]> git.proxmox.com Git - rustc.git/blame - library/core/src/cell.rs
New upstream version 1.67.1+dfsg1
[rustc.git] / library / core / src / cell.rs
CommitLineData
1a4d82fc
JJ
1//! Shareable mutable containers.
2//!
0531ce1d
XL
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Having several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - Having one mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
5869c6ff 14//! presence of aliasing. Both [`Cell<T>`] and [`RefCell<T>`] allow doing this in a single-threaded
0531ce1d 15//! way. However, neither `Cell<T>` nor `RefCell<T>` are thread safe (they do not implement
5869c6ff
XL
16//! [`Sync`]). If you need to do aliasing and mutation between multiple threads it is possible to
17//! use [`Mutex<T>`], [`RwLock<T>`] or [`atomic`] types.
0531ce1d 18//!
85aaf69f
SL
19//! Values of the `Cell<T>` and `RefCell<T>` types may be mutated through shared references (i.e.
20//! the common `&T` type), whereas most Rust types can only be mutated through unique (`&mut T`)
21//! references. We say that `Cell<T>` and `RefCell<T>` provide 'interior mutability', in contrast
22//! with typical Rust types that exhibit 'inherited mutability'.
1a4d82fc 23//!
8bb4bdeb
XL
24//! Cell types come in two flavors: `Cell<T>` and `RefCell<T>`. `Cell<T>` implements interior
25//! mutability by moving values in and out of the `Cell<T>`. To use references instead of values,
26//! one must use the `RefCell<T>` type, acquiring a write lock before mutating. `Cell<T>` provides
27//! methods to retrieve and change the current interior value:
28//!
5869c6ff
XL
29//! - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
30//! interior value.
31//! - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
32//! interior value with [`Default::default()`] and returns the replaced value.
33//! - For all types, the [`replace`](Cell::replace) method replaces the current interior value and
34//! returns the replaced value and the [`into_inner`](Cell::into_inner) method consumes the
35//! `Cell<T>` and returns the interior value. Additionally, the [`set`](Cell::set) method
36//! replaces the interior value, dropping the replaced value.
1a4d82fc 37//!
85aaf69f
SL
38//! `RefCell<T>` uses Rust's lifetimes to implement 'dynamic borrowing', a process whereby one can
39//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
40//! tracked 'at runtime', unlike Rust's native reference types which are entirely tracked
41//! statically, at compile time. Because `RefCell<T>` borrows are dynamic it is possible to attempt
bd371182
AL
42//! to borrow a value that is already mutably borrowed; when this happens it results in thread
43//! panic.
1a4d82fc
JJ
44//!
45//! # When to choose interior mutability
46//!
85aaf69f
SL
47//! The more common inherited mutability, where one must have unique access to mutate a value, is
48//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
49//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
50//! interior mutability is something of a last resort. Since cell types enable mutation where it
51//! would otherwise be disallowed though, there are occasions when interior mutability might be
52//! appropriate, or even *must* be used, e.g.
1a4d82fc 53//!
c1a9b12d 54//! * Introducing mutability 'inside' of something immutable
1a4d82fc 55//! * Implementation details of logically-immutable methods.
5869c6ff 56//! * Mutating implementations of [`Clone`].
1a4d82fc 57//!
c1a9b12d 58//! ## Introducing mutability 'inside' of something immutable
1a4d82fc 59//!
5869c6ff
XL
60//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
61//! be cloned and shared between multiple parties. Because the contained values may be
c1a9b12d
SL
62//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
63//! impossible to mutate data inside of these smart pointers at all.
1a4d82fc 64//!
85aaf69f
SL
65//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
66//! mutability:
1a4d82fc
JJ
67//!
68//! ```
dc9dc135 69//! use std::cell::{RefCell, RefMut};
1a4d82fc 70//! use std::collections::HashMap;
1a4d82fc
JJ
71//! use std::rc::Rc;
72//!
73//! fn main() {
74//! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
dc9dc135
XL
75//! // Create a new block to limit the scope of the dynamic borrow
76//! {
77//! let mut map: RefMut<_> = shared_map.borrow_mut();
78//! map.insert("africa", 92388);
79//! map.insert("kyoto", 11837);
80//! map.insert("piccadilly", 11826);
81//! map.insert("marbles", 38);
82//! }
83//!
84//! // Note that if we had not let the previous borrow of the cache fall out
85//! // of scope then the subsequent borrow would cause a dynamic thread panic.
86//! // This is the major hazard of using `RefCell`.
87//! let total: i32 = shared_map.borrow().values().sum();
5e7ed085 88//! println!("{total}");
1a4d82fc
JJ
89//! }
90//! ```
91//!
85aaf69f 92//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
5869c6ff 93//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
c1a9b12d 94//! multi-threaded situation.
85aaf69f 95//!
1a4d82fc
JJ
96//! ## Implementation details of logically-immutable methods
97//!
85aaf69f 98//! Occasionally it may be desirable not to expose in an API that there is mutation happening
0731742a 99//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
85aaf69f
SL
100//! forces the implementation to perform mutation; or because you must employ mutation to implement
101//! a trait method that was originally defined to take `&self`.
1a4d82fc
JJ
102//!
103//! ```
92a42be0 104//! # #![allow(dead_code)]
1a4d82fc
JJ
105//! use std::cell::RefCell;
106//!
107//! struct Graph {
85aaf69f
SL
108//! edges: Vec<(i32, i32)>,
109//! span_tree_cache: RefCell<Option<Vec<(i32, i32)>>>
1a4d82fc
JJ
110//! }
111//!
112//! impl Graph {
85aaf69f 113//! fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
dc9dc135
XL
114//! self.span_tree_cache.borrow_mut()
115//! .get_or_insert_with(|| self.calc_span_tree())
116//! .clone()
117//! }
1a4d82fc 118//!
dc9dc135
XL
119//! fn calc_span_tree(&self) -> Vec<(i32, i32)> {
120//! // Expensive computation goes here
121//! vec![]
1a4d82fc 122//! }
1a4d82fc 123//! }
1a4d82fc
JJ
124//! ```
125//!
62682a34 126//! ## Mutating implementations of `Clone`
1a4d82fc 127//!
85aaf69f 128//! This is simply a special - but common - case of the previous: hiding mutability for operations
5869c6ff
XL
129//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
130//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
131//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
132//! reference counts within a `Cell<T>`.
1a4d82fc
JJ
133//!
134//! ```
135//! use std::cell::Cell;
0531ce1d 136//! use std::ptr::NonNull;
f9f354fc 137//! use std::process::abort;
60c5eb7d 138//! use std::marker::PhantomData;
1a4d82fc 139//!
9e0c209e 140//! struct Rc<T: ?Sized> {
60c5eb7d
XL
141//! ptr: NonNull<RcBox<T>>,
142//! phantom: PhantomData<RcBox<T>>,
1a4d82fc
JJ
143//! }
144//!
9e0c209e
SL
145//! struct RcBox<T: ?Sized> {
146//! strong: Cell<usize>,
147//! refcount: Cell<usize>,
1a4d82fc 148//! value: T,
1a4d82fc
JJ
149//! }
150//!
9e0c209e 151//! impl<T: ?Sized> Clone for Rc<T> {
1a4d82fc 152//! fn clone(&self) -> Rc<T> {
9e0c209e 153//! self.inc_strong();
60c5eb7d
XL
154//! Rc {
155//! ptr: self.ptr,
156//! phantom: PhantomData,
157//! }
9e0c209e
SL
158//! }
159//! }
160//!
161//! trait RcBoxPtr<T: ?Sized> {
162//!
163//! fn inner(&self) -> &RcBox<T>;
164//!
165//! fn strong(&self) -> usize {
166//! self.inner().strong.get()
167//! }
168//!
169//! fn inc_strong(&self) {
170//! self.inner()
171//! .strong
172//! .set(self.strong()
173//! .checked_add(1)
f9f354fc 174//! .unwrap_or_else(|| abort() ));
1a4d82fc
JJ
175//! }
176//! }
9e0c209e
SL
177//!
178//! impl<T: ?Sized> RcBoxPtr<T> for Rc<T> {
179//! fn inner(&self) -> &RcBox<T> {
180//! unsafe {
7cac9316 181//! self.ptr.as_ref()
9e0c209e
SL
182//! }
183//! }
184//! }
1a4d82fc
JJ
185//! ```
186//!
5869c6ff
XL
187//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
188//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
189//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
190//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
cdc7bbd5 191//! [`atomic`]: crate::sync::atomic
1a4d82fc 192
85aaf69f 193#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 194
48663c56
XL
195use crate::cmp::Ordering;
196use crate::fmt::{self, Debug, Display};
923072b8 197use crate::marker::{PhantomData, Unsize};
48663c56 198use crate::mem;
dfeec247 199use crate::ops::{CoerceUnsized, Deref, DerefMut};
923072b8
FG
200use crate::ptr::{self, NonNull};
201
202mod lazy;
203mod once;
204
205#[unstable(feature = "once_cell", issue = "74465")]
206pub use lazy::LazyCell;
207#[unstable(feature = "once_cell", issue = "74465")]
208pub use once::OnceCell;
1a4d82fc 209
8bb4bdeb 210/// A mutable memory location.
85aaf69f 211///
3b2f2976
XL
212/// # Examples
213///
a1dfa0c6
XL
214/// In this example, you can see that `Cell<T>` enables mutation inside an
215/// immutable struct. In other words, it enables "interior mutability".
3b2f2976
XL
216///
217/// ```
218/// use std::cell::Cell;
219///
220/// struct SomeStruct {
221/// regular_field: u8,
222/// special_field: Cell<u8>,
223/// }
224///
225/// let my_struct = SomeStruct {
226/// regular_field: 0,
227/// special_field: Cell::new(1),
228/// };
229///
230/// let new_value = 100;
231///
a1dfa0c6 232/// // ERROR: `my_struct` is immutable
3b2f2976
XL
233/// // my_struct.regular_field = new_value;
234///
a1dfa0c6
XL
235/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
236/// // which can always be mutated
3b2f2976
XL
237/// my_struct.special_field.set(new_value);
238/// assert_eq!(my_struct.special_field.get(), new_value);
239/// ```
240///
29967ef6 241/// See the [module-level documentation](self) for more.
85aaf69f 242#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0
XL
243#[repr(transparent)]
244pub struct Cell<T: ?Sized> {
1a4d82fc
JJ
245 value: UnsafeCell<T>,
246}
247
8bb4bdeb 248#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0 249unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
8bb4bdeb 250
3c0e092e
XL
251// Note that this negative impl isn't strictly necessary for correctness,
252// as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
253// However, given how important `Cell`'s `!Sync`-ness is,
254// having an explicit negative impl is nice for documentation purposes
255// and results in nicer error messages.
8bb4bdeb 256#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0 257impl<T: ?Sized> !Sync for Cell<T> {}
8bb4bdeb
XL
258
259#[stable(feature = "rust1", since = "1.0.0")]
dfeec247 260impl<T: Copy> Clone for Cell<T> {
8bb4bdeb
XL
261 #[inline]
262 fn clone(&self) -> Cell<T> {
263 Cell::new(self.get())
264 }
265}
266
267#[stable(feature = "rust1", since = "1.0.0")]
416331ca 268impl<T: Default> Default for Cell<T> {
8bb4bdeb
XL
269 /// Creates a `Cell<T>`, with the `Default` value for T.
270 #[inline]
271 fn default() -> Cell<T> {
272 Cell::new(Default::default())
273 }
274}
275
276#[stable(feature = "rust1", since = "1.0.0")]
416331ca 277impl<T: PartialEq + Copy> PartialEq for Cell<T> {
8bb4bdeb
XL
278 #[inline]
279 fn eq(&self, other: &Cell<T>) -> bool {
280 self.get() == other.get()
281 }
282}
283
284#[stable(feature = "cell_eq", since = "1.2.0")]
416331ca 285impl<T: Eq + Copy> Eq for Cell<T> {}
8bb4bdeb
XL
286
287#[stable(feature = "cell_ord", since = "1.10.0")]
416331ca 288impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
8bb4bdeb
XL
289 #[inline]
290 fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
291 self.get().partial_cmp(&other.get())
292 }
293
294 #[inline]
295 fn lt(&self, other: &Cell<T>) -> bool {
296 self.get() < other.get()
297 }
298
299 #[inline]
300 fn le(&self, other: &Cell<T>) -> bool {
301 self.get() <= other.get()
302 }
303
304 #[inline]
305 fn gt(&self, other: &Cell<T>) -> bool {
306 self.get() > other.get()
307 }
308
309 #[inline]
310 fn ge(&self, other: &Cell<T>) -> bool {
311 self.get() >= other.get()
312 }
313}
314
315#[stable(feature = "cell_ord", since = "1.10.0")]
416331ca 316impl<T: Ord + Copy> Ord for Cell<T> {
8bb4bdeb
XL
317 #[inline]
318 fn cmp(&self, other: &Cell<T>) -> Ordering {
319 self.get().cmp(&other.get())
320 }
321}
322
323#[stable(feature = "cell_from", since = "1.12.0")]
3c0e092e
XL
324#[rustc_const_unstable(feature = "const_convert", issue = "88674")]
325impl<T> const From<T> for Cell<T> {
5099ac24 326 /// Creates a new `Cell<T>` containing the given value.
8bb4bdeb
XL
327 fn from(t: T) -> Cell<T> {
328 Cell::new(t)
329 }
330}
331
332impl<T> Cell<T> {
333 /// Creates a new `Cell` containing the given value.
85aaf69f
SL
334 ///
335 /// # Examples
336 ///
337 /// ```
338 /// use std::cell::Cell;
339 ///
340 /// let c = Cell::new(5);
85aaf69f 341 /// ```
85aaf69f 342 #[stable(feature = "rust1", since = "1.0.0")]
cdc7bbd5 343 #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
8bb4bdeb
XL
344 #[inline]
345 pub const fn new(value: T) -> Cell<T> {
dfeec247 346 Cell { value: UnsafeCell::new(value) }
1a4d82fc
JJ
347 }
348
8bb4bdeb
XL
349 /// Sets the contained value.
350 ///
351 /// # Examples
352 ///
353 /// ```
354 /// use std::cell::Cell;
355 ///
356 /// let c = Cell::new(5);
357 ///
358 /// c.set(10);
359 /// ```
a7813a04 360 #[inline]
8bb4bdeb
XL
361 #[stable(feature = "rust1", since = "1.0.0")]
362 pub fn set(&self, val: T) {
363 let old = self.replace(val);
364 drop(old);
a7813a04
XL
365 }
366
c295e0f8 367 /// Swaps the values of two `Cell`s.
8bb4bdeb
XL
368 /// Difference with `std::mem::swap` is that this function doesn't require `&mut` reference.
369 ///
370 /// # Examples
371 ///
372 /// ```
373 /// use std::cell::Cell;
374 ///
375 /// let c1 = Cell::new(5i32);
376 /// let c2 = Cell::new(10i32);
377 /// c1.swap(&c2);
378 /// assert_eq!(10, c1.get());
379 /// assert_eq!(5, c2.get());
380 /// ```
a7813a04 381 #[inline]
8bb4bdeb
XL
382 #[stable(feature = "move_cell", since = "1.17.0")]
383 pub fn swap(&self, other: &Self) {
384 if ptr::eq(self, other) {
385 return;
386 }
dfeec247
XL
387 // SAFETY: This can be risky if called from separate threads, but `Cell`
388 // is `!Sync` so this won't happen. This also won't invalidate any
389 // pointers since `Cell` makes sure nothing else will be pointing into
390 // either of these `Cell`s.
8bb4bdeb
XL
391 unsafe {
392 ptr::swap(self.value.get(), other.value.get());
393 }
a7813a04
XL
394 }
395
6a06907d 396 /// Replaces the contained value with `val`, and returns the old contained value.
8bb4bdeb
XL
397 ///
398 /// # Examples
399 ///
400 /// ```
401 /// use std::cell::Cell;
402 ///
041b39d2
XL
403 /// let cell = Cell::new(5);
404 /// assert_eq!(cell.get(), 5);
405 /// assert_eq!(cell.replace(10), 5);
406 /// assert_eq!(cell.get(), 10);
8bb4bdeb 407 /// ```
2b03887a 408 #[inline]
8bb4bdeb
XL
409 #[stable(feature = "move_cell", since = "1.17.0")]
410 pub fn replace(&self, val: T) -> T {
dfeec247
XL
411 // SAFETY: This can cause data races if called from a separate thread,
412 // but `Cell` is `!Sync` so this won't happen.
8bb4bdeb 413 mem::replace(unsafe { &mut *self.value.get() }, val)
a7813a04 414 }
a7813a04 415
8bb4bdeb
XL
416 /// Unwraps the value.
417 ///
418 /// # Examples
419 ///
420 /// ```
421 /// use std::cell::Cell;
422 ///
423 /// let c = Cell::new(5);
424 /// let five = c.into_inner();
425 ///
426 /// assert_eq!(five, 5);
427 /// ```
428 #[stable(feature = "move_cell", since = "1.17.0")]
29967ef6
XL
429 #[rustc_const_unstable(feature = "const_cell_into_inner", issue = "78729")]
430 pub const fn into_inner(self) -> T {
2c00a5a8 431 self.value.into_inner()
a7813a04 432 }
e74abb32
XL
433}
434
dfeec247 435impl<T: Copy> Cell<T> {
e74abb32
XL
436 /// Returns a copy of the contained value.
437 ///
438 /// # Examples
439 ///
440 /// ```
441 /// use std::cell::Cell;
442 ///
443 /// let c = Cell::new(5);
444 ///
445 /// let five = c.get();
446 /// ```
447 #[inline]
448 #[stable(feature = "rust1", since = "1.0.0")]
449 pub fn get(&self) -> T {
dfeec247
XL
450 // SAFETY: This can cause data races if called from a separate thread,
451 // but `Cell` is `!Sync` so this won't happen.
452 unsafe { *self.value.get() }
e74abb32
XL
453 }
454
455 /// Updates the contained value using a function and returns the new value.
456 ///
457 /// # Examples
458 ///
459 /// ```
460 /// #![feature(cell_update)]
461 ///
462 /// use std::cell::Cell;
463 ///
464 /// let c = Cell::new(5);
465 /// let new = c.update(|x| x + 1);
466 ///
467 /// assert_eq!(new, 6);
468 /// assert_eq!(c.get(), 6);
469 /// ```
470 #[inline]
471 #[unstable(feature = "cell_update", issue = "50186")]
472 pub fn update<F>(&self, f: F) -> T
473 where
474 F: FnOnce(T) -> T,
475 {
476 let old = self.get();
477 let new = f(old);
478 self.set(new);
479 new
480 }
a7813a04
XL
481}
482
8faf50e0
XL
483impl<T: ?Sized> Cell<T> {
484 /// Returns a raw pointer to the underlying data in this cell.
485 ///
486 /// # Examples
487 ///
488 /// ```
489 /// use std::cell::Cell;
490 ///
491 /// let c = Cell::new(5);
492 ///
493 /// let ptr = c.as_ptr();
494 /// ```
495 #[inline]
496 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
dfeec247 497 #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
a1dfa0c6 498 pub const fn as_ptr(&self) -> *mut T {
8faf50e0
XL
499 self.value.get()
500 }
501
502 /// Returns a mutable reference to the underlying data.
503 ///
504 /// This call borrows `Cell` mutably (at compile-time) which guarantees
505 /// that we possess the only reference.
506 ///
136023e0
XL
507 /// However be cautious: this method expects `self` to be mutable, which is
508 /// generally not the case when using a `Cell`. If you require interior
509 /// mutability by reference, consider using `RefCell` which provides
510 /// run-time checked mutable borrows through its [`borrow_mut`] method.
511 ///
512 /// [`borrow_mut`]: RefCell::borrow_mut()
513 ///
8faf50e0
XL
514 /// # Examples
515 ///
516 /// ```
517 /// use std::cell::Cell;
518 ///
519 /// let mut c = Cell::new(5);
520 /// *c.get_mut() += 1;
521 ///
522 /// assert_eq!(c.get(), 6);
523 /// ```
524 #[inline]
525 #[stable(feature = "cell_get_mut", since = "1.11.0")]
526 pub fn get_mut(&mut self) -> &mut T {
1b1a35ee 527 self.value.get_mut()
8faf50e0
XL
528 }
529
530 /// Returns a `&Cell<T>` from a `&mut T`
531 ///
532 /// # Examples
533 ///
534 /// ```
8faf50e0
XL
535 /// use std::cell::Cell;
536 ///
537 /// let slice: &mut [i32] = &mut [1, 2, 3];
538 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
539 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
540 ///
541 /// assert_eq!(slice_cell.len(), 3);
542 /// ```
543 #[inline]
dc9dc135 544 #[stable(feature = "as_cell", since = "1.37.0")]
8faf50e0 545 pub fn from_mut(t: &mut T) -> &Cell<T> {
dfeec247
XL
546 // SAFETY: `&mut` ensures unique access.
547 unsafe { &*(t as *mut T as *const Cell<T>) }
8faf50e0
XL
548 }
549}
550
8bb4bdeb
XL
551impl<T: Default> Cell<T> {
552 /// Takes the value of the cell, leaving `Default::default()` in its place.
553 ///
554 /// # Examples
555 ///
556 /// ```
557 /// use std::cell::Cell;
558 ///
559 /// let c = Cell::new(5);
560 /// let five = c.take();
561 ///
562 /// assert_eq!(five, 5);
563 /// assert_eq!(c.into_inner(), 0);
564 /// ```
565 #[stable(feature = "move_cell", since = "1.17.0")]
566 pub fn take(&self) -> T {
567 self.replace(Default::default())
5bcae85e
SL
568 }
569}
570
9e0c209e
SL
571#[unstable(feature = "coerce_unsized", issue = "27732")]
572impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
573
8faf50e0
XL
574impl<T> Cell<[T]> {
575 /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
576 ///
577 /// # Examples
578 ///
579 /// ```
8faf50e0
XL
580 /// use std::cell::Cell;
581 ///
582 /// let slice: &mut [i32] = &mut [1, 2, 3];
583 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
584 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
585 ///
586 /// assert_eq!(slice_cell.len(), 3);
587 /// ```
dc9dc135 588 #[stable(feature = "as_cell", since = "1.37.0")]
8faf50e0 589 pub fn as_slice_of_cells(&self) -> &[Cell<T>] {
dfeec247
XL
590 // SAFETY: `Cell<T>` has the same memory layout as `T`.
591 unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
8faf50e0
XL
592 }
593}
594
94222f64
XL
595impl<T, const N: usize> Cell<[T; N]> {
596 /// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
597 ///
598 /// # Examples
599 ///
600 /// ```
601 /// #![feature(as_array_of_cells)]
602 /// use std::cell::Cell;
603 ///
604 /// let mut array: [i32; 3] = [1, 2, 3];
605 /// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
606 /// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
607 /// ```
608 #[unstable(feature = "as_array_of_cells", issue = "88248")]
609 pub fn as_array_of_cells(&self) -> &[Cell<T>; N] {
610 // SAFETY: `Cell<T>` has the same memory layout as `T`.
611 unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
612 }
613}
614
1a4d82fc 615/// A mutable memory location with dynamically checked borrow rules
85aaf69f 616///
29967ef6 617/// See the [module-level documentation](self) for more.
2b03887a 618#[cfg_attr(not(test), rustc_diagnostic_item = "RefCell")]
85aaf69f 619#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 620pub struct RefCell<T: ?Sized> {
1a4d82fc 621 borrow: Cell<BorrowFlag>,
cdc7bbd5 622 // Stores the location of the earliest currently active borrow.
94222f64 623 // This gets updated whenever we go from having zero borrows
cdc7bbd5 624 // to having a single borrow. When a borrow occurs, this gets included
136023e0 625 // in the generated `BorrowError/`BorrowMutError`
cdc7bbd5
XL
626 #[cfg(feature = "debug_refcell")]
627 borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
d9579d0f 628 value: UnsafeCell<T>,
1a4d82fc
JJ
629}
630
29967ef6 631/// An error returned by [`RefCell::try_borrow`].
9e0c209e 632#[stable(feature = "try_borrow", since = "1.13.0")]
136023e0 633#[non_exhaustive]
9e0c209e 634pub struct BorrowError {
cdc7bbd5
XL
635 #[cfg(feature = "debug_refcell")]
636 location: &'static crate::panic::Location<'static>,
5bcae85e
SL
637}
638
9e0c209e
SL
639#[stable(feature = "try_borrow", since = "1.13.0")]
640impl Debug for BorrowError {
48663c56 641 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
cdc7bbd5
XL
642 let mut builder = f.debug_struct("BorrowError");
643
644 #[cfg(feature = "debug_refcell")]
645 builder.field("location", self.location);
646
647 builder.finish()
5bcae85e
SL
648 }
649}
650
9e0c209e
SL
651#[stable(feature = "try_borrow", since = "1.13.0")]
652impl Display for BorrowError {
48663c56 653 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
5bcae85e
SL
654 Display::fmt("already mutably borrowed", f)
655 }
656}
657
29967ef6 658/// An error returned by [`RefCell::try_borrow_mut`].
9e0c209e 659#[stable(feature = "try_borrow", since = "1.13.0")]
136023e0 660#[non_exhaustive]
9e0c209e 661pub struct BorrowMutError {
cdc7bbd5
XL
662 #[cfg(feature = "debug_refcell")]
663 location: &'static crate::panic::Location<'static>,
5bcae85e
SL
664}
665
9e0c209e
SL
666#[stable(feature = "try_borrow", since = "1.13.0")]
667impl Debug for BorrowMutError {
48663c56 668 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
cdc7bbd5
XL
669 let mut builder = f.debug_struct("BorrowMutError");
670
671 #[cfg(feature = "debug_refcell")]
672 builder.field("location", self.location);
673
674 builder.finish()
5bcae85e
SL
675 }
676}
677
9e0c209e
SL
678#[stable(feature = "try_borrow", since = "1.13.0")]
679impl Display for BorrowMutError {
48663c56 680 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
5bcae85e
SL
681 Display::fmt("already borrowed", f)
682 }
683}
684
8faf50e0
XL
685// Positive values represent the number of `Ref` active. Negative values
686// represent the number of `RefMut` active. Multiple `RefMut`s can only be
687// active at a time if they refer to distinct, nonoverlapping components of a
688// `RefCell` (e.g., different ranges of a slice).
94b46f34
XL
689//
690// `Ref` and `RefMut` are both two words in size, and so there will likely never
691// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
8faf50e0
XL
692// range. Thus, a `BorrowFlag` will probably never overflow or underflow.
693// However, this is not a guarantee, as a pathological program could repeatedly
694// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
695// explicitly check for overflow and underflow in order to avoid unsafety, or at
696// least behave correctly in the event that overflow or underflow happens (e.g.,
697// see BorrowRef::new).
698type BorrowFlag = isize;
1a4d82fc 699const UNUSED: BorrowFlag = 0;
8faf50e0
XL
700
701#[inline(always)]
702fn is_writing(x: BorrowFlag) -> bool {
703 x < UNUSED
704}
705
706#[inline(always)]
707fn is_reading(x: BorrowFlag) -> bool {
708 x > UNUSED
709}
1a4d82fc
JJ
710
711impl<T> RefCell<T> {
85aaf69f
SL
712 /// Creates a new `RefCell` containing `value`.
713 ///
714 /// # Examples
715 ///
716 /// ```
717 /// use std::cell::RefCell;
718 ///
719 /// let c = RefCell::new(5);
720 /// ```
721 #[stable(feature = "rust1", since = "1.0.0")]
cdc7bbd5 722 #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
c34b1796 723 #[inline]
62682a34 724 pub const fn new(value: T) -> RefCell<T> {
cdc7bbd5
XL
725 RefCell {
726 value: UnsafeCell::new(value),
727 borrow: Cell::new(UNUSED),
728 #[cfg(feature = "debug_refcell")]
729 borrowed_at: Cell::new(None),
730 }
1a4d82fc
JJ
731 }
732
733 /// Consumes the `RefCell`, returning the wrapped value.
85aaf69f
SL
734 ///
735 /// # Examples
736 ///
737 /// ```
738 /// use std::cell::RefCell;
739 ///
740 /// let c = RefCell::new(5);
741 ///
742 /// let five = c.into_inner();
743 /// ```
744 #[stable(feature = "rust1", since = "1.0.0")]
29967ef6 745 #[rustc_const_unstable(feature = "const_cell_into_inner", issue = "78729")]
c34b1796 746 #[inline]
29967ef6 747 pub const fn into_inner(self) -> T {
1a4d82fc
JJ
748 // Since this function takes `self` (the `RefCell`) by value, the
749 // compiler statically verifies that it is not currently borrowed.
2c00a5a8 750 self.value.into_inner()
1a4d82fc 751 }
3b2f2976
XL
752
753 /// Replaces the wrapped value with a new one, returning the old value,
754 /// without deinitializing either one.
755 ///
756 /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
757 ///
abe05a73
XL
758 /// # Panics
759 ///
760 /// Panics if the value is currently borrowed.
761 ///
3b2f2976
XL
762 /// # Examples
763 ///
764 /// ```
3b2f2976 765 /// use std::cell::RefCell;
abe05a73
XL
766 /// let cell = RefCell::new(5);
767 /// let old_value = cell.replace(6);
768 /// assert_eq!(old_value, 5);
769 /// assert_eq!(cell, RefCell::new(6));
3b2f2976 770 /// ```
abe05a73 771 #[inline]
dfeec247 772 #[stable(feature = "refcell_replace", since = "1.24.0")]
1b1a35ee 773 #[track_caller]
abe05a73
XL
774 pub fn replace(&self, t: T) -> T {
775 mem::replace(&mut *self.borrow_mut(), t)
776 }
777
778 /// Replaces the wrapped value with a new one computed from `f`, returning
779 /// the old value, without deinitializing either one.
780 ///
3b2f2976
XL
781 /// # Panics
782 ///
abe05a73
XL
783 /// Panics if the value is currently borrowed.
784 ///
785 /// # Examples
786 ///
787 /// ```
abe05a73
XL
788 /// use std::cell::RefCell;
789 /// let cell = RefCell::new(5);
790 /// let old_value = cell.replace_with(|&mut old| old + 1);
791 /// assert_eq!(old_value, 5);
792 /// assert_eq!(cell, RefCell::new(6));
793 /// ```
3b2f2976 794 #[inline]
dfeec247 795 #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
1b1a35ee 796 #[track_caller]
abe05a73
XL
797 pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
798 let mut_borrow = &mut *self.borrow_mut();
799 let replacement = f(mut_borrow);
800 mem::replace(mut_borrow, replacement)
3b2f2976
XL
801 }
802
803 /// Swaps the wrapped value of `self` with the wrapped value of `other`,
804 /// without deinitializing either one.
805 ///
806 /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
807 ///
abe05a73
XL
808 /// # Panics
809 ///
810 /// Panics if the value in either `RefCell` is currently borrowed.
811 ///
3b2f2976
XL
812 /// # Examples
813 ///
814 /// ```
3b2f2976
XL
815 /// use std::cell::RefCell;
816 /// let c = RefCell::new(5);
817 /// let d = RefCell::new(6);
818 /// c.swap(&d);
819 /// assert_eq!(c, RefCell::new(6));
820 /// assert_eq!(d, RefCell::new(5));
821 /// ```
3b2f2976 822 #[inline]
dfeec247 823 #[stable(feature = "refcell_swap", since = "1.24.0")]
3b2f2976
XL
824 pub fn swap(&self, other: &Self) {
825 mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
826 }
d9579d0f 827}
1a4d82fc 828
d9579d0f 829impl<T: ?Sized> RefCell<T> {
1a4d82fc
JJ
830 /// Immutably borrows the wrapped value.
831 ///
832 /// The borrow lasts until the returned `Ref` exits scope. Multiple
833 /// immutable borrows can be taken out at the same time.
834 ///
835 /// # Panics
836 ///
5bcae85e
SL
837 /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
838 /// [`try_borrow`](#method.try_borrow).
85aaf69f
SL
839 ///
840 /// # Examples
841 ///
842 /// ```
843 /// use std::cell::RefCell;
844 ///
845 /// let c = RefCell::new(5);
846 ///
847 /// let borrowed_five = c.borrow();
848 /// let borrowed_five2 = c.borrow();
849 /// ```
850 ///
851 /// An example of panic:
852 ///
f035d41b 853 /// ```should_panic
85aaf69f 854 /// use std::cell::RefCell;
85aaf69f 855 ///
f035d41b 856 /// let c = RefCell::new(5);
85aaf69f 857 ///
f035d41b
XL
858 /// let m = c.borrow_mut();
859 /// let b = c.borrow(); // this causes a panic
85aaf69f
SL
860 /// ```
861 #[stable(feature = "rust1", since = "1.0.0")]
c34b1796 862 #[inline]
3dfed10e 863 #[track_caller]
48663c56 864 pub fn borrow(&self) -> Ref<'_, T> {
5bcae85e
SL
865 self.try_borrow().expect("already mutably borrowed")
866 }
867
868 /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
869 /// borrowed.
870 ///
871 /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
872 /// taken out at the same time.
873 ///
874 /// This is the non-panicking variant of [`borrow`](#method.borrow).
875 ///
876 /// # Examples
877 ///
878 /// ```
5bcae85e
SL
879 /// use std::cell::RefCell;
880 ///
881 /// let c = RefCell::new(5);
882 ///
883 /// {
884 /// let m = c.borrow_mut();
885 /// assert!(c.try_borrow().is_err());
886 /// }
887 ///
888 /// {
889 /// let m = c.borrow();
890 /// assert!(c.try_borrow().is_ok());
891 /// }
892 /// ```
9e0c209e 893 #[stable(feature = "try_borrow", since = "1.13.0")]
5bcae85e 894 #[inline]
cdc7bbd5 895 #[cfg_attr(feature = "debug_refcell", track_caller)]
48663c56 896 pub fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
85aaf69f 897 match BorrowRef::new(&self.borrow) {
cdc7bbd5
XL
898 Some(b) => {
899 #[cfg(feature = "debug_refcell")]
900 {
901 // `borrowed_at` is always the *first* active borrow
902 if b.borrow.get() == 1 {
903 self.borrowed_at.set(Some(crate::panic::Location::caller()));
904 }
905 }
906
907 // SAFETY: `BorrowRef` ensures that there is only immutable access
908 // to the value while borrowed.
923072b8
FG
909 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
910 Ok(Ref { value, borrow: b })
cdc7bbd5
XL
911 }
912 None => Err(BorrowError {
a2a8927a 913 // If a borrow occurred, then we must already have an outstanding borrow,
cdc7bbd5
XL
914 // so `borrowed_at` will be `Some`
915 #[cfg(feature = "debug_refcell")]
916 location: self.borrowed_at.get().unwrap(),
917 }),
1a4d82fc
JJ
918 }
919 }
920
1a4d82fc
JJ
921 /// Mutably borrows the wrapped value.
922 ///
94b46f34
XL
923 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
924 /// from it exit scope. The value cannot be borrowed while this borrow is
925 /// active.
1a4d82fc
JJ
926 ///
927 /// # Panics
928 ///
5bcae85e
SL
929 /// Panics if the value is currently borrowed. For a non-panicking variant, use
930 /// [`try_borrow_mut`](#method.try_borrow_mut).
85aaf69f
SL
931 ///
932 /// # Examples
933 ///
934 /// ```
935 /// use std::cell::RefCell;
936 ///
f9f354fc 937 /// let c = RefCell::new("hello".to_owned());
85aaf69f 938 ///
f9f354fc 939 /// *c.borrow_mut() = "bonjour".to_owned();
7453a54e 940 ///
f9f354fc 941 /// assert_eq!(&*c.borrow(), "bonjour");
85aaf69f
SL
942 /// ```
943 ///
944 /// An example of panic:
945 ///
f035d41b 946 /// ```should_panic
85aaf69f 947 /// use std::cell::RefCell;
85aaf69f 948 ///
f035d41b
XL
949 /// let c = RefCell::new(5);
950 /// let m = c.borrow();
85aaf69f 951 ///
f035d41b 952 /// let b = c.borrow_mut(); // this causes a panic
85aaf69f
SL
953 /// ```
954 #[stable(feature = "rust1", since = "1.0.0")]
c34b1796 955 #[inline]
3dfed10e 956 #[track_caller]
48663c56 957 pub fn borrow_mut(&self) -> RefMut<'_, T> {
5bcae85e
SL
958 self.try_borrow_mut().expect("already borrowed")
959 }
960
961 /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
962 ///
94b46f34
XL
963 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
964 /// from it exit scope. The value cannot be borrowed while this borrow is
965 /// active.
5bcae85e
SL
966 ///
967 /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
968 ///
969 /// # Examples
970 ///
971 /// ```
5bcae85e
SL
972 /// use std::cell::RefCell;
973 ///
974 /// let c = RefCell::new(5);
975 ///
976 /// {
977 /// let m = c.borrow();
978 /// assert!(c.try_borrow_mut().is_err());
979 /// }
980 ///
981 /// assert!(c.try_borrow_mut().is_ok());
982 /// ```
9e0c209e 983 #[stable(feature = "try_borrow", since = "1.13.0")]
5bcae85e 984 #[inline]
cdc7bbd5 985 #[cfg_attr(feature = "debug_refcell", track_caller)]
48663c56 986 pub fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
85aaf69f 987 match BorrowRefMut::new(&self.borrow) {
cdc7bbd5
XL
988 Some(b) => {
989 #[cfg(feature = "debug_refcell")]
990 {
991 self.borrowed_at.set(Some(crate::panic::Location::caller()));
992 }
993
923072b8
FG
994 // SAFETY: `BorrowRefMut` guarantees unique access.
995 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
996 Ok(RefMut { value, borrow: b, marker: PhantomData })
cdc7bbd5
XL
997 }
998 None => Err(BorrowMutError {
a2a8927a 999 // If a borrow occurred, then we must already have an outstanding borrow,
cdc7bbd5
XL
1000 // so `borrowed_at` will be `Some`
1001 #[cfg(feature = "debug_refcell")]
1002 location: self.borrowed_at.get().unwrap(),
1003 }),
1a4d82fc
JJ
1004 }
1005 }
1006
5bcae85e
SL
1007 /// Returns a raw pointer to the underlying data in this cell.
1008 ///
1009 /// # Examples
1010 ///
1011 /// ```
1012 /// use std::cell::RefCell;
1013 ///
1014 /// let c = RefCell::new(5);
1015 ///
1016 /// let ptr = c.as_ptr();
1017 /// ```
1018 #[inline]
1019 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
1020 pub fn as_ptr(&self) -> *mut T {
1021 self.value.get()
1022 }
1023
a7813a04
XL
1024 /// Returns a mutable reference to the underlying data.
1025 ///
2b03887a
FG
1026 /// Since this method borrows `RefCell` mutably, it is statically guaranteed
1027 /// that no borrows to the underlying data exist. The dynamic checks inherent
487cf647 1028 /// in [`borrow_mut`] and most other methods of `RefCell` are therefore
2b03887a 1029 /// unnecessary.
5bcae85e 1030 ///
2b03887a
FG
1031 /// This method can only be called if `RefCell` can be mutably borrowed,
1032 /// which in general is only the case directly after the `RefCell` has
1033 /// been created. In these situations, skipping the aforementioned dynamic
1034 /// borrowing checks may yield better ergonomics and runtime-performance.
cc61c64b 1035 ///
2b03887a
FG
1036 /// In most situations where `RefCell` is used, it can't be borrowed mutably.
1037 /// Use [`borrow_mut`] to get mutable access to the underlying data then.
cc61c64b 1038 ///
fc512014 1039 /// [`borrow_mut`]: RefCell::borrow_mut()
cc61c64b 1040 ///
5bcae85e
SL
1041 /// # Examples
1042 ///
1043 /// ```
1044 /// use std::cell::RefCell;
1045 ///
1046 /// let mut c = RefCell::new(5);
1047 /// *c.get_mut() += 1;
1048 ///
1049 /// assert_eq!(c, RefCell::new(6));
1050 /// ```
a7813a04 1051 #[inline]
3157f602 1052 #[stable(feature = "cell_get_mut", since = "1.11.0")]
a7813a04 1053 pub fn get_mut(&mut self) -> &mut T {
1b1a35ee 1054 self.value.get_mut()
a7813a04 1055 }
48663c56 1056
ba9703b0
XL
1057 /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
1058 ///
1059 /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1060 /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1061 /// if some `Ref` or `RefMut` borrows have been leaked.
1062 ///
fc512014 1063 /// [`get_mut`]: RefCell::get_mut()
ba9703b0
XL
1064 ///
1065 /// # Examples
1066 ///
1067 /// ```
1068 /// #![feature(cell_leak)]
1069 /// use std::cell::RefCell;
1070 ///
1071 /// let mut c = RefCell::new(0);
1072 /// std::mem::forget(c.borrow_mut());
1073 ///
1074 /// assert!(c.try_borrow().is_err());
1075 /// c.undo_leak();
1076 /// assert!(c.try_borrow().is_ok());
1077 /// ```
1078 #[unstable(feature = "cell_leak", issue = "69099")]
1079 pub fn undo_leak(&mut self) -> &mut T {
1080 *self.borrow.get_mut() = UNUSED;
1081 self.get_mut()
1082 }
1083
48663c56
XL
1084 /// Immutably borrows the wrapped value, returning an error if the value is
1085 /// currently mutably borrowed.
1086 ///
1087 /// # Safety
1088 ///
1089 /// Unlike `RefCell::borrow`, this method is unsafe because it does not
1090 /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
1091 /// borrowing the `RefCell` while the reference returned by this method
1092 /// is alive is undefined behaviour.
1093 ///
1094 /// # Examples
1095 ///
1096 /// ```
48663c56
XL
1097 /// use std::cell::RefCell;
1098 ///
1099 /// let c = RefCell::new(5);
1100 ///
1101 /// {
1102 /// let m = c.borrow_mut();
1103 /// assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1104 /// }
1105 ///
1106 /// {
1107 /// let m = c.borrow();
1108 /// assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1109 /// }
1110 /// ```
dc9dc135 1111 #[stable(feature = "borrow_state", since = "1.37.0")]
48663c56
XL
1112 #[inline]
1113 pub unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1114 if !is_writing(self.borrow.get()) {
f035d41b
XL
1115 // SAFETY: We check that nobody is actively writing now, but it is
1116 // the caller's responsibility to ensure that nobody writes until
1117 // the returned reference is no longer in use.
1118 // Also, `self.value.get()` refers to the value owned by `self`
1119 // and is thus guaranteed to be valid for the lifetime of `self`.
1120 Ok(unsafe { &*self.value.get() })
48663c56 1121 } else {
cdc7bbd5 1122 Err(BorrowError {
a2a8927a 1123 // If a borrow occurred, then we must already have an outstanding borrow,
cdc7bbd5
XL
1124 // so `borrowed_at` will be `Some`
1125 #[cfg(feature = "debug_refcell")]
1126 location: self.borrowed_at.get().unwrap(),
1127 })
48663c56
XL
1128 }
1129 }
1a4d82fc
JJ
1130}
1131
f9f354fc
XL
1132impl<T: Default> RefCell<T> {
1133 /// Takes the wrapped value, leaving `Default::default()` in its place.
1134 ///
1135 /// # Panics
1136 ///
1137 /// Panics if the value is currently borrowed.
1138 ///
1139 /// # Examples
1140 ///
1141 /// ```
f9f354fc
XL
1142 /// use std::cell::RefCell;
1143 ///
1144 /// let c = RefCell::new(5);
1145 /// let five = c.take();
1146 ///
1147 /// assert_eq!(five, 5);
1148 /// assert_eq!(c.into_inner(), 0);
1149 /// ```
fc512014 1150 #[stable(feature = "refcell_take", since = "1.50.0")]
f9f354fc
XL
1151 pub fn take(&self) -> T {
1152 self.replace(Default::default())
1153 }
1154}
1155
85aaf69f 1156#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 1157unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1a4d82fc 1158
54a0048b
SL
1159#[stable(feature = "rust1", since = "1.0.0")]
1160impl<T: ?Sized> !Sync for RefCell<T> {}
1161
85aaf69f 1162#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 1163impl<T: Clone> Clone for RefCell<T> {
0531ce1d
XL
1164 /// # Panics
1165 ///
1166 /// Panics if the value is currently mutably borrowed.
c34b1796 1167 #[inline]
1b1a35ee 1168 #[track_caller]
1a4d82fc
JJ
1169 fn clone(&self) -> RefCell<T> {
1170 RefCell::new(self.borrow().clone())
1171 }
17df50a5
XL
1172
1173 /// # Panics
1174 ///
1175 /// Panics if `other` is currently mutably borrowed.
1176 #[inline]
1177 #[track_caller]
1178 fn clone_from(&mut self, other: &Self) {
1179 self.get_mut().clone_from(&other.borrow())
1180 }
1a4d82fc
JJ
1181}
1182
85aaf69f 1183#[stable(feature = "rust1", since = "1.0.0")]
416331ca 1184impl<T: Default> Default for RefCell<T> {
9e0c209e 1185 /// Creates a `RefCell<T>`, with the `Default` value for T.
c34b1796 1186 #[inline]
1a4d82fc
JJ
1187 fn default() -> RefCell<T> {
1188 RefCell::new(Default::default())
1189 }
1190}
1191
85aaf69f 1192#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 1193impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
0531ce1d
XL
1194 /// # Panics
1195 ///
1196 /// Panics if the value in either `RefCell` is currently borrowed.
c34b1796 1197 #[inline]
1a4d82fc
JJ
1198 fn eq(&self, other: &RefCell<T>) -> bool {
1199 *self.borrow() == *other.borrow()
1200 }
1201}
1202
62682a34
SL
1203#[stable(feature = "cell_eq", since = "1.2.0")]
1204impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1205
a7813a04
XL
1206#[stable(feature = "cell_ord", since = "1.10.0")]
1207impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
0531ce1d
XL
1208 /// # Panics
1209 ///
1210 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1211 #[inline]
1212 fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1213 self.borrow().partial_cmp(&*other.borrow())
1214 }
1215
0531ce1d
XL
1216 /// # Panics
1217 ///
1218 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1219 #[inline]
1220 fn lt(&self, other: &RefCell<T>) -> bool {
1221 *self.borrow() < *other.borrow()
1222 }
1223
0531ce1d
XL
1224 /// # Panics
1225 ///
1226 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1227 #[inline]
1228 fn le(&self, other: &RefCell<T>) -> bool {
1229 *self.borrow() <= *other.borrow()
1230 }
1231
0531ce1d
XL
1232 /// # Panics
1233 ///
1234 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1235 #[inline]
1236 fn gt(&self, other: &RefCell<T>) -> bool {
1237 *self.borrow() > *other.borrow()
1238 }
1239
0531ce1d
XL
1240 /// # Panics
1241 ///
1242 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1243 #[inline]
1244 fn ge(&self, other: &RefCell<T>) -> bool {
1245 *self.borrow() >= *other.borrow()
1246 }
1247}
1248
1249#[stable(feature = "cell_ord", since = "1.10.0")]
1250impl<T: ?Sized + Ord> Ord for RefCell<T> {
0531ce1d
XL
1251 /// # Panics
1252 ///
1253 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1254 #[inline]
1255 fn cmp(&self, other: &RefCell<T>) -> Ordering {
1256 self.borrow().cmp(&*other.borrow())
1257 }
1258}
1259
5bcae85e 1260#[stable(feature = "cell_from", since = "1.12.0")]
3c0e092e
XL
1261#[rustc_const_unstable(feature = "const_convert", issue = "88674")]
1262impl<T> const From<T> for RefCell<T> {
5099ac24 1263 /// Creates a new `RefCell<T>` containing the given value.
5bcae85e
SL
1264 fn from(t: T) -> RefCell<T> {
1265 RefCell::new(t)
1266 }
1267}
1268
9e0c209e
SL
1269#[unstable(feature = "coerce_unsized", issue = "27732")]
1270impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1271
1a4d82fc 1272struct BorrowRef<'b> {
54a0048b 1273 borrow: &'b Cell<BorrowFlag>,
1a4d82fc
JJ
1274}
1275
1276impl<'b> BorrowRef<'b> {
c34b1796 1277 #[inline]
1a4d82fc 1278 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRef<'b>> {
416331ca
XL
1279 let b = borrow.get().wrapping_add(1);
1280 if !is_reading(b) {
1281 // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1282 // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1283 // due to Rust's reference aliasing rules
f035d41b
XL
1284 // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1285 // into isize::MIN (the max amount of writing borrows) so we can't allow
416331ca
XL
1286 // an additional read borrow because isize can't represent so many read borrows
1287 // (this can only happen if you mem::forget more than a small constant amount of
1288 // `Ref`s, which is not good practice)
94b46f34
XL
1289 None
1290 } else {
416331ca
XL
1291 // Incrementing borrow can result in a reading value (> 0) in these cases:
1292 // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
f035d41b 1293 // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
416331ca
XL
1294 // is large enough to represent having one more read borrow
1295 borrow.set(b);
94b46f34 1296 Some(BorrowRef { borrow })
1a4d82fc
JJ
1297 }
1298 }
1299}
1300
0bf4aa26 1301impl Drop for BorrowRef<'_> {
c34b1796 1302 #[inline]
1a4d82fc 1303 fn drop(&mut self) {
54a0048b 1304 let borrow = self.borrow.get();
8faf50e0 1305 debug_assert!(is_reading(borrow));
54a0048b 1306 self.borrow.set(borrow - 1);
1a4d82fc
JJ
1307 }
1308}
1309
0bf4aa26 1310impl Clone for BorrowRef<'_> {
c34b1796 1311 #[inline]
0bf4aa26 1312 fn clone(&self) -> Self {
1a4d82fc 1313 // Since this Ref exists, we know the borrow flag
8faf50e0 1314 // is a reading borrow.
54a0048b 1315 let borrow = self.borrow.get();
8faf50e0 1316 debug_assert!(is_reading(borrow));
94b46f34
XL
1317 // Prevent the borrow counter from overflowing into
1318 // a writing borrow.
f035d41b 1319 assert!(borrow != isize::MAX);
54a0048b
SL
1320 self.borrow.set(borrow + 1);
1321 BorrowRef { borrow: self.borrow }
1a4d82fc
JJ
1322 }
1323}
1324
1325/// Wraps a borrowed reference to a value in a `RefCell` box.
85aaf69f
SL
1326/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1327///
29967ef6 1328/// See the [module-level documentation](self) for more.
85aaf69f 1329#[stable(feature = "rust1", since = "1.0.0")]
5099ac24 1330#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
d9579d0f 1331pub struct Ref<'b, T: ?Sized + 'b> {
923072b8
FG
1332 // NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
1333 // `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
1334 // `NonNull` is also covariant over `T`, just like we would have with `&T`.
1335 value: NonNull<T>,
54a0048b 1336 borrow: BorrowRef<'b>,
1a4d82fc
JJ
1337}
1338
85aaf69f 1339#[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 1340impl<T: ?Sized> Deref for Ref<'_, T> {
1a4d82fc
JJ
1341 type Target = T;
1342
1343 #[inline]
e9174d1e 1344 fn deref(&self) -> &T {
923072b8
FG
1345 // SAFETY: the value is accessible as long as we hold our borrow.
1346 unsafe { self.value.as_ref() }
1a4d82fc
JJ
1347 }
1348}
1349
62682a34
SL
1350impl<'b, T: ?Sized> Ref<'b, T> {
1351 /// Copies a `Ref`.
1352 ///
1353 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1354 ///
1355 /// This is an associated function that needs to be used as
9fa01778 1356 /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
62682a34
SL
1357 /// with the widespread use of `r.borrow().clone()` to clone the contents of
1358 /// a `RefCell`.
476ff2be 1359 #[stable(feature = "cell_extras", since = "1.15.0")]
3c0e092e 1360 #[must_use]
62682a34
SL
1361 #[inline]
1362 pub fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
dfeec247 1363 Ref { value: orig.value, borrow: orig.borrow.clone() }
62682a34
SL
1364 }
1365
9fa01778 1366 /// Makes a new `Ref` for a component of the borrowed data.
62682a34
SL
1367 ///
1368 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1369 ///
1370 /// This is an associated function that needs to be used as `Ref::map(...)`.
1371 /// A method would interfere with methods of the same name on the contents
1372 /// of a `RefCell` used through `Deref`.
1373 ///
3b2f2976 1374 /// # Examples
62682a34
SL
1375 ///
1376 /// ```
62682a34
SL
1377 /// use std::cell::{RefCell, Ref};
1378 ///
1379 /// let c = RefCell::new((5, 'b'));
1380 /// let b1: Ref<(u32, char)> = c.borrow();
1381 /// let b2: Ref<u32> = Ref::map(b1, |t| &t.0);
1382 /// assert_eq!(*b2, 5)
1383 /// ```
7453a54e 1384 #[stable(feature = "cell_map", since = "1.8.0")]
62682a34
SL
1385 #[inline]
1386 pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
dfeec247
XL
1387 where
1388 F: FnOnce(&T) -> &U,
62682a34 1389 {
923072b8 1390 Ref { value: NonNull::from(f(&*orig)), borrow: orig.borrow }
62682a34 1391 }
94b46f34 1392
5869c6ff
XL
1393 /// Makes a new `Ref` for an optional component of the borrowed data. The
1394 /// original guard is returned as an `Err(..)` if the closure returns
1395 /// `None`.
1396 ///
1397 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1398 ///
1399 /// This is an associated function that needs to be used as
1400 /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1401 /// name on the contents of a `RefCell` used through `Deref`.
1402 ///
1403 /// # Examples
1404 ///
1405 /// ```
5869c6ff
XL
1406 /// use std::cell::{RefCell, Ref};
1407 ///
1408 /// let c = RefCell::new(vec![1, 2, 3]);
1409 /// let b1: Ref<Vec<u32>> = c.borrow();
1410 /// let b2: Result<Ref<u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1411 /// assert_eq!(*b2.unwrap(), 2);
1412 /// ```
923072b8 1413 #[stable(feature = "cell_filter_map", since = "1.63.0")]
5869c6ff
XL
1414 #[inline]
1415 pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1416 where
1417 F: FnOnce(&T) -> Option<&U>,
1418 {
923072b8
FG
1419 match f(&*orig) {
1420 Some(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
5869c6ff
XL
1421 None => Err(orig),
1422 }
1423 }
1424
9fa01778 1425 /// Splits a `Ref` into multiple `Ref`s for different components of the
94b46f34
XL
1426 /// borrowed data.
1427 ///
1428 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1429 ///
1430 /// This is an associated function that needs to be used as
1431 /// `Ref::map_split(...)`. A method would interfere with methods of the same
1432 /// name on the contents of a `RefCell` used through `Deref`.
1433 ///
1434 /// # Examples
1435 ///
1436 /// ```
94b46f34
XL
1437 /// use std::cell::{Ref, RefCell};
1438 ///
1439 /// let cell = RefCell::new([1, 2, 3, 4]);
1440 /// let borrow = cell.borrow();
1441 /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1442 /// assert_eq!(*begin, [1, 2]);
1443 /// assert_eq!(*end, [3, 4]);
1444 /// ```
532ac7d7 1445 #[stable(feature = "refcell_map_split", since = "1.35.0")]
94b46f34
XL
1446 #[inline]
1447 pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
dfeec247
XL
1448 where
1449 F: FnOnce(&T) -> (&U, &V),
94b46f34 1450 {
923072b8 1451 let (a, b) = f(&*orig);
94b46f34 1452 let borrow = orig.borrow.clone();
923072b8
FG
1453 (
1454 Ref { value: NonNull::from(a), borrow },
1455 Ref { value: NonNull::from(b), borrow: orig.borrow },
1456 )
94b46f34 1457 }
74b04a01
XL
1458
1459 /// Convert into a reference to the underlying data.
1460 ///
1461 /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1462 /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1463 /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1464 /// have occurred in total.
1465 ///
1466 /// This is an associated function that needs to be used as
1467 /// `Ref::leak(...)`. A method would interfere with methods of the
1468 /// same name on the contents of a `RefCell` used through `Deref`.
1469 ///
1470 /// # Examples
1471 ///
1472 /// ```
1473 /// #![feature(cell_leak)]
1474 /// use std::cell::{RefCell, Ref};
1475 /// let cell = RefCell::new(0);
1476 ///
1477 /// let value = Ref::leak(cell.borrow());
1478 /// assert_eq!(*value, 0);
1479 ///
1480 /// assert!(cell.try_borrow().is_ok());
1481 /// assert!(cell.try_borrow_mut().is_err());
1482 /// ```
1483 #[unstable(feature = "cell_leak", issue = "69099")]
1484 pub fn leak(orig: Ref<'b, T>) -> &'b T {
ba9703b0
XL
1485 // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1486 // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1487 // unique reference to the borrowed RefCell. No further mutable references can be created
1488 // from the original cell.
74b04a01 1489 mem::forget(orig.borrow);
923072b8
FG
1490 // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1491 unsafe { orig.value.as_ref() }
74b04a01 1492 }
62682a34
SL
1493}
1494
54a0048b
SL
1495#[unstable(feature = "coerce_unsized", issue = "27732")]
1496impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1497
041b39d2 1498#[stable(feature = "std_guard_impls", since = "1.20.0")]
0bf4aa26 1499impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
48663c56 1500 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
923072b8 1501 (**self).fmt(f)
041b39d2
XL
1502 }
1503}
1504
62682a34 1505impl<'b, T: ?Sized> RefMut<'b, T> {
9fa01778 1506 /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
62682a34
SL
1507 /// variant.
1508 ///
1509 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1510 ///
1511 /// This is an associated function that needs to be used as
9fa01778 1512 /// `RefMut::map(...)`. A method would interfere with methods of the same
62682a34
SL
1513 /// name on the contents of a `RefCell` used through `Deref`.
1514 ///
3b2f2976 1515 /// # Examples
62682a34
SL
1516 ///
1517 /// ```
62682a34
SL
1518 /// use std::cell::{RefCell, RefMut};
1519 ///
1520 /// let c = RefCell::new((5, 'b'));
1521 /// {
1522 /// let b1: RefMut<(u32, char)> = c.borrow_mut();
1523 /// let mut b2: RefMut<u32> = RefMut::map(b1, |t| &mut t.0);
1524 /// assert_eq!(*b2, 5);
1525 /// *b2 = 42;
1526 /// }
1527 /// assert_eq!(*c.borrow(), (42, 'b'));
1528 /// ```
7453a54e 1529 #[stable(feature = "cell_map", since = "1.8.0")]
62682a34 1530 #[inline]
923072b8 1531 pub fn map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
dfeec247
XL
1532 where
1533 F: FnOnce(&mut T) -> &mut U,
62682a34 1534 {
923072b8
FG
1535 let value = NonNull::from(f(&mut *orig));
1536 RefMut { value, borrow: orig.borrow, marker: PhantomData }
62682a34 1537 }
94b46f34 1538
5869c6ff
XL
1539 /// Makes a new `RefMut` for an optional component of the borrowed data. The
1540 /// original guard is returned as an `Err(..)` if the closure returns
1541 /// `None`.
1542 ///
1543 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1544 ///
1545 /// This is an associated function that needs to be used as
1546 /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1547 /// same name on the contents of a `RefCell` used through `Deref`.
1548 ///
1549 /// # Examples
1550 ///
1551 /// ```
5869c6ff
XL
1552 /// use std::cell::{RefCell, RefMut};
1553 ///
1554 /// let c = RefCell::new(vec![1, 2, 3]);
1555 ///
1556 /// {
1557 /// let b1: RefMut<Vec<u32>> = c.borrow_mut();
1558 /// let mut b2: Result<RefMut<u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1559 ///
1560 /// if let Ok(mut b2) = b2 {
1561 /// *b2 += 2;
1562 /// }
1563 /// }
1564 ///
1565 /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1566 /// ```
923072b8 1567 #[stable(feature = "cell_filter_map", since = "1.63.0")]
5869c6ff 1568 #[inline]
923072b8 1569 pub fn filter_map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
5869c6ff
XL
1570 where
1571 F: FnOnce(&mut T) -> Option<&mut U>,
1572 {
5869c6ff
XL
1573 // SAFETY: function holds onto an exclusive reference for the duration
1574 // of its call through `orig`, and the pointer is only de-referenced
1575 // inside of the function call never allowing the exclusive reference to
1576 // escape.
923072b8
FG
1577 match f(&mut *orig) {
1578 Some(value) => {
1579 Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
5869c6ff 1580 }
923072b8 1581 None => Err(orig),
5869c6ff
XL
1582 }
1583 }
1584
9fa01778 1585 /// Splits a `RefMut` into multiple `RefMut`s for different components of the
94b46f34
XL
1586 /// borrowed data.
1587 ///
1588 /// The underlying `RefCell` will remain mutably borrowed until both
1589 /// returned `RefMut`s go out of scope.
1590 ///
1591 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1592 ///
1593 /// This is an associated function that needs to be used as
1594 /// `RefMut::map_split(...)`. A method would interfere with methods of the
1595 /// same name on the contents of a `RefCell` used through `Deref`.
1596 ///
1597 /// # Examples
1598 ///
1599 /// ```
94b46f34
XL
1600 /// use std::cell::{RefCell, RefMut};
1601 ///
1602 /// let cell = RefCell::new([1, 2, 3, 4]);
1603 /// let borrow = cell.borrow_mut();
1604 /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1605 /// assert_eq!(*begin, [1, 2]);
1606 /// assert_eq!(*end, [3, 4]);
1607 /// begin.copy_from_slice(&[4, 3]);
1608 /// end.copy_from_slice(&[2, 1]);
1609 /// ```
532ac7d7 1610 #[stable(feature = "refcell_map_split", since = "1.35.0")]
94b46f34
XL
1611 #[inline]
1612 pub fn map_split<U: ?Sized, V: ?Sized, F>(
923072b8 1613 mut orig: RefMut<'b, T>,
dfeec247 1614 f: F,
94b46f34 1615 ) -> (RefMut<'b, U>, RefMut<'b, V>)
dfeec247
XL
1616 where
1617 F: FnOnce(&mut T) -> (&mut U, &mut V),
94b46f34 1618 {
94b46f34 1619 let borrow = orig.borrow.clone();
923072b8
FG
1620 let (a, b) = f(&mut *orig);
1621 (
1622 RefMut { value: NonNull::from(a), borrow, marker: PhantomData },
1623 RefMut { value: NonNull::from(b), borrow: orig.borrow, marker: PhantomData },
1624 )
94b46f34 1625 }
74b04a01
XL
1626
1627 /// Convert into a mutable reference to the underlying data.
1628 ///
1629 /// The underlying `RefCell` can not be borrowed from again and will always appear already
1630 /// mutably borrowed, making the returned reference the only to the interior.
1631 ///
1632 /// This is an associated function that needs to be used as
1633 /// `RefMut::leak(...)`. A method would interfere with methods of the
1634 /// same name on the contents of a `RefCell` used through `Deref`.
1635 ///
1636 /// # Examples
1637 ///
1638 /// ```
1639 /// #![feature(cell_leak)]
1640 /// use std::cell::{RefCell, RefMut};
1641 /// let cell = RefCell::new(0);
1642 ///
1643 /// let value = RefMut::leak(cell.borrow_mut());
1644 /// assert_eq!(*value, 0);
1645 /// *value = 1;
1646 ///
1647 /// assert!(cell.try_borrow_mut().is_err());
1648 /// ```
1649 #[unstable(feature = "cell_leak", issue = "69099")]
923072b8 1650 pub fn leak(mut orig: RefMut<'b, T>) -> &'b mut T {
ba9703b0
XL
1651 // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
1652 // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
1653 // require a unique reference to the borrowed RefCell. No further references can be created
1654 // from the original cell within that lifetime, making the current borrow the only
1655 // reference for the remaining lifetime.
74b04a01 1656 mem::forget(orig.borrow);
923072b8
FG
1657 // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1658 unsafe { orig.value.as_mut() }
74b04a01 1659 }
1a4d82fc
JJ
1660}
1661
1662struct BorrowRefMut<'b> {
54a0048b 1663 borrow: &'b Cell<BorrowFlag>,
1a4d82fc
JJ
1664}
1665
0bf4aa26 1666impl Drop for BorrowRefMut<'_> {
c34b1796 1667 #[inline]
1a4d82fc 1668 fn drop(&mut self) {
54a0048b 1669 let borrow = self.borrow.get();
8faf50e0
XL
1670 debug_assert!(is_writing(borrow));
1671 self.borrow.set(borrow + 1);
1a4d82fc
JJ
1672 }
1673}
1674
1675impl<'b> BorrowRefMut<'b> {
c34b1796 1676 #[inline]
1a4d82fc 1677 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRefMut<'b>> {
94b46f34
XL
1678 // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
1679 // mutable reference, and so there must currently be no existing
1680 // references. Thus, while clone increments the mutable refcount, here
8faf50e0 1681 // we explicitly only allow going from UNUSED to UNUSED - 1.
1a4d82fc
JJ
1682 match borrow.get() {
1683 UNUSED => {
8faf50e0 1684 borrow.set(UNUSED - 1);
b7449926 1685 Some(BorrowRefMut { borrow })
dfeec247 1686 }
1a4d82fc
JJ
1687 _ => None,
1688 }
1689 }
94b46f34 1690
dc9dc135 1691 // Clones a `BorrowRefMut`.
94b46f34
XL
1692 //
1693 // This is only valid if each `BorrowRefMut` is used to track a mutable
1694 // reference to a distinct, nonoverlapping range of the original object.
1695 // This isn't in a Clone impl so that code doesn't call this implicitly.
1696 #[inline]
1697 fn clone(&self) -> BorrowRefMut<'b> {
1698 let borrow = self.borrow.get();
8faf50e0
XL
1699 debug_assert!(is_writing(borrow));
1700 // Prevent the borrow counter from underflowing.
f035d41b 1701 assert!(borrow != isize::MIN);
8faf50e0 1702 self.borrow.set(borrow - 1);
94b46f34
XL
1703 BorrowRefMut { borrow: self.borrow }
1704 }
1a4d82fc
JJ
1705}
1706
85aaf69f
SL
1707/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
1708///
29967ef6 1709/// See the [module-level documentation](self) for more.
85aaf69f 1710#[stable(feature = "rust1", since = "1.0.0")]
5099ac24 1711#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
d9579d0f 1712pub struct RefMut<'b, T: ?Sized + 'b> {
923072b8
FG
1713 // NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
1714 // `RefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
1715 value: NonNull<T>,
54a0048b 1716 borrow: BorrowRefMut<'b>,
923072b8
FG
1717 // `NonNull` is covariant over `T`, so we need to reintroduce invariance.
1718 marker: PhantomData<&'b mut T>,
1a4d82fc
JJ
1719}
1720
85aaf69f 1721#[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 1722impl<T: ?Sized> Deref for RefMut<'_, T> {
1a4d82fc
JJ
1723 type Target = T;
1724
1725 #[inline]
e9174d1e 1726 fn deref(&self) -> &T {
923072b8
FG
1727 // SAFETY: the value is accessible as long as we hold our borrow.
1728 unsafe { self.value.as_ref() }
1a4d82fc
JJ
1729 }
1730}
1731
85aaf69f 1732#[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 1733impl<T: ?Sized> DerefMut for RefMut<'_, T> {
1a4d82fc 1734 #[inline]
e9174d1e 1735 fn deref_mut(&mut self) -> &mut T {
923072b8
FG
1736 // SAFETY: the value is accessible as long as we hold our borrow.
1737 unsafe { self.value.as_mut() }
1a4d82fc
JJ
1738 }
1739}
1740
54a0048b
SL
1741#[unstable(feature = "coerce_unsized", issue = "27732")]
1742impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
1743
041b39d2 1744#[stable(feature = "std_guard_impls", since = "1.20.0")]
0bf4aa26 1745impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
48663c56 1746 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
923072b8 1747 (**self).fmt(f)
041b39d2
XL
1748 }
1749}
1750
1a4d82fc
JJ
1751/// The core primitive for interior mutability in Rust.
1752///
6a06907d
XL
1753/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
1754/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
1755/// alias or by transmuting an `&T` into an `&mut T`, is considered undefined behavior.
1756/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
1757/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
1a4d82fc 1758///
6a06907d
XL
1759/// All other types that allow internal mutability, such as `Cell<T>` and `RefCell<T>`, internally
1760/// use `UnsafeCell` to wrap their data.
1761///
1762/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
1763/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
1764/// aliasing `&mut`, not even with `UnsafeCell<T>`.
5bcae85e 1765///
1b1a35ee
XL
1766/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
1767/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
1768/// correctly.
1769///
1770/// [`.get()`]: `UnsafeCell::get`
0531ce1d
XL
1771///
1772/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
1773///
064997fb
FG
1774/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T` reference), then
1775/// you must not access the data in any way that contradicts that reference for the remainder of
1776/// `'a`. For example, this means that if you take the `*mut T` from an `UnsafeCell<T>` and cast it
1777/// to an `&T`, then the data in `T` must remain immutable (modulo any `UnsafeCell` data found
1778/// within `T`, of course) until that reference's lifetime expires. Similarly, if you create a `&mut
1779/// T` reference that is released to safe code, then you must not access the data within the
1780/// `UnsafeCell` until that reference expires.
1781///
1782/// - For both `&T` without `UnsafeCell<_>` and `&mut T`, you must also not deallocate the data
1783/// until the reference expires. As a special exception, given an `&T`, any part of it that is
1784/// inside an `UnsafeCell<_>` may be deallocated during the lifetime of the reference, after the
1785/// last time the reference is used (dereferenced or reborrowed). Since you cannot deallocate a part
1786/// of what a reference points to, this means the memory an `&T` points to can be deallocted only if
1787/// *every part of it* (including padding) is inside an `UnsafeCell`.
1788///
1789/// However, whenever a `&UnsafeCell<T>` is constructed or dereferenced, it must still point to
1790/// live memory and the compiler is allowed to insert spurious reads if it can prove that this
1791/// memory has not yet been deallocated.
0531ce1d 1792///
94b46f34 1793/// - At all times, you must avoid data races. If multiple threads have access to
0531ce1d
XL
1794/// the same `UnsafeCell`, then any writes must have a proper happens-before relation to all other
1795/// accesses (or use atomics).
5bcae85e 1796///
0531ce1d
XL
1797/// To assist with proper design, the following scenarios are explicitly declared legal
1798/// for single-threaded code:
5bcae85e 1799///
94b46f34 1800/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
0531ce1d
XL
1801/// references, but not with a `&mut T`
1802///
94b46f34 1803/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
0531ce1d
XL
1804/// co-exist with it. A `&mut T` must always be unique.
1805///
1b1a35ee
XL
1806/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
1807/// `&UnsafeCell<T>` references alias the cell) is
1808/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
1809/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
1810/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
1811/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
1812/// accesses (_e.g._, through an `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
1813/// may be aliased for the duration of that `&mut` borrow.
fc512014 1814/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
1b1a35ee
XL
1815/// a `&mut T`.
1816///
1817/// [`.get_mut()`]: `UnsafeCell::get_mut`
1a4d82fc 1818///
2b03887a
FG
1819/// # Memory layout
1820///
1821/// `UnsafeCell<T>` has the same in-memory representation as its inner type `T`. A consequence
1822/// of this guarantee is that it is possible to convert between `T` and `UnsafeCell<T>`.
1823/// Special care has to be taken when converting a nested `T` inside of an `Outer<T>` type
1824/// to an `Outer<UnsafeCell<T>>` type: this is not sound when the `Outer<T>` type enables [niche]
1825/// optimizations. For example, the type `Option<NonNull<u8>>` is typically 8 bytes large on
1826/// 64-bit platforms, but the type `Option<UnsafeCell<NonNull<u8>>>` takes up 16 bytes of space.
1827/// Therefore this is not a valid conversion, despite `NonNull<u8>` and `UnsafeCell<NonNull<u8>>>`
1828/// having the same memory layout. This is because `UnsafeCell` disables niche optimizations in
1829/// order to avoid its interior mutability property from spreading from `T` into the `Outer` type,
1830/// thus this can cause distortions in the type size in these cases.
1831///
1832/// Note that the only valid way to obtain a `*mut T` pointer to the contents of a
1833/// _shared_ `UnsafeCell<T>` is through [`.get()`] or [`.raw_get()`]. A `&mut T` reference
1834/// can be obtained by either dereferencing this pointer or by calling [`.get_mut()`]
1835/// on an _exclusive_ `UnsafeCell<T>`. Even though `T` and `UnsafeCell<T>` have the
1836/// same memory layout, the following is not allowed and undefined behavior:
1837///
1838/// ```rust,no_run
1839/// # use std::cell::UnsafeCell;
1840/// unsafe fn not_allowed<T>(ptr: &UnsafeCell<T>) -> &mut T {
1841/// let t = ptr as *const UnsafeCell<T> as *mut T;
1842/// // This is undefined behavior, because the `*mut T` pointer
1843/// // was not obtained through `.get()` nor `.raw_get()`:
1844/// unsafe { &mut *t }
1845/// }
1846/// ```
1847///
1848/// Instead, do this:
1849///
1850/// ```rust
1851/// # use std::cell::UnsafeCell;
1852/// // Safety: the caller must ensure that there are no references that
1853/// // point to the *contents* of the `UnsafeCell`.
1854/// unsafe fn get_mut<T>(ptr: &UnsafeCell<T>) -> &mut T {
1855/// unsafe { &mut *ptr.get() }
1856/// }
1857/// ```
1858///
487cf647 1859/// Converting in the other direction from a `&mut T`
2b03887a
FG
1860/// to an `&UnsafeCell<T>` is allowed:
1861///
1862/// ```rust
1863/// # use std::cell::UnsafeCell;
1864/// fn get_shared<T>(ptr: &mut T) -> &UnsafeCell<T> {
1865/// let t = ptr as *mut T as *const UnsafeCell<T>;
1866/// // SAFETY: `T` and `UnsafeCell<T>` have the same memory layout
1867/// unsafe { &*t }
1868/// }
1869/// ```
1870///
1871/// [niche]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
1872/// [`.raw_get()`]: `UnsafeCell::raw_get`
1873///
85aaf69f 1874/// # Examples
1a4d82fc 1875///
1b1a35ee
XL
1876/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
1877/// there being multiple references aliasing the cell:
1878///
85aaf69f 1879/// ```
1a4d82fc 1880/// use std::cell::UnsafeCell;
1a4d82fc 1881///
1b1a35ee
XL
1882/// let x: UnsafeCell<i32> = 42.into();
1883/// // Get multiple / concurrent / shared references to the same `x`.
1884/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
1885///
1886/// unsafe {
1887/// // SAFETY: within this scope there are no other references to `x`'s contents,
1888/// // so ours is effectively unique.
1889/// let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
1890/// *p1_exclusive += 27; // |
1891/// } // <---------- cannot go beyond this point -------------------+
1892///
1893/// unsafe {
1894/// // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
1895/// // so we can have multiple shared accesses concurrently.
1896/// let p2_shared: &i32 = &*p2.get();
1897/// assert_eq!(*p2_shared, 42 + 27);
1898/// let p1_shared: &i32 = &*p1.get();
1899/// assert_eq!(*p1_shared, *p2_shared);
1a4d82fc 1900/// }
1b1a35ee
XL
1901/// ```
1902///
1903/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
1904/// implies exclusive access to its `T`:
1905///
1906/// ```rust
1b1a35ee
XL
1907/// #![forbid(unsafe_code)] // with exclusive accesses,
1908/// // `UnsafeCell` is a transparent no-op wrapper,
1909/// // so no need for `unsafe` here.
1910/// use std::cell::UnsafeCell;
1911///
1912/// let mut x: UnsafeCell<i32> = 42.into();
1913///
1914/// // Get a compile-time-checked unique reference to `x`.
1915/// let p_unique: &mut UnsafeCell<i32> = &mut x;
1916/// // With an exclusive reference, we can mutate the contents for free.
1917/// *p_unique.get_mut() = 0;
1918/// // Or, equivalently:
1919/// x = UnsafeCell::new(0);
85aaf69f 1920///
1b1a35ee
XL
1921/// // When we own the value, we can extract the contents for free.
1922/// let contents: i32 = x.into_inner();
1923/// assert_eq!(contents, 0);
1a4d82fc 1924/// ```
d9579d0f 1925#[lang = "unsafe_cell"]
85aaf69f 1926#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0 1927#[repr(transparent)]
d9579d0f 1928pub struct UnsafeCell<T: ?Sized> {
e9174d1e 1929 value: T,
1a4d82fc
JJ
1930}
1931
92a42be0 1932#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 1933impl<T: ?Sized> !Sync for UnsafeCell<T> {}
c34b1796 1934
1a4d82fc 1935impl<T> UnsafeCell<T> {
9346a6ac 1936 /// Constructs a new instance of `UnsafeCell` which will wrap the specified
1a4d82fc
JJ
1937 /// value.
1938 ///
487cf647 1939 /// All access to the inner value through `&UnsafeCell<T>` requires `unsafe` code.
85aaf69f
SL
1940 ///
1941 /// # Examples
1942 ///
1943 /// ```
1944 /// use std::cell::UnsafeCell;
1945 ///
1946 /// let uc = UnsafeCell::new(5);
1947 /// ```
1948 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 1949 #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
cdc7bbd5 1950 #[inline(always)]
62682a34 1951 pub const fn new(value: T) -> UnsafeCell<T> {
b7449926 1952 UnsafeCell { value }
1a4d82fc
JJ
1953 }
1954
d9579d0f
AL
1955 /// Unwraps the value.
1956 ///
85aaf69f
SL
1957 /// # Examples
1958 ///
1959 /// ```
1960 /// use std::cell::UnsafeCell;
1961 ///
1962 /// let uc = UnsafeCell::new(5);
1963 ///
2c00a5a8 1964 /// let five = uc.into_inner();
85aaf69f 1965 /// ```
cdc7bbd5 1966 #[inline(always)]
85aaf69f 1967 #[stable(feature = "rust1", since = "1.0.0")]
29967ef6
XL
1968 #[rustc_const_unstable(feature = "const_cell_into_inner", issue = "78729")]
1969 pub const fn into_inner(self) -> T {
62682a34
SL
1970 self.value
1971 }
d9579d0f 1972}
1a4d82fc 1973
d9579d0f
AL
1974impl<T: ?Sized> UnsafeCell<T> {
1975 /// Gets a mutable pointer to the wrapped value.
85aaf69f 1976 ///
5bcae85e 1977 /// This can be cast to a pointer of any kind.
0531ce1d
XL
1978 /// Ensure that the access is unique (no active references, mutable or not)
1979 /// when casting to `&mut T`, and ensure that there are no mutations
1980 /// or mutable aliases going on when casting to `&T`
5bcae85e 1981 ///
85aaf69f
SL
1982 /// # Examples
1983 ///
1984 /// ```
1985 /// use std::cell::UnsafeCell;
1986 ///
1987 /// let uc = UnsafeCell::new(5);
1988 ///
d9579d0f 1989 /// let five = uc.get();
85aaf69f 1990 /// ```
cdc7bbd5 1991 #[inline(always)]
85aaf69f 1992 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 1993 #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
a1dfa0c6
XL
1994 pub const fn get(&self) -> *mut T {
1995 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
60c5eb7d
XL
1996 // #[repr(transparent)]. This exploits libstd's special status, there is
1997 // no guarantee for user code that this will work in future versions of the compiler!
a1dfa0c6 1998 self as *const UnsafeCell<T> as *const T as *mut T
d9579d0f 1999 }
60c5eb7d 2000
1b1a35ee
XL
2001 /// Returns a mutable reference to the underlying data.
2002 ///
2003 /// This call borrows the `UnsafeCell` mutably (at compile-time) which
2004 /// guarantees that we possess the only reference.
2005 ///
2006 /// # Examples
2007 ///
2008 /// ```
1b1a35ee
XL
2009 /// use std::cell::UnsafeCell;
2010 ///
2011 /// let mut c = UnsafeCell::new(5);
2012 /// *c.get_mut() += 1;
2013 ///
2014 /// assert_eq!(*c.get_mut(), 6);
2015 /// ```
cdc7bbd5 2016 #[inline(always)]
fc512014 2017 #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
c295e0f8
XL
2018 #[rustc_const_unstable(feature = "const_unsafecell_get_mut", issue = "88836")]
2019 pub const fn get_mut(&mut self) -> &mut T {
29967ef6 2020 &mut self.value
1b1a35ee
XL
2021 }
2022
60c5eb7d 2023 /// Gets a mutable pointer to the wrapped value.
94222f64 2024 /// The difference from [`get`] is that this function accepts a raw pointer,
60c5eb7d
XL
2025 /// which is useful to avoid the creation of temporary references.
2026 ///
2027 /// The result can be cast to a pointer of any kind.
2028 /// Ensure that the access is unique (no active references, mutable or not)
2029 /// when casting to `&mut T`, and ensure that there are no mutations
2030 /// or mutable aliases going on when casting to `&T`.
2031 ///
fc512014 2032 /// [`get`]: UnsafeCell::get()
60c5eb7d
XL
2033 ///
2034 /// # Examples
2035 ///
2036 /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
2037 /// calling `get` would require creating a reference to uninitialized data:
2038 ///
2039 /// ```
60c5eb7d
XL
2040 /// use std::cell::UnsafeCell;
2041 /// use std::mem::MaybeUninit;
2042 ///
2043 /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
2044 /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
2045 /// let uc = unsafe { m.assume_init() };
2046 ///
2047 /// assert_eq!(uc.into_inner(), 5);
2048 /// ```
cdc7bbd5 2049 #[inline(always)]
94222f64 2050 #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
5099ac24 2051 #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
60c5eb7d
XL
2052 pub const fn raw_get(this: *const Self) -> *mut T {
2053 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2054 // #[repr(transparent)]. This exploits libstd's special status, there is
2055 // no guarantee for user code that this will work in future versions of the compiler!
2056 this as *const T as *mut T
2057 }
1a4d82fc 2058}
a7813a04 2059
7cac9316 2060#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
a7813a04 2061impl<T: Default> Default for UnsafeCell<T> {
9e0c209e 2062 /// Creates an `UnsafeCell`, with the `Default` value for T.
a7813a04
XL
2063 fn default() -> UnsafeCell<T> {
2064 UnsafeCell::new(Default::default())
2065 }
2066}
5bcae85e
SL
2067
2068#[stable(feature = "cell_from", since = "1.12.0")]
3c0e092e
XL
2069#[rustc_const_unstable(feature = "const_convert", issue = "88674")]
2070impl<T> const From<T> for UnsafeCell<T> {
5099ac24 2071 /// Creates a new `UnsafeCell<T>` containing the given value.
5bcae85e
SL
2072 fn from(t: T) -> UnsafeCell<T> {
2073 UnsafeCell::new(t)
2074 }
2075}
9e0c209e
SL
2076
2077#[unstable(feature = "coerce_unsized", issue = "27732")]
2078impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
2079
04454e1e
FG
2080/// [`UnsafeCell`], but [`Sync`].
2081///
2082/// This is just an `UnsafeCell`, except it implements `Sync`
2083/// if `T` implements `Sync`.
2084///
2085/// `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use.
2086/// You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be
2087/// shared between threads, if that's intentional.
2088/// Providing proper synchronization is still the task of the user,
2089/// making this type just as unsafe to use.
2090///
2091/// See [`UnsafeCell`] for details.
2092#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2093#[repr(transparent)]
2094pub struct SyncUnsafeCell<T: ?Sized> {
2095 value: UnsafeCell<T>,
2096}
2097
2098#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2099unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {}
2100
2101#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2102impl<T> SyncUnsafeCell<T> {
2103 /// Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value.
2104 #[inline]
2105 pub const fn new(value: T) -> Self {
2106 Self { value: UnsafeCell { value } }
2107 }
2108
2109 /// Unwraps the value.
2110 #[inline]
2111 pub const fn into_inner(self) -> T {
2112 self.value.into_inner()
2113 }
2114}
2115
2116#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2117impl<T: ?Sized> SyncUnsafeCell<T> {
2118 /// Gets a mutable pointer to the wrapped value.
2119 ///
2120 /// This can be cast to a pointer of any kind.
2121 /// Ensure that the access is unique (no active references, mutable or not)
2122 /// when casting to `&mut T`, and ensure that there are no mutations
2123 /// or mutable aliases going on when casting to `&T`
2124 #[inline]
2125 pub const fn get(&self) -> *mut T {
2126 self.value.get()
2127 }
2128
2129 /// Returns a mutable reference to the underlying data.
2130 ///
2131 /// This call borrows the `SyncUnsafeCell` mutably (at compile-time) which
2132 /// guarantees that we possess the only reference.
2133 #[inline]
2134 pub const fn get_mut(&mut self) -> &mut T {
2135 self.value.get_mut()
2136 }
2137
2138 /// Gets a mutable pointer to the wrapped value.
2139 ///
2140 /// See [`UnsafeCell::get`] for details.
2141 #[inline]
2142 pub const fn raw_get(this: *const Self) -> *mut T {
2143 // We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because
2144 // of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell.
2145 // See UnsafeCell::raw_get.
2146 this as *const T as *mut T
2147 }
2148}
2149
2150#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2151impl<T: Default> Default for SyncUnsafeCell<T> {
2152 /// Creates an `SyncUnsafeCell`, with the `Default` value for T.
2153 fn default() -> SyncUnsafeCell<T> {
2154 SyncUnsafeCell::new(Default::default())
2155 }
2156}
2157
2158#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2159#[rustc_const_unstable(feature = "const_convert", issue = "88674")]
2160impl<T> const From<T> for SyncUnsafeCell<T> {
2161 /// Creates a new `SyncUnsafeCell<T>` containing the given value.
2162 fn from(t: T) -> SyncUnsafeCell<T> {
2163 SyncUnsafeCell::new(t)
2164 }
2165}
2166
2167#[unstable(feature = "coerce_unsized", issue = "27732")]
2168//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2169impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2170
9e0c209e 2171#[allow(unused)]
04454e1e
FG
2172fn assert_coerce_unsized(
2173 a: UnsafeCell<&i32>,
2174 b: SyncUnsafeCell<&i32>,
2175 c: Cell<&i32>,
2176 d: RefCell<&i32>,
2177) {
8faf50e0 2178 let _: UnsafeCell<&dyn Send> = a;
04454e1e
FG
2179 let _: SyncUnsafeCell<&dyn Send> = b;
2180 let _: Cell<&dyn Send> = c;
2181 let _: RefCell<&dyn Send> = d;
9e0c209e 2182}