]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/prio_tree.c
prio_tree: simplify prio_tree_expand()
[mirror_ubuntu-artful-kernel.git] / lib / prio_tree.c
CommitLineData
1da177e4
LT
1/*
2 * lib/prio_tree.c - priority search tree
3 *
4 * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu>
5 *
6 * This file is released under the GPL v2.
7 *
8 * Based on the radix priority search tree proposed by Edward M. McCreight
9 * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985
10 *
11 * 02Feb2004 Initial version
12 */
13
14#include <linux/init.h>
15#include <linux/mm.h>
16#include <linux/prio_tree.h>
17
18/*
19 * A clever mix of heap and radix trees forms a radix priority search tree (PST)
20 * which is useful for storing intervals, e.g, we can consider a vma as a closed
21 * interval of file pages [offset_begin, offset_end], and store all vmas that
22 * map a file in a PST. Then, using the PST, we can answer a stabbing query,
23 * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a
24 * given input interval X (a set of consecutive file pages), in "O(log n + m)"
25 * time where 'log n' is the height of the PST, and 'm' is the number of stored
26 * intervals (vmas) that overlap (map) with the input interval X (the set of
27 * consecutive file pages).
28 *
29 * In our implementation, we store closed intervals of the form [radix_index,
30 * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST
31 * is designed for storing intervals with unique radix indices, i.e., each
32 * interval have different radix_index. However, this limitation can be easily
33 * overcome by using the size, i.e., heap_index - radix_index, as part of the
34 * index, so we index the tree using [(radix_index,size), heap_index].
35 *
36 * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit
37 * machine, the maximum height of a PST can be 64. We can use a balanced version
38 * of the priority search tree to optimize the tree height, but the balanced
39 * tree proposed by McCreight is too complex and memory-hungry for our purpose.
40 */
41
42/*
43 * The following macros are used for implementing prio_tree for i_mmap
44 */
45
46#define RADIX_INDEX(vma) ((vma)->vm_pgoff)
47#define VMA_SIZE(vma) (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT)
48/* avoid overflow */
49#define HEAP_INDEX(vma) ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1))
50
51
52static void get_index(const struct prio_tree_root *root,
53 const struct prio_tree_node *node,
54 unsigned long *radix, unsigned long *heap)
55{
56 if (root->raw) {
57 struct vm_area_struct *vma = prio_tree_entry(
58 node, struct vm_area_struct, shared.prio_tree_node);
59
60 *radix = RADIX_INDEX(vma);
61 *heap = HEAP_INDEX(vma);
62 }
63 else {
64 *radix = node->start;
65 *heap = node->last;
66 }
67}
68
69static unsigned long index_bits_to_maxindex[BITS_PER_LONG];
70
71void __init prio_tree_init(void)
72{
73 unsigned int i;
74
75 for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++)
76 index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1;
77 index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL;
78}
79
80/*
81 * Maximum heap_index that can be stored in a PST with index_bits bits
82 */
83static inline unsigned long prio_tree_maxindex(unsigned int bits)
84{
85 return index_bits_to_maxindex[bits - 1];
86}
87
88/*
89 * Extend a priority search tree so that it can store a node with heap_index
90 * max_heap_index. In the worst case, this algorithm takes O((log n)^2).
91 * However, this function is used rarely and the common case performance is
92 * not bad.
93 */
94static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root,
95 struct prio_tree_node *node, unsigned long max_heap_index)
96{
742245d5 97 struct prio_tree_node *prev;
1da177e4
LT
98
99 if (max_heap_index > prio_tree_maxindex(root->index_bits))
100 root->index_bits++;
101
742245d5
XG
102 prev = node;
103 INIT_PRIO_TREE_NODE(node);
104
1da177e4 105 while (max_heap_index > prio_tree_maxindex(root->index_bits)) {
742245d5
XG
106 struct prio_tree_node *tmp = root->prio_tree_node;
107
1da177e4
LT
108 root->index_bits++;
109
110 if (prio_tree_empty(root))
111 continue;
112
742245d5
XG
113 prio_tree_remove(root, root->prio_tree_node);
114 INIT_PRIO_TREE_NODE(tmp);
1da177e4 115
742245d5
XG
116 prev->left = tmp;
117 tmp->parent = prev;
118 prev = tmp;
119 }
1da177e4
LT
120
121 if (!prio_tree_empty(root)) {
742245d5
XG
122 prev->left = root->prio_tree_node;
123 prev->left->parent = prev;
1da177e4
LT
124 }
125
126 root->prio_tree_node = node;
127 return node;
128}
129
130/*
131 * Replace a prio_tree_node with a new node and return the old node
132 */
133struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root,
134 struct prio_tree_node *old, struct prio_tree_node *node)
135{
136 INIT_PRIO_TREE_NODE(node);
137
138 if (prio_tree_root(old)) {
139 BUG_ON(root->prio_tree_node != old);
140 /*
141 * We can reduce root->index_bits here. However, it is complex
142 * and does not help much to improve performance (IMO).
143 */
1da177e4
LT
144 root->prio_tree_node = node;
145 } else {
146 node->parent = old->parent;
147 if (old->parent->left == old)
148 old->parent->left = node;
149 else
150 old->parent->right = node;
151 }
152
153 if (!prio_tree_left_empty(old)) {
154 node->left = old->left;
155 old->left->parent = node;
156 }
157
158 if (!prio_tree_right_empty(old)) {
159 node->right = old->right;
160 old->right->parent = node;
161 }
162
163 return old;
164}
165
166/*
167 * Insert a prio_tree_node @node into a radix priority search tree @root. The
168 * algorithm typically takes O(log n) time where 'log n' is the number of bits
169 * required to represent the maximum heap_index. In the worst case, the algo
170 * can take O((log n)^2) - check prio_tree_expand.
171 *
172 * If a prior node with same radix_index and heap_index is already found in
173 * the tree, then returns the address of the prior node. Otherwise, inserts
174 * @node into the tree and returns @node.
175 */
176struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root,
177 struct prio_tree_node *node)
178{
179 struct prio_tree_node *cur, *res = node;
180 unsigned long radix_index, heap_index;
181 unsigned long r_index, h_index, index, mask;
182 int size_flag = 0;
183
184 get_index(root, node, &radix_index, &heap_index);
185
186 if (prio_tree_empty(root) ||
187 heap_index > prio_tree_maxindex(root->index_bits))
188 return prio_tree_expand(root, node, heap_index);
189
190 cur = root->prio_tree_node;
191 mask = 1UL << (root->index_bits - 1);
192
193 while (mask) {
194 get_index(root, cur, &r_index, &h_index);
195
196 if (r_index == radix_index && h_index == heap_index)
197 return cur;
198
199 if (h_index < heap_index ||
200 (h_index == heap_index && r_index > radix_index)) {
201 struct prio_tree_node *tmp = node;
202 node = prio_tree_replace(root, cur, node);
203 cur = tmp;
204 /* swap indices */
205 index = r_index;
206 r_index = radix_index;
207 radix_index = index;
208 index = h_index;
209 h_index = heap_index;
210 heap_index = index;
211 }
212
213 if (size_flag)
214 index = heap_index - radix_index;
215 else
216 index = radix_index;
217
218 if (index & mask) {
219 if (prio_tree_right_empty(cur)) {
220 INIT_PRIO_TREE_NODE(node);
221 cur->right = node;
222 node->parent = cur;
223 return res;
224 } else
225 cur = cur->right;
226 } else {
227 if (prio_tree_left_empty(cur)) {
228 INIT_PRIO_TREE_NODE(node);
229 cur->left = node;
230 node->parent = cur;
231 return res;
232 } else
233 cur = cur->left;
234 }
235
236 mask >>= 1;
237
238 if (!mask) {
239 mask = 1UL << (BITS_PER_LONG - 1);
240 size_flag = 1;
241 }
242 }
243 /* Should not reach here */
244 BUG();
245 return NULL;
246}
247
248/*
249 * Remove a prio_tree_node @node from a radix priority search tree @root. The
250 * algorithm takes O(log n) time where 'log n' is the number of bits required
251 * to represent the maximum heap_index.
252 */
253void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node)
254{
255 struct prio_tree_node *cur;
256 unsigned long r_index, h_index_right, h_index_left;
257
258 cur = node;
259
260 while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) {
261 if (!prio_tree_left_empty(cur))
262 get_index(root, cur->left, &r_index, &h_index_left);
263 else {
264 cur = cur->right;
265 continue;
266 }
267
268 if (!prio_tree_right_empty(cur))
269 get_index(root, cur->right, &r_index, &h_index_right);
270 else {
271 cur = cur->left;
272 continue;
273 }
274
275 /* both h_index_left and h_index_right cannot be 0 */
276 if (h_index_left >= h_index_right)
277 cur = cur->left;
278 else
279 cur = cur->right;
280 }
281
282 if (prio_tree_root(cur)) {
283 BUG_ON(root->prio_tree_node != cur);
284 __INIT_PRIO_TREE_ROOT(root, root->raw);
285 return;
286 }
287
288 if (cur->parent->right == cur)
289 cur->parent->right = cur->parent;
290 else
291 cur->parent->left = cur->parent;
292
293 while (cur != node)
294 cur = prio_tree_replace(root, cur->parent, cur);
295}
296
f35368dd
XG
297static void iter_walk_down(struct prio_tree_iter *iter)
298{
299 iter->mask >>= 1;
300 if (iter->mask) {
301 if (iter->size_level)
302 iter->size_level++;
303 return;
304 }
305
306 if (iter->size_level) {
307 BUG_ON(!prio_tree_left_empty(iter->cur));
308 BUG_ON(!prio_tree_right_empty(iter->cur));
309 iter->size_level++;
310 iter->mask = ULONG_MAX;
311 } else {
312 iter->size_level = 1;
313 iter->mask = 1UL << (BITS_PER_LONG - 1);
314 }
315}
316
317static void iter_walk_up(struct prio_tree_iter *iter)
318{
319 if (iter->mask == ULONG_MAX)
320 iter->mask = 1UL;
321 else if (iter->size_level == 1)
322 iter->mask = 1UL;
323 else
324 iter->mask <<= 1;
325 if (iter->size_level)
326 iter->size_level--;
327 if (!iter->size_level && (iter->value & iter->mask))
328 iter->value ^= iter->mask;
329}
330
1da177e4
LT
331/*
332 * Following functions help to enumerate all prio_tree_nodes in the tree that
333 * overlap with the input interval X [radix_index, heap_index]. The enumeration
334 * takes O(log n + m) time where 'log n' is the height of the tree (which is
335 * proportional to # of bits required to represent the maximum heap_index) and
336 * 'm' is the number of prio_tree_nodes that overlap the interval X.
337 */
338
339static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter,
340 unsigned long *r_index, unsigned long *h_index)
341{
342 if (prio_tree_left_empty(iter->cur))
343 return NULL;
344
345 get_index(iter->root, iter->cur->left, r_index, h_index);
346
347 if (iter->r_index <= *h_index) {
348 iter->cur = iter->cur->left;
f35368dd 349 iter_walk_down(iter);
1da177e4
LT
350 return iter->cur;
351 }
352
353 return NULL;
354}
355
356static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter,
357 unsigned long *r_index, unsigned long *h_index)
358{
359 unsigned long value;
360
361 if (prio_tree_right_empty(iter->cur))
362 return NULL;
363
364 if (iter->size_level)
365 value = iter->value;
366 else
367 value = iter->value | iter->mask;
368
369 if (iter->h_index < value)
370 return NULL;
371
372 get_index(iter->root, iter->cur->right, r_index, h_index);
373
374 if (iter->r_index <= *h_index) {
375 iter->cur = iter->cur->right;
f35368dd 376 iter_walk_down(iter);
1da177e4
LT
377 return iter->cur;
378 }
379
380 return NULL;
381}
382
383static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter)
384{
385 iter->cur = iter->cur->parent;
f35368dd 386 iter_walk_up(iter);
1da177e4
LT
387 return iter->cur;
388}
389
390static inline int overlap(struct prio_tree_iter *iter,
391 unsigned long r_index, unsigned long h_index)
392{
393 return iter->h_index >= r_index && iter->r_index <= h_index;
394}
395
396/*
397 * prio_tree_first:
398 *
399 * Get the first prio_tree_node that overlaps with the interval [radix_index,
400 * heap_index]. Note that always radix_index <= heap_index. We do a pre-order
401 * traversal of the tree.
402 */
403static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter)
404{
405 struct prio_tree_root *root;
406 unsigned long r_index, h_index;
407
408 INIT_PRIO_TREE_ITER(iter);
409
410 root = iter->root;
411 if (prio_tree_empty(root))
412 return NULL;
413
414 get_index(root, root->prio_tree_node, &r_index, &h_index);
415
416 if (iter->r_index > h_index)
417 return NULL;
418
419 iter->mask = 1UL << (root->index_bits - 1);
420 iter->cur = root->prio_tree_node;
421
422 while (1) {
423 if (overlap(iter, r_index, h_index))
424 return iter->cur;
425
426 if (prio_tree_left(iter, &r_index, &h_index))
427 continue;
428
429 if (prio_tree_right(iter, &r_index, &h_index))
430 continue;
431
432 break;
433 }
434 return NULL;
435}
436
437/*
438 * prio_tree_next:
439 *
440 * Get the next prio_tree_node that overlaps with the input interval in iter
441 */
442struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter)
443{
444 unsigned long r_index, h_index;
445
446 if (iter->cur == NULL)
447 return prio_tree_first(iter);
448
449repeat:
450 while (prio_tree_left(iter, &r_index, &h_index))
451 if (overlap(iter, r_index, h_index))
452 return iter->cur;
453
454 while (!prio_tree_right(iter, &r_index, &h_index)) {
455 while (!prio_tree_root(iter->cur) &&
456 iter->cur->parent->right == iter->cur)
457 prio_tree_parent(iter);
458
459 if (prio_tree_root(iter->cur))
460 return NULL;
461
462 prio_tree_parent(iter);
463 }
464
465 if (overlap(iter, r_index, h_index))
466 return iter->cur;
467
468 goto repeat;
469}