]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/workqueue.c
workqueue: destroy_worker() should destroy idle workers only
[mirror_ubuntu-zesty-kernel.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc
TH
67 * Note that DISASSOCIATED should be flipped only while holding
68 * manager_mutex to avoid changing binding state while
24647570 69 * create_worker() is in progress.
bc2ae0f5 70 */
11ebea50 71 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 73 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 74
c8e55f36 75 /* worker flags */
c8e55f36
TH
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 78 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 82
a9ab775b
TH
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 85
e34cdddb 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 87
29c91e99 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 90
e22bee78
TH
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
3233cdbd
TH
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
e22bee78
TH
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give -20.
103 */
104 RESCUER_NICE_LEVEL = -20,
3270476a 105 HIGHPRI_NICE_LEVEL = -20,
ecf6881f
TH
106
107 WQ_NAME_LEN = 24,
c8e55f36 108};
1da177e4
LT
109
110/*
4690c4ab
TH
111 * Structure fields follow one of the following exclusion rules.
112 *
e41e704b
TH
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
4690c4ab 115 *
e22bee78
TH
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
d565ed63 119 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 120 *
d565ed63
TH
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 125 *
9625ab17 126 * M: pool->manager_mutex protected.
822d8405 127 *
68e13a67 128 * PL: wq_pool_mutex protected.
5bcab335 129 *
68e13a67 130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 131 *
3c25a55d
LJ
132 * WQ: wq->mutex protected.
133 *
b5927605 134 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
135 *
136 * MD: wq_mayday_lock protected.
1da177e4 137 */
1da177e4 138
2eaebdb3 139/* struct worker is defined in workqueue_internal.h */
c34056a3 140
bd7bdd43 141struct worker_pool {
d565ed63 142 spinlock_t lock; /* the pool lock */
d84ff051 143 int cpu; /* I: the associated cpu */
f3f90ad4 144 int node; /* I: the associated node ID */
9daf9e67 145 int id; /* I: pool ID */
11ebea50 146 unsigned int flags; /* X: flags */
bd7bdd43
TH
147
148 struct list_head worklist; /* L: list of pending works */
149 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
150
151 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
152 int nr_idle; /* L: currently idle ones */
153
154 struct list_head idle_list; /* X: list of idle workers */
155 struct timer_list idle_timer; /* L: worker idle timeout */
156 struct timer_list mayday_timer; /* L: SOS timer for workers */
157
c5aa87bb 158 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
159 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
160 /* L: hash of busy workers */
161
bc3a1afc 162 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 163 struct mutex manager_arb; /* manager arbitration */
bc3a1afc 164 struct mutex manager_mutex; /* manager exclusion */
9625ab17 165 struct idr worker_idr; /* M: worker IDs and iteration */
e19e397a 166
7a4e344c 167 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
168 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
169 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 170
e19e397a
TH
171 /*
172 * The current concurrency level. As it's likely to be accessed
173 * from other CPUs during try_to_wake_up(), put it in a separate
174 * cacheline.
175 */
176 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
177
178 /*
179 * Destruction of pool is sched-RCU protected to allow dereferences
180 * from get_work_pool().
181 */
182 struct rcu_head rcu;
8b03ae3c
TH
183} ____cacheline_aligned_in_smp;
184
1da177e4 185/*
112202d9
TH
186 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
187 * of work_struct->data are used for flags and the remaining high bits
188 * point to the pwq; thus, pwqs need to be aligned at two's power of the
189 * number of flag bits.
1da177e4 190 */
112202d9 191struct pool_workqueue {
bd7bdd43 192 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 193 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
194 int work_color; /* L: current color */
195 int flush_color; /* L: flushing color */
8864b4e5 196 int refcnt; /* L: reference count */
73f53c4a
TH
197 int nr_in_flight[WORK_NR_COLORS];
198 /* L: nr of in_flight works */
1e19ffc6 199 int nr_active; /* L: nr of active works */
a0a1a5fd 200 int max_active; /* L: max active works */
1e19ffc6 201 struct list_head delayed_works; /* L: delayed works */
3c25a55d 202 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 203 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
204
205 /*
206 * Release of unbound pwq is punted to system_wq. See put_pwq()
207 * and pwq_unbound_release_workfn() for details. pool_workqueue
208 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 209 * determined without grabbing wq->mutex.
8864b4e5
TH
210 */
211 struct work_struct unbound_release_work;
212 struct rcu_head rcu;
e904e6c2 213} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 214
73f53c4a
TH
215/*
216 * Structure used to wait for workqueue flush.
217 */
218struct wq_flusher {
3c25a55d
LJ
219 struct list_head list; /* WQ: list of flushers */
220 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
221 struct completion done; /* flush completion */
222};
223
226223ab
TH
224struct wq_device;
225
1da177e4 226/*
c5aa87bb
TH
227 * The externally visible workqueue. It relays the issued work items to
228 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
229 */
230struct workqueue_struct {
3c25a55d 231 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 232 struct list_head list; /* PL: list of all workqueues */
73f53c4a 233
3c25a55d
LJ
234 struct mutex mutex; /* protects this wq */
235 int work_color; /* WQ: current work color */
236 int flush_color; /* WQ: current flush color */
112202d9 237 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
238 struct wq_flusher *first_flusher; /* WQ: first flusher */
239 struct list_head flusher_queue; /* WQ: flush waiters */
240 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 241
2e109a28 242 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
243 struct worker *rescuer; /* I: rescue worker */
244
87fc741e 245 int nr_drainers; /* WQ: drain in progress */
a357fc03 246 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 247
6029a918 248 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 249 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 250
226223ab
TH
251#ifdef CONFIG_SYSFS
252 struct wq_device *wq_dev; /* I: for sysfs interface */
253#endif
4e6045f1 254#ifdef CONFIG_LOCKDEP
4690c4ab 255 struct lockdep_map lockdep_map;
4e6045f1 256#endif
ecf6881f 257 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
258
259 /* hot fields used during command issue, aligned to cacheline */
260 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
261 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 262 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
263};
264
e904e6c2
TH
265static struct kmem_cache *pwq_cache;
266
bce90380
TH
267static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
268static cpumask_var_t *wq_numa_possible_cpumask;
269 /* possible CPUs of each node */
270
d55262c4
TH
271static bool wq_disable_numa;
272module_param_named(disable_numa, wq_disable_numa, bool, 0444);
273
cee22a15
VK
274/* see the comment above the definition of WQ_POWER_EFFICIENT */
275#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
276static bool wq_power_efficient = true;
277#else
278static bool wq_power_efficient;
279#endif
280
281module_param_named(power_efficient, wq_power_efficient, bool, 0444);
282
bce90380
TH
283static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
284
4c16bd32
TH
285/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
286static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
287
68e13a67 288static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 289static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 290
68e13a67
LJ
291static LIST_HEAD(workqueues); /* PL: list of all workqueues */
292static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
293
294/* the per-cpu worker pools */
295static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
296 cpu_worker_pools);
297
68e13a67 298static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 299
68e13a67 300/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
301static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
302
c5aa87bb 303/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
304static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
305
8a2b7538
TH
306/* I: attributes used when instantiating ordered pools on demand */
307static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
308
d320c038 309struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 310EXPORT_SYMBOL(system_wq);
044c782c 311struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 312EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 313struct workqueue_struct *system_long_wq __read_mostly;
d320c038 314EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 315struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 316EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 317struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 318EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
319struct workqueue_struct *system_power_efficient_wq __read_mostly;
320EXPORT_SYMBOL_GPL(system_power_efficient_wq);
321struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
322EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 323
7d19c5ce
TH
324static int worker_thread(void *__worker);
325static void copy_workqueue_attrs(struct workqueue_attrs *to,
326 const struct workqueue_attrs *from);
327
97bd2347
TH
328#define CREATE_TRACE_POINTS
329#include <trace/events/workqueue.h>
330
68e13a67 331#define assert_rcu_or_pool_mutex() \
5bcab335 332 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
333 lockdep_is_held(&wq_pool_mutex), \
334 "sched RCU or wq_pool_mutex should be held")
5bcab335 335
b09f4fd3 336#define assert_rcu_or_wq_mutex(wq) \
76af4d93 337 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 338 lockdep_is_held(&wq->mutex), \
b09f4fd3 339 "sched RCU or wq->mutex should be held")
76af4d93 340
f02ae73a
TH
341#define for_each_cpu_worker_pool(pool, cpu) \
342 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
343 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 344 (pool)++)
4ce62e9e 345
17116969
TH
346/**
347 * for_each_pool - iterate through all worker_pools in the system
348 * @pool: iteration cursor
611c92a0 349 * @pi: integer used for iteration
fa1b54e6 350 *
68e13a67
LJ
351 * This must be called either with wq_pool_mutex held or sched RCU read
352 * locked. If the pool needs to be used beyond the locking in effect, the
353 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
354 *
355 * The if/else clause exists only for the lockdep assertion and can be
356 * ignored.
17116969 357 */
611c92a0
TH
358#define for_each_pool(pool, pi) \
359 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 360 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 361 else
17116969 362
822d8405
TH
363/**
364 * for_each_pool_worker - iterate through all workers of a worker_pool
365 * @worker: iteration cursor
366 * @wi: integer used for iteration
367 * @pool: worker_pool to iterate workers of
368 *
9625ab17 369 * This must be called with @pool->manager_mutex.
822d8405
TH
370 *
371 * The if/else clause exists only for the lockdep assertion and can be
372 * ignored.
373 */
374#define for_each_pool_worker(worker, wi, pool) \
375 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
9625ab17 376 if (({ lockdep_assert_held(&pool->manager_mutex); false; })) { } \
822d8405
TH
377 else
378
49e3cf44
TH
379/**
380 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
381 * @pwq: iteration cursor
382 * @wq: the target workqueue
76af4d93 383 *
b09f4fd3 384 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
385 * If the pwq needs to be used beyond the locking in effect, the caller is
386 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
387 *
388 * The if/else clause exists only for the lockdep assertion and can be
389 * ignored.
49e3cf44
TH
390 */
391#define for_each_pwq(pwq, wq) \
76af4d93 392 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 393 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 394 else
f3421797 395
dc186ad7
TG
396#ifdef CONFIG_DEBUG_OBJECTS_WORK
397
398static struct debug_obj_descr work_debug_descr;
399
99777288
SG
400static void *work_debug_hint(void *addr)
401{
402 return ((struct work_struct *) addr)->func;
403}
404
dc186ad7
TG
405/*
406 * fixup_init is called when:
407 * - an active object is initialized
408 */
409static int work_fixup_init(void *addr, enum debug_obj_state state)
410{
411 struct work_struct *work = addr;
412
413 switch (state) {
414 case ODEBUG_STATE_ACTIVE:
415 cancel_work_sync(work);
416 debug_object_init(work, &work_debug_descr);
417 return 1;
418 default:
419 return 0;
420 }
421}
422
423/*
424 * fixup_activate is called when:
425 * - an active object is activated
426 * - an unknown object is activated (might be a statically initialized object)
427 */
428static int work_fixup_activate(void *addr, enum debug_obj_state state)
429{
430 struct work_struct *work = addr;
431
432 switch (state) {
433
434 case ODEBUG_STATE_NOTAVAILABLE:
435 /*
436 * This is not really a fixup. The work struct was
437 * statically initialized. We just make sure that it
438 * is tracked in the object tracker.
439 */
22df02bb 440 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
441 debug_object_init(work, &work_debug_descr);
442 debug_object_activate(work, &work_debug_descr);
443 return 0;
444 }
445 WARN_ON_ONCE(1);
446 return 0;
447
448 case ODEBUG_STATE_ACTIVE:
449 WARN_ON(1);
450
451 default:
452 return 0;
453 }
454}
455
456/*
457 * fixup_free is called when:
458 * - an active object is freed
459 */
460static int work_fixup_free(void *addr, enum debug_obj_state state)
461{
462 struct work_struct *work = addr;
463
464 switch (state) {
465 case ODEBUG_STATE_ACTIVE:
466 cancel_work_sync(work);
467 debug_object_free(work, &work_debug_descr);
468 return 1;
469 default:
470 return 0;
471 }
472}
473
474static struct debug_obj_descr work_debug_descr = {
475 .name = "work_struct",
99777288 476 .debug_hint = work_debug_hint,
dc186ad7
TG
477 .fixup_init = work_fixup_init,
478 .fixup_activate = work_fixup_activate,
479 .fixup_free = work_fixup_free,
480};
481
482static inline void debug_work_activate(struct work_struct *work)
483{
484 debug_object_activate(work, &work_debug_descr);
485}
486
487static inline void debug_work_deactivate(struct work_struct *work)
488{
489 debug_object_deactivate(work, &work_debug_descr);
490}
491
492void __init_work(struct work_struct *work, int onstack)
493{
494 if (onstack)
495 debug_object_init_on_stack(work, &work_debug_descr);
496 else
497 debug_object_init(work, &work_debug_descr);
498}
499EXPORT_SYMBOL_GPL(__init_work);
500
501void destroy_work_on_stack(struct work_struct *work)
502{
503 debug_object_free(work, &work_debug_descr);
504}
505EXPORT_SYMBOL_GPL(destroy_work_on_stack);
506
ea2e64f2
TG
507void destroy_delayed_work_on_stack(struct delayed_work *work)
508{
509 destroy_timer_on_stack(&work->timer);
510 debug_object_free(&work->work, &work_debug_descr);
511}
512EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
513
dc186ad7
TG
514#else
515static inline void debug_work_activate(struct work_struct *work) { }
516static inline void debug_work_deactivate(struct work_struct *work) { }
517#endif
518
4e8b22bd
LB
519/**
520 * worker_pool_assign_id - allocate ID and assing it to @pool
521 * @pool: the pool pointer of interest
522 *
523 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
524 * successfully, -errno on failure.
525 */
9daf9e67
TH
526static int worker_pool_assign_id(struct worker_pool *pool)
527{
528 int ret;
529
68e13a67 530 lockdep_assert_held(&wq_pool_mutex);
5bcab335 531
4e8b22bd
LB
532 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
533 GFP_KERNEL);
229641a6 534 if (ret >= 0) {
e68035fb 535 pool->id = ret;
229641a6
TH
536 return 0;
537 }
fa1b54e6 538 return ret;
7c3eed5c
TH
539}
540
df2d5ae4
TH
541/**
542 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
543 * @wq: the target workqueue
544 * @node: the node ID
545 *
546 * This must be called either with pwq_lock held or sched RCU read locked.
547 * If the pwq needs to be used beyond the locking in effect, the caller is
548 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
549 *
550 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
551 */
552static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
553 int node)
554{
555 assert_rcu_or_wq_mutex(wq);
556 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
557}
558
73f53c4a
TH
559static unsigned int work_color_to_flags(int color)
560{
561 return color << WORK_STRUCT_COLOR_SHIFT;
562}
563
564static int get_work_color(struct work_struct *work)
565{
566 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
567 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
568}
569
570static int work_next_color(int color)
571{
572 return (color + 1) % WORK_NR_COLORS;
573}
1da177e4 574
14441960 575/*
112202d9
TH
576 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
577 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 578 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 579 *
112202d9
TH
580 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
581 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
582 * work->data. These functions should only be called while the work is
583 * owned - ie. while the PENDING bit is set.
7a22ad75 584 *
112202d9 585 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 586 * corresponding to a work. Pool is available once the work has been
112202d9 587 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 588 * available only while the work item is queued.
7a22ad75 589 *
bbb68dfa
TH
590 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
591 * canceled. While being canceled, a work item may have its PENDING set
592 * but stay off timer and worklist for arbitrarily long and nobody should
593 * try to steal the PENDING bit.
14441960 594 */
7a22ad75
TH
595static inline void set_work_data(struct work_struct *work, unsigned long data,
596 unsigned long flags)
365970a1 597{
6183c009 598 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
599 atomic_long_set(&work->data, data | flags | work_static(work));
600}
365970a1 601
112202d9 602static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
603 unsigned long extra_flags)
604{
112202d9
TH
605 set_work_data(work, (unsigned long)pwq,
606 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
607}
608
4468a00f
LJ
609static void set_work_pool_and_keep_pending(struct work_struct *work,
610 int pool_id)
611{
612 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
613 WORK_STRUCT_PENDING);
614}
615
7c3eed5c
TH
616static void set_work_pool_and_clear_pending(struct work_struct *work,
617 int pool_id)
7a22ad75 618{
23657bb1
TH
619 /*
620 * The following wmb is paired with the implied mb in
621 * test_and_set_bit(PENDING) and ensures all updates to @work made
622 * here are visible to and precede any updates by the next PENDING
623 * owner.
624 */
625 smp_wmb();
7c3eed5c 626 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 627}
f756d5e2 628
7a22ad75 629static void clear_work_data(struct work_struct *work)
1da177e4 630{
7c3eed5c
TH
631 smp_wmb(); /* see set_work_pool_and_clear_pending() */
632 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
633}
634
112202d9 635static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 636{
e120153d 637 unsigned long data = atomic_long_read(&work->data);
7a22ad75 638
112202d9 639 if (data & WORK_STRUCT_PWQ)
e120153d
TH
640 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
641 else
642 return NULL;
4d707b9f
ON
643}
644
7c3eed5c
TH
645/**
646 * get_work_pool - return the worker_pool a given work was associated with
647 * @work: the work item of interest
648 *
68e13a67
LJ
649 * Pools are created and destroyed under wq_pool_mutex, and allows read
650 * access under sched-RCU read lock. As such, this function should be
651 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
652 *
653 * All fields of the returned pool are accessible as long as the above
654 * mentioned locking is in effect. If the returned pool needs to be used
655 * beyond the critical section, the caller is responsible for ensuring the
656 * returned pool is and stays online.
d185af30
YB
657 *
658 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
659 */
660static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 661{
e120153d 662 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 663 int pool_id;
7a22ad75 664
68e13a67 665 assert_rcu_or_pool_mutex();
fa1b54e6 666
112202d9
TH
667 if (data & WORK_STRUCT_PWQ)
668 return ((struct pool_workqueue *)
7c3eed5c 669 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 670
7c3eed5c
TH
671 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
672 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
673 return NULL;
674
fa1b54e6 675 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
676}
677
678/**
679 * get_work_pool_id - return the worker pool ID a given work is associated with
680 * @work: the work item of interest
681 *
d185af30 682 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
683 * %WORK_OFFQ_POOL_NONE if none.
684 */
685static int get_work_pool_id(struct work_struct *work)
686{
54d5b7d0
LJ
687 unsigned long data = atomic_long_read(&work->data);
688
112202d9
TH
689 if (data & WORK_STRUCT_PWQ)
690 return ((struct pool_workqueue *)
54d5b7d0 691 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 692
54d5b7d0 693 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
694}
695
bbb68dfa
TH
696static void mark_work_canceling(struct work_struct *work)
697{
7c3eed5c 698 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 699
7c3eed5c
TH
700 pool_id <<= WORK_OFFQ_POOL_SHIFT;
701 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
702}
703
704static bool work_is_canceling(struct work_struct *work)
705{
706 unsigned long data = atomic_long_read(&work->data);
707
112202d9 708 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
709}
710
e22bee78 711/*
3270476a
TH
712 * Policy functions. These define the policies on how the global worker
713 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 714 * they're being called with pool->lock held.
e22bee78
TH
715 */
716
63d95a91 717static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 718{
e19e397a 719 return !atomic_read(&pool->nr_running);
a848e3b6
ON
720}
721
4594bf15 722/*
e22bee78
TH
723 * Need to wake up a worker? Called from anything but currently
724 * running workers.
974271c4
TH
725 *
726 * Note that, because unbound workers never contribute to nr_running, this
706026c2 727 * function will always return %true for unbound pools as long as the
974271c4 728 * worklist isn't empty.
4594bf15 729 */
63d95a91 730static bool need_more_worker(struct worker_pool *pool)
365970a1 731{
63d95a91 732 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 733}
4594bf15 734
e22bee78 735/* Can I start working? Called from busy but !running workers. */
63d95a91 736static bool may_start_working(struct worker_pool *pool)
e22bee78 737{
63d95a91 738 return pool->nr_idle;
e22bee78
TH
739}
740
741/* Do I need to keep working? Called from currently running workers. */
63d95a91 742static bool keep_working(struct worker_pool *pool)
e22bee78 743{
e19e397a
TH
744 return !list_empty(&pool->worklist) &&
745 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
746}
747
748/* Do we need a new worker? Called from manager. */
63d95a91 749static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 750{
63d95a91 751 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 752}
365970a1 753
e22bee78 754/* Do I need to be the manager? */
63d95a91 755static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 756{
63d95a91 757 return need_to_create_worker(pool) ||
11ebea50 758 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
759}
760
761/* Do we have too many workers and should some go away? */
63d95a91 762static bool too_many_workers(struct worker_pool *pool)
e22bee78 763{
34a06bd6 764 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
765 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
766 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 767
ea1abd61
LJ
768 /*
769 * nr_idle and idle_list may disagree if idle rebinding is in
770 * progress. Never return %true if idle_list is empty.
771 */
772 if (list_empty(&pool->idle_list))
773 return false;
774
e22bee78 775 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
776}
777
4d707b9f 778/*
e22bee78
TH
779 * Wake up functions.
780 */
781
7e11629d 782/* Return the first worker. Safe with preemption disabled */
63d95a91 783static struct worker *first_worker(struct worker_pool *pool)
7e11629d 784{
63d95a91 785 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
786 return NULL;
787
63d95a91 788 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
789}
790
791/**
792 * wake_up_worker - wake up an idle worker
63d95a91 793 * @pool: worker pool to wake worker from
7e11629d 794 *
63d95a91 795 * Wake up the first idle worker of @pool.
7e11629d
TH
796 *
797 * CONTEXT:
d565ed63 798 * spin_lock_irq(pool->lock).
7e11629d 799 */
63d95a91 800static void wake_up_worker(struct worker_pool *pool)
7e11629d 801{
63d95a91 802 struct worker *worker = first_worker(pool);
7e11629d
TH
803
804 if (likely(worker))
805 wake_up_process(worker->task);
806}
807
d302f017 808/**
e22bee78
TH
809 * wq_worker_waking_up - a worker is waking up
810 * @task: task waking up
811 * @cpu: CPU @task is waking up to
812 *
813 * This function is called during try_to_wake_up() when a worker is
814 * being awoken.
815 *
816 * CONTEXT:
817 * spin_lock_irq(rq->lock)
818 */
d84ff051 819void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
820{
821 struct worker *worker = kthread_data(task);
822
36576000 823 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 824 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 825 atomic_inc(&worker->pool->nr_running);
36576000 826 }
e22bee78
TH
827}
828
829/**
830 * wq_worker_sleeping - a worker is going to sleep
831 * @task: task going to sleep
832 * @cpu: CPU in question, must be the current CPU number
833 *
834 * This function is called during schedule() when a busy worker is
835 * going to sleep. Worker on the same cpu can be woken up by
836 * returning pointer to its task.
837 *
838 * CONTEXT:
839 * spin_lock_irq(rq->lock)
840 *
d185af30 841 * Return:
e22bee78
TH
842 * Worker task on @cpu to wake up, %NULL if none.
843 */
d84ff051 844struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
845{
846 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 847 struct worker_pool *pool;
e22bee78 848
111c225a
TH
849 /*
850 * Rescuers, which may not have all the fields set up like normal
851 * workers, also reach here, let's not access anything before
852 * checking NOT_RUNNING.
853 */
2d64672e 854 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
855 return NULL;
856
111c225a 857 pool = worker->pool;
111c225a 858
e22bee78 859 /* this can only happen on the local cpu */
6183c009
TH
860 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
861 return NULL;
e22bee78
TH
862
863 /*
864 * The counterpart of the following dec_and_test, implied mb,
865 * worklist not empty test sequence is in insert_work().
866 * Please read comment there.
867 *
628c78e7
TH
868 * NOT_RUNNING is clear. This means that we're bound to and
869 * running on the local cpu w/ rq lock held and preemption
870 * disabled, which in turn means that none else could be
d565ed63 871 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 872 * lock is safe.
e22bee78 873 */
e19e397a
TH
874 if (atomic_dec_and_test(&pool->nr_running) &&
875 !list_empty(&pool->worklist))
63d95a91 876 to_wakeup = first_worker(pool);
e22bee78
TH
877 return to_wakeup ? to_wakeup->task : NULL;
878}
879
880/**
881 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 882 * @worker: self
d302f017
TH
883 * @flags: flags to set
884 * @wakeup: wakeup an idle worker if necessary
885 *
e22bee78
TH
886 * Set @flags in @worker->flags and adjust nr_running accordingly. If
887 * nr_running becomes zero and @wakeup is %true, an idle worker is
888 * woken up.
d302f017 889 *
cb444766 890 * CONTEXT:
d565ed63 891 * spin_lock_irq(pool->lock)
d302f017
TH
892 */
893static inline void worker_set_flags(struct worker *worker, unsigned int flags,
894 bool wakeup)
895{
bd7bdd43 896 struct worker_pool *pool = worker->pool;
e22bee78 897
cb444766
TH
898 WARN_ON_ONCE(worker->task != current);
899
e22bee78
TH
900 /*
901 * If transitioning into NOT_RUNNING, adjust nr_running and
902 * wake up an idle worker as necessary if requested by
903 * @wakeup.
904 */
905 if ((flags & WORKER_NOT_RUNNING) &&
906 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 907 if (wakeup) {
e19e397a 908 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 909 !list_empty(&pool->worklist))
63d95a91 910 wake_up_worker(pool);
e22bee78 911 } else
e19e397a 912 atomic_dec(&pool->nr_running);
e22bee78
TH
913 }
914
d302f017
TH
915 worker->flags |= flags;
916}
917
918/**
e22bee78 919 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 920 * @worker: self
d302f017
TH
921 * @flags: flags to clear
922 *
e22bee78 923 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 924 *
cb444766 925 * CONTEXT:
d565ed63 926 * spin_lock_irq(pool->lock)
d302f017
TH
927 */
928static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
929{
63d95a91 930 struct worker_pool *pool = worker->pool;
e22bee78
TH
931 unsigned int oflags = worker->flags;
932
cb444766
TH
933 WARN_ON_ONCE(worker->task != current);
934
d302f017 935 worker->flags &= ~flags;
e22bee78 936
42c025f3
TH
937 /*
938 * If transitioning out of NOT_RUNNING, increment nr_running. Note
939 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
940 * of multiple flags, not a single flag.
941 */
e22bee78
TH
942 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
943 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 944 atomic_inc(&pool->nr_running);
d302f017
TH
945}
946
8cca0eea
TH
947/**
948 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 949 * @pool: pool of interest
8cca0eea
TH
950 * @work: work to find worker for
951 *
c9e7cf27
TH
952 * Find a worker which is executing @work on @pool by searching
953 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
954 * to match, its current execution should match the address of @work and
955 * its work function. This is to avoid unwanted dependency between
956 * unrelated work executions through a work item being recycled while still
957 * being executed.
958 *
959 * This is a bit tricky. A work item may be freed once its execution
960 * starts and nothing prevents the freed area from being recycled for
961 * another work item. If the same work item address ends up being reused
962 * before the original execution finishes, workqueue will identify the
963 * recycled work item as currently executing and make it wait until the
964 * current execution finishes, introducing an unwanted dependency.
965 *
c5aa87bb
TH
966 * This function checks the work item address and work function to avoid
967 * false positives. Note that this isn't complete as one may construct a
968 * work function which can introduce dependency onto itself through a
969 * recycled work item. Well, if somebody wants to shoot oneself in the
970 * foot that badly, there's only so much we can do, and if such deadlock
971 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
972 *
973 * CONTEXT:
d565ed63 974 * spin_lock_irq(pool->lock).
8cca0eea 975 *
d185af30
YB
976 * Return:
977 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 978 * otherwise.
4d707b9f 979 */
c9e7cf27 980static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 981 struct work_struct *work)
4d707b9f 982{
42f8570f 983 struct worker *worker;
42f8570f 984
b67bfe0d 985 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
986 (unsigned long)work)
987 if (worker->current_work == work &&
988 worker->current_func == work->func)
42f8570f
SL
989 return worker;
990
991 return NULL;
4d707b9f
ON
992}
993
bf4ede01
TH
994/**
995 * move_linked_works - move linked works to a list
996 * @work: start of series of works to be scheduled
997 * @head: target list to append @work to
998 * @nextp: out paramter for nested worklist walking
999 *
1000 * Schedule linked works starting from @work to @head. Work series to
1001 * be scheduled starts at @work and includes any consecutive work with
1002 * WORK_STRUCT_LINKED set in its predecessor.
1003 *
1004 * If @nextp is not NULL, it's updated to point to the next work of
1005 * the last scheduled work. This allows move_linked_works() to be
1006 * nested inside outer list_for_each_entry_safe().
1007 *
1008 * CONTEXT:
d565ed63 1009 * spin_lock_irq(pool->lock).
bf4ede01
TH
1010 */
1011static void move_linked_works(struct work_struct *work, struct list_head *head,
1012 struct work_struct **nextp)
1013{
1014 struct work_struct *n;
1015
1016 /*
1017 * Linked worklist will always end before the end of the list,
1018 * use NULL for list head.
1019 */
1020 list_for_each_entry_safe_from(work, n, NULL, entry) {
1021 list_move_tail(&work->entry, head);
1022 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1023 break;
1024 }
1025
1026 /*
1027 * If we're already inside safe list traversal and have moved
1028 * multiple works to the scheduled queue, the next position
1029 * needs to be updated.
1030 */
1031 if (nextp)
1032 *nextp = n;
1033}
1034
8864b4e5
TH
1035/**
1036 * get_pwq - get an extra reference on the specified pool_workqueue
1037 * @pwq: pool_workqueue to get
1038 *
1039 * Obtain an extra reference on @pwq. The caller should guarantee that
1040 * @pwq has positive refcnt and be holding the matching pool->lock.
1041 */
1042static void get_pwq(struct pool_workqueue *pwq)
1043{
1044 lockdep_assert_held(&pwq->pool->lock);
1045 WARN_ON_ONCE(pwq->refcnt <= 0);
1046 pwq->refcnt++;
1047}
1048
1049/**
1050 * put_pwq - put a pool_workqueue reference
1051 * @pwq: pool_workqueue to put
1052 *
1053 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1054 * destruction. The caller should be holding the matching pool->lock.
1055 */
1056static void put_pwq(struct pool_workqueue *pwq)
1057{
1058 lockdep_assert_held(&pwq->pool->lock);
1059 if (likely(--pwq->refcnt))
1060 return;
1061 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1062 return;
1063 /*
1064 * @pwq can't be released under pool->lock, bounce to
1065 * pwq_unbound_release_workfn(). This never recurses on the same
1066 * pool->lock as this path is taken only for unbound workqueues and
1067 * the release work item is scheduled on a per-cpu workqueue. To
1068 * avoid lockdep warning, unbound pool->locks are given lockdep
1069 * subclass of 1 in get_unbound_pool().
1070 */
1071 schedule_work(&pwq->unbound_release_work);
1072}
1073
dce90d47
TH
1074/**
1075 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1076 * @pwq: pool_workqueue to put (can be %NULL)
1077 *
1078 * put_pwq() with locking. This function also allows %NULL @pwq.
1079 */
1080static void put_pwq_unlocked(struct pool_workqueue *pwq)
1081{
1082 if (pwq) {
1083 /*
1084 * As both pwqs and pools are sched-RCU protected, the
1085 * following lock operations are safe.
1086 */
1087 spin_lock_irq(&pwq->pool->lock);
1088 put_pwq(pwq);
1089 spin_unlock_irq(&pwq->pool->lock);
1090 }
1091}
1092
112202d9 1093static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1094{
112202d9 1095 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1096
1097 trace_workqueue_activate_work(work);
112202d9 1098 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1099 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1100 pwq->nr_active++;
bf4ede01
TH
1101}
1102
112202d9 1103static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1104{
112202d9 1105 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1106 struct work_struct, entry);
1107
112202d9 1108 pwq_activate_delayed_work(work);
3aa62497
LJ
1109}
1110
bf4ede01 1111/**
112202d9
TH
1112 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1113 * @pwq: pwq of interest
bf4ede01 1114 * @color: color of work which left the queue
bf4ede01
TH
1115 *
1116 * A work either has completed or is removed from pending queue,
112202d9 1117 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1118 *
1119 * CONTEXT:
d565ed63 1120 * spin_lock_irq(pool->lock).
bf4ede01 1121 */
112202d9 1122static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1123{
8864b4e5 1124 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1125 if (color == WORK_NO_COLOR)
8864b4e5 1126 goto out_put;
bf4ede01 1127
112202d9 1128 pwq->nr_in_flight[color]--;
bf4ede01 1129
112202d9
TH
1130 pwq->nr_active--;
1131 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1132 /* one down, submit a delayed one */
112202d9
TH
1133 if (pwq->nr_active < pwq->max_active)
1134 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1135 }
1136
1137 /* is flush in progress and are we at the flushing tip? */
112202d9 1138 if (likely(pwq->flush_color != color))
8864b4e5 1139 goto out_put;
bf4ede01
TH
1140
1141 /* are there still in-flight works? */
112202d9 1142 if (pwq->nr_in_flight[color])
8864b4e5 1143 goto out_put;
bf4ede01 1144
112202d9
TH
1145 /* this pwq is done, clear flush_color */
1146 pwq->flush_color = -1;
bf4ede01
TH
1147
1148 /*
112202d9 1149 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1150 * will handle the rest.
1151 */
112202d9
TH
1152 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1153 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1154out_put:
1155 put_pwq(pwq);
bf4ede01
TH
1156}
1157
36e227d2 1158/**
bbb68dfa 1159 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1160 * @work: work item to steal
1161 * @is_dwork: @work is a delayed_work
bbb68dfa 1162 * @flags: place to store irq state
36e227d2
TH
1163 *
1164 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1165 * stable state - idle, on timer or on worklist.
36e227d2 1166 *
d185af30 1167 * Return:
36e227d2
TH
1168 * 1 if @work was pending and we successfully stole PENDING
1169 * 0 if @work was idle and we claimed PENDING
1170 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1171 * -ENOENT if someone else is canceling @work, this state may persist
1172 * for arbitrarily long
36e227d2 1173 *
d185af30 1174 * Note:
bbb68dfa 1175 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1176 * interrupted while holding PENDING and @work off queue, irq must be
1177 * disabled on entry. This, combined with delayed_work->timer being
1178 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1179 *
1180 * On successful return, >= 0, irq is disabled and the caller is
1181 * responsible for releasing it using local_irq_restore(*@flags).
1182 *
e0aecdd8 1183 * This function is safe to call from any context including IRQ handler.
bf4ede01 1184 */
bbb68dfa
TH
1185static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1186 unsigned long *flags)
bf4ede01 1187{
d565ed63 1188 struct worker_pool *pool;
112202d9 1189 struct pool_workqueue *pwq;
bf4ede01 1190
bbb68dfa
TH
1191 local_irq_save(*flags);
1192
36e227d2
TH
1193 /* try to steal the timer if it exists */
1194 if (is_dwork) {
1195 struct delayed_work *dwork = to_delayed_work(work);
1196
e0aecdd8
TH
1197 /*
1198 * dwork->timer is irqsafe. If del_timer() fails, it's
1199 * guaranteed that the timer is not queued anywhere and not
1200 * running on the local CPU.
1201 */
36e227d2
TH
1202 if (likely(del_timer(&dwork->timer)))
1203 return 1;
1204 }
1205
1206 /* try to claim PENDING the normal way */
bf4ede01
TH
1207 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1208 return 0;
1209
1210 /*
1211 * The queueing is in progress, or it is already queued. Try to
1212 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1213 */
d565ed63
TH
1214 pool = get_work_pool(work);
1215 if (!pool)
bbb68dfa 1216 goto fail;
bf4ede01 1217
d565ed63 1218 spin_lock(&pool->lock);
0b3dae68 1219 /*
112202d9
TH
1220 * work->data is guaranteed to point to pwq only while the work
1221 * item is queued on pwq->wq, and both updating work->data to point
1222 * to pwq on queueing and to pool on dequeueing are done under
1223 * pwq->pool->lock. This in turn guarantees that, if work->data
1224 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1225 * item is currently queued on that pool.
1226 */
112202d9
TH
1227 pwq = get_work_pwq(work);
1228 if (pwq && pwq->pool == pool) {
16062836
TH
1229 debug_work_deactivate(work);
1230
1231 /*
1232 * A delayed work item cannot be grabbed directly because
1233 * it might have linked NO_COLOR work items which, if left
112202d9 1234 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1235 * management later on and cause stall. Make sure the work
1236 * item is activated before grabbing.
1237 */
1238 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1239 pwq_activate_delayed_work(work);
16062836
TH
1240
1241 list_del_init(&work->entry);
112202d9 1242 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1243
112202d9 1244 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1245 set_work_pool_and_keep_pending(work, pool->id);
1246
1247 spin_unlock(&pool->lock);
1248 return 1;
bf4ede01 1249 }
d565ed63 1250 spin_unlock(&pool->lock);
bbb68dfa
TH
1251fail:
1252 local_irq_restore(*flags);
1253 if (work_is_canceling(work))
1254 return -ENOENT;
1255 cpu_relax();
36e227d2 1256 return -EAGAIN;
bf4ede01
TH
1257}
1258
4690c4ab 1259/**
706026c2 1260 * insert_work - insert a work into a pool
112202d9 1261 * @pwq: pwq @work belongs to
4690c4ab
TH
1262 * @work: work to insert
1263 * @head: insertion point
1264 * @extra_flags: extra WORK_STRUCT_* flags to set
1265 *
112202d9 1266 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1267 * work_struct flags.
4690c4ab
TH
1268 *
1269 * CONTEXT:
d565ed63 1270 * spin_lock_irq(pool->lock).
4690c4ab 1271 */
112202d9
TH
1272static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1273 struct list_head *head, unsigned int extra_flags)
b89deed3 1274{
112202d9 1275 struct worker_pool *pool = pwq->pool;
e22bee78 1276
4690c4ab 1277 /* we own @work, set data and link */
112202d9 1278 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1279 list_add_tail(&work->entry, head);
8864b4e5 1280 get_pwq(pwq);
e22bee78
TH
1281
1282 /*
c5aa87bb
TH
1283 * Ensure either wq_worker_sleeping() sees the above
1284 * list_add_tail() or we see zero nr_running to avoid workers lying
1285 * around lazily while there are works to be processed.
e22bee78
TH
1286 */
1287 smp_mb();
1288
63d95a91
TH
1289 if (__need_more_worker(pool))
1290 wake_up_worker(pool);
b89deed3
ON
1291}
1292
c8efcc25
TH
1293/*
1294 * Test whether @work is being queued from another work executing on the
8d03ecfe 1295 * same workqueue.
c8efcc25
TH
1296 */
1297static bool is_chained_work(struct workqueue_struct *wq)
1298{
8d03ecfe
TH
1299 struct worker *worker;
1300
1301 worker = current_wq_worker();
1302 /*
1303 * Return %true iff I'm a worker execuing a work item on @wq. If
1304 * I'm @worker, it's safe to dereference it without locking.
1305 */
112202d9 1306 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1307}
1308
d84ff051 1309static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1310 struct work_struct *work)
1311{
112202d9 1312 struct pool_workqueue *pwq;
c9178087 1313 struct worker_pool *last_pool;
1e19ffc6 1314 struct list_head *worklist;
8a2e8e5d 1315 unsigned int work_flags;
b75cac93 1316 unsigned int req_cpu = cpu;
8930caba
TH
1317
1318 /*
1319 * While a work item is PENDING && off queue, a task trying to
1320 * steal the PENDING will busy-loop waiting for it to either get
1321 * queued or lose PENDING. Grabbing PENDING and queueing should
1322 * happen with IRQ disabled.
1323 */
1324 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1325
dc186ad7 1326 debug_work_activate(work);
1e19ffc6 1327
9ef28a73 1328 /* if draining, only works from the same workqueue are allowed */
618b01eb 1329 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1330 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1331 return;
9e8cd2f5 1332retry:
df2d5ae4
TH
1333 if (req_cpu == WORK_CPU_UNBOUND)
1334 cpu = raw_smp_processor_id();
1335
c9178087 1336 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1337 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1338 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1339 else
1340 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1341
c9178087
TH
1342 /*
1343 * If @work was previously on a different pool, it might still be
1344 * running there, in which case the work needs to be queued on that
1345 * pool to guarantee non-reentrancy.
1346 */
1347 last_pool = get_work_pool(work);
1348 if (last_pool && last_pool != pwq->pool) {
1349 struct worker *worker;
18aa9eff 1350
c9178087 1351 spin_lock(&last_pool->lock);
18aa9eff 1352
c9178087 1353 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1354
c9178087
TH
1355 if (worker && worker->current_pwq->wq == wq) {
1356 pwq = worker->current_pwq;
8930caba 1357 } else {
c9178087
TH
1358 /* meh... not running there, queue here */
1359 spin_unlock(&last_pool->lock);
112202d9 1360 spin_lock(&pwq->pool->lock);
8930caba 1361 }
f3421797 1362 } else {
112202d9 1363 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1364 }
1365
9e8cd2f5
TH
1366 /*
1367 * pwq is determined and locked. For unbound pools, we could have
1368 * raced with pwq release and it could already be dead. If its
1369 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1370 * without another pwq replacing it in the numa_pwq_tbl or while
1371 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1372 * make forward-progress.
1373 */
1374 if (unlikely(!pwq->refcnt)) {
1375 if (wq->flags & WQ_UNBOUND) {
1376 spin_unlock(&pwq->pool->lock);
1377 cpu_relax();
1378 goto retry;
1379 }
1380 /* oops */
1381 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1382 wq->name, cpu);
1383 }
1384
112202d9
TH
1385 /* pwq determined, queue */
1386 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1387
f5b2552b 1388 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1389 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1390 return;
1391 }
1e19ffc6 1392
112202d9
TH
1393 pwq->nr_in_flight[pwq->work_color]++;
1394 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1395
112202d9 1396 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1397 trace_workqueue_activate_work(work);
112202d9
TH
1398 pwq->nr_active++;
1399 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1400 } else {
1401 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1402 worklist = &pwq->delayed_works;
8a2e8e5d 1403 }
1e19ffc6 1404
112202d9 1405 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1406
112202d9 1407 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1408}
1409
0fcb78c2 1410/**
c1a220e7
ZR
1411 * queue_work_on - queue work on specific cpu
1412 * @cpu: CPU number to execute work on
0fcb78c2
REB
1413 * @wq: workqueue to use
1414 * @work: work to queue
1415 *
c1a220e7
ZR
1416 * We queue the work to a specific CPU, the caller must ensure it
1417 * can't go away.
d185af30
YB
1418 *
1419 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1420 */
d4283e93
TH
1421bool queue_work_on(int cpu, struct workqueue_struct *wq,
1422 struct work_struct *work)
1da177e4 1423{
d4283e93 1424 bool ret = false;
8930caba 1425 unsigned long flags;
ef1ca236 1426
8930caba 1427 local_irq_save(flags);
c1a220e7 1428
22df02bb 1429 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1430 __queue_work(cpu, wq, work);
d4283e93 1431 ret = true;
c1a220e7 1432 }
ef1ca236 1433
8930caba 1434 local_irq_restore(flags);
1da177e4
LT
1435 return ret;
1436}
ad7b1f84 1437EXPORT_SYMBOL(queue_work_on);
1da177e4 1438
d8e794df 1439void delayed_work_timer_fn(unsigned long __data)
1da177e4 1440{
52bad64d 1441 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1442
e0aecdd8 1443 /* should have been called from irqsafe timer with irq already off */
60c057bc 1444 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1445}
1438ade5 1446EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1447
7beb2edf
TH
1448static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1449 struct delayed_work *dwork, unsigned long delay)
1da177e4 1450{
7beb2edf
TH
1451 struct timer_list *timer = &dwork->timer;
1452 struct work_struct *work = &dwork->work;
7beb2edf
TH
1453
1454 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1455 timer->data != (unsigned long)dwork);
fc4b514f
TH
1456 WARN_ON_ONCE(timer_pending(timer));
1457 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1458
8852aac2
TH
1459 /*
1460 * If @delay is 0, queue @dwork->work immediately. This is for
1461 * both optimization and correctness. The earliest @timer can
1462 * expire is on the closest next tick and delayed_work users depend
1463 * on that there's no such delay when @delay is 0.
1464 */
1465 if (!delay) {
1466 __queue_work(cpu, wq, &dwork->work);
1467 return;
1468 }
1469
7beb2edf 1470 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1471
60c057bc 1472 dwork->wq = wq;
1265057f 1473 dwork->cpu = cpu;
7beb2edf
TH
1474 timer->expires = jiffies + delay;
1475
1476 if (unlikely(cpu != WORK_CPU_UNBOUND))
1477 add_timer_on(timer, cpu);
1478 else
1479 add_timer(timer);
1da177e4
LT
1480}
1481
0fcb78c2
REB
1482/**
1483 * queue_delayed_work_on - queue work on specific CPU after delay
1484 * @cpu: CPU number to execute work on
1485 * @wq: workqueue to use
af9997e4 1486 * @dwork: work to queue
0fcb78c2
REB
1487 * @delay: number of jiffies to wait before queueing
1488 *
d185af30 1489 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1490 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1491 * execution.
0fcb78c2 1492 */
d4283e93
TH
1493bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1494 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1495{
52bad64d 1496 struct work_struct *work = &dwork->work;
d4283e93 1497 bool ret = false;
8930caba 1498 unsigned long flags;
7a6bc1cd 1499
8930caba
TH
1500 /* read the comment in __queue_work() */
1501 local_irq_save(flags);
7a6bc1cd 1502
22df02bb 1503 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1504 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1505 ret = true;
7a6bc1cd 1506 }
8a3e77cc 1507
8930caba 1508 local_irq_restore(flags);
7a6bc1cd
VP
1509 return ret;
1510}
ad7b1f84 1511EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1512
8376fe22
TH
1513/**
1514 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1515 * @cpu: CPU number to execute work on
1516 * @wq: workqueue to use
1517 * @dwork: work to queue
1518 * @delay: number of jiffies to wait before queueing
1519 *
1520 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1521 * modify @dwork's timer so that it expires after @delay. If @delay is
1522 * zero, @work is guaranteed to be scheduled immediately regardless of its
1523 * current state.
1524 *
d185af30 1525 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1526 * pending and its timer was modified.
1527 *
e0aecdd8 1528 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1529 * See try_to_grab_pending() for details.
1530 */
1531bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1532 struct delayed_work *dwork, unsigned long delay)
1533{
1534 unsigned long flags;
1535 int ret;
c7fc77f7 1536
8376fe22
TH
1537 do {
1538 ret = try_to_grab_pending(&dwork->work, true, &flags);
1539 } while (unlikely(ret == -EAGAIN));
63bc0362 1540
8376fe22
TH
1541 if (likely(ret >= 0)) {
1542 __queue_delayed_work(cpu, wq, dwork, delay);
1543 local_irq_restore(flags);
7a6bc1cd 1544 }
8376fe22
TH
1545
1546 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1547 return ret;
1548}
8376fe22
TH
1549EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1550
c8e55f36
TH
1551/**
1552 * worker_enter_idle - enter idle state
1553 * @worker: worker which is entering idle state
1554 *
1555 * @worker is entering idle state. Update stats and idle timer if
1556 * necessary.
1557 *
1558 * LOCKING:
d565ed63 1559 * spin_lock_irq(pool->lock).
c8e55f36
TH
1560 */
1561static void worker_enter_idle(struct worker *worker)
1da177e4 1562{
bd7bdd43 1563 struct worker_pool *pool = worker->pool;
c8e55f36 1564
6183c009
TH
1565 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1566 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1567 (worker->hentry.next || worker->hentry.pprev)))
1568 return;
c8e55f36 1569
cb444766
TH
1570 /* can't use worker_set_flags(), also called from start_worker() */
1571 worker->flags |= WORKER_IDLE;
bd7bdd43 1572 pool->nr_idle++;
e22bee78 1573 worker->last_active = jiffies;
c8e55f36
TH
1574
1575 /* idle_list is LIFO */
bd7bdd43 1576 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1577
628c78e7
TH
1578 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1579 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1580
544ecf31 1581 /*
706026c2 1582 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1583 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1584 * nr_running, the warning may trigger spuriously. Check iff
1585 * unbind is not in progress.
544ecf31 1586 */
24647570 1587 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1588 pool->nr_workers == pool->nr_idle &&
e19e397a 1589 atomic_read(&pool->nr_running));
c8e55f36
TH
1590}
1591
1592/**
1593 * worker_leave_idle - leave idle state
1594 * @worker: worker which is leaving idle state
1595 *
1596 * @worker is leaving idle state. Update stats.
1597 *
1598 * LOCKING:
d565ed63 1599 * spin_lock_irq(pool->lock).
c8e55f36
TH
1600 */
1601static void worker_leave_idle(struct worker *worker)
1602{
bd7bdd43 1603 struct worker_pool *pool = worker->pool;
c8e55f36 1604
6183c009
TH
1605 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1606 return;
d302f017 1607 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1608 pool->nr_idle--;
c8e55f36
TH
1609 list_del_init(&worker->entry);
1610}
1611
e22bee78 1612/**
f36dc67b
LJ
1613 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1614 * @pool: target worker_pool
1615 *
1616 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1617 *
1618 * Works which are scheduled while the cpu is online must at least be
1619 * scheduled to a worker which is bound to the cpu so that if they are
1620 * flushed from cpu callbacks while cpu is going down, they are
1621 * guaranteed to execute on the cpu.
1622 *
f5faa077 1623 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1624 * themselves to the target cpu and may race with cpu going down or
1625 * coming online. kthread_bind() can't be used because it may put the
1626 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1627 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1628 * [dis]associated in the meantime.
1629 *
706026c2 1630 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1631 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1632 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1633 * enters idle state or fetches works without dropping lock, it can
1634 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1635 *
1636 * CONTEXT:
d565ed63 1637 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1638 * held.
1639 *
d185af30 1640 * Return:
706026c2 1641 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1642 * bound), %false if offline.
1643 */
f36dc67b 1644static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1645__acquires(&pool->lock)
e22bee78 1646{
e22bee78 1647 while (true) {
4e6045f1 1648 /*
e22bee78
TH
1649 * The following call may fail, succeed or succeed
1650 * without actually migrating the task to the cpu if
1651 * it races with cpu hotunplug operation. Verify
24647570 1652 * against POOL_DISASSOCIATED.
4e6045f1 1653 */
24647570 1654 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1655 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1656
d565ed63 1657 spin_lock_irq(&pool->lock);
24647570 1658 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1659 return false;
f5faa077 1660 if (task_cpu(current) == pool->cpu &&
7a4e344c 1661 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1662 return true;
d565ed63 1663 spin_unlock_irq(&pool->lock);
e22bee78 1664
5035b20f
TH
1665 /*
1666 * We've raced with CPU hot[un]plug. Give it a breather
1667 * and retry migration. cond_resched() is required here;
1668 * otherwise, we might deadlock against cpu_stop trying to
1669 * bring down the CPU on non-preemptive kernel.
1670 */
e22bee78 1671 cpu_relax();
5035b20f 1672 cond_resched();
e22bee78
TH
1673 }
1674}
1675
c34056a3
TH
1676static struct worker *alloc_worker(void)
1677{
1678 struct worker *worker;
1679
1680 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1681 if (worker) {
1682 INIT_LIST_HEAD(&worker->entry);
affee4b2 1683 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1684 /* on creation a worker is in !idle && prep state */
1685 worker->flags = WORKER_PREP;
c8e55f36 1686 }
c34056a3
TH
1687 return worker;
1688}
1689
1690/**
1691 * create_worker - create a new workqueue worker
63d95a91 1692 * @pool: pool the new worker will belong to
c34056a3 1693 *
73eb7fe7
LJ
1694 * Create a new worker which is attached to @pool. The new worker must be
1695 * started by start_worker().
c34056a3
TH
1696 *
1697 * CONTEXT:
1698 * Might sleep. Does GFP_KERNEL allocations.
1699 *
d185af30 1700 * Return:
c34056a3
TH
1701 * Pointer to the newly created worker.
1702 */
bc2ae0f5 1703static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1704{
c34056a3 1705 struct worker *worker = NULL;
f3421797 1706 int id = -1;
e3c916a4 1707 char id_buf[16];
c34056a3 1708
cd549687
TH
1709 lockdep_assert_held(&pool->manager_mutex);
1710
822d8405
TH
1711 /*
1712 * ID is needed to determine kthread name. Allocate ID first
1713 * without installing the pointer.
1714 */
9625ab17 1715 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_KERNEL);
822d8405
TH
1716 if (id < 0)
1717 goto fail;
c34056a3
TH
1718
1719 worker = alloc_worker();
1720 if (!worker)
1721 goto fail;
1722
bd7bdd43 1723 worker->pool = pool;
c34056a3
TH
1724 worker->id = id;
1725
29c91e99 1726 if (pool->cpu >= 0)
e3c916a4
TH
1727 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1728 pool->attrs->nice < 0 ? "H" : "");
f3421797 1729 else
e3c916a4
TH
1730 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1731
f3f90ad4 1732 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1733 "kworker/%s", id_buf);
c34056a3
TH
1734 if (IS_ERR(worker->task))
1735 goto fail;
1736
91151228
ON
1737 set_user_nice(worker->task, pool->attrs->nice);
1738
1739 /* prevent userland from meddling with cpumask of workqueue workers */
1740 worker->task->flags |= PF_NO_SETAFFINITY;
1741
c5aa87bb
TH
1742 /*
1743 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1744 * online CPUs. It'll be re-applied when any of the CPUs come up.
1745 */
7a4e344c 1746 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1747
7a4e344c
TH
1748 /*
1749 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1750 * remains stable across this function. See the comments above the
1751 * flag definition for details.
1752 */
1753 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1754 worker->flags |= WORKER_UNBOUND;
c34056a3 1755
822d8405 1756 /* successful, commit the pointer to idr */
822d8405 1757 idr_replace(&pool->worker_idr, worker, worker->id);
822d8405 1758
c34056a3 1759 return worker;
822d8405 1760
c34056a3 1761fail:
9625ab17 1762 if (id >= 0)
822d8405 1763 idr_remove(&pool->worker_idr, id);
c34056a3
TH
1764 kfree(worker);
1765 return NULL;
1766}
1767
1768/**
1769 * start_worker - start a newly created worker
1770 * @worker: worker to start
1771 *
706026c2 1772 * Make the pool aware of @worker and start it.
c34056a3
TH
1773 *
1774 * CONTEXT:
d565ed63 1775 * spin_lock_irq(pool->lock).
c34056a3
TH
1776 */
1777static void start_worker(struct worker *worker)
1778{
bd7bdd43 1779 worker->pool->nr_workers++;
c8e55f36 1780 worker_enter_idle(worker);
c34056a3
TH
1781 wake_up_process(worker->task);
1782}
1783
ebf44d16
TH
1784/**
1785 * create_and_start_worker - create and start a worker for a pool
1786 * @pool: the target pool
1787 *
cd549687 1788 * Grab the managership of @pool and create and start a new worker for it.
d185af30
YB
1789 *
1790 * Return: 0 on success. A negative error code otherwise.
ebf44d16
TH
1791 */
1792static int create_and_start_worker(struct worker_pool *pool)
1793{
1794 struct worker *worker;
1795
cd549687
TH
1796 mutex_lock(&pool->manager_mutex);
1797
ebf44d16
TH
1798 worker = create_worker(pool);
1799 if (worker) {
1800 spin_lock_irq(&pool->lock);
1801 start_worker(worker);
1802 spin_unlock_irq(&pool->lock);
1803 }
1804
cd549687
TH
1805 mutex_unlock(&pool->manager_mutex);
1806
ebf44d16
TH
1807 return worker ? 0 : -ENOMEM;
1808}
1809
c34056a3
TH
1810/**
1811 * destroy_worker - destroy a workqueue worker
1812 * @worker: worker to be destroyed
1813 *
73eb7fe7
LJ
1814 * Destroy @worker and adjust @pool stats accordingly. The worker should
1815 * be idle.
c8e55f36
TH
1816 *
1817 * CONTEXT:
d565ed63 1818 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1819 */
1820static void destroy_worker(struct worker *worker)
1821{
bd7bdd43 1822 struct worker_pool *pool = worker->pool;
c34056a3 1823
cd549687
TH
1824 lockdep_assert_held(&pool->manager_mutex);
1825 lockdep_assert_held(&pool->lock);
1826
c34056a3 1827 /* sanity check frenzy */
6183c009 1828 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1829 WARN_ON(!list_empty(&worker->scheduled)) ||
1830 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1831 return;
c34056a3 1832
73eb7fe7
LJ
1833 pool->nr_workers--;
1834 pool->nr_idle--;
c8e55f36 1835
5bdfff96
LJ
1836 /*
1837 * Once WORKER_DIE is set, the kworker may destroy itself at any
1838 * point. Pin to ensure the task stays until we're done with it.
1839 */
1840 get_task_struct(worker->task);
1841
c8e55f36 1842 list_del_init(&worker->entry);
cb444766 1843 worker->flags |= WORKER_DIE;
c8e55f36 1844
822d8405
TH
1845 idr_remove(&pool->worker_idr, worker->id);
1846
d565ed63 1847 spin_unlock_irq(&pool->lock);
c8e55f36 1848
c34056a3 1849 kthread_stop(worker->task);
5bdfff96 1850 put_task_struct(worker->task);
c34056a3
TH
1851 kfree(worker);
1852
d565ed63 1853 spin_lock_irq(&pool->lock);
c34056a3
TH
1854}
1855
63d95a91 1856static void idle_worker_timeout(unsigned long __pool)
e22bee78 1857{
63d95a91 1858 struct worker_pool *pool = (void *)__pool;
e22bee78 1859
d565ed63 1860 spin_lock_irq(&pool->lock);
e22bee78 1861
63d95a91 1862 if (too_many_workers(pool)) {
e22bee78
TH
1863 struct worker *worker;
1864 unsigned long expires;
1865
1866 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1867 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1868 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1869
1870 if (time_before(jiffies, expires))
63d95a91 1871 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1872 else {
1873 /* it's been idle for too long, wake up manager */
11ebea50 1874 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1875 wake_up_worker(pool);
d5abe669 1876 }
e22bee78
TH
1877 }
1878
d565ed63 1879 spin_unlock_irq(&pool->lock);
e22bee78 1880}
d5abe669 1881
493a1724 1882static void send_mayday(struct work_struct *work)
e22bee78 1883{
112202d9
TH
1884 struct pool_workqueue *pwq = get_work_pwq(work);
1885 struct workqueue_struct *wq = pwq->wq;
493a1724 1886
2e109a28 1887 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1888
493008a8 1889 if (!wq->rescuer)
493a1724 1890 return;
e22bee78
TH
1891
1892 /* mayday mayday mayday */
493a1724 1893 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1894 /*
1895 * If @pwq is for an unbound wq, its base ref may be put at
1896 * any time due to an attribute change. Pin @pwq until the
1897 * rescuer is done with it.
1898 */
1899 get_pwq(pwq);
493a1724 1900 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1901 wake_up_process(wq->rescuer->task);
493a1724 1902 }
e22bee78
TH
1903}
1904
706026c2 1905static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1906{
63d95a91 1907 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1908 struct work_struct *work;
1909
2e109a28 1910 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1911 spin_lock(&pool->lock);
e22bee78 1912
63d95a91 1913 if (need_to_create_worker(pool)) {
e22bee78
TH
1914 /*
1915 * We've been trying to create a new worker but
1916 * haven't been successful. We might be hitting an
1917 * allocation deadlock. Send distress signals to
1918 * rescuers.
1919 */
63d95a91 1920 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1921 send_mayday(work);
1da177e4 1922 }
e22bee78 1923
493a1724 1924 spin_unlock(&pool->lock);
2e109a28 1925 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1926
63d95a91 1927 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1928}
1929
e22bee78
TH
1930/**
1931 * maybe_create_worker - create a new worker if necessary
63d95a91 1932 * @pool: pool to create a new worker for
e22bee78 1933 *
63d95a91 1934 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1935 * have at least one idle worker on return from this function. If
1936 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1937 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1938 * possible allocation deadlock.
1939 *
c5aa87bb
TH
1940 * On return, need_to_create_worker() is guaranteed to be %false and
1941 * may_start_working() %true.
e22bee78
TH
1942 *
1943 * LOCKING:
d565ed63 1944 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1945 * multiple times. Does GFP_KERNEL allocations. Called only from
1946 * manager.
1947 *
d185af30 1948 * Return:
c5aa87bb 1949 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1950 * otherwise.
1951 */
63d95a91 1952static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1953__releases(&pool->lock)
1954__acquires(&pool->lock)
1da177e4 1955{
63d95a91 1956 if (!need_to_create_worker(pool))
e22bee78
TH
1957 return false;
1958restart:
d565ed63 1959 spin_unlock_irq(&pool->lock);
9f9c2364 1960
e22bee78 1961 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1962 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1963
1964 while (true) {
1965 struct worker *worker;
1966
bc2ae0f5 1967 worker = create_worker(pool);
e22bee78 1968 if (worker) {
63d95a91 1969 del_timer_sync(&pool->mayday_timer);
d565ed63 1970 spin_lock_irq(&pool->lock);
e22bee78 1971 start_worker(worker);
6183c009
TH
1972 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1973 goto restart;
e22bee78
TH
1974 return true;
1975 }
1976
63d95a91 1977 if (!need_to_create_worker(pool))
e22bee78 1978 break;
1da177e4 1979
e22bee78
TH
1980 __set_current_state(TASK_INTERRUPTIBLE);
1981 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1982
63d95a91 1983 if (!need_to_create_worker(pool))
e22bee78
TH
1984 break;
1985 }
1986
63d95a91 1987 del_timer_sync(&pool->mayday_timer);
d565ed63 1988 spin_lock_irq(&pool->lock);
63d95a91 1989 if (need_to_create_worker(pool))
e22bee78
TH
1990 goto restart;
1991 return true;
1992}
1993
1994/**
1995 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1996 * @pool: pool to destroy workers for
e22bee78 1997 *
63d95a91 1998 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1999 * IDLE_WORKER_TIMEOUT.
2000 *
2001 * LOCKING:
d565ed63 2002 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2003 * multiple times. Called only from manager.
2004 *
d185af30 2005 * Return:
c5aa87bb 2006 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
2007 * otherwise.
2008 */
63d95a91 2009static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2010{
2011 bool ret = false;
1da177e4 2012
63d95a91 2013 while (too_many_workers(pool)) {
e22bee78
TH
2014 struct worker *worker;
2015 unsigned long expires;
3af24433 2016
63d95a91 2017 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2018 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2019
e22bee78 2020 if (time_before(jiffies, expires)) {
63d95a91 2021 mod_timer(&pool->idle_timer, expires);
3af24433 2022 break;
e22bee78 2023 }
1da177e4 2024
e22bee78
TH
2025 destroy_worker(worker);
2026 ret = true;
1da177e4 2027 }
1e19ffc6 2028
e22bee78 2029 return ret;
1e19ffc6
TH
2030}
2031
73f53c4a 2032/**
e22bee78
TH
2033 * manage_workers - manage worker pool
2034 * @worker: self
73f53c4a 2035 *
706026c2 2036 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2037 * to. At any given time, there can be only zero or one manager per
706026c2 2038 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2039 *
2040 * The caller can safely start processing works on false return. On
2041 * true return, it's guaranteed that need_to_create_worker() is false
2042 * and may_start_working() is true.
73f53c4a
TH
2043 *
2044 * CONTEXT:
d565ed63 2045 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2046 * multiple times. Does GFP_KERNEL allocations.
2047 *
d185af30 2048 * Return:
2d498db9
L
2049 * %false if the pool don't need management and the caller can safely start
2050 * processing works, %true indicates that the function released pool->lock
2051 * and reacquired it to perform some management function and that the
2052 * conditions that the caller verified while holding the lock before
2053 * calling the function might no longer be true.
73f53c4a 2054 */
e22bee78 2055static bool manage_workers(struct worker *worker)
73f53c4a 2056{
63d95a91 2057 struct worker_pool *pool = worker->pool;
e22bee78 2058 bool ret = false;
73f53c4a 2059
bc3a1afc
TH
2060 /*
2061 * Managership is governed by two mutexes - manager_arb and
2062 * manager_mutex. manager_arb handles arbitration of manager role.
2063 * Anyone who successfully grabs manager_arb wins the arbitration
2064 * and becomes the manager. mutex_trylock() on pool->manager_arb
2065 * failure while holding pool->lock reliably indicates that someone
2066 * else is managing the pool and the worker which failed trylock
2067 * can proceed to executing work items. This means that anyone
2068 * grabbing manager_arb is responsible for actually performing
2069 * manager duties. If manager_arb is grabbed and released without
2070 * actual management, the pool may stall indefinitely.
2071 *
2072 * manager_mutex is used for exclusion of actual management
2073 * operations. The holder of manager_mutex can be sure that none
2074 * of management operations, including creation and destruction of
2075 * workers, won't take place until the mutex is released. Because
2076 * manager_mutex doesn't interfere with manager role arbitration,
2077 * it is guaranteed that the pool's management, while may be
2078 * delayed, won't be disturbed by someone else grabbing
2079 * manager_mutex.
2080 */
34a06bd6 2081 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2082 return ret;
1e19ffc6 2083
ee378aa4 2084 /*
bc3a1afc
TH
2085 * With manager arbitration won, manager_mutex would be free in
2086 * most cases. trylock first without dropping @pool->lock.
ee378aa4 2087 */
bc3a1afc 2088 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
d565ed63 2089 spin_unlock_irq(&pool->lock);
bc3a1afc 2090 mutex_lock(&pool->manager_mutex);
8f174b11 2091 spin_lock_irq(&pool->lock);
ee378aa4
LJ
2092 ret = true;
2093 }
73f53c4a 2094
11ebea50 2095 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2096
2097 /*
e22bee78
TH
2098 * Destroy and then create so that may_start_working() is true
2099 * on return.
73f53c4a 2100 */
63d95a91
TH
2101 ret |= maybe_destroy_workers(pool);
2102 ret |= maybe_create_worker(pool);
e22bee78 2103
bc3a1afc 2104 mutex_unlock(&pool->manager_mutex);
34a06bd6 2105 mutex_unlock(&pool->manager_arb);
e22bee78 2106 return ret;
73f53c4a
TH
2107}
2108
a62428c0
TH
2109/**
2110 * process_one_work - process single work
c34056a3 2111 * @worker: self
a62428c0
TH
2112 * @work: work to process
2113 *
2114 * Process @work. This function contains all the logics necessary to
2115 * process a single work including synchronization against and
2116 * interaction with other workers on the same cpu, queueing and
2117 * flushing. As long as context requirement is met, any worker can
2118 * call this function to process a work.
2119 *
2120 * CONTEXT:
d565ed63 2121 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2122 */
c34056a3 2123static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2124__releases(&pool->lock)
2125__acquires(&pool->lock)
a62428c0 2126{
112202d9 2127 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2128 struct worker_pool *pool = worker->pool;
112202d9 2129 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2130 int work_color;
7e11629d 2131 struct worker *collision;
a62428c0
TH
2132#ifdef CONFIG_LOCKDEP
2133 /*
2134 * It is permissible to free the struct work_struct from
2135 * inside the function that is called from it, this we need to
2136 * take into account for lockdep too. To avoid bogus "held
2137 * lock freed" warnings as well as problems when looking into
2138 * work->lockdep_map, make a copy and use that here.
2139 */
4d82a1de
PZ
2140 struct lockdep_map lockdep_map;
2141
2142 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2143#endif
6fec10a1
TH
2144 /*
2145 * Ensure we're on the correct CPU. DISASSOCIATED test is
2146 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2147 * unbound or a disassociated pool.
6fec10a1 2148 */
5f7dabfd 2149 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2150 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2151 raw_smp_processor_id() != pool->cpu);
25511a47 2152
7e11629d
TH
2153 /*
2154 * A single work shouldn't be executed concurrently by
2155 * multiple workers on a single cpu. Check whether anyone is
2156 * already processing the work. If so, defer the work to the
2157 * currently executing one.
2158 */
c9e7cf27 2159 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2160 if (unlikely(collision)) {
2161 move_linked_works(work, &collision->scheduled, NULL);
2162 return;
2163 }
2164
8930caba 2165 /* claim and dequeue */
a62428c0 2166 debug_work_deactivate(work);
c9e7cf27 2167 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2168 worker->current_work = work;
a2c1c57b 2169 worker->current_func = work->func;
112202d9 2170 worker->current_pwq = pwq;
73f53c4a 2171 work_color = get_work_color(work);
7a22ad75 2172
a62428c0
TH
2173 list_del_init(&work->entry);
2174
fb0e7beb
TH
2175 /*
2176 * CPU intensive works don't participate in concurrency
2177 * management. They're the scheduler's responsibility.
2178 */
2179 if (unlikely(cpu_intensive))
2180 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2181
974271c4 2182 /*
d565ed63 2183 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2184 * executed ASAP. Wake up another worker if necessary.
2185 */
63d95a91
TH
2186 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2187 wake_up_worker(pool);
974271c4 2188
8930caba 2189 /*
7c3eed5c 2190 * Record the last pool and clear PENDING which should be the last
d565ed63 2191 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2192 * PENDING and queued state changes happen together while IRQ is
2193 * disabled.
8930caba 2194 */
7c3eed5c 2195 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2196
d565ed63 2197 spin_unlock_irq(&pool->lock);
a62428c0 2198
112202d9 2199 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2200 lock_map_acquire(&lockdep_map);
e36c886a 2201 trace_workqueue_execute_start(work);
a2c1c57b 2202 worker->current_func(work);
e36c886a
AV
2203 /*
2204 * While we must be careful to not use "work" after this, the trace
2205 * point will only record its address.
2206 */
2207 trace_workqueue_execute_end(work);
a62428c0 2208 lock_map_release(&lockdep_map);
112202d9 2209 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2210
2211 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2212 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2213 " last function: %pf\n",
a2c1c57b
TH
2214 current->comm, preempt_count(), task_pid_nr(current),
2215 worker->current_func);
a62428c0
TH
2216 debug_show_held_locks(current);
2217 dump_stack();
2218 }
2219
b22ce278
TH
2220 /*
2221 * The following prevents a kworker from hogging CPU on !PREEMPT
2222 * kernels, where a requeueing work item waiting for something to
2223 * happen could deadlock with stop_machine as such work item could
2224 * indefinitely requeue itself while all other CPUs are trapped in
2225 * stop_machine.
2226 */
2227 cond_resched();
2228
d565ed63 2229 spin_lock_irq(&pool->lock);
a62428c0 2230
fb0e7beb
TH
2231 /* clear cpu intensive status */
2232 if (unlikely(cpu_intensive))
2233 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2234
a62428c0 2235 /* we're done with it, release */
42f8570f 2236 hash_del(&worker->hentry);
c34056a3 2237 worker->current_work = NULL;
a2c1c57b 2238 worker->current_func = NULL;
112202d9 2239 worker->current_pwq = NULL;
3d1cb205 2240 worker->desc_valid = false;
112202d9 2241 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2242}
2243
affee4b2
TH
2244/**
2245 * process_scheduled_works - process scheduled works
2246 * @worker: self
2247 *
2248 * Process all scheduled works. Please note that the scheduled list
2249 * may change while processing a work, so this function repeatedly
2250 * fetches a work from the top and executes it.
2251 *
2252 * CONTEXT:
d565ed63 2253 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2254 * multiple times.
2255 */
2256static void process_scheduled_works(struct worker *worker)
1da177e4 2257{
affee4b2
TH
2258 while (!list_empty(&worker->scheduled)) {
2259 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2260 struct work_struct, entry);
c34056a3 2261 process_one_work(worker, work);
1da177e4 2262 }
1da177e4
LT
2263}
2264
4690c4ab
TH
2265/**
2266 * worker_thread - the worker thread function
c34056a3 2267 * @__worker: self
4690c4ab 2268 *
c5aa87bb
TH
2269 * The worker thread function. All workers belong to a worker_pool -
2270 * either a per-cpu one or dynamic unbound one. These workers process all
2271 * work items regardless of their specific target workqueue. The only
2272 * exception is work items which belong to workqueues with a rescuer which
2273 * will be explained in rescuer_thread().
d185af30
YB
2274 *
2275 * Return: 0
4690c4ab 2276 */
c34056a3 2277static int worker_thread(void *__worker)
1da177e4 2278{
c34056a3 2279 struct worker *worker = __worker;
bd7bdd43 2280 struct worker_pool *pool = worker->pool;
1da177e4 2281
e22bee78
TH
2282 /* tell the scheduler that this is a workqueue worker */
2283 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2284woke_up:
d565ed63 2285 spin_lock_irq(&pool->lock);
1da177e4 2286
a9ab775b
TH
2287 /* am I supposed to die? */
2288 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2289 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2290 WARN_ON_ONCE(!list_empty(&worker->entry));
2291 worker->task->flags &= ~PF_WQ_WORKER;
2292 return 0;
c8e55f36 2293 }
affee4b2 2294
c8e55f36 2295 worker_leave_idle(worker);
db7bccf4 2296recheck:
e22bee78 2297 /* no more worker necessary? */
63d95a91 2298 if (!need_more_worker(pool))
e22bee78
TH
2299 goto sleep;
2300
2301 /* do we need to manage? */
63d95a91 2302 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2303 goto recheck;
2304
c8e55f36
TH
2305 /*
2306 * ->scheduled list can only be filled while a worker is
2307 * preparing to process a work or actually processing it.
2308 * Make sure nobody diddled with it while I was sleeping.
2309 */
6183c009 2310 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2311
e22bee78 2312 /*
a9ab775b
TH
2313 * Finish PREP stage. We're guaranteed to have at least one idle
2314 * worker or that someone else has already assumed the manager
2315 * role. This is where @worker starts participating in concurrency
2316 * management if applicable and concurrency management is restored
2317 * after being rebound. See rebind_workers() for details.
e22bee78 2318 */
a9ab775b 2319 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2320
2321 do {
c8e55f36 2322 struct work_struct *work =
bd7bdd43 2323 list_first_entry(&pool->worklist,
c8e55f36
TH
2324 struct work_struct, entry);
2325
2326 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2327 /* optimization path, not strictly necessary */
2328 process_one_work(worker, work);
2329 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2330 process_scheduled_works(worker);
c8e55f36
TH
2331 } else {
2332 move_linked_works(work, &worker->scheduled, NULL);
2333 process_scheduled_works(worker);
affee4b2 2334 }
63d95a91 2335 } while (keep_working(pool));
e22bee78
TH
2336
2337 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2338sleep:
63d95a91 2339 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2340 goto recheck;
d313dd85 2341
c8e55f36 2342 /*
d565ed63
TH
2343 * pool->lock is held and there's no work to process and no need to
2344 * manage, sleep. Workers are woken up only while holding
2345 * pool->lock or from local cpu, so setting the current state
2346 * before releasing pool->lock is enough to prevent losing any
2347 * event.
c8e55f36
TH
2348 */
2349 worker_enter_idle(worker);
2350 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2351 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2352 schedule();
2353 goto woke_up;
1da177e4
LT
2354}
2355
e22bee78
TH
2356/**
2357 * rescuer_thread - the rescuer thread function
111c225a 2358 * @__rescuer: self
e22bee78
TH
2359 *
2360 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2361 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2362 *
706026c2 2363 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2364 * worker which uses GFP_KERNEL allocation which has slight chance of
2365 * developing into deadlock if some works currently on the same queue
2366 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2367 * the problem rescuer solves.
2368 *
706026c2
TH
2369 * When such condition is possible, the pool summons rescuers of all
2370 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2371 * those works so that forward progress can be guaranteed.
2372 *
2373 * This should happen rarely.
d185af30
YB
2374 *
2375 * Return: 0
e22bee78 2376 */
111c225a 2377static int rescuer_thread(void *__rescuer)
e22bee78 2378{
111c225a
TH
2379 struct worker *rescuer = __rescuer;
2380 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2381 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2382 bool should_stop;
e22bee78
TH
2383
2384 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2385
2386 /*
2387 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2388 * doesn't participate in concurrency management.
2389 */
2390 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2391repeat:
2392 set_current_state(TASK_INTERRUPTIBLE);
2393
4d595b86
LJ
2394 /*
2395 * By the time the rescuer is requested to stop, the workqueue
2396 * shouldn't have any work pending, but @wq->maydays may still have
2397 * pwq(s) queued. This can happen by non-rescuer workers consuming
2398 * all the work items before the rescuer got to them. Go through
2399 * @wq->maydays processing before acting on should_stop so that the
2400 * list is always empty on exit.
2401 */
2402 should_stop = kthread_should_stop();
e22bee78 2403
493a1724 2404 /* see whether any pwq is asking for help */
2e109a28 2405 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2406
2407 while (!list_empty(&wq->maydays)) {
2408 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2409 struct pool_workqueue, mayday_node);
112202d9 2410 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2411 struct work_struct *work, *n;
2412
2413 __set_current_state(TASK_RUNNING);
493a1724
TH
2414 list_del_init(&pwq->mayday_node);
2415
2e109a28 2416 spin_unlock_irq(&wq_mayday_lock);
e22bee78
TH
2417
2418 /* migrate to the target cpu if possible */
f36dc67b 2419 worker_maybe_bind_and_lock(pool);
b3104104 2420 rescuer->pool = pool;
e22bee78
TH
2421
2422 /*
2423 * Slurp in all works issued via this workqueue and
2424 * process'em.
2425 */
6183c009 2426 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2427 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2428 if (get_work_pwq(work) == pwq)
e22bee78
TH
2429 move_linked_works(work, scheduled, &n);
2430
2431 process_scheduled_works(rescuer);
7576958a 2432
77668c8b
LJ
2433 /*
2434 * Put the reference grabbed by send_mayday(). @pool won't
2435 * go away while we're holding its lock.
2436 */
2437 put_pwq(pwq);
2438
7576958a 2439 /*
d565ed63 2440 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2441 * regular worker; otherwise, we end up with 0 concurrency
2442 * and stalling the execution.
2443 */
63d95a91
TH
2444 if (keep_working(pool))
2445 wake_up_worker(pool);
7576958a 2446
b3104104 2447 rescuer->pool = NULL;
493a1724 2448 spin_unlock(&pool->lock);
2e109a28 2449 spin_lock(&wq_mayday_lock);
e22bee78
TH
2450 }
2451
2e109a28 2452 spin_unlock_irq(&wq_mayday_lock);
493a1724 2453
4d595b86
LJ
2454 if (should_stop) {
2455 __set_current_state(TASK_RUNNING);
2456 rescuer->task->flags &= ~PF_WQ_WORKER;
2457 return 0;
2458 }
2459
111c225a
TH
2460 /* rescuers should never participate in concurrency management */
2461 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2462 schedule();
2463 goto repeat;
1da177e4
LT
2464}
2465
fc2e4d70
ON
2466struct wq_barrier {
2467 struct work_struct work;
2468 struct completion done;
2469};
2470
2471static void wq_barrier_func(struct work_struct *work)
2472{
2473 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2474 complete(&barr->done);
2475}
2476
4690c4ab
TH
2477/**
2478 * insert_wq_barrier - insert a barrier work
112202d9 2479 * @pwq: pwq to insert barrier into
4690c4ab 2480 * @barr: wq_barrier to insert
affee4b2
TH
2481 * @target: target work to attach @barr to
2482 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2483 *
affee4b2
TH
2484 * @barr is linked to @target such that @barr is completed only after
2485 * @target finishes execution. Please note that the ordering
2486 * guarantee is observed only with respect to @target and on the local
2487 * cpu.
2488 *
2489 * Currently, a queued barrier can't be canceled. This is because
2490 * try_to_grab_pending() can't determine whether the work to be
2491 * grabbed is at the head of the queue and thus can't clear LINKED
2492 * flag of the previous work while there must be a valid next work
2493 * after a work with LINKED flag set.
2494 *
2495 * Note that when @worker is non-NULL, @target may be modified
112202d9 2496 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2497 *
2498 * CONTEXT:
d565ed63 2499 * spin_lock_irq(pool->lock).
4690c4ab 2500 */
112202d9 2501static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2502 struct wq_barrier *barr,
2503 struct work_struct *target, struct worker *worker)
fc2e4d70 2504{
affee4b2
TH
2505 struct list_head *head;
2506 unsigned int linked = 0;
2507
dc186ad7 2508 /*
d565ed63 2509 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2510 * as we know for sure that this will not trigger any of the
2511 * checks and call back into the fixup functions where we
2512 * might deadlock.
2513 */
ca1cab37 2514 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2515 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2516 init_completion(&barr->done);
83c22520 2517
affee4b2
TH
2518 /*
2519 * If @target is currently being executed, schedule the
2520 * barrier to the worker; otherwise, put it after @target.
2521 */
2522 if (worker)
2523 head = worker->scheduled.next;
2524 else {
2525 unsigned long *bits = work_data_bits(target);
2526
2527 head = target->entry.next;
2528 /* there can already be other linked works, inherit and set */
2529 linked = *bits & WORK_STRUCT_LINKED;
2530 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2531 }
2532
dc186ad7 2533 debug_work_activate(&barr->work);
112202d9 2534 insert_work(pwq, &barr->work, head,
affee4b2 2535 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2536}
2537
73f53c4a 2538/**
112202d9 2539 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2540 * @wq: workqueue being flushed
2541 * @flush_color: new flush color, < 0 for no-op
2542 * @work_color: new work color, < 0 for no-op
2543 *
112202d9 2544 * Prepare pwqs for workqueue flushing.
73f53c4a 2545 *
112202d9
TH
2546 * If @flush_color is non-negative, flush_color on all pwqs should be
2547 * -1. If no pwq has in-flight commands at the specified color, all
2548 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2549 * has in flight commands, its pwq->flush_color is set to
2550 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2551 * wakeup logic is armed and %true is returned.
2552 *
2553 * The caller should have initialized @wq->first_flusher prior to
2554 * calling this function with non-negative @flush_color. If
2555 * @flush_color is negative, no flush color update is done and %false
2556 * is returned.
2557 *
112202d9 2558 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2559 * work_color which is previous to @work_color and all will be
2560 * advanced to @work_color.
2561 *
2562 * CONTEXT:
3c25a55d 2563 * mutex_lock(wq->mutex).
73f53c4a 2564 *
d185af30 2565 * Return:
73f53c4a
TH
2566 * %true if @flush_color >= 0 and there's something to flush. %false
2567 * otherwise.
2568 */
112202d9 2569static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2570 int flush_color, int work_color)
1da177e4 2571{
73f53c4a 2572 bool wait = false;
49e3cf44 2573 struct pool_workqueue *pwq;
1da177e4 2574
73f53c4a 2575 if (flush_color >= 0) {
6183c009 2576 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2577 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2578 }
2355b70f 2579
49e3cf44 2580 for_each_pwq(pwq, wq) {
112202d9 2581 struct worker_pool *pool = pwq->pool;
fc2e4d70 2582
b09f4fd3 2583 spin_lock_irq(&pool->lock);
83c22520 2584
73f53c4a 2585 if (flush_color >= 0) {
6183c009 2586 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2587
112202d9
TH
2588 if (pwq->nr_in_flight[flush_color]) {
2589 pwq->flush_color = flush_color;
2590 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2591 wait = true;
2592 }
2593 }
1da177e4 2594
73f53c4a 2595 if (work_color >= 0) {
6183c009 2596 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2597 pwq->work_color = work_color;
73f53c4a 2598 }
1da177e4 2599
b09f4fd3 2600 spin_unlock_irq(&pool->lock);
1da177e4 2601 }
2355b70f 2602
112202d9 2603 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2604 complete(&wq->first_flusher->done);
14441960 2605
73f53c4a 2606 return wait;
1da177e4
LT
2607}
2608
0fcb78c2 2609/**
1da177e4 2610 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2611 * @wq: workqueue to flush
1da177e4 2612 *
c5aa87bb
TH
2613 * This function sleeps until all work items which were queued on entry
2614 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2615 */
7ad5b3a5 2616void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2617{
73f53c4a
TH
2618 struct wq_flusher this_flusher = {
2619 .list = LIST_HEAD_INIT(this_flusher.list),
2620 .flush_color = -1,
2621 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2622 };
2623 int next_color;
1da177e4 2624
3295f0ef
IM
2625 lock_map_acquire(&wq->lockdep_map);
2626 lock_map_release(&wq->lockdep_map);
73f53c4a 2627
3c25a55d 2628 mutex_lock(&wq->mutex);
73f53c4a
TH
2629
2630 /*
2631 * Start-to-wait phase
2632 */
2633 next_color = work_next_color(wq->work_color);
2634
2635 if (next_color != wq->flush_color) {
2636 /*
2637 * Color space is not full. The current work_color
2638 * becomes our flush_color and work_color is advanced
2639 * by one.
2640 */
6183c009 2641 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2642 this_flusher.flush_color = wq->work_color;
2643 wq->work_color = next_color;
2644
2645 if (!wq->first_flusher) {
2646 /* no flush in progress, become the first flusher */
6183c009 2647 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2648
2649 wq->first_flusher = &this_flusher;
2650
112202d9 2651 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2652 wq->work_color)) {
2653 /* nothing to flush, done */
2654 wq->flush_color = next_color;
2655 wq->first_flusher = NULL;
2656 goto out_unlock;
2657 }
2658 } else {
2659 /* wait in queue */
6183c009 2660 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2661 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2662 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2663 }
2664 } else {
2665 /*
2666 * Oops, color space is full, wait on overflow queue.
2667 * The next flush completion will assign us
2668 * flush_color and transfer to flusher_queue.
2669 */
2670 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2671 }
2672
3c25a55d 2673 mutex_unlock(&wq->mutex);
73f53c4a
TH
2674
2675 wait_for_completion(&this_flusher.done);
2676
2677 /*
2678 * Wake-up-and-cascade phase
2679 *
2680 * First flushers are responsible for cascading flushes and
2681 * handling overflow. Non-first flushers can simply return.
2682 */
2683 if (wq->first_flusher != &this_flusher)
2684 return;
2685
3c25a55d 2686 mutex_lock(&wq->mutex);
73f53c4a 2687
4ce48b37
TH
2688 /* we might have raced, check again with mutex held */
2689 if (wq->first_flusher != &this_flusher)
2690 goto out_unlock;
2691
73f53c4a
TH
2692 wq->first_flusher = NULL;
2693
6183c009
TH
2694 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2695 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2696
2697 while (true) {
2698 struct wq_flusher *next, *tmp;
2699
2700 /* complete all the flushers sharing the current flush color */
2701 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2702 if (next->flush_color != wq->flush_color)
2703 break;
2704 list_del_init(&next->list);
2705 complete(&next->done);
2706 }
2707
6183c009
TH
2708 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2709 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2710
2711 /* this flush_color is finished, advance by one */
2712 wq->flush_color = work_next_color(wq->flush_color);
2713
2714 /* one color has been freed, handle overflow queue */
2715 if (!list_empty(&wq->flusher_overflow)) {
2716 /*
2717 * Assign the same color to all overflowed
2718 * flushers, advance work_color and append to
2719 * flusher_queue. This is the start-to-wait
2720 * phase for these overflowed flushers.
2721 */
2722 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2723 tmp->flush_color = wq->work_color;
2724
2725 wq->work_color = work_next_color(wq->work_color);
2726
2727 list_splice_tail_init(&wq->flusher_overflow,
2728 &wq->flusher_queue);
112202d9 2729 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2730 }
2731
2732 if (list_empty(&wq->flusher_queue)) {
6183c009 2733 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2734 break;
2735 }
2736
2737 /*
2738 * Need to flush more colors. Make the next flusher
112202d9 2739 * the new first flusher and arm pwqs.
73f53c4a 2740 */
6183c009
TH
2741 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2742 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2743
2744 list_del_init(&next->list);
2745 wq->first_flusher = next;
2746
112202d9 2747 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2748 break;
2749
2750 /*
2751 * Meh... this color is already done, clear first
2752 * flusher and repeat cascading.
2753 */
2754 wq->first_flusher = NULL;
2755 }
2756
2757out_unlock:
3c25a55d 2758 mutex_unlock(&wq->mutex);
1da177e4 2759}
ae90dd5d 2760EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2761
9c5a2ba7
TH
2762/**
2763 * drain_workqueue - drain a workqueue
2764 * @wq: workqueue to drain
2765 *
2766 * Wait until the workqueue becomes empty. While draining is in progress,
2767 * only chain queueing is allowed. IOW, only currently pending or running
2768 * work items on @wq can queue further work items on it. @wq is flushed
2769 * repeatedly until it becomes empty. The number of flushing is detemined
2770 * by the depth of chaining and should be relatively short. Whine if it
2771 * takes too long.
2772 */
2773void drain_workqueue(struct workqueue_struct *wq)
2774{
2775 unsigned int flush_cnt = 0;
49e3cf44 2776 struct pool_workqueue *pwq;
9c5a2ba7
TH
2777
2778 /*
2779 * __queue_work() needs to test whether there are drainers, is much
2780 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2781 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2782 */
87fc741e 2783 mutex_lock(&wq->mutex);
9c5a2ba7 2784 if (!wq->nr_drainers++)
618b01eb 2785 wq->flags |= __WQ_DRAINING;
87fc741e 2786 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2787reflush:
2788 flush_workqueue(wq);
2789
b09f4fd3 2790 mutex_lock(&wq->mutex);
76af4d93 2791
49e3cf44 2792 for_each_pwq(pwq, wq) {
fa2563e4 2793 bool drained;
9c5a2ba7 2794
b09f4fd3 2795 spin_lock_irq(&pwq->pool->lock);
112202d9 2796 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2797 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2798
2799 if (drained)
9c5a2ba7
TH
2800 continue;
2801
2802 if (++flush_cnt == 10 ||
2803 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2804 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2805 wq->name, flush_cnt);
76af4d93 2806
b09f4fd3 2807 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2808 goto reflush;
2809 }
2810
9c5a2ba7 2811 if (!--wq->nr_drainers)
618b01eb 2812 wq->flags &= ~__WQ_DRAINING;
87fc741e 2813 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2814}
2815EXPORT_SYMBOL_GPL(drain_workqueue);
2816
606a5020 2817static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2818{
affee4b2 2819 struct worker *worker = NULL;
c9e7cf27 2820 struct worker_pool *pool;
112202d9 2821 struct pool_workqueue *pwq;
db700897
ON
2822
2823 might_sleep();
fa1b54e6
TH
2824
2825 local_irq_disable();
c9e7cf27 2826 pool = get_work_pool(work);
fa1b54e6
TH
2827 if (!pool) {
2828 local_irq_enable();
baf59022 2829 return false;
fa1b54e6 2830 }
db700897 2831
fa1b54e6 2832 spin_lock(&pool->lock);
0b3dae68 2833 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2834 pwq = get_work_pwq(work);
2835 if (pwq) {
2836 if (unlikely(pwq->pool != pool))
4690c4ab 2837 goto already_gone;
606a5020 2838 } else {
c9e7cf27 2839 worker = find_worker_executing_work(pool, work);
affee4b2 2840 if (!worker)
4690c4ab 2841 goto already_gone;
112202d9 2842 pwq = worker->current_pwq;
606a5020 2843 }
db700897 2844
112202d9 2845 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2846 spin_unlock_irq(&pool->lock);
7a22ad75 2847
e159489b
TH
2848 /*
2849 * If @max_active is 1 or rescuer is in use, flushing another work
2850 * item on the same workqueue may lead to deadlock. Make sure the
2851 * flusher is not running on the same workqueue by verifying write
2852 * access.
2853 */
493008a8 2854 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2855 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2856 else
112202d9
TH
2857 lock_map_acquire_read(&pwq->wq->lockdep_map);
2858 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2859
401a8d04 2860 return true;
4690c4ab 2861already_gone:
d565ed63 2862 spin_unlock_irq(&pool->lock);
401a8d04 2863 return false;
db700897 2864}
baf59022
TH
2865
2866/**
2867 * flush_work - wait for a work to finish executing the last queueing instance
2868 * @work: the work to flush
2869 *
606a5020
TH
2870 * Wait until @work has finished execution. @work is guaranteed to be idle
2871 * on return if it hasn't been requeued since flush started.
baf59022 2872 *
d185af30 2873 * Return:
baf59022
TH
2874 * %true if flush_work() waited for the work to finish execution,
2875 * %false if it was already idle.
2876 */
2877bool flush_work(struct work_struct *work)
2878{
12997d1a
BH
2879 struct wq_barrier barr;
2880
0976dfc1
SB
2881 lock_map_acquire(&work->lockdep_map);
2882 lock_map_release(&work->lockdep_map);
2883
12997d1a
BH
2884 if (start_flush_work(work, &barr)) {
2885 wait_for_completion(&barr.done);
2886 destroy_work_on_stack(&barr.work);
2887 return true;
2888 } else {
2889 return false;
2890 }
6e84d644 2891}
606a5020 2892EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2893
36e227d2 2894static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2895{
bbb68dfa 2896 unsigned long flags;
1f1f642e
ON
2897 int ret;
2898
2899 do {
bbb68dfa
TH
2900 ret = try_to_grab_pending(work, is_dwork, &flags);
2901 /*
2902 * If someone else is canceling, wait for the same event it
2903 * would be waiting for before retrying.
2904 */
2905 if (unlikely(ret == -ENOENT))
606a5020 2906 flush_work(work);
1f1f642e
ON
2907 } while (unlikely(ret < 0));
2908
bbb68dfa
TH
2909 /* tell other tasks trying to grab @work to back off */
2910 mark_work_canceling(work);
2911 local_irq_restore(flags);
2912
606a5020 2913 flush_work(work);
7a22ad75 2914 clear_work_data(work);
1f1f642e
ON
2915 return ret;
2916}
2917
6e84d644 2918/**
401a8d04
TH
2919 * cancel_work_sync - cancel a work and wait for it to finish
2920 * @work: the work to cancel
6e84d644 2921 *
401a8d04
TH
2922 * Cancel @work and wait for its execution to finish. This function
2923 * can be used even if the work re-queues itself or migrates to
2924 * another workqueue. On return from this function, @work is
2925 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2926 *
401a8d04
TH
2927 * cancel_work_sync(&delayed_work->work) must not be used for
2928 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2929 *
401a8d04 2930 * The caller must ensure that the workqueue on which @work was last
6e84d644 2931 * queued can't be destroyed before this function returns.
401a8d04 2932 *
d185af30 2933 * Return:
401a8d04 2934 * %true if @work was pending, %false otherwise.
6e84d644 2935 */
401a8d04 2936bool cancel_work_sync(struct work_struct *work)
6e84d644 2937{
36e227d2 2938 return __cancel_work_timer(work, false);
b89deed3 2939}
28e53bdd 2940EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2941
6e84d644 2942/**
401a8d04
TH
2943 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2944 * @dwork: the delayed work to flush
6e84d644 2945 *
401a8d04
TH
2946 * Delayed timer is cancelled and the pending work is queued for
2947 * immediate execution. Like flush_work(), this function only
2948 * considers the last queueing instance of @dwork.
1f1f642e 2949 *
d185af30 2950 * Return:
401a8d04
TH
2951 * %true if flush_work() waited for the work to finish execution,
2952 * %false if it was already idle.
6e84d644 2953 */
401a8d04
TH
2954bool flush_delayed_work(struct delayed_work *dwork)
2955{
8930caba 2956 local_irq_disable();
401a8d04 2957 if (del_timer_sync(&dwork->timer))
60c057bc 2958 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2959 local_irq_enable();
401a8d04
TH
2960 return flush_work(&dwork->work);
2961}
2962EXPORT_SYMBOL(flush_delayed_work);
2963
09383498 2964/**
57b30ae7
TH
2965 * cancel_delayed_work - cancel a delayed work
2966 * @dwork: delayed_work to cancel
09383498 2967 *
d185af30
YB
2968 * Kill off a pending delayed_work.
2969 *
2970 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2971 * pending.
2972 *
2973 * Note:
2974 * The work callback function may still be running on return, unless
2975 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2976 * use cancel_delayed_work_sync() to wait on it.
09383498 2977 *
57b30ae7 2978 * This function is safe to call from any context including IRQ handler.
09383498 2979 */
57b30ae7 2980bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2981{
57b30ae7
TH
2982 unsigned long flags;
2983 int ret;
2984
2985 do {
2986 ret = try_to_grab_pending(&dwork->work, true, &flags);
2987 } while (unlikely(ret == -EAGAIN));
2988
2989 if (unlikely(ret < 0))
2990 return false;
2991
7c3eed5c
TH
2992 set_work_pool_and_clear_pending(&dwork->work,
2993 get_work_pool_id(&dwork->work));
57b30ae7 2994 local_irq_restore(flags);
c0158ca6 2995 return ret;
09383498 2996}
57b30ae7 2997EXPORT_SYMBOL(cancel_delayed_work);
09383498 2998
401a8d04
TH
2999/**
3000 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3001 * @dwork: the delayed work cancel
3002 *
3003 * This is cancel_work_sync() for delayed works.
3004 *
d185af30 3005 * Return:
401a8d04
TH
3006 * %true if @dwork was pending, %false otherwise.
3007 */
3008bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3009{
36e227d2 3010 return __cancel_work_timer(&dwork->work, true);
6e84d644 3011}
f5a421a4 3012EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3013
b6136773 3014/**
31ddd871 3015 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3016 * @func: the function to call
b6136773 3017 *
31ddd871
TH
3018 * schedule_on_each_cpu() executes @func on each online CPU using the
3019 * system workqueue and blocks until all CPUs have completed.
b6136773 3020 * schedule_on_each_cpu() is very slow.
31ddd871 3021 *
d185af30 3022 * Return:
31ddd871 3023 * 0 on success, -errno on failure.
b6136773 3024 */
65f27f38 3025int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3026{
3027 int cpu;
38f51568 3028 struct work_struct __percpu *works;
15316ba8 3029
b6136773
AM
3030 works = alloc_percpu(struct work_struct);
3031 if (!works)
15316ba8 3032 return -ENOMEM;
b6136773 3033
93981800
TH
3034 get_online_cpus();
3035
15316ba8 3036 for_each_online_cpu(cpu) {
9bfb1839
IM
3037 struct work_struct *work = per_cpu_ptr(works, cpu);
3038
3039 INIT_WORK(work, func);
b71ab8c2 3040 schedule_work_on(cpu, work);
65a64464 3041 }
93981800
TH
3042
3043 for_each_online_cpu(cpu)
3044 flush_work(per_cpu_ptr(works, cpu));
3045
95402b38 3046 put_online_cpus();
b6136773 3047 free_percpu(works);
15316ba8
CL
3048 return 0;
3049}
3050
eef6a7d5
AS
3051/**
3052 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3053 *
3054 * Forces execution of the kernel-global workqueue and blocks until its
3055 * completion.
3056 *
3057 * Think twice before calling this function! It's very easy to get into
3058 * trouble if you don't take great care. Either of the following situations
3059 * will lead to deadlock:
3060 *
3061 * One of the work items currently on the workqueue needs to acquire
3062 * a lock held by your code or its caller.
3063 *
3064 * Your code is running in the context of a work routine.
3065 *
3066 * They will be detected by lockdep when they occur, but the first might not
3067 * occur very often. It depends on what work items are on the workqueue and
3068 * what locks they need, which you have no control over.
3069 *
3070 * In most situations flushing the entire workqueue is overkill; you merely
3071 * need to know that a particular work item isn't queued and isn't running.
3072 * In such cases you should use cancel_delayed_work_sync() or
3073 * cancel_work_sync() instead.
3074 */
1da177e4
LT
3075void flush_scheduled_work(void)
3076{
d320c038 3077 flush_workqueue(system_wq);
1da177e4 3078}
ae90dd5d 3079EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3080
1fa44eca
JB
3081/**
3082 * execute_in_process_context - reliably execute the routine with user context
3083 * @fn: the function to execute
1fa44eca
JB
3084 * @ew: guaranteed storage for the execute work structure (must
3085 * be available when the work executes)
3086 *
3087 * Executes the function immediately if process context is available,
3088 * otherwise schedules the function for delayed execution.
3089 *
d185af30 3090 * Return: 0 - function was executed
1fa44eca
JB
3091 * 1 - function was scheduled for execution
3092 */
65f27f38 3093int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3094{
3095 if (!in_interrupt()) {
65f27f38 3096 fn(&ew->work);
1fa44eca
JB
3097 return 0;
3098 }
3099
65f27f38 3100 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3101 schedule_work(&ew->work);
3102
3103 return 1;
3104}
3105EXPORT_SYMBOL_GPL(execute_in_process_context);
3106
226223ab
TH
3107#ifdef CONFIG_SYSFS
3108/*
3109 * Workqueues with WQ_SYSFS flag set is visible to userland via
3110 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3111 * following attributes.
3112 *
3113 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3114 * max_active RW int : maximum number of in-flight work items
3115 *
3116 * Unbound workqueues have the following extra attributes.
3117 *
3118 * id RO int : the associated pool ID
3119 * nice RW int : nice value of the workers
3120 * cpumask RW mask : bitmask of allowed CPUs for the workers
3121 */
3122struct wq_device {
3123 struct workqueue_struct *wq;
3124 struct device dev;
3125};
3126
3127static struct workqueue_struct *dev_to_wq(struct device *dev)
3128{
3129 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3130
3131 return wq_dev->wq;
3132}
3133
1a6661da
GKH
3134static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3135 char *buf)
226223ab
TH
3136{
3137 struct workqueue_struct *wq = dev_to_wq(dev);
3138
3139 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3140}
1a6661da 3141static DEVICE_ATTR_RO(per_cpu);
226223ab 3142
1a6661da
GKH
3143static ssize_t max_active_show(struct device *dev,
3144 struct device_attribute *attr, char *buf)
226223ab
TH
3145{
3146 struct workqueue_struct *wq = dev_to_wq(dev);
3147
3148 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3149}
3150
1a6661da
GKH
3151static ssize_t max_active_store(struct device *dev,
3152 struct device_attribute *attr, const char *buf,
3153 size_t count)
226223ab
TH
3154{
3155 struct workqueue_struct *wq = dev_to_wq(dev);
3156 int val;
3157
3158 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3159 return -EINVAL;
3160
3161 workqueue_set_max_active(wq, val);
3162 return count;
3163}
1a6661da 3164static DEVICE_ATTR_RW(max_active);
226223ab 3165
1a6661da
GKH
3166static struct attribute *wq_sysfs_attrs[] = {
3167 &dev_attr_per_cpu.attr,
3168 &dev_attr_max_active.attr,
3169 NULL,
226223ab 3170};
1a6661da 3171ATTRIBUTE_GROUPS(wq_sysfs);
226223ab 3172
d55262c4
TH
3173static ssize_t wq_pool_ids_show(struct device *dev,
3174 struct device_attribute *attr, char *buf)
226223ab
TH
3175{
3176 struct workqueue_struct *wq = dev_to_wq(dev);
d55262c4
TH
3177 const char *delim = "";
3178 int node, written = 0;
226223ab
TH
3179
3180 rcu_read_lock_sched();
d55262c4
TH
3181 for_each_node(node) {
3182 written += scnprintf(buf + written, PAGE_SIZE - written,
3183 "%s%d:%d", delim, node,
3184 unbound_pwq_by_node(wq, node)->pool->id);
3185 delim = " ";
3186 }
3187 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
226223ab
TH
3188 rcu_read_unlock_sched();
3189
3190 return written;
3191}
3192
3193static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3194 char *buf)
3195{
3196 struct workqueue_struct *wq = dev_to_wq(dev);
3197 int written;
3198
6029a918
TH
3199 mutex_lock(&wq->mutex);
3200 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3201 mutex_unlock(&wq->mutex);
226223ab
TH
3202
3203 return written;
3204}
3205
3206/* prepare workqueue_attrs for sysfs store operations */
3207static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3208{
3209 struct workqueue_attrs *attrs;
3210
3211 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3212 if (!attrs)
3213 return NULL;
3214
6029a918
TH
3215 mutex_lock(&wq->mutex);
3216 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3217 mutex_unlock(&wq->mutex);
226223ab
TH
3218 return attrs;
3219}
3220
3221static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3222 const char *buf, size_t count)
3223{
3224 struct workqueue_struct *wq = dev_to_wq(dev);
3225 struct workqueue_attrs *attrs;
3226 int ret;
3227
3228 attrs = wq_sysfs_prep_attrs(wq);
3229 if (!attrs)
3230 return -ENOMEM;
3231
3232 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
14481842 3233 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
226223ab
TH
3234 ret = apply_workqueue_attrs(wq, attrs);
3235 else
3236 ret = -EINVAL;
3237
3238 free_workqueue_attrs(attrs);
3239 return ret ?: count;
3240}
3241
3242static ssize_t wq_cpumask_show(struct device *dev,
3243 struct device_attribute *attr, char *buf)
3244{
3245 struct workqueue_struct *wq = dev_to_wq(dev);
3246 int written;
3247
6029a918
TH
3248 mutex_lock(&wq->mutex);
3249 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3250 mutex_unlock(&wq->mutex);
226223ab
TH
3251
3252 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3253 return written;
3254}
3255
3256static ssize_t wq_cpumask_store(struct device *dev,
3257 struct device_attribute *attr,
3258 const char *buf, size_t count)
3259{
3260 struct workqueue_struct *wq = dev_to_wq(dev);
3261 struct workqueue_attrs *attrs;
3262 int ret;
3263
3264 attrs = wq_sysfs_prep_attrs(wq);
3265 if (!attrs)
3266 return -ENOMEM;
3267
3268 ret = cpumask_parse(buf, attrs->cpumask);
3269 if (!ret)
3270 ret = apply_workqueue_attrs(wq, attrs);
3271
3272 free_workqueue_attrs(attrs);
3273 return ret ?: count;
3274}
3275
d55262c4
TH
3276static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3277 char *buf)
3278{
3279 struct workqueue_struct *wq = dev_to_wq(dev);
3280 int written;
3281
3282 mutex_lock(&wq->mutex);
3283 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3284 !wq->unbound_attrs->no_numa);
3285 mutex_unlock(&wq->mutex);
3286
3287 return written;
3288}
3289
3290static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3291 const char *buf, size_t count)
3292{
3293 struct workqueue_struct *wq = dev_to_wq(dev);
3294 struct workqueue_attrs *attrs;
3295 int v, ret;
3296
3297 attrs = wq_sysfs_prep_attrs(wq);
3298 if (!attrs)
3299 return -ENOMEM;
3300
3301 ret = -EINVAL;
3302 if (sscanf(buf, "%d", &v) == 1) {
3303 attrs->no_numa = !v;
3304 ret = apply_workqueue_attrs(wq, attrs);
3305 }
3306
3307 free_workqueue_attrs(attrs);
3308 return ret ?: count;
3309}
3310
226223ab 3311static struct device_attribute wq_sysfs_unbound_attrs[] = {
d55262c4 3312 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
226223ab
TH
3313 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3314 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
d55262c4 3315 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
226223ab
TH
3316 __ATTR_NULL,
3317};
3318
3319static struct bus_type wq_subsys = {
3320 .name = "workqueue",
1a6661da 3321 .dev_groups = wq_sysfs_groups,
226223ab
TH
3322};
3323
3324static int __init wq_sysfs_init(void)
3325{
3326 return subsys_virtual_register(&wq_subsys, NULL);
3327}
3328core_initcall(wq_sysfs_init);
3329
3330static void wq_device_release(struct device *dev)
3331{
3332 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3333
3334 kfree(wq_dev);
3335}
3336
3337/**
3338 * workqueue_sysfs_register - make a workqueue visible in sysfs
3339 * @wq: the workqueue to register
3340 *
3341 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3342 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3343 * which is the preferred method.
3344 *
3345 * Workqueue user should use this function directly iff it wants to apply
3346 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3347 * apply_workqueue_attrs() may race against userland updating the
3348 * attributes.
3349 *
d185af30 3350 * Return: 0 on success, -errno on failure.
226223ab
TH
3351 */
3352int workqueue_sysfs_register(struct workqueue_struct *wq)
3353{
3354 struct wq_device *wq_dev;
3355 int ret;
3356
3357 /*
3358 * Adjusting max_active or creating new pwqs by applyting
3359 * attributes breaks ordering guarantee. Disallow exposing ordered
3360 * workqueues.
3361 */
3362 if (WARN_ON(wq->flags & __WQ_ORDERED))
3363 return -EINVAL;
3364
3365 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3366 if (!wq_dev)
3367 return -ENOMEM;
3368
3369 wq_dev->wq = wq;
3370 wq_dev->dev.bus = &wq_subsys;
3371 wq_dev->dev.init_name = wq->name;
3372 wq_dev->dev.release = wq_device_release;
3373
3374 /*
3375 * unbound_attrs are created separately. Suppress uevent until
3376 * everything is ready.
3377 */
3378 dev_set_uevent_suppress(&wq_dev->dev, true);
3379
3380 ret = device_register(&wq_dev->dev);
3381 if (ret) {
3382 kfree(wq_dev);
3383 wq->wq_dev = NULL;
3384 return ret;
3385 }
3386
3387 if (wq->flags & WQ_UNBOUND) {
3388 struct device_attribute *attr;
3389
3390 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3391 ret = device_create_file(&wq_dev->dev, attr);
3392 if (ret) {
3393 device_unregister(&wq_dev->dev);
3394 wq->wq_dev = NULL;
3395 return ret;
3396 }
3397 }
3398 }
3399
3400 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3401 return 0;
3402}
3403
3404/**
3405 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3406 * @wq: the workqueue to unregister
3407 *
3408 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3409 */
3410static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3411{
3412 struct wq_device *wq_dev = wq->wq_dev;
3413
3414 if (!wq->wq_dev)
3415 return;
3416
3417 wq->wq_dev = NULL;
3418 device_unregister(&wq_dev->dev);
3419}
3420#else /* CONFIG_SYSFS */
3421static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3422#endif /* CONFIG_SYSFS */
3423
7a4e344c
TH
3424/**
3425 * free_workqueue_attrs - free a workqueue_attrs
3426 * @attrs: workqueue_attrs to free
3427 *
3428 * Undo alloc_workqueue_attrs().
3429 */
3430void free_workqueue_attrs(struct workqueue_attrs *attrs)
3431{
3432 if (attrs) {
3433 free_cpumask_var(attrs->cpumask);
3434 kfree(attrs);
3435 }
3436}
3437
3438/**
3439 * alloc_workqueue_attrs - allocate a workqueue_attrs
3440 * @gfp_mask: allocation mask to use
3441 *
3442 * Allocate a new workqueue_attrs, initialize with default settings and
d185af30
YB
3443 * return it.
3444 *
3445 * Return: The allocated new workqueue_attr on success. %NULL on failure.
7a4e344c
TH
3446 */
3447struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3448{
3449 struct workqueue_attrs *attrs;
3450
3451 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3452 if (!attrs)
3453 goto fail;
3454 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3455 goto fail;
3456
13e2e556 3457 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3458 return attrs;
3459fail:
3460 free_workqueue_attrs(attrs);
3461 return NULL;
3462}
3463
29c91e99
TH
3464static void copy_workqueue_attrs(struct workqueue_attrs *to,
3465 const struct workqueue_attrs *from)
3466{
3467 to->nice = from->nice;
3468 cpumask_copy(to->cpumask, from->cpumask);
2865a8fb
SL
3469 /*
3470 * Unlike hash and equality test, this function doesn't ignore
3471 * ->no_numa as it is used for both pool and wq attrs. Instead,
3472 * get_unbound_pool() explicitly clears ->no_numa after copying.
3473 */
3474 to->no_numa = from->no_numa;
29c91e99
TH
3475}
3476
29c91e99
TH
3477/* hash value of the content of @attr */
3478static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3479{
3480 u32 hash = 0;
3481
3482 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3483 hash = jhash(cpumask_bits(attrs->cpumask),
3484 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3485 return hash;
3486}
3487
3488/* content equality test */
3489static bool wqattrs_equal(const struct workqueue_attrs *a,
3490 const struct workqueue_attrs *b)
3491{
3492 if (a->nice != b->nice)
3493 return false;
3494 if (!cpumask_equal(a->cpumask, b->cpumask))
3495 return false;
3496 return true;
3497}
3498
7a4e344c
TH
3499/**
3500 * init_worker_pool - initialize a newly zalloc'd worker_pool
3501 * @pool: worker_pool to initialize
3502 *
3503 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
d185af30
YB
3504 *
3505 * Return: 0 on success, -errno on failure. Even on failure, all fields
29c91e99
TH
3506 * inside @pool proper are initialized and put_unbound_pool() can be called
3507 * on @pool safely to release it.
7a4e344c
TH
3508 */
3509static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3510{
3511 spin_lock_init(&pool->lock);
29c91e99
TH
3512 pool->id = -1;
3513 pool->cpu = -1;
f3f90ad4 3514 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3515 pool->flags |= POOL_DISASSOCIATED;
3516 INIT_LIST_HEAD(&pool->worklist);
3517 INIT_LIST_HEAD(&pool->idle_list);
3518 hash_init(pool->busy_hash);
3519
3520 init_timer_deferrable(&pool->idle_timer);
3521 pool->idle_timer.function = idle_worker_timeout;
3522 pool->idle_timer.data = (unsigned long)pool;
3523
3524 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3525 (unsigned long)pool);
3526
3527 mutex_init(&pool->manager_arb);
bc3a1afc 3528 mutex_init(&pool->manager_mutex);
822d8405 3529 idr_init(&pool->worker_idr);
7a4e344c 3530
29c91e99
TH
3531 INIT_HLIST_NODE(&pool->hash_node);
3532 pool->refcnt = 1;
3533
3534 /* shouldn't fail above this point */
7a4e344c
TH
3535 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3536 if (!pool->attrs)
3537 return -ENOMEM;
3538 return 0;
4e1a1f9a
TH
3539}
3540
29c91e99
TH
3541static void rcu_free_pool(struct rcu_head *rcu)
3542{
3543 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3544
822d8405 3545 idr_destroy(&pool->worker_idr);
29c91e99
TH
3546 free_workqueue_attrs(pool->attrs);
3547 kfree(pool);
3548}
3549
3550/**
3551 * put_unbound_pool - put a worker_pool
3552 * @pool: worker_pool to put
3553 *
3554 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3555 * safe manner. get_unbound_pool() calls this function on its failure path
3556 * and this function should be able to release pools which went through,
3557 * successfully or not, init_worker_pool().
a892cacc
TH
3558 *
3559 * Should be called with wq_pool_mutex held.
29c91e99
TH
3560 */
3561static void put_unbound_pool(struct worker_pool *pool)
3562{
3563 struct worker *worker;
3564
a892cacc
TH
3565 lockdep_assert_held(&wq_pool_mutex);
3566
3567 if (--pool->refcnt)
29c91e99 3568 return;
29c91e99
TH
3569
3570 /* sanity checks */
3571 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
a892cacc 3572 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3573 return;
29c91e99
TH
3574
3575 /* release id and unhash */
3576 if (pool->id >= 0)
3577 idr_remove(&worker_pool_idr, pool->id);
3578 hash_del(&pool->hash_node);
3579
c5aa87bb
TH
3580 /*
3581 * Become the manager and destroy all workers. Grabbing
3582 * manager_arb prevents @pool's workers from blocking on
3583 * manager_mutex.
3584 */
29c91e99 3585 mutex_lock(&pool->manager_arb);
cd549687 3586 mutex_lock(&pool->manager_mutex);
29c91e99
TH
3587 spin_lock_irq(&pool->lock);
3588
3589 while ((worker = first_worker(pool)))
3590 destroy_worker(worker);
3591 WARN_ON(pool->nr_workers || pool->nr_idle);
3592
3593 spin_unlock_irq(&pool->lock);
cd549687 3594 mutex_unlock(&pool->manager_mutex);
29c91e99
TH
3595 mutex_unlock(&pool->manager_arb);
3596
3597 /* shut down the timers */
3598 del_timer_sync(&pool->idle_timer);
3599 del_timer_sync(&pool->mayday_timer);
3600
3601 /* sched-RCU protected to allow dereferences from get_work_pool() */
3602 call_rcu_sched(&pool->rcu, rcu_free_pool);
3603}
3604
3605/**
3606 * get_unbound_pool - get a worker_pool with the specified attributes
3607 * @attrs: the attributes of the worker_pool to get
3608 *
3609 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3610 * reference count and return it. If there already is a matching
3611 * worker_pool, it will be used; otherwise, this function attempts to
d185af30 3612 * create a new one.
a892cacc
TH
3613 *
3614 * Should be called with wq_pool_mutex held.
d185af30
YB
3615 *
3616 * Return: On success, a worker_pool with the same attributes as @attrs.
3617 * On failure, %NULL.
29c91e99
TH
3618 */
3619static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3620{
29c91e99
TH
3621 u32 hash = wqattrs_hash(attrs);
3622 struct worker_pool *pool;
f3f90ad4 3623 int node;
29c91e99 3624
a892cacc 3625 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3626
3627 /* do we already have a matching pool? */
29c91e99
TH
3628 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3629 if (wqattrs_equal(pool->attrs, attrs)) {
3630 pool->refcnt++;
3631 goto out_unlock;
3632 }
3633 }
29c91e99
TH
3634
3635 /* nope, create a new one */
3636 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3637 if (!pool || init_worker_pool(pool) < 0)
3638 goto fail;
3639
12ee4fc6
LJ
3640 if (workqueue_freezing)
3641 pool->flags |= POOL_FREEZING;
3642
8864b4e5 3643 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3644 copy_workqueue_attrs(pool->attrs, attrs);
3645
2865a8fb
SL
3646 /*
3647 * no_numa isn't a worker_pool attribute, always clear it. See
3648 * 'struct workqueue_attrs' comments for detail.
3649 */
3650 pool->attrs->no_numa = false;
3651
f3f90ad4
TH
3652 /* if cpumask is contained inside a NUMA node, we belong to that node */
3653 if (wq_numa_enabled) {
3654 for_each_node(node) {
3655 if (cpumask_subset(pool->attrs->cpumask,
3656 wq_numa_possible_cpumask[node])) {
3657 pool->node = node;
3658 break;
3659 }
3660 }
3661 }
3662
29c91e99
TH
3663 if (worker_pool_assign_id(pool) < 0)
3664 goto fail;
3665
3666 /* create and start the initial worker */
ebf44d16 3667 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3668 goto fail;
3669
29c91e99 3670 /* install */
29c91e99
TH
3671 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3672out_unlock:
29c91e99
TH
3673 return pool;
3674fail:
29c91e99
TH
3675 if (pool)
3676 put_unbound_pool(pool);
3677 return NULL;
3678}
3679
8864b4e5
TH
3680static void rcu_free_pwq(struct rcu_head *rcu)
3681{
3682 kmem_cache_free(pwq_cache,
3683 container_of(rcu, struct pool_workqueue, rcu));
3684}
3685
3686/*
3687 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3688 * and needs to be destroyed.
3689 */
3690static void pwq_unbound_release_workfn(struct work_struct *work)
3691{
3692 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3693 unbound_release_work);
3694 struct workqueue_struct *wq = pwq->wq;
3695 struct worker_pool *pool = pwq->pool;
bc0caf09 3696 bool is_last;
8864b4e5
TH
3697
3698 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3699 return;
3700
75ccf595 3701 /*
3c25a55d 3702 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3703 * necessary on release but do it anyway. It's easier to verify
3704 * and consistent with the linking path.
3705 */
3c25a55d 3706 mutex_lock(&wq->mutex);
8864b4e5 3707 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3708 is_last = list_empty(&wq->pwqs);
3c25a55d 3709 mutex_unlock(&wq->mutex);
8864b4e5 3710
a892cacc 3711 mutex_lock(&wq_pool_mutex);
8864b4e5 3712 put_unbound_pool(pool);
a892cacc
TH
3713 mutex_unlock(&wq_pool_mutex);
3714
8864b4e5
TH
3715 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3716
3717 /*
3718 * If we're the last pwq going away, @wq is already dead and no one
3719 * is gonna access it anymore. Free it.
3720 */
6029a918
TH
3721 if (is_last) {
3722 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3723 kfree(wq);
6029a918 3724 }
8864b4e5
TH
3725}
3726
0fbd95aa 3727/**
699ce097 3728 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3729 * @pwq: target pool_workqueue
0fbd95aa 3730 *
699ce097
TH
3731 * If @pwq isn't freezing, set @pwq->max_active to the associated
3732 * workqueue's saved_max_active and activate delayed work items
3733 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3734 */
699ce097 3735static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3736{
699ce097
TH
3737 struct workqueue_struct *wq = pwq->wq;
3738 bool freezable = wq->flags & WQ_FREEZABLE;
3739
3740 /* for @wq->saved_max_active */
a357fc03 3741 lockdep_assert_held(&wq->mutex);
699ce097
TH
3742
3743 /* fast exit for non-freezable wqs */
3744 if (!freezable && pwq->max_active == wq->saved_max_active)
3745 return;
3746
a357fc03 3747 spin_lock_irq(&pwq->pool->lock);
699ce097
TH
3748
3749 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3750 pwq->max_active = wq->saved_max_active;
0fbd95aa 3751
699ce097
TH
3752 while (!list_empty(&pwq->delayed_works) &&
3753 pwq->nr_active < pwq->max_active)
3754 pwq_activate_first_delayed(pwq);
951a078a
LJ
3755
3756 /*
3757 * Need to kick a worker after thawed or an unbound wq's
3758 * max_active is bumped. It's a slow path. Do it always.
3759 */
3760 wake_up_worker(pwq->pool);
699ce097
TH
3761 } else {
3762 pwq->max_active = 0;
3763 }
3764
a357fc03 3765 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3766}
3767
e50aba9a 3768/* initialize newly alloced @pwq which is associated with @wq and @pool */
f147f29e
TH
3769static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3770 struct worker_pool *pool)
d2c1d404
TH
3771{
3772 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3773
e50aba9a
TH
3774 memset(pwq, 0, sizeof(*pwq));
3775
d2c1d404
TH
3776 pwq->pool = pool;
3777 pwq->wq = wq;
3778 pwq->flush_color = -1;
8864b4e5 3779 pwq->refcnt = 1;
d2c1d404 3780 INIT_LIST_HEAD(&pwq->delayed_works);
1befcf30 3781 INIT_LIST_HEAD(&pwq->pwqs_node);
d2c1d404 3782 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3783 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
f147f29e 3784}
d2c1d404 3785
f147f29e 3786/* sync @pwq with the current state of its associated wq and link it */
1befcf30 3787static void link_pwq(struct pool_workqueue *pwq)
f147f29e
TH
3788{
3789 struct workqueue_struct *wq = pwq->wq;
3790
3791 lockdep_assert_held(&wq->mutex);
75ccf595 3792
1befcf30
TH
3793 /* may be called multiple times, ignore if already linked */
3794 if (!list_empty(&pwq->pwqs_node))
3795 return;
3796
983ca25e
TH
3797 /*
3798 * Set the matching work_color. This is synchronized with
3c25a55d 3799 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3800 */
75ccf595 3801 pwq->work_color = wq->work_color;
983ca25e
TH
3802
3803 /* sync max_active to the current setting */
3804 pwq_adjust_max_active(pwq);
3805
3806 /* link in @pwq */
9e8cd2f5 3807 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
f147f29e 3808}
a357fc03 3809
f147f29e
TH
3810/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3811static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3812 const struct workqueue_attrs *attrs)
3813{
3814 struct worker_pool *pool;
3815 struct pool_workqueue *pwq;
3816
3817 lockdep_assert_held(&wq_pool_mutex);
3818
3819 pool = get_unbound_pool(attrs);
3820 if (!pool)
3821 return NULL;
3822
e50aba9a 3823 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
f147f29e
TH
3824 if (!pwq) {
3825 put_unbound_pool(pool);
3826 return NULL;
df2d5ae4 3827 }
6029a918 3828
f147f29e
TH
3829 init_pwq(pwq, wq, pool);
3830 return pwq;
d2c1d404
TH
3831}
3832
4c16bd32
TH
3833/* undo alloc_unbound_pwq(), used only in the error path */
3834static void free_unbound_pwq(struct pool_workqueue *pwq)
3835{
3836 lockdep_assert_held(&wq_pool_mutex);
3837
3838 if (pwq) {
3839 put_unbound_pool(pwq->pool);
cece95df 3840 kmem_cache_free(pwq_cache, pwq);
4c16bd32
TH
3841 }
3842}
3843
3844/**
3845 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3846 * @attrs: the wq_attrs of interest
3847 * @node: the target NUMA node
3848 * @cpu_going_down: if >= 0, the CPU to consider as offline
3849 * @cpumask: outarg, the resulting cpumask
3850 *
3851 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3852 * @cpu_going_down is >= 0, that cpu is considered offline during
d185af30 3853 * calculation. The result is stored in @cpumask.
4c16bd32
TH
3854 *
3855 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3856 * enabled and @node has online CPUs requested by @attrs, the returned
3857 * cpumask is the intersection of the possible CPUs of @node and
3858 * @attrs->cpumask.
3859 *
3860 * The caller is responsible for ensuring that the cpumask of @node stays
3861 * stable.
d185af30
YB
3862 *
3863 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3864 * %false if equal.
4c16bd32
TH
3865 */
3866static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3867 int cpu_going_down, cpumask_t *cpumask)
3868{
d55262c4 3869 if (!wq_numa_enabled || attrs->no_numa)
4c16bd32
TH
3870 goto use_dfl;
3871
3872 /* does @node have any online CPUs @attrs wants? */
3873 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3874 if (cpu_going_down >= 0)
3875 cpumask_clear_cpu(cpu_going_down, cpumask);
3876
3877 if (cpumask_empty(cpumask))
3878 goto use_dfl;
3879
3880 /* yeap, return possible CPUs in @node that @attrs wants */
3881 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3882 return !cpumask_equal(cpumask, attrs->cpumask);
3883
3884use_dfl:
3885 cpumask_copy(cpumask, attrs->cpumask);
3886 return false;
3887}
3888
1befcf30
TH
3889/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3890static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3891 int node,
3892 struct pool_workqueue *pwq)
3893{
3894 struct pool_workqueue *old_pwq;
3895
3896 lockdep_assert_held(&wq->mutex);
3897
3898 /* link_pwq() can handle duplicate calls */
3899 link_pwq(pwq);
3900
3901 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3902 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3903 return old_pwq;
3904}
3905
9e8cd2f5
TH
3906/**
3907 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3908 * @wq: the target workqueue
3909 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3910 *
4c16bd32
TH
3911 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3912 * machines, this function maps a separate pwq to each NUMA node with
3913 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3914 * NUMA node it was issued on. Older pwqs are released as in-flight work
3915 * items finish. Note that a work item which repeatedly requeues itself
3916 * back-to-back will stay on its current pwq.
9e8cd2f5 3917 *
d185af30
YB
3918 * Performs GFP_KERNEL allocations.
3919 *
3920 * Return: 0 on success and -errno on failure.
9e8cd2f5
TH
3921 */
3922int apply_workqueue_attrs(struct workqueue_struct *wq,
3923 const struct workqueue_attrs *attrs)
3924{
4c16bd32
TH
3925 struct workqueue_attrs *new_attrs, *tmp_attrs;
3926 struct pool_workqueue **pwq_tbl, *dfl_pwq;
f147f29e 3927 int node, ret;
9e8cd2f5 3928
8719dcea 3929 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3930 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3931 return -EINVAL;
3932
8719dcea
TH
3933 /* creating multiple pwqs breaks ordering guarantee */
3934 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3935 return -EINVAL;
3936
4c16bd32 3937 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
13e2e556 3938 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32
TH
3939 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3940 if (!pwq_tbl || !new_attrs || !tmp_attrs)
13e2e556
TH
3941 goto enomem;
3942
4c16bd32 3943 /* make a copy of @attrs and sanitize it */
13e2e556
TH
3944 copy_workqueue_attrs(new_attrs, attrs);
3945 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3946
4c16bd32
TH
3947 /*
3948 * We may create multiple pwqs with differing cpumasks. Make a
3949 * copy of @new_attrs which will be modified and used to obtain
3950 * pools.
3951 */
3952 copy_workqueue_attrs(tmp_attrs, new_attrs);
3953
3954 /*
3955 * CPUs should stay stable across pwq creations and installations.
3956 * Pin CPUs, determine the target cpumask for each node and create
3957 * pwqs accordingly.
3958 */
3959 get_online_cpus();
3960
a892cacc 3961 mutex_lock(&wq_pool_mutex);
4c16bd32
TH
3962
3963 /*
3964 * If something goes wrong during CPU up/down, we'll fall back to
3965 * the default pwq covering whole @attrs->cpumask. Always create
3966 * it even if we don't use it immediately.
3967 */
3968 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3969 if (!dfl_pwq)
3970 goto enomem_pwq;
3971
3972 for_each_node(node) {
3973 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3974 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3975 if (!pwq_tbl[node])
3976 goto enomem_pwq;
3977 } else {
3978 dfl_pwq->refcnt++;
3979 pwq_tbl[node] = dfl_pwq;
3980 }
3981 }
3982
f147f29e 3983 mutex_unlock(&wq_pool_mutex);
9e8cd2f5 3984
4c16bd32 3985 /* all pwqs have been created successfully, let's install'em */
f147f29e 3986 mutex_lock(&wq->mutex);
a892cacc 3987
f147f29e 3988 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4c16bd32
TH
3989
3990 /* save the previous pwq and install the new one */
f147f29e 3991 for_each_node(node)
4c16bd32
TH
3992 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3993
3994 /* @dfl_pwq might not have been used, ensure it's linked */
3995 link_pwq(dfl_pwq);
3996 swap(wq->dfl_pwq, dfl_pwq);
f147f29e
TH
3997
3998 mutex_unlock(&wq->mutex);
9e8cd2f5 3999
4c16bd32
TH
4000 /* put the old pwqs */
4001 for_each_node(node)
4002 put_pwq_unlocked(pwq_tbl[node]);
4003 put_pwq_unlocked(dfl_pwq);
4004
4005 put_online_cpus();
4862125b
TH
4006 ret = 0;
4007 /* fall through */
4008out_free:
4c16bd32 4009 free_workqueue_attrs(tmp_attrs);
4862125b 4010 free_workqueue_attrs(new_attrs);
4c16bd32 4011 kfree(pwq_tbl);
4862125b 4012 return ret;
13e2e556 4013
4c16bd32
TH
4014enomem_pwq:
4015 free_unbound_pwq(dfl_pwq);
4016 for_each_node(node)
4017 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4018 free_unbound_pwq(pwq_tbl[node]);
4019 mutex_unlock(&wq_pool_mutex);
4020 put_online_cpus();
13e2e556 4021enomem:
4862125b
TH
4022 ret = -ENOMEM;
4023 goto out_free;
9e8cd2f5
TH
4024}
4025
4c16bd32
TH
4026/**
4027 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4028 * @wq: the target workqueue
4029 * @cpu: the CPU coming up or going down
4030 * @online: whether @cpu is coming up or going down
4031 *
4032 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4033 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4034 * @wq accordingly.
4035 *
4036 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4037 * falls back to @wq->dfl_pwq which may not be optimal but is always
4038 * correct.
4039 *
4040 * Note that when the last allowed CPU of a NUMA node goes offline for a
4041 * workqueue with a cpumask spanning multiple nodes, the workers which were
4042 * already executing the work items for the workqueue will lose their CPU
4043 * affinity and may execute on any CPU. This is similar to how per-cpu
4044 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4045 * affinity, it's the user's responsibility to flush the work item from
4046 * CPU_DOWN_PREPARE.
4047 */
4048static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4049 bool online)
4050{
4051 int node = cpu_to_node(cpu);
4052 int cpu_off = online ? -1 : cpu;
4053 struct pool_workqueue *old_pwq = NULL, *pwq;
4054 struct workqueue_attrs *target_attrs;
4055 cpumask_t *cpumask;
4056
4057 lockdep_assert_held(&wq_pool_mutex);
4058
4059 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4060 return;
4061
4062 /*
4063 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4064 * Let's use a preallocated one. The following buf is protected by
4065 * CPU hotplug exclusion.
4066 */
4067 target_attrs = wq_update_unbound_numa_attrs_buf;
4068 cpumask = target_attrs->cpumask;
4069
4070 mutex_lock(&wq->mutex);
d55262c4
TH
4071 if (wq->unbound_attrs->no_numa)
4072 goto out_unlock;
4c16bd32
TH
4073
4074 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4075 pwq = unbound_pwq_by_node(wq, node);
4076
4077 /*
4078 * Let's determine what needs to be done. If the target cpumask is
4079 * different from wq's, we need to compare it to @pwq's and create
4080 * a new one if they don't match. If the target cpumask equals
534a3fbb 4081 * wq's, the default pwq should be used.
4c16bd32
TH
4082 */
4083 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4084 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4085 goto out_unlock;
4086 } else {
534a3fbb 4087 goto use_dfl_pwq;
4c16bd32
TH
4088 }
4089
4090 mutex_unlock(&wq->mutex);
4091
4092 /* create a new pwq */
4093 pwq = alloc_unbound_pwq(wq, target_attrs);
4094 if (!pwq) {
2d916033
FF
4095 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4096 wq->name);
77f300b1
DY
4097 mutex_lock(&wq->mutex);
4098 goto use_dfl_pwq;
4c16bd32
TH
4099 }
4100
4101 /*
4102 * Install the new pwq. As this function is called only from CPU
4103 * hotplug callbacks and applying a new attrs is wrapped with
4104 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4105 * inbetween.
4106 */
4107 mutex_lock(&wq->mutex);
4108 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4109 goto out_unlock;
4110
4111use_dfl_pwq:
4112 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4113 get_pwq(wq->dfl_pwq);
4114 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4115 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4116out_unlock:
4117 mutex_unlock(&wq->mutex);
4118 put_pwq_unlocked(old_pwq);
4119}
4120
30cdf249 4121static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4122{
49e3cf44 4123 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4124 int cpu, ret;
30cdf249
TH
4125
4126 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4127 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4128 if (!wq->cpu_pwqs)
30cdf249
TH
4129 return -ENOMEM;
4130
4131 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4132 struct pool_workqueue *pwq =
4133 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4134 struct worker_pool *cpu_pools =
f02ae73a 4135 per_cpu(cpu_worker_pools, cpu);
f3421797 4136
f147f29e
TH
4137 init_pwq(pwq, wq, &cpu_pools[highpri]);
4138
4139 mutex_lock(&wq->mutex);
1befcf30 4140 link_pwq(pwq);
f147f29e 4141 mutex_unlock(&wq->mutex);
30cdf249 4142 }
9e8cd2f5 4143 return 0;
8a2b7538
TH
4144 } else if (wq->flags & __WQ_ORDERED) {
4145 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4146 /* there should only be single pwq for ordering guarantee */
4147 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4148 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4149 "ordering guarantee broken for workqueue %s\n", wq->name);
4150 return ret;
30cdf249 4151 } else {
9e8cd2f5 4152 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4153 }
0f900049
TH
4154}
4155
f3421797
TH
4156static int wq_clamp_max_active(int max_active, unsigned int flags,
4157 const char *name)
b71ab8c2 4158{
f3421797
TH
4159 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4160
4161 if (max_active < 1 || max_active > lim)
044c782c
VI
4162 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4163 max_active, name, 1, lim);
b71ab8c2 4164
f3421797 4165 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4166}
4167
b196be89 4168struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4169 unsigned int flags,
4170 int max_active,
4171 struct lock_class_key *key,
b196be89 4172 const char *lock_name, ...)
1da177e4 4173{
df2d5ae4 4174 size_t tbl_size = 0;
ecf6881f 4175 va_list args;
1da177e4 4176 struct workqueue_struct *wq;
49e3cf44 4177 struct pool_workqueue *pwq;
b196be89 4178
cee22a15
VK
4179 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4180 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4181 flags |= WQ_UNBOUND;
4182
ecf6881f 4183 /* allocate wq and format name */
df2d5ae4
TH
4184 if (flags & WQ_UNBOUND)
4185 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4186
4187 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4188 if (!wq)
d2c1d404 4189 return NULL;
b196be89 4190
6029a918
TH
4191 if (flags & WQ_UNBOUND) {
4192 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4193 if (!wq->unbound_attrs)
4194 goto err_free_wq;
4195 }
4196
ecf6881f
TH
4197 va_start(args, lock_name);
4198 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4199 va_end(args);
1da177e4 4200
d320c038 4201 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4202 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4203
b196be89 4204 /* init wq */
97e37d7b 4205 wq->flags = flags;
a0a1a5fd 4206 wq->saved_max_active = max_active;
3c25a55d 4207 mutex_init(&wq->mutex);
112202d9 4208 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4209 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4210 INIT_LIST_HEAD(&wq->flusher_queue);
4211 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4212 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4213
eb13ba87 4214 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4215 INIT_LIST_HEAD(&wq->list);
3af24433 4216
30cdf249 4217 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4218 goto err_free_wq;
1537663f 4219
493008a8
TH
4220 /*
4221 * Workqueues which may be used during memory reclaim should
4222 * have a rescuer to guarantee forward progress.
4223 */
4224 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4225 struct worker *rescuer;
4226
d2c1d404 4227 rescuer = alloc_worker();
e22bee78 4228 if (!rescuer)
d2c1d404 4229 goto err_destroy;
e22bee78 4230
111c225a
TH
4231 rescuer->rescue_wq = wq;
4232 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4233 wq->name);
d2c1d404
TH
4234 if (IS_ERR(rescuer->task)) {
4235 kfree(rescuer);
4236 goto err_destroy;
4237 }
e22bee78 4238
d2c1d404 4239 wq->rescuer = rescuer;
14a40ffc 4240 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 4241 wake_up_process(rescuer->task);
3af24433
ON
4242 }
4243
226223ab
TH
4244 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4245 goto err_destroy;
4246
a0a1a5fd 4247 /*
68e13a67
LJ
4248 * wq_pool_mutex protects global freeze state and workqueues list.
4249 * Grab it, adjust max_active and add the new @wq to workqueues
4250 * list.
a0a1a5fd 4251 */
68e13a67 4252 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4253
a357fc03 4254 mutex_lock(&wq->mutex);
699ce097
TH
4255 for_each_pwq(pwq, wq)
4256 pwq_adjust_max_active(pwq);
a357fc03 4257 mutex_unlock(&wq->mutex);
a0a1a5fd 4258
1537663f 4259 list_add(&wq->list, &workqueues);
a0a1a5fd 4260
68e13a67 4261 mutex_unlock(&wq_pool_mutex);
1537663f 4262
3af24433 4263 return wq;
d2c1d404
TH
4264
4265err_free_wq:
6029a918 4266 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4267 kfree(wq);
4268 return NULL;
4269err_destroy:
4270 destroy_workqueue(wq);
4690c4ab 4271 return NULL;
3af24433 4272}
d320c038 4273EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4274
3af24433
ON
4275/**
4276 * destroy_workqueue - safely terminate a workqueue
4277 * @wq: target workqueue
4278 *
4279 * Safely destroy a workqueue. All work currently pending will be done first.
4280 */
4281void destroy_workqueue(struct workqueue_struct *wq)
4282{
49e3cf44 4283 struct pool_workqueue *pwq;
4c16bd32 4284 int node;
3af24433 4285
9c5a2ba7
TH
4286 /* drain it before proceeding with destruction */
4287 drain_workqueue(wq);
c8efcc25 4288
6183c009 4289 /* sanity checks */
b09f4fd3 4290 mutex_lock(&wq->mutex);
49e3cf44 4291 for_each_pwq(pwq, wq) {
6183c009
TH
4292 int i;
4293
76af4d93
TH
4294 for (i = 0; i < WORK_NR_COLORS; i++) {
4295 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4296 mutex_unlock(&wq->mutex);
6183c009 4297 return;
76af4d93
TH
4298 }
4299 }
4300
5c529597 4301 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4302 WARN_ON(pwq->nr_active) ||
76af4d93 4303 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4304 mutex_unlock(&wq->mutex);
6183c009 4305 return;
76af4d93 4306 }
6183c009 4307 }
b09f4fd3 4308 mutex_unlock(&wq->mutex);
6183c009 4309
a0a1a5fd
TH
4310 /*
4311 * wq list is used to freeze wq, remove from list after
4312 * flushing is complete in case freeze races us.
4313 */
68e13a67 4314 mutex_lock(&wq_pool_mutex);
d2c1d404 4315 list_del_init(&wq->list);
68e13a67 4316 mutex_unlock(&wq_pool_mutex);
3af24433 4317
226223ab
TH
4318 workqueue_sysfs_unregister(wq);
4319
493008a8 4320 if (wq->rescuer) {
e22bee78 4321 kthread_stop(wq->rescuer->task);
8d9df9f0 4322 kfree(wq->rescuer);
493008a8 4323 wq->rescuer = NULL;
e22bee78
TH
4324 }
4325
8864b4e5
TH
4326 if (!(wq->flags & WQ_UNBOUND)) {
4327 /*
4328 * The base ref is never dropped on per-cpu pwqs. Directly
4329 * free the pwqs and wq.
4330 */
4331 free_percpu(wq->cpu_pwqs);
4332 kfree(wq);
4333 } else {
4334 /*
4335 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4336 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4337 * @wq will be freed when the last pwq is released.
8864b4e5 4338 */
4c16bd32
TH
4339 for_each_node(node) {
4340 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4341 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4342 put_pwq_unlocked(pwq);
4343 }
4344
4345 /*
4346 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4347 * put. Don't access it afterwards.
4348 */
4349 pwq = wq->dfl_pwq;
4350 wq->dfl_pwq = NULL;
dce90d47 4351 put_pwq_unlocked(pwq);
29c91e99 4352 }
3af24433
ON
4353}
4354EXPORT_SYMBOL_GPL(destroy_workqueue);
4355
dcd989cb
TH
4356/**
4357 * workqueue_set_max_active - adjust max_active of a workqueue
4358 * @wq: target workqueue
4359 * @max_active: new max_active value.
4360 *
4361 * Set max_active of @wq to @max_active.
4362 *
4363 * CONTEXT:
4364 * Don't call from IRQ context.
4365 */
4366void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4367{
49e3cf44 4368 struct pool_workqueue *pwq;
dcd989cb 4369
8719dcea
TH
4370 /* disallow meddling with max_active for ordered workqueues */
4371 if (WARN_ON(wq->flags & __WQ_ORDERED))
4372 return;
4373
f3421797 4374 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4375
a357fc03 4376 mutex_lock(&wq->mutex);
dcd989cb
TH
4377
4378 wq->saved_max_active = max_active;
4379
699ce097
TH
4380 for_each_pwq(pwq, wq)
4381 pwq_adjust_max_active(pwq);
93981800 4382
a357fc03 4383 mutex_unlock(&wq->mutex);
15316ba8 4384}
dcd989cb 4385EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4386
e6267616
TH
4387/**
4388 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4389 *
4390 * Determine whether %current is a workqueue rescuer. Can be used from
4391 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4392 *
4393 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4394 */
4395bool current_is_workqueue_rescuer(void)
4396{
4397 struct worker *worker = current_wq_worker();
4398
6a092dfd 4399 return worker && worker->rescue_wq;
e6267616
TH
4400}
4401
eef6a7d5 4402/**
dcd989cb
TH
4403 * workqueue_congested - test whether a workqueue is congested
4404 * @cpu: CPU in question
4405 * @wq: target workqueue
eef6a7d5 4406 *
dcd989cb
TH
4407 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4408 * no synchronization around this function and the test result is
4409 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4410 *
d3251859
TH
4411 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4412 * Note that both per-cpu and unbound workqueues may be associated with
4413 * multiple pool_workqueues which have separate congested states. A
4414 * workqueue being congested on one CPU doesn't mean the workqueue is also
4415 * contested on other CPUs / NUMA nodes.
4416 *
d185af30 4417 * Return:
dcd989cb 4418 * %true if congested, %false otherwise.
eef6a7d5 4419 */
d84ff051 4420bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4421{
7fb98ea7 4422 struct pool_workqueue *pwq;
76af4d93
TH
4423 bool ret;
4424
88109453 4425 rcu_read_lock_sched();
7fb98ea7 4426
d3251859
TH
4427 if (cpu == WORK_CPU_UNBOUND)
4428 cpu = smp_processor_id();
4429
7fb98ea7
TH
4430 if (!(wq->flags & WQ_UNBOUND))
4431 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4432 else
df2d5ae4 4433 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4434
76af4d93 4435 ret = !list_empty(&pwq->delayed_works);
88109453 4436 rcu_read_unlock_sched();
76af4d93
TH
4437
4438 return ret;
1da177e4 4439}
dcd989cb 4440EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4441
dcd989cb
TH
4442/**
4443 * work_busy - test whether a work is currently pending or running
4444 * @work: the work to be tested
4445 *
4446 * Test whether @work is currently pending or running. There is no
4447 * synchronization around this function and the test result is
4448 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4449 *
d185af30 4450 * Return:
dcd989cb
TH
4451 * OR'd bitmask of WORK_BUSY_* bits.
4452 */
4453unsigned int work_busy(struct work_struct *work)
1da177e4 4454{
fa1b54e6 4455 struct worker_pool *pool;
dcd989cb
TH
4456 unsigned long flags;
4457 unsigned int ret = 0;
1da177e4 4458
dcd989cb
TH
4459 if (work_pending(work))
4460 ret |= WORK_BUSY_PENDING;
1da177e4 4461
fa1b54e6
TH
4462 local_irq_save(flags);
4463 pool = get_work_pool(work);
038366c5 4464 if (pool) {
fa1b54e6 4465 spin_lock(&pool->lock);
038366c5
LJ
4466 if (find_worker_executing_work(pool, work))
4467 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4468 spin_unlock(&pool->lock);
038366c5 4469 }
fa1b54e6 4470 local_irq_restore(flags);
1da177e4 4471
dcd989cb 4472 return ret;
1da177e4 4473}
dcd989cb 4474EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4475
3d1cb205
TH
4476/**
4477 * set_worker_desc - set description for the current work item
4478 * @fmt: printf-style format string
4479 * @...: arguments for the format string
4480 *
4481 * This function can be called by a running work function to describe what
4482 * the work item is about. If the worker task gets dumped, this
4483 * information will be printed out together to help debugging. The
4484 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4485 */
4486void set_worker_desc(const char *fmt, ...)
4487{
4488 struct worker *worker = current_wq_worker();
4489 va_list args;
4490
4491 if (worker) {
4492 va_start(args, fmt);
4493 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4494 va_end(args);
4495 worker->desc_valid = true;
4496 }
4497}
4498
4499/**
4500 * print_worker_info - print out worker information and description
4501 * @log_lvl: the log level to use when printing
4502 * @task: target task
4503 *
4504 * If @task is a worker and currently executing a work item, print out the
4505 * name of the workqueue being serviced and worker description set with
4506 * set_worker_desc() by the currently executing work item.
4507 *
4508 * This function can be safely called on any task as long as the
4509 * task_struct itself is accessible. While safe, this function isn't
4510 * synchronized and may print out mixups or garbages of limited length.
4511 */
4512void print_worker_info(const char *log_lvl, struct task_struct *task)
4513{
4514 work_func_t *fn = NULL;
4515 char name[WQ_NAME_LEN] = { };
4516 char desc[WORKER_DESC_LEN] = { };
4517 struct pool_workqueue *pwq = NULL;
4518 struct workqueue_struct *wq = NULL;
4519 bool desc_valid = false;
4520 struct worker *worker;
4521
4522 if (!(task->flags & PF_WQ_WORKER))
4523 return;
4524
4525 /*
4526 * This function is called without any synchronization and @task
4527 * could be in any state. Be careful with dereferences.
4528 */
4529 worker = probe_kthread_data(task);
4530
4531 /*
4532 * Carefully copy the associated workqueue's workfn and name. Keep
4533 * the original last '\0' in case the original contains garbage.
4534 */
4535 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4536 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4537 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4538 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4539
4540 /* copy worker description */
4541 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4542 if (desc_valid)
4543 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4544
4545 if (fn || name[0] || desc[0]) {
2d916033 4546 pr_info("%sWorkqueue: %s %pf", log_lvl, name, fn);
3d1cb205
TH
4547 if (desc[0])
4548 pr_cont(" (%s)", desc);
4549 pr_cont("\n");
4550 }
4551}
4552
db7bccf4
TH
4553/*
4554 * CPU hotplug.
4555 *
e22bee78 4556 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4557 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4558 * pool which make migrating pending and scheduled works very
e22bee78 4559 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4560 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4561 * blocked draining impractical.
4562 *
24647570 4563 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4564 * running as an unbound one and allowing it to be reattached later if the
4565 * cpu comes back online.
db7bccf4 4566 */
1da177e4 4567
706026c2 4568static void wq_unbind_fn(struct work_struct *work)
3af24433 4569{
38db41d9 4570 int cpu = smp_processor_id();
4ce62e9e 4571 struct worker_pool *pool;
db7bccf4 4572 struct worker *worker;
a9ab775b 4573 int wi;
3af24433 4574
f02ae73a 4575 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4576 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4577
bc3a1afc 4578 mutex_lock(&pool->manager_mutex);
94cf58bb 4579 spin_lock_irq(&pool->lock);
3af24433 4580
94cf58bb 4581 /*
bc3a1afc 4582 * We've blocked all manager operations. Make all workers
94cf58bb
TH
4583 * unbound and set DISASSOCIATED. Before this, all workers
4584 * except for the ones which are still executing works from
4585 * before the last CPU down must be on the cpu. After
4586 * this, they may become diasporas.
4587 */
a9ab775b 4588 for_each_pool_worker(worker, wi, pool)
c9e7cf27 4589 worker->flags |= WORKER_UNBOUND;
06ba38a9 4590
24647570 4591 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4592
94cf58bb 4593 spin_unlock_irq(&pool->lock);
bc3a1afc 4594 mutex_unlock(&pool->manager_mutex);
628c78e7 4595
eb283428
LJ
4596 /*
4597 * Call schedule() so that we cross rq->lock and thus can
4598 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4599 * This is necessary as scheduler callbacks may be invoked
4600 * from other cpus.
4601 */
4602 schedule();
06ba38a9 4603
eb283428
LJ
4604 /*
4605 * Sched callbacks are disabled now. Zap nr_running.
4606 * After this, nr_running stays zero and need_more_worker()
4607 * and keep_working() are always true as long as the
4608 * worklist is not empty. This pool now behaves as an
4609 * unbound (in terms of concurrency management) pool which
4610 * are served by workers tied to the pool.
4611 */
e19e397a 4612 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4613
4614 /*
4615 * With concurrency management just turned off, a busy
4616 * worker blocking could lead to lengthy stalls. Kick off
4617 * unbound chain execution of currently pending work items.
4618 */
4619 spin_lock_irq(&pool->lock);
4620 wake_up_worker(pool);
4621 spin_unlock_irq(&pool->lock);
4622 }
3af24433 4623}
3af24433 4624
bd7c089e
TH
4625/**
4626 * rebind_workers - rebind all workers of a pool to the associated CPU
4627 * @pool: pool of interest
4628 *
a9ab775b 4629 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4630 */
4631static void rebind_workers(struct worker_pool *pool)
4632{
a9ab775b
TH
4633 struct worker *worker;
4634 int wi;
bd7c089e
TH
4635
4636 lockdep_assert_held(&pool->manager_mutex);
bd7c089e 4637
a9ab775b
TH
4638 /*
4639 * Restore CPU affinity of all workers. As all idle workers should
4640 * be on the run-queue of the associated CPU before any local
4641 * wake-ups for concurrency management happen, restore CPU affinty
4642 * of all workers first and then clear UNBOUND. As we're called
4643 * from CPU_ONLINE, the following shouldn't fail.
4644 */
4645 for_each_pool_worker(worker, wi, pool)
4646 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4647 pool->attrs->cpumask) < 0);
bd7c089e 4648
a9ab775b 4649 spin_lock_irq(&pool->lock);
bd7c089e 4650
a9ab775b
TH
4651 for_each_pool_worker(worker, wi, pool) {
4652 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4653
4654 /*
a9ab775b
TH
4655 * A bound idle worker should actually be on the runqueue
4656 * of the associated CPU for local wake-ups targeting it to
4657 * work. Kick all idle workers so that they migrate to the
4658 * associated CPU. Doing this in the same loop as
4659 * replacing UNBOUND with REBOUND is safe as no worker will
4660 * be bound before @pool->lock is released.
bd7c089e 4661 */
a9ab775b
TH
4662 if (worker_flags & WORKER_IDLE)
4663 wake_up_process(worker->task);
bd7c089e 4664
a9ab775b
TH
4665 /*
4666 * We want to clear UNBOUND but can't directly call
4667 * worker_clr_flags() or adjust nr_running. Atomically
4668 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4669 * @worker will clear REBOUND using worker_clr_flags() when
4670 * it initiates the next execution cycle thus restoring
4671 * concurrency management. Note that when or whether
4672 * @worker clears REBOUND doesn't affect correctness.
4673 *
4674 * ACCESS_ONCE() is necessary because @worker->flags may be
4675 * tested without holding any lock in
4676 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4677 * fail incorrectly leading to premature concurrency
4678 * management operations.
4679 */
4680 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4681 worker_flags |= WORKER_REBOUND;
4682 worker_flags &= ~WORKER_UNBOUND;
4683 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4684 }
a9ab775b
TH
4685
4686 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4687}
4688
7dbc725e
TH
4689/**
4690 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4691 * @pool: unbound pool of interest
4692 * @cpu: the CPU which is coming up
4693 *
4694 * An unbound pool may end up with a cpumask which doesn't have any online
4695 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4696 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4697 * online CPU before, cpus_allowed of all its workers should be restored.
4698 */
4699static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4700{
4701 static cpumask_t cpumask;
4702 struct worker *worker;
4703 int wi;
4704
4705 lockdep_assert_held(&pool->manager_mutex);
4706
4707 /* is @cpu allowed for @pool? */
4708 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4709 return;
4710
4711 /* is @cpu the only online CPU? */
4712 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4713 if (cpumask_weight(&cpumask) != 1)
4714 return;
4715
4716 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4717 for_each_pool_worker(worker, wi, pool)
4718 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4719 pool->attrs->cpumask) < 0);
4720}
4721
8db25e78
TH
4722/*
4723 * Workqueues should be brought up before normal priority CPU notifiers.
4724 * This will be registered high priority CPU notifier.
4725 */
0db0628d 4726static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4727 unsigned long action,
4728 void *hcpu)
3af24433 4729{
d84ff051 4730 int cpu = (unsigned long)hcpu;
4ce62e9e 4731 struct worker_pool *pool;
4c16bd32 4732 struct workqueue_struct *wq;
7dbc725e 4733 int pi;
3ce63377 4734
8db25e78 4735 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4736 case CPU_UP_PREPARE:
f02ae73a 4737 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4738 if (pool->nr_workers)
4739 continue;
ebf44d16 4740 if (create_and_start_worker(pool) < 0)
3ce63377 4741 return NOTIFY_BAD;
3af24433 4742 }
8db25e78 4743 break;
3af24433 4744
db7bccf4
TH
4745 case CPU_DOWN_FAILED:
4746 case CPU_ONLINE:
68e13a67 4747 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4748
4749 for_each_pool(pool, pi) {
bc3a1afc 4750 mutex_lock(&pool->manager_mutex);
94cf58bb 4751
7dbc725e
TH
4752 if (pool->cpu == cpu) {
4753 spin_lock_irq(&pool->lock);
4754 pool->flags &= ~POOL_DISASSOCIATED;
4755 spin_unlock_irq(&pool->lock);
a9ab775b 4756
7dbc725e
TH
4757 rebind_workers(pool);
4758 } else if (pool->cpu < 0) {
4759 restore_unbound_workers_cpumask(pool, cpu);
4760 }
94cf58bb 4761
bc3a1afc 4762 mutex_unlock(&pool->manager_mutex);
94cf58bb 4763 }
7dbc725e 4764
4c16bd32
TH
4765 /* update NUMA affinity of unbound workqueues */
4766 list_for_each_entry(wq, &workqueues, list)
4767 wq_update_unbound_numa(wq, cpu, true);
4768
68e13a67 4769 mutex_unlock(&wq_pool_mutex);
db7bccf4 4770 break;
00dfcaf7 4771 }
65758202
TH
4772 return NOTIFY_OK;
4773}
4774
4775/*
4776 * Workqueues should be brought down after normal priority CPU notifiers.
4777 * This will be registered as low priority CPU notifier.
4778 */
0db0628d 4779static int workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4780 unsigned long action,
4781 void *hcpu)
4782{
d84ff051 4783 int cpu = (unsigned long)hcpu;
8db25e78 4784 struct work_struct unbind_work;
4c16bd32 4785 struct workqueue_struct *wq;
8db25e78 4786
65758202
TH
4787 switch (action & ~CPU_TASKS_FROZEN) {
4788 case CPU_DOWN_PREPARE:
4c16bd32 4789 /* unbinding per-cpu workers should happen on the local CPU */
706026c2 4790 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4791 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4c16bd32
TH
4792
4793 /* update NUMA affinity of unbound workqueues */
4794 mutex_lock(&wq_pool_mutex);
4795 list_for_each_entry(wq, &workqueues, list)
4796 wq_update_unbound_numa(wq, cpu, false);
4797 mutex_unlock(&wq_pool_mutex);
4798
4799 /* wait for per-cpu unbinding to finish */
8db25e78 4800 flush_work(&unbind_work);
440a1136 4801 destroy_work_on_stack(&unbind_work);
8db25e78 4802 break;
65758202
TH
4803 }
4804 return NOTIFY_OK;
4805}
4806
2d3854a3 4807#ifdef CONFIG_SMP
8ccad40d 4808
2d3854a3 4809struct work_for_cpu {
ed48ece2 4810 struct work_struct work;
2d3854a3
RR
4811 long (*fn)(void *);
4812 void *arg;
4813 long ret;
4814};
4815
ed48ece2 4816static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4817{
ed48ece2
TH
4818 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4819
2d3854a3
RR
4820 wfc->ret = wfc->fn(wfc->arg);
4821}
4822
4823/**
4824 * work_on_cpu - run a function in user context on a particular cpu
4825 * @cpu: the cpu to run on
4826 * @fn: the function to run
4827 * @arg: the function arg
4828 *
31ad9081 4829 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4830 * The caller must not hold any locks which would prevent @fn from completing.
d185af30
YB
4831 *
4832 * Return: The value @fn returns.
2d3854a3 4833 */
d84ff051 4834long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4835{
ed48ece2 4836 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4837
ed48ece2
TH
4838 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4839 schedule_work_on(cpu, &wfc.work);
12997d1a 4840 flush_work(&wfc.work);
440a1136 4841 destroy_work_on_stack(&wfc.work);
2d3854a3
RR
4842 return wfc.ret;
4843}
4844EXPORT_SYMBOL_GPL(work_on_cpu);
4845#endif /* CONFIG_SMP */
4846
a0a1a5fd
TH
4847#ifdef CONFIG_FREEZER
4848
4849/**
4850 * freeze_workqueues_begin - begin freezing workqueues
4851 *
58a69cb4 4852 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4853 * workqueues will queue new works to their delayed_works list instead of
706026c2 4854 * pool->worklist.
a0a1a5fd
TH
4855 *
4856 * CONTEXT:
a357fc03 4857 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4858 */
4859void freeze_workqueues_begin(void)
4860{
17116969 4861 struct worker_pool *pool;
24b8a847
TH
4862 struct workqueue_struct *wq;
4863 struct pool_workqueue *pwq;
611c92a0 4864 int pi;
a0a1a5fd 4865
68e13a67 4866 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4867
6183c009 4868 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4869 workqueue_freezing = true;
4870
24b8a847 4871 /* set FREEZING */
611c92a0 4872 for_each_pool(pool, pi) {
5bcab335 4873 spin_lock_irq(&pool->lock);
17116969
TH
4874 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4875 pool->flags |= POOL_FREEZING;
5bcab335 4876 spin_unlock_irq(&pool->lock);
24b8a847 4877 }
a0a1a5fd 4878
24b8a847 4879 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4880 mutex_lock(&wq->mutex);
699ce097
TH
4881 for_each_pwq(pwq, wq)
4882 pwq_adjust_max_active(pwq);
a357fc03 4883 mutex_unlock(&wq->mutex);
a0a1a5fd 4884 }
5bcab335 4885
68e13a67 4886 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4887}
4888
4889/**
58a69cb4 4890 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4891 *
4892 * Check whether freezing is complete. This function must be called
4893 * between freeze_workqueues_begin() and thaw_workqueues().
4894 *
4895 * CONTEXT:
68e13a67 4896 * Grabs and releases wq_pool_mutex.
a0a1a5fd 4897 *
d185af30 4898 * Return:
58a69cb4
TH
4899 * %true if some freezable workqueues are still busy. %false if freezing
4900 * is complete.
a0a1a5fd
TH
4901 */
4902bool freeze_workqueues_busy(void)
4903{
a0a1a5fd 4904 bool busy = false;
24b8a847
TH
4905 struct workqueue_struct *wq;
4906 struct pool_workqueue *pwq;
a0a1a5fd 4907
68e13a67 4908 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4909
6183c009 4910 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4911
24b8a847
TH
4912 list_for_each_entry(wq, &workqueues, list) {
4913 if (!(wq->flags & WQ_FREEZABLE))
4914 continue;
a0a1a5fd
TH
4915 /*
4916 * nr_active is monotonically decreasing. It's safe
4917 * to peek without lock.
4918 */
88109453 4919 rcu_read_lock_sched();
24b8a847 4920 for_each_pwq(pwq, wq) {
6183c009 4921 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4922 if (pwq->nr_active) {
a0a1a5fd 4923 busy = true;
88109453 4924 rcu_read_unlock_sched();
a0a1a5fd
TH
4925 goto out_unlock;
4926 }
4927 }
88109453 4928 rcu_read_unlock_sched();
a0a1a5fd
TH
4929 }
4930out_unlock:
68e13a67 4931 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4932 return busy;
4933}
4934
4935/**
4936 * thaw_workqueues - thaw workqueues
4937 *
4938 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4939 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4940 *
4941 * CONTEXT:
a357fc03 4942 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4943 */
4944void thaw_workqueues(void)
4945{
24b8a847
TH
4946 struct workqueue_struct *wq;
4947 struct pool_workqueue *pwq;
4948 struct worker_pool *pool;
611c92a0 4949 int pi;
a0a1a5fd 4950
68e13a67 4951 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4952
4953 if (!workqueue_freezing)
4954 goto out_unlock;
4955
24b8a847 4956 /* clear FREEZING */
611c92a0 4957 for_each_pool(pool, pi) {
5bcab335 4958 spin_lock_irq(&pool->lock);
24b8a847
TH
4959 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4960 pool->flags &= ~POOL_FREEZING;
5bcab335 4961 spin_unlock_irq(&pool->lock);
24b8a847 4962 }
8b03ae3c 4963
24b8a847
TH
4964 /* restore max_active and repopulate worklist */
4965 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4966 mutex_lock(&wq->mutex);
699ce097
TH
4967 for_each_pwq(pwq, wq)
4968 pwq_adjust_max_active(pwq);
a357fc03 4969 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4970 }
4971
4972 workqueue_freezing = false;
4973out_unlock:
68e13a67 4974 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4975}
4976#endif /* CONFIG_FREEZER */
4977
bce90380
TH
4978static void __init wq_numa_init(void)
4979{
4980 cpumask_var_t *tbl;
4981 int node, cpu;
4982
4983 /* determine NUMA pwq table len - highest node id + 1 */
4984 for_each_node(node)
4985 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4986
4987 if (num_possible_nodes() <= 1)
4988 return;
4989
d55262c4
TH
4990 if (wq_disable_numa) {
4991 pr_info("workqueue: NUMA affinity support disabled\n");
4992 return;
4993 }
4994
4c16bd32
TH
4995 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4996 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4997
bce90380
TH
4998 /*
4999 * We want masks of possible CPUs of each node which isn't readily
5000 * available. Build one from cpu_to_node() which should have been
5001 * fully initialized by now.
5002 */
5003 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
5004 BUG_ON(!tbl);
5005
5006 for_each_node(node)
1be0c25d
TH
5007 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5008 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5009
5010 for_each_possible_cpu(cpu) {
5011 node = cpu_to_node(cpu);
5012 if (WARN_ON(node == NUMA_NO_NODE)) {
5013 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5014 /* happens iff arch is bonkers, let's just proceed */
5015 return;
5016 }
5017 cpumask_set_cpu(cpu, tbl[node]);
5018 }
5019
5020 wq_numa_possible_cpumask = tbl;
5021 wq_numa_enabled = true;
5022}
5023
6ee0578b 5024static int __init init_workqueues(void)
1da177e4 5025{
7a4e344c
TH
5026 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5027 int i, cpu;
c34056a3 5028
e904e6c2
TH
5029 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5030
5031 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5032
65758202 5033 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 5034 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 5035
bce90380
TH
5036 wq_numa_init();
5037
706026c2 5038 /* initialize CPU pools */
29c91e99 5039 for_each_possible_cpu(cpu) {
4ce62e9e 5040 struct worker_pool *pool;
8b03ae3c 5041
7a4e344c 5042 i = 0;
f02ae73a 5043 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5044 BUG_ON(init_worker_pool(pool));
ec22ca5e 5045 pool->cpu = cpu;
29c91e99 5046 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5047 pool->attrs->nice = std_nice[i++];
f3f90ad4 5048 pool->node = cpu_to_node(cpu);
7a4e344c 5049
9daf9e67 5050 /* alloc pool ID */
68e13a67 5051 mutex_lock(&wq_pool_mutex);
9daf9e67 5052 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5053 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5054 }
8b03ae3c
TH
5055 }
5056
e22bee78 5057 /* create the initial worker */
29c91e99 5058 for_each_online_cpu(cpu) {
4ce62e9e 5059 struct worker_pool *pool;
e22bee78 5060
f02ae73a 5061 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5062 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 5063 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 5064 }
e22bee78
TH
5065 }
5066
8a2b7538 5067 /* create default unbound and ordered wq attrs */
29c91e99
TH
5068 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5069 struct workqueue_attrs *attrs;
5070
5071 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5072 attrs->nice = std_nice[i];
29c91e99 5073 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5074
5075 /*
5076 * An ordered wq should have only one pwq as ordering is
5077 * guaranteed by max_active which is enforced by pwqs.
5078 * Turn off NUMA so that dfl_pwq is used for all nodes.
5079 */
5080 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5081 attrs->nice = std_nice[i];
5082 attrs->no_numa = true;
5083 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5084 }
5085
d320c038 5086 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5087 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5088 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5089 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5090 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5091 system_freezable_wq = alloc_workqueue("events_freezable",
5092 WQ_FREEZABLE, 0);
0668106c
VK
5093 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5094 WQ_POWER_EFFICIENT, 0);
5095 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5096 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5097 0);
1aabe902 5098 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5099 !system_unbound_wq || !system_freezable_wq ||
5100 !system_power_efficient_wq ||
5101 !system_freezable_power_efficient_wq);
6ee0578b 5102 return 0;
1da177e4 5103}
6ee0578b 5104early_initcall(init_workqueues);