_buffer->resize_disabled)) {
1989 err = -EBUSY;
1990 goto out_err_unlock;
1991 }
1992 }
1993
438ced17 1994 /* calculate the pages to update */
7a8e76a3
SR
1995 for_each_buffer_cpu(buffer, cpu) {
1996 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1997
438ced17
VN
1998 cpu_buffer->nr_pages_to_update = nr_pages -
1999 cpu_buffer->nr_pages;
438ced17
VN
2000 /*
2001 * nothing more to do for removing pages or no update
2002 */
2003 if (cpu_buffer->nr_pages_to_update <= 0)
2004 continue;
d7ec4bfe 2005 /*
438ced17
VN
2006 * to add pages, make sure all new pages can be
2007 * allocated without receiving ENOMEM
d7ec4bfe 2008 */
438ced17
VN
2009 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2010 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 2011 &cpu_buffer->new_pages, cpu)) {
438ced17 2012 /* not enough memory for new pages */
83f40318
VN
2013 err = -ENOMEM;
2014 goto out_err;
2015 }
2016 }
2017
2018 get_online_cpus();
2019 /*
2020 * Fire off all the required work handlers
05fdd70d 2021 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
2022 * since we can change their buffer sizes without any race.
2023 */
2024 for_each_buffer_cpu(buffer, cpu) {
2025 cpu_buffer = buffer->buffers[cpu];
05fdd70d 2026 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
2027 continue;
2028
021c5b34
CM
2029 /* Can't run something on an offline CPU. */
2030 if (!cpu_online(cpu)) {
f5eb5588
SRRH
2031 rb_update_pages(cpu_buffer);
2032 cpu_buffer->nr_pages_to_update = 0;
2033 } else {
05fdd70d
VN
2034 schedule_work_on(cpu,
2035 &cpu_buffer->update_pages_work);
f5eb5588 2036 }
7a8e76a3 2037 }
7a8e76a3 2038
438ced17
VN
2039 /* wait for all the updates to complete */
2040 for_each_buffer_cpu(buffer, cpu) {
2041 cpu_buffer = buffer->buffers[cpu];
05fdd70d 2042 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
2043 continue;
2044
05fdd70d
VN
2045 if (cpu_online(cpu))
2046 wait_for_completion(&cpu_buffer->update_done);
83f40318 2047 cpu_buffer->nr_pages_to_update = 0;
438ced17 2048 }
83f40318
VN
2049
2050 put_online_cpus();
438ced17 2051 } else {
6167c205 2052 /* Make sure this CPU has been initialized */
8e49f418
VN
2053 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
2054 goto out;
2055
438ced17 2056 cpu_buffer = buffer->buffers[cpu_id];
83f40318 2057
438ced17
VN
2058 if (nr_pages == cpu_buffer->nr_pages)
2059 goto out;
7a8e76a3 2060
07b8b10e
SRV
2061 /*
2062 * Don't succeed if resizing is disabled, as a reader might be
2063 * manipulating the ring buffer and is expecting a sane state while
2064 * this is true.
2065 */
2066 if (atomic_read(&cpu_buffer->resize_disabled)) {
2067 err = -EBUSY;
2068 goto out_err_unlock;
2069 }
2070
438ced17
VN
2071 cpu_buffer->nr_pages_to_update = nr_pages -
2072 cpu_buffer->nr_pages;
2073
2074 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2075 if (cpu_buffer->nr_pages_to_update > 0 &&
2076 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
2077 &cpu_buffer->new_pages, cpu_id)) {
2078 err = -ENOMEM;
2079 goto out_err;
2080 }
438ced17 2081
83f40318
VN
2082 get_online_cpus();
2083
021c5b34
CM
2084 /* Can't run something on an offline CPU. */
2085 if (!cpu_online(cpu_id))
f5eb5588
SRRH
2086 rb_update_pages(cpu_buffer);
2087 else {
83f40318
VN
2088 schedule_work_on(cpu_id,
2089 &cpu_buffer->update_pages_work);
05fdd70d 2090 wait_for_completion(&cpu_buffer->update_done);
f5eb5588 2091 }
83f40318 2092
83f40318 2093 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 2094 put_online_cpus();
438ced17 2095 }
7a8e76a3
SR
2096
2097 out:
659f451f
SR
2098 /*
2099 * The ring buffer resize can happen with the ring buffer
2100 * enabled, so that the update disturbs the tracing as little
2101 * as possible. But if the buffer is disabled, we do not need
2102 * to worry about that, and we can take the time to verify
2103 * that the buffer is not corrupt.
2104 */
2105 if (atomic_read(&buffer->record_disabled)) {
2106 atomic_inc(&buffer->record_disabled);
2107 /*
2108 * Even though the buffer was disabled, we must make sure
2109 * that it is truly disabled before calling rb_check_pages.
2110 * There could have been a race between checking
2111 * record_disable and incrementing it.
2112 */
74401729 2113 synchronize_rcu();
659f451f
SR
2114 for_each_buffer_cpu(buffer, cpu) {
2115 cpu_buffer = buffer->buffers[cpu];
2116 rb_check_pages(cpu_buffer);
2117 }
2118 atomic_dec(&buffer->record_disabled);
2119 }
2120
7a8e76a3 2121 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
2122 return size;
2123
83f40318 2124 out_err:
438ced17
VN
2125 for_each_buffer_cpu(buffer, cpu) {
2126 struct buffer_page *bpage, *tmp;
83f40318 2127
438ced17 2128 cpu_buffer = buffer->buffers[cpu];
438ced17 2129 cpu_buffer->nr_pages_to_update = 0;
83f40318 2130
438ced17
VN
2131 if (list_empty(&cpu_buffer->new_pages))
2132 continue;
83f40318 2133
438ced17
VN
2134 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2135 list) {
2136 list_del_init(&bpage->list);
2137 free_buffer_page(bpage);
2138 }
7a8e76a3 2139 }
07b8b10e 2140 out_err_unlock:
641d2f63 2141 mutex_unlock(&buffer->mutex);
83f40318 2142 return err;
7a8e76a3 2143}
c4f50183 2144EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 2145
13292494 2146void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
750912fa
DS
2147{
2148 mutex_lock(&buffer->mutex);
2149 if (val)
2150 buffer->flags |= RB_FL_OVERWRITE;
2151 else
2152 buffer->flags &= ~RB_FL_OVERWRITE;
2153 mutex_unlock(&buffer->mutex);
2154}
2155EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2156
2289d567 2157static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 2158{
044fa782 2159 return bpage->page->data + index;
7a8e76a3
SR
2160}
2161
2289d567 2162static __always_inline struct ring_buffer_event *
d769041f 2163rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 2164{
6f807acd
SR
2165 return __rb_page_index(cpu_buffer->reader_page,
2166 cpu_buffer->reader_page->read);
2167}
2168
785888c5 2169static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
7a8e76a3 2170{
785888c5 2171 return local_read(&bpage->page->commit);
7a8e76a3
SR
2172}
2173
785888c5
SRV
2174static struct ring_buffer_event *
2175rb_iter_head_event(struct ring_buffer_iter *iter)
bf41a158 2176{
785888c5
SRV
2177 struct ring_buffer_event *event;
2178 struct buffer_page *iter_head_page = iter->head_page;
2179 unsigned long commit;
2180 unsigned length;
2181
153368ce
SRV
2182 if (iter->head != iter->next_event)
2183 return iter->event;
2184
785888c5
SRV
2185 /*
2186 * When the writer goes across pages, it issues a cmpxchg which
2187 * is a mb(), which will synchronize with the rmb here.
2188 * (see rb_tail_page_update() and __rb_reserve_next())
2189 */
2190 commit = rb_page_commit(iter_head_page);
2191 smp_rmb();
2192 event = __rb_page_index(iter_head_page, iter->head);
2193 length = rb_event_length(event);
2194
2195 /*
2196 * READ_ONCE() doesn't work on functions and we don't want the
2197 * compiler doing any crazy optimizations with length.
2198 */
2199 barrier();
2200
2201 if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2202 /* Writer corrupted the read? */
2203 goto reset;
2204
2205 memcpy(iter->event, event, length);
2206 /*
2207 * If the page stamp is still the same after this rmb() then the
2208 * event was safely copied without the writer entering the page.
2209 */
2210 smp_rmb();
2211
2212 /* Make sure the page didn't change since we read this */
2213 if (iter->page_stamp != iter_head_page->page->time_stamp ||
2214 commit > rb_page_commit(iter_head_page))
2215 goto reset;
2216
2217 iter->next_event = iter->head + length;
2218 return iter->event;
2219 reset:
2220 /* Reset to the beginning */
2221 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2222 iter->head = 0;
2223 iter->next_event = 0;
c9b7a4a7 2224 iter->missed_events = 1;
785888c5 2225 return NULL;
bf41a158
SR
2226}
2227
25985edc 2228/* Size is determined by what has been committed */
2289d567 2229static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
bf41a158
SR
2230{
2231 return rb_page_commit(bpage);
2232}
2233
2289d567 2234static __always_inline unsigned
bf41a158
SR
2235rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2236{
2237 return rb_page_commit(cpu_buffer->commit_page);
2238}
2239
2289d567 2240static __always_inline unsigned
bf41a158
SR
2241rb_event_index(struct ring_buffer_event *event)
2242{
2243 unsigned long addr = (unsigned long)event;
2244
22f470f8 2245 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
2246}
2247
34a148bf 2248static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
2249{
2250 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2251
2252 /*
2253 * The iterator could be on the reader page (it starts there).
2254 * But the head could have moved, since the reader was
2255 * found. Check for this case and assign the iterator
2256 * to the head page instead of next.
2257 */
2258 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 2259 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
2260 else
2261 rb_inc_page(cpu_buffer, &iter->head_page);
2262
28e3fc56 2263 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3 2264 iter->head = 0;
785888c5 2265 iter->next_event = 0;
7a8e76a3
SR
2266}
2267
77ae365e
SR
2268/*
2269 * rb_handle_head_page - writer hit the head page
2270 *
2271 * Returns: +1 to retry page
2272 * 0 to continue
2273 * -1 on error
2274 */
2275static int
2276rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2277 struct buffer_page *tail_page,
2278 struct buffer_page *next_page)
2279{
2280 struct buffer_page *new_head;
2281 int entries;
2282 int type;
2283 int ret;
2284
2285 entries = rb_page_entries(next_page);
2286
2287 /*
2288 * The hard part is here. We need to move the head
2289 * forward, and protect against both readers on
2290 * other CPUs and writers coming in via interrupts.
2291 */
2292 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2293 RB_PAGE_HEAD);
2294
2295 /*
2296 * type can be one of four:
2297 * NORMAL - an interrupt already moved it for us
2298 * HEAD - we are the first to get here.
2299 * UPDATE - we are the interrupt interrupting
2300 * a current move.
2301 * MOVED - a reader on another CPU moved the next
2302 * pointer to its reader page. Give up
2303 * and try again.
2304 */
2305
2306 switch (type) {
2307 case RB_PAGE_HEAD:
2308 /*
2309 * We changed the head to UPDATE, thus
2310 * it is our responsibility to update
2311 * the counters.
2312 */
2313 local_add(entries, &cpu_buffer->overrun);
c64e148a 2314 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
2315
2316 /*
2317 * The entries will be zeroed out when we move the
2318 * tail page.
2319 */
2320
2321 /* still more to do */
2322 break;
2323
2324 case RB_PAGE_UPDATE:
2325 /*
2326 * This is an interrupt that interrupt the
2327 * previous update. Still more to do.
2328 */
2329 break;
2330 case RB_PAGE_NORMAL:
2331 /*
2332 * An interrupt came in before the update
2333 * and processed this for us.
2334 * Nothing left to do.
2335 */
2336 return 1;
2337 case RB_PAGE_MOVED:
2338 /*
2339 * The reader is on another CPU and just did
2340 * a swap with our next_page.
2341 * Try again.
2342 */
2343 return 1;
2344 default:
2345 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2346 return -1;
2347 }
2348
2349 /*
2350 * Now that we are here, the old head pointer is
2351 * set to UPDATE. This will keep the reader from
2352 * swapping the head page with the reader page.
2353 * The reader (on another CPU) will spin till
2354 * we are finished.
2355 *
2356 * We just need to protect against interrupts
2357 * doing the job. We will set the next pointer
2358 * to HEAD. After that, we set the old pointer
2359 * to NORMAL, but only if it was HEAD before.
2360 * otherwise we are an interrupt, and only
2361 * want the outer most commit to reset it.
2362 */
2363 new_head = next_page;
2364 rb_inc_page(cpu_buffer, &new_head);
2365
2366 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2367 RB_PAGE_NORMAL);
2368
2369 /*
2370 * Valid returns are:
2371 * HEAD - an interrupt came in and already set it.
2372 * NORMAL - One of two things:
2373 * 1) We really set it.
2374 * 2) A bunch of interrupts came in and moved
2375 * the page forward again.
2376 */
2377 switch (ret) {
2378 case RB_PAGE_HEAD:
2379 case RB_PAGE_NORMAL:
2380 /* OK */
2381 break;
2382 default:
2383 RB_WARN_ON(cpu_buffer, 1);
2384 return -1;
2385 }
2386
2387 /*
2388 * It is possible that an interrupt came in,
2389 * set the head up, then more interrupts came in
2390 * and moved it again. When we get back here,
2391 * the page would have been set to NORMAL but we
2392 * just set it back to HEAD.
2393 *
2394 * How do you detect this? Well, if that happened
2395 * the tail page would have moved.
2396 */
2397 if (ret == RB_PAGE_NORMAL) {
8573636e
SRRH
2398 struct buffer_page *buffer_tail_page;
2399
2400 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
77ae365e
SR
2401 /*
2402 * If the tail had moved passed next, then we need
2403 * to reset the pointer.
2404 */
8573636e
SRRH
2405 if (buffer_tail_page != tail_page &&
2406 buffer_tail_page != next_page)
77ae365e
SR
2407 rb_head_page_set_normal(cpu_buffer, new_head,
2408 next_page,
2409 RB_PAGE_HEAD);
2410 }
2411
2412 /*
2413 * If this was the outer most commit (the one that
2414 * changed the original pointer from HEAD to UPDATE),
2415 * then it is up to us to reset it to NORMAL.
2416 */
2417 if (type == RB_PAGE_HEAD) {
2418 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2419 tail_page,
2420 RB_PAGE_UPDATE);
2421 if (RB_WARN_ON(cpu_buffer,
2422 ret != RB_PAGE_UPDATE))
2423 return -1;
2424 }
2425
2426 return 0;
2427}
2428
c7b09308
SR
2429static inline void
2430rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2431 unsigned long tail, struct rb_event_info *info)
c7b09308 2432{
fcc742ea 2433 struct buffer_page *tail_page = info->tail_page;
c7b09308 2434 struct ring_buffer_event *event;
fcc742ea 2435 unsigned long length = info->length;
c7b09308
SR
2436
2437 /*
2438 * Only the event that crossed the page boundary
2439 * must fill the old tail_page with padding.
2440 */
2441 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2442 /*
2443 * If the page was filled, then we still need
2444 * to update the real_end. Reset it to zero
2445 * and the reader will ignore it.
2446 */
2447 if (tail == BUF_PAGE_SIZE)
2448 tail_page->real_end = 0;
2449
c7b09308
SR
2450 local_sub(length, &tail_page->write);
2451 return;
2452 }
2453
2454 event = __rb_page_index(tail_page, tail);
2455
c64e148a
VN
2456 /* account for padding bytes */
2457 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2458
ff0ff84a
SR
2459 /*
2460 * Save the original length to the meta data.
2461 * This will be used by the reader to add lost event
2462 * counter.
2463 */
2464 tail_page->real_end = tail;
2465
c7b09308
SR
2466 /*
2467 * If this event is bigger than the minimum size, then
2468 * we need to be careful that we don't subtract the
2469 * write counter enough to allow another writer to slip
2470 * in on this page.
2471 * We put in a discarded commit instead, to make sure
2472 * that this space is not used again.
2473 *
2474 * If we are less than the minimum size, we don't need to
2475 * worry about it.
2476 */
2477 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2478 /* No room for any events */
2479
2480 /* Mark the rest of the page with padding */
2481 rb_event_set_padding(event);
2482
2483 /* Set the write back to the previous setting */
2484 local_sub(length, &tail_page->write);
2485 return;
2486 }
2487
2488 /* Put in a discarded event */
2489 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2490 event->type_len = RINGBUF_TYPE_PADDING;
2491 /* time delta must be non zero */
2492 event->time_delta = 1;
c7b09308
SR
2493
2494 /* Set write to end of buffer */
2495 length = (tail + length) - BUF_PAGE_SIZE;
2496 local_sub(length, &tail_page->write);
2497}
6634ff26 2498
4239c38f
SRRH
2499static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2500
747e94ae
SR
2501/*
2502 * This is the slow path, force gcc not to inline it.
2503 */
2504static noinline struct ring_buffer_event *
6634ff26 2505rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 2506 unsigned long tail, struct rb_event_info *info)
7a8e76a3 2507{
fcc742ea 2508 struct buffer_page *tail_page = info->tail_page;
5a50e33c 2509 struct buffer_page *commit_page = cpu_buffer->commit_page;
13292494 2510 struct trace_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2511 struct buffer_page *next_page;
2512 int ret;
aa20ae84
SR
2513
2514 next_page = tail_page;
2515
aa20ae84
SR
2516 rb_inc_page(cpu_buffer, &next_page);
2517
aa20ae84
SR
2518 /*
2519 * If for some reason, we had an interrupt storm that made
2520 * it all the way around the buffer, bail, and warn
2521 * about it.
2522 */
2523 if (unlikely(next_page == commit_page)) {
77ae365e 2524 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2525 goto out_reset;
2526 }
2527
77ae365e
SR
2528 /*
2529 * This is where the fun begins!
2530 *
2531 * We are fighting against races between a reader that
2532 * could be on another CPU trying to swap its reader
2533 * page with the buffer head.
2534 *
2535 * We are also fighting against interrupts coming in and
2536 * moving the head or tail on us as well.
2537 *
2538 * If the next page is the head page then we have filled
2539 * the buffer, unless the commit page is still on the
2540 * reader page.
2541 */
2542 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2543
77ae365e
SR
2544 /*
2545 * If the commit is not on the reader page, then
2546 * move the header page.
2547 */
2548 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2549 /*
2550 * If we are not in overwrite mode,
2551 * this is easy, just stop here.
2552 */
884bfe89
SP
2553 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2554 local_inc(&cpu_buffer->dropped_events);
77ae365e 2555 goto out_reset;
884bfe89 2556 }
77ae365e
SR
2557
2558 ret = rb_handle_head_page(cpu_buffer,
2559 tail_page,
2560 next_page);
2561 if (ret < 0)
2562 goto out_reset;
2563 if (ret)
2564 goto out_again;
2565 } else {
2566 /*
2567 * We need to be careful here too. The
2568 * commit page could still be on the reader
2569 * page. We could have a small buffer, and
2570 * have filled up the buffer with events
2571 * from interrupts and such, and wrapped.
2572 *
2573 * Note, if the tail page is also the on the
2574 * reader_page, we let it move out.
2575 */
2576 if (unlikely((cpu_buffer->commit_page !=
2577 cpu_buffer->tail_page) &&
2578 (cpu_buffer->commit_page ==
2579 cpu_buffer->reader_page))) {
2580 local_inc(&cpu_buffer->commit_overrun);
2581 goto out_reset;
2582 }
aa20ae84
SR
2583 }
2584 }
2585
70004986 2586 rb_tail_page_update(cpu_buffer, tail_page, next_page);
aa20ae84 2587
77ae365e 2588 out_again:
aa20ae84 2589
fcc742ea 2590 rb_reset_tail(cpu_buffer, tail, info);
aa20ae84 2591
4239c38f
SRRH
2592 /* Commit what we have for now. */
2593 rb_end_commit(cpu_buffer);
2594 /* rb_end_commit() decs committing */
2595 local_inc(&cpu_buffer->committing);
2596
aa20ae84
SR
2597 /* fail and let the caller try again */
2598 return ERR_PTR(-EAGAIN);
2599
45141d46 2600 out_reset:
6f3b3440 2601 /* reset write */
fcc742ea 2602 rb_reset_tail(cpu_buffer, tail, info);
6f3b3440 2603
bf41a158 2604 return NULL;
7a8e76a3
SR
2605}
2606
74e87937
SRV
2607/* Slow path */
2608static struct ring_buffer_event *
dc4e2801 2609rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
9826b273 2610{
dc4e2801
TZ
2611 if (abs)
2612 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2613 else
2614 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
9826b273 2615
dc4e2801
TZ
2616 /* Not the first event on the page, or not delta? */
2617 if (abs || rb_event_index(event)) {
d90fd774
SRRH
2618 event->time_delta = delta & TS_MASK;
2619 event->array[0] = delta >> TS_SHIFT;
2620 } else {
2621 /* nope, just zero it */
2622 event->time_delta = 0;
2623 event->array[0] = 0;
2624 }
a4543a2f 2625
d90fd774
SRRH
2626 return skip_time_extend(event);
2627}
a4543a2f 2628
cdb2a0a9 2629static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
b7dc42fd
SRRH
2630 struct ring_buffer_event *event);
2631
58fbc3c6
SRV
2632#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2633static inline bool sched_clock_stable(void)
2634{
2635 return true;
2636}
2637#endif
2638
74e87937 2639static void
58fbc3c6
SRV
2640rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2641 struct rb_event_info *info)
2642{
2643 u64 write_stamp;
2644
29ce2451 2645 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
58fbc3c6
SRV
2646 (unsigned long long)info->delta,
2647 (unsigned long long)info->ts,
2648 (unsigned long long)info->before,
2649 (unsigned long long)info->after,
2650 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2651 sched_clock_stable() ? "" :
2652 "If you just came from a suspend/resume,\n"
2653 "please switch to the trace global clock:\n"
2654 " echo global > /sys/kernel/debug/tracing/trace_clock\n"
2655 "or add trace_clock=global to the kernel command line\n");
2656}
2657
74e87937
SRV
2658static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2659 struct ring_buffer_event **event,
2660 struct rb_event_info *info,
2661 u64 *delta,
2662 unsigned int *length)
2663{
2664 bool abs = info->add_timestamp &
2665 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2666
29ce2451
SRV
2667 if (unlikely(info->delta > (1ULL << 59))) {
2668 /* did the clock go backwards */
2669 if (info->before == info->after && info->before > info->ts) {
2670 /* not interrupted */
2671 static int once;
2672
2673 /*
2674 * This is possible with a recalibrating of the TSC.
2675 * Do not produce a call stack, but just report it.
2676 */
2677 if (!once) {
2678 once++;
2679 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2680 info->before, info->ts);
2681 }
2682 } else
2683 rb_check_timestamp(cpu_buffer, info);
2684 if (!abs)
2685 info->delta = 0;
2686 }
74e87937
SRV
2687 *event = rb_add_time_stamp(*event, info->delta, abs);
2688 *length -= RB_LEN_TIME_EXTEND;
2689 *delta = 0;
2690}
2691
d90fd774
SRRH
2692/**
2693 * rb_update_event - update event type and data
cfc585a4 2694 * @cpu_buffer: The per cpu buffer of the @event
d90fd774 2695 * @event: the event to update
cfc585a4 2696 * @info: The info to update the @event with (contains length and delta)
d90fd774 2697 *
cfc585a4 2698 * Update the type and data fields of the @event. The length
d90fd774
SRRH
2699 * is the actual size that is written to the ring buffer,
2700 * and with this, we can determine what to place into the
2701 * data field.
2702 */
b7dc42fd 2703static void
d90fd774
SRRH
2704rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2705 struct ring_buffer_event *event,
2706 struct rb_event_info *info)
2707{
2708 unsigned length = info->length;
2709 u64 delta = info->delta;
a4543a2f
SRRH
2710
2711 /*
d90fd774 2712 * If we need to add a timestamp, then we
6167c205 2713 * add it to the start of the reserved space.
a4543a2f 2714 */
74e87937
SRV
2715 if (unlikely(info->add_timestamp))
2716 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
a4543a2f 2717
d90fd774
SRRH
2718 event->time_delta = delta;
2719 length -= RB_EVNT_HDR_SIZE;
86b3de60 2720 if (length > RB_MAX_SMALL_DATA) {
d90fd774
SRRH
2721 event->type_len = 0;
2722 event->array[0] = length;
2723 } else
2724 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2725}
2726
2727static unsigned rb_calculate_event_length(unsigned length)
2728{
2729 struct ring_buffer_event event; /* Used only for sizeof array */
2730
2731 /* zero length can cause confusions */
2732 if (!length)
2733 length++;
2734
86b3de60 2735 if (length > RB_MAX_SMALL_DATA)
d90fd774
SRRH
2736 length += sizeof(event.array[0]);
2737
2738 length += RB_EVNT_HDR_SIZE;
86b3de60 2739 length = ALIGN(length, RB_ALIGNMENT);
d90fd774
SRRH
2740
2741 /*
2742 * In case the time delta is larger than the 27 bits for it
2743 * in the header, we need to add a timestamp. If another
2744 * event comes in when trying to discard this one to increase
2745 * the length, then the timestamp will be added in the allocated
2746 * space of this event. If length is bigger than the size needed
2747 * for the TIME_EXTEND, then padding has to be used. The events
2748 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2749 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2750 * As length is a multiple of 4, we only need to worry if it
2751 * is 12 (RB_LEN_TIME_EXTEND + 4).
2752 */
2753 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2754 length += RB_ALIGNMENT;
2755
2756 return length;
2757}
2758
a389d86f
SRV
2759static __always_inline bool
2760rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2761 struct ring_buffer_event *event)
d90fd774 2762{
a389d86f
SRV
2763 unsigned long addr = (unsigned long)event;
2764 unsigned long index;
2765
2766 index = rb_event_index(event);
2767 addr &= PAGE_MASK;
2768
2769 return cpu_buffer->commit_page->page == (void *)addr &&
2770 rb_commit_index(cpu_buffer) == index;
2771}
2772
2773static u64 rb_time_delta(struct ring_buffer_event *event)
2774{
2775 switch (event->type_len) {
2776 case RINGBUF_TYPE_PADDING:
2777 return 0;
2778
2779 case RINGBUF_TYPE_TIME_EXTEND:
2780 return ring_buffer_event_time_stamp(event);
2781
2782 case RINGBUF_TYPE_TIME_STAMP:
2783 return 0;
2784
2785 case RINGBUF_TYPE_DATA:
2786 return event->time_delta;
2787 default:
2788 return 0;
2789 }
d90fd774 2790}
d90fd774
SRRH
2791
2792static inline int
2793rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2794 struct ring_buffer_event *event)
2795{
2796 unsigned long new_index, old_index;
2797 struct buffer_page *bpage;
2798 unsigned long index;
2799 unsigned long addr;
a389d86f
SRV
2800 u64 write_stamp;
2801 u64 delta;
d90fd774
SRRH
2802
2803 new_index = rb_event_index(event);
2804 old_index = new_index + rb_event_ts_length(event);
2805 addr = (unsigned long)event;
2806 addr &= PAGE_MASK;
2807
8573636e 2808 bpage = READ_ONCE(cpu_buffer->tail_page);
d90fd774 2809
a389d86f
SRV
2810 delta = rb_time_delta(event);
2811
10464b4a
SRV
2812 if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2813 return 0;
a389d86f
SRV
2814
2815 /* Make sure the write stamp is read before testing the location */
2816 barrier();
2817
d90fd774
SRRH
2818 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2819 unsigned long write_mask =
2820 local_read(&bpage->write) & ~RB_WRITE_MASK;
2821 unsigned long event_length = rb_event_length(event);
a389d86f 2822
a389d86f 2823 /* Something came in, can't discard */
10464b4a
SRV
2824 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2825 write_stamp, write_stamp - delta))
a389d86f
SRV
2826 return 0;
2827
2828 /*
2829 * If an event were to come in now, it would see that the
2830 * write_stamp and the before_stamp are different, and assume
2831 * that this event just added itself before updating
2832 * the write stamp. The interrupting event will fix the
2833 * write stamp for us, and use the before stamp as its delta.
2834 */
2835
d90fd774
SRRH
2836 /*
2837 * This is on the tail page. It is possible that
2838 * a write could come in and move the tail page
2839 * and write to the next page. That is fine
2840 * because we just shorten what is on this page.
2841 */
2842 old_index += write_mask;
2843 new_index += write_mask;
2844 index = local_cmpxchg(&bpage->write, old_index, new_index);
2845 if (index == old_index) {
2846 /* update counters */
2847 local_sub(event_length, &cpu_buffer->entries_bytes);
2848 return 1;
2849 }
2850 }
2851
2852 /* could not discard */
2853 return 0;
2854}
2855
2856static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2857{
2858 local_inc(&cpu_buffer->committing);
2859 local_inc(&cpu_buffer->commits);
2860}
2861
38e11df1 2862static __always_inline void
d90fd774
SRRH
2863rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2864{
2865 unsigned long max_count;
2866
2867 /*
2868 * We only race with interrupts and NMIs on this CPU.
2869 * If we own the commit event, then we can commit
2870 * all others that interrupted us, since the interruptions
2871 * are in stack format (they finish before they come
2872 * back to us). This allows us to do a simple loop to
2873 * assign the commit to the tail.
2874 */
2875 again:
2876 max_count = cpu_buffer->nr_pages * 100;
2877
8573636e 2878 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
d90fd774
SRRH
2879 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2880 return;
2881 if (RB_WARN_ON(cpu_buffer,
2882 rb_is_reader_page(cpu_buffer->tail_page)))
2883 return;
2884 local_set(&cpu_buffer->commit_page->page->commit,
2885 rb_page_write(cpu_buffer->commit_page));
2886 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
d90fd774
SRRH
2887 /* add barrier to keep gcc from optimizing too much */
2888 barrier();
2889 }
2890 while (rb_commit_index(cpu_buffer) !=
2891 rb_page_write(cpu_buffer->commit_page)) {
2892
2893 local_set(&cpu_buffer->commit_page->page->commit,
2894 rb_page_write(cpu_buffer->commit_page));
2895 RB_WARN_ON(cpu_buffer,
2896 local_read(&cpu_buffer->commit_page->page->commit) &
2897 ~RB_WRITE_MASK);
2898 barrier();
2899 }
2900
2901 /* again, keep gcc from optimizing */
2902 barrier();
2903
2904 /*
2905 * If an interrupt came in just after the first while loop
2906 * and pushed the tail page forward, we will be left with
2907 * a dangling commit that will never go forward.
2908 */
8573636e 2909 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
d90fd774
SRRH
2910 goto again;
2911}
2912
38e11df1 2913static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
d90fd774
SRRH
2914{
2915 unsigned long commits;
2916
2917 if (RB_WARN_ON(cpu_buffer,
2918 !local_read(&cpu_buffer->committing)))
2919 return;
2920
2921 again:
2922 commits = local_read(&cpu_buffer->commits);
2923 /* synchronize with interrupts */
2924 barrier();
2925 if (local_read(&cpu_buffer->committing) == 1)
2926 rb_set_commit_to_write(cpu_buffer);
2927
2928 local_dec(&cpu_buffer->committing);
2929
2930 /* synchronize with interrupts */
2931 barrier();
2932
2933 /*
2934 * Need to account for interrupts coming in between the
2935 * updating of the commit page and the clearing of the
2936 * committing counter.
2937 */
2938 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2939 !local_read(&cpu_buffer->committing)) {
2940 local_inc(&cpu_buffer->committing);
2941 goto again;
2942 }
2943}
2944
2945static inline void rb_event_discard(struct ring_buffer_event *event)
2946{
dc4e2801 2947 if (extended_time(event))
d90fd774
SRRH
2948 event = skip_time_extend(event);
2949
2950 /* array[0] holds the actual length for the discarded event */
2951 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2952 event->type_len = RINGBUF_TYPE_PADDING;
2953 /* time delta must be non zero */
2954 if (!event->time_delta)
2955 event->time_delta = 1;
2956}
2957
d90fd774
SRRH
2958static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2959 struct ring_buffer_event *event)
2960{
2961 local_inc(&cpu_buffer->entries);
d90fd774
SRRH
2962 rb_end_commit(cpu_buffer);
2963}
2964
2965static __always_inline void
13292494 2966rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
d90fd774 2967{
03329f99
SRV
2968 size_t nr_pages;
2969 size_t dirty;
2970 size_t full;
d90fd774
SRRH
2971
2972 if (buffer->irq_work.waiters_pending) {
2973 buffer->irq_work.waiters_pending = false;
2974 /* irq_work_queue() supplies it's own memory barriers */
2975 irq_work_queue(&buffer->irq_work.work);
2976 }
2977
2978 if (cpu_buffer->irq_work.waiters_pending) {
2979 cpu_buffer->irq_work.waiters_pending = false;
2980 /* irq_work_queue() supplies it's own memory barriers */
2981 irq_work_queue(&cpu_buffer->irq_work.work);
2982 }
2983
03329f99
SRV
2984 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2985 return;
d90fd774 2986
03329f99
SRV
2987 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2988 return;
2c2b0a78 2989
03329f99
SRV
2990 if (!cpu_buffer->irq_work.full_waiters_pending)
2991 return;
2c2b0a78 2992
03329f99
SRV
2993 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2994
2995 full = cpu_buffer->shortest_full;
2996 nr_pages = cpu_buffer->nr_pages;
2997 dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2998 if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2999 return;
3000
3001 cpu_buffer->irq_work.wakeup_full = true;
3002 cpu_buffer->irq_work.full_waiters_pending = false;
3003 /* irq_work_queue() supplies it's own memory barriers */
3004 irq_work_queue(&cpu_buffer->irq_work.work);
d90fd774
SRRH
3005}
3006
3007/*
3008 * The lock and unlock are done within a preempt disable section.
3009 * The current_context per_cpu variable can only be modified
3010 * by the current task between lock and unlock. But it can
a0e3a18f
SRV
3011 * be modified more than once via an interrupt. To pass this
3012 * information from the lock to the unlock without having to
3013 * access the 'in_interrupt()' functions again (which do show
3014 * a bit of overhead in something as critical as function tracing,
3015 * we use a bitmask trick.
d90fd774 3016 *
a0e3a18f
SRV
3017 * bit 0 = NMI context
3018 * bit 1 = IRQ context
3019 * bit 2 = SoftIRQ context
3020 * bit 3 = normal context.
d90fd774 3021 *
a0e3a18f
SRV
3022 * This works because this is the order of contexts that can
3023 * preempt other contexts. A SoftIRQ never preempts an IRQ
3024 * context.
3025 *
3026 * When the context is determined, the corresponding bit is
3027 * checked and set (if it was set, then a recursion of that context
3028 * happened).
3029 *
3030 * On unlock, we need to clear this bit. To do so, just subtract
3031 * 1 from the current_context and AND it to itself.
3032 *
3033 * (binary)
3034 * 101 - 1 = 100
3035 * 101 & 100 = 100 (clearing bit zero)
3036 *
3037 * 1010 - 1 = 1001
3038 * 1010 & 1001 = 1000 (clearing bit 1)
3039 *
3040 * The least significant bit can be cleared this way, and it
3041 * just so happens that it is the same bit corresponding to
3042 * the current context.
d90fd774
SRRH
3043 */
3044
3045static __always_inline int
3046trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3047{
a0e3a18f
SRV
3048 unsigned int val = cpu_buffer->current_context;
3049 unsigned long pc = preempt_count();
3050 int bit;
3051
3052 if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
3053 bit = RB_CTX_NORMAL;
3054 else
3055 bit = pc & NMI_MASK ? RB_CTX_NMI :
0164e0d7 3056 pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
a0e3a18f 3057
8e012066 3058 if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
d90fd774
SRRH
3059 return 1;
3060
8e012066 3061 val |= (1 << (bit + cpu_buffer->nest));
a0e3a18f 3062 cpu_buffer->current_context = val;
d90fd774
SRRH
3063
3064 return 0;
3065}
3066
3067static __always_inline void
3068trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3069{
8e012066
SRV
3070 cpu_buffer->current_context &=
3071 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3072}
3073
3074/* The recursive locking above uses 4 bits */
3075#define NESTED_BITS 4
3076
3077/**
3078 * ring_buffer_nest_start - Allow to trace while nested
3079 * @buffer: The ring buffer to modify
3080 *
6167c205 3081 * The ring buffer has a safety mechanism to prevent recursion.
8e012066
SRV
3082 * But there may be a case where a trace needs to be done while
3083 * tracing something else. In this case, calling this function
3084 * will allow this function to nest within a currently active
3085 * ring_buffer_lock_reserve().
3086 *
3087 * Call this function before calling another ring_buffer_lock_reserve() and
3088 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3089 */
13292494 3090void ring_buffer_nest_start(struct trace_buffer *buffer)
8e012066
SRV
3091{
3092 struct ring_buffer_per_cpu *cpu_buffer;
3093 int cpu;
3094
3095 /* Enabled by ring_buffer_nest_end() */
3096 preempt_disable_notrace();
3097 cpu = raw_smp_processor_id();
3098 cpu_buffer = buffer->buffers[cpu];
6167c205 3099 /* This is the shift value for the above recursive locking */
8e012066
SRV
3100 cpu_buffer->nest += NESTED_BITS;
3101}
3102
3103/**
3104 * ring_buffer_nest_end - Allow to trace while nested
3105 * @buffer: The ring buffer to modify
3106 *
3107 * Must be called after ring_buffer_nest_start() and after the
3108 * ring_buffer_unlock_commit().
3109 */
13292494 3110void ring_buffer_nest_end(struct trace_buffer *buffer)
8e012066
SRV
3111{
3112 struct ring_buffer_per_cpu *cpu_buffer;
3113 int cpu;
3114
3115 /* disabled by ring_buffer_nest_start() */
3116 cpu = raw_smp_processor_id();
3117 cpu_buffer = buffer->buffers[cpu];
6167c205 3118 /* This is the shift value for the above recursive locking */
8e012066
SRV
3119 cpu_buffer->nest -= NESTED_BITS;
3120 preempt_enable_notrace();
d90fd774
SRRH
3121}
3122
3123/**
3124 * ring_buffer_unlock_commit - commit a reserved
3125 * @buffer: The buffer to commit to
3126 * @event: The event pointer to commit.
3127 *
3128 * This commits the data to the ring buffer, and releases any locks held.
3129 *
3130 * Must be paired with ring_buffer_lock_reserve.
3131 */
13292494 3132int ring_buffer_unlock_commit(struct trace_buffer *buffer,
d90fd774
SRRH
3133 struct ring_buffer_event *event)
3134{
3135 struct ring_buffer_per_cpu *cpu_buffer;
3136 int cpu = raw_smp_processor_id();
3137
3138 cpu_buffer = buffer->buffers[cpu];
3139
3140 rb_commit(cpu_buffer, event);
3141
3142 rb_wakeups(buffer, cpu_buffer);
3143
3144 trace_recursive_unlock(cpu_buffer);
3145
3146 preempt_enable_notrace();
3147
3148 return 0;
3149}
3150EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3151
6634ff26
SR
3152static struct ring_buffer_event *
3153__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
fcc742ea 3154 struct rb_event_info *info)
6634ff26 3155{
6634ff26 3156 struct ring_buffer_event *event;
fcc742ea 3157 struct buffer_page *tail_page;
a389d86f 3158 unsigned long tail, write, w;
10464b4a
SRV
3159 bool a_ok;
3160 bool b_ok;
69d1b839 3161
8573636e
SRRH
3162 /* Don't let the compiler play games with cpu_buffer->tail_page */
3163 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
a389d86f
SRV
3164
3165 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK;
3166 barrier();
58fbc3c6
SRV
3167 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3168 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
a389d86f
SRV
3169 barrier();
3170 info->ts = rb_time_stamp(cpu_buffer->buffer);
3171
58fbc3c6 3172 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
a389d86f 3173 info->delta = info->ts;
a389d86f 3174 } else {
58fbc3c6
SRV
3175 /*
3176 * If interrupting an event time update, we may need an
3177 * absolute timestamp.
3178 * Don't bother if this is the start of a new page (w == 0).
3179 */
3180 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3181 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3182 info->length += RB_LEN_TIME_EXTEND;
3183 } else {
3184 info->delta = info->ts - info->after;
3185 if (unlikely(test_time_stamp(info->delta))) {
3186 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3187 info->length += RB_LEN_TIME_EXTEND;
3188 }
10464b4a 3189 }
7c4b4a51 3190 }
b7dc42fd 3191
10464b4a 3192 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts);
a389d86f
SRV
3193
3194 /*C*/ write = local_add_return(info->length, &tail_page->write);
77ae365e
SR
3195
3196 /* set write to only the index of the write */
3197 write &= RB_WRITE_MASK;
a389d86f 3198
fcc742ea 3199 tail = write - info->length;
6634ff26 3200
a389d86f
SRV
3201 /* See if we shot pass the end of this buffer page */
3202 if (unlikely(write > BUF_PAGE_SIZE)) {
3203 if (tail != w) {
3204 /* before and after may now different, fix it up*/
58fbc3c6
SRV
3205 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3206 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3207 if (a_ok && b_ok && info->before != info->after)
3208 (void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3209 info->before, info->after);
a389d86f
SRV
3210 }
3211 return rb_move_tail(cpu_buffer, tail, info);
3212 }
3213
3214 if (likely(tail == w)) {
3215 u64 save_before;
10464b4a 3216 bool s_ok;
a389d86f
SRV
3217
3218 /* Nothing interrupted us between A and C */
10464b4a 3219 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts);
a389d86f 3220 barrier();
10464b4a
SRV
3221 /*E*/ s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3222 RB_WARN_ON(cpu_buffer, !s_ok);
7c4b4a51
SRV
3223 if (likely(!(info->add_timestamp &
3224 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
a389d86f 3225 /* This did not interrupt any time update */
58fbc3c6 3226 info->delta = info->ts - info->after;
a389d86f
SRV
3227 else
3228 /* Just use full timestamp for inerrupting event */
3229 info->delta = info->ts;
3230 barrier();
3231 if (unlikely(info->ts != save_before)) {
3232 /* SLOW PATH - Interrupted between C and E */
3233
58fbc3c6 3234 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
10464b4a
SRV
3235 RB_WARN_ON(cpu_buffer, !a_ok);
3236
a389d86f 3237 /* Write stamp must only go forward */
58fbc3c6 3238 if (save_before > info->after) {
a389d86f
SRV
3239 /*
3240 * We do not care about the result, only that
3241 * it gets updated atomically.
3242 */
58fbc3c6
SRV
3243 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3244 info->after, save_before);
a389d86f
SRV
3245 }
3246 }
3247 } else {
3248 u64 ts;
3249 /* SLOW PATH - Interrupted between A and C */
58fbc3c6 3250 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
10464b4a
SRV
3251 /* Was interrupted before here, write_stamp must be valid */
3252 RB_WARN_ON(cpu_buffer, !a_ok);
a389d86f
SRV
3253 ts = rb_time_stamp(cpu_buffer->buffer);
3254 barrier();
3255 /*E*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
58fbc3c6 3256 info->after < ts) {
a389d86f 3257 /* Nothing came after this event between C and E */
58fbc3c6
SRV
3258 info->delta = ts - info->after;
3259 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3260 info->after, info->ts);
a389d86f
SRV
3261 info->ts = ts;
3262 } else {
3263 /*
3264 * Interrupted beween C and E:
3265 * Lost the previous events time stamp. Just set the
3266 * delta to zero, and this will be the same time as
3267 * the event this event interrupted. And the events that
3268 * came after this will still be correct (as they would
3269 * have built their delta on the previous event.
3270 */
3271 info->delta = 0;
3272 }
7c4b4a51 3273 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
a389d86f
SRV
3274 }
3275
6634ff26 3276 /*
a4543a2f 3277 * If this is the first commit on the page, then it has the same
b7dc42fd 3278 * timestamp as the page itself.
6634ff26 3279 */
7c4b4a51
SRV
3280 if (unlikely(!tail && !(info->add_timestamp &
3281 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
a4543a2f
SRRH
3282 info->delta = 0;
3283
b7dc42fd
SRRH
3284 /* We reserved something on the buffer */
3285
3286 event = __rb_page_index(tail_page, tail);
a4543a2f
SRRH
3287 rb_update_event(cpu_buffer, event, info);
3288
3289 local_inc(&tail_page->entries);
6634ff26 3290
b7dc42fd
SRRH
3291 /*
3292 * If this is the first commit on the page, then update
3293 * its timestamp.
3294 */
75b21c6d 3295 if (unlikely(!tail))
b7dc42fd
SRRH
3296 tail_page->page->time_stamp = info->ts;
3297
c64e148a 3298 /* account for these added bytes */
fcc742ea 3299 local_add(info->length, &cpu_buffer->entries_bytes);
c64e148a 3300
6634ff26
SR
3301 return event;
3302}
3303
fa7ffb39 3304static __always_inline struct ring_buffer_event *
13292494 3305rb_reserve_next_event(struct trace_buffer *buffer,
62f0b3eb 3306 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 3307 unsigned long length)
7a8e76a3
SR
3308{
3309 struct ring_buffer_event *event;
fcc742ea 3310 struct rb_event_info info;
818e3dd3 3311 int nr_loops = 0;
58fbc3c6 3312 int add_ts_default;
7a8e76a3 3313
fa743953 3314 rb_start_commit(cpu_buffer);
a389d86f 3315 /* The commit page can not change after this */
fa743953 3316
85bac32c 3317#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
3318 /*
3319 * Due to the ability to swap a cpu buffer from a buffer
3320 * it is possible it was swapped before we committed.
3321 * (committing stops a swap). We check for it here and
3322 * if it happened, we have to fail the write.
3323 */
3324 barrier();
6aa7de05 3325 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
62f0b3eb
SR
3326 local_dec(&cpu_buffer->committing);
3327 local_dec(&cpu_buffer->commits);
3328 return NULL;
3329 }
85bac32c 3330#endif
b7dc42fd 3331
fcc742ea 3332 info.length = rb_calculate_event_length(length);
58fbc3c6
SRV
3333
3334 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3335 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3336 info.length += RB_LEN_TIME_EXTEND;
3337 } else {
3338 add_ts_default = RB_ADD_STAMP_NONE;
3339 }
3340
a4543a2f 3341 again:
58fbc3c6 3342 info.add_timestamp = add_ts_default;
b7dc42fd
SRRH
3343 info.delta = 0;
3344
818e3dd3
SR
3345 /*
3346 * We allow for interrupts to reenter here and do a trace.
3347 * If one does, it will cause this original code to loop
3348 * back here. Even with heavy interrupts happening, this
3349 * should only happen a few times in a row. If this happens
3350 * 1000 times in a row, there must be either an interrupt
3351 * storm or we have something buggy.
3352 * Bail!
3353 */
3e89c7bb 3354 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 3355 goto out_fail;
818e3dd3 3356
fcc742ea
SRRH
3357 event = __rb_reserve_next(cpu_buffer, &info);
3358
bd1b7cd3 3359 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
58fbc3c6 3360 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
bd1b7cd3 3361 info.length -= RB_LEN_TIME_EXTEND;
bf41a158 3362 goto again;
bd1b7cd3 3363 }
bf41a158 3364
a389d86f
SRV
3365 if (likely(event))
3366 return event;
fa743953
SR
3367 out_fail:
3368 rb_end_commit(cpu_buffer);
3369 return NULL;
7a8e76a3
SR
3370}
3371
3372/**
3373 * ring_buffer_lock_reserve - reserve a part of the buffer
3374 * @buffer: the ring buffer to reserve from
3375 * @length: the length of the data to reserve (excluding event header)
7a8e76a3 3376 *
6167c205 3377 * Returns a reserved event on the ring buffer to copy directly to.
7a8e76a3
SR
3378 * The user of this interface will need to get the body to write into
3379 * and can use the ring_buffer_event_data() interface.
3380 *
3381 * The length is the length of the data needed, not the event length
3382 * which also includes the event header.
3383 *
3384 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3385 * If NULL is returned, then nothing has been allocated or locked.
3386 */
3387struct ring_buffer_event *
13292494 3388ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
7a8e76a3
SR
3389{
3390 struct ring_buffer_per_cpu *cpu_buffer;
3391 struct ring_buffer_event *event;
5168ae50 3392 int cpu;
7a8e76a3 3393
bf41a158 3394 /* If we are tracing schedule, we don't want to recurse */
5168ae50 3395 preempt_disable_notrace();
bf41a158 3396
3205f806 3397 if (unlikely(atomic_read(&buffer->record_disabled)))
58a09ec6 3398 goto out;
261842b7 3399
7a8e76a3
SR
3400 cpu = raw_smp_processor_id();
3401
3205f806 3402 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
d769041f 3403 goto out;
7a8e76a3
SR
3404
3405 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 3406
3205f806 3407 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
d769041f 3408 goto out;
7a8e76a3 3409
3205f806 3410 if (unlikely(length > BUF_MAX_DATA_SIZE))
bf41a158 3411 goto out;
7a8e76a3 3412
58a09ec6
SRRH
3413 if (unlikely(trace_recursive_lock(cpu_buffer)))
3414 goto out;
3415
62f0b3eb 3416 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 3417 if (!event)
58a09ec6 3418 goto out_unlock;
7a8e76a3
SR
3419
3420 return event;
3421
58a09ec6
SRRH
3422 out_unlock:
3423 trace_recursive_unlock(cpu_buffer);
d769041f 3424 out:
5168ae50 3425 preempt_enable_notrace();
7a8e76a3
SR
3426 return NULL;
3427}
c4f50183 3428EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 3429
a1863c21
SR
3430/*
3431 * Decrement the entries to the page that an event is on.
3432 * The event does not even need to exist, only the pointer
3433 * to the page it is on. This may only be called before the commit
3434 * takes place.
3435 */
3436static inline void
3437rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3438 struct ring_buffer_event *event)
3439{
3440 unsigned long addr = (unsigned long)event;
3441 struct buffer_page *bpage = cpu_buffer->commit_page;
3442 struct buffer_page *start;
3443
3444 addr &= PAGE_MASK;
3445
3446 /* Do the likely case first */
3447 if (likely(bpage->page == (void *)addr)) {
3448 local_dec(&bpage->entries);
3449 return;
3450 }
3451
3452 /*
3453 * Because the commit page may be on the reader page we
3454 * start with the next page and check the end loop there.
3455 */
3456 rb_inc_page(cpu_buffer, &bpage);
3457 start = bpage;
3458 do {
3459 if (bpage->page == (void *)addr) {
3460 local_dec(&bpage->entries);
3461 return;
3462 }
3463 rb_inc_page(cpu_buffer, &bpage);
3464 } while (bpage != start);
3465
3466 /* commit not part of this buffer?? */
3467 RB_WARN_ON(cpu_buffer, 1);
3468}
3469
fa1b47dd
SR
3470/**
3471 * ring_buffer_commit_discard - discard an event that has not been committed
3472 * @buffer: the ring buffer
3473 * @event: non committed event to discard
3474 *
dc892f73
SR
3475 * Sometimes an event that is in the ring buffer needs to be ignored.
3476 * This function lets the user discard an event in the ring buffer
3477 * and then that event will not be read later.
3478 *
6167c205 3479 * This function only works if it is called before the item has been
dc892f73 3480 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
3481 * if another event has not been added behind it.
3482 *
3483 * If another event has been added behind it, it will set the event
3484 * up as discarded, and perform the commit.
3485 *
3486 * If this function is called, do not call ring_buffer_unlock_commit on
3487 * the event.
3488 */
13292494 3489void ring_buffer_discard_commit(struct trace_buffer *buffer,
fa1b47dd
SR
3490 struct ring_buffer_event *event)
3491{
3492 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
3493 int cpu;
3494
3495 /* The event is discarded regardless */
f3b9aae1 3496 rb_event_discard(event);
fa1b47dd 3497
fa743953
SR
3498 cpu = smp_processor_id();
3499 cpu_buffer = buffer->buffers[cpu];
3500
fa1b47dd
SR
3501 /*
3502 * This must only be called if the event has not been
3503 * committed yet. Thus we can assume that preemption
3504 * is still disabled.
3505 */
fa743953 3506 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 3507
a1863c21 3508 rb_decrement_entry(cpu_buffer, event);
0f2541d2 3509 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 3510 goto out;
fa1b47dd 3511
fa1b47dd 3512 out:
fa743953 3513 rb_end_commit(cpu_buffer);
fa1b47dd 3514
58a09ec6 3515 trace_recursive_unlock(cpu_buffer);
f3b9aae1 3516
5168ae50 3517 preempt_enable_notrace();
fa1b47dd
SR
3518
3519}
3520EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3521
7a8e76a3
SR
3522/**
3523 * ring_buffer_write - write data to the buffer without reserving
3524 * @buffer: The ring buffer to write to.
3525 * @length: The length of the data being written (excluding the event header)
3526 * @data: The data to write to the buffer.
3527 *
3528 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3529 * one function. If you already have the data to write to the buffer, it
3530 * may be easier to simply call this function.
3531 *
3532 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3533 * and not the length of the event which would hold the header.
3534 */
13292494 3535int ring_buffer_write(struct trace_buffer *buffer,
01e3e710
DS
3536 unsigned long length,
3537 void *data)
7a8e76a3
SR
3538{
3539 struct ring_buffer_per_cpu *cpu_buffer;
3540 struct ring_buffer_event *event;
7a8e76a3
SR
3541 void *body;
3542 int ret = -EBUSY;
5168ae50 3543 int cpu;
7a8e76a3 3544
5168ae50 3545 preempt_disable_notrace();
bf41a158 3546
52fbe9cd
LJ
3547 if (atomic_read(&buffer->record_disabled))
3548 goto out;
3549
7a8e76a3
SR
3550 cpu = raw_smp_processor_id();
3551
9e01c1b7 3552 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 3553 goto out;
7a8e76a3
SR
3554
3555 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
3556
3557 if (atomic_read(&cpu_buffer->record_disabled))
3558 goto out;
3559
be957c44
SR
3560 if (length > BUF_MAX_DATA_SIZE)
3561 goto out;
3562
985e871b
SRRH
3563 if (unlikely(trace_recursive_lock(cpu_buffer)))
3564 goto out;
3565
62f0b3eb 3566 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 3567 if (!event)
985e871b 3568 goto out_unlock;
7a8e76a3
SR
3569
3570 body = rb_event_data(event);
3571
3572 memcpy(body, data, length);
3573
3574 rb_commit(cpu_buffer, event);
3575
15693458
SRRH
3576 rb_wakeups(buffer, cpu_buffer);
3577
7a8e76a3 3578 ret = 0;
985e871b
SRRH
3579
3580 out_unlock:
3581 trace_recursive_unlock(cpu_buffer);
3582
7a8e76a3 3583 out:
5168ae50 3584 preempt_enable_notrace();
7a8e76a3
SR
3585
3586 return ret;
3587}
c4f50183 3588EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 3589
da58834c 3590static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
3591{
3592 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 3593 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
3594 struct buffer_page *commit = cpu_buffer->commit_page;
3595
77ae365e
SR
3596 /* In case of error, head will be NULL */
3597 if (unlikely(!head))
da58834c 3598 return true;
77ae365e 3599
bf41a158
SR
3600 return reader->read == rb_page_commit(reader) &&
3601 (commit == reader ||
3602 (commit == head &&
3603 head->read == rb_page_commit(commit)));
3604}
3605
7a8e76a3
SR
3606/**
3607 * ring_buffer_record_disable - stop all writes into the buffer
3608 * @buffer: The ring buffer to stop writes to.
3609 *
3610 * This prevents all writes to the buffer. Any attempt to write
3611 * to the buffer after this will fail and return NULL.
3612 *
74401729 3613 * The caller should call synchronize_rcu() after this.
7a8e76a3 3614 */
13292494 3615void ring_buffer_record_disable(struct trace_buffer *buffer)
7a8e76a3
SR
3616{
3617 atomic_inc(&buffer->record_disabled);
3618}
c4f50183 3619EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3620
3621/**
3622 * ring_buffer_record_enable - enable writes to the buffer
3623 * @buffer: The ring buffer to enable writes
3624 *
3625 * Note, multiple disables will need the same number of enables
c41b20e7 3626 * to truly enable the writing (much like preempt_disable).
7a8e76a3 3627 */
13292494 3628void ring_buffer_record_enable(struct trace_buffer *buffer)
7a8e76a3
SR
3629{
3630 atomic_dec(&buffer->record_disabled);
3631}
c4f50183 3632EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3633
499e5470
SR
3634/**
3635 * ring_buffer_record_off - stop all writes into the buffer
3636 * @buffer: The ring buffer to stop writes to.
3637 *
3638 * This prevents all writes to the buffer. Any attempt to write
3639 * to the buffer after this will fail and return NULL.
3640 *
3641 * This is different than ring_buffer_record_disable() as
87abb3b1 3642 * it works like an on/off switch, where as the disable() version
499e5470
SR
3643 * must be paired with a enable().
3644 */
13292494 3645void ring_buffer_record_off(struct trace_buffer *buffer)
499e5470
SR
3646{
3647 unsigned int rd;
3648 unsigned int new_rd;
3649
3650 do {
3651 rd = atomic_read(&buffer->record_disabled);
3652 new_rd = rd | RB_BUFFER_OFF;
3653 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3654}
3655EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3656
3657/**
3658 * ring_buffer_record_on - restart writes into the buffer
3659 * @buffer: The ring buffer to start writes to.
3660 *
3661 * This enables all writes to the buffer that was disabled by
3662 * ring_buffer_record_off().
3663 *
3664 * This is different than ring_buffer_record_enable() as
87abb3b1 3665 * it works like an on/off switch, where as the enable() version
499e5470
SR
3666 * must be paired with a disable().
3667 */
13292494 3668void ring_buffer_record_on(struct trace_buffer *buffer)
499e5470
SR
3669{
3670 unsigned int rd;
3671 unsigned int new_rd;
3672
3673 do {
3674 rd = atomic_read(&buffer->record_disabled);
3675 new_rd = rd & ~RB_BUFFER_OFF;
3676 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3677}
3678EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3679
3680/**
3681 * ring_buffer_record_is_on - return true if the ring buffer can write
3682 * @buffer: The ring buffer to see if write is enabled
3683 *
3684 * Returns true if the ring buffer is in a state that it accepts writes.
3685 */
13292494 3686bool ring_buffer_record_is_on(struct trace_buffer *buffer)
499e5470
SR
3687{
3688 return !atomic_read(&buffer->record_disabled);
3689}
3690
73c8d894
MH
3691/**
3692 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3693 * @buffer: The ring buffer to see if write is set enabled
3694 *
3695 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3696 * Note that this does NOT mean it is in a writable state.
3697 *
3698 * It may return true when the ring buffer has been disabled by
3699 * ring_buffer_record_disable(), as that is a temporary disabling of
3700 * the ring buffer.
3701 */
13292494 3702bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
73c8d894
MH
3703{
3704 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3705}
3706
7a8e76a3
SR
3707/**
3708 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3709 * @buffer: The ring buffer to stop writes to.
3710 * @cpu: The CPU buffer to stop
3711 *
3712 * This prevents all writes to the buffer. Any attempt to write
3713 * to the buffer after this will fail and return NULL.
3714 *
74401729 3715 * The caller should call synchronize_rcu() after this.
7a8e76a3 3716 */
13292494 3717void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
7a8e76a3
SR
3718{
3719 struct ring_buffer_per_cpu *cpu_buffer;
3720
9e01c1b7 3721 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3722 return;
7a8e76a3
SR
3723
3724 cpu_buffer = buffer->buffers[cpu];
3725 atomic_inc(&cpu_buffer->record_disabled);
3726}
c4f50183 3727EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3728
3729/**
3730 * ring_buffer_record_enable_cpu - enable writes to the buffer
3731 * @buffer: The ring buffer to enable writes
3732 * @cpu: The CPU to enable.
3733 *
3734 * Note, multiple disables will need the same number of enables
c41b20e7 3735 * to truly enable the writing (much like preempt_disable).
7a8e76a3 3736 */
13292494 3737void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
7a8e76a3
SR
3738{
3739 struct ring_buffer_per_cpu *cpu_buffer;
3740
9e01c1b7 3741 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3742 return;
7a8e76a3
SR
3743
3744 cpu_buffer = buffer->buffers[cpu];
3745 atomic_dec(&cpu_buffer->record_disabled);
3746}
c4f50183 3747EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3748
f6195aa0
SR
3749/*
3750 * The total entries in the ring buffer is the running counter
3751 * of entries entered into the ring buffer, minus the sum of
3752 * the entries read from the ring buffer and the number of
3753 * entries that were overwritten.
3754 */
3755static inline unsigned long
3756rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3757{
3758 return local_read(&cpu_buffer->entries) -
3759 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3760}
3761
c64e148a
VN
3762/**
3763 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3764 * @buffer: The ring buffer
3765 * @cpu: The per CPU buffer to read from.
3766 */
13292494 3767u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
c64e148a
VN
3768{
3769 unsigned long flags;
3770 struct ring_buffer_per_cpu *cpu_buffer;
3771 struct buffer_page *bpage;
da830e58 3772 u64 ret = 0;
c64e148a
VN
3773
3774 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3775 return 0;
3776
3777 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3778 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3779 /*
3780 * if the tail is on reader_page, oldest time stamp is on the reader
3781 * page
3782 */
3783 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3784 bpage = cpu_buffer->reader_page;
3785 else
3786 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3787 if (bpage)
3788 ret = bpage->page->time_stamp;
7115e3fc 3789 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3790
3791 return ret;
3792}
3793EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3794
3795/**
3796 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3797 * @buffer: The ring buffer
3798 * @cpu: The per CPU buffer to read from.
3799 */
13292494 3800unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
c64e148a
VN
3801{
3802 struct ring_buffer_per_cpu *cpu_buffer;
3803 unsigned long ret;
3804
3805 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3806 return 0;
3807
3808 cpu_buffer = buffer->buffers[cpu];
3809 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3810
3811 return ret;
3812}
3813EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3814
7a8e76a3
SR
3815/**
3816 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3817 * @buffer: The ring buffer
3818 * @cpu: The per CPU buffer to get the entries from.
3819 */
13292494 3820unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
7a8e76a3
SR
3821{
3822 struct ring_buffer_per_cpu *cpu_buffer;
3823
9e01c1b7 3824 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3825 return 0;
7a8e76a3
SR
3826
3827 cpu_buffer = buffer->buffers[cpu];
554f786e 3828
f6195aa0 3829 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3830}
c4f50183 3831EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3832
3833/**
884bfe89
SP
3834 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3835 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3836 * @buffer: The ring buffer
3837 * @cpu: The per CPU buffer to get the number of overruns from
3838 */
13292494 3839unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
7a8e76a3
SR
3840{
3841 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3842 unsigned long ret;
7a8e76a3 3843
9e01c1b7 3844 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3845 return 0;
7a8e76a3
SR
3846
3847 cpu_buffer = buffer->buffers[cpu];
77ae365e 3848 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3849
3850 return ret;
7a8e76a3 3851}
c4f50183 3852EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3853
f0d2c681 3854/**
884bfe89
SP
3855 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3856 * commits failing due to the buffer wrapping around while there are uncommitted
3857 * events, such as during an interrupt storm.
f0d2c681
SR
3858 * @buffer: The ring buffer
3859 * @cpu: The per CPU buffer to get the number of overruns from
3860 */
3861unsigned long
13292494 3862ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
f0d2c681
SR
3863{
3864 struct ring_buffer_per_cpu *cpu_buffer;
3865 unsigned long ret;
3866
3867 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3868 return 0;
3869
3870 cpu_buffer = buffer->buffers[cpu];
77ae365e 3871 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3872
3873 return ret;
3874}
3875EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3876
884bfe89
SP
3877/**
3878 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3879 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3880 * @buffer: The ring buffer
3881 * @cpu: The per CPU buffer to get the number of overruns from
3882 */
3883unsigned long
13292494 3884ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
884bfe89
SP
3885{
3886 struct ring_buffer_per_cpu *cpu_buffer;
3887 unsigned long ret;
3888
3889 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3890 return 0;
3891
3892 cpu_buffer = buffer->buffers[cpu];
3893 ret = local_read(&cpu_buffer->dropped_events);
3894
3895 return ret;
3896}
3897EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3898
ad964704
SRRH
3899/**
3900 * ring_buffer_read_events_cpu - get the number of events successfully read
3901 * @buffer: The ring buffer
3902 * @cpu: The per CPU buffer to get the number of events read
3903 */
3904unsigned long
13292494 3905ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
ad964704
SRRH
3906{
3907 struct ring_buffer_per_cpu *cpu_buffer;
3908
3909 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3910 return 0;
3911
3912 cpu_buffer = buffer->buffers[cpu];
3913 return cpu_buffer->read;
3914}
3915EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3916
7a8e76a3
SR
3917/**
3918 * ring_buffer_entries - get the number of entries in a buffer
3919 * @buffer: The ring buffer
3920 *
3921 * Returns the total number of entries in the ring buffer
3922 * (all CPU entries)
3923 */
13292494 3924unsigned long ring_buffer_entries(struct trace_buffer *buffer)
7a8e76a3
SR
3925{
3926 struct ring_buffer_per_cpu *cpu_buffer;
3927 unsigned long entries = 0;
3928 int cpu;
3929
3930 /* if you care about this being correct, lock the buffer */
3931 for_each_buffer_cpu(buffer, cpu) {
3932 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3933 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3934 }
3935
3936 return entries;
3937}
c4f50183 3938EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3939
3940/**
67b394f7 3941 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3942 * @buffer: The ring buffer
3943 *
3944 * Returns the total number of overruns in the ring buffer
3945 * (all CPU entries)
3946 */
13292494 3947unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
7a8e76a3
SR
3948{
3949 struct ring_buffer_per_cpu *cpu_buffer;
3950 unsigned long overruns = 0;
3951 int cpu;
3952
3953 /* if you care about this being correct, lock the buffer */
3954 for_each_buffer_cpu(buffer, cpu) {
3955 cpu_buffer = buffer->buffers[cpu];
77ae365e 3956 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3957 }
3958
3959 return overruns;
3960}
c4f50183 3961EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3962
642edba5 3963static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3964{
3965 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3966
d769041f 3967 /* Iterator usage is expected to have record disabled */
651e22f2
SRRH
3968 iter->head_page = cpu_buffer->reader_page;
3969 iter->head = cpu_buffer->reader_page->read;
785888c5 3970 iter->next_event = iter->head;
651e22f2
SRRH
3971
3972 iter->cache_reader_page = iter->head_page;
24607f11 3973 iter->cache_read = cpu_buffer->read;
651e22f2 3974
28e3fc56 3975 if (iter->head) {
d769041f 3976 iter->read_stamp = cpu_buffer->read_stamp;
28e3fc56
SRV
3977 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
3978 } else {
abc9b56d 3979 iter->read_stamp = iter->head_page->page->time_stamp;
28e3fc56
SRV
3980 iter->page_stamp = iter->read_stamp;
3981 }
642edba5 3982}
f83c9d0f 3983
642edba5
SR
3984/**
3985 * ring_buffer_iter_reset - reset an iterator
3986 * @iter: The iterator to reset
3987 *
3988 * Resets the iterator, so that it will start from the beginning
3989 * again.
3990 */
3991void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3992{
554f786e 3993 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3994 unsigned long flags;
3995
554f786e
SR
3996 if (!iter)
3997 return;
3998
3999 cpu_buffer = iter->cpu_buffer;
4000
5389f6fa 4001 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 4002 rb_iter_reset(iter);
5389f6fa 4003 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4004}
c4f50183 4005EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
4006
4007/**
4008 * ring_buffer_iter_empty - check if an iterator has no more to read
4009 * @iter: The iterator to check
4010 */
4011int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4012{
4013 struct ring_buffer_per_cpu *cpu_buffer;
78f7a45d
SRV
4014 struct buffer_page *reader;
4015 struct buffer_page *head_page;
4016 struct buffer_page *commit_page;
ead6ecfd 4017 struct buffer_page *curr_commit_page;
78f7a45d 4018 unsigned commit;
ead6ecfd
SRV
4019 u64 curr_commit_ts;
4020 u64 commit_ts;
7a8e76a3
SR
4021
4022 cpu_buffer = iter->cpu_buffer;
78f7a45d
SRV
4023 reader = cpu_buffer->reader_page;
4024 head_page = cpu_buffer->head_page;
4025 commit_page = cpu_buffer->commit_page;
ead6ecfd
SRV
4026 commit_ts = commit_page->page->time_stamp;
4027
4028 /*
4029 * When the writer goes across pages, it issues a cmpxchg which
4030 * is a mb(), which will synchronize with the rmb here.
4031 * (see rb_tail_page_update())
4032 */
4033 smp_rmb();
78f7a45d 4034 commit = rb_page_commit(commit_page);
ead6ecfd
SRV
4035 /* We want to make sure that the commit page doesn't change */
4036 smp_rmb();
4037
4038 /* Make sure commit page didn't change */
4039 curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4040 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4041
4042 /* If the commit page changed, then there's more data */
4043 if (curr_commit_page != commit_page ||
4044 curr_commit_ts != commit_ts)
4045 return 0;
78f7a45d 4046
ead6ecfd 4047 /* Still racy, as it may return a false positive, but that's OK */
785888c5 4048 return ((iter->head_page == commit_page && iter->head >= commit) ||
78f7a45d
SRV
4049 (iter->head_page == reader && commit_page == head_page &&
4050 head_page->read == commit &&
4051 iter->head == rb_page_commit(cpu_buffer->reader_page)));
7a8e76a3 4052}
c4f50183 4053EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
4054
4055static void
4056rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4057 struct ring_buffer_event *event)
4058{
4059 u64 delta;
4060
334d4169 4061 switch (event->type_len) {
7a8e76a3
SR
4062 case RINGBUF_TYPE_PADDING:
4063 return;
4064
4065 case RINGBUF_TYPE_TIME_EXTEND:
dc4e2801 4066 delta = ring_buffer_event_time_stamp(event);
7a8e76a3
SR
4067 cpu_buffer->read_stamp += delta;
4068 return;
4069
4070 case RINGBUF_TYPE_TIME_STAMP:
dc4e2801
TZ
4071 delta = ring_buffer_event_time_stamp(event);
4072 cpu_buffer->read_stamp = delta;
7a8e76a3
SR
4073 return;
4074
4075 case RINGBUF_TYPE_DATA:
4076 cpu_buffer->read_stamp += event->time_delta;
4077 return;
4078
4079 default:
da4d401a 4080 RB_WARN_ON(cpu_buffer, 1);
7a8e76a3
SR
4081 }
4082 return;
4083}
4084
4085static void
4086rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4087 struct ring_buffer_event *event)
4088{
4089 u64 delta;
4090
334d4169 4091 switch (event->type_len) {
7a8e76a3
SR
4092 case RINGBUF_TYPE_PADDING:
4093 return;
4094
4095 case RINGBUF_TYPE_TIME_EXTEND:
dc4e2801 4096 delta = ring_buffer_event_time_stamp(event);
7a8e76a3
SR
4097 iter->read_stamp += delta;
4098 return;
4099
4100 case RINGBUF_TYPE_TIME_STAMP:
dc4e2801
TZ
4101 delta = ring_buffer_event_time_stamp(event);
4102 iter->read_stamp = delta;
7a8e76a3
SR
4103 return;
4104
4105 case RINGBUF_TYPE_DATA:
4106 iter->read_stamp += event->time_delta;
4107 return;
4108
4109 default:
da4d401a 4110 RB_WARN_ON(iter->cpu_buffer, 1);
7a8e76a3
SR
4111 }
4112 return;
4113}
4114
d769041f
SR
4115static struct buffer_page *
4116rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 4117{
d769041f 4118 struct buffer_page *reader = NULL;
66a8cb95 4119 unsigned long overwrite;
d769041f 4120 unsigned long flags;
818e3dd3 4121 int nr_loops = 0;
77ae365e 4122 int ret;
d769041f 4123
3e03fb7f 4124 local_irq_save(flags);
0199c4e6 4125 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
4126
4127 again:
818e3dd3
SR
4128 /*
4129 * This should normally only loop twice. But because the
4130 * start of the reader inserts an empty page, it causes
4131 * a case where we will loop three times. There should be no
4132 * reason to loop four times (that I know of).
4133 */
3e89c7bb 4134 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
4135 reader = NULL;
4136 goto out;
4137 }
4138
d769041f
SR
4139 reader = cpu_buffer->reader_page;
4140
4141 /* If there's more to read, return this page */
bf41a158 4142 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
4143 goto out;
4144
4145 /* Never should we have an index greater than the size */
3e89c7bb
SR
4146 if (RB_WARN_ON(cpu_buffer,
4147 cpu_buffer->reader_page->read > rb_page_size(reader)))
4148 goto out;
d769041f
SR
4149
4150 /* check if we caught up to the tail */
4151 reader = NULL;
bf41a158 4152 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 4153 goto out;
7a8e76a3 4154
a5fb8331
SR
4155 /* Don't bother swapping if the ring buffer is empty */
4156 if (rb_num_of_entries(cpu_buffer) == 0)
4157 goto out;
4158
7a8e76a3 4159 /*
d769041f 4160 * Reset the reader page to size zero.
7a8e76a3 4161 */
77ae365e
SR
4162 local_set(&cpu_buffer->reader_page->write, 0);
4163 local_set(&cpu_buffer->reader_page->entries, 0);
4164 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 4165 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 4166
77ae365e
SR
4167 spin:
4168 /*
4169 * Splice the empty reader page into the list around the head.
4170 */
4171 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
4172 if (!reader)
4173 goto out;
0e1ff5d7 4174 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 4175 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 4176
3adc54fa
SR
4177 /*
4178 * cpu_buffer->pages just needs to point to the buffer, it
4179 * has no specific buffer page to point to. Lets move it out
25985edc 4180 * of our way so we don't accidentally swap it.
3adc54fa
SR
4181 */
4182 cpu_buffer->pages = reader->list.prev;
4183
77ae365e
SR
4184 /* The reader page will be pointing to the new head */
4185 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 4186
66a8cb95
SR
4187 /*
4188 * We want to make sure we read the overruns after we set up our
4189 * pointers to the next object. The writer side does a
4190 * cmpxchg to cross pages which acts as the mb on the writer
4191 * side. Note, the reader will constantly fail the swap
4192 * while the writer is updating the pointers, so this
4193 * guarantees that the overwrite recorded here is the one we
4194 * want to compare with the last_overrun.
4195 */
4196 smp_mb();
4197 overwrite = local_read(&(cpu_buffer->overrun));
4198
77ae365e
SR
4199 /*
4200 * Here's the tricky part.
4201 *
4202 * We need to move the pointer past the header page.
4203 * But we can only do that if a writer is not currently
4204 * moving it. The page before the header page has the
4205 * flag bit '1' set if it is pointing to the page we want.
4206 * but if the writer is in the process of moving it
4207 * than it will be '2' or already moved '0'.
4208 */
4209
4210 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
4211
4212 /*
77ae365e 4213 * If we did not convert it, then we must try again.
7a8e76a3 4214 */
77ae365e
SR
4215 if (!ret)
4216 goto spin;
7a8e76a3 4217
77ae365e 4218 /*
2c2b0a78 4219 * Yay! We succeeded in replacing the page.
77ae365e
SR
4220 *
4221 * Now make the new head point back to the reader page.
4222 */
5ded3dc6 4223 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 4224 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f 4225
2c2b0a78
SRV
4226 local_inc(&cpu_buffer->pages_read);
4227
d769041f
SR
4228 /* Finally update the reader page to the new head */
4229 cpu_buffer->reader_page = reader;
b81f472a 4230 cpu_buffer->reader_page->read = 0;
d769041f 4231
66a8cb95
SR
4232 if (overwrite != cpu_buffer->last_overrun) {
4233 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4234 cpu_buffer->last_overrun = overwrite;
4235 }
4236
d769041f
SR
4237 goto again;
4238
4239 out:
b81f472a
SRRH
4240 /* Update the read_stamp on the first event */
4241 if (reader && reader->read == 0)
4242 cpu_buffer->read_stamp = reader->page->time_stamp;
4243
0199c4e6 4244 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 4245 local_irq_restore(flags);
d769041f
SR
4246
4247 return reader;
4248}
4249
4250static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4251{
4252 struct ring_buffer_event *event;
4253 struct buffer_page *reader;
4254 unsigned length;
4255
4256 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 4257
d769041f 4258 /* This function should not be called when buffer is empty */
3e89c7bb
SR
4259 if (RB_WARN_ON(cpu_buffer, !reader))
4260 return;
7a8e76a3 4261
d769041f
SR
4262 event = rb_reader_event(cpu_buffer);
4263
a1863c21 4264 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 4265 cpu_buffer->read++;
d769041f
SR
4266
4267 rb_update_read_stamp(cpu_buffer, event);
4268
4269 length = rb_event_length(event);
6f807acd 4270 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
4271}
4272
4273static void rb_advance_iter(struct ring_buffer_iter *iter)
4274{
7a8e76a3 4275 struct ring_buffer_per_cpu *cpu_buffer;
7a8e76a3
SR
4276
4277 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4278
785888c5
SRV
4279 /* If head == next_event then we need to jump to the next event */
4280 if (iter->head == iter->next_event) {
4281 /* If the event gets overwritten again, there's nothing to do */
4282 if (rb_iter_head_event(iter) == NULL)
4283 return;
4284 }
4285
4286 iter->head = iter->next_event;
4287
7a8e76a3
SR
4288 /*
4289 * Check if we are at the end of the buffer.
4290 */
785888c5 4291 if (iter->next_event >= rb_page_size(iter->head_page)) {
ea05b57c
SR
4292 /* discarded commits can make the page empty */
4293 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 4294 return;
d769041f 4295 rb_inc_iter(iter);
7a8e76a3
SR
4296 return;
4297 }
4298
785888c5 4299 rb_update_iter_read_stamp(iter, iter->event);
7a8e76a3
SR
4300}
4301
66a8cb95
SR
4302static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4303{
4304 return cpu_buffer->lost_events;
4305}
4306
f83c9d0f 4307static struct ring_buffer_event *
66a8cb95
SR
4308rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4309 unsigned long *lost_events)
7a8e76a3 4310{
7a8e76a3 4311 struct ring_buffer_event *event;
d769041f 4312 struct buffer_page *reader;
818e3dd3 4313 int nr_loops = 0;
7a8e76a3 4314
dc4e2801
TZ
4315 if (ts)
4316 *ts = 0;
7a8e76a3 4317 again:
818e3dd3 4318 /*
69d1b839
SR
4319 * We repeat when a time extend is encountered.
4320 * Since the time extend is always attached to a data event,
4321 * we should never loop more than once.
4322 * (We never hit the following condition more than twice).
818e3dd3 4323 */
69d1b839 4324 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 4325 return NULL;
818e3dd3 4326
d769041f
SR
4327 reader = rb_get_reader_page(cpu_buffer);
4328 if (!reader)
7a8e76a3
SR
4329 return NULL;
4330
d769041f 4331 event = rb_reader_event(cpu_buffer);
7a8e76a3 4332
334d4169 4333 switch (event->type_len) {
7a8e76a3 4334 case RINGBUF_TYPE_PADDING:
2d622719
TZ
4335 if (rb_null_event(event))
4336 RB_WARN_ON(cpu_buffer, 1);
4337 /*
4338 * Because the writer could be discarding every
4339 * event it creates (which would probably be bad)
4340 * if we were to go back to "again" then we may never
4341 * catch up, and will trigger the warn on, or lock
4342 * the box. Return the padding, and we will release
4343 * the current locks, and try again.
4344 */
2d622719 4345 return event;
7a8e76a3
SR
4346
4347 case RINGBUF_TYPE_TIME_EXTEND:
4348 /* Internal data, OK to advance */
d769041f 4349 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
4350 goto again;
4351
4352 case RINGBUF_TYPE_TIME_STAMP:
dc4e2801
TZ
4353 if (ts) {
4354 *ts = ring_buffer_event_time_stamp(event);
4355 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4356 cpu_buffer->cpu, ts);
4357 }
4358 /* Internal data, OK to advance */
d769041f 4359 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
4360 goto again;
4361
4362 case RINGBUF_TYPE_DATA:
dc4e2801 4363 if (ts && !(*ts)) {
7a8e76a3 4364 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 4365 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 4366 cpu_buffer->cpu, ts);
7a8e76a3 4367 }
66a8cb95
SR
4368 if (lost_events)
4369 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
4370 return event;
4371
4372 default:
da4d401a 4373 RB_WARN_ON(cpu_buffer, 1);
7a8e76a3
SR
4374 }
4375
4376 return NULL;
4377}
c4f50183 4378EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 4379
f83c9d0f
SR
4380static struct ring_buffer_event *
4381rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3 4382{
13292494 4383 struct trace_buffer *buffer;
7a8e76a3
SR
4384 struct ring_buffer_per_cpu *cpu_buffer;
4385 struct ring_buffer_event *event;
818e3dd3 4386 int nr_loops = 0;
7a8e76a3 4387
dc4e2801
TZ
4388 if (ts)
4389 *ts = 0;
4390
7a8e76a3
SR
4391 cpu_buffer = iter->cpu_buffer;
4392 buffer = cpu_buffer->buffer;
4393
492a74f4
SR
4394 /*
4395 * Check if someone performed a consuming read to
4396 * the buffer. A consuming read invalidates the iterator
4397 * and we need to reset the iterator in this case.
4398 */
4399 if (unlikely(iter->cache_read != cpu_buffer->read ||
4400 iter->cache_reader_page != cpu_buffer->reader_page))
4401 rb_iter_reset(iter);
4402
7a8e76a3 4403 again:
3c05d748
SR
4404 if (ring_buffer_iter_empty(iter))
4405 return NULL;
4406
818e3dd3 4407 /*
3d2353de
SRV
4408 * As the writer can mess with what the iterator is trying
4409 * to read, just give up if we fail to get an event after
4410 * three tries. The iterator is not as reliable when reading
4411 * the ring buffer with an active write as the consumer is.
4412 * Do not warn if the three failures is reached.
818e3dd3 4413 */
3d2353de 4414 if (++nr_loops > 3)
818e3dd3 4415 return NULL;
818e3dd3 4416
7a8e76a3
SR
4417 if (rb_per_cpu_empty(cpu_buffer))
4418 return NULL;
4419
10e83fd0 4420 if (iter->head >= rb_page_size(iter->head_page)) {
3c05d748
SR
4421 rb_inc_iter(iter);
4422 goto again;
4423 }
4424
7a8e76a3 4425 event = rb_iter_head_event(iter);
3d2353de 4426 if (!event)
785888c5 4427 goto again;
7a8e76a3 4428
334d4169 4429 switch (event->type_len) {
7a8e76a3 4430 case RINGBUF_TYPE_PADDING:
2d622719
TZ
4431 if (rb_null_event(event)) {
4432 rb_inc_iter(iter);
4433 goto again;
4434 }
4435 rb_advance_iter(iter);
4436 return event;
7a8e76a3
SR
4437
4438 case RINGBUF_TYPE_TIME_EXTEND:
4439 /* Internal data, OK to advance */
4440 rb_advance_iter(iter);
4441 goto again;
4442
4443 case RINGBUF_TYPE_TIME_STAMP:
dc4e2801
TZ
4444 if (ts) {
4445 *ts = ring_buffer_event_time_stamp(event);
4446 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4447 cpu_buffer->cpu, ts);
4448 }
4449 /* Internal data, OK to advance */
7a8e76a3
SR
4450 rb_advance_iter(iter);
4451 goto again;
4452
4453 case RINGBUF_TYPE_DATA:
dc4e2801 4454 if (ts && !(*ts)) {
7a8e76a3 4455 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
4456 ring_buffer_normalize_time_stamp(buffer,
4457 cpu_buffer->cpu, ts);
7a8e76a3
SR
4458 }
4459 return event;
4460
4461 default:
da4d401a 4462 RB_WARN_ON(cpu_buffer, 1);
7a8e76a3
SR
4463 }
4464
4465 return NULL;
4466}
c4f50183 4467EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 4468
289a5a25 4469static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
8d707e8e 4470{
289a5a25
SRRH
4471 if (likely(!in_nmi())) {
4472 raw_spin_lock(&cpu_buffer->reader_lock);
4473 return true;
4474 }
4475
8d707e8e
SR
4476 /*
4477 * If an NMI die dumps out the content of the ring buffer
289a5a25
SRRH
4478 * trylock must be used to prevent a deadlock if the NMI
4479 * preempted a task that holds the ring buffer locks. If
4480 * we get the lock then all is fine, if not, then continue
4481 * to do the read, but this can corrupt the ring buffer,
4482 * so it must be permanently disabled from future writes.
4483 * Reading from NMI is a oneshot deal.
8d707e8e 4484 */
289a5a25
SRRH
4485 if (raw_spin_trylock(&cpu_buffer->reader_lock))
4486 return true;
8d707e8e 4487
289a5a25
SRRH
4488 /* Continue without locking, but disable the ring buffer */
4489 atomic_inc(&cpu_buffer->record_disabled);
4490 return false;
4491}
4492
4493static inline void
4494rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4495{
4496 if (likely(locked))
4497 raw_spin_unlock(&cpu_buffer->reader_lock);
4498 return;
8d707e8e
SR
4499}
4500
f83c9d0f
SR
4501/**
4502 * ring_buffer_peek - peek at the next event to be read
4503 * @buffer: The ring buffer to read
4504 * @cpu: The cpu to peak at
4505 * @ts: The timestamp counter of this event.
66a8cb95 4506 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
4507 *
4508 * This will return the event that will be read next, but does
4509 * not consume the data.
4510 */
4511struct ring_buffer_event *
13292494 4512ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
66a8cb95 4513 unsigned long *lost_events)
f83c9d0f
SR
4514{
4515 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 4516 struct ring_buffer_event *event;
f83c9d0f 4517 unsigned long flags;
289a5a25 4518 bool dolock;
f83c9d0f 4519
554f786e 4520 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4521 return NULL;
554f786e 4522
2d622719 4523 again:
8d707e8e 4524 local_irq_save(flags);
289a5a25 4525 dolock = rb_reader_lock(cpu_buffer);
66a8cb95 4526 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
4527 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4528 rb_advance_reader(cpu_buffer);
289a5a25 4529 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 4530 local_irq_restore(flags);
f83c9d0f 4531
1b959e18 4532 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 4533 goto again;
2d622719 4534
f83c9d0f
SR
4535 return event;
4536}
4537
c9b7a4a7
SRV
4538/** ring_buffer_iter_dropped - report if there are dropped events
4539 * @iter: The ring buffer iterator
4540 *
4541 * Returns true if there was dropped events since the last peek.
4542 */
4543bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4544{
4545 bool ret = iter->missed_events != 0;
4546
4547 iter->missed_events = 0;
4548 return ret;
4549}
4550EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4551
f83c9d0f
SR
4552/**
4553 * ring_buffer_iter_peek - peek at the next event to be read
4554 * @iter: The ring buffer iterator
4555 * @ts: The timestamp counter of this event.
4556 *
4557 * This will return the event that will be read next, but does
4558 * not increment the iterator.
4559 */
4560struct ring_buffer_event *
4561ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4562{
4563 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4564 struct ring_buffer_event *event;
4565 unsigned long flags;
4566
2d622719 4567 again:
5389f6fa 4568 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4569 event = rb_iter_peek(iter, ts);
5389f6fa 4570 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 4571
1b959e18 4572 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 4573 goto again;
2d622719 4574
f83c9d0f
SR
4575 return event;
4576}
4577
7a8e76a3
SR
4578/**
4579 * ring_buffer_consume - return an event and consume it
4580 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
4581 * @cpu: the cpu to read the buffer from
4582 * @ts: a variable to store the timestamp (may be NULL)
4583 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
4584 *
4585 * Returns the next event in the ring buffer, and that event is consumed.
4586 * Meaning, that sequential reads will keep returning a different event,
4587 * and eventually empty the ring buffer if the producer is slower.
4588 */
4589struct ring_buffer_event *
13292494 4590ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
66a8cb95 4591 unsigned long *lost_events)
7a8e76a3 4592{
554f786e
SR
4593 struct ring_buffer_per_cpu *cpu_buffer;
4594 struct ring_buffer_event *event = NULL;
f83c9d0f 4595 unsigned long flags;
289a5a25 4596 bool dolock;
7a8e76a3 4597
2d622719 4598 again:
554f786e
SR
4599 /* might be called in atomic */
4600 preempt_disable();
4601
9e01c1b7 4602 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 4603 goto out;
7a8e76a3 4604
554f786e 4605 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4606 local_irq_save(flags);
289a5a25 4607 dolock = rb_reader_lock(cpu_buffer);
f83c9d0f 4608
66a8cb95
SR
4609 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4610 if (event) {
4611 cpu_buffer->lost_events = 0;
469535a5 4612 rb_advance_reader(cpu_buffer);
66a8cb95 4613 }
7a8e76a3 4614
289a5a25 4615 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 4616 local_irq_restore(flags);
f83c9d0f 4617
554f786e
SR
4618 out:
4619 preempt_enable();
4620
1b959e18 4621 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 4622 goto again;
2d622719 4623
7a8e76a3
SR
4624 return event;
4625}
c4f50183 4626EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
4627
4628/**
72c9ddfd 4629 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
4630 * @buffer: The ring buffer to read from
4631 * @cpu: The cpu buffer to iterate over
31b265b3 4632 * @flags: gfp flags to use for memory allocation
7a8e76a3 4633 *
72c9ddfd
DM
4634 * This performs the initial preparations necessary to iterate
4635 * through the buffer. Memory is allocated, buffer recording
4636 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 4637 *
6167c205 4638 * Disabling buffer recording prevents the reading from being
72c9ddfd
DM
4639 * corrupted. This is not a consuming read, so a producer is not
4640 * expected.
4641 *
4642 * After a sequence of ring_buffer_read_prepare calls, the user is
d611851b 4643 * expected to make at least one call to ring_buffer_read_prepare_sync.
72c9ddfd
DM
4644 * Afterwards, ring_buffer_read_start is invoked to get things going
4645 * for real.
4646 *
d611851b 4647 * This overall must be paired with ring_buffer_read_finish.
7a8e76a3
SR
4648 */
4649struct ring_buffer_iter *
13292494 4650ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
7a8e76a3
SR
4651{
4652 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 4653 struct ring_buffer_iter *iter;
7a8e76a3 4654
9e01c1b7 4655 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4656 return NULL;
7a8e76a3 4657
785888c5 4658 iter = kzalloc(sizeof(*iter), flags);
7a8e76a3 4659 if (!iter)
8aabee57 4660 return NULL;
7a8e76a3 4661
785888c5
SRV
4662 iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4663 if (!iter->event) {
4664 kfree(iter);
4665 return NULL;
4666 }
4667
7a8e76a3
SR
4668 cpu_buffer = buffer->buffers[cpu];
4669
4670 iter->cpu_buffer = cpu_buffer;
4671
07b8b10e 4672 atomic_inc(&cpu_buffer->resize_disabled);
72c9ddfd
DM
4673
4674 return iter;
4675}
4676EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4677
4678/**
4679 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4680 *
4681 * All previously invoked ring_buffer_read_prepare calls to prepare
4682 * iterators will be synchronized. Afterwards, read_buffer_read_start
4683 * calls on those iterators are allowed.
4684 */
4685void
4686ring_buffer_read_prepare_sync(void)
4687{
74401729 4688 synchronize_rcu();
72c9ddfd
DM
4689}
4690EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4691
4692/**
4693 * ring_buffer_read_start - start a non consuming read of the buffer
4694 * @iter: The iterator returned by ring_buffer_read_prepare
4695 *
4696 * This finalizes the startup of an iteration through the buffer.
4697 * The iterator comes from a call to ring_buffer_read_prepare and
4698 * an intervening ring_buffer_read_prepare_sync must have been
4699 * performed.
4700 *
d611851b 4701 * Must be paired with ring_buffer_read_finish.
72c9ddfd
DM
4702 */
4703void
4704ring_buffer_read_start(struct ring_buffer_iter *iter)
4705{
4706 struct ring_buffer_per_cpu *cpu_buffer;
4707 unsigned long flags;
4708
4709 if (!iter)
4710 return;
4711
4712 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4713
5389f6fa 4714 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4715 arch_spin_lock(&cpu_buffer->lock);
642edba5 4716 rb_iter_reset(iter);
0199c4e6 4717 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4718 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4719}
c4f50183 4720EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4721
4722/**
d611851b 4723 * ring_buffer_read_finish - finish reading the iterator of the buffer
7a8e76a3
SR
4724 * @iter: The iterator retrieved by ring_buffer_start
4725 *
4726 * This re-enables the recording to the buffer, and frees the
4727 * iterator.
4728 */
4729void
4730ring_buffer_read_finish(struct ring_buffer_iter *iter)
4731{
4732 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4733 unsigned long flags;
7a8e76a3 4734
659f451f
SR
4735 /*
4736 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4737 * to check the integrity of the ring buffer.
4738 * Must prevent readers from trying to read, as the check
4739 * clears the HEAD page and readers require it.
659f451f 4740 */
9366c1ba 4741 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4742 rb_check_pages(cpu_buffer);
9366c1ba 4743 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4744
07b8b10e 4745 atomic_dec(&cpu_buffer->resize_disabled);
785888c5 4746 kfree(iter->event);
7a8e76a3
SR
4747 kfree(iter);
4748}
c4f50183 4749EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4750
4751/**
bc1a72af 4752 * ring_buffer_iter_advance - advance the iterator to the next location
7a8e76a3 4753 * @iter: The ring buffer iterator
7a8e76a3 4754 *
bc1a72af
SRV
4755 * Move the location of the iterator such that the next read will
4756 * be the next location of the iterator.
7a8e76a3 4757 */
bc1a72af 4758void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
7a8e76a3 4759{
f83c9d0f
SR
4760 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4761 unsigned long flags;
7a8e76a3 4762
5389f6fa 4763 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4764
7a8e76a3
SR
4765 rb_advance_iter(iter);
4766
bc1a72af 4767 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4768}
bc1a72af 4769EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
7a8e76a3
SR
4770
4771/**
4772 * ring_buffer_size - return the size of the ring buffer (in bytes)
4773 * @buffer: The ring buffer.
59e7cffe 4774 * @cpu: The CPU to get ring buffer size from.
7a8e76a3 4775 */
13292494 4776unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
7a8e76a3 4777{
438ced17
VN
4778 /*
4779 * Earlier, this method returned
4780 * BUF_PAGE_SIZE * buffer->nr_pages
4781 * Since the nr_pages field is now removed, we have converted this to
4782 * return the per cpu buffer value.
4783 */
4784 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4785 return 0;
4786
4787 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4788}
c4f50183 4789EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4790
4791static void
4792rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4793{
77ae365e
SR
4794 rb_head_page_deactivate(cpu_buffer);
4795
7a8e76a3 4796 cpu_buffer->head_page
3adc54fa 4797 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4798 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4799 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4800 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4801
6f807acd 4802 cpu_buffer->head_page->read = 0;
bf41a158
SR
4803
4804 cpu_buffer->tail_page = cpu_buffer->head_page;
4805 cpu_buffer->commit_page = cpu_buffer->head_page;
4806
4807 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4808 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4809 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4810 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4811 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4812 cpu_buffer->reader_page->read = 0;
7a8e76a3 4813
c64e148a 4814 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4815 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4816 local_set(&cpu_buffer->commit_overrun, 0);
4817 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4818 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4819 local_set(&cpu_buffer->committing, 0);
4820 local_set(&cpu_buffer->commits, 0);
2c2b0a78
SRV
4821 local_set(&cpu_buffer->pages_touched, 0);
4822 local_set(&cpu_buffer->pages_read, 0);
03329f99 4823 cpu_buffer->last_pages_touch = 0;
2c2b0a78 4824 cpu_buffer->shortest_full = 0;
77ae365e 4825 cpu_buffer->read = 0;
c64e148a 4826 cpu_buffer->read_bytes = 0;
69507c06 4827
10464b4a
SRV
4828 rb_time_set(&cpu_buffer->write_stamp, 0);
4829 rb_time_set(&cpu_buffer->before_stamp, 0);
77ae365e 4830
66a8cb95
SR
4831 cpu_buffer->lost_events = 0;
4832 cpu_buffer->last_overrun = 0;
4833
77ae365e 4834 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4835}
4836
b23d7a5f
NP
4837/* Must have disabled the cpu buffer then done a synchronize_rcu */
4838static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
4839{
4840 unsigned long flags;
4841
4842 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4843
4844 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4845 goto out;
4846
4847 arch_spin_lock(&cpu_buffer->lock);
4848
4849 rb_reset_cpu(cpu_buffer);
4850
4851 arch_spin_unlock(&cpu_buffer->lock);
4852
4853 out:
4854 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4855}
4856
7a8e76a3
SR
4857/**
4858 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4859 * @buffer: The ring buffer to reset a per cpu buffer of
4860 * @cpu: The CPU buffer to be reset
4861 */
13292494 4862void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
7a8e76a3
SR
4863{
4864 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
7a8e76a3 4865
9e01c1b7 4866 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4867 return;
7a8e76a3 4868
bbeb9746
GK
4869 /* prevent another thread from changing buffer sizes */
4870 mutex_lock(&buffer->mutex);
4871
07b8b10e 4872 atomic_inc(&cpu_buffer->resize_disabled);
41ede23e
SR
4873 atomic_inc(&cpu_buffer->record_disabled);
4874
83f40318 4875 /* Make sure all commits have finished */
74401729 4876 synchronize_rcu();
83f40318 4877
b23d7a5f 4878 reset_disabled_cpu_buffer(cpu_buffer);
f83c9d0f 4879
b23d7a5f
NP
4880 atomic_dec(&cpu_buffer->record_disabled);
4881 atomic_dec(&cpu_buffer->resize_disabled);
bbeb9746
GK
4882
4883 mutex_unlock(&buffer->mutex);
b23d7a5f
NP
4884}
4885EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
41b6a95d 4886
b23d7a5f
NP
4887/**
4888 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4889 * @buffer: The ring buffer to reset a per cpu buffer of
4890 * @cpu: The CPU buffer to be reset
4891 */
4892void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
4893{
4894 struct ring_buffer_per_cpu *cpu_buffer;
4895 int cpu;
7a8e76a3 4896
bbeb9746
GK
4897 /* prevent another thread from changing buffer sizes */
4898 mutex_lock(&buffer->mutex);
4899
b23d7a5f
NP
4900 for_each_online_buffer_cpu(buffer, cpu) {
4901 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 4902
b23d7a5f
NP
4903 atomic_inc(&cpu_buffer->resize_disabled);
4904 atomic_inc(&cpu_buffer->record_disabled);
4905 }
f83c9d0f 4906
b23d7a5f
NP
4907 /* Make sure all commits have finished */
4908 synchronize_rcu();
41ede23e 4909
b23d7a5f
NP
4910 for_each_online_buffer_cpu(buffer, cpu) {
4911 cpu_buffer = buffer->buffers[cpu];
4912
4913 reset_disabled_cpu_buffer(cpu_buffer);
4914
4915 atomic_dec(&cpu_buffer->record_disabled);
4916 atomic_dec(&cpu_buffer->resize_disabled);
4917 }
bbeb9746
GK
4918
4919 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
4920}
4921
4922/**
4923 * ring_buffer_reset - reset a ring buffer
4924 * @buffer: The ring buffer to reset all cpu buffers
4925 */
13292494 4926void ring_buffer_reset(struct trace_buffer *buffer)
7a8e76a3 4927{
b23d7a5f 4928 struct ring_buffer_per_cpu *cpu_buffer;
7a8e76a3
SR
4929 int cpu;
4930
b23d7a5f
NP
4931 for_each_buffer_cpu(buffer, cpu) {
4932 cpu_buffer = buffer->buffers[cpu];
4933
4934 atomic_inc(&cpu_buffer->resize_disabled);
4935 atomic_inc(&cpu_buffer->record_disabled);
4936 }
4937
4938 /* Make sure all commits have finished */
4939 synchronize_rcu();
4940
4941 for_each_buffer_cpu(buffer, cpu) {
4942 cpu_buffer = buffer->buffers[cpu];
4943
4944 reset_disabled_cpu_buffer(cpu_buffer);
4945
4946 atomic_dec(&cpu_buffer->record_disabled);
4947 atomic_dec(&cpu_buffer->resize_disabled);
4948 }
7a8e76a3 4949}
c4f50183 4950EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4951
4952/**
4953 * rind_buffer_empty - is the ring buffer empty?
4954 * @buffer: The ring buffer to test
4955 */
13292494 4956bool ring_buffer_empty(struct trace_buffer *buffer)
7a8e76a3
SR
4957{
4958 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4959 unsigned long flags;
289a5a25 4960 bool dolock;
7a8e76a3 4961 int cpu;
d4788207 4962 int ret;
7a8e76a3
SR
4963
4964 /* yes this is racy, but if you don't like the race, lock the buffer */
4965 for_each_buffer_cpu(buffer, cpu) {
4966 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4967 local_irq_save(flags);
289a5a25 4968 dolock = rb_reader_lock(cpu_buffer);
d4788207 4969 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 4970 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e
SR
4971 local_irq_restore(flags);
4972
d4788207 4973 if (!ret)
3d4e204d 4974 return false;
7a8e76a3 4975 }
554f786e 4976
3d4e204d 4977 return true;
7a8e76a3 4978}
c4f50183 4979EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4980
4981/**
4982 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4983 * @buffer: The ring buffer
4984 * @cpu: The CPU buffer to test
4985 */
13292494 4986bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
7a8e76a3
SR
4987{
4988 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4989 unsigned long flags;
289a5a25 4990 bool dolock;
8aabee57 4991 int ret;
7a8e76a3 4992
9e01c1b7 4993 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3d4e204d 4994 return true;
7a8e76a3
SR
4995
4996 cpu_buffer = buffer->buffers[cpu];
8d707e8e 4997 local_irq_save(flags);
289a5a25 4998 dolock = rb_reader_lock(cpu_buffer);
554f786e 4999 ret = rb_per_cpu_empty(cpu_buffer);
289a5a25 5000 rb_reader_unlock(cpu_buffer, dolock);
8d707e8e 5001 local_irq_restore(flags);
554f786e
SR
5002
5003 return ret;
7a8e76a3 5004}
c4f50183 5005EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 5006
85bac32c 5007#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
5008/**
5009 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5010 * @buffer_a: One buffer to swap with
5011 * @buffer_b: The other buffer to swap with
59e7cffe 5012 * @cpu: the CPU of the buffers to swap
7a8e76a3
SR
5013 *
5014 * This function is useful for tracers that want to take a "snapshot"
5015 * of a CPU buffer and has another back up buffer lying around.
5016 * it is expected that the tracer handles the cpu buffer not being
5017 * used at the moment.
5018 */
13292494
SRV
5019int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5020 struct trace_buffer *buffer_b, int cpu)
7a8e76a3
SR
5021{
5022 struct ring_buffer_per_cpu *cpu_buffer_a;
5023 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
5024 int ret = -EINVAL;
5025
9e01c1b7
RR
5026 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5027 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 5028 goto out;
7a8e76a3 5029
438ced17
VN
5030 cpu_buffer_a = buffer_a->buffers[cpu];
5031 cpu_buffer_b = buffer_b->buffers[cpu];
5032
7a8e76a3 5033 /* At least make sure the two buffers are somewhat the same */
438ced17 5034 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
5035 goto out;
5036
5037 ret = -EAGAIN;
7a8e76a3 5038
97b17efe 5039 if (atomic_read(&buffer_a->record_disabled))
554f786e 5040 goto out;
97b17efe
SR
5041
5042 if (atomic_read(&buffer_b->record_disabled))
554f786e 5043 goto out;
97b17efe 5044
97b17efe 5045 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 5046 goto out;
97b17efe
SR
5047
5048 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 5049 goto out;
97b17efe 5050
7a8e76a3 5051 /*
74401729 5052 * We can't do a synchronize_rcu here because this
7a8e76a3
SR
5053 * function can be called in atomic context.
5054 * Normally this will be called from the same CPU as cpu.
5055 * If not it's up to the caller to protect this.
5056 */
5057 atomic_inc(&cpu_buffer_a->record_disabled);
5058 atomic_inc(&cpu_buffer_b->record_disabled);
5059
98277991
SR
5060 ret = -EBUSY;
5061 if (local_read(&cpu_buffer_a->committing))
5062 goto out_dec;
5063 if (local_read(&cpu_buffer_b->committing))
5064 goto out_dec;
5065
7a8e76a3
SR
5066 buffer_a->buffers[cpu] = cpu_buffer_b;
5067 buffer_b->buffers[cpu] = cpu_buffer_a;
5068
5069 cpu_buffer_b->buffer = buffer_a;
5070 cpu_buffer_a->buffer = buffer_b;
5071
98277991
SR
5072 ret = 0;
5073
5074out_dec:
7a8e76a3
SR
5075 atomic_dec(&cpu_buffer_a->record_disabled);
5076 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 5077out:
554f786e 5078 return ret;
7a8e76a3 5079}
c4f50183 5080EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 5081#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 5082
8789a9e7
SR
5083/**
5084 * ring_buffer_alloc_read_page - allocate a page to read from buffer
5085 * @buffer: the buffer to allocate for.
d611851b 5086 * @cpu: the cpu buffer to allocate.
8789a9e7
SR
5087 *
5088 * This function is used in conjunction with ring_buffer_read_page.
5089 * When reading a full page from the ring buffer, these functions
5090 * can be used to speed up the process. The calling function should
5091 * allocate a few pages first with this function. Then when it
5092 * needs to get pages from the ring buffer, it passes the result
5093 * of this function into ring_buffer_read_page, which will swap
5094 * the page that was allocated, with the read page of the buffer.
5095 *
5096 * Returns:
a7e52ad7 5097 * The page allocated, or ERR_PTR
8789a9e7 5098 */
13292494 5099void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
8789a9e7 5100{
a7e52ad7 5101 struct ring_buffer_per_cpu *cpu_buffer;
73a757e6
SRV
5102 struct buffer_data_page *bpage = NULL;
5103 unsigned long flags;
7ea59064 5104 struct page *page;
8789a9e7 5105
a7e52ad7
SRV
5106 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5107 return ERR_PTR(-ENODEV);
5108
5109 cpu_buffer = buffer->buffers[cpu];
73a757e6
SRV
5110 local_irq_save(flags);
5111 arch_spin_lock(&cpu_buffer->lock);
5112
5113 if (cpu_buffer->free_page) {
5114 bpage = cpu_buffer->free_page;
5115 cpu_buffer->free_page = NULL;
5116 }
5117
5118 arch_spin_unlock(&cpu_buffer->lock);
5119 local_irq_restore(flags);
5120
5121 if (bpage)
5122 goto out;
5123
d7ec4bfe
VN
5124 page = alloc_pages_node(cpu_to_node(cpu),
5125 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 5126 if (!page)
a7e52ad7 5127 return ERR_PTR(-ENOMEM);
8789a9e7 5128
7ea59064 5129 bpage = page_address(page);
8789a9e7 5130
73a757e6 5131 out:
ef7a4a16
SR
5132 rb_init_page(bpage);
5133
044fa782 5134 return bpage;
8789a9e7 5135}
d6ce96da 5136EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
5137
5138/**
5139 * ring_buffer_free_read_page - free an allocated read page
5140 * @buffer: the buffer the page was allocate for
73a757e6 5141 * @cpu: the cpu buffer the page came from
8789a9e7
SR
5142 * @data: the page to free
5143 *
5144 * Free a page allocated from ring_buffer_alloc_read_page.
5145 */
13292494 5146void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
8789a9e7 5147{
73a757e6
SRV
5148 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5149 struct buffer_data_page *bpage = data;
ae415fa4 5150 struct page *page = virt_to_page(bpage);
73a757e6
SRV
5151 unsigned long flags;
5152
ae415fa4
SRV
5153 /* If the page is still in use someplace else, we can't reuse it */
5154 if (page_ref_count(page) > 1)
5155 goto out;
5156
73a757e6
SRV
5157 local_irq_save(flags);
5158 arch_spin_lock(&cpu_buffer->lock);
5159
5160 if (!cpu_buffer->free_page) {
5161 cpu_buffer->free_page = bpage;
5162 bpage = NULL;
5163 }
5164
5165 arch_spin_unlock(&cpu_buffer->lock);
5166 local_irq_restore(flags);
5167
ae415fa4 5168 out:
73a757e6 5169 free_page((unsigned long)bpage);
8789a9e7 5170}
d6ce96da 5171EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
5172
5173/**
5174 * ring_buffer_read_page - extract a page from the ring buffer
5175 * @buffer: buffer to extract from
5176 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 5177 * @len: amount to extract
8789a9e7
SR
5178 * @cpu: the cpu of the buffer to extract
5179 * @full: should the extraction only happen when the page is full.
5180 *
5181 * This function will pull out a page from the ring buffer and consume it.
5182 * @data_page must be the address of the variable that was returned
5183 * from ring_buffer_alloc_read_page. This is because the page might be used
5184 * to swap with a page in the ring buffer.
5185 *
5186 * for example:
d611851b 5187 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
a7e52ad7
SRV
5188 * if (IS_ERR(rpage))
5189 * return PTR_ERR(rpage);
ef7a4a16 5190 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
5191 * if (ret >= 0)
5192 * process_page(rpage, ret);
8789a9e7
SR
5193 *
5194 * When @full is set, the function will not return true unless
5195 * the writer is off the reader page.
5196 *
5197 * Note: it is up to the calling functions to handle sleeps and wakeups.
5198 * The ring buffer can be used anywhere in the kernel and can not
5199 * blindly call wake_up. The layer that uses the ring buffer must be
5200 * responsible for that.
5201 *
5202 * Returns:
667d2412
LJ
5203 * >=0 if data has been transferred, returns the offset of consumed data.
5204 * <0 if no data has been transferred.
8789a9e7 5205 */
13292494 5206int ring_buffer_read_page(struct trace_buffer *buffer,
ef7a4a16 5207 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
5208{
5209 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5210 struct ring_buffer_event *event;
044fa782 5211 struct buffer_data_page *bpage;
ef7a4a16 5212 struct buffer_page *reader;
ff0ff84a 5213 unsigned long missed_events;
8789a9e7 5214 unsigned long flags;
ef7a4a16 5215 unsigned int commit;
667d2412 5216 unsigned int read;
4f3640f8 5217 u64 save_timestamp;
667d2412 5218 int ret = -1;
8789a9e7 5219
554f786e
SR
5220 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5221 goto out;
5222
474d32b6
SR
5223 /*
5224 * If len is not big enough to hold the page header, then
5225 * we can not copy anything.
5226 */
5227 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 5228 goto out;
474d32b6
SR
5229
5230 len -= BUF_PAGE_HDR_SIZE;
5231
8789a9e7 5232 if (!data_page)
554f786e 5233 goto out;
8789a9e7 5234
044fa782
SR
5235 bpage = *data_page;
5236 if (!bpage)
554f786e 5237 goto out;
8789a9e7 5238
5389f6fa 5239 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 5240
ef7a4a16
SR
5241 reader = rb_get_reader_page(cpu_buffer);
5242 if (!reader)
554f786e 5243 goto out_unlock;
8789a9e7 5244
ef7a4a16
SR
5245 event = rb_reader_event(cpu_buffer);
5246
5247 read = reader->read;
5248 commit = rb_page_commit(reader);
667d2412 5249
66a8cb95 5250 /* Check if any events were dropped */
ff0ff84a 5251 missed_events = cpu_buffer->lost_events;
66a8cb95 5252
8789a9e7 5253 /*
474d32b6
SR
5254 * If this page has been partially read or
5255 * if len is not big enough to read the rest of the page or
5256 * a writer is still on the page, then
5257 * we must copy the data from the page to the buffer.
5258 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 5259 */
474d32b6 5260 if (read || (len < (commit - read)) ||
ef7a4a16 5261 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 5262 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
5263 unsigned int rpos = read;
5264 unsigned int pos = 0;
ef7a4a16 5265 unsigned int size;
8789a9e7
SR
5266
5267 if (full)
554f786e 5268 goto out_unlock;
8789a9e7 5269
ef7a4a16
SR
5270 if (len > (commit - read))
5271 len = (commit - read);
5272
69d1b839
SR
5273 /* Always keep the time extend and data together */
5274 size = rb_event_ts_length(event);
ef7a4a16
SR
5275
5276 if (len < size)
554f786e 5277 goto out_unlock;
ef7a4a16 5278
4f3640f8
SR
5279 /* save the current timestamp, since the user will need it */
5280 save_timestamp = cpu_buffer->read_stamp;
5281
ef7a4a16
SR
5282 /* Need to copy one event at a time */
5283 do {
e1e35927
DS
5284 /* We need the size of one event, because
5285 * rb_advance_reader only advances by one event,
5286 * whereas rb_event_ts_length may include the size of
5287 * one or two events.
5288 * We have already ensured there's enough space if this
5289 * is a time extend. */
5290 size = rb_event_length(event);
474d32b6 5291 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
5292
5293 len -= size;
5294
5295 rb_advance_reader(cpu_buffer);
474d32b6
SR
5296 rpos = reader->read;
5297 pos += size;
ef7a4a16 5298
18fab912
HY
5299 if (rpos >= commit)
5300 break;
5301
ef7a4a16 5302 event = rb_reader_event(cpu_buffer);
69d1b839
SR
5303 /* Always keep the time extend and data together */
5304 size = rb_event_ts_length(event);
e1e35927 5305 } while (len >= size);
667d2412
LJ
5306
5307 /* update bpage */
ef7a4a16 5308 local_set(&bpage->commit, pos);
4f3640f8 5309 bpage->time_stamp = save_timestamp;
ef7a4a16 5310
474d32b6
SR
5311 /* we copied everything to the beginning */
5312 read = 0;
8789a9e7 5313 } else {
afbab76a 5314 /* update the entry counter */
77ae365e 5315 cpu_buffer->read += rb_page_entries(reader);
c64e148a 5316 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 5317
8789a9e7 5318 /* swap the pages */
044fa782 5319 rb_init_page(bpage);
ef7a4a16
SR
5320 bpage = reader->page;
5321 reader->page = *data_page;
5322 local_set(&reader->write, 0);
778c55d4 5323 local_set(&reader->entries, 0);
ef7a4a16 5324 reader->read = 0;
044fa782 5325 *data_page = bpage;
ff0ff84a
SR
5326
5327 /*
5328 * Use the real_end for the data size,
5329 * This gives us a chance to store the lost events
5330 * on the page.
5331 */
5332 if (reader->real_end)
5333 local_set(&bpage->commit, reader->real_end);
8789a9e7 5334 }
667d2412 5335 ret = read;
8789a9e7 5336
66a8cb95 5337 cpu_buffer->lost_events = 0;
2711ca23
SR
5338
5339 commit = local_read(&bpage->commit);
66a8cb95
SR
5340 /*
5341 * Set a flag in the commit field if we lost events
5342 */
ff0ff84a 5343 if (missed_events) {
ff0ff84a
SR
5344 /* If there is room at the end of the page to save the
5345 * missed events, then record it there.
5346 */
5347 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5348 memcpy(&bpage->data[commit], &missed_events,
5349 sizeof(missed_events));
5350 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 5351 commit += sizeof(missed_events);
ff0ff84a 5352 }
66a8cb95 5353 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 5354 }
66a8cb95 5355
2711ca23
SR
5356 /*
5357 * This page may be off to user land. Zero it out here.
5358 */
5359 if (commit < BUF_PAGE_SIZE)
5360 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5361
554f786e 5362 out_unlock:
5389f6fa 5363 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 5364
554f786e 5365 out:
8789a9e7
SR
5366 return ret;
5367}
d6ce96da 5368EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 5369
b32614c0
SAS
5370/*
5371 * We only allocate new buffers, never free them if the CPU goes down.
5372 * If we were to free the buffer, then the user would lose any trace that was in
5373 * the buffer.
5374 */
5375int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
554f786e 5376{
13292494 5377 struct trace_buffer *buffer;
9b94a8fb
SRRH
5378 long nr_pages_same;
5379 int cpu_i;
5380 unsigned long nr_pages;
554f786e 5381
13292494 5382 buffer = container_of(node, struct trace_buffer, node);
b32614c0
SAS
5383 if (cpumask_test_cpu(cpu, buffer->cpumask))
5384 return 0;
5385
5386 nr_pages = 0;
5387 nr_pages_same = 1;
5388 /* check if all cpu sizes are same */
5389 for_each_buffer_cpu(buffer, cpu_i) {
5390 /* fill in the size from first enabled cpu */
5391 if (nr_pages == 0)
5392 nr_pages = buffer->buffers[cpu_i]->nr_pages;
5393 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5394 nr_pages_same = 0;
5395 break;
554f786e 5396 }
554f786e 5397 }
b32614c0
SAS
5398 /* allocate minimum pages, user can later expand it */
5399 if (!nr_pages_same)
5400 nr_pages = 2;
5401 buffer->buffers[cpu] =
5402 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5403 if (!buffer->buffers[cpu]) {
5404 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5405 cpu);
5406 return -ENOMEM;
5407 }
5408 smp_wmb();
5409 cpumask_set_cpu(cpu, buffer->cpumask);
5410 return 0;
554f786e 5411}
6c43e554
SRRH
5412
5413#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5414/*
5415 * This is a basic integrity check of the ring buffer.
5416 * Late in the boot cycle this test will run when configured in.
5417 * It will kick off a thread per CPU that will go into a loop
5418 * writing to the per cpu ring buffer various sizes of data.
5419 * Some of the data will be large items, some small.
5420 *
5421 * Another thread is created that goes into a spin, sending out
5422 * IPIs to the other CPUs to also write into the ring buffer.
5423 * this is to test the nesting ability of the buffer.
5424 *
5425 * Basic stats are recorded and reported. If something in the
5426 * ring buffer should happen that's not expected, a big warning
5427 * is displayed and all ring buffers are disabled.
5428 */
5429static struct task_struct *rb_threads[NR_CPUS] __initdata;
5430
5431struct rb_test_data {
13292494 5432 struct trace_buffer *buffer;
6c43e554
SRRH
5433 unsigned long events;
5434 unsigned long bytes_written;
5435 unsigned long bytes_alloc;
5436 unsigned long bytes_dropped;
5437 unsigned long events_nested;
5438 unsigned long bytes_written_nested;
5439 unsigned long bytes_alloc_nested;
5440 unsigned long bytes_dropped_nested;
5441 int min_size_nested;
5442 int max_size_nested;
5443 int max_size;
5444 int min_size;
5445 int cpu;
5446 int cnt;
5447};
5448
5449static struct rb_test_data rb_data[NR_CPUS] __initdata;
5450
5451/* 1 meg per cpu */
5452#define RB_TEST_BUFFER_SIZE 1048576
5453
5454static char rb_string[] __initdata =
5455 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5456 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5457 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5458
5459static bool rb_test_started __initdata;
5460
5461struct rb_item {
5462 int size;
5463 char str[];
5464};
5465
5466static __init int rb_write_something(struct rb_test_data *data, bool nested)
5467{
5468 struct ring_buffer_event *event;
5469 struct rb_item *item;
5470 bool started;
5471 int event_len;
5472 int size;
5473 int len;
5474 int cnt;
5475
5476 /* Have nested writes different that what is written */
5477 cnt = data->cnt + (nested ? 27 : 0);
5478
5479 /* Multiply cnt by ~e, to make some unique increment */
40ed29b3 5480 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
6c43e554
SRRH
5481
5482 len = size + sizeof(struct rb_item);
5483
5484 started = rb_test_started;
5485 /* read rb_test_started before checking buffer enabled */
5486 smp_rmb();
5487
5488 event = ring_buffer_lock_reserve(data->buffer, len);
5489 if (!event) {
5490 /* Ignore dropped events before test starts. */
5491 if (started) {
5492 if (nested)
5493 data->bytes_dropped += len;
5494 else
5495 data->bytes_dropped_nested += len;
5496 }
5497 return len;
5498 }
5499
5500 event_len = ring_buffer_event_length(event);
5501
5502 if (RB_WARN_ON(data->buffer, event_len < len))
5503 goto out;
5504
5505 item = ring_buffer_event_data(event);
5506 item->size = size;
5507 memcpy(item->str, rb_string, size);
5508
5509 if (nested) {
5510 data->bytes_alloc_nested += event_len;
5511 data->bytes_written_nested += len;
5512 data->events_nested++;
5513 if (!data->min_size_nested || len < data->min_size_nested)
5514 data->min_size_nested = len;
5515 if (len > data->max_size_nested)
5516 data->max_size_nested = len;
5517 } else {
5518 data->bytes_alloc += event_len;
5519 data->bytes_written += len;
5520 data->events++;
5521 if (!data->min_size || len < data->min_size)
5522 data->max_size = len;
5523 if (len > data->max_size)
5524 data->max_size = len;
5525 }
5526
5527 out:
5528 ring_buffer_unlock_commit(data->buffer, event);
5529
5530 return 0;
5531}
5532
5533static __init int rb_test(void *arg)
5534{
5535 struct rb_test_data *data = arg;
5536
5537 while (!kthread_should_stop()) {
5538 rb_write_something(data, false);
5539 data->cnt++;
5540
5541 set_current_state(TASK_INTERRUPTIBLE);
5542 /* Now sleep between a min of 100-300us and a max of 1ms */
5543 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5544 }
5545
5546 return 0;
5547}
5548
5549static __init void rb_ipi(void *ignore)
5550{
5551 struct rb_test_data *data;
5552 int cpu = smp_processor_id();
5553
5554 data = &rb_data[cpu];
5555 rb_write_something(data, true);
5556}
5557
5558static __init int rb_hammer_test(void *arg)
5559{
5560 while (!kthread_should_stop()) {
5561
5562 /* Send an IPI to all cpus to write data! */
5563 smp_call_function(rb_ipi, NULL, 1);
5564 /* No sleep, but for non preempt, let others run */
5565 schedule();
5566 }
5567
5568 return 0;
5569}
5570
5571static __init int test_ringbuffer(void)
5572{
5573 struct task_struct *rb_hammer;
13292494 5574 struct trace_buffer *buffer;
6c43e554
SRRH
5575 int cpu;
5576 int ret = 0;
5577
a356646a 5578 if (security_locked_down(LOCKDOWN_TRACEFS)) {
ee195452 5579 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
a356646a
SRV
5580 return 0;
5581 }
5582
6c43e554
SRRH
5583 pr_info("Running ring buffer tests...\n");
5584
5585 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5586 if (WARN_ON(!buffer))
5587 return 0;
5588
5589 /* Disable buffer so that threads can't write to it yet */
5590 ring_buffer_record_off(buffer);
5591
5592 for_each_online_cpu(cpu) {
5593 rb_data[cpu].buffer = buffer;
5594 rb_data[cpu].cpu = cpu;
5595 rb_data[cpu].cnt = cpu;
5596 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5597 "rbtester/%d", cpu);
62277de7 5598 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6c43e554 5599 pr_cont("FAILED\n");
62277de7 5600 ret = PTR_ERR(rb_threads[cpu]);
6c43e554
SRRH
5601 goto out_free;
5602 }
5603
5604 kthread_bind(rb_threads[cpu], cpu);
5605 wake_up_process(rb_threads[cpu]);
5606 }
5607
5608 /* Now create the rb hammer! */
5609 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
62277de7 5610 if (WARN_ON(IS_ERR(rb_hammer))) {
6c43e554 5611 pr_cont("FAILED\n");
62277de7 5612 ret = PTR_ERR(rb_hammer);
6c43e554
SRRH
5613 goto out_free;
5614 }
5615
5616 ring_buffer_record_on(buffer);
5617 /*
5618 * Show buffer is enabled before setting rb_test_started.
5619 * Yes there's a small race window where events could be
5620 * dropped and the thread wont catch it. But when a ring
5621 * buffer gets enabled, there will always be some kind of
5622 * delay before other CPUs see it. Thus, we don't care about
5623 * those dropped events. We care about events dropped after
5624 * the threads see that the buffer is active.
5625 */
5626 smp_wmb();
5627 rb_test_started = true;
5628
5629 set_current_state(TASK_INTERRUPTIBLE);
5630 /* Just run for 10 seconds */;
5631 schedule_timeout(10 * HZ);
5632
5633 kthread_stop(rb_hammer);
5634
5635 out_free:
5636 for_each_online_cpu(cpu) {
5637 if (!rb_threads[cpu])
5638 break;
5639 kthread_stop(rb_threads[cpu]);
5640 }
5641 if (ret) {
5642 ring_buffer_free(buffer);
5643 return ret;
5644 }
5645
5646 /* Report! */
5647 pr_info("finished\n");
5648 for_each_online_cpu(cpu) {
5649 struct ring_buffer_event *event;
5650 struct rb_test_data *data = &rb_data[cpu];
5651 struct rb_item *item;
5652 unsigned long total_events;
5653 unsigned long total_dropped;
5654 unsigned long total_written;
5655 unsigned long total_alloc;
5656 unsigned long total_read = 0;
5657 unsigned long total_size = 0;
5658 unsigned long total_len = 0;
5659 unsigned long total_lost = 0;
5660 unsigned long lost;
5661 int big_event_size;
5662 int small_event_size;
5663
5664 ret = -1;
5665
5666 total_events = data->events + data->events_nested;
5667 total_written = data->bytes_written + data->bytes_written_nested;
5668 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5669 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5670
5671 big_event_size = data->max_size + data->max_size_nested;
5672 small_event_size = data->min_size + data->min_size_nested;
5673
5674 pr_info("CPU %d:\n", cpu);
5675 pr_info(" events: %ld\n", total_events);
5676 pr_info(" dropped bytes: %ld\n", total_dropped);
5677 pr_info(" alloced bytes: %ld\n", total_alloc);
5678 pr_info(" written bytes: %ld\n", total_written);
5679 pr_info(" biggest event: %d\n", big_event_size);
5680 pr_info(" smallest event: %d\n", small_event_size);
5681
5682 if (RB_WARN_ON(buffer, total_dropped))
5683 break;
5684
5685 ret = 0;
5686
5687 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5688 total_lost += lost;
5689 item = ring_buffer_event_data(event);
5690 total_len += ring_buffer_event_length(event);
5691 total_size += item->size + sizeof(struct rb_item);
5692 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5693 pr_info("FAILED!\n");
5694 pr_info("buffer had: %.*s\n", item->size, item->str);
5695 pr_info("expected: %.*s\n", item->size, rb_string);
5696 RB_WARN_ON(buffer, 1);
5697 ret = -1;
5698 break;
5699 }
5700 total_read++;
5701 }
5702 if (ret)
5703 break;
5704
5705 ret = -1;
5706
5707 pr_info(" read events: %ld\n", total_read);
5708 pr_info(" lost events: %ld\n", total_lost);
5709 pr_info(" total events: %ld\n", total_lost + total_read);
5710 pr_info(" recorded len bytes: %ld\n", total_len);
5711 pr_info(" recorded size bytes: %ld\n", total_size);
5712 if (total_lost)
5713 pr_info(" With dropped events, record len and size may not match\n"
5714 " alloced and written from above\n");
5715 if (!total_lost) {
5716 if (RB_WARN_ON(buffer, total_len != total_alloc ||
5717 total_size != total_written))
5718 break;
5719 }
5720 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5721 break;
5722
5723 ret = 0;
5724 }
5725 if (!ret)
5726 pr_info("Ring buffer PASSED!\n");
5727
5728 ring_buffer_free(buffer);
5729 return 0;
5730}
5731
5732late_initcall(test_ringbuffer);
5733#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */