]> git.proxmox.com Git - rustc.git/blame - library/core/src/cell.rs
New upstream version 1.53.0+dfsg1
[rustc.git] / library / core / src / cell.rs
CommitLineData
1a4d82fc
JJ
1//! Shareable mutable containers.
2//!
0531ce1d
XL
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Having several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - Having one mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
5869c6ff 14//! presence of aliasing. Both [`Cell<T>`] and [`RefCell<T>`] allow doing this in a single-threaded
0531ce1d 15//! way. However, neither `Cell<T>` nor `RefCell<T>` are thread safe (they do not implement
5869c6ff
XL
16//! [`Sync`]). If you need to do aliasing and mutation between multiple threads it is possible to
17//! use [`Mutex<T>`], [`RwLock<T>`] or [`atomic`] types.
0531ce1d 18//!
85aaf69f
SL
19//! Values of the `Cell<T>` and `RefCell<T>` types may be mutated through shared references (i.e.
20//! the common `&T` type), whereas most Rust types can only be mutated through unique (`&mut T`)
21//! references. We say that `Cell<T>` and `RefCell<T>` provide 'interior mutability', in contrast
22//! with typical Rust types that exhibit 'inherited mutability'.
1a4d82fc 23//!
8bb4bdeb
XL
24//! Cell types come in two flavors: `Cell<T>` and `RefCell<T>`. `Cell<T>` implements interior
25//! mutability by moving values in and out of the `Cell<T>`. To use references instead of values,
26//! one must use the `RefCell<T>` type, acquiring a write lock before mutating. `Cell<T>` provides
27//! methods to retrieve and change the current interior value:
28//!
5869c6ff
XL
29//! - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
30//! interior value.
31//! - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
32//! interior value with [`Default::default()`] and returns the replaced value.
33//! - For all types, the [`replace`](Cell::replace) method replaces the current interior value and
34//! returns the replaced value and the [`into_inner`](Cell::into_inner) method consumes the
35//! `Cell<T>` and returns the interior value. Additionally, the [`set`](Cell::set) method
36//! replaces the interior value, dropping the replaced value.
1a4d82fc 37//!
85aaf69f
SL
38//! `RefCell<T>` uses Rust's lifetimes to implement 'dynamic borrowing', a process whereby one can
39//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
40//! tracked 'at runtime', unlike Rust's native reference types which are entirely tracked
41//! statically, at compile time. Because `RefCell<T>` borrows are dynamic it is possible to attempt
bd371182
AL
42//! to borrow a value that is already mutably borrowed; when this happens it results in thread
43//! panic.
1a4d82fc
JJ
44//!
45//! # When to choose interior mutability
46//!
85aaf69f
SL
47//! The more common inherited mutability, where one must have unique access to mutate a value, is
48//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
49//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
50//! interior mutability is something of a last resort. Since cell types enable mutation where it
51//! would otherwise be disallowed though, there are occasions when interior mutability might be
52//! appropriate, or even *must* be used, e.g.
1a4d82fc 53//!
c1a9b12d 54//! * Introducing mutability 'inside' of something immutable
1a4d82fc 55//! * Implementation details of logically-immutable methods.
5869c6ff 56//! * Mutating implementations of [`Clone`].
1a4d82fc 57//!
c1a9b12d 58//! ## Introducing mutability 'inside' of something immutable
1a4d82fc 59//!
5869c6ff
XL
60//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
61//! be cloned and shared between multiple parties. Because the contained values may be
c1a9b12d
SL
62//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
63//! impossible to mutate data inside of these smart pointers at all.
1a4d82fc 64//!
85aaf69f
SL
65//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
66//! mutability:
1a4d82fc
JJ
67//!
68//! ```
dc9dc135 69//! use std::cell::{RefCell, RefMut};
1a4d82fc 70//! use std::collections::HashMap;
1a4d82fc
JJ
71//! use std::rc::Rc;
72//!
73//! fn main() {
74//! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
dc9dc135
XL
75//! // Create a new block to limit the scope of the dynamic borrow
76//! {
77//! let mut map: RefMut<_> = shared_map.borrow_mut();
78//! map.insert("africa", 92388);
79//! map.insert("kyoto", 11837);
80//! map.insert("piccadilly", 11826);
81//! map.insert("marbles", 38);
82//! }
83//!
84//! // Note that if we had not let the previous borrow of the cache fall out
85//! // of scope then the subsequent borrow would cause a dynamic thread panic.
86//! // This is the major hazard of using `RefCell`.
87//! let total: i32 = shared_map.borrow().values().sum();
88//! println!("{}", total);
1a4d82fc
JJ
89//! }
90//! ```
91//!
85aaf69f 92//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
5869c6ff 93//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
c1a9b12d 94//! multi-threaded situation.
85aaf69f 95//!
1a4d82fc
JJ
96//! ## Implementation details of logically-immutable methods
97//!
85aaf69f 98//! Occasionally it may be desirable not to expose in an API that there is mutation happening
0731742a 99//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
85aaf69f
SL
100//! forces the implementation to perform mutation; or because you must employ mutation to implement
101//! a trait method that was originally defined to take `&self`.
1a4d82fc
JJ
102//!
103//! ```
92a42be0 104//! # #![allow(dead_code)]
1a4d82fc
JJ
105//! use std::cell::RefCell;
106//!
107//! struct Graph {
85aaf69f
SL
108//! edges: Vec<(i32, i32)>,
109//! span_tree_cache: RefCell<Option<Vec<(i32, i32)>>>
1a4d82fc
JJ
110//! }
111//!
112//! impl Graph {
85aaf69f 113//! fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
dc9dc135
XL
114//! self.span_tree_cache.borrow_mut()
115//! .get_or_insert_with(|| self.calc_span_tree())
116//! .clone()
117//! }
1a4d82fc 118//!
dc9dc135
XL
119//! fn calc_span_tree(&self) -> Vec<(i32, i32)> {
120//! // Expensive computation goes here
121//! vec![]
1a4d82fc 122//! }
1a4d82fc 123//! }
1a4d82fc
JJ
124//! ```
125//!
62682a34 126//! ## Mutating implementations of `Clone`
1a4d82fc 127//!
85aaf69f 128//! This is simply a special - but common - case of the previous: hiding mutability for operations
5869c6ff
XL
129//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
130//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
131//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
132//! reference counts within a `Cell<T>`.
1a4d82fc
JJ
133//!
134//! ```
135//! use std::cell::Cell;
0531ce1d 136//! use std::ptr::NonNull;
f9f354fc 137//! use std::process::abort;
60c5eb7d 138//! use std::marker::PhantomData;
1a4d82fc 139//!
9e0c209e 140//! struct Rc<T: ?Sized> {
60c5eb7d
XL
141//! ptr: NonNull<RcBox<T>>,
142//! phantom: PhantomData<RcBox<T>>,
1a4d82fc
JJ
143//! }
144//!
9e0c209e
SL
145//! struct RcBox<T: ?Sized> {
146//! strong: Cell<usize>,
147//! refcount: Cell<usize>,
1a4d82fc 148//! value: T,
1a4d82fc
JJ
149//! }
150//!
9e0c209e 151//! impl<T: ?Sized> Clone for Rc<T> {
1a4d82fc 152//! fn clone(&self) -> Rc<T> {
9e0c209e 153//! self.inc_strong();
60c5eb7d
XL
154//! Rc {
155//! ptr: self.ptr,
156//! phantom: PhantomData,
157//! }
9e0c209e
SL
158//! }
159//! }
160//!
161//! trait RcBoxPtr<T: ?Sized> {
162//!
163//! fn inner(&self) -> &RcBox<T>;
164//!
165//! fn strong(&self) -> usize {
166//! self.inner().strong.get()
167//! }
168//!
169//! fn inc_strong(&self) {
170//! self.inner()
171//! .strong
172//! .set(self.strong()
173//! .checked_add(1)
f9f354fc 174//! .unwrap_or_else(|| abort() ));
1a4d82fc
JJ
175//! }
176//! }
9e0c209e
SL
177//!
178//! impl<T: ?Sized> RcBoxPtr<T> for Rc<T> {
179//! fn inner(&self) -> &RcBox<T> {
180//! unsafe {
7cac9316 181//! self.ptr.as_ref()
9e0c209e
SL
182//! }
183//! }
184//! }
1a4d82fc
JJ
185//! ```
186//!
5869c6ff
XL
187//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
188//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
189//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
190//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
cdc7bbd5 191//! [`atomic`]: crate::sync::atomic
1a4d82fc 192
85aaf69f 193#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 194
48663c56
XL
195use crate::cmp::Ordering;
196use crate::fmt::{self, Debug, Display};
197use crate::marker::Unsize;
198use crate::mem;
dfeec247 199use crate::ops::{CoerceUnsized, Deref, DerefMut};
48663c56 200use crate::ptr;
1a4d82fc 201
8bb4bdeb 202/// A mutable memory location.
85aaf69f 203///
3b2f2976
XL
204/// # Examples
205///
a1dfa0c6
XL
206/// In this example, you can see that `Cell<T>` enables mutation inside an
207/// immutable struct. In other words, it enables "interior mutability".
3b2f2976
XL
208///
209/// ```
210/// use std::cell::Cell;
211///
212/// struct SomeStruct {
213/// regular_field: u8,
214/// special_field: Cell<u8>,
215/// }
216///
217/// let my_struct = SomeStruct {
218/// regular_field: 0,
219/// special_field: Cell::new(1),
220/// };
221///
222/// let new_value = 100;
223///
a1dfa0c6 224/// // ERROR: `my_struct` is immutable
3b2f2976
XL
225/// // my_struct.regular_field = new_value;
226///
a1dfa0c6
XL
227/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
228/// // which can always be mutated
3b2f2976
XL
229/// my_struct.special_field.set(new_value);
230/// assert_eq!(my_struct.special_field.get(), new_value);
231/// ```
232///
29967ef6 233/// See the [module-level documentation](self) for more.
85aaf69f 234#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0
XL
235#[repr(transparent)]
236pub struct Cell<T: ?Sized> {
1a4d82fc
JJ
237 value: UnsafeCell<T>,
238}
239
8bb4bdeb 240#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0 241unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
8bb4bdeb
XL
242
243#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0 244impl<T: ?Sized> !Sync for Cell<T> {}
8bb4bdeb
XL
245
246#[stable(feature = "rust1", since = "1.0.0")]
dfeec247 247impl<T: Copy> Clone for Cell<T> {
8bb4bdeb
XL
248 #[inline]
249 fn clone(&self) -> Cell<T> {
250 Cell::new(self.get())
251 }
252}
253
254#[stable(feature = "rust1", since = "1.0.0")]
416331ca 255impl<T: Default> Default for Cell<T> {
8bb4bdeb
XL
256 /// Creates a `Cell<T>`, with the `Default` value for T.
257 #[inline]
258 fn default() -> Cell<T> {
259 Cell::new(Default::default())
260 }
261}
262
263#[stable(feature = "rust1", since = "1.0.0")]
416331ca 264impl<T: PartialEq + Copy> PartialEq for Cell<T> {
8bb4bdeb
XL
265 #[inline]
266 fn eq(&self, other: &Cell<T>) -> bool {
267 self.get() == other.get()
268 }
269}
270
271#[stable(feature = "cell_eq", since = "1.2.0")]
416331ca 272impl<T: Eq + Copy> Eq for Cell<T> {}
8bb4bdeb
XL
273
274#[stable(feature = "cell_ord", since = "1.10.0")]
416331ca 275impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
8bb4bdeb
XL
276 #[inline]
277 fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
278 self.get().partial_cmp(&other.get())
279 }
280
281 #[inline]
282 fn lt(&self, other: &Cell<T>) -> bool {
283 self.get() < other.get()
284 }
285
286 #[inline]
287 fn le(&self, other: &Cell<T>) -> bool {
288 self.get() <= other.get()
289 }
290
291 #[inline]
292 fn gt(&self, other: &Cell<T>) -> bool {
293 self.get() > other.get()
294 }
295
296 #[inline]
297 fn ge(&self, other: &Cell<T>) -> bool {
298 self.get() >= other.get()
299 }
300}
301
302#[stable(feature = "cell_ord", since = "1.10.0")]
416331ca 303impl<T: Ord + Copy> Ord for Cell<T> {
8bb4bdeb
XL
304 #[inline]
305 fn cmp(&self, other: &Cell<T>) -> Ordering {
306 self.get().cmp(&other.get())
307 }
308}
309
310#[stable(feature = "cell_from", since = "1.12.0")]
311impl<T> From<T> for Cell<T> {
312 fn from(t: T) -> Cell<T> {
313 Cell::new(t)
314 }
315}
316
317impl<T> Cell<T> {
318 /// Creates a new `Cell` containing the given value.
85aaf69f
SL
319 ///
320 /// # Examples
321 ///
322 /// ```
323 /// use std::cell::Cell;
324 ///
325 /// let c = Cell::new(5);
85aaf69f 326 /// ```
85aaf69f 327 #[stable(feature = "rust1", since = "1.0.0")]
cdc7bbd5 328 #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
8bb4bdeb
XL
329 #[inline]
330 pub const fn new(value: T) -> Cell<T> {
dfeec247 331 Cell { value: UnsafeCell::new(value) }
1a4d82fc
JJ
332 }
333
8bb4bdeb
XL
334 /// Sets the contained value.
335 ///
336 /// # Examples
337 ///
338 /// ```
339 /// use std::cell::Cell;
340 ///
341 /// let c = Cell::new(5);
342 ///
343 /// c.set(10);
344 /// ```
a7813a04 345 #[inline]
8bb4bdeb
XL
346 #[stable(feature = "rust1", since = "1.0.0")]
347 pub fn set(&self, val: T) {
348 let old = self.replace(val);
349 drop(old);
a7813a04
XL
350 }
351
8bb4bdeb
XL
352 /// Swaps the values of two Cells.
353 /// Difference with `std::mem::swap` is that this function doesn't require `&mut` reference.
354 ///
355 /// # Examples
356 ///
357 /// ```
358 /// use std::cell::Cell;
359 ///
360 /// let c1 = Cell::new(5i32);
361 /// let c2 = Cell::new(10i32);
362 /// c1.swap(&c2);
363 /// assert_eq!(10, c1.get());
364 /// assert_eq!(5, c2.get());
365 /// ```
a7813a04 366 #[inline]
8bb4bdeb
XL
367 #[stable(feature = "move_cell", since = "1.17.0")]
368 pub fn swap(&self, other: &Self) {
369 if ptr::eq(self, other) {
370 return;
371 }
dfeec247
XL
372 // SAFETY: This can be risky if called from separate threads, but `Cell`
373 // is `!Sync` so this won't happen. This also won't invalidate any
374 // pointers since `Cell` makes sure nothing else will be pointing into
375 // either of these `Cell`s.
8bb4bdeb
XL
376 unsafe {
377 ptr::swap(self.value.get(), other.value.get());
378 }
a7813a04
XL
379 }
380
6a06907d 381 /// Replaces the contained value with `val`, and returns the old contained value.
8bb4bdeb
XL
382 ///
383 /// # Examples
384 ///
385 /// ```
386 /// use std::cell::Cell;
387 ///
041b39d2
XL
388 /// let cell = Cell::new(5);
389 /// assert_eq!(cell.get(), 5);
390 /// assert_eq!(cell.replace(10), 5);
391 /// assert_eq!(cell.get(), 10);
8bb4bdeb
XL
392 /// ```
393 #[stable(feature = "move_cell", since = "1.17.0")]
394 pub fn replace(&self, val: T) -> T {
dfeec247
XL
395 // SAFETY: This can cause data races if called from a separate thread,
396 // but `Cell` is `!Sync` so this won't happen.
8bb4bdeb 397 mem::replace(unsafe { &mut *self.value.get() }, val)
a7813a04 398 }
a7813a04 399
8bb4bdeb
XL
400 /// Unwraps the value.
401 ///
402 /// # Examples
403 ///
404 /// ```
405 /// use std::cell::Cell;
406 ///
407 /// let c = Cell::new(5);
408 /// let five = c.into_inner();
409 ///
410 /// assert_eq!(five, 5);
411 /// ```
412 #[stable(feature = "move_cell", since = "1.17.0")]
29967ef6
XL
413 #[rustc_const_unstable(feature = "const_cell_into_inner", issue = "78729")]
414 pub const fn into_inner(self) -> T {
2c00a5a8 415 self.value.into_inner()
a7813a04 416 }
e74abb32
XL
417}
418
dfeec247 419impl<T: Copy> Cell<T> {
e74abb32
XL
420 /// Returns a copy of the contained value.
421 ///
422 /// # Examples
423 ///
424 /// ```
425 /// use std::cell::Cell;
426 ///
427 /// let c = Cell::new(5);
428 ///
429 /// let five = c.get();
430 /// ```
431 #[inline]
432 #[stable(feature = "rust1", since = "1.0.0")]
433 pub fn get(&self) -> T {
dfeec247
XL
434 // SAFETY: This can cause data races if called from a separate thread,
435 // but `Cell` is `!Sync` so this won't happen.
436 unsafe { *self.value.get() }
e74abb32
XL
437 }
438
439 /// Updates the contained value using a function and returns the new value.
440 ///
441 /// # Examples
442 ///
443 /// ```
444 /// #![feature(cell_update)]
445 ///
446 /// use std::cell::Cell;
447 ///
448 /// let c = Cell::new(5);
449 /// let new = c.update(|x| x + 1);
450 ///
451 /// assert_eq!(new, 6);
452 /// assert_eq!(c.get(), 6);
453 /// ```
454 #[inline]
455 #[unstable(feature = "cell_update", issue = "50186")]
456 pub fn update<F>(&self, f: F) -> T
457 where
458 F: FnOnce(T) -> T,
459 {
460 let old = self.get();
461 let new = f(old);
462 self.set(new);
463 new
464 }
a7813a04
XL
465}
466
8faf50e0
XL
467impl<T: ?Sized> Cell<T> {
468 /// Returns a raw pointer to the underlying data in this cell.
469 ///
470 /// # Examples
471 ///
472 /// ```
473 /// use std::cell::Cell;
474 ///
475 /// let c = Cell::new(5);
476 ///
477 /// let ptr = c.as_ptr();
478 /// ```
479 #[inline]
480 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
dfeec247 481 #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
a1dfa0c6 482 pub const fn as_ptr(&self) -> *mut T {
8faf50e0
XL
483 self.value.get()
484 }
485
486 /// Returns a mutable reference to the underlying data.
487 ///
488 /// This call borrows `Cell` mutably (at compile-time) which guarantees
489 /// that we possess the only reference.
490 ///
491 /// # Examples
492 ///
493 /// ```
494 /// use std::cell::Cell;
495 ///
496 /// let mut c = Cell::new(5);
497 /// *c.get_mut() += 1;
498 ///
499 /// assert_eq!(c.get(), 6);
500 /// ```
501 #[inline]
502 #[stable(feature = "cell_get_mut", since = "1.11.0")]
503 pub fn get_mut(&mut self) -> &mut T {
1b1a35ee 504 self.value.get_mut()
8faf50e0
XL
505 }
506
507 /// Returns a `&Cell<T>` from a `&mut T`
508 ///
509 /// # Examples
510 ///
511 /// ```
8faf50e0
XL
512 /// use std::cell::Cell;
513 ///
514 /// let slice: &mut [i32] = &mut [1, 2, 3];
515 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
516 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
517 ///
518 /// assert_eq!(slice_cell.len(), 3);
519 /// ```
520 #[inline]
dc9dc135 521 #[stable(feature = "as_cell", since = "1.37.0")]
8faf50e0 522 pub fn from_mut(t: &mut T) -> &Cell<T> {
dfeec247
XL
523 // SAFETY: `&mut` ensures unique access.
524 unsafe { &*(t as *mut T as *const Cell<T>) }
8faf50e0
XL
525 }
526}
527
8bb4bdeb
XL
528impl<T: Default> Cell<T> {
529 /// Takes the value of the cell, leaving `Default::default()` in its place.
530 ///
531 /// # Examples
532 ///
533 /// ```
534 /// use std::cell::Cell;
535 ///
536 /// let c = Cell::new(5);
537 /// let five = c.take();
538 ///
539 /// assert_eq!(five, 5);
540 /// assert_eq!(c.into_inner(), 0);
541 /// ```
542 #[stable(feature = "move_cell", since = "1.17.0")]
543 pub fn take(&self) -> T {
544 self.replace(Default::default())
5bcae85e
SL
545 }
546}
547
9e0c209e
SL
548#[unstable(feature = "coerce_unsized", issue = "27732")]
549impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
550
8faf50e0
XL
551impl<T> Cell<[T]> {
552 /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
553 ///
554 /// # Examples
555 ///
556 /// ```
8faf50e0
XL
557 /// use std::cell::Cell;
558 ///
559 /// let slice: &mut [i32] = &mut [1, 2, 3];
560 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
561 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
562 ///
563 /// assert_eq!(slice_cell.len(), 3);
564 /// ```
dc9dc135 565 #[stable(feature = "as_cell", since = "1.37.0")]
8faf50e0 566 pub fn as_slice_of_cells(&self) -> &[Cell<T>] {
dfeec247
XL
567 // SAFETY: `Cell<T>` has the same memory layout as `T`.
568 unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
8faf50e0
XL
569 }
570}
571
1a4d82fc 572/// A mutable memory location with dynamically checked borrow rules
85aaf69f 573///
29967ef6 574/// See the [module-level documentation](self) for more.
85aaf69f 575#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 576pub struct RefCell<T: ?Sized> {
1a4d82fc 577 borrow: Cell<BorrowFlag>,
cdc7bbd5
XL
578 // Stores the location of the earliest currently active borrow.
579 // This gets updated whenver we go from having zero borrows
580 // to having a single borrow. When a borrow occurs, this gets included
581 // in the generated `BorroeError/`BorrowMutError`
582 #[cfg(feature = "debug_refcell")]
583 borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
d9579d0f 584 value: UnsafeCell<T>,
1a4d82fc
JJ
585}
586
29967ef6 587/// An error returned by [`RefCell::try_borrow`].
9e0c209e
SL
588#[stable(feature = "try_borrow", since = "1.13.0")]
589pub struct BorrowError {
590 _private: (),
cdc7bbd5
XL
591 #[cfg(feature = "debug_refcell")]
592 location: &'static crate::panic::Location<'static>,
5bcae85e
SL
593}
594
9e0c209e
SL
595#[stable(feature = "try_borrow", since = "1.13.0")]
596impl Debug for BorrowError {
48663c56 597 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
cdc7bbd5
XL
598 let mut builder = f.debug_struct("BorrowError");
599
600 #[cfg(feature = "debug_refcell")]
601 builder.field("location", self.location);
602
603 builder.finish()
5bcae85e
SL
604 }
605}
606
9e0c209e
SL
607#[stable(feature = "try_borrow", since = "1.13.0")]
608impl Display for BorrowError {
48663c56 609 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
5bcae85e
SL
610 Display::fmt("already mutably borrowed", f)
611 }
612}
613
29967ef6 614/// An error returned by [`RefCell::try_borrow_mut`].
9e0c209e
SL
615#[stable(feature = "try_borrow", since = "1.13.0")]
616pub struct BorrowMutError {
617 _private: (),
cdc7bbd5
XL
618 #[cfg(feature = "debug_refcell")]
619 location: &'static crate::panic::Location<'static>,
5bcae85e
SL
620}
621
9e0c209e
SL
622#[stable(feature = "try_borrow", since = "1.13.0")]
623impl Debug for BorrowMutError {
48663c56 624 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
cdc7bbd5
XL
625 let mut builder = f.debug_struct("BorrowMutError");
626
627 #[cfg(feature = "debug_refcell")]
628 builder.field("location", self.location);
629
630 builder.finish()
5bcae85e
SL
631 }
632}
633
9e0c209e
SL
634#[stable(feature = "try_borrow", since = "1.13.0")]
635impl Display for BorrowMutError {
48663c56 636 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
5bcae85e
SL
637 Display::fmt("already borrowed", f)
638 }
639}
640
8faf50e0
XL
641// Positive values represent the number of `Ref` active. Negative values
642// represent the number of `RefMut` active. Multiple `RefMut`s can only be
643// active at a time if they refer to distinct, nonoverlapping components of a
644// `RefCell` (e.g., different ranges of a slice).
94b46f34
XL
645//
646// `Ref` and `RefMut` are both two words in size, and so there will likely never
647// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
8faf50e0
XL
648// range. Thus, a `BorrowFlag` will probably never overflow or underflow.
649// However, this is not a guarantee, as a pathological program could repeatedly
650// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
651// explicitly check for overflow and underflow in order to avoid unsafety, or at
652// least behave correctly in the event that overflow or underflow happens (e.g.,
653// see BorrowRef::new).
654type BorrowFlag = isize;
1a4d82fc 655const UNUSED: BorrowFlag = 0;
8faf50e0
XL
656
657#[inline(always)]
658fn is_writing(x: BorrowFlag) -> bool {
659 x < UNUSED
660}
661
662#[inline(always)]
663fn is_reading(x: BorrowFlag) -> bool {
664 x > UNUSED
665}
1a4d82fc
JJ
666
667impl<T> RefCell<T> {
85aaf69f
SL
668 /// Creates a new `RefCell` containing `value`.
669 ///
670 /// # Examples
671 ///
672 /// ```
673 /// use std::cell::RefCell;
674 ///
675 /// let c = RefCell::new(5);
676 /// ```
677 #[stable(feature = "rust1", since = "1.0.0")]
cdc7bbd5 678 #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
c34b1796 679 #[inline]
62682a34 680 pub const fn new(value: T) -> RefCell<T> {
cdc7bbd5
XL
681 RefCell {
682 value: UnsafeCell::new(value),
683 borrow: Cell::new(UNUSED),
684 #[cfg(feature = "debug_refcell")]
685 borrowed_at: Cell::new(None),
686 }
1a4d82fc
JJ
687 }
688
689 /// Consumes the `RefCell`, returning the wrapped value.
85aaf69f
SL
690 ///
691 /// # Examples
692 ///
693 /// ```
694 /// use std::cell::RefCell;
695 ///
696 /// let c = RefCell::new(5);
697 ///
698 /// let five = c.into_inner();
699 /// ```
700 #[stable(feature = "rust1", since = "1.0.0")]
29967ef6 701 #[rustc_const_unstable(feature = "const_cell_into_inner", issue = "78729")]
c34b1796 702 #[inline]
29967ef6 703 pub const fn into_inner(self) -> T {
1a4d82fc
JJ
704 // Since this function takes `self` (the `RefCell`) by value, the
705 // compiler statically verifies that it is not currently borrowed.
2c00a5a8 706 self.value.into_inner()
1a4d82fc 707 }
3b2f2976
XL
708
709 /// Replaces the wrapped value with a new one, returning the old value,
710 /// without deinitializing either one.
711 ///
712 /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
713 ///
abe05a73
XL
714 /// # Panics
715 ///
716 /// Panics if the value is currently borrowed.
717 ///
3b2f2976
XL
718 /// # Examples
719 ///
720 /// ```
3b2f2976 721 /// use std::cell::RefCell;
abe05a73
XL
722 /// let cell = RefCell::new(5);
723 /// let old_value = cell.replace(6);
724 /// assert_eq!(old_value, 5);
725 /// assert_eq!(cell, RefCell::new(6));
3b2f2976 726 /// ```
abe05a73 727 #[inline]
dfeec247 728 #[stable(feature = "refcell_replace", since = "1.24.0")]
1b1a35ee 729 #[track_caller]
abe05a73
XL
730 pub fn replace(&self, t: T) -> T {
731 mem::replace(&mut *self.borrow_mut(), t)
732 }
733
734 /// Replaces the wrapped value with a new one computed from `f`, returning
735 /// the old value, without deinitializing either one.
736 ///
3b2f2976
XL
737 /// # Panics
738 ///
abe05a73
XL
739 /// Panics if the value is currently borrowed.
740 ///
741 /// # Examples
742 ///
743 /// ```
abe05a73
XL
744 /// use std::cell::RefCell;
745 /// let cell = RefCell::new(5);
746 /// let old_value = cell.replace_with(|&mut old| old + 1);
747 /// assert_eq!(old_value, 5);
748 /// assert_eq!(cell, RefCell::new(6));
749 /// ```
3b2f2976 750 #[inline]
dfeec247 751 #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
1b1a35ee 752 #[track_caller]
abe05a73
XL
753 pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
754 let mut_borrow = &mut *self.borrow_mut();
755 let replacement = f(mut_borrow);
756 mem::replace(mut_borrow, replacement)
3b2f2976
XL
757 }
758
759 /// Swaps the wrapped value of `self` with the wrapped value of `other`,
760 /// without deinitializing either one.
761 ///
762 /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
763 ///
abe05a73
XL
764 /// # Panics
765 ///
766 /// Panics if the value in either `RefCell` is currently borrowed.
767 ///
3b2f2976
XL
768 /// # Examples
769 ///
770 /// ```
3b2f2976
XL
771 /// use std::cell::RefCell;
772 /// let c = RefCell::new(5);
773 /// let d = RefCell::new(6);
774 /// c.swap(&d);
775 /// assert_eq!(c, RefCell::new(6));
776 /// assert_eq!(d, RefCell::new(5));
777 /// ```
3b2f2976 778 #[inline]
dfeec247 779 #[stable(feature = "refcell_swap", since = "1.24.0")]
3b2f2976
XL
780 pub fn swap(&self, other: &Self) {
781 mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
782 }
d9579d0f 783}
1a4d82fc 784
d9579d0f 785impl<T: ?Sized> RefCell<T> {
1a4d82fc
JJ
786 /// Immutably borrows the wrapped value.
787 ///
788 /// The borrow lasts until the returned `Ref` exits scope. Multiple
789 /// immutable borrows can be taken out at the same time.
790 ///
791 /// # Panics
792 ///
5bcae85e
SL
793 /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
794 /// [`try_borrow`](#method.try_borrow).
85aaf69f
SL
795 ///
796 /// # Examples
797 ///
798 /// ```
799 /// use std::cell::RefCell;
800 ///
801 /// let c = RefCell::new(5);
802 ///
803 /// let borrowed_five = c.borrow();
804 /// let borrowed_five2 = c.borrow();
805 /// ```
806 ///
807 /// An example of panic:
808 ///
f035d41b 809 /// ```should_panic
85aaf69f 810 /// use std::cell::RefCell;
85aaf69f 811 ///
f035d41b 812 /// let c = RefCell::new(5);
85aaf69f 813 ///
f035d41b
XL
814 /// let m = c.borrow_mut();
815 /// let b = c.borrow(); // this causes a panic
85aaf69f
SL
816 /// ```
817 #[stable(feature = "rust1", since = "1.0.0")]
c34b1796 818 #[inline]
3dfed10e 819 #[track_caller]
48663c56 820 pub fn borrow(&self) -> Ref<'_, T> {
5bcae85e
SL
821 self.try_borrow().expect("already mutably borrowed")
822 }
823
824 /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
825 /// borrowed.
826 ///
827 /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
828 /// taken out at the same time.
829 ///
830 /// This is the non-panicking variant of [`borrow`](#method.borrow).
831 ///
832 /// # Examples
833 ///
834 /// ```
5bcae85e
SL
835 /// use std::cell::RefCell;
836 ///
837 /// let c = RefCell::new(5);
838 ///
839 /// {
840 /// let m = c.borrow_mut();
841 /// assert!(c.try_borrow().is_err());
842 /// }
843 ///
844 /// {
845 /// let m = c.borrow();
846 /// assert!(c.try_borrow().is_ok());
847 /// }
848 /// ```
9e0c209e 849 #[stable(feature = "try_borrow", since = "1.13.0")]
5bcae85e 850 #[inline]
cdc7bbd5 851 #[cfg_attr(feature = "debug_refcell", track_caller)]
48663c56 852 pub fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
85aaf69f 853 match BorrowRef::new(&self.borrow) {
cdc7bbd5
XL
854 Some(b) => {
855 #[cfg(feature = "debug_refcell")]
856 {
857 // `borrowed_at` is always the *first* active borrow
858 if b.borrow.get() == 1 {
859 self.borrowed_at.set(Some(crate::panic::Location::caller()));
860 }
861 }
862
863 // SAFETY: `BorrowRef` ensures that there is only immutable access
864 // to the value while borrowed.
865 Ok(Ref { value: unsafe { &*self.value.get() }, borrow: b })
866 }
867 None => Err(BorrowError {
868 _private: (),
869 // If a borrow occured, then we must already have an outstanding borrow,
870 // so `borrowed_at` will be `Some`
871 #[cfg(feature = "debug_refcell")]
872 location: self.borrowed_at.get().unwrap(),
873 }),
1a4d82fc
JJ
874 }
875 }
876
1a4d82fc
JJ
877 /// Mutably borrows the wrapped value.
878 ///
94b46f34
XL
879 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
880 /// from it exit scope. The value cannot be borrowed while this borrow is
881 /// active.
1a4d82fc
JJ
882 ///
883 /// # Panics
884 ///
5bcae85e
SL
885 /// Panics if the value is currently borrowed. For a non-panicking variant, use
886 /// [`try_borrow_mut`](#method.try_borrow_mut).
85aaf69f
SL
887 ///
888 /// # Examples
889 ///
890 /// ```
891 /// use std::cell::RefCell;
892 ///
f9f354fc 893 /// let c = RefCell::new("hello".to_owned());
85aaf69f 894 ///
f9f354fc 895 /// *c.borrow_mut() = "bonjour".to_owned();
7453a54e 896 ///
f9f354fc 897 /// assert_eq!(&*c.borrow(), "bonjour");
85aaf69f
SL
898 /// ```
899 ///
900 /// An example of panic:
901 ///
f035d41b 902 /// ```should_panic
85aaf69f 903 /// use std::cell::RefCell;
85aaf69f 904 ///
f035d41b
XL
905 /// let c = RefCell::new(5);
906 /// let m = c.borrow();
85aaf69f 907 ///
f035d41b 908 /// let b = c.borrow_mut(); // this causes a panic
85aaf69f
SL
909 /// ```
910 #[stable(feature = "rust1", since = "1.0.0")]
c34b1796 911 #[inline]
3dfed10e 912 #[track_caller]
48663c56 913 pub fn borrow_mut(&self) -> RefMut<'_, T> {
5bcae85e
SL
914 self.try_borrow_mut().expect("already borrowed")
915 }
916
917 /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
918 ///
94b46f34
XL
919 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
920 /// from it exit scope. The value cannot be borrowed while this borrow is
921 /// active.
5bcae85e
SL
922 ///
923 /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
924 ///
925 /// # Examples
926 ///
927 /// ```
5bcae85e
SL
928 /// use std::cell::RefCell;
929 ///
930 /// let c = RefCell::new(5);
931 ///
932 /// {
933 /// let m = c.borrow();
934 /// assert!(c.try_borrow_mut().is_err());
935 /// }
936 ///
937 /// assert!(c.try_borrow_mut().is_ok());
938 /// ```
9e0c209e 939 #[stable(feature = "try_borrow", since = "1.13.0")]
5bcae85e 940 #[inline]
cdc7bbd5 941 #[cfg_attr(feature = "debug_refcell", track_caller)]
48663c56 942 pub fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
85aaf69f 943 match BorrowRefMut::new(&self.borrow) {
cdc7bbd5
XL
944 Some(b) => {
945 #[cfg(feature = "debug_refcell")]
946 {
947 self.borrowed_at.set(Some(crate::panic::Location::caller()));
948 }
949
950 // SAFETY: `BorrowRef` guarantees unique access.
951 Ok(RefMut { value: unsafe { &mut *self.value.get() }, borrow: b })
952 }
953 None => Err(BorrowMutError {
954 _private: (),
955 // If a borrow occured, then we must already have an outstanding borrow,
956 // so `borrowed_at` will be `Some`
957 #[cfg(feature = "debug_refcell")]
958 location: self.borrowed_at.get().unwrap(),
959 }),
1a4d82fc
JJ
960 }
961 }
962
5bcae85e
SL
963 /// Returns a raw pointer to the underlying data in this cell.
964 ///
965 /// # Examples
966 ///
967 /// ```
968 /// use std::cell::RefCell;
969 ///
970 /// let c = RefCell::new(5);
971 ///
972 /// let ptr = c.as_ptr();
973 /// ```
974 #[inline]
975 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
976 pub fn as_ptr(&self) -> *mut T {
977 self.value.get()
978 }
979
a7813a04
XL
980 /// Returns a mutable reference to the underlying data.
981 ///
982 /// This call borrows `RefCell` mutably (at compile-time) so there is no
983 /// need for dynamic checks.
5bcae85e 984 ///
cc61c64b
XL
985 /// However be cautious: this method expects `self` to be mutable, which is
986 /// generally not the case when using a `RefCell`. Take a look at the
987 /// [`borrow_mut`] method instead if `self` isn't mutable.
988 ///
989 /// Also, please be aware that this method is only for special circumstances and is usually
3b2f2976 990 /// not what you want. In case of doubt, use [`borrow_mut`] instead.
cc61c64b 991 ///
fc512014 992 /// [`borrow_mut`]: RefCell::borrow_mut()
cc61c64b 993 ///
5bcae85e
SL
994 /// # Examples
995 ///
996 /// ```
997 /// use std::cell::RefCell;
998 ///
999 /// let mut c = RefCell::new(5);
1000 /// *c.get_mut() += 1;
1001 ///
1002 /// assert_eq!(c, RefCell::new(6));
1003 /// ```
a7813a04 1004 #[inline]
3157f602 1005 #[stable(feature = "cell_get_mut", since = "1.11.0")]
a7813a04 1006 pub fn get_mut(&mut self) -> &mut T {
1b1a35ee 1007 self.value.get_mut()
a7813a04 1008 }
48663c56 1009
ba9703b0
XL
1010 /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
1011 ///
1012 /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1013 /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1014 /// if some `Ref` or `RefMut` borrows have been leaked.
1015 ///
fc512014 1016 /// [`get_mut`]: RefCell::get_mut()
ba9703b0
XL
1017 ///
1018 /// # Examples
1019 ///
1020 /// ```
1021 /// #![feature(cell_leak)]
1022 /// use std::cell::RefCell;
1023 ///
1024 /// let mut c = RefCell::new(0);
1025 /// std::mem::forget(c.borrow_mut());
1026 ///
1027 /// assert!(c.try_borrow().is_err());
1028 /// c.undo_leak();
1029 /// assert!(c.try_borrow().is_ok());
1030 /// ```
1031 #[unstable(feature = "cell_leak", issue = "69099")]
1032 pub fn undo_leak(&mut self) -> &mut T {
1033 *self.borrow.get_mut() = UNUSED;
1034 self.get_mut()
1035 }
1036
48663c56
XL
1037 /// Immutably borrows the wrapped value, returning an error if the value is
1038 /// currently mutably borrowed.
1039 ///
1040 /// # Safety
1041 ///
1042 /// Unlike `RefCell::borrow`, this method is unsafe because it does not
1043 /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
1044 /// borrowing the `RefCell` while the reference returned by this method
1045 /// is alive is undefined behaviour.
1046 ///
1047 /// # Examples
1048 ///
1049 /// ```
48663c56
XL
1050 /// use std::cell::RefCell;
1051 ///
1052 /// let c = RefCell::new(5);
1053 ///
1054 /// {
1055 /// let m = c.borrow_mut();
1056 /// assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1057 /// }
1058 ///
1059 /// {
1060 /// let m = c.borrow();
1061 /// assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1062 /// }
1063 /// ```
dc9dc135 1064 #[stable(feature = "borrow_state", since = "1.37.0")]
48663c56
XL
1065 #[inline]
1066 pub unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1067 if !is_writing(self.borrow.get()) {
f035d41b
XL
1068 // SAFETY: We check that nobody is actively writing now, but it is
1069 // the caller's responsibility to ensure that nobody writes until
1070 // the returned reference is no longer in use.
1071 // Also, `self.value.get()` refers to the value owned by `self`
1072 // and is thus guaranteed to be valid for the lifetime of `self`.
1073 Ok(unsafe { &*self.value.get() })
48663c56 1074 } else {
cdc7bbd5
XL
1075 Err(BorrowError {
1076 _private: (),
1077 // If a borrow occured, then we must already have an outstanding borrow,
1078 // so `borrowed_at` will be `Some`
1079 #[cfg(feature = "debug_refcell")]
1080 location: self.borrowed_at.get().unwrap(),
1081 })
48663c56
XL
1082 }
1083 }
1a4d82fc
JJ
1084}
1085
f9f354fc
XL
1086impl<T: Default> RefCell<T> {
1087 /// Takes the wrapped value, leaving `Default::default()` in its place.
1088 ///
1089 /// # Panics
1090 ///
1091 /// Panics if the value is currently borrowed.
1092 ///
1093 /// # Examples
1094 ///
1095 /// ```
f9f354fc
XL
1096 /// use std::cell::RefCell;
1097 ///
1098 /// let c = RefCell::new(5);
1099 /// let five = c.take();
1100 ///
1101 /// assert_eq!(five, 5);
1102 /// assert_eq!(c.into_inner(), 0);
1103 /// ```
fc512014 1104 #[stable(feature = "refcell_take", since = "1.50.0")]
f9f354fc
XL
1105 pub fn take(&self) -> T {
1106 self.replace(Default::default())
1107 }
1108}
1109
85aaf69f 1110#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 1111unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1a4d82fc 1112
54a0048b
SL
1113#[stable(feature = "rust1", since = "1.0.0")]
1114impl<T: ?Sized> !Sync for RefCell<T> {}
1115
85aaf69f 1116#[stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 1117impl<T: Clone> Clone for RefCell<T> {
0531ce1d
XL
1118 /// # Panics
1119 ///
1120 /// Panics if the value is currently mutably borrowed.
c34b1796 1121 #[inline]
1b1a35ee 1122 #[track_caller]
1a4d82fc
JJ
1123 fn clone(&self) -> RefCell<T> {
1124 RefCell::new(self.borrow().clone())
1125 }
1126}
1127
85aaf69f 1128#[stable(feature = "rust1", since = "1.0.0")]
416331ca 1129impl<T: Default> Default for RefCell<T> {
9e0c209e 1130 /// Creates a `RefCell<T>`, with the `Default` value for T.
c34b1796 1131 #[inline]
1a4d82fc
JJ
1132 fn default() -> RefCell<T> {
1133 RefCell::new(Default::default())
1134 }
1135}
1136
85aaf69f 1137#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 1138impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
0531ce1d
XL
1139 /// # Panics
1140 ///
1141 /// Panics if the value in either `RefCell` is currently borrowed.
c34b1796 1142 #[inline]
1a4d82fc
JJ
1143 fn eq(&self, other: &RefCell<T>) -> bool {
1144 *self.borrow() == *other.borrow()
1145 }
1146}
1147
62682a34
SL
1148#[stable(feature = "cell_eq", since = "1.2.0")]
1149impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1150
a7813a04
XL
1151#[stable(feature = "cell_ord", since = "1.10.0")]
1152impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
0531ce1d
XL
1153 /// # Panics
1154 ///
1155 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1156 #[inline]
1157 fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1158 self.borrow().partial_cmp(&*other.borrow())
1159 }
1160
0531ce1d
XL
1161 /// # Panics
1162 ///
1163 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1164 #[inline]
1165 fn lt(&self, other: &RefCell<T>) -> bool {
1166 *self.borrow() < *other.borrow()
1167 }
1168
0531ce1d
XL
1169 /// # Panics
1170 ///
1171 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1172 #[inline]
1173 fn le(&self, other: &RefCell<T>) -> bool {
1174 *self.borrow() <= *other.borrow()
1175 }
1176
0531ce1d
XL
1177 /// # Panics
1178 ///
1179 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1180 #[inline]
1181 fn gt(&self, other: &RefCell<T>) -> bool {
1182 *self.borrow() > *other.borrow()
1183 }
1184
0531ce1d
XL
1185 /// # Panics
1186 ///
1187 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1188 #[inline]
1189 fn ge(&self, other: &RefCell<T>) -> bool {
1190 *self.borrow() >= *other.borrow()
1191 }
1192}
1193
1194#[stable(feature = "cell_ord", since = "1.10.0")]
1195impl<T: ?Sized + Ord> Ord for RefCell<T> {
0531ce1d
XL
1196 /// # Panics
1197 ///
1198 /// Panics if the value in either `RefCell` is currently borrowed.
a7813a04
XL
1199 #[inline]
1200 fn cmp(&self, other: &RefCell<T>) -> Ordering {
1201 self.borrow().cmp(&*other.borrow())
1202 }
1203}
1204
5bcae85e
SL
1205#[stable(feature = "cell_from", since = "1.12.0")]
1206impl<T> From<T> for RefCell<T> {
1207 fn from(t: T) -> RefCell<T> {
1208 RefCell::new(t)
1209 }
1210}
1211
9e0c209e
SL
1212#[unstable(feature = "coerce_unsized", issue = "27732")]
1213impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1214
1a4d82fc 1215struct BorrowRef<'b> {
54a0048b 1216 borrow: &'b Cell<BorrowFlag>,
1a4d82fc
JJ
1217}
1218
1219impl<'b> BorrowRef<'b> {
c34b1796 1220 #[inline]
1a4d82fc 1221 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRef<'b>> {
416331ca
XL
1222 let b = borrow.get().wrapping_add(1);
1223 if !is_reading(b) {
1224 // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1225 // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1226 // due to Rust's reference aliasing rules
f035d41b
XL
1227 // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1228 // into isize::MIN (the max amount of writing borrows) so we can't allow
416331ca
XL
1229 // an additional read borrow because isize can't represent so many read borrows
1230 // (this can only happen if you mem::forget more than a small constant amount of
1231 // `Ref`s, which is not good practice)
94b46f34
XL
1232 None
1233 } else {
416331ca
XL
1234 // Incrementing borrow can result in a reading value (> 0) in these cases:
1235 // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
f035d41b 1236 // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
416331ca
XL
1237 // is large enough to represent having one more read borrow
1238 borrow.set(b);
94b46f34 1239 Some(BorrowRef { borrow })
1a4d82fc
JJ
1240 }
1241 }
1242}
1243
0bf4aa26 1244impl Drop for BorrowRef<'_> {
c34b1796 1245 #[inline]
1a4d82fc 1246 fn drop(&mut self) {
54a0048b 1247 let borrow = self.borrow.get();
8faf50e0 1248 debug_assert!(is_reading(borrow));
54a0048b 1249 self.borrow.set(borrow - 1);
1a4d82fc
JJ
1250 }
1251}
1252
0bf4aa26 1253impl Clone for BorrowRef<'_> {
c34b1796 1254 #[inline]
0bf4aa26 1255 fn clone(&self) -> Self {
1a4d82fc 1256 // Since this Ref exists, we know the borrow flag
8faf50e0 1257 // is a reading borrow.
54a0048b 1258 let borrow = self.borrow.get();
8faf50e0 1259 debug_assert!(is_reading(borrow));
94b46f34
XL
1260 // Prevent the borrow counter from overflowing into
1261 // a writing borrow.
f035d41b 1262 assert!(borrow != isize::MAX);
54a0048b
SL
1263 self.borrow.set(borrow + 1);
1264 BorrowRef { borrow: self.borrow }
1a4d82fc
JJ
1265 }
1266}
1267
1268/// Wraps a borrowed reference to a value in a `RefCell` box.
85aaf69f
SL
1269/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1270///
29967ef6 1271/// See the [module-level documentation](self) for more.
85aaf69f 1272#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 1273pub struct Ref<'b, T: ?Sized + 'b> {
54a0048b
SL
1274 value: &'b T,
1275 borrow: BorrowRef<'b>,
1a4d82fc
JJ
1276}
1277
85aaf69f 1278#[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 1279impl<T: ?Sized> Deref for Ref<'_, T> {
1a4d82fc
JJ
1280 type Target = T;
1281
1282 #[inline]
e9174d1e 1283 fn deref(&self) -> &T {
54a0048b 1284 self.value
1a4d82fc
JJ
1285 }
1286}
1287
62682a34
SL
1288impl<'b, T: ?Sized> Ref<'b, T> {
1289 /// Copies a `Ref`.
1290 ///
1291 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1292 ///
1293 /// This is an associated function that needs to be used as
9fa01778 1294 /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
62682a34
SL
1295 /// with the widespread use of `r.borrow().clone()` to clone the contents of
1296 /// a `RefCell`.
476ff2be 1297 #[stable(feature = "cell_extras", since = "1.15.0")]
62682a34
SL
1298 #[inline]
1299 pub fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
dfeec247 1300 Ref { value: orig.value, borrow: orig.borrow.clone() }
62682a34
SL
1301 }
1302
9fa01778 1303 /// Makes a new `Ref` for a component of the borrowed data.
62682a34
SL
1304 ///
1305 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1306 ///
1307 /// This is an associated function that needs to be used as `Ref::map(...)`.
1308 /// A method would interfere with methods of the same name on the contents
1309 /// of a `RefCell` used through `Deref`.
1310 ///
3b2f2976 1311 /// # Examples
62682a34
SL
1312 ///
1313 /// ```
62682a34
SL
1314 /// use std::cell::{RefCell, Ref};
1315 ///
1316 /// let c = RefCell::new((5, 'b'));
1317 /// let b1: Ref<(u32, char)> = c.borrow();
1318 /// let b2: Ref<u32> = Ref::map(b1, |t| &t.0);
1319 /// assert_eq!(*b2, 5)
1320 /// ```
7453a54e 1321 #[stable(feature = "cell_map", since = "1.8.0")]
62682a34
SL
1322 #[inline]
1323 pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
dfeec247
XL
1324 where
1325 F: FnOnce(&T) -> &U,
62682a34 1326 {
dfeec247 1327 Ref { value: f(orig.value), borrow: orig.borrow }
62682a34 1328 }
94b46f34 1329
5869c6ff
XL
1330 /// Makes a new `Ref` for an optional component of the borrowed data. The
1331 /// original guard is returned as an `Err(..)` if the closure returns
1332 /// `None`.
1333 ///
1334 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1335 ///
1336 /// This is an associated function that needs to be used as
1337 /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1338 /// name on the contents of a `RefCell` used through `Deref`.
1339 ///
1340 /// # Examples
1341 ///
1342 /// ```
1343 /// #![feature(cell_filter_map)]
1344 ///
1345 /// use std::cell::{RefCell, Ref};
1346 ///
1347 /// let c = RefCell::new(vec![1, 2, 3]);
1348 /// let b1: Ref<Vec<u32>> = c.borrow();
1349 /// let b2: Result<Ref<u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1350 /// assert_eq!(*b2.unwrap(), 2);
1351 /// ```
1352 #[unstable(feature = "cell_filter_map", reason = "recently added", issue = "81061")]
1353 #[inline]
1354 pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1355 where
1356 F: FnOnce(&T) -> Option<&U>,
1357 {
1358 match f(orig.value) {
1359 Some(value) => Ok(Ref { value, borrow: orig.borrow }),
1360 None => Err(orig),
1361 }
1362 }
1363
9fa01778 1364 /// Splits a `Ref` into multiple `Ref`s for different components of the
94b46f34
XL
1365 /// borrowed data.
1366 ///
1367 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1368 ///
1369 /// This is an associated function that needs to be used as
1370 /// `Ref::map_split(...)`. A method would interfere with methods of the same
1371 /// name on the contents of a `RefCell` used through `Deref`.
1372 ///
1373 /// # Examples
1374 ///
1375 /// ```
94b46f34
XL
1376 /// use std::cell::{Ref, RefCell};
1377 ///
1378 /// let cell = RefCell::new([1, 2, 3, 4]);
1379 /// let borrow = cell.borrow();
1380 /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1381 /// assert_eq!(*begin, [1, 2]);
1382 /// assert_eq!(*end, [3, 4]);
1383 /// ```
532ac7d7 1384 #[stable(feature = "refcell_map_split", since = "1.35.0")]
94b46f34
XL
1385 #[inline]
1386 pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
dfeec247
XL
1387 where
1388 F: FnOnce(&T) -> (&U, &V),
94b46f34
XL
1389 {
1390 let (a, b) = f(orig.value);
1391 let borrow = orig.borrow.clone();
1392 (Ref { value: a, borrow }, Ref { value: b, borrow: orig.borrow })
1393 }
74b04a01
XL
1394
1395 /// Convert into a reference to the underlying data.
1396 ///
1397 /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1398 /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1399 /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1400 /// have occurred in total.
1401 ///
1402 /// This is an associated function that needs to be used as
1403 /// `Ref::leak(...)`. A method would interfere with methods of the
1404 /// same name on the contents of a `RefCell` used through `Deref`.
1405 ///
1406 /// # Examples
1407 ///
1408 /// ```
1409 /// #![feature(cell_leak)]
1410 /// use std::cell::{RefCell, Ref};
1411 /// let cell = RefCell::new(0);
1412 ///
1413 /// let value = Ref::leak(cell.borrow());
1414 /// assert_eq!(*value, 0);
1415 ///
1416 /// assert!(cell.try_borrow().is_ok());
1417 /// assert!(cell.try_borrow_mut().is_err());
1418 /// ```
1419 #[unstable(feature = "cell_leak", issue = "69099")]
1420 pub fn leak(orig: Ref<'b, T>) -> &'b T {
ba9703b0
XL
1421 // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1422 // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1423 // unique reference to the borrowed RefCell. No further mutable references can be created
1424 // from the original cell.
74b04a01
XL
1425 mem::forget(orig.borrow);
1426 orig.value
1427 }
62682a34
SL
1428}
1429
54a0048b
SL
1430#[unstable(feature = "coerce_unsized", issue = "27732")]
1431impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1432
041b39d2 1433#[stable(feature = "std_guard_impls", since = "1.20.0")]
0bf4aa26 1434impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
48663c56 1435 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
041b39d2
XL
1436 self.value.fmt(f)
1437 }
1438}
1439
62682a34 1440impl<'b, T: ?Sized> RefMut<'b, T> {
9fa01778 1441 /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
62682a34
SL
1442 /// variant.
1443 ///
1444 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1445 ///
1446 /// This is an associated function that needs to be used as
9fa01778 1447 /// `RefMut::map(...)`. A method would interfere with methods of the same
62682a34
SL
1448 /// name on the contents of a `RefCell` used through `Deref`.
1449 ///
3b2f2976 1450 /// # Examples
62682a34
SL
1451 ///
1452 /// ```
62682a34
SL
1453 /// use std::cell::{RefCell, RefMut};
1454 ///
1455 /// let c = RefCell::new((5, 'b'));
1456 /// {
1457 /// let b1: RefMut<(u32, char)> = c.borrow_mut();
1458 /// let mut b2: RefMut<u32> = RefMut::map(b1, |t| &mut t.0);
1459 /// assert_eq!(*b2, 5);
1460 /// *b2 = 42;
1461 /// }
1462 /// assert_eq!(*c.borrow(), (42, 'b'));
1463 /// ```
7453a54e 1464 #[stable(feature = "cell_map", since = "1.8.0")]
62682a34
SL
1465 #[inline]
1466 pub fn map<U: ?Sized, F>(orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
dfeec247
XL
1467 where
1468 F: FnOnce(&mut T) -> &mut U,
62682a34 1469 {
ff7c6d11
XL
1470 // FIXME(nll-rfc#40): fix borrow-check
1471 let RefMut { value, borrow } = orig;
dfeec247 1472 RefMut { value: f(value), borrow }
62682a34 1473 }
94b46f34 1474
5869c6ff
XL
1475 /// Makes a new `RefMut` for an optional component of the borrowed data. The
1476 /// original guard is returned as an `Err(..)` if the closure returns
1477 /// `None`.
1478 ///
1479 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1480 ///
1481 /// This is an associated function that needs to be used as
1482 /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1483 /// same name on the contents of a `RefCell` used through `Deref`.
1484 ///
1485 /// # Examples
1486 ///
1487 /// ```
1488 /// #![feature(cell_filter_map)]
1489 ///
1490 /// use std::cell::{RefCell, RefMut};
1491 ///
1492 /// let c = RefCell::new(vec![1, 2, 3]);
1493 ///
1494 /// {
1495 /// let b1: RefMut<Vec<u32>> = c.borrow_mut();
1496 /// let mut b2: Result<RefMut<u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1497 ///
1498 /// if let Ok(mut b2) = b2 {
1499 /// *b2 += 2;
1500 /// }
1501 /// }
1502 ///
1503 /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1504 /// ```
1505 #[unstable(feature = "cell_filter_map", reason = "recently added", issue = "81061")]
1506 #[inline]
1507 pub fn filter_map<U: ?Sized, F>(orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1508 where
1509 F: FnOnce(&mut T) -> Option<&mut U>,
1510 {
1511 // FIXME(nll-rfc#40): fix borrow-check
1512 let RefMut { value, borrow } = orig;
1513 let value = value as *mut T;
1514 // SAFETY: function holds onto an exclusive reference for the duration
1515 // of its call through `orig`, and the pointer is only de-referenced
1516 // inside of the function call never allowing the exclusive reference to
1517 // escape.
1518 match f(unsafe { &mut *value }) {
1519 Some(value) => Ok(RefMut { value, borrow }),
1520 None => {
1521 // SAFETY: same as above.
1522 Err(RefMut { value: unsafe { &mut *value }, borrow })
1523 }
1524 }
1525 }
1526
9fa01778 1527 /// Splits a `RefMut` into multiple `RefMut`s for different components of the
94b46f34
XL
1528 /// borrowed data.
1529 ///
1530 /// The underlying `RefCell` will remain mutably borrowed until both
1531 /// returned `RefMut`s go out of scope.
1532 ///
1533 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1534 ///
1535 /// This is an associated function that needs to be used as
1536 /// `RefMut::map_split(...)`. A method would interfere with methods of the
1537 /// same name on the contents of a `RefCell` used through `Deref`.
1538 ///
1539 /// # Examples
1540 ///
1541 /// ```
94b46f34
XL
1542 /// use std::cell::{RefCell, RefMut};
1543 ///
1544 /// let cell = RefCell::new([1, 2, 3, 4]);
1545 /// let borrow = cell.borrow_mut();
1546 /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1547 /// assert_eq!(*begin, [1, 2]);
1548 /// assert_eq!(*end, [3, 4]);
1549 /// begin.copy_from_slice(&[4, 3]);
1550 /// end.copy_from_slice(&[2, 1]);
1551 /// ```
532ac7d7 1552 #[stable(feature = "refcell_map_split", since = "1.35.0")]
94b46f34
XL
1553 #[inline]
1554 pub fn map_split<U: ?Sized, V: ?Sized, F>(
dfeec247
XL
1555 orig: RefMut<'b, T>,
1556 f: F,
94b46f34 1557 ) -> (RefMut<'b, U>, RefMut<'b, V>)
dfeec247
XL
1558 where
1559 F: FnOnce(&mut T) -> (&mut U, &mut V),
94b46f34
XL
1560 {
1561 let (a, b) = f(orig.value);
1562 let borrow = orig.borrow.clone();
1563 (RefMut { value: a, borrow }, RefMut { value: b, borrow: orig.borrow })
1564 }
74b04a01
XL
1565
1566 /// Convert into a mutable reference to the underlying data.
1567 ///
1568 /// The underlying `RefCell` can not be borrowed from again and will always appear already
1569 /// mutably borrowed, making the returned reference the only to the interior.
1570 ///
1571 /// This is an associated function that needs to be used as
1572 /// `RefMut::leak(...)`. A method would interfere with methods of the
1573 /// same name on the contents of a `RefCell` used through `Deref`.
1574 ///
1575 /// # Examples
1576 ///
1577 /// ```
1578 /// #![feature(cell_leak)]
1579 /// use std::cell::{RefCell, RefMut};
1580 /// let cell = RefCell::new(0);
1581 ///
1582 /// let value = RefMut::leak(cell.borrow_mut());
1583 /// assert_eq!(*value, 0);
1584 /// *value = 1;
1585 ///
1586 /// assert!(cell.try_borrow_mut().is_err());
1587 /// ```
1588 #[unstable(feature = "cell_leak", issue = "69099")]
1589 pub fn leak(orig: RefMut<'b, T>) -> &'b mut T {
ba9703b0
XL
1590 // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
1591 // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
1592 // require a unique reference to the borrowed RefCell. No further references can be created
1593 // from the original cell within that lifetime, making the current borrow the only
1594 // reference for the remaining lifetime.
74b04a01
XL
1595 mem::forget(orig.borrow);
1596 orig.value
1597 }
1a4d82fc
JJ
1598}
1599
1600struct BorrowRefMut<'b> {
54a0048b 1601 borrow: &'b Cell<BorrowFlag>,
1a4d82fc
JJ
1602}
1603
0bf4aa26 1604impl Drop for BorrowRefMut<'_> {
c34b1796 1605 #[inline]
1a4d82fc 1606 fn drop(&mut self) {
54a0048b 1607 let borrow = self.borrow.get();
8faf50e0
XL
1608 debug_assert!(is_writing(borrow));
1609 self.borrow.set(borrow + 1);
1a4d82fc
JJ
1610 }
1611}
1612
1613impl<'b> BorrowRefMut<'b> {
c34b1796 1614 #[inline]
1a4d82fc 1615 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRefMut<'b>> {
94b46f34
XL
1616 // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
1617 // mutable reference, and so there must currently be no existing
1618 // references. Thus, while clone increments the mutable refcount, here
8faf50e0 1619 // we explicitly only allow going from UNUSED to UNUSED - 1.
1a4d82fc
JJ
1620 match borrow.get() {
1621 UNUSED => {
8faf50e0 1622 borrow.set(UNUSED - 1);
b7449926 1623 Some(BorrowRefMut { borrow })
dfeec247 1624 }
1a4d82fc
JJ
1625 _ => None,
1626 }
1627 }
94b46f34 1628
dc9dc135 1629 // Clones a `BorrowRefMut`.
94b46f34
XL
1630 //
1631 // This is only valid if each `BorrowRefMut` is used to track a mutable
1632 // reference to a distinct, nonoverlapping range of the original object.
1633 // This isn't in a Clone impl so that code doesn't call this implicitly.
1634 #[inline]
1635 fn clone(&self) -> BorrowRefMut<'b> {
1636 let borrow = self.borrow.get();
8faf50e0
XL
1637 debug_assert!(is_writing(borrow));
1638 // Prevent the borrow counter from underflowing.
f035d41b 1639 assert!(borrow != isize::MIN);
8faf50e0 1640 self.borrow.set(borrow - 1);
94b46f34
XL
1641 BorrowRefMut { borrow: self.borrow }
1642 }
1a4d82fc
JJ
1643}
1644
85aaf69f
SL
1645/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
1646///
29967ef6 1647/// See the [module-level documentation](self) for more.
85aaf69f 1648#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 1649pub struct RefMut<'b, T: ?Sized + 'b> {
54a0048b
SL
1650 value: &'b mut T,
1651 borrow: BorrowRefMut<'b>,
1a4d82fc
JJ
1652}
1653
85aaf69f 1654#[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 1655impl<T: ?Sized> Deref for RefMut<'_, T> {
1a4d82fc
JJ
1656 type Target = T;
1657
1658 #[inline]
e9174d1e 1659 fn deref(&self) -> &T {
54a0048b 1660 self.value
1a4d82fc
JJ
1661 }
1662}
1663
85aaf69f 1664#[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 1665impl<T: ?Sized> DerefMut for RefMut<'_, T> {
1a4d82fc 1666 #[inline]
e9174d1e 1667 fn deref_mut(&mut self) -> &mut T {
54a0048b 1668 self.value
1a4d82fc
JJ
1669 }
1670}
1671
54a0048b
SL
1672#[unstable(feature = "coerce_unsized", issue = "27732")]
1673impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
1674
041b39d2 1675#[stable(feature = "std_guard_impls", since = "1.20.0")]
0bf4aa26 1676impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
48663c56 1677 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
041b39d2
XL
1678 self.value.fmt(f)
1679 }
1680}
1681
1a4d82fc
JJ
1682/// The core primitive for interior mutability in Rust.
1683///
6a06907d
XL
1684/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
1685/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
1686/// alias or by transmuting an `&T` into an `&mut T`, is considered undefined behavior.
1687/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
1688/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
1a4d82fc 1689///
6a06907d
XL
1690/// All other types that allow internal mutability, such as `Cell<T>` and `RefCell<T>`, internally
1691/// use `UnsafeCell` to wrap their data.
1692///
1693/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
1694/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
1695/// aliasing `&mut`, not even with `UnsafeCell<T>`.
5bcae85e 1696///
1b1a35ee
XL
1697/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
1698/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
1699/// correctly.
1700///
1701/// [`.get()`]: `UnsafeCell::get`
0531ce1d
XL
1702///
1703/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
1704///
94b46f34
XL
1705/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T`
1706/// reference) that is accessible by safe code (for example, because you returned it),
1707/// then you must not access the data in any way that contradicts that reference for the
1708/// remainder of `'a`. For example, this means that if you take the `*mut T` from an
1709/// `UnsafeCell<T>` and cast it to an `&T`, then the data in `T` must remain immutable
1710/// (modulo any `UnsafeCell` data found within `T`, of course) until that reference's
1711/// lifetime expires. Similarly, if you create a `&mut T` reference that is released to
1712/// safe code, then you must not access the data within the `UnsafeCell` until that
1713/// reference expires.
0531ce1d 1714///
94b46f34 1715/// - At all times, you must avoid data races. If multiple threads have access to
0531ce1d
XL
1716/// the same `UnsafeCell`, then any writes must have a proper happens-before relation to all other
1717/// accesses (or use atomics).
5bcae85e 1718///
0531ce1d
XL
1719/// To assist with proper design, the following scenarios are explicitly declared legal
1720/// for single-threaded code:
5bcae85e 1721///
94b46f34 1722/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
0531ce1d
XL
1723/// references, but not with a `&mut T`
1724///
94b46f34 1725/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
0531ce1d
XL
1726/// co-exist with it. A `&mut T` must always be unique.
1727///
1b1a35ee
XL
1728/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
1729/// `&UnsafeCell<T>` references alias the cell) is
1730/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
1731/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
1732/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
1733/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
1734/// accesses (_e.g._, through an `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
1735/// may be aliased for the duration of that `&mut` borrow.
fc512014 1736/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
1b1a35ee
XL
1737/// a `&mut T`.
1738///
1739/// [`.get_mut()`]: `UnsafeCell::get_mut`
1a4d82fc 1740///
85aaf69f 1741/// # Examples
1a4d82fc 1742///
1b1a35ee
XL
1743/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
1744/// there being multiple references aliasing the cell:
1745///
85aaf69f 1746/// ```
1a4d82fc 1747/// use std::cell::UnsafeCell;
1a4d82fc 1748///
1b1a35ee
XL
1749/// let x: UnsafeCell<i32> = 42.into();
1750/// // Get multiple / concurrent / shared references to the same `x`.
1751/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
1752///
1753/// unsafe {
1754/// // SAFETY: within this scope there are no other references to `x`'s contents,
1755/// // so ours is effectively unique.
1756/// let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
1757/// *p1_exclusive += 27; // |
1758/// } // <---------- cannot go beyond this point -------------------+
1759///
1760/// unsafe {
1761/// // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
1762/// // so we can have multiple shared accesses concurrently.
1763/// let p2_shared: &i32 = &*p2.get();
1764/// assert_eq!(*p2_shared, 42 + 27);
1765/// let p1_shared: &i32 = &*p1.get();
1766/// assert_eq!(*p1_shared, *p2_shared);
1a4d82fc 1767/// }
1b1a35ee
XL
1768/// ```
1769///
1770/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
1771/// implies exclusive access to its `T`:
1772///
1773/// ```rust
1b1a35ee
XL
1774/// #![forbid(unsafe_code)] // with exclusive accesses,
1775/// // `UnsafeCell` is a transparent no-op wrapper,
1776/// // so no need for `unsafe` here.
1777/// use std::cell::UnsafeCell;
1778///
1779/// let mut x: UnsafeCell<i32> = 42.into();
1780///
1781/// // Get a compile-time-checked unique reference to `x`.
1782/// let p_unique: &mut UnsafeCell<i32> = &mut x;
1783/// // With an exclusive reference, we can mutate the contents for free.
1784/// *p_unique.get_mut() = 0;
1785/// // Or, equivalently:
1786/// x = UnsafeCell::new(0);
85aaf69f 1787///
1b1a35ee
XL
1788/// // When we own the value, we can extract the contents for free.
1789/// let contents: i32 = x.into_inner();
1790/// assert_eq!(contents, 0);
1a4d82fc 1791/// ```
d9579d0f 1792#[lang = "unsafe_cell"]
85aaf69f 1793#[stable(feature = "rust1", since = "1.0.0")]
8faf50e0 1794#[repr(transparent)]
ba9703b0 1795#[repr(no_niche)] // rust-lang/rust#68303.
d9579d0f 1796pub struct UnsafeCell<T: ?Sized> {
e9174d1e 1797 value: T,
1a4d82fc
JJ
1798}
1799
92a42be0 1800#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 1801impl<T: ?Sized> !Sync for UnsafeCell<T> {}
c34b1796 1802
1a4d82fc 1803impl<T> UnsafeCell<T> {
9346a6ac 1804 /// Constructs a new instance of `UnsafeCell` which will wrap the specified
1a4d82fc
JJ
1805 /// value.
1806 ///
b039eaaf 1807 /// All access to the inner value through methods is `unsafe`.
85aaf69f
SL
1808 ///
1809 /// # Examples
1810 ///
1811 /// ```
1812 /// use std::cell::UnsafeCell;
1813 ///
1814 /// let uc = UnsafeCell::new(5);
1815 /// ```
1816 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 1817 #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
cdc7bbd5 1818 #[inline(always)]
62682a34 1819 pub const fn new(value: T) -> UnsafeCell<T> {
b7449926 1820 UnsafeCell { value }
1a4d82fc
JJ
1821 }
1822
d9579d0f
AL
1823 /// Unwraps the value.
1824 ///
85aaf69f
SL
1825 /// # Examples
1826 ///
1827 /// ```
1828 /// use std::cell::UnsafeCell;
1829 ///
1830 /// let uc = UnsafeCell::new(5);
1831 ///
2c00a5a8 1832 /// let five = uc.into_inner();
85aaf69f 1833 /// ```
cdc7bbd5 1834 #[inline(always)]
85aaf69f 1835 #[stable(feature = "rust1", since = "1.0.0")]
29967ef6
XL
1836 #[rustc_const_unstable(feature = "const_cell_into_inner", issue = "78729")]
1837 pub const fn into_inner(self) -> T {
62682a34
SL
1838 self.value
1839 }
d9579d0f 1840}
1a4d82fc 1841
d9579d0f
AL
1842impl<T: ?Sized> UnsafeCell<T> {
1843 /// Gets a mutable pointer to the wrapped value.
85aaf69f 1844 ///
5bcae85e 1845 /// This can be cast to a pointer of any kind.
0531ce1d
XL
1846 /// Ensure that the access is unique (no active references, mutable or not)
1847 /// when casting to `&mut T`, and ensure that there are no mutations
1848 /// or mutable aliases going on when casting to `&T`
5bcae85e 1849 ///
85aaf69f
SL
1850 /// # Examples
1851 ///
1852 /// ```
1853 /// use std::cell::UnsafeCell;
1854 ///
1855 /// let uc = UnsafeCell::new(5);
1856 ///
d9579d0f 1857 /// let five = uc.get();
85aaf69f 1858 /// ```
cdc7bbd5 1859 #[inline(always)]
85aaf69f 1860 #[stable(feature = "rust1", since = "1.0.0")]
dfeec247 1861 #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
a1dfa0c6
XL
1862 pub const fn get(&self) -> *mut T {
1863 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
60c5eb7d
XL
1864 // #[repr(transparent)]. This exploits libstd's special status, there is
1865 // no guarantee for user code that this will work in future versions of the compiler!
a1dfa0c6 1866 self as *const UnsafeCell<T> as *const T as *mut T
d9579d0f 1867 }
60c5eb7d 1868
1b1a35ee
XL
1869 /// Returns a mutable reference to the underlying data.
1870 ///
1871 /// This call borrows the `UnsafeCell` mutably (at compile-time) which
1872 /// guarantees that we possess the only reference.
1873 ///
1874 /// # Examples
1875 ///
1876 /// ```
1b1a35ee
XL
1877 /// use std::cell::UnsafeCell;
1878 ///
1879 /// let mut c = UnsafeCell::new(5);
1880 /// *c.get_mut() += 1;
1881 ///
1882 /// assert_eq!(*c.get_mut(), 6);
1883 /// ```
cdc7bbd5 1884 #[inline(always)]
fc512014 1885 #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
1b1a35ee 1886 pub fn get_mut(&mut self) -> &mut T {
29967ef6 1887 &mut self.value
1b1a35ee
XL
1888 }
1889
60c5eb7d
XL
1890 /// Gets a mutable pointer to the wrapped value.
1891 /// The difference to [`get`] is that this function accepts a raw pointer,
1892 /// which is useful to avoid the creation of temporary references.
1893 ///
1894 /// The result can be cast to a pointer of any kind.
1895 /// Ensure that the access is unique (no active references, mutable or not)
1896 /// when casting to `&mut T`, and ensure that there are no mutations
1897 /// or mutable aliases going on when casting to `&T`.
1898 ///
fc512014 1899 /// [`get`]: UnsafeCell::get()
60c5eb7d
XL
1900 ///
1901 /// # Examples
1902 ///
1903 /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
1904 /// calling `get` would require creating a reference to uninitialized data:
1905 ///
1906 /// ```
1907 /// #![feature(unsafe_cell_raw_get)]
1908 /// use std::cell::UnsafeCell;
1909 /// use std::mem::MaybeUninit;
1910 ///
1911 /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
1912 /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
1913 /// let uc = unsafe { m.assume_init() };
1914 ///
1915 /// assert_eq!(uc.into_inner(), 5);
1916 /// ```
cdc7bbd5 1917 #[inline(always)]
60c5eb7d
XL
1918 #[unstable(feature = "unsafe_cell_raw_get", issue = "66358")]
1919 pub const fn raw_get(this: *const Self) -> *mut T {
1920 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
1921 // #[repr(transparent)]. This exploits libstd's special status, there is
1922 // no guarantee for user code that this will work in future versions of the compiler!
1923 this as *const T as *mut T
1924 }
1a4d82fc 1925}
a7813a04 1926
7cac9316 1927#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
a7813a04 1928impl<T: Default> Default for UnsafeCell<T> {
9e0c209e 1929 /// Creates an `UnsafeCell`, with the `Default` value for T.
a7813a04
XL
1930 fn default() -> UnsafeCell<T> {
1931 UnsafeCell::new(Default::default())
1932 }
1933}
5bcae85e
SL
1934
1935#[stable(feature = "cell_from", since = "1.12.0")]
1936impl<T> From<T> for UnsafeCell<T> {
1937 fn from(t: T) -> UnsafeCell<T> {
1938 UnsafeCell::new(t)
1939 }
1940}
9e0c209e
SL
1941
1942#[unstable(feature = "coerce_unsized", issue = "27732")]
1943impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
1944
1945#[allow(unused)]
1946fn assert_coerce_unsized(a: UnsafeCell<&i32>, b: Cell<&i32>, c: RefCell<&i32>) {
8faf50e0
XL
1947 let _: UnsafeCell<&dyn Send> = a;
1948 let _: Cell<&dyn Send> = b;
1949 let _: RefCell<&dyn Send> = c;
9e0c209e 1950}