]> git.proxmox.com Git - mirror_zfs.git/blame - lib/libzfs/libzfs_import.c
libzfs: Fix missing va_end call on ENOSPC and EDQUOT cases
[mirror_zfs.git] / lib / libzfs / libzfs_import.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
0fdd8d64 22 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
572e2857 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
3bc7e0fb 24 * Copyright (c) 2012 by Delphix. All rights reserved.
ee42b3d6 25 * Copyright 2015 RackTop Systems.
39fc0cb5 26 * Copyright (c) 2016, Intel Corporation.
34dc7c2f
BB
27 */
28
34dc7c2f
BB
29/*
30 * Pool import support functions.
31 *
32 * To import a pool, we rely on reading the configuration information from the
33 * ZFS label of each device. If we successfully read the label, then we
34 * organize the configuration information in the following hierarchy:
35 *
36 * pool guid -> toplevel vdev guid -> label txg
37 *
38 * Duplicate entries matching this same tuple will be discarded. Once we have
39 * examined every device, we pick the best label txg config for each toplevel
40 * vdev. We then arrange these toplevel vdevs into a complete pool config, and
41 * update any paths that have changed. Finally, we attempt to import the pool
42 * using our derived config, and record the results.
43 */
44
428870ff 45#include <ctype.h>
34dc7c2f
BB
46#include <devid.h>
47#include <dirent.h>
48#include <errno.h>
49#include <libintl.h>
39fc0cb5
DB
50#ifdef HAVE_LIBUDEV
51#include <libudev.h>
52#include <sched.h>
53#endif
428870ff 54#include <stddef.h>
34dc7c2f
BB
55#include <stdlib.h>
56#include <string.h>
57#include <sys/stat.h>
58#include <unistd.h>
59#include <fcntl.h>
428870ff
BB
60#include <sys/vtoc.h>
61#include <sys/dktp/fdisk.h>
62#include <sys/efi_partition.h>
34dc7c2f 63#include <sys/vdev_impl.h>
d603ed6c 64#include <blkid/blkid.h>
34dc7c2f
BB
65#include "libzfs.h"
66#include "libzfs_impl.h"
67
68/*
69 * Intermediate structures used to gather configuration information.
70 */
71typedef struct config_entry {
72 uint64_t ce_txg;
73 nvlist_t *ce_config;
74 struct config_entry *ce_next;
75} config_entry_t;
76
77typedef struct vdev_entry {
78 uint64_t ve_guid;
79 config_entry_t *ve_configs;
80 struct vdev_entry *ve_next;
81} vdev_entry_t;
82
83typedef struct pool_entry {
84 uint64_t pe_guid;
85 vdev_entry_t *pe_vdevs;
86 struct pool_entry *pe_next;
87} pool_entry_t;
88
89typedef struct name_entry {
90 char *ne_name;
91 uint64_t ne_guid;
44867b6d 92 uint64_t ne_order;
7d90f569 93 uint64_t ne_num_labels;
34dc7c2f
BB
94 struct name_entry *ne_next;
95} name_entry_t;
96
97typedef struct pool_list {
98 pool_entry_t *pools;
99 name_entry_t *names;
100} pool_list_t;
101
325414e4
BB
102#define DEV_BYID_PATH "/dev/disk/by-id/"
103
39fc0cb5
DB
104/*
105 * Linux persistent device strings for vdev labels
106 *
107 * based on libudev for consistency with libudev disk add/remove events
108 */
109#ifdef HAVE_LIBUDEV
110
39fc0cb5
DB
111typedef struct vdev_dev_strs {
112 char vds_devid[128];
113 char vds_devphys[128];
114} vdev_dev_strs_t;
115
116/*
117 * Obtain the persistent device id string (describes what)
118 *
119 * used by ZED auto-{online,expand,replace}
120 */
121static int
122udev_device_get_devid(struct udev_device *dev, char *bufptr, size_t buflen)
123{
124 struct udev_list_entry *entry;
125 const char *bus;
126 char devbyid[MAXPATHLEN];
127
128 /* The bus based by-id path is preferred */
129 bus = udev_device_get_property_value(dev, "ID_BUS");
130
131 if (bus == NULL) {
132 const char *dm_uuid;
133
134 /*
135 * For multipath nodes use the persistent uuid based identifier
136 *
137 * Example: /dev/disk/by-id/dm-uuid-mpath-35000c5006304de3f
138 */
139 dm_uuid = udev_device_get_property_value(dev, "DM_UUID");
140 if (dm_uuid != NULL) {
141 (void) snprintf(bufptr, buflen, "dm-uuid-%s", dm_uuid);
142 return (0);
143 }
144 return (ENODATA);
145 }
146
147 /*
148 * locate the bus specific by-id link
149 */
150 (void) snprintf(devbyid, sizeof (devbyid), "%s%s-", DEV_BYID_PATH, bus);
151 entry = udev_device_get_devlinks_list_entry(dev);
152 while (entry != NULL) {
153 const char *name;
154
155 name = udev_list_entry_get_name(entry);
156 if (strncmp(name, devbyid, strlen(devbyid)) == 0) {
157 name += strlen(DEV_BYID_PATH);
158 (void) strlcpy(bufptr, name, buflen);
159 return (0);
160 }
161 entry = udev_list_entry_get_next(entry);
162 }
163
164 return (ENODATA);
165}
166
167/*
168 * Obtain the persistent physical location string (describes where)
169 *
170 * used by ZED auto-{online,expand,replace}
171 */
172static int
173udev_device_get_physical(struct udev_device *dev, char *bufptr, size_t buflen)
174{
175 const char *physpath, *value;
176
177 /*
178 * Skip indirect multipath device nodes
179 */
180 value = udev_device_get_property_value(dev, "DM_MULTIPATH_DEVICE_PATH");
181 if (value != NULL && strcmp(value, "1") == 0)
182 return (ENODATA); /* skip physical for multipath nodes */
183
184 physpath = udev_device_get_property_value(dev, "ID_PATH");
185 if (physpath != NULL && physpath[0] != '\0') {
186 (void) strlcpy(bufptr, physpath, buflen);
187 return (0);
188 }
189
190 return (ENODATA);
191}
192
193/*
194 * A disk is considered a multipath whole disk when:
195 * DEVNAME key value has "dm-"
196 * DM_NAME key value has "mpath" prefix
197 * DM_UUID key exists
198 * ID_PART_TABLE_TYPE key does not exist or is not gpt
199 */
200static boolean_t
201udev_mpath_whole_disk(struct udev_device *dev)
202{
203 const char *devname, *mapname, *type, *uuid;
204
205 devname = udev_device_get_property_value(dev, "DEVNAME");
206 mapname = udev_device_get_property_value(dev, "DM_NAME");
207 type = udev_device_get_property_value(dev, "ID_PART_TABLE_TYPE");
208 uuid = udev_device_get_property_value(dev, "DM_UUID");
209
210 if ((devname != NULL && strncmp(devname, "/dev/dm-", 8) == 0) &&
211 (mapname != NULL && strncmp(mapname, "mpath", 5) == 0) &&
212 ((type == NULL) || (strcmp(type, "gpt") != 0)) &&
213 (uuid != NULL)) {
214 return (B_TRUE);
215 }
216
217 return (B_FALSE);
218}
219
220/*
221 * Check if a disk is effectively a multipath whole disk
222 */
223boolean_t
224is_mpath_whole_disk(const char *path)
225{
226 struct udev *udev;
227 struct udev_device *dev = NULL;
228 char nodepath[MAXPATHLEN];
229 char *sysname;
230 boolean_t wholedisk = B_FALSE;
231
232 if (realpath(path, nodepath) == NULL)
233 return (B_FALSE);
234 sysname = strrchr(nodepath, '/') + 1;
235 if (strncmp(sysname, "dm-", 3) != 0)
236 return (B_FALSE);
237 if ((udev = udev_new()) == NULL)
238 return (B_FALSE);
239 if ((dev = udev_device_new_from_subsystem_sysname(udev, "block",
240 sysname)) == NULL) {
241 udev_device_unref(dev);
242 return (B_FALSE);
243 }
244
245 wholedisk = udev_mpath_whole_disk(dev);
246
247 udev_device_unref(dev);
248 return (wholedisk);
249}
250
251static int
252udev_device_is_ready(struct udev_device *dev)
253{
254#ifdef HAVE_LIBUDEV_UDEV_DEVICE_GET_IS_INITIALIZED
255 return (udev_device_get_is_initialized(dev));
256#else
257 /* wait for DEVLINKS property to be initialized */
258 return (udev_device_get_property_value(dev, "DEVLINKS") != NULL);
259#endif
260}
261
2d82ea8b
BB
262/*
263 * Wait up to timeout_ms for udev to set up the device node. The device is
264 * considered ready when libudev determines it has been initialized, all of
265 * the device links have been verified to exist, and it has been allowed to
266 * settle. At this point the device the device can be accessed reliably.
267 * Depending on the complexity of the udev rules this process could take
268 * several seconds.
269 */
270int
271zpool_label_disk_wait(char *path, int timeout_ms)
272{
273 struct udev *udev;
274 struct udev_device *dev = NULL;
275 char nodepath[MAXPATHLEN];
276 char *sysname = NULL;
277 int ret = ENODEV;
278 int settle_ms = 50;
279 long sleep_ms = 10;
280 hrtime_t start, settle;
281
282 if ((udev = udev_new()) == NULL)
283 return (ENXIO);
284
285 start = gethrtime();
286 settle = 0;
287
288 do {
289 if (sysname == NULL) {
290 if (realpath(path, nodepath) != NULL) {
291 sysname = strrchr(nodepath, '/') + 1;
292 } else {
293 (void) usleep(sleep_ms * MILLISEC);
294 continue;
295 }
296 }
297
298 dev = udev_device_new_from_subsystem_sysname(udev,
299 "block", sysname);
300 if ((dev != NULL) && udev_device_is_ready(dev)) {
301 struct udev_list_entry *links, *link;
302
303 ret = 0;
304 links = udev_device_get_devlinks_list_entry(dev);
305
306 udev_list_entry_foreach(link, links) {
307 struct stat64 statbuf;
308 const char *name;
309
310 name = udev_list_entry_get_name(link);
311 errno = 0;
312 if (stat64(name, &statbuf) == 0 && errno == 0)
313 continue;
314
315 settle = 0;
316 ret = ENODEV;
317 break;
318 }
319
320 if (ret == 0) {
321 if (settle == 0) {
322 settle = gethrtime();
323 } else if (NSEC2MSEC(gethrtime() - settle) >=
324 settle_ms) {
325 udev_device_unref(dev);
326 break;
327 }
328 }
329 }
330
331 udev_device_unref(dev);
332 (void) usleep(sleep_ms * MILLISEC);
333
334 } while (NSEC2MSEC(gethrtime() - start) < timeout_ms);
335
336 udev_unref(udev);
337
338 return (ret);
339}
340
341
39fc0cb5
DB
342/*
343 * Encode the persistent devices strings
344 * used for the vdev disk label
345 */
346static int
347encode_device_strings(const char *path, vdev_dev_strs_t *ds,
348 boolean_t wholedisk)
34dc7c2f 349{
39fc0cb5
DB
350 struct udev *udev;
351 struct udev_device *dev = NULL;
352 char nodepath[MAXPATHLEN];
353 char *sysname;
354 int ret = ENODEV;
355 hrtime_t start;
356
357 if ((udev = udev_new()) == NULL)
358 return (ENXIO);
359
360 /* resolve path to a runtime device node instance */
361 if (realpath(path, nodepath) == NULL)
362 goto no_dev;
363
364 sysname = strrchr(nodepath, '/') + 1;
365
366 /*
367 * Wait up to 3 seconds for udev to set up the device node context
368 */
369 start = gethrtime();
370 do {
371 dev = udev_device_new_from_subsystem_sysname(udev, "block",
372 sysname);
373 if (dev == NULL)
374 goto no_dev;
375 if (udev_device_is_ready(dev))
376 break; /* udev ready */
377
378 udev_device_unref(dev);
379 dev = NULL;
380
381 if (NSEC2MSEC(gethrtime() - start) < 10)
382 (void) sched_yield(); /* yield/busy wait up to 10ms */
383 else
384 (void) usleep(10 * MILLISEC);
385
386 } while (NSEC2MSEC(gethrtime() - start) < (3 * MILLISEC));
387
388 if (dev == NULL)
389 goto no_dev;
390
391 /*
392 * Only whole disks require extra device strings
393 */
394 if (!wholedisk && !udev_mpath_whole_disk(dev))
395 goto no_dev;
396
397 ret = udev_device_get_devid(dev, ds->vds_devid, sizeof (ds->vds_devid));
398 if (ret != 0)
399 goto no_dev_ref;
400
401 /* physical location string (optional) */
402 if (udev_device_get_physical(dev, ds->vds_devphys,
403 sizeof (ds->vds_devphys)) != 0) {
404 ds->vds_devphys[0] = '\0'; /* empty string --> not available */
34dc7c2f 405 }
39fc0cb5
DB
406
407no_dev_ref:
408 udev_device_unref(dev);
409no_dev:
410 udev_unref(udev);
34dc7c2f
BB
411
412 return (ret);
413}
414
39fc0cb5
DB
415/*
416 * Update a leaf vdev's persistent device strings (Linux only)
417 *
418 * - only applies for a dedicated leaf vdev (aka whole disk)
419 * - updated during pool create|add|attach|import
420 * - used for matching device matching during auto-{online,expand,replace}
421 * - stored in a leaf disk config label (i.e. alongside 'path' NVP)
422 * - these strings are currently not used in kernel (i.e. for vdev_disk_open)
423 *
424 * single device node example:
425 * devid: 'scsi-MG03SCA300_350000494a8cb3d67-part1'
426 * phys_path: 'pci-0000:04:00.0-sas-0x50000394a8cb3d67-lun-0'
427 *
428 * multipath device node example:
429 * devid: 'dm-uuid-mpath-35000c5006304de3f'
430 */
431void
432update_vdev_config_dev_strs(nvlist_t *nv)
433{
434 vdev_dev_strs_t vds;
435 char *env, *type, *path;
436 uint64_t wholedisk = 0;
437
438 /*
439 * For the benefit of legacy ZFS implementations, allow
440 * for opting out of devid strings in the vdev label.
441 *
442 * example use:
443 * env ZFS_VDEV_DEVID_OPT_OUT=YES zpool import dozer
444 *
445 * explanation:
446 * Older ZFS on Linux implementations had issues when attempting to
447 * display pool config VDEV names if a "devid" NVP value is present
448 * in the pool's config.
449 *
450 * For example, a pool that originated on illumos platform would
451 * have a devid value in the config and "zpool status" would fail
452 * when listing the config.
453 *
454 * A pool can be stripped of any "devid" values on import or
455 * prevented from adding them on zpool create|add by setting
456 * ZFS_VDEV_DEVID_OPT_OUT.
457 */
458 env = getenv("ZFS_VDEV_DEVID_OPT_OUT");
459 if (env && (strtoul(env, NULL, 0) > 0 ||
460 !strncasecmp(env, "YES", 3) || !strncasecmp(env, "ON", 2))) {
461 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
462 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_PHYS_PATH);
463 return;
464 }
465
466 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0 ||
467 strcmp(type, VDEV_TYPE_DISK) != 0) {
468 return;
469 }
470 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
471 return;
472 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk);
473
474 /*
475 * Update device string values in config nvlist
476 */
477 if (encode_device_strings(path, &vds, (boolean_t)wholedisk) == 0) {
478 (void) nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vds.vds_devid);
479 if (vds.vds_devphys[0] != '\0') {
480 (void) nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
481 vds.vds_devphys);
482 }
483 } else {
484 /* clear out any stale entries */
485 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
486 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_PHYS_PATH);
487 }
488}
489#else
490
491boolean_t
492is_mpath_whole_disk(const char *path)
493{
494 return (B_FALSE);
495}
496
2d82ea8b
BB
497/*
498 * Wait up to timeout_ms for udev to set up the device node. The device is
499 * considered ready when the provided path have been verified to exist and
500 * it has been allowed to settle. At this point the device the device can
501 * be accessed reliably. Depending on the complexity of the udev rules thisi
502 * process could take several seconds.
503 */
504int
505zpool_label_disk_wait(char *path, int timeout_ms)
506{
507 int settle_ms = 50;
508 long sleep_ms = 10;
509 hrtime_t start, settle;
510 struct stat64 statbuf;
511
512 start = gethrtime();
513 settle = 0;
514
515 do {
516 errno = 0;
517 if ((stat64(path, &statbuf) == 0) && (errno == 0)) {
518 if (settle == 0)
519 settle = gethrtime();
520 else if (NSEC2MSEC(gethrtime() - settle) >= settle_ms)
521 return (0);
522 } else if (errno != ENOENT) {
523 return (errno);
524 }
525
526 usleep(sleep_ms * MILLISEC);
527 } while (NSEC2MSEC(gethrtime() - start) < timeout_ms);
528
529 return (ENODEV);
530}
531
39fc0cb5
DB
532void
533update_vdev_config_dev_strs(nvlist_t *nv)
534{
535}
536
537#endif /* HAVE_LIBUDEV */
538
34dc7c2f
BB
539/*
540 * Go through and fix up any path and/or devid information for the given vdev
541 * configuration.
542 */
543static int
544fix_paths(nvlist_t *nv, name_entry_t *names)
545{
546 nvlist_t **child;
547 uint_t c, children;
548 uint64_t guid;
549 name_entry_t *ne, *best;
39fc0cb5 550 char *path;
34dc7c2f
BB
551
552 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
553 &child, &children) == 0) {
554 for (c = 0; c < children; c++)
555 if (fix_paths(child[c], names) != 0)
556 return (-1);
557 return (0);
558 }
559
560 /*
561 * This is a leaf (file or disk) vdev. In either case, go through
562 * the name list and see if we find a matching guid. If so, replace
563 * the path and see if we can calculate a new devid.
564 *
565 * There may be multiple names associated with a particular guid, in
44867b6d
BB
566 * which case we have overlapping partitions or multiple paths to the
567 * same disk. In this case we prefer to use the path name which
568 * matches the ZPOOL_CONFIG_PATH. If no matching entry is found we
569 * use the lowest order device which corresponds to the first match
570 * while traversing the ZPOOL_IMPORT_PATH search path.
34dc7c2f
BB
571 */
572 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
573 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
574 path = NULL;
575
34dc7c2f
BB
576 best = NULL;
577 for (ne = names; ne != NULL; ne = ne->ne_next) {
578 if (ne->ne_guid == guid) {
34dc7c2f
BB
579 if (path == NULL) {
580 best = ne;
581 break;
582 }
583
44867b6d 584 if ((strlen(path) == strlen(ne->ne_name)) &&
d1d7e268 585 strncmp(path, ne->ne_name, strlen(path)) == 0) {
34dc7c2f 586 best = ne;
44867b6d 587 break;
34dc7c2f 588 }
44867b6d 589
7d90f569 590 if (best == NULL) {
44867b6d 591 best = ne;
7d90f569
BB
592 continue;
593 }
594
595 /* Prefer paths with move vdev labels. */
596 if (ne->ne_num_labels > best->ne_num_labels) {
597 best = ne;
598 continue;
599 }
600
601 /* Prefer paths earlier in the search order. */
20c901dc 602 if (ne->ne_num_labels == best->ne_num_labels &&
7d90f569
BB
603 ne->ne_order < best->ne_order) {
604 best = ne;
605 continue;
606 }
34dc7c2f
BB
607 }
608 }
609
610 if (best == NULL)
611 return (0);
612
613 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
614 return (-1);
615
39fc0cb5
DB
616 /* Linux only - update ZPOOL_CONFIG_DEVID and ZPOOL_CONFIG_PHYS_PATH */
617 update_vdev_config_dev_strs(nv);
34dc7c2f
BB
618
619 return (0);
620}
621
622/*
623 * Add the given configuration to the list of known devices.
624 */
625static int
626add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
7d90f569 627 int order, int num_labels, nvlist_t *config)
34dc7c2f
BB
628{
629 uint64_t pool_guid, vdev_guid, top_guid, txg, state;
630 pool_entry_t *pe;
631 vdev_entry_t *ve;
632 config_entry_t *ce;
633 name_entry_t *ne;
634
635 /*
636 * If this is a hot spare not currently in use or level 2 cache
637 * device, add it to the list of names to translate, but don't do
638 * anything else.
639 */
640 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
641 &state) == 0 &&
642 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
643 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
644 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
645 return (-1);
646
647 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
648 free(ne);
649 return (-1);
650 }
651 ne->ne_guid = vdev_guid;
44867b6d 652 ne->ne_order = order;
7d90f569 653 ne->ne_num_labels = num_labels;
34dc7c2f
BB
654 ne->ne_next = pl->names;
655 pl->names = ne;
656 return (0);
657 }
658
659 /*
660 * If we have a valid config but cannot read any of these fields, then
661 * it means we have a half-initialized label. In vdev_label_init()
662 * we write a label with txg == 0 so that we can identify the device
663 * in case the user refers to the same disk later on. If we fail to
664 * create the pool, we'll be left with a label in this state
665 * which should not be considered part of a valid pool.
666 */
667 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
668 &pool_guid) != 0 ||
669 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
670 &vdev_guid) != 0 ||
671 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
672 &top_guid) != 0 ||
673 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
674 &txg) != 0 || txg == 0) {
675 nvlist_free(config);
676 return (0);
677 }
678
679 /*
680 * First, see if we know about this pool. If not, then add it to the
681 * list of known pools.
682 */
683 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
684 if (pe->pe_guid == pool_guid)
685 break;
686 }
687
688 if (pe == NULL) {
689 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
690 nvlist_free(config);
691 return (-1);
692 }
693 pe->pe_guid = pool_guid;
694 pe->pe_next = pl->pools;
695 pl->pools = pe;
696 }
697
698 /*
699 * Second, see if we know about this toplevel vdev. Add it if its
700 * missing.
701 */
702 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
703 if (ve->ve_guid == top_guid)
704 break;
705 }
706
707 if (ve == NULL) {
708 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
709 nvlist_free(config);
710 return (-1);
711 }
712 ve->ve_guid = top_guid;
713 ve->ve_next = pe->pe_vdevs;
714 pe->pe_vdevs = ve;
715 }
716
717 /*
718 * Third, see if we have a config with a matching transaction group. If
719 * so, then we do nothing. Otherwise, add it to the list of known
720 * configs.
721 */
722 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
723 if (ce->ce_txg == txg)
724 break;
725 }
726
727 if (ce == NULL) {
728 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
729 nvlist_free(config);
730 return (-1);
731 }
732 ce->ce_txg = txg;
733 ce->ce_config = config;
734 ce->ce_next = ve->ve_configs;
735 ve->ve_configs = ce;
736 } else {
737 nvlist_free(config);
738 }
739
740 /*
741 * At this point we've successfully added our config to the list of
742 * known configs. The last thing to do is add the vdev guid -> path
743 * mappings so that we can fix up the configuration as necessary before
744 * doing the import.
745 */
746 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
747 return (-1);
748
749 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
750 free(ne);
751 return (-1);
752 }
753
754 ne->ne_guid = vdev_guid;
44867b6d 755 ne->ne_order = order;
7d90f569 756 ne->ne_num_labels = num_labels;
34dc7c2f
BB
757 ne->ne_next = pl->names;
758 pl->names = ne;
759
760 return (0);
761}
762
763/*
764 * Returns true if the named pool matches the given GUID.
765 */
766static int
767pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
768 boolean_t *isactive)
769{
770 zpool_handle_t *zhp;
771 uint64_t theguid;
772
773 if (zpool_open_silent(hdl, name, &zhp) != 0)
774 return (-1);
775
776 if (zhp == NULL) {
777 *isactive = B_FALSE;
778 return (0);
779 }
780
781 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
782 &theguid) == 0);
783
784 zpool_close(zhp);
785
786 *isactive = (theguid == guid);
787 return (0);
788}
789
790static nvlist_t *
791refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
792{
793 nvlist_t *nvl;
13fe0198 794 zfs_cmd_t zc = {"\0"};
34dc7c2f
BB
795 int err;
796
797 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
798 return (NULL);
799
800 if (zcmd_alloc_dst_nvlist(hdl, &zc,
801 zc.zc_nvlist_conf_size * 2) != 0) {
802 zcmd_free_nvlists(&zc);
803 return (NULL);
804 }
805
806 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
807 &zc)) != 0 && errno == ENOMEM) {
808 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
809 zcmd_free_nvlists(&zc);
810 return (NULL);
811 }
812 }
813
814 if (err) {
34dc7c2f
BB
815 zcmd_free_nvlists(&zc);
816 return (NULL);
817 }
818
819 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
820 zcmd_free_nvlists(&zc);
821 return (NULL);
822 }
823
824 zcmd_free_nvlists(&zc);
825 return (nvl);
826}
827
428870ff
BB
828/*
829 * Determine if the vdev id is a hole in the namespace.
830 */
831boolean_t
832vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
833{
d6320ddb
BB
834 int c;
835
836 for (c = 0; c < holes; c++) {
428870ff
BB
837
838 /* Top-level is a hole */
839 if (hole_array[c] == id)
840 return (B_TRUE);
841 }
842 return (B_FALSE);
843}
844
34dc7c2f
BB
845/*
846 * Convert our list of pools into the definitive set of configurations. We
847 * start by picking the best config for each toplevel vdev. Once that's done,
848 * we assemble the toplevel vdevs into a full config for the pool. We make a
849 * pass to fix up any incorrect paths, and then add it to the main list to
850 * return to the user.
851 */
852static nvlist_t *
853get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
854{
855 pool_entry_t *pe;
856 vdev_entry_t *ve;
857 config_entry_t *ce;
d4ed6673 858 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot;
34dc7c2f
BB
859 nvlist_t **spares, **l2cache;
860 uint_t i, nspares, nl2cache;
861 boolean_t config_seen;
862 uint64_t best_txg;
3bc7e0fb
GW
863 char *name, *hostname = NULL;
864 uint64_t guid;
34dc7c2f
BB
865 uint_t children = 0;
866 nvlist_t **child = NULL;
428870ff
BB
867 uint_t holes;
868 uint64_t *hole_array, max_id;
34dc7c2f
BB
869 uint_t c;
870 boolean_t isactive;
871 uint64_t hostid;
872 nvlist_t *nvl;
428870ff 873 boolean_t valid_top_config = B_FALSE;
34dc7c2f
BB
874
875 if (nvlist_alloc(&ret, 0, 0) != 0)
876 goto nomem;
877
878 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
428870ff 879 uint64_t id, max_txg = 0;
34dc7c2f
BB
880
881 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
882 goto nomem;
883 config_seen = B_FALSE;
884
885 /*
886 * Iterate over all toplevel vdevs. Grab the pool configuration
887 * from the first one we find, and then go through the rest and
888 * add them as necessary to the 'vdevs' member of the config.
889 */
890 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
891
892 /*
893 * Determine the best configuration for this vdev by
894 * selecting the config with the latest transaction
895 * group.
896 */
897 best_txg = 0;
898 for (ce = ve->ve_configs; ce != NULL;
899 ce = ce->ce_next) {
900
901 if (ce->ce_txg > best_txg) {
902 tmp = ce->ce_config;
903 best_txg = ce->ce_txg;
904 }
905 }
906
428870ff
BB
907 /*
908 * We rely on the fact that the max txg for the
909 * pool will contain the most up-to-date information
910 * about the valid top-levels in the vdev namespace.
911 */
912 if (best_txg > max_txg) {
913 (void) nvlist_remove(config,
914 ZPOOL_CONFIG_VDEV_CHILDREN,
915 DATA_TYPE_UINT64);
916 (void) nvlist_remove(config,
917 ZPOOL_CONFIG_HOLE_ARRAY,
918 DATA_TYPE_UINT64_ARRAY);
919
920 max_txg = best_txg;
921 hole_array = NULL;
922 holes = 0;
923 max_id = 0;
924 valid_top_config = B_FALSE;
925
926 if (nvlist_lookup_uint64(tmp,
927 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
928 verify(nvlist_add_uint64(config,
929 ZPOOL_CONFIG_VDEV_CHILDREN,
930 max_id) == 0);
931 valid_top_config = B_TRUE;
932 }
933
934 if (nvlist_lookup_uint64_array(tmp,
935 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
936 &holes) == 0) {
937 verify(nvlist_add_uint64_array(config,
938 ZPOOL_CONFIG_HOLE_ARRAY,
939 hole_array, holes) == 0);
940 }
941 }
942
34dc7c2f
BB
943 if (!config_seen) {
944 /*
945 * Copy the relevant pieces of data to the pool
946 * configuration:
947 *
948 * version
3bc7e0fb
GW
949 * pool guid
950 * name
d96eb2b1 951 * comment (if available)
3bc7e0fb 952 * pool state
34dc7c2f
BB
953 * hostid (if available)
954 * hostname (if available)
955 */
295304be 956 uint64_t state, version;
3bc7e0fb
GW
957 char *comment = NULL;
958
959 version = fnvlist_lookup_uint64(tmp,
960 ZPOOL_CONFIG_VERSION);
961 fnvlist_add_uint64(config,
962 ZPOOL_CONFIG_VERSION, version);
963 guid = fnvlist_lookup_uint64(tmp,
964 ZPOOL_CONFIG_POOL_GUID);
965 fnvlist_add_uint64(config,
966 ZPOOL_CONFIG_POOL_GUID, guid);
967 name = fnvlist_lookup_string(tmp,
968 ZPOOL_CONFIG_POOL_NAME);
969 fnvlist_add_string(config,
970 ZPOOL_CONFIG_POOL_NAME, name);
34dc7c2f 971
d96eb2b1 972 if (nvlist_lookup_string(tmp,
3bc7e0fb
GW
973 ZPOOL_CONFIG_COMMENT, &comment) == 0)
974 fnvlist_add_string(config,
975 ZPOOL_CONFIG_COMMENT, comment);
d96eb2b1 976
3bc7e0fb
GW
977 state = fnvlist_lookup_uint64(tmp,
978 ZPOOL_CONFIG_POOL_STATE);
979 fnvlist_add_uint64(config,
980 ZPOOL_CONFIG_POOL_STATE, state);
d96eb2b1 981
34dc7c2f
BB
982 hostid = 0;
983 if (nvlist_lookup_uint64(tmp,
984 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3bc7e0fb
GW
985 fnvlist_add_uint64(config,
986 ZPOOL_CONFIG_HOSTID, hostid);
987 hostname = fnvlist_lookup_string(tmp,
988 ZPOOL_CONFIG_HOSTNAME);
989 fnvlist_add_string(config,
990 ZPOOL_CONFIG_HOSTNAME, hostname);
34dc7c2f
BB
991 }
992
993 config_seen = B_TRUE;
994 }
995
996 /*
997 * Add this top-level vdev to the child array.
998 */
999 verify(nvlist_lookup_nvlist(tmp,
1000 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
1001 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
1002 &id) == 0);
428870ff 1003
34dc7c2f
BB
1004 if (id >= children) {
1005 nvlist_t **newchild;
1006
1007 newchild = zfs_alloc(hdl, (id + 1) *
1008 sizeof (nvlist_t *));
1009 if (newchild == NULL)
1010 goto nomem;
1011
1012 for (c = 0; c < children; c++)
1013 newchild[c] = child[c];
1014
1015 free(child);
1016 child = newchild;
1017 children = id + 1;
1018 }
1019 if (nvlist_dup(nvtop, &child[id], 0) != 0)
1020 goto nomem;
1021
1022 }
1023
428870ff
BB
1024 /*
1025 * If we have information about all the top-levels then
1026 * clean up the nvlist which we've constructed. This
1027 * means removing any extraneous devices that are
1028 * beyond the valid range or adding devices to the end
1029 * of our array which appear to be missing.
1030 */
1031 if (valid_top_config) {
1032 if (max_id < children) {
1033 for (c = max_id; c < children; c++)
1034 nvlist_free(child[c]);
1035 children = max_id;
1036 } else if (max_id > children) {
1037 nvlist_t **newchild;
1038
1039 newchild = zfs_alloc(hdl, (max_id) *
1040 sizeof (nvlist_t *));
1041 if (newchild == NULL)
1042 goto nomem;
1043
1044 for (c = 0; c < children; c++)
1045 newchild[c] = child[c];
1046
1047 free(child);
1048 child = newchild;
1049 children = max_id;
1050 }
1051 }
1052
34dc7c2f
BB
1053 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1054 &guid) == 0);
1055
428870ff
BB
1056 /*
1057 * The vdev namespace may contain holes as a result of
1058 * device removal. We must add them back into the vdev
1059 * tree before we process any missing devices.
1060 */
1061 if (holes > 0) {
1062 ASSERT(valid_top_config);
1063
1064 for (c = 0; c < children; c++) {
1065 nvlist_t *holey;
1066
1067 if (child[c] != NULL ||
1068 !vdev_is_hole(hole_array, holes, c))
1069 continue;
1070
1071 if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
1072 0) != 0)
1073 goto nomem;
1074
1075 /*
1076 * Holes in the namespace are treated as
1077 * "hole" top-level vdevs and have a
1078 * special flag set on them.
1079 */
1080 if (nvlist_add_string(holey,
1081 ZPOOL_CONFIG_TYPE,
1082 VDEV_TYPE_HOLE) != 0 ||
1083 nvlist_add_uint64(holey,
1084 ZPOOL_CONFIG_ID, c) != 0 ||
1085 nvlist_add_uint64(holey,
0fdd8d64
MT
1086 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
1087 nvlist_free(holey);
428870ff 1088 goto nomem;
0fdd8d64 1089 }
428870ff
BB
1090 child[c] = holey;
1091 }
1092 }
1093
34dc7c2f
BB
1094 /*
1095 * Look for any missing top-level vdevs. If this is the case,
1096 * create a faked up 'missing' vdev as a placeholder. We cannot
1097 * simply compress the child array, because the kernel performs
1098 * certain checks to make sure the vdev IDs match their location
1099 * in the configuration.
1100 */
428870ff 1101 for (c = 0; c < children; c++) {
34dc7c2f
BB
1102 if (child[c] == NULL) {
1103 nvlist_t *missing;
1104 if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
1105 0) != 0)
1106 goto nomem;
1107 if (nvlist_add_string(missing,
1108 ZPOOL_CONFIG_TYPE,
1109 VDEV_TYPE_MISSING) != 0 ||
1110 nvlist_add_uint64(missing,
1111 ZPOOL_CONFIG_ID, c) != 0 ||
1112 nvlist_add_uint64(missing,
1113 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
1114 nvlist_free(missing);
1115 goto nomem;
1116 }
1117 child[c] = missing;
1118 }
428870ff 1119 }
34dc7c2f
BB
1120
1121 /*
1122 * Put all of this pool's top-level vdevs into a root vdev.
1123 */
1124 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
1125 goto nomem;
1126 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1127 VDEV_TYPE_ROOT) != 0 ||
1128 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
1129 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
1130 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1131 child, children) != 0) {
1132 nvlist_free(nvroot);
1133 goto nomem;
1134 }
1135
1136 for (c = 0; c < children; c++)
1137 nvlist_free(child[c]);
1138 free(child);
1139 children = 0;
1140 child = NULL;
1141
1142 /*
1143 * Go through and fix up any paths and/or devids based on our
1144 * known list of vdev GUID -> path mappings.
1145 */
1146 if (fix_paths(nvroot, pl->names) != 0) {
1147 nvlist_free(nvroot);
1148 goto nomem;
1149 }
1150
1151 /*
1152 * Add the root vdev to this pool's configuration.
1153 */
1154 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1155 nvroot) != 0) {
1156 nvlist_free(nvroot);
1157 goto nomem;
1158 }
1159 nvlist_free(nvroot);
1160
1161 /*
1162 * zdb uses this path to report on active pools that were
1163 * imported or created using -R.
1164 */
1165 if (active_ok)
1166 goto add_pool;
1167
1168 /*
1169 * Determine if this pool is currently active, in which case we
1170 * can't actually import it.
1171 */
1172 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1173 &name) == 0);
1174 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1175 &guid) == 0);
1176
1177 if (pool_active(hdl, name, guid, &isactive) != 0)
1178 goto error;
1179
1180 if (isactive) {
1181 nvlist_free(config);
1182 config = NULL;
1183 continue;
1184 }
1185
428870ff
BB
1186 if ((nvl = refresh_config(hdl, config)) == NULL) {
1187 nvlist_free(config);
1188 config = NULL;
1189 continue;
1190 }
34dc7c2f
BB
1191
1192 nvlist_free(config);
1193 config = nvl;
1194
1195 /*
1196 * Go through and update the paths for spares, now that we have
1197 * them.
1198 */
1199 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1200 &nvroot) == 0);
1201 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1202 &spares, &nspares) == 0) {
1203 for (i = 0; i < nspares; i++) {
1204 if (fix_paths(spares[i], pl->names) != 0)
1205 goto nomem;
1206 }
1207 }
1208
1209 /*
1210 * Update the paths for l2cache devices.
1211 */
1212 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1213 &l2cache, &nl2cache) == 0) {
1214 for (i = 0; i < nl2cache; i++) {
1215 if (fix_paths(l2cache[i], pl->names) != 0)
1216 goto nomem;
1217 }
1218 }
1219
1220 /*
1221 * Restore the original information read from the actual label.
1222 */
1223 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
1224 DATA_TYPE_UINT64);
1225 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
1226 DATA_TYPE_STRING);
1227 if (hostid != 0) {
1228 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
1229 hostid) == 0);
1230 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
1231 hostname) == 0);
1232 }
1233
1234add_pool:
1235 /*
1236 * Add this pool to the list of configs.
1237 */
1238 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1239 &name) == 0);
1240 if (nvlist_add_nvlist(ret, name, config) != 0)
1241 goto nomem;
1242
1243 nvlist_free(config);
1244 config = NULL;
1245 }
1246
1247 return (ret);
1248
1249nomem:
1250 (void) no_memory(hdl);
1251error:
1252 nvlist_free(config);
1253 nvlist_free(ret);
1254 for (c = 0; c < children; c++)
1255 nvlist_free(child[c]);
1256 free(child);
1257
1258 return (NULL);
1259}
1260
1261/*
1262 * Return the offset of the given label.
1263 */
1264static uint64_t
1265label_offset(uint64_t size, int l)
1266{
1267 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
1268 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
1269 0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
1270}
1271
1272/*
1273 * Given a file descriptor, read the label information and return an nvlist
7d90f569
BB
1274 * describing the configuration, if there is one. The number of valid
1275 * labels found will be returned in num_labels when non-NULL.
34dc7c2f
BB
1276 */
1277int
7d90f569 1278zpool_read_label(int fd, nvlist_t **config, int *num_labels)
34dc7c2f
BB
1279{
1280 struct stat64 statbuf;
7d90f569 1281 int l, count = 0;
34dc7c2f 1282 vdev_label_t *label;
7d90f569
BB
1283 nvlist_t *expected_config = NULL;
1284 uint64_t expected_guid = 0, size;
34dc7c2f
BB
1285
1286 *config = NULL;
1287
ff3510c1 1288 if (fstat64_blk(fd, &statbuf) == -1)
34dc7c2f
BB
1289 return (0);
1290 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1291
1292 if ((label = malloc(sizeof (vdev_label_t))) == NULL)
1293 return (-1);
1294
1295 for (l = 0; l < VDEV_LABELS; l++) {
7d90f569
BB
1296 uint64_t state, guid, txg;
1297
b128c09f 1298 if (pread64(fd, label, sizeof (vdev_label_t),
34dc7c2f
BB
1299 label_offset(size, l)) != sizeof (vdev_label_t))
1300 continue;
1301
1302 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
1303 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
1304 continue;
1305
7d90f569
BB
1306 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID,
1307 &guid) != 0 || guid == 0) {
1308 nvlist_free(*config);
1309 continue;
1310 }
1311
34dc7c2f
BB
1312 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
1313 &state) != 0 || state > POOL_STATE_L2CACHE) {
1314 nvlist_free(*config);
1315 continue;
1316 }
1317
1318 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
1319 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
1320 &txg) != 0 || txg == 0)) {
1321 nvlist_free(*config);
1322 continue;
1323 }
1324
7d90f569
BB
1325 if (expected_guid) {
1326 if (expected_guid == guid)
1327 count++;
1328
1329 nvlist_free(*config);
1330 } else {
1331 expected_config = *config;
1332 expected_guid = guid;
1333 count++;
1334 }
34dc7c2f
BB
1335 }
1336
7d90f569
BB
1337 if (num_labels != NULL)
1338 *num_labels = count;
1339
34dc7c2f 1340 free(label);
7d90f569
BB
1341 *config = expected_config;
1342
34dc7c2f
BB
1343 return (0);
1344}
1345
519129ff 1346typedef struct rdsk_node {
8a39abaa
BB
1347 char *rn_name; /* Full path to device */
1348 int rn_order; /* Preferred order (low to high) */
1349 int rn_num_labels; /* Number of valid labels */
519129ff 1350 libzfs_handle_t *rn_hdl;
8a39abaa 1351 nvlist_t *rn_config; /* Label config */
519129ff
BB
1352 avl_tree_t *rn_avl;
1353 avl_node_t rn_node;
8a39abaa
BB
1354 kmutex_t *rn_lock;
1355 boolean_t rn_labelpaths;
519129ff
BB
1356} rdsk_node_t;
1357
1358static int
1359slice_cache_compare(const void *arg1, const void *arg2)
1360{
1361 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name;
1362 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name;
1363 char *nm1slice, *nm2slice;
1364 int rv;
1365
1366 /*
1367 * partitions one and three (slices zero and two) are the most
1368 * likely to provide results, so put those first
1369 */
1370 nm1slice = strstr(nm1, "part1");
1371 nm2slice = strstr(nm2, "part1");
1372 if (nm1slice && !nm2slice) {
1373 return (-1);
1374 }
1375 if (!nm1slice && nm2slice) {
1376 return (1);
1377 }
1378 nm1slice = strstr(nm1, "part3");
1379 nm2slice = strstr(nm2, "part3");
1380 if (nm1slice && !nm2slice) {
1381 return (-1);
1382 }
1383 if (!nm1slice && nm2slice) {
1384 return (1);
1385 }
1386
1387 rv = strcmp(nm1, nm2);
1388 if (rv == 0)
1389 return (0);
1390 return (rv > 0 ? 1 : -1);
1391}
1392
8fc5674c
NB
1393static boolean_t
1394is_watchdog_dev(char *dev)
1395{
1396 /* For 'watchdog' dev */
1397 if (strcmp(dev, "watchdog") == 0)
1398 return (B_TRUE);
1399
1400 /* For 'watchdog<digit><whatever> */
1401 if (strstr(dev, "watchdog") == dev && isdigit(dev[8]))
1402 return (B_TRUE);
1403
1404 return (B_FALSE);
1405}
1406
8a39abaa
BB
1407static int
1408label_paths_impl(libzfs_handle_t *hdl, nvlist_t *nvroot, uint64_t pool_guid,
1409 uint64_t vdev_guid, char **path, char **devid)
1410{
1411 nvlist_t **child;
1412 uint_t c, children;
1413 uint64_t guid;
1414 char *val;
1415 int error;
1416
1417 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1418 &child, &children) == 0) {
1419 for (c = 0; c < children; c++) {
1420 error = label_paths_impl(hdl, child[c],
1421 pool_guid, vdev_guid, path, devid);
1422 if (error)
1423 return (error);
1424 }
1425 return (0);
1426 }
1427
1428 if (nvroot == NULL)
1429 return (0);
1430
1431 error = nvlist_lookup_uint64(nvroot, ZPOOL_CONFIG_GUID, &guid);
1432 if ((error != 0) || (guid != vdev_guid))
1433 return (0);
1434
1435 error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_PATH, &val);
1436 if (error == 0)
1437 *path = val;
1438
1439 error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_DEVID, &val);
1440 if (error == 0)
1441 *devid = val;
1442
1443 return (0);
1444}
1445
1446/*
1447 * Given a disk label fetch the ZPOOL_CONFIG_PATH and ZPOOL_CONFIG_DEVID
1448 * and store these strings as config_path and devid_path respectively.
1449 * The returned pointers are only valid as long as label remains valid.
1450 */
1451static int
1452label_paths(libzfs_handle_t *hdl, nvlist_t *label, char **path, char **devid)
1453{
1454 nvlist_t *nvroot;
1455 uint64_t pool_guid;
1456 uint64_t vdev_guid;
1457
1458 *path = NULL;
1459 *devid = NULL;
1460
1461 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1462 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &pool_guid) ||
1463 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &vdev_guid))
1464 return (ENOENT);
1465
1466 return (label_paths_impl(hdl, nvroot, pool_guid, vdev_guid, path,
1467 devid));
1468}
1469
519129ff
BB
1470static void
1471zpool_open_func(void *arg)
1472{
1473 rdsk_node_t *rn = arg;
8a39abaa 1474 libzfs_handle_t *hdl = rn->rn_hdl;
519129ff
BB
1475 struct stat64 statbuf;
1476 nvlist_t *config;
8a39abaa
BB
1477 char *bname, *dupname;
1478 int error;
519129ff
BB
1479 int num_labels;
1480 int fd;
1481
519129ff
BB
1482 /*
1483 * Skip devices with well known prefixes there can be side effects
1484 * when opening devices which need to be avoided.
1485 *
519129ff 1486 * hpet - High Precision Event Timer
519129ff
BB
1487 * watchdog - Watchdog must be closed in a special way.
1488 */
8a39abaa
BB
1489 dupname = zfs_strdup(hdl, rn->rn_name);
1490 bname = basename(dupname);
1491 error = ((strcmp(bname, "hpet") == 0) || is_watchdog_dev(bname));
1492 free(dupname);
1493 if (error)
519129ff
BB
1494 return;
1495
1496 /*
1497 * Ignore failed stats. We only want regular files and block devices.
1498 */
8a39abaa 1499 if (stat64(rn->rn_name, &statbuf) != 0 ||
519129ff
BB
1500 (!S_ISREG(statbuf.st_mode) && !S_ISBLK(statbuf.st_mode)))
1501 return;
1502
8a39abaa 1503 if ((fd = open(rn->rn_name, O_RDONLY)) < 0)
519129ff 1504 return;
8a39abaa 1505
519129ff 1506 /*
8a39abaa 1507 * This file is too small to hold a zpool
519129ff 1508 */
519129ff
BB
1509 if (S_ISREG(statbuf.st_mode) &&
1510 statbuf.st_size < SPA_MINDEVSIZE) {
1511 (void) close(fd);
1512 return;
519129ff
BB
1513 }
1514
1515 if ((zpool_read_label(fd, &config, &num_labels)) != 0) {
1516 (void) close(fd);
519129ff
BB
1517 return;
1518 }
1519
1520 if (num_labels == 0) {
1521 (void) close(fd);
1522 nvlist_free(config);
1523 return;
1524 }
1525
1526 (void) close(fd);
1527
1528 rn->rn_config = config;
1529 rn->rn_num_labels = num_labels;
8a39abaa
BB
1530
1531 /*
1532 * Add additional entries for paths described by this label.
1533 */
1534 if (rn->rn_labelpaths) {
1535 char *path = NULL;
1536 char *devid = NULL;
1537 rdsk_node_t *slice;
1538 avl_index_t where;
1539 int error;
1540
1541 if (label_paths(rn->rn_hdl, rn->rn_config, &path, &devid))
1542 return;
1543
1544 /*
1545 * Allow devlinks to stabilize so all paths are available.
1546 */
1547 zpool_label_disk_wait(rn->rn_name, DISK_LABEL_WAIT);
1548
1549 if (path != NULL) {
1550 slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1551 slice->rn_name = zfs_strdup(hdl, path);
1552 slice->rn_avl = rn->rn_avl;
1553 slice->rn_hdl = hdl;
1554 slice->rn_order = 1;
1555 slice->rn_labelpaths = B_FALSE;
1556 mutex_enter(rn->rn_lock);
1557 if (avl_find(rn->rn_avl, slice, &where)) {
1558 mutex_exit(rn->rn_lock);
1559 free(slice->rn_name);
1560 free(slice);
1561 } else {
1562 avl_insert(rn->rn_avl, slice, where);
1563 mutex_exit(rn->rn_lock);
1564 zpool_open_func(slice);
1565 }
1566 }
1567
1568 if (devid != NULL) {
1569 slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1570 error = asprintf(&slice->rn_name, "%s%s",
1571 DEV_BYID_PATH, devid);
1572 if (error == -1) {
1573 free(slice);
1574 return;
1575 }
1576
1577 slice->rn_avl = rn->rn_avl;
1578 slice->rn_hdl = hdl;
1579 slice->rn_order = 2;
1580 slice->rn_labelpaths = B_FALSE;
1581 mutex_enter(rn->rn_lock);
1582 if (avl_find(rn->rn_avl, slice, &where)) {
1583 mutex_exit(rn->rn_lock);
1584 free(slice->rn_name);
1585 free(slice);
1586 } else {
1587 avl_insert(rn->rn_avl, slice, where);
1588 mutex_exit(rn->rn_lock);
1589 zpool_open_func(slice);
1590 }
1591 }
1592 }
519129ff
BB
1593}
1594
51a3ae72
DK
1595/*
1596 * Given a file descriptor, clear (zero) the label information. This function
131cc95c
DK
1597 * is used in the appliance stack as part of the ZFS sysevent module and
1598 * to implement the "zpool labelclear" command.
51a3ae72
DK
1599 */
1600int
1601zpool_clear_label(int fd)
1602{
1603 struct stat64 statbuf;
1604 int l;
1605 vdev_label_t *label;
1606 uint64_t size;
1607
1608 if (fstat64_blk(fd, &statbuf) == -1)
1609 return (0);
1610 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1611
1612 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1613 return (-1);
1614
1615 for (l = 0; l < VDEV_LABELS; l++) {
1616 if (pwrite64(fd, label, sizeof (vdev_label_t),
4def05f8
RY
1617 label_offset(size, l)) != sizeof (vdev_label_t)) {
1618 free(label);
51a3ae72 1619 return (-1);
4def05f8 1620 }
51a3ae72
DK
1621 }
1622
1623 free(label);
1624 return (0);
1625}
1626
d603ed6c 1627/*
8a39abaa
BB
1628 * Scan a list of directories for zfs devices.
1629 */
1630static int
1631zpool_find_import_scan(libzfs_handle_t *hdl, kmutex_t *lock,
1632 avl_tree_t **slice_cache, char **dir, int dirs)
1633{
1634 avl_tree_t *cache;
1635 rdsk_node_t *slice;
1636 void *cookie;
1637 int i, error;
1638
1639 *slice_cache = NULL;
1640 cache = zfs_alloc(hdl, sizeof (avl_tree_t));
1641 avl_create(cache, slice_cache_compare, sizeof (rdsk_node_t),
1642 offsetof(rdsk_node_t, rn_node));
1643
1644 for (i = 0; i < dirs; i++) {
1645 char path[MAXPATHLEN];
1646 struct dirent64 *dp;
1647 DIR *dirp;
1648
1649 if (realpath(dir[i], path) == NULL) {
1650 error = errno;
1651 if (error == ENOENT)
1652 continue;
1653
1654 zfs_error_aux(hdl, strerror(error));
1655 (void) zfs_error_fmt(hdl, EZFS_BADPATH, dgettext(
1656 TEXT_DOMAIN, "cannot resolve path '%s'"), dir[i]);
1657 goto error;
1658 }
1659
1660 dirp = opendir(path);
1661 if (dirp == NULL) {
1662 error = errno;
1663 zfs_error_aux(hdl, strerror(error));
1664 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1665 dgettext(TEXT_DOMAIN, "cannot open '%s'"), path);
1666 goto error;
1667 }
1668
1669 while ((dp = readdir64(dirp)) != NULL) {
1670 const char *name = dp->d_name;
1671 if (name[0] == '.' &&
1672 (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1673 continue;
1674
1675 slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1676 error = asprintf(&slice->rn_name, "%s/%s", path, name);
1677 if (error == -1) {
1678 free(slice);
1679 continue;
1680 }
1681 slice->rn_lock = lock;
1682 slice->rn_avl = cache;
1683 slice->rn_hdl = hdl;
1684 slice->rn_order = i+1;
1685 slice->rn_labelpaths = B_FALSE;
1686 mutex_enter(lock);
1687 avl_add(cache, slice);
1688 mutex_exit(lock);
1689 }
1690
1691 (void) closedir(dirp);
1692 }
1693
1694 *slice_cache = cache;
1695 return (0);
1696
1697error:
1698 while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) {
1699 free(slice->rn_name);
1700 free(slice);
1701 }
1702 free(cache);
1703
1704 return (error);
1705}
1706
1707/*
1708 * Use libblkid to quickly enumerate all known zfs devices.
d603ed6c 1709 */
428870ff 1710static int
8a39abaa
BB
1711zpool_find_import_blkid(libzfs_handle_t *hdl, kmutex_t *lock,
1712 avl_tree_t **slice_cache)
428870ff 1713{
8a39abaa 1714 rdsk_node_t *slice;
d603ed6c
BB
1715 blkid_cache cache;
1716 blkid_dev_iterate iter;
1717 blkid_dev dev;
8a39abaa 1718 int error;
428870ff 1719
8a39abaa
BB
1720 *slice_cache = NULL;
1721
1722 error = blkid_get_cache(&cache, NULL);
1723 if (error != 0)
1724 return (error);
428870ff 1725
8a39abaa
BB
1726 error = blkid_probe_all_new(cache);
1727 if (error != 0) {
1728 blkid_put_cache(cache);
1729 return (error);
428870ff 1730 }
428870ff 1731
d603ed6c
BB
1732 iter = blkid_dev_iterate_begin(cache);
1733 if (iter == NULL) {
8a39abaa
BB
1734 blkid_put_cache(cache);
1735 return (EINVAL);
d603ed6c 1736 }
428870ff 1737
8a39abaa
BB
1738 error = blkid_dev_set_search(iter, "TYPE", "zfs_member");
1739 if (error != 0) {
1740 blkid_dev_iterate_end(iter);
1741 blkid_put_cache(cache);
1742 return (error);
428870ff 1743 }
428870ff 1744
8a39abaa
BB
1745 *slice_cache = zfs_alloc(hdl, sizeof (avl_tree_t));
1746 avl_create(*slice_cache, slice_cache_compare, sizeof (rdsk_node_t),
1747 offsetof(rdsk_node_t, rn_node));
428870ff 1748
8a39abaa
BB
1749 while (blkid_dev_next(iter, &dev) == 0) {
1750 slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1751 slice->rn_name = zfs_strdup(hdl, blkid_dev_devname(dev));
1752 slice->rn_lock = lock;
1753 slice->rn_avl = *slice_cache;
1754 slice->rn_hdl = hdl;
1755 slice->rn_order = 100;
1756 slice->rn_labelpaths = B_TRUE;
1757 mutex_enter(lock);
1758 avl_add(*slice_cache, slice);
1759 mutex_exit(lock);
428870ff
BB
1760 }
1761
d603ed6c 1762 blkid_dev_iterate_end(iter);
d603ed6c 1763 blkid_put_cache(cache);
8a39abaa
BB
1764
1765 return (0);
428870ff
BB
1766}
1767
eac47204 1768char *
44867b6d
BB
1769zpool_default_import_path[DEFAULT_IMPORT_PATH_SIZE] = {
1770 "/dev/disk/by-vdev", /* Custom rules, use first if they exist */
44867b6d 1771 "/dev/mapper", /* Use multipath devices before components */
95003f70
TC
1772 "/dev/disk/by-partlabel", /* Single unique entry set by user */
1773 "/dev/disk/by-partuuid", /* Generated partition uuid */
1774 "/dev/disk/by-label", /* Custom persistent labels */
44867b6d
BB
1775 "/dev/disk/by-uuid", /* Single unique entry and persistent */
1776 "/dev/disk/by-id", /* May be multiple entries and persistent */
1777 "/dev/disk/by-path", /* Encodes physical location and persistent */
44867b6d
BB
1778 "/dev" /* UNSAFE device names will change */
1779};
1780
34dc7c2f
BB
1781/*
1782 * Given a list of directories to search, find all pools stored on disk. This
1783 * includes partial pools which are not available to import. If no args are
1784 * given (argc is 0), then the default directory (/dev/dsk) is searched.
b128c09f
BB
1785 * poolname or guid (but not both) are provided by the caller when trying
1786 * to import a specific pool.
34dc7c2f 1787 */
b128c09f 1788static nvlist_t *
428870ff 1789zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
34dc7c2f 1790{
519129ff 1791 nvlist_t *ret = NULL;
34dc7c2f
BB
1792 pool_list_t pools = { 0 };
1793 pool_entry_t *pe, *penext;
1794 vdev_entry_t *ve, *venext;
1795 config_entry_t *ce, *cenext;
1796 name_entry_t *ne, *nenext;
8a39abaa
BB
1797 kmutex_t lock;
1798 avl_tree_t *cache;
519129ff
BB
1799 rdsk_node_t *slice;
1800 void *cookie;
8a39abaa 1801 taskq_t *t;
d603ed6c
BB
1802
1803 verify(iarg->poolname == NULL || iarg->guid == 0);
8a39abaa 1804 mutex_init(&lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 1805
7d11e37e 1806 /*
8a39abaa
BB
1807 * Locate pool member vdevs using libblkid or by directory scanning.
1808 * On success a newly allocated AVL tree which is populated with an
1809 * entry for each discovered vdev will be returned as the cache.
1810 * It's the callers responsibility to consume and destroy this tree.
7d11e37e 1811 */
8a39abaa
BB
1812 if (iarg->scan || iarg->paths != 0) {
1813 int dirs = iarg->paths;
1814 char **dir = iarg->path;
d603ed6c 1815
8a39abaa
BB
1816 if (dirs == 0) {
1817 dir = zpool_default_import_path;
1818 dirs = DEFAULT_IMPORT_PATH_SIZE;
1819 }
1820
1821 if (zpool_find_import_scan(hdl, &lock, &cache, dir, dirs) != 0)
1822 return (NULL);
1823 } else {
1824 if (zpool_find_import_blkid(hdl, &lock, &cache) != 0)
1825 return (NULL);
34dc7c2f
BB
1826 }
1827
1828 /*
8a39abaa
BB
1829 * Create a thread pool to parallelize the process of reading and
1830 * validating labels, a large number of threads can be used due to
1831 * minimal contention.
34dc7c2f 1832 */
8a39abaa
BB
1833 t = taskq_create("z_import", 2 * boot_ncpus, defclsyspri,
1834 2 * boot_ncpus, INT_MAX, TASKQ_PREPOPULATE);
44867b6d 1835
8a39abaa
BB
1836 for (slice = avl_first(cache); slice;
1837 (slice = avl_walk(cache, slice, AVL_AFTER)))
1838 (void) taskq_dispatch(t, zpool_open_func, slice, TQ_SLEEP);
44867b6d 1839
8a39abaa
BB
1840 taskq_wait(t);
1841 taskq_destroy(t);
34dc7c2f 1842
8a39abaa
BB
1843 /*
1844 * Process the cache filtering out any entries which are not
1845 * for the specificed pool then adding matching label configs.
1846 */
1847 cookie = NULL;
1848 while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) {
1849 if (slice->rn_config != NULL) {
1850 nvlist_t *config = slice->rn_config;
1851 boolean_t matched = B_TRUE;
1852
1853 if (iarg->poolname != NULL) {
1854 char *pname;
1855
1856 matched = nvlist_lookup_string(config,
1857 ZPOOL_CONFIG_POOL_NAME, &pname) == 0 &&
1858 strcmp(iarg->poolname, pname) == 0;
1859 } else if (iarg->guid != 0) {
1860 uint64_t this_guid;
1861
1862 matched = nvlist_lookup_uint64(config,
1863 ZPOOL_CONFIG_POOL_GUID, &this_guid) == 0 &&
1864 iarg->guid == this_guid;
1865 }
1866 if (!matched) {
1867 nvlist_free(config);
1868 } else {
1869 add_config(hdl, &pools,
1870 slice->rn_name, slice->rn_order,
1871 slice->rn_num_labels, config);
34dc7c2f
BB
1872 }
1873 }
8a39abaa
BB
1874 free(slice->rn_name);
1875 free(slice);
34dc7c2f 1876 }
8a39abaa
BB
1877 avl_destroy(cache);
1878 free(cache);
1879 mutex_destroy(&lock);
34dc7c2f 1880
428870ff 1881 ret = get_configs(hdl, &pools, iarg->can_be_active);
34dc7c2f 1882
34dc7c2f
BB
1883 for (pe = pools.pools; pe != NULL; pe = penext) {
1884 penext = pe->pe_next;
1885 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1886 venext = ve->ve_next;
1887 for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1888 cenext = ce->ce_next;
8a5fc748 1889 nvlist_free(ce->ce_config);
34dc7c2f
BB
1890 free(ce);
1891 }
1892 free(ve);
1893 }
1894 free(pe);
1895 }
1896
1897 for (ne = pools.names; ne != NULL; ne = nenext) {
1898 nenext = ne->ne_next;
0fdd8d64 1899 free(ne->ne_name);
34dc7c2f
BB
1900 free(ne);
1901 }
1902
34dc7c2f
BB
1903 return (ret);
1904}
1905
b128c09f
BB
1906nvlist_t *
1907zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1908{
428870ff 1909 importargs_t iarg = { 0 };
b128c09f 1910
428870ff
BB
1911 iarg.paths = argc;
1912 iarg.path = argv;
b128c09f 1913
428870ff 1914 return (zpool_find_import_impl(hdl, &iarg));
b128c09f
BB
1915}
1916
34dc7c2f
BB
1917/*
1918 * Given a cache file, return the contents as a list of importable pools.
b128c09f
BB
1919 * poolname or guid (but not both) are provided by the caller when trying
1920 * to import a specific pool.
34dc7c2f
BB
1921 */
1922nvlist_t *
1923zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
b128c09f 1924 char *poolname, uint64_t guid)
34dc7c2f
BB
1925{
1926 char *buf;
1927 int fd;
1928 struct stat64 statbuf;
1929 nvlist_t *raw, *src, *dst;
1930 nvlist_t *pools;
1931 nvpair_t *elem;
1932 char *name;
b128c09f 1933 uint64_t this_guid;
34dc7c2f
BB
1934 boolean_t active;
1935
b128c09f
BB
1936 verify(poolname == NULL || guid == 0);
1937
34dc7c2f
BB
1938 if ((fd = open(cachefile, O_RDONLY)) < 0) {
1939 zfs_error_aux(hdl, "%s", strerror(errno));
1940 (void) zfs_error(hdl, EZFS_BADCACHE,
1941 dgettext(TEXT_DOMAIN, "failed to open cache file"));
1942 return (NULL);
1943 }
1944
1945 if (fstat64(fd, &statbuf) != 0) {
1946 zfs_error_aux(hdl, "%s", strerror(errno));
1947 (void) close(fd);
1948 (void) zfs_error(hdl, EZFS_BADCACHE,
1949 dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1950 return (NULL);
1951 }
1952
1953 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1954 (void) close(fd);
1955 return (NULL);
1956 }
1957
1958 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1959 (void) close(fd);
1960 free(buf);
1961 (void) zfs_error(hdl, EZFS_BADCACHE,
1962 dgettext(TEXT_DOMAIN,
1963 "failed to read cache file contents"));
1964 return (NULL);
1965 }
1966
1967 (void) close(fd);
1968
1969 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1970 free(buf);
1971 (void) zfs_error(hdl, EZFS_BADCACHE,
1972 dgettext(TEXT_DOMAIN,
1973 "invalid or corrupt cache file contents"));
1974 return (NULL);
1975 }
1976
1977 free(buf);
1978
1979 /*
1980 * Go through and get the current state of the pools and refresh their
1981 * state.
1982 */
1983 if (nvlist_alloc(&pools, 0, 0) != 0) {
1984 (void) no_memory(hdl);
1985 nvlist_free(raw);
1986 return (NULL);
1987 }
1988
1989 elem = NULL;
1990 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
ab2894e6 1991 src = fnvpair_value_nvlist(elem);
34dc7c2f 1992
ab2894e6 1993 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
b128c09f
BB
1994 if (poolname != NULL && strcmp(poolname, name) != 0)
1995 continue;
1996
ab2894e6
MA
1997 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
1998 if (guid != 0 && guid != this_guid)
1999 continue;
34dc7c2f 2000
b128c09f
BB
2001 if (pool_active(hdl, name, this_guid, &active) != 0) {
2002 nvlist_free(raw);
2003 nvlist_free(pools);
2004 return (NULL);
2005 }
34dc7c2f 2006
b128c09f
BB
2007 if (active)
2008 continue;
34dc7c2f 2009
b128c09f
BB
2010 if ((dst = refresh_config(hdl, src)) == NULL) {
2011 nvlist_free(raw);
2012 nvlist_free(pools);
2013 return (NULL);
2014 }
34dc7c2f 2015
b128c09f
BB
2016 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
2017 (void) no_memory(hdl);
34dc7c2f 2018 nvlist_free(dst);
b128c09f
BB
2019 nvlist_free(raw);
2020 nvlist_free(pools);
2021 return (NULL);
34dc7c2f 2022 }
b128c09f 2023 nvlist_free(dst);
34dc7c2f
BB
2024 }
2025
2026 nvlist_free(raw);
2027 return (pools);
2028}
2029
428870ff
BB
2030static int
2031name_or_guid_exists(zpool_handle_t *zhp, void *data)
2032{
2033 importargs_t *import = data;
2034 int found = 0;
2035
2036 if (import->poolname != NULL) {
2037 char *pool_name;
2038
2039 verify(nvlist_lookup_string(zhp->zpool_config,
2040 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
2041 if (strcmp(pool_name, import->poolname) == 0)
2042 found = 1;
2043 } else {
2044 uint64_t pool_guid;
2045
2046 verify(nvlist_lookup_uint64(zhp->zpool_config,
2047 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
2048 if (pool_guid == import->guid)
2049 found = 1;
2050 }
2051
2052 zpool_close(zhp);
2053 return (found);
2054}
2055
2056nvlist_t *
2057zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
2058{
2059 verify(import->poolname == NULL || import->guid == 0);
2060
2061 if (import->unique)
2062 import->exists = zpool_iter(hdl, name_or_guid_exists, import);
2063
2064 if (import->cachefile != NULL)
2065 return (zpool_find_import_cached(hdl, import->cachefile,
2066 import->poolname, import->guid));
2067
2068 return (zpool_find_import_impl(hdl, import));
2069}
34dc7c2f
BB
2070
2071boolean_t
2072find_guid(nvlist_t *nv, uint64_t guid)
2073{
2074 uint64_t tmp;
2075 nvlist_t **child;
2076 uint_t c, children;
2077
2078 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
2079 if (tmp == guid)
2080 return (B_TRUE);
2081
2082 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2083 &child, &children) == 0) {
2084 for (c = 0; c < children; c++)
2085 if (find_guid(child[c], guid))
2086 return (B_TRUE);
2087 }
2088
2089 return (B_FALSE);
2090}
2091
2092typedef struct aux_cbdata {
2093 const char *cb_type;
2094 uint64_t cb_guid;
2095 zpool_handle_t *cb_zhp;
2096} aux_cbdata_t;
2097
2098static int
2099find_aux(zpool_handle_t *zhp, void *data)
2100{
2101 aux_cbdata_t *cbp = data;
2102 nvlist_t **list;
2103 uint_t i, count;
2104 uint64_t guid;
2105 nvlist_t *nvroot;
2106
2107 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
2108 &nvroot) == 0);
2109
2110 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
2111 &list, &count) == 0) {
2112 for (i = 0; i < count; i++) {
2113 verify(nvlist_lookup_uint64(list[i],
2114 ZPOOL_CONFIG_GUID, &guid) == 0);
2115 if (guid == cbp->cb_guid) {
2116 cbp->cb_zhp = zhp;
2117 return (1);
2118 }
2119 }
2120 }
2121
2122 zpool_close(zhp);
2123 return (0);
2124}
2125
2126/*
2127 * Determines if the pool is in use. If so, it returns true and the state of
2128 * the pool as well as the name of the pool. Both strings are allocated and
2129 * must be freed by the caller.
2130 */
2131int
2132zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
2133 boolean_t *inuse)
2134{
2135 nvlist_t *config;
2136 char *name;
2137 boolean_t ret;
2138 uint64_t guid, vdev_guid;
2139 zpool_handle_t *zhp;
2140 nvlist_t *pool_config;
2141 uint64_t stateval, isspare;
2142 aux_cbdata_t cb = { 0 };
2143 boolean_t isactive;
2144
2145 *inuse = B_FALSE;
2146
7d90f569 2147 if (zpool_read_label(fd, &config, NULL) != 0) {
34dc7c2f
BB
2148 (void) no_memory(hdl);
2149 return (-1);
2150 }
2151
2152 if (config == NULL)
2153 return (0);
2154
2155 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
2156 &stateval) == 0);
2157 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
2158 &vdev_guid) == 0);
2159
2160 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
2161 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
2162 &name) == 0);
2163 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
2164 &guid) == 0);
2165 }
2166
2167 switch (stateval) {
2168 case POOL_STATE_EXPORTED:
572e2857
BB
2169 /*
2170 * A pool with an exported state may in fact be imported
2171 * read-only, so check the in-core state to see if it's
2172 * active and imported read-only. If it is, set
2173 * its state to active.
2174 */
2175 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
02f8fe42
JJS
2176 (zhp = zpool_open_canfail(hdl, name)) != NULL) {
2177 if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
2178 stateval = POOL_STATE_ACTIVE;
2179
2180 /*
2181 * All we needed the zpool handle for is the
2182 * readonly prop check.
2183 */
2184 zpool_close(zhp);
2185 }
572e2857 2186
34dc7c2f
BB
2187 ret = B_TRUE;
2188 break;
2189
2190 case POOL_STATE_ACTIVE:
2191 /*
2192 * For an active pool, we have to determine if it's really part
2193 * of a currently active pool (in which case the pool will exist
2194 * and the guid will be the same), or whether it's part of an
2195 * active pool that was disconnected without being explicitly
2196 * exported.
2197 */
2198 if (pool_active(hdl, name, guid, &isactive) != 0) {
2199 nvlist_free(config);
2200 return (-1);
2201 }
2202
2203 if (isactive) {
2204 /*
2205 * Because the device may have been removed while
2206 * offlined, we only report it as active if the vdev is
2207 * still present in the config. Otherwise, pretend like
2208 * it's not in use.
2209 */
2210 if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
2211 (pool_config = zpool_get_config(zhp, NULL))
2212 != NULL) {
2213 nvlist_t *nvroot;
2214
2215 verify(nvlist_lookup_nvlist(pool_config,
2216 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2217 ret = find_guid(nvroot, vdev_guid);
2218 } else {
2219 ret = B_FALSE;
2220 }
2221
2222 /*
2223 * If this is an active spare within another pool, we
2224 * treat it like an unused hot spare. This allows the
2225 * user to create a pool with a hot spare that currently
2226 * in use within another pool. Since we return B_TRUE,
2227 * libdiskmgt will continue to prevent generic consumers
2228 * from using the device.
2229 */
2230 if (ret && nvlist_lookup_uint64(config,
2231 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
2232 stateval = POOL_STATE_SPARE;
2233
2234 if (zhp != NULL)
2235 zpool_close(zhp);
2236 } else {
2237 stateval = POOL_STATE_POTENTIALLY_ACTIVE;
2238 ret = B_TRUE;
2239 }
2240 break;
2241
2242 case POOL_STATE_SPARE:
2243 /*
2244 * For a hot spare, it can be either definitively in use, or
2245 * potentially active. To determine if it's in use, we iterate
2246 * over all pools in the system and search for one with a spare
2247 * with a matching guid.
2248 *
2249 * Due to the shared nature of spares, we don't actually report
2250 * the potentially active case as in use. This means the user
2251 * can freely create pools on the hot spares of exported pools,
2252 * but to do otherwise makes the resulting code complicated, and
2253 * we end up having to deal with this case anyway.
2254 */
2255 cb.cb_zhp = NULL;
2256 cb.cb_guid = vdev_guid;
2257 cb.cb_type = ZPOOL_CONFIG_SPARES;
2258 if (zpool_iter(hdl, find_aux, &cb) == 1) {
2259 name = (char *)zpool_get_name(cb.cb_zhp);
0fdd8d64 2260 ret = B_TRUE;
34dc7c2f 2261 } else {
0fdd8d64 2262 ret = B_FALSE;
34dc7c2f
BB
2263 }
2264 break;
2265
2266 case POOL_STATE_L2CACHE:
2267
2268 /*
2269 * Check if any pool is currently using this l2cache device.
2270 */
2271 cb.cb_zhp = NULL;
2272 cb.cb_guid = vdev_guid;
2273 cb.cb_type = ZPOOL_CONFIG_L2CACHE;
2274 if (zpool_iter(hdl, find_aux, &cb) == 1) {
2275 name = (char *)zpool_get_name(cb.cb_zhp);
0fdd8d64 2276 ret = B_TRUE;
34dc7c2f 2277 } else {
0fdd8d64 2278 ret = B_FALSE;
34dc7c2f
BB
2279 }
2280 break;
2281
2282 default:
2283 ret = B_FALSE;
2284 }
2285
2286
2287 if (ret) {
2288 if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
2289 if (cb.cb_zhp)
2290 zpool_close(cb.cb_zhp);
2291 nvlist_free(config);
2292 return (-1);
2293 }
2294 *state = (pool_state_t)stateval;
2295 }
2296
2297 if (cb.cb_zhp)
2298 zpool_close(cb.cb_zhp);
2299
2300 nvlist_free(config);
2301 *inuse = ret;
2302 return (0);
2303}