]> git.proxmox.com Git - rustc.git/blame - library/core/src/marker.rs
New upstream version 1.67.1+dfsg1
[rustc.git] / library / core / src / marker.rs
CommitLineData
9e0c209e 1//! Primitive traits and types representing basic properties of types.
1a4d82fc
JJ
2//!
3//! Rust types can be classified in various useful ways according to
9e0c209e
SL
4//! their intrinsic properties. These classifications are represented
5//! as traits.
1a4d82fc 6
85aaf69f 7#![stable(feature = "rust1", since = "1.0.0")]
1a4d82fc 8
48663c56
XL
9use crate::cell::UnsafeCell;
10use crate::cmp;
f9f354fc 11use crate::fmt::Debug;
48663c56
XL
12use crate::hash::Hash;
13use crate::hash::Hasher;
1a4d82fc 14
92a42be0 15/// Types that can be transferred across thread boundaries.
9cc50fc6 16///
9e0c209e
SL
17/// This trait is automatically implemented when the compiler determines it's
18/// appropriate.
19///
20/// An example of a non-`Send` type is the reference-counting pointer
476ff2be 21/// [`rc::Rc`][`Rc`]. If two threads attempt to clone [`Rc`]s that point to the same
9e0c209e 22/// reference-counted value, they might try to update the reference count at the
476ff2be 23/// same time, which is [undefined behavior][ub] because [`Rc`] doesn't use atomic
9e0c209e
SL
24/// operations. Its cousin [`sync::Arc`][arc] does use atomic operations (incurring
25/// some overhead) and thus is `Send`.
26///
27/// See [the Nomicon](../../nomicon/send-and-sync.html) for more details.
28///
476ff2be 29/// [`Rc`]: ../../std/rc/struct.Rc.html
9e0c209e 30/// [arc]: ../../std/sync/struct.Arc.html
8bb4bdeb 31/// [ub]: ../../reference/behavior-considered-undefined.html
85aaf69f 32#[stable(feature = "rust1", since = "1.0.0")]
3c0e092e 33#[cfg_attr(not(test), rustc_diagnostic_item = "Send")]
8faf50e0 34#[rustc_on_unimplemented(
dfeec247
XL
35 message = "`{Self}` cannot be sent between threads safely",
36 label = "`{Self}` cannot be sent between threads safely"
8faf50e0 37)]
2c00a5a8 38pub unsafe auto trait Send {
9346a6ac
AL
39 // empty.
40}
41
92a42be0 42#[stable(feature = "rust1", since = "1.0.0")]
dfeec247 43impl<T: ?Sized> !Send for *const T {}
92a42be0 44#[stable(feature = "rust1", since = "1.0.0")]
dfeec247 45impl<T: ?Sized> !Send for *mut T {}
c34b1796 46
2b03887a
FG
47// Most instances arise automatically, but this instance is needed to link up `T: Sync` with
48// `&T: Send` (and it also removes the unsound default instance `T Send` -> `&T: Send` that would
49// otherwise exist).
50#[stable(feature = "rust1", since = "1.0.0")]
51unsafe impl<T: Sync + ?Sized> Send for &T {}
52
9e0c209e 53/// Types with a constant size known at compile time.
b039eaaf 54///
9e0c209e
SL
55/// All type parameters have an implicit bound of `Sized`. The special syntax
56/// `?Sized` can be used to remove this bound if it's not appropriate.
b039eaaf
SL
57///
58/// ```
92a42be0 59/// # #![allow(dead_code)]
b039eaaf
SL
60/// struct Foo<T>(T);
61/// struct Bar<T: ?Sized>(T);
62///
63/// // struct FooUse(Foo<[i32]>); // error: Sized is not implemented for [i32]
64/// struct BarUse(Bar<[i32]>); // OK
65/// ```
9e0c209e 66///
0531ce1d
XL
67/// The one exception is the implicit `Self` type of a trait. A trait does not
68/// have an implicit `Sized` bound as this is incompatible with [trait object]s
69/// where, by definition, the trait needs to work with all possible implementors,
70/// and thus could be any size.
71///
72/// Although Rust will let you bind `Sized` to a trait, you won't
73/// be able to use it to form a trait object later:
9e0c209e
SL
74///
75/// ```
76/// # #![allow(unused_variables)]
77/// trait Foo { }
78/// trait Bar: Sized { }
79///
80/// struct Impl;
81/// impl Foo for Impl { }
82/// impl Bar for Impl { }
83///
48663c56
XL
84/// let x: &dyn Foo = &Impl; // OK
85/// // let y: &dyn Bar = &Impl; // error: the trait `Bar` cannot
86/// // be made into an object
9e0c209e
SL
87/// ```
88///
9fa01778 89/// [trait object]: ../../book/ch17-02-trait-objects.html
2b03887a 90#[doc(alias = "?", alias = "?Sized")]
85aaf69f 91#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 92#[lang = "sized"]
8faf50e0 93#[rustc_on_unimplemented(
dfeec247 94 message = "the size for values of type `{Self}` cannot be known at compilation time",
3dfed10e 95 label = "doesn't have a size known at compile-time"
8faf50e0 96)]
c34b1796 97#[fundamental] // for Default, for example, which requires that `[T]: !Default` be evaluatable
f9f354fc 98#[rustc_specialization_trait]
487cf647 99#[cfg_attr(not(bootstrap), rustc_deny_explicit_impl)]
9346a6ac
AL
100pub trait Sized {
101 // Empty.
102}
103
9e0c209e
SL
104/// Types that can be "unsized" to a dynamically-sized type.
105///
106/// For example, the sized array type `[i8; 2]` implements `Unsize<[i8]>` and
60c5eb7d 107/// `Unsize<dyn fmt::Debug>`.
9e0c209e
SL
108///
109/// All implementations of `Unsize` are provided automatically by the compiler.
c295e0f8 110/// Those implementations are:
9e0c209e 111///
c295e0f8
XL
112/// - Arrays `[T; N]` implement `Unsize<[T]>`.
113/// - Types implementing a trait `Trait` also implement `Unsize<dyn Trait>`.
114/// - Structs `Foo<..., T, ...>` implement `Unsize<Foo<..., U, ...>>` if all of these conditions
115/// are met:
116/// - `T: Unsize<U>`.
117/// - Only the last field of `Foo` has a type involving `T`.
118/// - `Bar<T>: Unsize<Bar<U>>`, where `Bar<T>` stands for the actual type of that last field.
32a655c1 119///
1b1a35ee
XL
120/// `Unsize` is used along with [`ops::CoerceUnsized`] to allow
121/// "user-defined" containers such as [`Rc`] to contain dynamically-sized
32a655c1
SL
122/// types. See the [DST coercion RFC][RFC982] and [the nomicon entry on coercion][nomicon-coerce]
123/// for more details.
9e0c209e 124///
1b1a35ee
XL
125/// [`ops::CoerceUnsized`]: crate::ops::CoerceUnsized
126/// [`Rc`]: ../../std/rc/struct.Rc.html
9e0c209e 127/// [RFC982]: https://github.com/rust-lang/rfcs/blob/master/text/0982-dst-coercion.md
7cac9316 128/// [nomicon-coerce]: ../../nomicon/coercions.html
e9174d1e 129#[unstable(feature = "unsize", issue = "27732")]
ea8adc8c 130#[lang = "unsize"]
487cf647 131#[cfg_attr(not(bootstrap), rustc_deny_explicit_impl)]
e9174d1e 132pub trait Unsize<T: ?Sized> {
1a4d82fc
JJ
133 // Empty.
134}
135
e74abb32
XL
136/// Required trait for constants used in pattern matches.
137///
138/// Any type that derives `PartialEq` automatically implements this trait,
139/// *regardless* of whether its type-parameters implement `Eq`.
140///
141/// If a `const` item contains some type that does not implement this trait,
142/// then that type either (1.) does not implement `PartialEq` (which means the
143/// constant will not provide that comparison method, which code generation
144/// assumes is available), or (2.) it implements *its own* version of
145/// `PartialEq` (which we assume does not conform to a structural-equality
146/// comparison).
147///
148/// In either of the two scenarios above, we reject usage of such a constant in
149/// a pattern match.
150///
dfeec247 151/// See also the [structural match RFC][RFC1445], and [issue 63438] which
e74abb32
XL
152/// motivated migrating from attribute-based design to this trait.
153///
154/// [RFC1445]: https://github.com/rust-lang/rfcs/blob/master/text/1445-restrict-constants-in-patterns.md
155/// [issue 63438]: https://github.com/rust-lang/rust/issues/63438
e74abb32 156#[unstable(feature = "structural_match", issue = "31434")]
dfeec247 157#[rustc_on_unimplemented(message = "the type `{Self}` does not `#[derive(PartialEq)]`")]
e74abb32
XL
158#[lang = "structural_peq"]
159pub trait StructuralPartialEq {
160 // Empty.
161}
162
163/// Required trait for constants used in pattern matches.
164///
165/// Any type that derives `Eq` automatically implements this trait, *regardless*
fc512014 166/// of whether its type parameters implement `Eq`.
e74abb32 167///
fc512014 168/// This is a hack to work around a limitation in our type system.
e74abb32 169///
fc512014 170/// # Background
e74abb32
XL
171///
172/// We want to require that types of consts used in pattern matches
173/// have the attribute `#[derive(PartialEq, Eq)]`.
174///
175/// In a more ideal world, we could check that requirement by just checking that
fc512014
XL
176/// the given type implements both the `StructuralPartialEq` trait *and*
177/// the `Eq` trait. However, you can have ADTs that *do* `derive(PartialEq, Eq)`,
e74abb32
XL
178/// and be a case that we want the compiler to accept, and yet the constant's
179/// type fails to implement `Eq`.
180///
181/// Namely, a case like this:
182///
183/// ```rust
184/// #[derive(PartialEq, Eq)]
185/// struct Wrap<X>(X);
fc512014 186///
e74abb32 187/// fn higher_order(_: &()) { }
fc512014 188///
e74abb32 189/// const CFN: Wrap<fn(&())> = Wrap(higher_order);
fc512014 190///
e74abb32
XL
191/// fn main() {
192/// match CFN {
193/// CFN => {}
194/// _ => {}
195/// }
196/// }
197/// ```
198///
199/// (The problem in the above code is that `Wrap<fn(&())>` does not implement
200/// `PartialEq`, nor `Eq`, because `for<'a> fn(&'a _)` does not implement those
201/// traits.)
202///
203/// Therefore, we cannot rely on naive check for `StructuralPartialEq` and
204/// mere `Eq`.
205///
206/// As a hack to work around this, we use two separate traits injected by each
207/// of the two derives (`#[derive(PartialEq)]` and `#[derive(Eq)]`) and check
208/// that both of them are present as part of structural-match checking.
e74abb32 209#[unstable(feature = "structural_match", issue = "31434")]
dfeec247 210#[rustc_on_unimplemented(message = "the type `{Self}` does not `#[derive(Eq)]`")]
e74abb32
XL
211#[lang = "structural_teq"]
212pub trait StructuralEq {
213 // Empty.
214}
215
9e0c209e 216/// Types whose values can be duplicated simply by copying bits.
85aaf69f
SL
217///
218/// By default, variable bindings have 'move semantics.' In other
219/// words:
220///
221/// ```
222/// #[derive(Debug)]
223/// struct Foo;
224///
225/// let x = Foo;
226///
227/// let y = x;
228///
229/// // `x` has moved into `y`, and so cannot be used
230///
5e7ed085 231/// // println!("{x:?}"); // error: use of moved value
85aaf69f
SL
232/// ```
233///
234/// However, if a type implements `Copy`, it instead has 'copy semantics':
235///
236/// ```
9e0c209e
SL
237/// // We can derive a `Copy` implementation. `Clone` is also required, as it's
238/// // a supertrait of `Copy`.
c34b1796 239/// #[derive(Debug, Copy, Clone)]
85aaf69f
SL
240/// struct Foo;
241///
242/// let x = Foo;
243///
244/// let y = x;
245///
246/// // `y` is a copy of `x`
247///
5e7ed085 248/// println!("{x:?}"); // A-OK!
85aaf69f
SL
249/// ```
250///
9e0c209e
SL
251/// It's important to note that in these two examples, the only difference is whether you
252/// are allowed to access `x` after the assignment. Under the hood, both a copy and a move
253/// can result in bits being copied in memory, although this is sometimes optimized away.
254///
255/// ## How can I implement `Copy`?
256///
257/// There are two ways to implement `Copy` on your type. The simplest is to use `derive`:
258///
259/// ```
260/// #[derive(Copy, Clone)]
261/// struct MyStruct;
262/// ```
263///
264/// You can also implement `Copy` and `Clone` manually:
265///
266/// ```
267/// struct MyStruct;
268///
269/// impl Copy for MyStruct { }
270///
271/// impl Clone for MyStruct {
272/// fn clone(&self) -> MyStruct {
273/// *self
274/// }
275/// }
276/// ```
277///
278/// There is a small difference between the two: the `derive` strategy will also place a `Copy`
279/// bound on type parameters, which isn't always desired.
280///
281/// ## What's the difference between `Copy` and `Clone`?
282///
283/// Copies happen implicitly, for example as part of an assignment `y = x`. The behavior of
284/// `Copy` is not overloadable; it is always a simple bit-wise copy.
285///
476ff2be 286/// Cloning is an explicit action, `x.clone()`. The implementation of [`Clone`] can
9e0c209e 287/// provide any type-specific behavior necessary to duplicate values safely. For example,
476ff2be
SL
288/// the implementation of [`Clone`] for [`String`] needs to copy the pointed-to string
289/// buffer in the heap. A simple bitwise copy of [`String`] values would merely copy the
290/// pointer, leading to a double free down the line. For this reason, [`String`] is [`Clone`]
9e0c209e
SL
291/// but not `Copy`.
292///
476ff2be 293/// [`Clone`] is a supertrait of `Copy`, so everything which is `Copy` must also implement
041b39d2 294/// [`Clone`]. If a type is `Copy` then its [`Clone`] implementation only needs to return `*self`
9e0c209e
SL
295/// (see the example above).
296///
85aaf69f
SL
297/// ## When can my type be `Copy`?
298///
299/// A type can implement `Copy` if all of its components implement `Copy`. For example, this
9e0c209e 300/// struct can be `Copy`:
85aaf69f
SL
301///
302/// ```
92a42be0 303/// # #[allow(dead_code)]
3dfed10e 304/// #[derive(Copy, Clone)]
85aaf69f
SL
305/// struct Point {
306/// x: i32,
307/// y: i32,
308/// }
309/// ```
310///
476ff2be 311/// A struct can be `Copy`, and [`i32`] is `Copy`, therefore `Point` is eligible to be `Copy`.
9e0c209e 312/// By contrast, consider
85aaf69f
SL
313///
314/// ```
92a42be0 315/// # #![allow(dead_code)]
85aaf69f
SL
316/// # struct Point;
317/// struct PointList {
318/// points: Vec<Point>,
319/// }
320/// ```
321///
9e0c209e 322/// The struct `PointList` cannot implement `Copy`, because [`Vec<T>`] is not `Copy`. If we
62682a34 323/// attempt to derive a `Copy` implementation, we'll get an error:
85aaf69f
SL
324///
325/// ```text
62682a34 326/// the trait `Copy` may not be implemented for this type; field `points` does not implement `Copy`
85aaf69f
SL
327/// ```
328///
3dfed10e
XL
329/// Shared references (`&T`) are also `Copy`, so a type can be `Copy`, even when it holds
330/// shared references of types `T` that are *not* `Copy`. Consider the following struct,
331/// which can implement `Copy`, because it only holds a *shared reference* to our non-`Copy`
332/// type `PointList` from above:
333///
334/// ```
335/// # #![allow(dead_code)]
336/// # struct PointList;
337/// #[derive(Copy, Clone)]
338/// struct PointListWrapper<'a> {
339/// point_list_ref: &'a PointList,
340/// }
341/// ```
342///
9e0c209e 343/// ## When *can't* my type be `Copy`?
3157f602
XL
344///
345/// Some types can't be copied safely. For example, copying `&mut T` would create an aliased
476ff2be
SL
346/// mutable reference. Copying [`String`] would duplicate responsibility for managing the
347/// [`String`]'s buffer, leading to a double free.
3157f602 348///
9e0c209e 349/// Generalizing the latter case, any type implementing [`Drop`] can't be `Copy`, because it's
cc61c64b 350/// managing some resource besides its own [`size_of::<T>`] bytes.
3157f602 351///
32a655c1
SL
352/// If you try to implement `Copy` on a struct or enum containing non-`Copy` data, you will get
353/// the error [E0204].
85aaf69f 354///
f2b60f7d 355/// [E0204]: ../../error_codes/E0204.html
85aaf69f 356///
9e0c209e 357/// ## When *should* my type be `Copy`?
85aaf69f 358///
9e0c209e
SL
359/// Generally speaking, if your type _can_ implement `Copy`, it should. Keep in mind, though,
360/// that implementing `Copy` is part of the public API of your type. If the type might become
361/// non-`Copy` in the future, it could be prudent to omit the `Copy` implementation now, to
362/// avoid a breaking API change.
85aaf69f 363///
83c7162d
XL
364/// ## Additional implementors
365///
366/// In addition to the [implementors listed below][impls],
367/// the following types also implement `Copy`:
368///
0731742a
XL
369/// * Function item types (i.e., the distinct types defined for each function)
370/// * Function pointer types (e.g., `fn() -> i32`)
83c7162d
XL
371/// * Closure types, if they capture no value from the environment
372/// or if all such captured values implement `Copy` themselves.
373/// Note that variables captured by shared reference always implement `Copy`
374/// (even if the referent doesn't),
375/// while variables captured by mutable reference never implement `Copy`.
376///
9e0c209e
SL
377/// [`Vec<T>`]: ../../std/vec/struct.Vec.html
378/// [`String`]: ../../std/string/struct.String.html
1b1a35ee 379/// [`size_of::<T>`]: crate::mem::size_of
83c7162d 380/// [impls]: #implementors
85aaf69f 381#[stable(feature = "rust1", since = "1.0.0")]
d9579d0f 382#[lang = "copy"]
f9f354fc
XL
383// FIXME(matthewjasper) This allows copying a type that doesn't implement
384// `Copy` because of unsatisfied lifetime bounds (copying `A<'_>` when only
385// `A<'static>: Copy` and `A<'_>: Clone`).
386// We have this attribute here for now only because there are quite a few
387// existing specializations on `Copy` that already exist in the standard
388// library, and there's no way to safely have this behavior right now.
389#[rustc_unsafe_specialization_marker]
c295e0f8 390#[rustc_diagnostic_item = "Copy"]
dfeec247 391pub trait Copy: Clone {
1a4d82fc
JJ
392 // Empty.
393}
394
416331ca 395/// Derive macro generating an impl of the trait `Copy`.
416331ca 396#[rustc_builtin_macro]
416331ca
XL
397#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
398#[allow_internal_unstable(core_intrinsics, derive_clone_copy)]
dfeec247
XL
399pub macro Copy($item:item) {
400 /* compiler built-in */
401}
416331ca 402
9e0c209e
SL
403/// Types for which it is safe to share references between threads.
404///
405/// This trait is automatically implemented when the compiler determines
406/// it's appropriate.
1a4d82fc 407///
1b1a35ee
XL
408/// The precise definition is: a type `T` is [`Sync`] if and only if `&T` is
409/// [`Send`]. In other words, if there is no possibility of
9e0c209e
SL
410/// [undefined behavior][ub] (including data races) when passing
411/// `&T` references between threads.
412///
1b1a35ee
XL
413/// As one would expect, primitive types like [`u8`] and [`f64`]
414/// are all [`Sync`], and so are simple aggregate types containing them,
415/// like tuples, structs and enums. More examples of basic [`Sync`]
9e0c209e
SL
416/// types include "immutable" types like `&T`, and those with simple
417/// inherited mutability, such as [`Box<T>`][box], [`Vec<T>`][vec] and
1b1a35ee
XL
418/// most other collection types. (Generic parameters need to be [`Sync`]
419/// for their container to be [`Sync`].)
9e0c209e
SL
420///
421/// A somewhat surprising consequence of the definition is that `&mut T`
422/// is `Sync` (if `T` is `Sync`) even though it seems like that might
423/// provide unsynchronized mutation. The trick is that a mutable
424/// reference behind a shared reference (that is, `& &mut T`)
425/// becomes read-only, as if it were a `& &T`. Hence there is no risk
426/// of a data race.
1a4d82fc
JJ
427///
428/// Types that are not `Sync` are those that have "interior
1b1a35ee
XL
429/// mutability" in a non-thread-safe form, such as [`Cell`][cell]
430/// and [`RefCell`][refcell]. These types allow for mutation of
9e0c209e 431/// their contents even through an immutable, shared reference. For
476ff2be
SL
432/// example the `set` method on [`Cell<T>`][cell] takes `&self`, so it requires
433/// only a shared reference [`&Cell<T>`][cell]. The method performs no
434/// synchronization, thus [`Cell`][cell] cannot be `Sync`.
1a4d82fc 435///
9e0c209e 436/// Another example of a non-`Sync` type is the reference-counting
1b1a35ee 437/// pointer [`Rc`][rc]. Given any reference [`&Rc<T>`][rc], you can clone
476ff2be 438/// a new [`Rc<T>`][rc], modifying the reference counts in a non-atomic way.
9cc50fc6 439///
9e0c209e
SL
440/// For cases when one does need thread-safe interior mutability,
441/// Rust provides [atomic data types], as well as explicit locking via
ff7c6d11 442/// [`sync::Mutex`][mutex] and [`sync::RwLock`][rwlock]. These types
9e0c209e
SL
443/// ensure that any mutation cannot cause data races, hence the types
444/// are `Sync`. Likewise, [`sync::Arc`][arc] provides a thread-safe
476ff2be 445/// analogue of [`Rc`][rc].
9e0c209e
SL
446///
447/// Any types with interior mutability must also use the
448/// [`cell::UnsafeCell`][unsafecell] wrapper around the value(s) which
449/// can be mutated through a shared reference. Failing to doing this is
450/// [undefined behavior][ub]. For example, [`transmute`][transmute]-ing
451/// from `&T` to `&mut T` is invalid.
452///
1b1a35ee 453/// See [the Nomicon][nomicon-send-and-sync] for more details about `Sync`.
9e0c209e 454///
9e0c209e
SL
455/// [box]: ../../std/boxed/struct.Box.html
456/// [vec]: ../../std/vec/struct.Vec.html
1b1a35ee
XL
457/// [cell]: crate::cell::Cell
458/// [refcell]: crate::cell::RefCell
9e0c209e
SL
459/// [rc]: ../../std/rc/struct.Rc.html
460/// [arc]: ../../std/sync/struct.Arc.html
1b1a35ee 461/// [atomic data types]: crate::sync::atomic
9e0c209e
SL
462/// [mutex]: ../../std/sync/struct.Mutex.html
463/// [rwlock]: ../../std/sync/struct.RwLock.html
1b1a35ee 464/// [unsafecell]: crate::cell::UnsafeCell
8bb4bdeb 465/// [ub]: ../../reference/behavior-considered-undefined.html
1b1a35ee
XL
466/// [transmute]: crate::mem::transmute
467/// [nomicon-send-and-sync]: ../../nomicon/send-and-sync.html
9346a6ac 468#[stable(feature = "rust1", since = "1.0.0")]
c295e0f8 469#[cfg_attr(not(test), rustc_diagnostic_item = "Sync")]
d9579d0f 470#[lang = "sync"]
0531ce1d 471#[rustc_on_unimplemented(
dfeec247
XL
472 message = "`{Self}` cannot be shared between threads safely",
473 label = "`{Self}` cannot be shared between threads safely"
0531ce1d 474)]
2c00a5a8 475pub unsafe auto trait Sync {
0531ce1d
XL
476 // FIXME(estebank): once support to add notes in `rustc_on_unimplemented`
477 // lands in beta, and it has been extended to check whether a closure is
478 // anywhere in the requirement chain, extend it as such (#48534):
479 // ```
480 // on(
481 // closure,
482 // note="`{Self}` cannot be shared safely, consider marking the closure `move`"
483 // ),
484 // ```
485
9346a6ac
AL
486 // Empty
487}
488
92a42be0 489#[stable(feature = "rust1", since = "1.0.0")]
dfeec247 490impl<T: ?Sized> !Sync for *const T {}
92a42be0 491#[stable(feature = "rust1", since = "1.0.0")]
dfeec247 492impl<T: ?Sized> !Sync for *mut T {}
c34b1796 493
9e0c209e 494/// Zero-sized type used to mark things that "act like" they own a `T`.
9346a6ac 495///
9e0c209e
SL
496/// Adding a `PhantomData<T>` field to your type tells the compiler that your
497/// type acts as though it stores a value of type `T`, even though it doesn't
498/// really. This information is used when computing certain safety properties.
9cc50fc6 499///
9e0c209e
SL
500/// For a more in-depth explanation of how to use `PhantomData<T>`, please see
501/// [the Nomicon](../../nomicon/phantom-data.html).
9cc50fc6 502///
e9174d1e
SL
503/// # A ghastly note 👻👻👻
504///
9e0c209e
SL
505/// Though they both have scary names, `PhantomData` and 'phantom types' are
506/// related, but not identical. A phantom type parameter is simply a type
507/// parameter which is never used. In Rust, this often causes the compiler to
508/// complain, and the solution is to add a "dummy" use by way of `PhantomData`.
1a4d82fc 509///
c34b1796 510/// # Examples
1a4d82fc 511///
9e0c209e 512/// ## Unused lifetime parameters
1a4d82fc 513///
9e0c209e
SL
514/// Perhaps the most common use case for `PhantomData` is a struct that has an
515/// unused lifetime parameter, typically as part of some unsafe code. For
516/// example, here is a struct `Slice` that has two pointers of type `*const T`,
517/// presumably pointing into an array somewhere:
85aaf69f 518///
041b39d2 519/// ```compile_fail,E0392
9346a6ac
AL
520/// struct Slice<'a, T> {
521/// start: *const T,
522/// end: *const T,
1a4d82fc
JJ
523/// }
524/// ```
525///
9346a6ac
AL
526/// The intention is that the underlying data is only valid for the
527/// lifetime `'a`, so `Slice` should not outlive `'a`. However, this
528/// intent is not expressed in the code, since there are no uses of
529/// the lifetime `'a` and hence it is not clear what data it applies
530/// to. We can correct this by telling the compiler to act *as if* the
9e0c209e 531/// `Slice` struct contained a reference `&'a T`:
1a4d82fc 532///
c34b1796 533/// ```
9346a6ac 534/// use std::marker::PhantomData;
1a4d82fc 535///
92a42be0 536/// # #[allow(dead_code)]
9cc50fc6 537/// struct Slice<'a, T: 'a> {
9346a6ac
AL
538/// start: *const T,
539/// end: *const T,
9e0c209e 540/// phantom: PhantomData<&'a T>,
9346a6ac 541/// }
c34b1796 542/// ```
1a4d82fc 543///
9e0c209e
SL
544/// This also in turn requires the annotation `T: 'a`, indicating
545/// that any references in `T` are valid over the lifetime `'a`.
546///
547/// When initializing a `Slice` you simply provide the value
548/// `PhantomData` for the field `phantom`:
549///
550/// ```
551/// # #![allow(dead_code)]
552/// # use std::marker::PhantomData;
553/// # struct Slice<'a, T: 'a> {
554/// # start: *const T,
555/// # end: *const T,
556/// # phantom: PhantomData<&'a T>,
557/// # }
416331ca 558/// fn borrow_vec<T>(vec: &Vec<T>) -> Slice<'_, T> {
9e0c209e
SL
559/// let ptr = vec.as_ptr();
560/// Slice {
561/// start: ptr,
b7449926 562/// end: unsafe { ptr.add(vec.len()) },
9e0c209e
SL
563/// phantom: PhantomData,
564/// }
565/// }
566/// ```
1a4d82fc 567///
9346a6ac 568/// ## Unused type parameters
1a4d82fc 569///
9e0c209e 570/// It sometimes happens that you have unused type parameters which
9346a6ac
AL
571/// indicate what type of data a struct is "tied" to, even though that
572/// data is not actually found in the struct itself. Here is an
9e0c209e
SL
573/// example where this arises with [FFI]. The foreign interface uses
574/// handles of type `*mut ()` to refer to Rust values of different
575/// types. We track the Rust type using a phantom type parameter on
576/// the struct `ExternalResource` which wraps a handle.
577///
9fa01778 578/// [FFI]: ../../book/ch19-01-unsafe-rust.html#using-extern-functions-to-call-external-code
c34b1796
AL
579///
580/// ```
92a42be0 581/// # #![allow(dead_code)]
9e0c209e 582/// # trait ResType { }
c34b1796
AL
583/// # struct ParamType;
584/// # mod foreign_lib {
9e0c209e
SL
585/// # pub fn new(_: usize) -> *mut () { 42 as *mut () }
586/// # pub fn do_stuff(_: *mut (), _: usize) {}
c34b1796
AL
587/// # }
588/// # fn convert_params(_: ParamType) -> usize { 42 }
589/// use std::marker::PhantomData;
590/// use std::mem;
591///
592/// struct ExternalResource<R> {
593/// resource_handle: *mut (),
594/// resource_type: PhantomData<R>,
595/// }
596///
597/// impl<R: ResType> ExternalResource<R> {
1b1a35ee 598/// fn new() -> Self {
c34b1796 599/// let size_of_res = mem::size_of::<R>();
1b1a35ee 600/// Self {
c34b1796
AL
601/// resource_handle: foreign_lib::new(size_of_res),
602/// resource_type: PhantomData,
603/// }
604/// }
605///
606/// fn do_stuff(&self, param: ParamType) {
607/// let foreign_params = convert_params(param);
608/// foreign_lib::do_stuff(self.resource_handle, foreign_params);
609/// }
610/// }
611/// ```
612///
9e0c209e 613/// ## Ownership and the drop check
9346a6ac 614///
9e0c209e
SL
615/// Adding a field of type `PhantomData<T>` indicates that your
616/// type owns data of type `T`. This in turn implies that when your
617/// type is dropped, it may drop one or more instances of the type
618/// `T`. This has bearing on the Rust compiler's [drop check]
619/// analysis.
9346a6ac
AL
620///
621/// If your struct does not in fact *own* the data of type `T`, it is
622/// better to use a reference type, like `PhantomData<&'a T>`
623/// (ideally) or `PhantomData<*const T>` (if no lifetime applies), so
624/// as not to indicate ownership.
9e0c209e
SL
625///
626/// [drop check]: ../../nomicon/dropck.html
d9579d0f 627#[lang = "phantom_data"]
85aaf69f 628#[stable(feature = "rust1", since = "1.0.0")]
dfeec247 629pub struct PhantomData<T: ?Sized>;
1a4d82fc 630
2b03887a
FG
631#[stable(feature = "rust1", since = "1.0.0")]
632impl<T: ?Sized> Hash for PhantomData<T> {
633 #[inline]
634 fn hash<H: Hasher>(&self, _: &mut H) {}
635}
636
637#[stable(feature = "rust1", since = "1.0.0")]
638impl<T: ?Sized> cmp::PartialEq for PhantomData<T> {
639 fn eq(&self, _other: &PhantomData<T>) -> bool {
640 true
641 }
642}
643
644#[stable(feature = "rust1", since = "1.0.0")]
645impl<T: ?Sized> cmp::Eq for PhantomData<T> {}
1a4d82fc 646
2b03887a
FG
647#[stable(feature = "rust1", since = "1.0.0")]
648impl<T: ?Sized> cmp::PartialOrd for PhantomData<T> {
649 fn partial_cmp(&self, _other: &PhantomData<T>) -> Option<cmp::Ordering> {
650 Option::Some(cmp::Ordering::Equal)
651 }
85aaf69f 652}
cc61c64b 653
2b03887a
FG
654#[stable(feature = "rust1", since = "1.0.0")]
655impl<T: ?Sized> cmp::Ord for PhantomData<T> {
656 fn cmp(&self, _other: &PhantomData<T>) -> cmp::Ordering {
657 cmp::Ordering::Equal
658 }
659}
660
661#[stable(feature = "rust1", since = "1.0.0")]
662impl<T: ?Sized> Copy for PhantomData<T> {}
663
664#[stable(feature = "rust1", since = "1.0.0")]
665impl<T: ?Sized> Clone for PhantomData<T> {
666 fn clone(&self) -> Self {
667 Self
668 }
669}
670
671#[stable(feature = "rust1", since = "1.0.0")]
672#[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
673impl<T: ?Sized> const Default for PhantomData<T> {
674 fn default() -> Self {
675 Self
676 }
677}
678
679#[unstable(feature = "structural_match", issue = "31434")]
680impl<T: ?Sized> StructuralPartialEq for PhantomData<T> {}
681
682#[unstable(feature = "structural_match", issue = "31434")]
683impl<T: ?Sized> StructuralEq for PhantomData<T> {}
684
f9f354fc
XL
685/// Compiler-internal trait used to indicate the type of enum discriminants.
686///
687/// This trait is automatically implemented for every type and does not add any
688/// guarantees to [`mem::Discriminant`]. It is **undefined behavior** to transmute
689/// between `DiscriminantKind::Discriminant` and `mem::Discriminant`.
690///
1b1a35ee 691/// [`mem::Discriminant`]: crate::mem::Discriminant
f9f354fc
XL
692#[unstable(
693 feature = "discriminant_kind",
694 issue = "none",
695 reason = "this trait is unlikely to ever be stabilized, use `mem::discriminant` instead"
696)]
f035d41b 697#[lang = "discriminant_kind"]
487cf647 698#[cfg_attr(not(bootstrap), rustc_deny_explicit_impl)]
f9f354fc 699pub trait DiscriminantKind {
f035d41b 700 /// The type of the discriminant, which must satisfy the trait
f9f354fc 701 /// bounds required by `mem::Discriminant`.
1b1a35ee 702 #[lang = "discriminant_type"]
f9f354fc
XL
703 type Discriminant: Clone + Copy + Debug + Eq + PartialEq + Hash + Send + Sync + Unpin;
704}
705
cc61c64b
XL
706/// Compiler-internal trait used to determine whether a type contains
707/// any `UnsafeCell` internally, but not through an indirection.
708/// This affects, for example, whether a `static` of that type is
709/// placed in read-only static memory or writable static memory.
7cac9316 710#[lang = "freeze"]
0731742a 711pub(crate) unsafe auto trait Freeze {}
cc61c64b
XL
712
713impl<T: ?Sized> !Freeze for UnsafeCell<T> {}
714unsafe impl<T: ?Sized> Freeze for PhantomData<T> {}
715unsafe impl<T: ?Sized> Freeze for *const T {}
716unsafe impl<T: ?Sized> Freeze for *mut T {}
0bf4aa26
XL
717unsafe impl<T: ?Sized> Freeze for &T {}
718unsafe impl<T: ?Sized> Freeze for &mut T {}
0531ce1d 719
e1599b0c 720/// Types that can be safely moved after being pinned.
0531ce1d 721///
1b1a35ee
XL
722/// Rust itself has no notion of immovable types, and considers moves (e.g.,
723/// through assignment or [`mem::replace`]) to always be safe.
b7449926 724///
1b1a35ee
XL
725/// The [`Pin`][Pin] type is used instead to prevent moves through the type
726/// system. Pointers `P<T>` wrapped in the [`Pin<P<T>>`][Pin] wrapper can't be
727/// moved out of. See the [`pin` module] documentation for more information on
728/// pinning.
b7449926 729///
1b1a35ee
XL
730/// Implementing the `Unpin` trait for `T` lifts the restrictions of pinning off
731/// the type, which then allows moving `T` out of [`Pin<P<T>>`][Pin] with
732/// functions such as [`mem::replace`].
0731742a
XL
733///
734/// `Unpin` has no consequence at all for non-pinned data. In particular,
735/// [`mem::replace`] happily moves `!Unpin` data (it works for any `&mut T`, not
1b1a35ee
XL
736/// just when `T: Unpin`). However, you cannot use [`mem::replace`] on data
737/// wrapped inside a [`Pin<P<T>>`][Pin] because you cannot get the `&mut T` you
738/// need for that, and *that* is what makes this system work.
b7449926
XL
739///
740/// So this, for example, can only be done on types implementing `Unpin`:
741///
742/// ```rust
f9f354fc 743/// # #![allow(unused_must_use)]
0731742a 744/// use std::mem;
0bf4aa26 745/// use std::pin::Pin;
b7449926
XL
746///
747/// let mut string = "this".to_string();
0bf4aa26 748/// let mut pinned_string = Pin::new(&mut string);
b7449926 749///
0731742a
XL
750/// // We need a mutable reference to call `mem::replace`.
751/// // We can obtain such a reference by (implicitly) invoking `Pin::deref_mut`,
752/// // but that is only possible because `String` implements `Unpin`.
753/// mem::replace(&mut *pinned_string, "other".to_string());
b7449926 754/// ```
0531ce1d
XL
755///
756/// This trait is automatically implemented for almost every type.
83c7162d 757///
1b1a35ee
XL
758/// [`mem::replace`]: crate::mem::replace
759/// [Pin]: crate::pin::Pin
760/// [`pin` module]: crate::pin
0731742a 761#[stable(feature = "pin", since = "1.33.0")]
74b04a01 762#[rustc_on_unimplemented(
cdc7bbd5 763 note = "consider using `Box::pin`",
74b04a01
XL
764 message = "`{Self}` cannot be unpinned"
765)]
532ac7d7 766#[lang = "unpin"]
94b46f34
XL
767pub auto trait Unpin {}
768
0731742a 769/// A marker type which does not implement `Unpin`.
94b46f34 770///
0731742a
XL
771/// If a type contains a `PhantomPinned`, it will not implement `Unpin` by default.
772#[stable(feature = "pin", since = "1.33.0")]
fc512014 773#[derive(Debug, Default, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
0731742a 774pub struct PhantomPinned;
94b46f34 775
0731742a
XL
776#[stable(feature = "pin", since = "1.33.0")]
777impl !Unpin for PhantomPinned {}
83c7162d 778
0731742a 779#[stable(feature = "pin", since = "1.33.0")]
8faf50e0
XL
780impl<'a, T: ?Sized + 'a> Unpin for &'a T {}
781
0731742a 782#[stable(feature = "pin", since = "1.33.0")]
8faf50e0
XL
783impl<'a, T: ?Sized + 'a> Unpin for &'a mut T {}
784
416331ca
XL
785#[stable(feature = "pin_raw", since = "1.38.0")]
786impl<T: ?Sized> Unpin for *const T {}
787
788#[stable(feature = "pin_raw", since = "1.38.0")]
789impl<T: ?Sized> Unpin for *mut T {}
790
5e7ed085
FG
791/// A marker for types that can be dropped.
792///
793/// This should be used for `~const` bounds,
794/// as non-const bounds will always hold for every type.
795#[unstable(feature = "const_trait_impl", issue = "67792")]
04454e1e
FG
796#[lang = "destruct"]
797#[rustc_on_unimplemented(message = "can't drop `{Self}`", append_const_msg)]
2b03887a 798#[const_trait]
487cf647 799#[cfg_attr(not(bootstrap), rustc_deny_explicit_impl)]
5e7ed085
FG
800pub trait Destruct {}
801
f2b60f7d
FG
802/// A marker for tuple types.
803///
804/// The implementation of this trait is built-in and cannot be implemented
805/// for any user type.
806#[unstable(feature = "tuple_trait", issue = "none")]
2b03887a 807#[lang = "tuple_trait"]
f2b60f7d 808#[rustc_on_unimplemented(message = "`{Self}` is not a tuple")]
487cf647 809#[cfg_attr(not(bootstrap), rustc_deny_explicit_impl)]
f2b60f7d
FG
810pub trait Tuple {}
811
487cf647
FG
812/// A marker for things
813#[unstable(feature = "pointer_sized_trait", issue = "none")]
814#[cfg_attr(not(bootstrap), lang = "pointer_sized")]
815#[rustc_on_unimplemented(
816 message = "`{Self}` needs to be a pointer-sized type",
817 label = "`{Self}` needs to be a pointer-sized type"
818)]
819pub trait PointerSized {}
820
83c7162d
XL
821/// Implementations of `Copy` for primitive types.
822///
823/// Implementations that cannot be described in Rust
ba9703b0
XL
824/// are implemented in `traits::SelectionContext::copy_clone_conditions()`
825/// in `rustc_trait_selection`.
83c7162d
XL
826mod copy_impls {
827
828 use super::Copy;
829
830 macro_rules! impl_copy {
831 ($($t:ty)*) => {
832 $(
833 #[stable(feature = "rust1", since = "1.0.0")]
834 impl Copy for $t {}
835 )*
836 }
837 }
838
839 impl_copy! {
840 usize u8 u16 u32 u64 u128
841 isize i8 i16 i32 i64 i128
842 f32 f64
843 bool char
844 }
845
846 #[unstable(feature = "never_type", issue = "35121")]
847 impl Copy for ! {}
848
849 #[stable(feature = "rust1", since = "1.0.0")]
850 impl<T: ?Sized> Copy for *const T {}
851
852 #[stable(feature = "rust1", since = "1.0.0")]
853 impl<T: ?Sized> Copy for *mut T {}
854
ba9703b0 855 /// Shared references can be copied, but mutable references *cannot*!
83c7162d 856 #[stable(feature = "rust1", since = "1.0.0")]
0bf4aa26 857 impl<T: ?Sized> Copy for &T {}
83c7162d 858}