]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - lib/bitmap.c
lib: add test for bitmap_parse()
[mirror_ubuntu-jammy-kernel.git] / lib / bitmap.c
CommitLineData
40b0b3f8 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * lib/bitmap.c
4 * Helper functions for bitmap.h.
1da177e4 5 */
8bc3bcc9
PG
6#include <linux/export.h>
7#include <linux/thread_info.h>
1da177e4
LT
8#include <linux/ctype.h>
9#include <linux/errno.h>
10#include <linux/bitmap.h>
11#include <linux/bitops.h>
50af5ead 12#include <linux/bug.h>
e52bc7c2 13#include <linux/kernel.h>
ce1091d4 14#include <linux/mm.h>
c42b65e3 15#include <linux/slab.h>
e52bc7c2 16#include <linux/string.h>
13d4ea09 17#include <linux/uaccess.h>
5aaba363
SH
18
19#include <asm/page.h>
1da177e4 20
e371c481
YN
21#include "kstrtox.h"
22
7d7363e4
RD
23/**
24 * DOC: bitmap introduction
25 *
1da177e4
LT
26 * bitmaps provide an array of bits, implemented using an an
27 * array of unsigned longs. The number of valid bits in a
28 * given bitmap does _not_ need to be an exact multiple of
29 * BITS_PER_LONG.
30 *
31 * The possible unused bits in the last, partially used word
32 * of a bitmap are 'don't care'. The implementation makes
33 * no particular effort to keep them zero. It ensures that
34 * their value will not affect the results of any operation.
35 * The bitmap operations that return Boolean (bitmap_empty,
36 * for example) or scalar (bitmap_weight, for example) results
37 * carefully filter out these unused bits from impacting their
38 * results.
39 *
1da177e4
LT
40 * The byte ordering of bitmaps is more natural on little
41 * endian architectures. See the big-endian headers
42 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
43 * for the best explanations of this ordering.
44 */
45
1da177e4 46int __bitmap_equal(const unsigned long *bitmap1,
5e068069 47 const unsigned long *bitmap2, unsigned int bits)
1da177e4 48{
5e068069 49 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
50 for (k = 0; k < lim; ++k)
51 if (bitmap1[k] != bitmap2[k])
52 return 0;
53
54 if (bits % BITS_PER_LONG)
55 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
56 return 0;
57
58 return 1;
59}
60EXPORT_SYMBOL(__bitmap_equal);
61
b9fa6442
TG
62bool __bitmap_or_equal(const unsigned long *bitmap1,
63 const unsigned long *bitmap2,
64 const unsigned long *bitmap3,
65 unsigned int bits)
66{
67 unsigned int k, lim = bits / BITS_PER_LONG;
68 unsigned long tmp;
69
70 for (k = 0; k < lim; ++k) {
71 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
72 return false;
73 }
74
75 if (!(bits % BITS_PER_LONG))
76 return true;
77
78 tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
79 return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
80}
81
3d6684f4 82void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
1da177e4 83{
ca1250bb 84 unsigned int k, lim = BITS_TO_LONGS(bits);
1da177e4
LT
85 for (k = 0; k < lim; ++k)
86 dst[k] = ~src[k];
1da177e4
LT
87}
88EXPORT_SYMBOL(__bitmap_complement);
89
72fd4a35 90/**
1da177e4 91 * __bitmap_shift_right - logical right shift of the bits in a bitmap
05fb6bf0
RD
92 * @dst : destination bitmap
93 * @src : source bitmap
94 * @shift : shift by this many bits
2fbad299 95 * @nbits : bitmap size, in bits
1da177e4
LT
96 *
97 * Shifting right (dividing) means moving bits in the MS -> LS bit
98 * direction. Zeros are fed into the vacated MS positions and the
99 * LS bits shifted off the bottom are lost.
100 */
2fbad299
RV
101void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
102 unsigned shift, unsigned nbits)
1da177e4 103{
cfac1d08 104 unsigned k, lim = BITS_TO_LONGS(nbits);
2fbad299 105 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
cfac1d08 106 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
1da177e4
LT
107 for (k = 0; off + k < lim; ++k) {
108 unsigned long upper, lower;
109
110 /*
111 * If shift is not word aligned, take lower rem bits of
112 * word above and make them the top rem bits of result.
113 */
114 if (!rem || off + k + 1 >= lim)
115 upper = 0;
116 else {
117 upper = src[off + k + 1];
cfac1d08 118 if (off + k + 1 == lim - 1)
1da177e4 119 upper &= mask;
9d8a6b2a 120 upper <<= (BITS_PER_LONG - rem);
1da177e4
LT
121 }
122 lower = src[off + k];
cfac1d08 123 if (off + k == lim - 1)
1da177e4 124 lower &= mask;
9d8a6b2a
RV
125 lower >>= rem;
126 dst[k] = lower | upper;
1da177e4
LT
127 }
128 if (off)
129 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
130}
131EXPORT_SYMBOL(__bitmap_shift_right);
132
133
72fd4a35 134/**
1da177e4 135 * __bitmap_shift_left - logical left shift of the bits in a bitmap
05fb6bf0
RD
136 * @dst : destination bitmap
137 * @src : source bitmap
138 * @shift : shift by this many bits
dba94c25 139 * @nbits : bitmap size, in bits
1da177e4
LT
140 *
141 * Shifting left (multiplying) means moving bits in the LS -> MS
142 * direction. Zeros are fed into the vacated LS bit positions
143 * and those MS bits shifted off the top are lost.
144 */
145
dba94c25
RV
146void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
147 unsigned int shift, unsigned int nbits)
1da177e4 148{
dba94c25 149 int k;
7f590657 150 unsigned int lim = BITS_TO_LONGS(nbits);
dba94c25 151 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
1da177e4
LT
152 for (k = lim - off - 1; k >= 0; --k) {
153 unsigned long upper, lower;
154
155 /*
156 * If shift is not word aligned, take upper rem bits of
157 * word below and make them the bottom rem bits of result.
158 */
159 if (rem && k > 0)
6d874eca 160 lower = src[k - 1] >> (BITS_PER_LONG - rem);
1da177e4
LT
161 else
162 lower = 0;
7f590657 163 upper = src[k] << rem;
6d874eca 164 dst[k + off] = lower | upper;
1da177e4
LT
165 }
166 if (off)
167 memset(dst, 0, off*sizeof(unsigned long));
168}
169EXPORT_SYMBOL(__bitmap_shift_left);
170
20927671
SB
171/**
172 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
173 * @dst: destination bitmap, might overlap with src
174 * @src: source bitmap
175 * @first: start bit of region to be removed
176 * @cut: number of bits to remove
177 * @nbits: bitmap size, in bits
178 *
179 * Set the n-th bit of @dst iff the n-th bit of @src is set and
180 * n is less than @first, or the m-th bit of @src is set for any
181 * m such that @first <= n < nbits, and m = n + @cut.
182 *
183 * In pictures, example for a big-endian 32-bit architecture:
184 *
185 * @src:
186 * 31 63
187 * | |
188 * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101
189 * | | | |
190 * 16 14 0 32
191 *
192 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is:
193 *
194 * 31 63
195 * | |
196 * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010
197 * | | |
198 * 14 (bit 17 0 32
199 * from @src)
200 *
201 * Note that @dst and @src might overlap partially or entirely.
202 *
203 * This is implemented in the obvious way, with a shift and carry
204 * step for each moved bit. Optimisation is left as an exercise
205 * for the compiler.
206 */
207void bitmap_cut(unsigned long *dst, const unsigned long *src,
208 unsigned int first, unsigned int cut, unsigned int nbits)
209{
210 unsigned int len = BITS_TO_LONGS(nbits);
211 unsigned long keep = 0, carry;
212 int i;
213
214 memmove(dst, src, len * sizeof(*dst));
215
216 if (first % BITS_PER_LONG) {
217 keep = src[first / BITS_PER_LONG] &
218 (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
219 }
220
221 while (cut--) {
222 for (i = first / BITS_PER_LONG; i < len; i++) {
223 if (i < len - 1)
224 carry = dst[i + 1] & 1UL;
225 else
226 carry = 0;
227
228 dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
229 }
230 }
231
232 dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
233 dst[first / BITS_PER_LONG] |= keep;
234}
235EXPORT_SYMBOL(bitmap_cut);
236
f4b0373b 237int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 238 const unsigned long *bitmap2, unsigned int bits)
1da177e4 239{
2f9305eb 240 unsigned int k;
7e5f97d1 241 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 242 unsigned long result = 0;
1da177e4 243
7e5f97d1 244 for (k = 0; k < lim; k++)
f4b0373b 245 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
7e5f97d1
RV
246 if (bits % BITS_PER_LONG)
247 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
248 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 249 return result != 0;
1da177e4
LT
250}
251EXPORT_SYMBOL(__bitmap_and);
252
253void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 254 const unsigned long *bitmap2, unsigned int bits)
1da177e4 255{
2f9305eb
RV
256 unsigned int k;
257 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
258
259 for (k = 0; k < nr; k++)
260 dst[k] = bitmap1[k] | bitmap2[k];
261}
262EXPORT_SYMBOL(__bitmap_or);
263
264void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 265 const unsigned long *bitmap2, unsigned int bits)
1da177e4 266{
2f9305eb
RV
267 unsigned int k;
268 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
269
270 for (k = 0; k < nr; k++)
271 dst[k] = bitmap1[k] ^ bitmap2[k];
272}
273EXPORT_SYMBOL(__bitmap_xor);
274
f4b0373b 275int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 276 const unsigned long *bitmap2, unsigned int bits)
1da177e4 277{
2f9305eb 278 unsigned int k;
74e76531 279 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 280 unsigned long result = 0;
1da177e4 281
74e76531 282 for (k = 0; k < lim; k++)
f4b0373b 283 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
74e76531
RV
284 if (bits % BITS_PER_LONG)
285 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
286 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 287 return result != 0;
1da177e4
LT
288}
289EXPORT_SYMBOL(__bitmap_andnot);
290
30544ed5
AS
291void __bitmap_replace(unsigned long *dst,
292 const unsigned long *old, const unsigned long *new,
293 const unsigned long *mask, unsigned int nbits)
294{
295 unsigned int k;
296 unsigned int nr = BITS_TO_LONGS(nbits);
297
298 for (k = 0; k < nr; k++)
299 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
300}
301EXPORT_SYMBOL(__bitmap_replace);
302
1da177e4 303int __bitmap_intersects(const unsigned long *bitmap1,
6dfe9799 304 const unsigned long *bitmap2, unsigned int bits)
1da177e4 305{
6dfe9799 306 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
307 for (k = 0; k < lim; ++k)
308 if (bitmap1[k] & bitmap2[k])
309 return 1;
310
311 if (bits % BITS_PER_LONG)
312 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
313 return 1;
314 return 0;
315}
316EXPORT_SYMBOL(__bitmap_intersects);
317
318int __bitmap_subset(const unsigned long *bitmap1,
5be20213 319 const unsigned long *bitmap2, unsigned int bits)
1da177e4 320{
5be20213 321 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
322 for (k = 0; k < lim; ++k)
323 if (bitmap1[k] & ~bitmap2[k])
324 return 0;
325
326 if (bits % BITS_PER_LONG)
327 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
328 return 0;
329 return 1;
330}
331EXPORT_SYMBOL(__bitmap_subset);
332
877d9f3b 333int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
1da177e4 334{
877d9f3b
RV
335 unsigned int k, lim = bits/BITS_PER_LONG;
336 int w = 0;
1da177e4
LT
337
338 for (k = 0; k < lim; k++)
37d54111 339 w += hweight_long(bitmap[k]);
1da177e4
LT
340
341 if (bits % BITS_PER_LONG)
37d54111 342 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
1da177e4
LT
343
344 return w;
345}
1da177e4
LT
346EXPORT_SYMBOL(__bitmap_weight);
347
e5af323c 348void __bitmap_set(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
349{
350 unsigned long *p = map + BIT_WORD(start);
fb5ac542 351 const unsigned int size = start + len;
c1a2a962
AM
352 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
353 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
354
fb5ac542 355 while (len - bits_to_set >= 0) {
c1a2a962 356 *p |= mask_to_set;
fb5ac542 357 len -= bits_to_set;
c1a2a962
AM
358 bits_to_set = BITS_PER_LONG;
359 mask_to_set = ~0UL;
360 p++;
361 }
fb5ac542 362 if (len) {
c1a2a962
AM
363 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
364 *p |= mask_to_set;
365 }
366}
e5af323c 367EXPORT_SYMBOL(__bitmap_set);
c1a2a962 368
e5af323c 369void __bitmap_clear(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
370{
371 unsigned long *p = map + BIT_WORD(start);
154f5e38 372 const unsigned int size = start + len;
c1a2a962
AM
373 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
374 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
375
154f5e38 376 while (len - bits_to_clear >= 0) {
c1a2a962 377 *p &= ~mask_to_clear;
154f5e38 378 len -= bits_to_clear;
c1a2a962
AM
379 bits_to_clear = BITS_PER_LONG;
380 mask_to_clear = ~0UL;
381 p++;
382 }
154f5e38 383 if (len) {
c1a2a962
AM
384 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
385 *p &= ~mask_to_clear;
386 }
387}
e5af323c 388EXPORT_SYMBOL(__bitmap_clear);
c1a2a962 389
5e19b013
MN
390/**
391 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
c1a2a962
AM
392 * @map: The address to base the search on
393 * @size: The bitmap size in bits
394 * @start: The bitnumber to start searching at
395 * @nr: The number of zeroed bits we're looking for
396 * @align_mask: Alignment mask for zero area
5e19b013 397 * @align_offset: Alignment offset for zero area.
c1a2a962
AM
398 *
399 * The @align_mask should be one less than a power of 2; the effect is that
5e19b013
MN
400 * the bit offset of all zero areas this function finds plus @align_offset
401 * is multiple of that power of 2.
c1a2a962 402 */
5e19b013
MN
403unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
404 unsigned long size,
405 unsigned long start,
406 unsigned int nr,
407 unsigned long align_mask,
408 unsigned long align_offset)
c1a2a962
AM
409{
410 unsigned long index, end, i;
411again:
412 index = find_next_zero_bit(map, size, start);
413
414 /* Align allocation */
5e19b013 415 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
c1a2a962
AM
416
417 end = index + nr;
418 if (end > size)
419 return end;
420 i = find_next_bit(map, end, index);
421 if (i < end) {
422 start = i + 1;
423 goto again;
424 }
425 return index;
426}
5e19b013 427EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
c1a2a962 428
1da177e4 429/*
6d49e352 430 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
1da177e4
LT
431 * second version by Paul Jackson, third by Joe Korty.
432 */
433
434#define CHUNKSZ 32
435#define nbits_to_hold_value(val) fls(val)
1da177e4
LT
436#define BASEDEC 10 /* fancier cpuset lists input in decimal */
437
1da177e4 438/**
01a3ee2b
RC
439 * __bitmap_parse - convert an ASCII hex string into a bitmap.
440 * @buf: pointer to buffer containing string.
441 * @buflen: buffer size in bytes. If string is smaller than this
1da177e4 442 * then it must be terminated with a \0.
01a3ee2b 443 * @is_user: location of buffer, 0 indicates kernel space
1da177e4
LT
444 * @maskp: pointer to bitmap array that will contain result.
445 * @nmaskbits: size of bitmap, in bits.
446 *
447 * Commas group hex digits into chunks. Each chunk defines exactly 32
448 * bits of the resultant bitmask. No chunk may specify a value larger
6e1907ff
RD
449 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
450 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
1da177e4
LT
451 * characters and for grouping errors such as "1,,5", ",44", "," and "".
452 * Leading and trailing whitespace accepted, but not embedded whitespace.
453 */
01a3ee2b
RC
454int __bitmap_parse(const char *buf, unsigned int buflen,
455 int is_user, unsigned long *maskp,
456 int nmaskbits)
1da177e4
LT
457{
458 int c, old_c, totaldigits, ndigits, nchunks, nbits;
459 u32 chunk;
b9c321fd 460 const char __user __force *ubuf = (const char __user __force *)buf;
1da177e4
LT
461
462 bitmap_zero(maskp, nmaskbits);
463
464 nchunks = nbits = totaldigits = c = 0;
465 do {
d21c3d4d
PX
466 chunk = 0;
467 ndigits = totaldigits;
1da177e4
LT
468
469 /* Get the next chunk of the bitmap */
01a3ee2b 470 while (buflen) {
1da177e4 471 old_c = c;
01a3ee2b
RC
472 if (is_user) {
473 if (__get_user(c, ubuf++))
474 return -EFAULT;
475 }
476 else
477 c = *buf++;
478 buflen--;
1da177e4
LT
479 if (isspace(c))
480 continue;
481
482 /*
483 * If the last character was a space and the current
484 * character isn't '\0', we've got embedded whitespace.
485 * This is a no-no, so throw an error.
486 */
487 if (totaldigits && c && isspace(old_c))
488 return -EINVAL;
489
490 /* A '\0' or a ',' signal the end of the chunk */
491 if (c == '\0' || c == ',')
492 break;
493
494 if (!isxdigit(c))
495 return -EINVAL;
496
497 /*
498 * Make sure there are at least 4 free bits in 'chunk'.
499 * If not, this hexdigit will overflow 'chunk', so
500 * throw an error.
501 */
502 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
503 return -EOVERFLOW;
504
66f1991b 505 chunk = (chunk << 4) | hex_to_bin(c);
d21c3d4d 506 totaldigits++;
1da177e4 507 }
d21c3d4d 508 if (ndigits == totaldigits)
1da177e4
LT
509 return -EINVAL;
510 if (nchunks == 0 && chunk == 0)
511 continue;
512
513 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
514 *maskp |= chunk;
515 nchunks++;
516 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
517 if (nbits > nmaskbits)
518 return -EOVERFLOW;
01a3ee2b 519 } while (buflen && c == ',');
1da177e4
LT
520
521 return 0;
522}
01a3ee2b
RC
523EXPORT_SYMBOL(__bitmap_parse);
524
525/**
9a86e2ba 526 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
01a3ee2b
RC
527 *
528 * @ubuf: pointer to user buffer containing string.
529 * @ulen: buffer size in bytes. If string is smaller than this
530 * then it must be terminated with a \0.
531 * @maskp: pointer to bitmap array that will contain result.
532 * @nmaskbits: size of bitmap, in bits.
533 *
534 * Wrapper for __bitmap_parse(), providing it with user buffer.
535 *
536 * We cannot have this as an inline function in bitmap.h because it needs
537 * linux/uaccess.h to get the access_ok() declaration and this causes
538 * cyclic dependencies.
539 */
540int bitmap_parse_user(const char __user *ubuf,
541 unsigned int ulen, unsigned long *maskp,
542 int nmaskbits)
543{
96d4f267 544 if (!access_ok(ubuf, ulen))
01a3ee2b 545 return -EFAULT;
b9c321fd
HS
546 return __bitmap_parse((const char __force *)ubuf,
547 ulen, 1, maskp, nmaskbits);
548
01a3ee2b
RC
549}
550EXPORT_SYMBOL(bitmap_parse_user);
1da177e4 551
5aaba363
SH
552/**
553 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
554 * @list: indicates whether the bitmap must be list
555 * @buf: page aligned buffer into which string is placed
556 * @maskp: pointer to bitmap to convert
557 * @nmaskbits: size of bitmap, in bits
558 *
559 * Output format is a comma-separated list of decimal numbers and
560 * ranges if list is specified or hex digits grouped into comma-separated
561 * sets of 8 digits/set. Returns the number of characters written to buf.
9cf79d11 562 *
ce1091d4
RV
563 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
564 * area and that sufficient storage remains at @buf to accommodate the
565 * bitmap_print_to_pagebuf() output. Returns the number of characters
566 * actually printed to @buf, excluding terminating '\0'.
5aaba363
SH
567 */
568int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
569 int nmaskbits)
570{
ce1091d4 571 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
5aaba363 572
8ec3d768
RV
573 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
574 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
5aaba363
SH
575}
576EXPORT_SYMBOL(bitmap_print_to_pagebuf);
577
e371c481
YN
578/*
579 * Region 9-38:4/10 describes the following bitmap structure:
580 * 0 9 12 18 38
581 * .........****......****......****......
582 * ^ ^ ^ ^
583 * start off group_len end
584 */
585struct region {
586 unsigned int start;
587 unsigned int off;
588 unsigned int group_len;
589 unsigned int end;
590};
591
592static int bitmap_set_region(const struct region *r,
593 unsigned long *bitmap, int nbits)
594{
595 unsigned int start;
596
597 if (r->end >= nbits)
598 return -ERANGE;
599
600 for (start = r->start; start <= r->end; start += r->group_len)
601 bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
602
603 return 0;
604}
605
606static int bitmap_check_region(const struct region *r)
607{
608 if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
609 return -EINVAL;
610
611 return 0;
612}
613
614static const char *bitmap_getnum(const char *str, unsigned int *num)
615{
616 unsigned long long n;
617 unsigned int len;
618
619 len = _parse_integer(str, 10, &n);
620 if (!len)
621 return ERR_PTR(-EINVAL);
622 if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
623 return ERR_PTR(-EOVERFLOW);
624
625 *num = n;
626 return str + len;
627}
628
629static inline bool end_of_str(char c)
630{
631 return c == '\0' || c == '\n';
632}
633
634static inline bool __end_of_region(char c)
635{
636 return isspace(c) || c == ',';
637}
638
639static inline bool end_of_region(char c)
640{
641 return __end_of_region(c) || end_of_str(c);
642}
643
644/*
645 * The format allows commas and whitespases at the beginning
646 * of the region.
647 */
648static const char *bitmap_find_region(const char *str)
649{
650 while (__end_of_region(*str))
651 str++;
652
653 return end_of_str(*str) ? NULL : str;
654}
655
656static const char *bitmap_parse_region(const char *str, struct region *r)
657{
658 str = bitmap_getnum(str, &r->start);
659 if (IS_ERR(str))
660 return str;
661
662 if (end_of_region(*str))
663 goto no_end;
664
665 if (*str != '-')
666 return ERR_PTR(-EINVAL);
667
668 str = bitmap_getnum(str + 1, &r->end);
669 if (IS_ERR(str))
670 return str;
671
672 if (end_of_region(*str))
673 goto no_pattern;
674
675 if (*str != ':')
676 return ERR_PTR(-EINVAL);
677
678 str = bitmap_getnum(str + 1, &r->off);
679 if (IS_ERR(str))
680 return str;
681
682 if (*str != '/')
683 return ERR_PTR(-EINVAL);
684
685 return bitmap_getnum(str + 1, &r->group_len);
686
687no_end:
688 r->end = r->start;
689no_pattern:
690 r->off = r->end + 1;
691 r->group_len = r->end + 1;
692
693 return end_of_str(*str) ? NULL : str;
694}
695
1da177e4 696/**
e371c481
YN
697 * bitmap_parselist - convert list format ASCII string to bitmap
698 * @buf: read user string from this buffer; must be terminated
699 * with a \0 or \n.
6e1907ff 700 * @maskp: write resulting mask here
1da177e4
LT
701 * @nmaskbits: number of bits in mask to be written
702 *
703 * Input format is a comma-separated list of decimal numbers and
704 * ranges. Consecutively set bits are shown as two hyphen-separated
705 * decimal numbers, the smallest and largest bit numbers set in
706 * the range.
2d13e6ca
NC
707 * Optionally each range can be postfixed to denote that only parts of it
708 * should be set. The range will divided to groups of specific size.
709 * From each group will be used only defined amount of bits.
710 * Syntax: range:used_size/group_size
711 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
1da177e4 712 *
40bf19a8
MCC
713 * Returns: 0 on success, -errno on invalid input strings. Error values:
714 *
e371c481 715 * - ``-EINVAL``: wrong region format
40bf19a8
MCC
716 * - ``-EINVAL``: invalid character in string
717 * - ``-ERANGE``: bit number specified too large for mask
e371c481 718 * - ``-EOVERFLOW``: integer overflow in the input parameters
1da177e4 719 */
e371c481 720int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
1da177e4 721{
e371c481
YN
722 struct region r;
723 long ret;
1da177e4
LT
724
725 bitmap_zero(maskp, nmaskbits);
4b060420 726
e371c481
YN
727 while (buf) {
728 buf = bitmap_find_region(buf);
729 if (buf == NULL)
730 return 0;
2d13e6ca 731
e371c481
YN
732 buf = bitmap_parse_region(buf, &r);
733 if (IS_ERR(buf))
734 return PTR_ERR(buf);
2d13e6ca 735
e371c481
YN
736 ret = bitmap_check_region(&r);
737 if (ret)
738 return ret;
4b060420 739
e371c481
YN
740 ret = bitmap_set_region(&r, maskp, nmaskbits);
741 if (ret)
742 return ret;
743 }
4b060420 744
1da177e4
LT
745 return 0;
746}
747EXPORT_SYMBOL(bitmap_parselist);
748
4b060420
MT
749
750/**
751 * bitmap_parselist_user()
752 *
753 * @ubuf: pointer to user buffer containing string.
754 * @ulen: buffer size in bytes. If string is smaller than this
755 * then it must be terminated with a \0.
756 * @maskp: pointer to bitmap array that will contain result.
757 * @nmaskbits: size of bitmap, in bits.
758 *
759 * Wrapper for bitmap_parselist(), providing it with user buffer.
4b060420
MT
760 */
761int bitmap_parselist_user(const char __user *ubuf,
762 unsigned int ulen, unsigned long *maskp,
763 int nmaskbits)
764{
281327c9
YN
765 char *buf;
766 int ret;
767
768 buf = memdup_user_nul(ubuf, ulen);
769 if (IS_ERR(buf))
770 return PTR_ERR(buf);
771
772 ret = bitmap_parselist(buf, maskp, nmaskbits);
773
774 kfree(buf);
775 return ret;
4b060420
MT
776}
777EXPORT_SYMBOL(bitmap_parselist_user);
778
779
cdc90a18 780#ifdef CONFIG_NUMA
72fd4a35 781/**
9a86e2ba 782 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
fb5eeeee 783 * @buf: pointer to a bitmap
df1d80a9
RV
784 * @pos: a bit position in @buf (0 <= @pos < @nbits)
785 * @nbits: number of valid bit positions in @buf
fb5eeeee 786 *
df1d80a9 787 * Map the bit at position @pos in @buf (of length @nbits) to the
fb5eeeee 788 * ordinal of which set bit it is. If it is not set or if @pos
96b7f341 789 * is not a valid bit position, map to -1.
fb5eeeee
PJ
790 *
791 * If for example, just bits 4 through 7 are set in @buf, then @pos
792 * values 4 through 7 will get mapped to 0 through 3, respectively,
a8551748 793 * and other @pos values will get mapped to -1. When @pos value 7
fb5eeeee
PJ
794 * gets mapped to (returns) @ord value 3 in this example, that means
795 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
796 *
797 * The bit positions 0 through @bits are valid positions in @buf.
798 */
df1d80a9 799static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
fb5eeeee 800{
df1d80a9 801 if (pos >= nbits || !test_bit(pos, buf))
96b7f341 802 return -1;
fb5eeeee 803
df1d80a9 804 return __bitmap_weight(buf, pos);
fb5eeeee
PJ
805}
806
807/**
9a86e2ba 808 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
fb5eeeee
PJ
809 * @buf: pointer to bitmap
810 * @ord: ordinal bit position (n-th set bit, n >= 0)
f6a1f5db 811 * @nbits: number of valid bit positions in @buf
fb5eeeee
PJ
812 *
813 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
f6a1f5db
RV
814 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
815 * >= weight(buf), returns @nbits.
fb5eeeee
PJ
816 *
817 * If for example, just bits 4 through 7 are set in @buf, then @ord
818 * values 0 through 3 will get mapped to 4 through 7, respectively,
f6a1f5db 819 * and all other @ord values returns @nbits. When @ord value 3
fb5eeeee
PJ
820 * gets mapped to (returns) @pos value 7 in this example, that means
821 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
822 *
f6a1f5db 823 * The bit positions 0 through @nbits-1 are valid positions in @buf.
fb5eeeee 824 */
f6a1f5db 825unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
fb5eeeee 826{
f6a1f5db 827 unsigned int pos;
fb5eeeee 828
f6a1f5db
RV
829 for (pos = find_first_bit(buf, nbits);
830 pos < nbits && ord;
831 pos = find_next_bit(buf, nbits, pos + 1))
832 ord--;
fb5eeeee
PJ
833
834 return pos;
835}
836
837/**
838 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
fb5eeeee 839 * @dst: remapped result
96b7f341 840 * @src: subset to be remapped
fb5eeeee
PJ
841 * @old: defines domain of map
842 * @new: defines range of map
9814ec13 843 * @nbits: number of bits in each of these bitmaps
fb5eeeee
PJ
844 *
845 * Let @old and @new define a mapping of bit positions, such that
846 * whatever position is held by the n-th set bit in @old is mapped
847 * to the n-th set bit in @new. In the more general case, allowing
848 * for the possibility that the weight 'w' of @new is less than the
849 * weight of @old, map the position of the n-th set bit in @old to
850 * the position of the m-th set bit in @new, where m == n % w.
851 *
96b7f341
PJ
852 * If either of the @old and @new bitmaps are empty, or if @src and
853 * @dst point to the same location, then this routine copies @src
854 * to @dst.
fb5eeeee 855 *
96b7f341
PJ
856 * The positions of unset bits in @old are mapped to themselves
857 * (the identify map).
fb5eeeee
PJ
858 *
859 * Apply the above specified mapping to @src, placing the result in
860 * @dst, clearing any bits previously set in @dst.
861 *
fb5eeeee
PJ
862 * For example, lets say that @old has bits 4 through 7 set, and
863 * @new has bits 12 through 15 set. This defines the mapping of bit
864 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
865 * bit positions unchanged. So if say @src comes into this routine
866 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
867 * 13 and 15 set.
fb5eeeee
PJ
868 */
869void bitmap_remap(unsigned long *dst, const unsigned long *src,
870 const unsigned long *old, const unsigned long *new,
9814ec13 871 unsigned int nbits)
fb5eeeee 872{
9814ec13 873 unsigned int oldbit, w;
fb5eeeee 874
fb5eeeee
PJ
875 if (dst == src) /* following doesn't handle inplace remaps */
876 return;
9814ec13 877 bitmap_zero(dst, nbits);
96b7f341 878
9814ec13
RV
879 w = bitmap_weight(new, nbits);
880 for_each_set_bit(oldbit, src, nbits) {
881 int n = bitmap_pos_to_ord(old, oldbit, nbits);
08564fb7 882
96b7f341
PJ
883 if (n < 0 || w == 0)
884 set_bit(oldbit, dst); /* identity map */
885 else
9814ec13 886 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
fb5eeeee
PJ
887 }
888}
fb5eeeee
PJ
889
890/**
891 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
6e1907ff
RD
892 * @oldbit: bit position to be mapped
893 * @old: defines domain of map
894 * @new: defines range of map
895 * @bits: number of bits in each of these bitmaps
fb5eeeee
PJ
896 *
897 * Let @old and @new define a mapping of bit positions, such that
898 * whatever position is held by the n-th set bit in @old is mapped
899 * to the n-th set bit in @new. In the more general case, allowing
900 * for the possibility that the weight 'w' of @new is less than the
901 * weight of @old, map the position of the n-th set bit in @old to
902 * the position of the m-th set bit in @new, where m == n % w.
903 *
96b7f341
PJ
904 * The positions of unset bits in @old are mapped to themselves
905 * (the identify map).
fb5eeeee
PJ
906 *
907 * Apply the above specified mapping to bit position @oldbit, returning
908 * the new bit position.
909 *
910 * For example, lets say that @old has bits 4 through 7 set, and
911 * @new has bits 12 through 15 set. This defines the mapping of bit
912 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
913 * bit positions unchanged. So if say @oldbit is 5, then this routine
914 * returns 13.
fb5eeeee
PJ
915 */
916int bitmap_bitremap(int oldbit, const unsigned long *old,
917 const unsigned long *new, int bits)
918{
96b7f341
PJ
919 int w = bitmap_weight(new, bits);
920 int n = bitmap_pos_to_ord(old, oldbit, bits);
921 if (n < 0 || w == 0)
922 return oldbit;
923 else
924 return bitmap_ord_to_pos(new, n % w, bits);
fb5eeeee 925}
fb5eeeee 926
7ea931c9
PJ
927/**
928 * bitmap_onto - translate one bitmap relative to another
929 * @dst: resulting translated bitmap
930 * @orig: original untranslated bitmap
931 * @relmap: bitmap relative to which translated
932 * @bits: number of bits in each of these bitmaps
933 *
934 * Set the n-th bit of @dst iff there exists some m such that the
935 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
936 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
937 * (If you understood the previous sentence the first time your
938 * read it, you're overqualified for your current job.)
939 *
940 * In other words, @orig is mapped onto (surjectively) @dst,
da3dae54 941 * using the map { <n, m> | the n-th bit of @relmap is the
7ea931c9
PJ
942 * m-th set bit of @relmap }.
943 *
944 * Any set bits in @orig above bit number W, where W is the
945 * weight of (number of set bits in) @relmap are mapped nowhere.
946 * In particular, if for all bits m set in @orig, m >= W, then
947 * @dst will end up empty. In situations where the possibility
948 * of such an empty result is not desired, one way to avoid it is
949 * to use the bitmap_fold() operator, below, to first fold the
950 * @orig bitmap over itself so that all its set bits x are in the
951 * range 0 <= x < W. The bitmap_fold() operator does this by
952 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
953 *
954 * Example [1] for bitmap_onto():
955 * Let's say @relmap has bits 30-39 set, and @orig has bits
956 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
957 * @dst will have bits 31, 33, 35, 37 and 39 set.
958 *
959 * When bit 0 is set in @orig, it means turn on the bit in
960 * @dst corresponding to whatever is the first bit (if any)
961 * that is turned on in @relmap. Since bit 0 was off in the
962 * above example, we leave off that bit (bit 30) in @dst.
963 *
964 * When bit 1 is set in @orig (as in the above example), it
965 * means turn on the bit in @dst corresponding to whatever
966 * is the second bit that is turned on in @relmap. The second
967 * bit in @relmap that was turned on in the above example was
968 * bit 31, so we turned on bit 31 in @dst.
969 *
970 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
971 * because they were the 4th, 6th, 8th and 10th set bits
972 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
973 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
974 *
975 * When bit 11 is set in @orig, it means turn on the bit in
25985edc 976 * @dst corresponding to whatever is the twelfth bit that is
7ea931c9
PJ
977 * turned on in @relmap. In the above example, there were
978 * only ten bits turned on in @relmap (30..39), so that bit
979 * 11 was set in @orig had no affect on @dst.
980 *
981 * Example [2] for bitmap_fold() + bitmap_onto():
40bf19a8
MCC
982 * Let's say @relmap has these ten bits set::
983 *
7ea931c9 984 * 40 41 42 43 45 48 53 61 74 95
40bf19a8 985 *
7ea931c9
PJ
986 * (for the curious, that's 40 plus the first ten terms of the
987 * Fibonacci sequence.)
988 *
989 * Further lets say we use the following code, invoking
990 * bitmap_fold() then bitmap_onto, as suggested above to
40bf19a8 991 * avoid the possibility of an empty @dst result::
7ea931c9
PJ
992 *
993 * unsigned long *tmp; // a temporary bitmap's bits
994 *
995 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
996 * bitmap_onto(dst, tmp, relmap, bits);
997 *
998 * Then this table shows what various values of @dst would be, for
999 * various @orig's. I list the zero-based positions of each set bit.
1000 * The tmp column shows the intermediate result, as computed by
1001 * using bitmap_fold() to fold the @orig bitmap modulo ten
40bf19a8 1002 * (the weight of @relmap):
7ea931c9 1003 *
40bf19a8 1004 * =============== ============== =================
7ea931c9
PJ
1005 * @orig tmp @dst
1006 * 0 0 40
1007 * 1 1 41
1008 * 9 9 95
40bf19a8 1009 * 10 0 40 [#f1]_
7ea931c9
PJ
1010 * 1 3 5 7 1 3 5 7 41 43 48 61
1011 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
1012 * 0 9 18 27 0 9 8 7 40 61 74 95
1013 * 0 10 20 30 0 40
1014 * 0 11 22 33 0 1 2 3 40 41 42 43
1015 * 0 12 24 36 0 2 4 6 40 42 45 53
40bf19a8
MCC
1016 * 78 102 211 1 2 8 41 42 74 [#f1]_
1017 * =============== ============== =================
1018 *
1019 * .. [#f1]
7ea931c9 1020 *
40bf19a8 1021 * For these marked lines, if we hadn't first done bitmap_fold()
7ea931c9
PJ
1022 * into tmp, then the @dst result would have been empty.
1023 *
1024 * If either of @orig or @relmap is empty (no set bits), then @dst
1025 * will be returned empty.
1026 *
1027 * If (as explained above) the only set bits in @orig are in positions
1028 * m where m >= W, (where W is the weight of @relmap) then @dst will
1029 * once again be returned empty.
1030 *
1031 * All bits in @dst not set by the above rule are cleared.
1032 */
1033void bitmap_onto(unsigned long *dst, const unsigned long *orig,
eb569883 1034 const unsigned long *relmap, unsigned int bits)
7ea931c9 1035{
eb569883 1036 unsigned int n, m; /* same meaning as in above comment */
7ea931c9
PJ
1037
1038 if (dst == orig) /* following doesn't handle inplace mappings */
1039 return;
1040 bitmap_zero(dst, bits);
1041
1042 /*
1043 * The following code is a more efficient, but less
1044 * obvious, equivalent to the loop:
1045 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
1046 * n = bitmap_ord_to_pos(orig, m, bits);
1047 * if (test_bit(m, orig))
1048 * set_bit(n, dst);
1049 * }
1050 */
1051
1052 m = 0;
08564fb7 1053 for_each_set_bit(n, relmap, bits) {
7ea931c9
PJ
1054 /* m == bitmap_pos_to_ord(relmap, n, bits) */
1055 if (test_bit(m, orig))
1056 set_bit(n, dst);
1057 m++;
1058 }
1059}
7ea931c9
PJ
1060
1061/**
1062 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1063 * @dst: resulting smaller bitmap
1064 * @orig: original larger bitmap
1065 * @sz: specified size
b26ad583 1066 * @nbits: number of bits in each of these bitmaps
7ea931c9
PJ
1067 *
1068 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1069 * Clear all other bits in @dst. See further the comment and
1070 * Example [2] for bitmap_onto() for why and how to use this.
1071 */
1072void bitmap_fold(unsigned long *dst, const unsigned long *orig,
b26ad583 1073 unsigned int sz, unsigned int nbits)
7ea931c9 1074{
b26ad583 1075 unsigned int oldbit;
7ea931c9
PJ
1076
1077 if (dst == orig) /* following doesn't handle inplace mappings */
1078 return;
b26ad583 1079 bitmap_zero(dst, nbits);
7ea931c9 1080
b26ad583 1081 for_each_set_bit(oldbit, orig, nbits)
7ea931c9
PJ
1082 set_bit(oldbit % sz, dst);
1083}
cdc90a18 1084#endif /* CONFIG_NUMA */
7ea931c9 1085
3cf64b93
PJ
1086/*
1087 * Common code for bitmap_*_region() routines.
1088 * bitmap: array of unsigned longs corresponding to the bitmap
1089 * pos: the beginning of the region
1090 * order: region size (log base 2 of number of bits)
1091 * reg_op: operation(s) to perform on that region of bitmap
1da177e4 1092 *
3cf64b93
PJ
1093 * Can set, verify and/or release a region of bits in a bitmap,
1094 * depending on which combination of REG_OP_* flag bits is set.
1da177e4 1095 *
3cf64b93
PJ
1096 * A region of a bitmap is a sequence of bits in the bitmap, of
1097 * some size '1 << order' (a power of two), aligned to that same
1098 * '1 << order' power of two.
1099 *
1100 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1101 * Returns 0 in all other cases and reg_ops.
1da177e4 1102 */
3cf64b93
PJ
1103
1104enum {
1105 REG_OP_ISFREE, /* true if region is all zero bits */
1106 REG_OP_ALLOC, /* set all bits in region */
1107 REG_OP_RELEASE, /* clear all bits in region */
1108};
1109
9279d328 1110static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1da177e4 1111{
3cf64b93
PJ
1112 int nbits_reg; /* number of bits in region */
1113 int index; /* index first long of region in bitmap */
1114 int offset; /* bit offset region in bitmap[index] */
1115 int nlongs_reg; /* num longs spanned by region in bitmap */
74373c6a 1116 int nbitsinlong; /* num bits of region in each spanned long */
3cf64b93 1117 unsigned long mask; /* bitmask for one long of region */
74373c6a 1118 int i; /* scans bitmap by longs */
3cf64b93 1119 int ret = 0; /* return value */
74373c6a 1120
3cf64b93
PJ
1121 /*
1122 * Either nlongs_reg == 1 (for small orders that fit in one long)
1123 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1124 */
1125 nbits_reg = 1 << order;
1126 index = pos / BITS_PER_LONG;
1127 offset = pos - (index * BITS_PER_LONG);
1128 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1129 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1da177e4 1130
3cf64b93
PJ
1131 /*
1132 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1133 * overflows if nbitsinlong == BITS_PER_LONG.
1134 */
74373c6a 1135 mask = (1UL << (nbitsinlong - 1));
1da177e4 1136 mask += mask - 1;
3cf64b93 1137 mask <<= offset;
1da177e4 1138
3cf64b93
PJ
1139 switch (reg_op) {
1140 case REG_OP_ISFREE:
1141 for (i = 0; i < nlongs_reg; i++) {
1142 if (bitmap[index + i] & mask)
1143 goto done;
1144 }
1145 ret = 1; /* all bits in region free (zero) */
1146 break;
1147
1148 case REG_OP_ALLOC:
1149 for (i = 0; i < nlongs_reg; i++)
1150 bitmap[index + i] |= mask;
1151 break;
1152
1153 case REG_OP_RELEASE:
1154 for (i = 0; i < nlongs_reg; i++)
1155 bitmap[index + i] &= ~mask;
1156 break;
1da177e4 1157 }
3cf64b93
PJ
1158done:
1159 return ret;
1160}
1161
1162/**
1163 * bitmap_find_free_region - find a contiguous aligned mem region
1164 * @bitmap: array of unsigned longs corresponding to the bitmap
1165 * @bits: number of bits in the bitmap
1166 * @order: region size (log base 2 of number of bits) to find
1167 *
1168 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1169 * allocate them (set them to one). Only consider regions of length
1170 * a power (@order) of two, aligned to that power of two, which
1171 * makes the search algorithm much faster.
1172 *
1173 * Return the bit offset in bitmap of the allocated region,
1174 * or -errno on failure.
1175 */
9279d328 1176int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
3cf64b93 1177{
9279d328 1178 unsigned int pos, end; /* scans bitmap by regions of size order */
aa8e4fc6 1179
9279d328 1180 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
aa8e4fc6
LT
1181 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1182 continue;
1183 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1184 return pos;
1185 }
1186 return -ENOMEM;
1da177e4
LT
1187}
1188EXPORT_SYMBOL(bitmap_find_free_region);
1189
1190/**
87e24802 1191 * bitmap_release_region - release allocated bitmap region
3cf64b93
PJ
1192 * @bitmap: array of unsigned longs corresponding to the bitmap
1193 * @pos: beginning of bit region to release
1194 * @order: region size (log base 2 of number of bits) to release
1da177e4 1195 *
72fd4a35 1196 * This is the complement to __bitmap_find_free_region() and releases
1da177e4 1197 * the found region (by clearing it in the bitmap).
3cf64b93
PJ
1198 *
1199 * No return value.
1da177e4 1200 */
9279d328 1201void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1202{
3cf64b93 1203 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1da177e4
LT
1204}
1205EXPORT_SYMBOL(bitmap_release_region);
1206
87e24802
PJ
1207/**
1208 * bitmap_allocate_region - allocate bitmap region
3cf64b93
PJ
1209 * @bitmap: array of unsigned longs corresponding to the bitmap
1210 * @pos: beginning of bit region to allocate
1211 * @order: region size (log base 2 of number of bits) to allocate
87e24802
PJ
1212 *
1213 * Allocate (set bits in) a specified region of a bitmap.
3cf64b93 1214 *
6e1907ff 1215 * Return 0 on success, or %-EBUSY if specified region wasn't
87e24802
PJ
1216 * free (not all bits were zero).
1217 */
9279d328 1218int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1219{
3cf64b93
PJ
1220 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1221 return -EBUSY;
2ac521d3 1222 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1da177e4
LT
1223}
1224EXPORT_SYMBOL(bitmap_allocate_region);
ccbe329b
DV
1225
1226/**
1227 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1228 * @dst: destination buffer
1229 * @src: bitmap to copy
1230 * @nbits: number of bits in the bitmap
1231 *
1232 * Require nbits % BITS_PER_LONG == 0.
1233 */
e8f24278 1234#ifdef __BIG_ENDIAN
9b6c2d2e 1235void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
ccbe329b 1236{
9b6c2d2e 1237 unsigned int i;
ccbe329b
DV
1238
1239 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1240 if (BITS_PER_LONG == 64)
9b6c2d2e 1241 dst[i] = cpu_to_le64(src[i]);
ccbe329b 1242 else
9b6c2d2e 1243 dst[i] = cpu_to_le32(src[i]);
ccbe329b
DV
1244 }
1245}
1246EXPORT_SYMBOL(bitmap_copy_le);
e8f24278 1247#endif
c724f193 1248
c42b65e3
AS
1249unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1250{
1251 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1252 flags);
1253}
1254EXPORT_SYMBOL(bitmap_alloc);
1255
1256unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1257{
1258 return bitmap_alloc(nbits, flags | __GFP_ZERO);
1259}
1260EXPORT_SYMBOL(bitmap_zalloc);
1261
1262void bitmap_free(const unsigned long *bitmap)
1263{
1264 kfree(bitmap);
1265}
1266EXPORT_SYMBOL(bitmap_free);
1267
c724f193
YN
1268#if BITS_PER_LONG == 64
1269/**
1270 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1271 * @bitmap: array of unsigned longs, the destination bitmap
1272 * @buf: array of u32 (in host byte order), the source bitmap
1273 * @nbits: number of bits in @bitmap
1274 */
ccf7a6d4 1275void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
c724f193
YN
1276{
1277 unsigned int i, halfwords;
1278
c724f193
YN
1279 halfwords = DIV_ROUND_UP(nbits, 32);
1280 for (i = 0; i < halfwords; i++) {
1281 bitmap[i/2] = (unsigned long) buf[i];
1282 if (++i < halfwords)
1283 bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1284 }
1285
1286 /* Clear tail bits in last word beyond nbits. */
1287 if (nbits % BITS_PER_LONG)
1288 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1289}
1290EXPORT_SYMBOL(bitmap_from_arr32);
1291
1292/**
1293 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1294 * @buf: array of u32 (in host byte order), the dest bitmap
1295 * @bitmap: array of unsigned longs, the source bitmap
1296 * @nbits: number of bits in @bitmap
1297 */
1298void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1299{
1300 unsigned int i, halfwords;
1301
c724f193
YN
1302 halfwords = DIV_ROUND_UP(nbits, 32);
1303 for (i = 0; i < halfwords; i++) {
1304 buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1305 if (++i < halfwords)
1306 buf[i] = (u32) (bitmap[i/2] >> 32);
1307 }
1308
1309 /* Clear tail bits in last element of array beyond nbits. */
1310 if (nbits % BITS_PER_LONG)
1311 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1312}
1313EXPORT_SYMBOL(bitmap_to_arr32);
1314
1315#endif