]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/elfload.c
hw/misc/mips_itu: Declare itc_reconfigure() in 'hw/misc/mips_itu.h'
[mirror_qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
30ab9ef2 6#include <sys/shm.h>
31e31b8a 7
3ef693a0 8#include "qemu.h"
3b249d26 9#include "user-internals.h"
db2af69d 10#include "signal-common.h"
3ad0a769 11#include "loader.h"
5423e6d3 12#include "user-mmap.h"
76cad711 13#include "disas/disas.h"
ce543844 14#include "qemu/bitops.h"
f348b6d1 15#include "qemu/path.h"
dc5e9ac7 16#include "qemu/queue.h"
c6a2377f 17#include "qemu/guest-random.h"
6fd59449 18#include "qemu/units.h"
ee947430 19#include "qemu/selfmap.h"
370ed600 20#include "qemu/lockable.h"
c7f17e7b 21#include "qapi/error.h"
cc37d98b 22#include "qemu/error-report.h"
db2af69d 23#include "target_signal.h"
7c10cb38 24#include "accel/tcg/debuginfo.h"
31e31b8a 25
e58ffeb3 26#ifdef _ARCH_PPC64
a6cc84f4 27#undef ARCH_DLINFO
28#undef ELF_PLATFORM
29#undef ELF_HWCAP
ad6919dc 30#undef ELF_HWCAP2
a6cc84f4 31#undef ELF_CLASS
32#undef ELF_DATA
33#undef ELF_ARCH
34#endif
35
edf8e2af
MW
36#define ELF_OSABI ELFOSABI_SYSV
37
cb33da57
BS
38/* from personality.h */
39
40/*
41 * Flags for bug emulation.
42 *
43 * These occupy the top three bytes.
44 */
45enum {
d97ef72e
RH
46 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
47 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
48 descriptors (signal handling) */
49 MMAP_PAGE_ZERO = 0x0100000,
50 ADDR_COMPAT_LAYOUT = 0x0200000,
51 READ_IMPLIES_EXEC = 0x0400000,
52 ADDR_LIMIT_32BIT = 0x0800000,
53 SHORT_INODE = 0x1000000,
54 WHOLE_SECONDS = 0x2000000,
55 STICKY_TIMEOUTS = 0x4000000,
56 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
57};
58
59/*
60 * Personality types.
61 *
62 * These go in the low byte. Avoid using the top bit, it will
63 * conflict with error returns.
64 */
65enum {
d97ef72e
RH
66 PER_LINUX = 0x0000,
67 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
68 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
69 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
70 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
71 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
72 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
73 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
74 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
75 PER_BSD = 0x0006,
76 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
77 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
78 PER_LINUX32 = 0x0008,
79 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
80 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
81 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
82 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
83 PER_RISCOS = 0x000c,
84 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
85 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
86 PER_OSF4 = 0x000f, /* OSF/1 v4 */
87 PER_HPUX = 0x0010,
88 PER_MASK = 0x00ff,
cb33da57
BS
89};
90
91/*
92 * Return the base personality without flags.
93 */
d97ef72e 94#define personality(pers) (pers & PER_MASK)
cb33da57 95
3cb10cfa
CL
96int info_is_fdpic(struct image_info *info)
97{
98 return info->personality == PER_LINUX_FDPIC;
99}
100
83fb7adf
FB
101/* this flag is uneffective under linux too, should be deleted */
102#ifndef MAP_DENYWRITE
103#define MAP_DENYWRITE 0
104#endif
105
106/* should probably go in elf.h */
107#ifndef ELIBBAD
108#define ELIBBAD 80
109#endif
110
ee3eb3a7 111#if TARGET_BIG_ENDIAN
28490231
RH
112#define ELF_DATA ELFDATA2MSB
113#else
114#define ELF_DATA ELFDATA2LSB
115#endif
116
a29f998d 117#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
118typedef abi_ullong target_elf_greg_t;
119#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
120#else
121typedef abi_ulong target_elf_greg_t;
122#define tswapreg(ptr) tswapal(ptr)
123#endif
124
21e807fa 125#ifdef USE_UID16
1ddd592f
PB
126typedef abi_ushort target_uid_t;
127typedef abi_ushort target_gid_t;
21e807fa 128#else
f8fd4fc4
PB
129typedef abi_uint target_uid_t;
130typedef abi_uint target_gid_t;
21e807fa 131#endif
f8fd4fc4 132typedef abi_int target_pid_t;
21e807fa 133
30ac07d4
FB
134#ifdef TARGET_I386
135
15338fd7
FB
136#define ELF_HWCAP get_elf_hwcap()
137
138static uint32_t get_elf_hwcap(void)
139{
a2247f8e
AF
140 X86CPU *cpu = X86_CPU(thread_cpu);
141
142 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
143}
144
84409ddb 145#ifdef TARGET_X86_64
84409ddb 146#define ELF_CLASS ELFCLASS64
84409ddb
JM
147#define ELF_ARCH EM_X86_64
148
9263ba84
RH
149#define ELF_PLATFORM "x86_64"
150
84409ddb
JM
151static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
152{
153 regs->rax = 0;
154 regs->rsp = infop->start_stack;
155 regs->rip = infop->entry;
156}
157
9edc5d79 158#define ELF_NREG 27
c227f099 159typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
160
161/*
162 * Note that ELF_NREG should be 29 as there should be place for
163 * TRAPNO and ERR "registers" as well but linux doesn't dump
164 * those.
165 *
166 * See linux kernel: arch/x86/include/asm/elf.h
167 */
05390248 168static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79 169{
030912e0
IL
170 (*regs)[0] = tswapreg(env->regs[15]);
171 (*regs)[1] = tswapreg(env->regs[14]);
172 (*regs)[2] = tswapreg(env->regs[13]);
173 (*regs)[3] = tswapreg(env->regs[12]);
174 (*regs)[4] = tswapreg(env->regs[R_EBP]);
175 (*regs)[5] = tswapreg(env->regs[R_EBX]);
176 (*regs)[6] = tswapreg(env->regs[11]);
177 (*regs)[7] = tswapreg(env->regs[10]);
178 (*regs)[8] = tswapreg(env->regs[9]);
179 (*regs)[9] = tswapreg(env->regs[8]);
180 (*regs)[10] = tswapreg(env->regs[R_EAX]);
181 (*regs)[11] = tswapreg(env->regs[R_ECX]);
182 (*regs)[12] = tswapreg(env->regs[R_EDX]);
183 (*regs)[13] = tswapreg(env->regs[R_ESI]);
184 (*regs)[14] = tswapreg(env->regs[R_EDI]);
185 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
186 (*regs)[16] = tswapreg(env->eip);
187 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
188 (*regs)[18] = tswapreg(env->eflags);
189 (*regs)[19] = tswapreg(env->regs[R_ESP]);
190 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
191 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
192 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
193 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
194 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
195 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
196 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
9edc5d79
MW
197}
198
d461b73e
RH
199#if ULONG_MAX > UINT32_MAX
200#define INIT_GUEST_COMMPAGE
201static bool init_guest_commpage(void)
202{
203 /*
204 * The vsyscall page is at a high negative address aka kernel space,
205 * which means that we cannot actually allocate it with target_mmap.
206 * We still should be able to use page_set_flags, unless the user
207 * has specified -R reserved_va, which would trigger an assert().
208 */
209 if (reserved_va != 0 &&
95059f9c 210 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
d461b73e
RH
211 error_report("Cannot allocate vsyscall page");
212 exit(EXIT_FAILURE);
213 }
214 page_set_flags(TARGET_VSYSCALL_PAGE,
49840a4a 215 TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
d461b73e
RH
216 PAGE_EXEC | PAGE_VALID);
217 return true;
218}
219#endif
84409ddb
JM
220#else
221
30ac07d4
FB
222/*
223 * This is used to ensure we don't load something for the wrong architecture.
224 */
225#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
226
227/*
228 * These are used to set parameters in the core dumps.
229 */
d97ef72e 230#define ELF_CLASS ELFCLASS32
d97ef72e 231#define ELF_ARCH EM_386
30ac07d4 232
9263ba84 233#define ELF_PLATFORM get_elf_platform()
872f3d04 234#define EXSTACK_DEFAULT true
9263ba84
RH
235
236static const char *get_elf_platform(void)
237{
238 static char elf_platform[] = "i386";
239 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
240 if (family > 6) {
241 family = 6;
242 }
243 if (family >= 3) {
244 elf_platform[1] = '0' + family;
245 }
246 return elf_platform;
247}
248
d97ef72e
RH
249static inline void init_thread(struct target_pt_regs *regs,
250 struct image_info *infop)
b346ff46
FB
251{
252 regs->esp = infop->start_stack;
253 regs->eip = infop->entry;
e5fe0c52
PB
254
255 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
256 starts %edx contains a pointer to a function which might be
257 registered using `atexit'. This provides a mean for the
258 dynamic linker to call DT_FINI functions for shared libraries
259 that have been loaded before the code runs.
260
261 A value of 0 tells we have no such handler. */
262 regs->edx = 0;
b346ff46 263}
9edc5d79 264
9edc5d79 265#define ELF_NREG 17
c227f099 266typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
267
268/*
269 * Note that ELF_NREG should be 19 as there should be place for
270 * TRAPNO and ERR "registers" as well but linux doesn't dump
271 * those.
272 *
273 * See linux kernel: arch/x86/include/asm/elf.h
274 */
05390248 275static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79 276{
030912e0
IL
277 (*regs)[0] = tswapreg(env->regs[R_EBX]);
278 (*regs)[1] = tswapreg(env->regs[R_ECX]);
279 (*regs)[2] = tswapreg(env->regs[R_EDX]);
280 (*regs)[3] = tswapreg(env->regs[R_ESI]);
281 (*regs)[4] = tswapreg(env->regs[R_EDI]);
282 (*regs)[5] = tswapreg(env->regs[R_EBP]);
283 (*regs)[6] = tswapreg(env->regs[R_EAX]);
284 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
285 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
286 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
287 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
288 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
289 (*regs)[12] = tswapreg(env->eip);
290 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
291 (*regs)[14] = tswapreg(env->eflags);
292 (*regs)[15] = tswapreg(env->regs[R_ESP]);
293 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
9edc5d79 294}
84409ddb 295#endif
b346ff46 296
9edc5d79 297#define USE_ELF_CORE_DUMP
d97ef72e 298#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
299
300#endif
301
302#ifdef TARGET_ARM
303
24e76ff0
PM
304#ifndef TARGET_AARCH64
305/* 32 bit ARM definitions */
306
b597c3f7 307#define ELF_ARCH EM_ARM
d97ef72e 308#define ELF_CLASS ELFCLASS32
872f3d04 309#define EXSTACK_DEFAULT true
b346ff46 310
d97ef72e
RH
311static inline void init_thread(struct target_pt_regs *regs,
312 struct image_info *infop)
b346ff46 313{
992f48a0 314 abi_long stack = infop->start_stack;
b346ff46 315 memset(regs, 0, sizeof(*regs));
99033cae 316
167e4cdc
PM
317 regs->uregs[16] = ARM_CPU_MODE_USR;
318 if (infop->entry & 1) {
319 regs->uregs[16] |= CPSR_T;
320 }
321 regs->uregs[15] = infop->entry & 0xfffffffe;
322 regs->uregs[13] = infop->start_stack;
2f619698 323 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
324 get_user_ual(regs->uregs[2], stack + 8); /* envp */
325 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 326 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 327 regs->uregs[0] = 0;
e5fe0c52 328 /* For uClinux PIC binaries. */
863cf0b7 329 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 330 regs->uregs[10] = infop->start_data;
3cb10cfa
CL
331
332 /* Support ARM FDPIC. */
333 if (info_is_fdpic(infop)) {
334 /* As described in the ABI document, r7 points to the loadmap info
335 * prepared by the kernel. If an interpreter is needed, r8 points
336 * to the interpreter loadmap and r9 points to the interpreter
337 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
338 * r9 points to the main program PT_DYNAMIC info.
339 */
340 regs->uregs[7] = infop->loadmap_addr;
341 if (infop->interpreter_loadmap_addr) {
342 /* Executable is dynamically loaded. */
343 regs->uregs[8] = infop->interpreter_loadmap_addr;
344 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
345 } else {
346 regs->uregs[8] = 0;
347 regs->uregs[9] = infop->pt_dynamic_addr;
348 }
349 }
b346ff46
FB
350}
351
edf8e2af 352#define ELF_NREG 18
c227f099 353typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 354
05390248 355static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 356{
86cd7b2d
PB
357 (*regs)[0] = tswapreg(env->regs[0]);
358 (*regs)[1] = tswapreg(env->regs[1]);
359 (*regs)[2] = tswapreg(env->regs[2]);
360 (*regs)[3] = tswapreg(env->regs[3]);
361 (*regs)[4] = tswapreg(env->regs[4]);
362 (*regs)[5] = tswapreg(env->regs[5]);
363 (*regs)[6] = tswapreg(env->regs[6]);
364 (*regs)[7] = tswapreg(env->regs[7]);
365 (*regs)[8] = tswapreg(env->regs[8]);
366 (*regs)[9] = tswapreg(env->regs[9]);
367 (*regs)[10] = tswapreg(env->regs[10]);
368 (*regs)[11] = tswapreg(env->regs[11]);
369 (*regs)[12] = tswapreg(env->regs[12]);
370 (*regs)[13] = tswapreg(env->regs[13]);
371 (*regs)[14] = tswapreg(env->regs[14]);
372 (*regs)[15] = tswapreg(env->regs[15]);
373
374 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
375 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
376}
377
30ac07d4 378#define USE_ELF_CORE_DUMP
d97ef72e 379#define ELF_EXEC_PAGESIZE 4096
30ac07d4 380
afce2927
FB
381enum
382{
d97ef72e
RH
383 ARM_HWCAP_ARM_SWP = 1 << 0,
384 ARM_HWCAP_ARM_HALF = 1 << 1,
385 ARM_HWCAP_ARM_THUMB = 1 << 2,
386 ARM_HWCAP_ARM_26BIT = 1 << 3,
387 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
388 ARM_HWCAP_ARM_FPA = 1 << 5,
389 ARM_HWCAP_ARM_VFP = 1 << 6,
390 ARM_HWCAP_ARM_EDSP = 1 << 7,
391 ARM_HWCAP_ARM_JAVA = 1 << 8,
392 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
393 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
394 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
395 ARM_HWCAP_ARM_NEON = 1 << 12,
396 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
397 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
398 ARM_HWCAP_ARM_TLS = 1 << 15,
399 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
400 ARM_HWCAP_ARM_IDIVA = 1 << 17,
401 ARM_HWCAP_ARM_IDIVT = 1 << 18,
402 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
403 ARM_HWCAP_ARM_LPAE = 1 << 20,
404 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
23d7f14d
PM
405 ARM_HWCAP_ARM_FPHP = 1 << 22,
406 ARM_HWCAP_ARM_ASIMDHP = 1 << 23,
407 ARM_HWCAP_ARM_ASIMDDP = 1 << 24,
408 ARM_HWCAP_ARM_ASIMDFHM = 1 << 25,
409 ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26,
410 ARM_HWCAP_ARM_I8MM = 1 << 27,
afce2927
FB
411};
412
ad6919dc
PM
413enum {
414 ARM_HWCAP2_ARM_AES = 1 << 0,
415 ARM_HWCAP2_ARM_PMULL = 1 << 1,
416 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
417 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
418 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
23d7f14d
PM
419 ARM_HWCAP2_ARM_SB = 1 << 5,
420 ARM_HWCAP2_ARM_SSBS = 1 << 6,
ad6919dc
PM
421};
422
6b1275ff
PM
423/* The commpage only exists for 32 bit kernels */
424
66346faf 425#define HI_COMMPAGE (intptr_t)0xffff0f00u
806d1021 426
ee947430
AB
427static bool init_guest_commpage(void)
428{
d713cf4d
PMD
429 ARMCPU *cpu = ARM_CPU(thread_cpu);
430 abi_ptr commpage;
431 void *want;
432 void *addr;
433
434 /*
435 * M-profile allocates maximum of 2GB address space, so can never
436 * allocate the commpage. Skip it.
437 */
438 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
439 return true;
440 }
441
442 commpage = HI_COMMPAGE & -qemu_host_page_size;
443 want = g2h_untagged(commpage);
444 addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
445 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
97cc7560 446
6cda41da 447 if (addr == MAP_FAILED) {
ee947430
AB
448 perror("Allocating guest commpage");
449 exit(EXIT_FAILURE);
97cc7560 450 }
ee947430
AB
451 if (addr != want) {
452 return false;
97cc7560
DDAG
453 }
454
ee947430 455 /* Set kernel helper versions; rest of page is 0. */
6cda41da 456 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
97cc7560 457
6cda41da 458 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
97cc7560 459 perror("Protecting guest commpage");
ee947430 460 exit(EXIT_FAILURE);
97cc7560 461 }
6cda41da
RH
462
463 page_set_flags(commpage, commpage | ~qemu_host_page_mask,
464 PAGE_READ | PAGE_EXEC | PAGE_VALID);
ee947430 465 return true;
97cc7560 466}
adf050b1
BC
467
468#define ELF_HWCAP get_elf_hwcap()
ad6919dc 469#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1 470
a55b9e72 471uint32_t get_elf_hwcap(void)
adf050b1 472{
a2247f8e 473 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
474 uint32_t hwcaps = 0;
475
476 hwcaps |= ARM_HWCAP_ARM_SWP;
477 hwcaps |= ARM_HWCAP_ARM_HALF;
478 hwcaps |= ARM_HWCAP_ARM_THUMB;
479 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
480
481 /* probe for the extra features */
482#define GET_FEATURE(feat, hwcap) \
a2247f8e 483 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
962fcbf2
RH
484
485#define GET_FEATURE_ID(feat, hwcap) \
486 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
487
24682654
PM
488 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
489 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
490 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
491 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
492 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
24682654 493 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
bfa8a370 494 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
873b73c0
PM
495 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
496 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
bfa8a370
RH
497 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
498
499 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
500 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
501 hwcaps |= ARM_HWCAP_ARM_VFPv3;
502 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
503 hwcaps |= ARM_HWCAP_ARM_VFPD32;
504 } else {
505 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
506 }
507 }
508 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
429b7e01
PM
509 /*
510 * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same
511 * isar_feature function for both. The kernel reports them as two hwcaps.
512 */
513 GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP);
514 GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP);
515 GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP);
516 GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM);
517 GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16);
518 GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM);
adf050b1
BC
519
520 return hwcaps;
521}
afce2927 522
a55b9e72 523uint32_t get_elf_hwcap2(void)
ad6919dc
PM
524{
525 ARMCPU *cpu = ARM_CPU(thread_cpu);
526 uint32_t hwcaps = 0;
527
962fcbf2
RH
528 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
529 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
530 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
531 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
532 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
429b7e01
PM
533 GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB);
534 GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS);
ad6919dc
PM
535 return hwcaps;
536}
537
a55b9e72
HD
538const char *elf_hwcap_str(uint32_t bit)
539{
540 static const char *hwcap_str[] = {
541 [__builtin_ctz(ARM_HWCAP_ARM_SWP )] = "swp",
542 [__builtin_ctz(ARM_HWCAP_ARM_HALF )] = "half",
543 [__builtin_ctz(ARM_HWCAP_ARM_THUMB )] = "thumb",
544 [__builtin_ctz(ARM_HWCAP_ARM_26BIT )] = "26bit",
545 [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult",
546 [__builtin_ctz(ARM_HWCAP_ARM_FPA )] = "fpa",
547 [__builtin_ctz(ARM_HWCAP_ARM_VFP )] = "vfp",
548 [__builtin_ctz(ARM_HWCAP_ARM_EDSP )] = "edsp",
549 [__builtin_ctz(ARM_HWCAP_ARM_JAVA )] = "java",
550 [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT )] = "iwmmxt",
551 [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH )] = "crunch",
552 [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE )] = "thumbee",
553 [__builtin_ctz(ARM_HWCAP_ARM_NEON )] = "neon",
554 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3 )] = "vfpv3",
555 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16",
556 [__builtin_ctz(ARM_HWCAP_ARM_TLS )] = "tls",
557 [__builtin_ctz(ARM_HWCAP_ARM_VFPv4 )] = "vfpv4",
558 [__builtin_ctz(ARM_HWCAP_ARM_IDIVA )] = "idiva",
559 [__builtin_ctz(ARM_HWCAP_ARM_IDIVT )] = "idivt",
560 [__builtin_ctz(ARM_HWCAP_ARM_VFPD32 )] = "vfpd32",
561 [__builtin_ctz(ARM_HWCAP_ARM_LPAE )] = "lpae",
562 [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM )] = "evtstrm",
23d7f14d
PM
563 [__builtin_ctz(ARM_HWCAP_ARM_FPHP )] = "fphp",
564 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP )] = "asimdhp",
565 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP )] = "asimddp",
566 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm",
567 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16",
568 [__builtin_ctz(ARM_HWCAP_ARM_I8MM )] = "i8mm",
a55b9e72
HD
569 };
570
571 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
572}
573
574const char *elf_hwcap2_str(uint32_t bit)
575{
576 static const char *hwcap_str[] = {
577 [__builtin_ctz(ARM_HWCAP2_ARM_AES )] = "aes",
578 [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull",
579 [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1",
580 [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2",
581 [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32",
23d7f14d
PM
582 [__builtin_ctz(ARM_HWCAP2_ARM_SB )] = "sb",
583 [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs",
a55b9e72
HD
584 };
585
586 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
587}
588
ad6919dc 589#undef GET_FEATURE
962fcbf2 590#undef GET_FEATURE_ID
ad6919dc 591
13ec4ec3
RH
592#define ELF_PLATFORM get_elf_platform()
593
594static const char *get_elf_platform(void)
595{
b77af26e 596 CPUARMState *env = cpu_env(thread_cpu);
13ec4ec3 597
ee3eb3a7 598#if TARGET_BIG_ENDIAN
13ec4ec3
RH
599# define END "b"
600#else
601# define END "l"
602#endif
603
604 if (arm_feature(env, ARM_FEATURE_V8)) {
605 return "v8" END;
606 } else if (arm_feature(env, ARM_FEATURE_V7)) {
607 if (arm_feature(env, ARM_FEATURE_M)) {
608 return "v7m" END;
609 } else {
610 return "v7" END;
611 }
612 } else if (arm_feature(env, ARM_FEATURE_V6)) {
613 return "v6" END;
614 } else if (arm_feature(env, ARM_FEATURE_V5)) {
615 return "v5" END;
616 } else {
617 return "v4" END;
618 }
619
620#undef END
621}
622
24e76ff0
PM
623#else
624/* 64 bit ARM definitions */
24e76ff0 625
b597c3f7 626#define ELF_ARCH EM_AARCH64
24e76ff0 627#define ELF_CLASS ELFCLASS64
ee3eb3a7 628#if TARGET_BIG_ENDIAN
e20e3ec9
RH
629# define ELF_PLATFORM "aarch64_be"
630#else
631# define ELF_PLATFORM "aarch64"
632#endif
24e76ff0
PM
633
634static inline void init_thread(struct target_pt_regs *regs,
635 struct image_info *infop)
636{
637 abi_long stack = infop->start_stack;
638 memset(regs, 0, sizeof(*regs));
639
640 regs->pc = infop->entry & ~0x3ULL;
641 regs->sp = stack;
642}
643
644#define ELF_NREG 34
645typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
646
647static void elf_core_copy_regs(target_elf_gregset_t *regs,
648 const CPUARMState *env)
649{
650 int i;
651
652 for (i = 0; i < 32; i++) {
653 (*regs)[i] = tswapreg(env->xregs[i]);
654 }
655 (*regs)[32] = tswapreg(env->pc);
656 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
657}
658
659#define USE_ELF_CORE_DUMP
660#define ELF_EXEC_PAGESIZE 4096
661
662enum {
663 ARM_HWCAP_A64_FP = 1 << 0,
664 ARM_HWCAP_A64_ASIMD = 1 << 1,
665 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
666 ARM_HWCAP_A64_AES = 1 << 3,
667 ARM_HWCAP_A64_PMULL = 1 << 4,
668 ARM_HWCAP_A64_SHA1 = 1 << 5,
669 ARM_HWCAP_A64_SHA2 = 1 << 6,
670 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
671 ARM_HWCAP_A64_ATOMICS = 1 << 8,
672 ARM_HWCAP_A64_FPHP = 1 << 9,
673 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
674 ARM_HWCAP_A64_CPUID = 1 << 11,
675 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
676 ARM_HWCAP_A64_JSCVT = 1 << 13,
677 ARM_HWCAP_A64_FCMA = 1 << 14,
678 ARM_HWCAP_A64_LRCPC = 1 << 15,
679 ARM_HWCAP_A64_DCPOP = 1 << 16,
680 ARM_HWCAP_A64_SHA3 = 1 << 17,
681 ARM_HWCAP_A64_SM3 = 1 << 18,
682 ARM_HWCAP_A64_SM4 = 1 << 19,
683 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
684 ARM_HWCAP_A64_SHA512 = 1 << 21,
685 ARM_HWCAP_A64_SVE = 1 << 22,
0083a1fa
RH
686 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
687 ARM_HWCAP_A64_DIT = 1 << 24,
688 ARM_HWCAP_A64_USCAT = 1 << 25,
689 ARM_HWCAP_A64_ILRCPC = 1 << 26,
690 ARM_HWCAP_A64_FLAGM = 1 << 27,
691 ARM_HWCAP_A64_SSBS = 1 << 28,
692 ARM_HWCAP_A64_SB = 1 << 29,
693 ARM_HWCAP_A64_PACA = 1 << 30,
694 ARM_HWCAP_A64_PACG = 1UL << 31,
2041df4a
RH
695
696 ARM_HWCAP2_A64_DCPODP = 1 << 0,
697 ARM_HWCAP2_A64_SVE2 = 1 << 1,
698 ARM_HWCAP2_A64_SVEAES = 1 << 2,
699 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
700 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
701 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
702 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
703 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
704 ARM_HWCAP2_A64_FRINT = 1 << 8,
68948d18
RH
705 ARM_HWCAP2_A64_SVEI8MM = 1 << 9,
706 ARM_HWCAP2_A64_SVEF32MM = 1 << 10,
707 ARM_HWCAP2_A64_SVEF64MM = 1 << 11,
708 ARM_HWCAP2_A64_SVEBF16 = 1 << 12,
709 ARM_HWCAP2_A64_I8MM = 1 << 13,
710 ARM_HWCAP2_A64_BF16 = 1 << 14,
711 ARM_HWCAP2_A64_DGH = 1 << 15,
712 ARM_HWCAP2_A64_RNG = 1 << 16,
713 ARM_HWCAP2_A64_BTI = 1 << 17,
714 ARM_HWCAP2_A64_MTE = 1 << 18,
f9982cea
RH
715 ARM_HWCAP2_A64_ECV = 1 << 19,
716 ARM_HWCAP2_A64_AFP = 1 << 20,
717 ARM_HWCAP2_A64_RPRES = 1 << 21,
718 ARM_HWCAP2_A64_MTE3 = 1 << 22,
719 ARM_HWCAP2_A64_SME = 1 << 23,
720 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24,
721 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25,
722 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26,
723 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27,
724 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28,
725 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29,
726 ARM_HWCAP2_A64_SME_FA64 = 1 << 30,
23d7f14d
PM
727 ARM_HWCAP2_A64_WFXT = 1ULL << 31,
728 ARM_HWCAP2_A64_EBF16 = 1ULL << 32,
729 ARM_HWCAP2_A64_SVE_EBF16 = 1ULL << 33,
730 ARM_HWCAP2_A64_CSSC = 1ULL << 34,
731 ARM_HWCAP2_A64_RPRFM = 1ULL << 35,
732 ARM_HWCAP2_A64_SVE2P1 = 1ULL << 36,
733 ARM_HWCAP2_A64_SME2 = 1ULL << 37,
734 ARM_HWCAP2_A64_SME2P1 = 1ULL << 38,
735 ARM_HWCAP2_A64_SME_I16I32 = 1ULL << 39,
736 ARM_HWCAP2_A64_SME_BI32I32 = 1ULL << 40,
737 ARM_HWCAP2_A64_SME_B16B16 = 1ULL << 41,
738 ARM_HWCAP2_A64_SME_F16F16 = 1ULL << 42,
739 ARM_HWCAP2_A64_MOPS = 1ULL << 43,
740 ARM_HWCAP2_A64_HBC = 1ULL << 44,
24e76ff0
PM
741};
742
2041df4a
RH
743#define ELF_HWCAP get_elf_hwcap()
744#define ELF_HWCAP2 get_elf_hwcap2()
745
746#define GET_FEATURE_ID(feat, hwcap) \
747 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
24e76ff0 748
a55b9e72 749uint32_t get_elf_hwcap(void)
24e76ff0
PM
750{
751 ARMCPU *cpu = ARM_CPU(thread_cpu);
752 uint32_t hwcaps = 0;
753
754 hwcaps |= ARM_HWCAP_A64_FP;
755 hwcaps |= ARM_HWCAP_A64_ASIMD;
37020ff1 756 hwcaps |= ARM_HWCAP_A64_CPUID;
24e76ff0
PM
757
758 /* probe for the extra features */
962fcbf2
RH
759
760 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
761 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
762 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
763 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
764 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
765 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
766 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
767 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
768 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
5763190f 769 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
962fcbf2
RH
770 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
771 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
772 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
773 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
cd208a1c 774 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
29d26ab2 775 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
1c9af3a9
RH
776 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
777 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
9888bd1e 778 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
b89d9c98 779 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
0d57b499 780 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
2677cf9f 781 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
a1229109 782 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
962fcbf2 783
2041df4a
RH
784 return hwcaps;
785}
786
a55b9e72 787uint32_t get_elf_hwcap2(void)
2041df4a
RH
788{
789 ARMCPU *cpu = ARM_CPU(thread_cpu);
790 uint32_t hwcaps = 0;
791
0d57b499 792 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
cdc8d8b2
RH
793 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
794 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
795 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
796 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
797 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
798 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
2041df4a
RH
799 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
800 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
cdc8d8b2
RH
801 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
802 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
803 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
6c47a905 804 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
cdc8d8b2 805 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
6c47a905 806 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
68948d18
RH
807 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
808 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
809 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
f9982cea
RH
810 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
811 ARM_HWCAP2_A64_SME_F32F32 |
812 ARM_HWCAP2_A64_SME_B16F32 |
813 ARM_HWCAP2_A64_SME_F16F32 |
814 ARM_HWCAP2_A64_SME_I8I32));
815 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
816 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
817 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
3039b090 818 GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC);
706a92fb 819 GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS);
24e76ff0
PM
820
821 return hwcaps;
822}
823
a55b9e72
HD
824const char *elf_hwcap_str(uint32_t bit)
825{
826 static const char *hwcap_str[] = {
827 [__builtin_ctz(ARM_HWCAP_A64_FP )] = "fp",
828 [__builtin_ctz(ARM_HWCAP_A64_ASIMD )] = "asimd",
829 [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm",
830 [__builtin_ctz(ARM_HWCAP_A64_AES )] = "aes",
831 [__builtin_ctz(ARM_HWCAP_A64_PMULL )] = "pmull",
832 [__builtin_ctz(ARM_HWCAP_A64_SHA1 )] = "sha1",
833 [__builtin_ctz(ARM_HWCAP_A64_SHA2 )] = "sha2",
834 [__builtin_ctz(ARM_HWCAP_A64_CRC32 )] = "crc32",
835 [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics",
836 [__builtin_ctz(ARM_HWCAP_A64_FPHP )] = "fphp",
837 [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp",
838 [__builtin_ctz(ARM_HWCAP_A64_CPUID )] = "cpuid",
839 [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm",
840 [__builtin_ctz(ARM_HWCAP_A64_JSCVT )] = "jscvt",
841 [__builtin_ctz(ARM_HWCAP_A64_FCMA )] = "fcma",
842 [__builtin_ctz(ARM_HWCAP_A64_LRCPC )] = "lrcpc",
843 [__builtin_ctz(ARM_HWCAP_A64_DCPOP )] = "dcpop",
844 [__builtin_ctz(ARM_HWCAP_A64_SHA3 )] = "sha3",
845 [__builtin_ctz(ARM_HWCAP_A64_SM3 )] = "sm3",
846 [__builtin_ctz(ARM_HWCAP_A64_SM4 )] = "sm4",
847 [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp",
848 [__builtin_ctz(ARM_HWCAP_A64_SHA512 )] = "sha512",
849 [__builtin_ctz(ARM_HWCAP_A64_SVE )] = "sve",
850 [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm",
851 [__builtin_ctz(ARM_HWCAP_A64_DIT )] = "dit",
852 [__builtin_ctz(ARM_HWCAP_A64_USCAT )] = "uscat",
853 [__builtin_ctz(ARM_HWCAP_A64_ILRCPC )] = "ilrcpc",
854 [__builtin_ctz(ARM_HWCAP_A64_FLAGM )] = "flagm",
855 [__builtin_ctz(ARM_HWCAP_A64_SSBS )] = "ssbs",
856 [__builtin_ctz(ARM_HWCAP_A64_SB )] = "sb",
857 [__builtin_ctz(ARM_HWCAP_A64_PACA )] = "paca",
858 [__builtin_ctz(ARM_HWCAP_A64_PACG )] = "pacg",
859 };
860
861 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
862}
863
864const char *elf_hwcap2_str(uint32_t bit)
865{
866 static const char *hwcap_str[] = {
867 [__builtin_ctz(ARM_HWCAP2_A64_DCPODP )] = "dcpodp",
868 [__builtin_ctz(ARM_HWCAP2_A64_SVE2 )] = "sve2",
869 [__builtin_ctz(ARM_HWCAP2_A64_SVEAES )] = "sveaes",
870 [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL )] = "svepmull",
871 [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM )] = "svebitperm",
872 [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3 )] = "svesha3",
873 [__builtin_ctz(ARM_HWCAP2_A64_SVESM4 )] = "svesm4",
874 [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2 )] = "flagm2",
875 [__builtin_ctz(ARM_HWCAP2_A64_FRINT )] = "frint",
876 [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM )] = "svei8mm",
877 [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM )] = "svef32mm",
878 [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM )] = "svef64mm",
879 [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16 )] = "svebf16",
880 [__builtin_ctz(ARM_HWCAP2_A64_I8MM )] = "i8mm",
881 [__builtin_ctz(ARM_HWCAP2_A64_BF16 )] = "bf16",
882 [__builtin_ctz(ARM_HWCAP2_A64_DGH )] = "dgh",
883 [__builtin_ctz(ARM_HWCAP2_A64_RNG )] = "rng",
884 [__builtin_ctz(ARM_HWCAP2_A64_BTI )] = "bti",
885 [__builtin_ctz(ARM_HWCAP2_A64_MTE )] = "mte",
886 [__builtin_ctz(ARM_HWCAP2_A64_ECV )] = "ecv",
887 [__builtin_ctz(ARM_HWCAP2_A64_AFP )] = "afp",
888 [__builtin_ctz(ARM_HWCAP2_A64_RPRES )] = "rpres",
889 [__builtin_ctz(ARM_HWCAP2_A64_MTE3 )] = "mte3",
890 [__builtin_ctz(ARM_HWCAP2_A64_SME )] = "sme",
e2e40a77
PM
891 [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64 )] = "smei16i64",
892 [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64 )] = "smef64f64",
893 [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32 )] = "smei8i32",
894 [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32 )] = "smef16f32",
895 [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32 )] = "smeb16f32",
896 [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32 )] = "smef32f32",
897 [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64 )] = "smefa64",
23d7f14d
PM
898 [__builtin_ctz(ARM_HWCAP2_A64_WFXT )] = "wfxt",
899 [__builtin_ctzll(ARM_HWCAP2_A64_EBF16 )] = "ebf16",
900 [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16 )] = "sveebf16",
901 [__builtin_ctzll(ARM_HWCAP2_A64_CSSC )] = "cssc",
902 [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM )] = "rprfm",
903 [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1 )] = "sve2p1",
904 [__builtin_ctzll(ARM_HWCAP2_A64_SME2 )] = "sme2",
905 [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1 )] = "sme2p1",
906 [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32",
907 [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32",
908 [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16",
909 [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16",
910 [__builtin_ctzll(ARM_HWCAP2_A64_MOPS )] = "mops",
911 [__builtin_ctzll(ARM_HWCAP2_A64_HBC )] = "hbc",
a55b9e72
HD
912 };
913
914 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
915}
916
2041df4a
RH
917#undef GET_FEATURE_ID
918
24e76ff0
PM
919#endif /* not TARGET_AARCH64 */
920#endif /* TARGET_ARM */
30ac07d4 921
853d6f7a 922#ifdef TARGET_SPARC
a315a145 923#ifdef TARGET_SPARC64
853d6f7a 924
cf973e46
AT
925#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
926 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 927#ifndef TARGET_ABI32
cb33da57 928#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
929#else
930#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
931#endif
853d6f7a 932
a315a145 933#define ELF_CLASS ELFCLASS64
5ef54116 934#define ELF_ARCH EM_SPARCV9
a315a145 935#else
cf973e46
AT
936#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
937 | HWCAP_SPARC_MULDIV)
853d6f7a 938#define ELF_CLASS ELFCLASS32
853d6f7a 939#define ELF_ARCH EM_SPARC
089a2256 940#endif /* TARGET_SPARC64 */
853d6f7a 941
d97ef72e
RH
942static inline void init_thread(struct target_pt_regs *regs,
943 struct image_info *infop)
853d6f7a 944{
089a2256 945 /* Note that target_cpu_copy_regs does not read psr/tstate. */
f5155289
FB
946 regs->pc = infop->entry;
947 regs->npc = regs->pc + 4;
948 regs->y = 0;
089a2256
RH
949 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
950 - TARGET_STACK_BIAS);
853d6f7a 951}
089a2256 952#endif /* TARGET_SPARC */
853d6f7a 953
67867308
FB
954#ifdef TARGET_PPC
955
4ecd4d16 956#define ELF_MACHINE PPC_ELF_MACHINE
67867308 957
74154d7e 958#if defined(TARGET_PPC64)
84409ddb
JM
959
960#define elf_check_arch(x) ( (x) == EM_PPC64 )
961
d97ef72e 962#define ELF_CLASS ELFCLASS64
84409ddb
JM
963
964#else
965
d97ef72e 966#define ELF_CLASS ELFCLASS32
872f3d04 967#define EXSTACK_DEFAULT true
84409ddb
JM
968
969#endif
970
d97ef72e 971#define ELF_ARCH EM_PPC
67867308 972
df84e4f3
NF
973/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
974 See arch/powerpc/include/asm/cputable.h. */
975enum {
3efa9a67 976 QEMU_PPC_FEATURE_32 = 0x80000000,
977 QEMU_PPC_FEATURE_64 = 0x40000000,
978 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
979 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
980 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
981 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
982 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
983 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
984 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
985 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
986 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
987 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
988 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
989 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
990 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
991 QEMU_PPC_FEATURE_CELL = 0x00010000,
992 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
993 QEMU_PPC_FEATURE_SMT = 0x00004000,
994 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
995 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
996 QEMU_PPC_FEATURE_PA6T = 0x00000800,
997 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
998 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
999 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
1000 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
1001 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
1002
1003 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
1004 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
1005
1006 /* Feature definitions in AT_HWCAP2. */
1007 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
1008 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
1009 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
1010 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
1011 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
1012 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
24c373ec
LV
1013 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
1014 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
be0c46d4 1015 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
24c373ec
LV
1016 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
1017 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
1018 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
1019 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
96c343cc
JS
1020 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
1021 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
df84e4f3
NF
1022};
1023
1024#define ELF_HWCAP get_elf_hwcap()
1025
1026static uint32_t get_elf_hwcap(void)
1027{
a2247f8e 1028 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
1029 uint32_t features = 0;
1030
1031 /* We don't have to be terribly complete here; the high points are
1032 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 1033#define GET_FEATURE(flag, feature) \
a2247f8e 1034 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
1035#define GET_FEATURE2(flags, feature) \
1036 do { \
1037 if ((cpu->env.insns_flags2 & flags) == flags) { \
1038 features |= feature; \
1039 } \
1040 } while (0)
3efa9a67 1041 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
1042 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
1043 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
1044 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
1045 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
1046 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
1047 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
1048 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
1049 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
1050 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
1051 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
1052 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
1053 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 1054#undef GET_FEATURE
0e019746 1055#undef GET_FEATURE2
df84e4f3
NF
1056
1057 return features;
1058}
1059
a60438dd
TM
1060#define ELF_HWCAP2 get_elf_hwcap2()
1061
1062static uint32_t get_elf_hwcap2(void)
1063{
1064 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1065 uint32_t features = 0;
1066
1067#define GET_FEATURE(flag, feature) \
1068 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1069#define GET_FEATURE2(flag, feature) \
1070 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
1071
1072 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
1073 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
1074 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
24c373ec
LV
1075 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
1076 QEMU_PPC_FEATURE2_VEC_CRYPTO);
1077 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
8a589aeb 1078 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
96c343cc
JS
1079 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
1080 QEMU_PPC_FEATURE2_MMA);
a60438dd
TM
1081
1082#undef GET_FEATURE
1083#undef GET_FEATURE2
1084
1085 return features;
1086}
1087
f5155289
FB
1088/*
1089 * The requirements here are:
1090 * - keep the final alignment of sp (sp & 0xf)
1091 * - make sure the 32-bit value at the first 16 byte aligned position of
1092 * AUXV is greater than 16 for glibc compatibility.
1093 * AT_IGNOREPPC is used for that.
1094 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
1095 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
1096 */
0bccf03d 1097#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
1098#define ARCH_DLINFO \
1099 do { \
623e250a 1100 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 1101 /* \
82991bed
PM
1102 * Handle glibc compatibility: these magic entries must \
1103 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
1104 */ \
1105 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
1106 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
1107 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
1108 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
1109 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 1110 } while (0)
f5155289 1111
67867308
FB
1112static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
1113{
67867308 1114 _regs->gpr[1] = infop->start_stack;
74154d7e 1115#if defined(TARGET_PPC64)
d90b94cd 1116 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
1117 uint64_t val;
1118 get_user_u64(val, infop->entry + 8);
1119 _regs->gpr[2] = val + infop->load_bias;
1120 get_user_u64(val, infop->entry);
1121 infop->entry = val + infop->load_bias;
d90b94cd
DK
1122 } else {
1123 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
1124 }
84409ddb 1125#endif
67867308
FB
1126 _regs->nip = infop->entry;
1127}
1128
e2f3e741
NF
1129/* See linux kernel: arch/powerpc/include/asm/elf.h. */
1130#define ELF_NREG 48
1131typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1132
05390248 1133static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
1134{
1135 int i;
1136 target_ulong ccr = 0;
1137
1138 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 1139 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
1140 }
1141
86cd7b2d
PB
1142 (*regs)[32] = tswapreg(env->nip);
1143 (*regs)[33] = tswapreg(env->msr);
1144 (*regs)[35] = tswapreg(env->ctr);
1145 (*regs)[36] = tswapreg(env->lr);
10de0521 1146 (*regs)[37] = tswapreg(cpu_read_xer(env));
e2f3e741 1147
2060436a 1148 ccr = ppc_get_cr(env);
86cd7b2d 1149 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
1150}
1151
1152#define USE_ELF_CORE_DUMP
d97ef72e 1153#define ELF_EXEC_PAGESIZE 4096
67867308
FB
1154
1155#endif
1156
3418fe25
SG
1157#ifdef TARGET_LOONGARCH64
1158
3418fe25
SG
1159#define ELF_CLASS ELFCLASS64
1160#define ELF_ARCH EM_LOONGARCH
872f3d04 1161#define EXSTACK_DEFAULT true
3418fe25
SG
1162
1163#define elf_check_arch(x) ((x) == EM_LOONGARCH)
1164
1165static inline void init_thread(struct target_pt_regs *regs,
1166 struct image_info *infop)
1167{
1168 /*Set crmd PG,DA = 1,0 */
1169 regs->csr.crmd = 2 << 3;
1170 regs->csr.era = infop->entry;
1171 regs->regs[3] = infop->start_stack;
1172}
1173
1174/* See linux kernel: arch/loongarch/include/asm/elf.h */
1175#define ELF_NREG 45
1176typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1177
1178enum {
1179 TARGET_EF_R0 = 0,
1180 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1181 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1182};
1183
1184static void elf_core_copy_regs(target_elf_gregset_t *regs,
1185 const CPULoongArchState *env)
1186{
1187 int i;
1188
1189 (*regs)[TARGET_EF_R0] = 0;
1190
1191 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1192 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1193 }
1194
1195 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1196 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1197}
1198
1199#define USE_ELF_CORE_DUMP
1200#define ELF_EXEC_PAGESIZE 4096
1201
1202#define ELF_HWCAP get_elf_hwcap()
1203
1204/* See arch/loongarch/include/uapi/asm/hwcap.h */
1205enum {
1206 HWCAP_LOONGARCH_CPUCFG = (1 << 0),
1207 HWCAP_LOONGARCH_LAM = (1 << 1),
1208 HWCAP_LOONGARCH_UAL = (1 << 2),
1209 HWCAP_LOONGARCH_FPU = (1 << 3),
1210 HWCAP_LOONGARCH_LSX = (1 << 4),
1211 HWCAP_LOONGARCH_LASX = (1 << 5),
1212 HWCAP_LOONGARCH_CRC32 = (1 << 6),
1213 HWCAP_LOONGARCH_COMPLEX = (1 << 7),
1214 HWCAP_LOONGARCH_CRYPTO = (1 << 8),
1215 HWCAP_LOONGARCH_LVZ = (1 << 9),
1216 HWCAP_LOONGARCH_LBT_X86 = (1 << 10),
1217 HWCAP_LOONGARCH_LBT_ARM = (1 << 11),
1218 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1219};
1220
1221static uint32_t get_elf_hwcap(void)
1222{
1223 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1224 uint32_t hwcaps = 0;
1225
1226 hwcaps |= HWCAP_LOONGARCH_CRC32;
1227
1228 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1229 hwcaps |= HWCAP_LOONGARCH_UAL;
1230 }
1231
1232 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1233 hwcaps |= HWCAP_LOONGARCH_FPU;
1234 }
1235
1236 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1237 hwcaps |= HWCAP_LOONGARCH_LAM;
1238 }
1239
a9f6004f
JC
1240 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) {
1241 hwcaps |= HWCAP_LOONGARCH_LSX;
1242 }
1243
1244 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) {
1245 hwcaps |= HWCAP_LOONGARCH_LASX;
1246 }
1247
3418fe25
SG
1248 return hwcaps;
1249}
1250
1251#define ELF_PLATFORM "loongarch"
1252
1253#endif /* TARGET_LOONGARCH64 */
1254
048f6b4d
FB
1255#ifdef TARGET_MIPS
1256
388bb21a
TS
1257#ifdef TARGET_MIPS64
1258#define ELF_CLASS ELFCLASS64
1259#else
048f6b4d 1260#define ELF_CLASS ELFCLASS32
388bb21a 1261#endif
048f6b4d 1262#define ELF_ARCH EM_MIPS
872f3d04 1263#define EXSTACK_DEFAULT true
048f6b4d 1264
ace3d654
CMAB
1265#ifdef TARGET_ABI_MIPSN32
1266#define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1267#else
1268#define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1269#endif
1270
fbf47c18
JY
1271#define ELF_BASE_PLATFORM get_elf_base_platform()
1272
1273#define MATCH_PLATFORM_INSN(_flags, _base_platform) \
1274 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1275 { return _base_platform; } } while (0)
1276
1277static const char *get_elf_base_platform(void)
1278{
1279 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1280
1281 /* 64 bit ISAs goes first */
1282 MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1283 MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1284 MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1285 MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1286 MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1287 MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1288 MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1289
1290 /* 32 bit ISAs */
1291 MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1292 MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1293 MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1294 MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1295 MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1296
1297 /* Fallback */
1298 return "mips";
1299}
1300#undef MATCH_PLATFORM_INSN
1301
d97ef72e
RH
1302static inline void init_thread(struct target_pt_regs *regs,
1303 struct image_info *infop)
048f6b4d 1304{
623a930e 1305 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
1306 regs->cp0_epc = infop->entry;
1307 regs->regs[29] = infop->start_stack;
1308}
1309
51e52606
NF
1310/* See linux kernel: arch/mips/include/asm/elf.h. */
1311#define ELF_NREG 45
1312typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1313
1314/* See linux kernel: arch/mips/include/asm/reg.h. */
1315enum {
1316#ifdef TARGET_MIPS64
1317 TARGET_EF_R0 = 0,
1318#else
1319 TARGET_EF_R0 = 6,
1320#endif
1321 TARGET_EF_R26 = TARGET_EF_R0 + 26,
1322 TARGET_EF_R27 = TARGET_EF_R0 + 27,
1323 TARGET_EF_LO = TARGET_EF_R0 + 32,
1324 TARGET_EF_HI = TARGET_EF_R0 + 33,
1325 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1326 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1327 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1328 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1329};
1330
1331/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 1332static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
1333{
1334 int i;
1335
1336 for (i = 0; i < TARGET_EF_R0; i++) {
1337 (*regs)[i] = 0;
1338 }
1339 (*regs)[TARGET_EF_R0] = 0;
1340
1341 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 1342 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
1343 }
1344
1345 (*regs)[TARGET_EF_R26] = 0;
1346 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
1347 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1348 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1349 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1350 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1351 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1352 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
1353}
1354
1355#define USE_ELF_CORE_DUMP
388bb21a
TS
1356#define ELF_EXEC_PAGESIZE 4096
1357
46a1ee4f
JC
1358/* See arch/mips/include/uapi/asm/hwcap.h. */
1359enum {
1360 HWCAP_MIPS_R6 = (1 << 0),
1361 HWCAP_MIPS_MSA = (1 << 1),
9ea313ba
PMD
1362 HWCAP_MIPS_CRC32 = (1 << 2),
1363 HWCAP_MIPS_MIPS16 = (1 << 3),
1364 HWCAP_MIPS_MDMX = (1 << 4),
1365 HWCAP_MIPS_MIPS3D = (1 << 5),
1366 HWCAP_MIPS_SMARTMIPS = (1 << 6),
1367 HWCAP_MIPS_DSP = (1 << 7),
1368 HWCAP_MIPS_DSP2 = (1 << 8),
1369 HWCAP_MIPS_DSP3 = (1 << 9),
1370 HWCAP_MIPS_MIPS16E2 = (1 << 10),
1371 HWCAP_LOONGSON_MMI = (1 << 11),
1372 HWCAP_LOONGSON_EXT = (1 << 12),
1373 HWCAP_LOONGSON_EXT2 = (1 << 13),
1374 HWCAP_LOONGSON_CPUCFG = (1 << 14),
46a1ee4f
JC
1375};
1376
1377#define ELF_HWCAP get_elf_hwcap()
1378
7d9a3d96 1379#define GET_FEATURE_INSN(_flag, _hwcap) \
6dd97bfc
PMD
1380 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1381
388765a0
PMD
1382#define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1383 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1384
ce543844
PMD
1385#define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1386 do { \
1387 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1388 hwcaps |= _hwcap; \
1389 } \
1390 } while (0)
1391
46a1ee4f
JC
1392static uint32_t get_elf_hwcap(void)
1393{
1394 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1395 uint32_t hwcaps = 0;
1396
ce543844
PMD
1397 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1398 2, HWCAP_MIPS_R6);
388765a0 1399 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
53673d0f
PMD
1400 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1401 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
46a1ee4f 1402
46a1ee4f
JC
1403 return hwcaps;
1404}
1405
ce543844 1406#undef GET_FEATURE_REG_EQU
388765a0 1407#undef GET_FEATURE_REG_SET
7d9a3d96 1408#undef GET_FEATURE_INSN
6dd97bfc 1409
048f6b4d
FB
1410#endif /* TARGET_MIPS */
1411
b779e29e
EI
1412#ifdef TARGET_MICROBLAZE
1413
0d5d4699 1414#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
1415
1416#define ELF_CLASS ELFCLASS32
0d5d4699 1417#define ELF_ARCH EM_MICROBLAZE
b779e29e 1418
d97ef72e
RH
1419static inline void init_thread(struct target_pt_regs *regs,
1420 struct image_info *infop)
b779e29e
EI
1421{
1422 regs->pc = infop->entry;
1423 regs->r1 = infop->start_stack;
1424
1425}
1426
b779e29e
EI
1427#define ELF_EXEC_PAGESIZE 4096
1428
e4cbd44d
EI
1429#define USE_ELF_CORE_DUMP
1430#define ELF_NREG 38
1431typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1432
1433/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 1434static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
1435{
1436 int i, pos = 0;
1437
1438 for (i = 0; i < 32; i++) {
86cd7b2d 1439 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
1440 }
1441
af20a93a 1442 (*regs)[pos++] = tswapreg(env->pc);
1074c0fb 1443 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
af20a93a
RH
1444 (*regs)[pos++] = 0;
1445 (*regs)[pos++] = tswapreg(env->ear);
1446 (*regs)[pos++] = 0;
1447 (*regs)[pos++] = tswapreg(env->esr);
e4cbd44d
EI
1448}
1449
b779e29e
EI
1450#endif /* TARGET_MICROBLAZE */
1451
a0a839b6
MV
1452#ifdef TARGET_NIOS2
1453
a0a839b6
MV
1454#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1455
1456#define ELF_CLASS ELFCLASS32
1457#define ELF_ARCH EM_ALTERA_NIOS2
1458
1459static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1460{
1461 regs->ea = infop->entry;
1462 regs->sp = infop->start_stack;
a0a839b6
MV
1463}
1464
f5ef0e51
RH
1465#define LO_COMMPAGE TARGET_PAGE_SIZE
1466
1467static bool init_guest_commpage(void)
1468{
1469 static const uint8_t kuser_page[4 + 2 * 64] = {
1470 /* __kuser_helper_version */
1471 [0x00] = 0x02, 0x00, 0x00, 0x00,
1472
1473 /* __kuser_cmpxchg */
1474 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */
1475 0x3a, 0x28, 0x00, 0xf8, /* ret */
1476
1477 /* __kuser_sigtramp */
1478 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */
1479 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */
1480 };
1481
1482 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1483 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1484 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1485
1486 if (addr == MAP_FAILED) {
1487 perror("Allocating guest commpage");
1488 exit(EXIT_FAILURE);
1489 }
1490 if (addr != want) {
1491 return false;
1492 }
1493
1494 memcpy(addr, kuser_page, sizeof(kuser_page));
1495
1496 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1497 perror("Protecting guest commpage");
1498 exit(EXIT_FAILURE);
1499 }
1500
49840a4a 1501 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
f5ef0e51
RH
1502 PAGE_READ | PAGE_EXEC | PAGE_VALID);
1503 return true;
1504}
1505
a0a839b6
MV
1506#define ELF_EXEC_PAGESIZE 4096
1507
1508#define USE_ELF_CORE_DUMP
1509#define ELF_NREG 49
1510typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1511
1512/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1513static void elf_core_copy_regs(target_elf_gregset_t *regs,
1514 const CPUNios2State *env)
1515{
1516 int i;
1517
1518 (*regs)[0] = -1;
1519 for (i = 1; i < 8; i++) /* r0-r7 */
1520 (*regs)[i] = tswapreg(env->regs[i + 7]);
1521
1522 for (i = 8; i < 16; i++) /* r8-r15 */
1523 (*regs)[i] = tswapreg(env->regs[i - 8]);
1524
1525 for (i = 16; i < 24; i++) /* r16-r23 */
1526 (*regs)[i] = tswapreg(env->regs[i + 7]);
1527 (*regs)[24] = -1; /* R_ET */
1528 (*regs)[25] = -1; /* R_BT */
1529 (*regs)[26] = tswapreg(env->regs[R_GP]);
1530 (*regs)[27] = tswapreg(env->regs[R_SP]);
1531 (*regs)[28] = tswapreg(env->regs[R_FP]);
1532 (*regs)[29] = tswapreg(env->regs[R_EA]);
1533 (*regs)[30] = -1; /* R_SSTATUS */
1534 (*regs)[31] = tswapreg(env->regs[R_RA]);
1535
17a406ee 1536 (*regs)[32] = tswapreg(env->pc);
a0a839b6
MV
1537
1538 (*regs)[33] = -1; /* R_STATUS */
1539 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1540
1541 for (i = 35; i < 49; i++) /* ... */
1542 (*regs)[i] = -1;
1543}
1544
1545#endif /* TARGET_NIOS2 */
1546
d962783e
JL
1547#ifdef TARGET_OPENRISC
1548
d962783e
JL
1549#define ELF_ARCH EM_OPENRISC
1550#define ELF_CLASS ELFCLASS32
1551#define ELF_DATA ELFDATA2MSB
1552
1553static inline void init_thread(struct target_pt_regs *regs,
1554 struct image_info *infop)
1555{
1556 regs->pc = infop->entry;
1557 regs->gpr[1] = infop->start_stack;
1558}
1559
1560#define USE_ELF_CORE_DUMP
1561#define ELF_EXEC_PAGESIZE 8192
1562
1563/* See linux kernel arch/openrisc/include/asm/elf.h. */
1564#define ELF_NREG 34 /* gprs and pc, sr */
1565typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1566
1567static void elf_core_copy_regs(target_elf_gregset_t *regs,
1568 const CPUOpenRISCState *env)
1569{
1570 int i;
1571
1572 for (i = 0; i < 32; i++) {
d89e71e8 1573 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1574 }
86cd7b2d 1575 (*regs)[32] = tswapreg(env->pc);
84775c43 1576 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1577}
1578#define ELF_HWCAP 0
1579#define ELF_PLATFORM NULL
1580
1581#endif /* TARGET_OPENRISC */
1582
fdf9b3e8
FB
1583#ifdef TARGET_SH4
1584
fdf9b3e8 1585#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1586#define ELF_ARCH EM_SH
1587
d97ef72e
RH
1588static inline void init_thread(struct target_pt_regs *regs,
1589 struct image_info *infop)
fdf9b3e8 1590{
d97ef72e
RH
1591 /* Check other registers XXXXX */
1592 regs->pc = infop->entry;
1593 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1594}
1595
7631c97e
NF
1596/* See linux kernel: arch/sh/include/asm/elf.h. */
1597#define ELF_NREG 23
1598typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1599
1600/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1601enum {
1602 TARGET_REG_PC = 16,
1603 TARGET_REG_PR = 17,
1604 TARGET_REG_SR = 18,
1605 TARGET_REG_GBR = 19,
1606 TARGET_REG_MACH = 20,
1607 TARGET_REG_MACL = 21,
1608 TARGET_REG_SYSCALL = 22
1609};
1610
d97ef72e 1611static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1612 const CPUSH4State *env)
7631c97e
NF
1613{
1614 int i;
1615
1616 for (i = 0; i < 16; i++) {
72cd500b 1617 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1618 }
1619
86cd7b2d
PB
1620 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1621 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1622 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1623 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1624 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1625 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1626 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1627}
1628
1629#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1630#define ELF_EXEC_PAGESIZE 4096
1631
e42fd944
RH
1632enum {
1633 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1634 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1635 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1636 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1637 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1638 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1639 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1640 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1641 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1642 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1643};
1644
1645#define ELF_HWCAP get_elf_hwcap()
1646
1647static uint32_t get_elf_hwcap(void)
1648{
1649 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1650 uint32_t hwcap = 0;
1651
1652 hwcap |= SH_CPU_HAS_FPU;
1653
1654 if (cpu->env.features & SH_FEATURE_SH4A) {
1655 hwcap |= SH_CPU_HAS_LLSC;
1656 }
1657
1658 return hwcap;
1659}
1660
fdf9b3e8
FB
1661#endif
1662
48733d19
TS
1663#ifdef TARGET_CRIS
1664
48733d19 1665#define ELF_CLASS ELFCLASS32
48733d19
TS
1666#define ELF_ARCH EM_CRIS
1667
d97ef72e
RH
1668static inline void init_thread(struct target_pt_regs *regs,
1669 struct image_info *infop)
48733d19 1670{
d97ef72e 1671 regs->erp = infop->entry;
48733d19
TS
1672}
1673
48733d19
TS
1674#define ELF_EXEC_PAGESIZE 8192
1675
1676#endif
1677
e6e5906b
PB
1678#ifdef TARGET_M68K
1679
d97ef72e 1680#define ELF_CLASS ELFCLASS32
d97ef72e 1681#define ELF_ARCH EM_68K
e6e5906b
PB
1682
1683/* ??? Does this need to do anything?
d97ef72e 1684 #define ELF_PLAT_INIT(_r) */
e6e5906b 1685
d97ef72e
RH
1686static inline void init_thread(struct target_pt_regs *regs,
1687 struct image_info *infop)
e6e5906b
PB
1688{
1689 regs->usp = infop->start_stack;
1690 regs->sr = 0;
1691 regs->pc = infop->entry;
1692}
1693
7a93cc55
NF
1694/* See linux kernel: arch/m68k/include/asm/elf.h. */
1695#define ELF_NREG 20
1696typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1697
05390248 1698static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1699{
86cd7b2d
PB
1700 (*regs)[0] = tswapreg(env->dregs[1]);
1701 (*regs)[1] = tswapreg(env->dregs[2]);
1702 (*regs)[2] = tswapreg(env->dregs[3]);
1703 (*regs)[3] = tswapreg(env->dregs[4]);
1704 (*regs)[4] = tswapreg(env->dregs[5]);
1705 (*regs)[5] = tswapreg(env->dregs[6]);
1706 (*regs)[6] = tswapreg(env->dregs[7]);
1707 (*regs)[7] = tswapreg(env->aregs[0]);
1708 (*regs)[8] = tswapreg(env->aregs[1]);
1709 (*regs)[9] = tswapreg(env->aregs[2]);
1710 (*regs)[10] = tswapreg(env->aregs[3]);
1711 (*regs)[11] = tswapreg(env->aregs[4]);
1712 (*regs)[12] = tswapreg(env->aregs[5]);
1713 (*regs)[13] = tswapreg(env->aregs[6]);
1714 (*regs)[14] = tswapreg(env->dregs[0]);
1715 (*regs)[15] = tswapreg(env->aregs[7]);
1716 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1717 (*regs)[17] = tswapreg(env->sr);
1718 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1719 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1720}
1721
1722#define USE_ELF_CORE_DUMP
d97ef72e 1723#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1724
1725#endif
1726
7a3148a9
JM
1727#ifdef TARGET_ALPHA
1728
7a3148a9 1729#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1730#define ELF_ARCH EM_ALPHA
1731
d97ef72e
RH
1732static inline void init_thread(struct target_pt_regs *regs,
1733 struct image_info *infop)
7a3148a9
JM
1734{
1735 regs->pc = infop->entry;
1736 regs->ps = 8;
1737 regs->usp = infop->start_stack;
7a3148a9
JM
1738}
1739
7a3148a9
JM
1740#define ELF_EXEC_PAGESIZE 8192
1741
1742#endif /* TARGET_ALPHA */
1743
a4c075f1
UH
1744#ifdef TARGET_S390X
1745
a4c075f1
UH
1746#define ELF_CLASS ELFCLASS64
1747#define ELF_DATA ELFDATA2MSB
1748#define ELF_ARCH EM_S390
1749
6d88baf1
DH
1750#include "elf.h"
1751
1752#define ELF_HWCAP get_elf_hwcap()
1753
1754#define GET_FEATURE(_feat, _hwcap) \
1755 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1756
e1b819c8 1757uint32_t get_elf_hwcap(void)
6d88baf1
DH
1758{
1759 /*
1760 * Let's assume we always have esan3 and zarch.
1761 * 31-bit processes can use 64-bit registers (high gprs).
1762 */
1763 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1764
1765 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1766 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1767 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1768 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1769 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1770 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1771 hwcap |= HWCAP_S390_ETF3EH;
1772 }
1773 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
da215c23 1774 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
ffc8453b 1775 GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2);
6d88baf1
DH
1776
1777 return hwcap;
1778}
1779
e19807be
IL
1780const char *elf_hwcap_str(uint32_t bit)
1781{
1782 static const char *hwcap_str[] = {
7f114a58
IL
1783 [HWCAP_S390_NR_ESAN3] = "esan3",
1784 [HWCAP_S390_NR_ZARCH] = "zarch",
1785 [HWCAP_S390_NR_STFLE] = "stfle",
1786 [HWCAP_S390_NR_MSA] = "msa",
1787 [HWCAP_S390_NR_LDISP] = "ldisp",
1788 [HWCAP_S390_NR_EIMM] = "eimm",
1789 [HWCAP_S390_NR_DFP] = "dfp",
1790 [HWCAP_S390_NR_HPAGE] = "edat",
1791 [HWCAP_S390_NR_ETF3EH] = "etf3eh",
1792 [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1793 [HWCAP_S390_NR_TE] = "te",
1794 [HWCAP_S390_NR_VXRS] = "vx",
1795 [HWCAP_S390_NR_VXRS_BCD] = "vxd",
1796 [HWCAP_S390_NR_VXRS_EXT] = "vxe",
1797 [HWCAP_S390_NR_GS] = "gs",
1798 [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1799 [HWCAP_S390_NR_VXRS_PDE] = "vxp",
1800 [HWCAP_S390_NR_SORT] = "sort",
1801 [HWCAP_S390_NR_DFLT] = "dflt",
1802 [HWCAP_S390_NR_NNPA] = "nnpa",
1803 [HWCAP_S390_NR_PCI_MIO] = "pcimio",
1804 [HWCAP_S390_NR_SIE] = "sie",
e19807be
IL
1805 };
1806
1807 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1808}
1809
a4c075f1
UH
1810static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1811{
1812 regs->psw.addr = infop->entry;
78a1e153
IL
1813 regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1814 PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1815 PSW_MASK_32;
a4c075f1
UH
1816 regs->gprs[15] = infop->start_stack;
1817}
1818
4a1e8931
IL
1819/* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
1820#define ELF_NREG 27
1821typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1822
1823enum {
1824 TARGET_REG_PSWM = 0,
1825 TARGET_REG_PSWA = 1,
1826 TARGET_REG_GPRS = 2,
1827 TARGET_REG_ARS = 18,
1828 TARGET_REG_ORIG_R2 = 26,
1829};
1830
1831static void elf_core_copy_regs(target_elf_gregset_t *regs,
1832 const CPUS390XState *env)
1833{
1834 int i;
1835 uint32_t *aregs;
1836
1837 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1838 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1839 for (i = 0; i < 16; i++) {
1840 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1841 }
1842 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1843 for (i = 0; i < 16; i++) {
1844 aregs[i] = tswap32(env->aregs[i]);
1845 }
1846 (*regs)[TARGET_REG_ORIG_R2] = 0;
1847}
1848
1849#define USE_ELF_CORE_DUMP
1850#define ELF_EXEC_PAGESIZE 4096
1851
a4c075f1
UH
1852#endif /* TARGET_S390X */
1853
47ae93cd
MC
1854#ifdef TARGET_RISCV
1855
47ae93cd
MC
1856#define ELF_ARCH EM_RISCV
1857
1858#ifdef TARGET_RISCV32
1859#define ELF_CLASS ELFCLASS32
1860#else
1861#define ELF_CLASS ELFCLASS64
1862#endif
1863
cb46938c
KC
1864#define ELF_HWCAP get_elf_hwcap()
1865
1866static uint32_t get_elf_hwcap(void)
1867{
1868#define MISA_BIT(EXT) (1 << (EXT - 'A'))
1869 RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1870 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
4333f092
NE
1871 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1872 | MISA_BIT('V');
cb46938c 1873
e91a7227 1874 return cpu->env.misa_ext & mask;
cb46938c
KC
1875#undef MISA_BIT
1876}
1877
47ae93cd
MC
1878static inline void init_thread(struct target_pt_regs *regs,
1879 struct image_info *infop)
1880{
1881 regs->sepc = infop->entry;
1882 regs->sp = infop->start_stack;
1883}
1884
1885#define ELF_EXEC_PAGESIZE 4096
1886
1887#endif /* TARGET_RISCV */
1888
7c248bcd
RH
1889#ifdef TARGET_HPPA
1890
7c248bcd
RH
1891#define ELF_CLASS ELFCLASS32
1892#define ELF_ARCH EM_PARISC
1893#define ELF_PLATFORM "PARISC"
1894#define STACK_GROWS_DOWN 0
1895#define STACK_ALIGNMENT 64
1896
1897static inline void init_thread(struct target_pt_regs *regs,
1898 struct image_info *infop)
1899{
1900 regs->iaoq[0] = infop->entry;
1901 regs->iaoq[1] = infop->entry + 4;
1902 regs->gr[23] = 0;
60f1c801
RH
1903 regs->gr[24] = infop->argv;
1904 regs->gr[25] = infop->argc;
7c248bcd
RH
1905 /* The top-of-stack contains a linkage buffer. */
1906 regs->gr[30] = infop->start_stack + 64;
1907 regs->gr[31] = infop->entry;
1908}
1909
eee816c0
RH
1910#define LO_COMMPAGE 0
1911
1912static bool init_guest_commpage(void)
1913{
1914 void *want = g2h_untagged(LO_COMMPAGE);
1915 void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1916 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1917
1918 if (addr == MAP_FAILED) {
1919 perror("Allocating guest commpage");
1920 exit(EXIT_FAILURE);
1921 }
1922 if (addr != want) {
1923 return false;
1924 }
1925
1926 /*
1927 * On Linux, page zero is normally marked execute only + gateway.
1928 * Normal read or write is supposed to fail (thus PROT_NONE above),
1929 * but specific offsets have kernel code mapped to raise permissions
1930 * and implement syscalls. Here, simply mark the page executable.
1931 * Special case the entry points during translation (see do_page_zero).
1932 */
49840a4a 1933 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
eee816c0
RH
1934 PAGE_EXEC | PAGE_VALID);
1935 return true;
1936}
1937
7c248bcd
RH
1938#endif /* TARGET_HPPA */
1939
ba7651fb
MF
1940#ifdef TARGET_XTENSA
1941
ba7651fb
MF
1942#define ELF_CLASS ELFCLASS32
1943#define ELF_ARCH EM_XTENSA
1944
1945static inline void init_thread(struct target_pt_regs *regs,
1946 struct image_info *infop)
1947{
1948 regs->windowbase = 0;
1949 regs->windowstart = 1;
1950 regs->areg[1] = infop->start_stack;
1951 regs->pc = infop->entry;
d2796be6
MF
1952 if (info_is_fdpic(infop)) {
1953 regs->areg[4] = infop->loadmap_addr;
1954 regs->areg[5] = infop->interpreter_loadmap_addr;
1955 if (infop->interpreter_loadmap_addr) {
1956 regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1957 } else {
1958 regs->areg[6] = infop->pt_dynamic_addr;
1959 }
1960 }
ba7651fb
MF
1961}
1962
1963/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1964#define ELF_NREG 128
1965typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1966
1967enum {
1968 TARGET_REG_PC,
1969 TARGET_REG_PS,
1970 TARGET_REG_LBEG,
1971 TARGET_REG_LEND,
1972 TARGET_REG_LCOUNT,
1973 TARGET_REG_SAR,
1974 TARGET_REG_WINDOWSTART,
1975 TARGET_REG_WINDOWBASE,
1976 TARGET_REG_THREADPTR,
1977 TARGET_REG_AR0 = 64,
1978};
1979
1980static void elf_core_copy_regs(target_elf_gregset_t *regs,
1981 const CPUXtensaState *env)
1982{
1983 unsigned i;
1984
1985 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1986 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1987 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1988 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1989 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1990 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1991 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1992 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1993 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1994 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1995 for (i = 0; i < env->config->nareg; ++i) {
1996 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1997 }
1998}
1999
2000#define USE_ELF_CORE_DUMP
2001#define ELF_EXEC_PAGESIZE 4096
2002
2003#endif /* TARGET_XTENSA */
2004
d2a56bd2
TS
2005#ifdef TARGET_HEXAGON
2006
d2a56bd2
TS
2007#define ELF_CLASS ELFCLASS32
2008#define ELF_ARCH EM_HEXAGON
2009
2010static inline void init_thread(struct target_pt_regs *regs,
2011 struct image_info *infop)
2012{
2013 regs->sepc = infop->entry;
2014 regs->sp = infop->start_stack;
2015}
2016
2017#endif /* TARGET_HEXAGON */
2018
fcdc0ab4
JY
2019#ifndef ELF_BASE_PLATFORM
2020#define ELF_BASE_PLATFORM (NULL)
2021#endif
2022
15338fd7
FB
2023#ifndef ELF_PLATFORM
2024#define ELF_PLATFORM (NULL)
2025#endif
2026
75be901c
PC
2027#ifndef ELF_MACHINE
2028#define ELF_MACHINE ELF_ARCH
2029#endif
2030
d276a604
PC
2031#ifndef elf_check_arch
2032#define elf_check_arch(x) ((x) == ELF_ARCH)
2033#endif
2034
ace3d654
CMAB
2035#ifndef elf_check_abi
2036#define elf_check_abi(x) (1)
2037#endif
2038
15338fd7
FB
2039#ifndef ELF_HWCAP
2040#define ELF_HWCAP 0
2041#endif
2042
7c4ee5bc
RH
2043#ifndef STACK_GROWS_DOWN
2044#define STACK_GROWS_DOWN 1
2045#endif
2046
2047#ifndef STACK_ALIGNMENT
2048#define STACK_ALIGNMENT 16
2049#endif
2050
992f48a0 2051#ifdef TARGET_ABI32
cb33da57 2052#undef ELF_CLASS
992f48a0 2053#define ELF_CLASS ELFCLASS32
cb33da57
BS
2054#undef bswaptls
2055#define bswaptls(ptr) bswap32s(ptr)
2056#endif
2057
872f3d04
RH
2058#ifndef EXSTACK_DEFAULT
2059#define EXSTACK_DEFAULT false
2060#endif
2061
31e31b8a 2062#include "elf.h"
09bfb054 2063
e8384b37
RH
2064/* We must delay the following stanzas until after "elf.h". */
2065#if defined(TARGET_AARCH64)
2066
2067static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2068 const uint32_t *data,
2069 struct image_info *info,
2070 Error **errp)
2071{
2072 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
2073 if (pr_datasz != sizeof(uint32_t)) {
2074 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
2075 return false;
2076 }
2077 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
2078 info->note_flags = *data;
2079 }
2080 return true;
2081}
2082#define ARCH_USE_GNU_PROPERTY 1
2083
2084#else
2085
83f990eb
RH
2086static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2087 const uint32_t *data,
2088 struct image_info *info,
2089 Error **errp)
2090{
2091 g_assert_not_reached();
2092}
2093#define ARCH_USE_GNU_PROPERTY 0
2094
e8384b37
RH
2095#endif
2096
09bfb054
FB
2097struct exec
2098{
d97ef72e
RH
2099 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
2100 unsigned int a_text; /* length of text, in bytes */
2101 unsigned int a_data; /* length of data, in bytes */
2102 unsigned int a_bss; /* length of uninitialized data area, in bytes */
2103 unsigned int a_syms; /* length of symbol table data in file, in bytes */
2104 unsigned int a_entry; /* start address */
2105 unsigned int a_trsize; /* length of relocation info for text, in bytes */
2106 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
2107};
2108
2109
2110#define N_MAGIC(exec) ((exec).a_info & 0xffff)
2111#define OMAGIC 0407
2112#define NMAGIC 0410
2113#define ZMAGIC 0413
2114#define QMAGIC 0314
2115
e0d1673d 2116#define DLINFO_ITEMS 16
31e31b8a 2117
09bfb054
FB
2118static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
2119{
d97ef72e 2120 memcpy(to, from, n);
09bfb054 2121}
d691f669 2122
31e31b8a 2123#ifdef BSWAP_NEEDED
92a31b1f 2124static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 2125{
d97ef72e
RH
2126 bswap16s(&ehdr->e_type); /* Object file type */
2127 bswap16s(&ehdr->e_machine); /* Architecture */
2128 bswap32s(&ehdr->e_version); /* Object file version */
2129 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
2130 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
2131 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
2132 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
2133 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
2134 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
2135 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
2136 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
2137 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
2138 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
2139}
2140
991f8f0c 2141static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 2142{
991f8f0c
RH
2143 int i;
2144 for (i = 0; i < phnum; ++i, ++phdr) {
2145 bswap32s(&phdr->p_type); /* Segment type */
2146 bswap32s(&phdr->p_flags); /* Segment flags */
2147 bswaptls(&phdr->p_offset); /* Segment file offset */
2148 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
2149 bswaptls(&phdr->p_paddr); /* Segment physical address */
2150 bswaptls(&phdr->p_filesz); /* Segment size in file */
2151 bswaptls(&phdr->p_memsz); /* Segment size in memory */
2152 bswaptls(&phdr->p_align); /* Segment alignment */
2153 }
31e31b8a 2154}
689f936f 2155
991f8f0c 2156static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 2157{
991f8f0c
RH
2158 int i;
2159 for (i = 0; i < shnum; ++i, ++shdr) {
2160 bswap32s(&shdr->sh_name);
2161 bswap32s(&shdr->sh_type);
2162 bswaptls(&shdr->sh_flags);
2163 bswaptls(&shdr->sh_addr);
2164 bswaptls(&shdr->sh_offset);
2165 bswaptls(&shdr->sh_size);
2166 bswap32s(&shdr->sh_link);
2167 bswap32s(&shdr->sh_info);
2168 bswaptls(&shdr->sh_addralign);
2169 bswaptls(&shdr->sh_entsize);
2170 }
689f936f
FB
2171}
2172
7a3148a9 2173static void bswap_sym(struct elf_sym *sym)
689f936f
FB
2174{
2175 bswap32s(&sym->st_name);
7a3148a9
JM
2176 bswaptls(&sym->st_value);
2177 bswaptls(&sym->st_size);
689f936f
FB
2178 bswap16s(&sym->st_shndx);
2179}
5dd0db52
SM
2180
2181#ifdef TARGET_MIPS
2182static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2183{
2184 bswap16s(&abiflags->version);
2185 bswap32s(&abiflags->ases);
2186 bswap32s(&abiflags->isa_ext);
2187 bswap32s(&abiflags->flags1);
2188 bswap32s(&abiflags->flags2);
2189}
2190#endif
991f8f0c
RH
2191#else
2192static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2193static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2194static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2195static inline void bswap_sym(struct elf_sym *sym) { }
5dd0db52
SM
2196#ifdef TARGET_MIPS
2197static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2198#endif
31e31b8a
FB
2199#endif
2200
edf8e2af 2201#ifdef USE_ELF_CORE_DUMP
9349b4f9 2202static int elf_core_dump(int, const CPUArchState *);
edf8e2af 2203#endif /* USE_ELF_CORE_DUMP */
682674b8 2204static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 2205
9058abdd
RH
2206/* Verify the portions of EHDR within E_IDENT for the target.
2207 This can be performed before bswapping the entire header. */
2208static bool elf_check_ident(struct elfhdr *ehdr)
2209{
2210 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2211 && ehdr->e_ident[EI_MAG1] == ELFMAG1
2212 && ehdr->e_ident[EI_MAG2] == ELFMAG2
2213 && ehdr->e_ident[EI_MAG3] == ELFMAG3
2214 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2215 && ehdr->e_ident[EI_DATA] == ELF_DATA
2216 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2217}
2218
2219/* Verify the portions of EHDR outside of E_IDENT for the target.
2220 This has to wait until after bswapping the header. */
2221static bool elf_check_ehdr(struct elfhdr *ehdr)
2222{
2223 return (elf_check_arch(ehdr->e_machine)
ace3d654 2224 && elf_check_abi(ehdr->e_flags)
9058abdd
RH
2225 && ehdr->e_ehsize == sizeof(struct elfhdr)
2226 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
2227 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2228}
2229
31e31b8a 2230/*
e5fe0c52 2231 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
2232 * memory to free pages in kernel mem. These are in a format ready
2233 * to be put directly into the top of new user memory.
2234 *
2235 */
59baae9a
SB
2236static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2237 abi_ulong p, abi_ulong stack_limit)
31e31b8a 2238{
59baae9a 2239 char *tmp;
7c4ee5bc 2240 int len, i;
59baae9a 2241 abi_ulong top = p;
31e31b8a
FB
2242
2243 if (!p) {
d97ef72e 2244 return 0; /* bullet-proofing */
31e31b8a 2245 }
59baae9a 2246
7c4ee5bc
RH
2247 if (STACK_GROWS_DOWN) {
2248 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2249 for (i = argc - 1; i >= 0; --i) {
2250 tmp = argv[i];
2251 if (!tmp) {
2252 fprintf(stderr, "VFS: argc is wrong");
2253 exit(-1);
2254 }
2255 len = strlen(tmp) + 1;
2256 tmp += len;
59baae9a 2257
7c4ee5bc
RH
2258 if (len > (p - stack_limit)) {
2259 return 0;
2260 }
2261 while (len) {
2262 int bytes_to_copy = (len > offset) ? offset : len;
2263 tmp -= bytes_to_copy;
2264 p -= bytes_to_copy;
2265 offset -= bytes_to_copy;
2266 len -= bytes_to_copy;
2267
2268 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2269
2270 if (offset == 0) {
2271 memcpy_to_target(p, scratch, top - p);
2272 top = p;
2273 offset = TARGET_PAGE_SIZE;
2274 }
2275 }
d97ef72e 2276 }
7c4ee5bc
RH
2277 if (p != top) {
2278 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 2279 }
7c4ee5bc
RH
2280 } else {
2281 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2282 for (i = 0; i < argc; ++i) {
2283 tmp = argv[i];
2284 if (!tmp) {
2285 fprintf(stderr, "VFS: argc is wrong");
2286 exit(-1);
2287 }
2288 len = strlen(tmp) + 1;
2289 if (len > (stack_limit - p)) {
2290 return 0;
2291 }
2292 while (len) {
2293 int bytes_to_copy = (len > remaining) ? remaining : len;
2294
2295 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2296
2297 tmp += bytes_to_copy;
2298 remaining -= bytes_to_copy;
2299 p += bytes_to_copy;
2300 len -= bytes_to_copy;
2301
2302 if (remaining == 0) {
2303 memcpy_to_target(top, scratch, p - top);
2304 top = p;
2305 remaining = TARGET_PAGE_SIZE;
2306 }
d97ef72e
RH
2307 }
2308 }
7c4ee5bc
RH
2309 if (p != top) {
2310 memcpy_to_target(top, scratch, p - top);
2311 }
59baae9a
SB
2312 }
2313
31e31b8a
FB
2314 return p;
2315}
2316
59baae9a
SB
2317/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2318 * argument/environment space. Newer kernels (>2.6.33) allow more,
2319 * dependent on stack size, but guarantee at least 32 pages for
2320 * backwards compatibility.
2321 */
2322#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2323
2324static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 2325 struct image_info *info)
53a5960a 2326{
59baae9a 2327 abi_ulong size, error, guard;
872f3d04 2328 int prot;
31e31b8a 2329
703e0e89 2330 size = guest_stack_size;
59baae9a
SB
2331 if (size < STACK_LOWER_LIMIT) {
2332 size = STACK_LOWER_LIMIT;
60dcbcb5 2333 }
f4388205
HD
2334
2335 if (STACK_GROWS_DOWN) {
2336 guard = TARGET_PAGE_SIZE;
2337 if (guard < qemu_real_host_page_size()) {
2338 guard = qemu_real_host_page_size();
2339 }
2340 } else {
2341 /* no guard page for hppa target where stack grows upwards. */
2342 guard = 0;
60dcbcb5
RH
2343 }
2344
872f3d04
RH
2345 prot = PROT_READ | PROT_WRITE;
2346 if (info->exec_stack) {
2347 prot |= PROT_EXEC;
2348 }
2349 error = target_mmap(0, size + guard, prot,
60dcbcb5 2350 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 2351 if (error == -1) {
60dcbcb5 2352 perror("mmap stack");
09bfb054
FB
2353 exit(-1);
2354 }
31e31b8a 2355
60dcbcb5 2356 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
2357 if (STACK_GROWS_DOWN) {
2358 target_mprotect(error, guard, PROT_NONE);
2359 info->stack_limit = error + guard;
2360 return info->stack_limit + size - sizeof(void *);
2361 } else {
7c4ee5bc
RH
2362 info->stack_limit = error + size;
2363 return error;
2364 }
31e31b8a
FB
2365}
2366
2d385be6
RH
2367/**
2368 * zero_bss:
2369 *
2370 * Map and zero the bss. We need to explicitly zero any fractional pages
2371 * after the data section (i.e. bss). Return false on mapping failure.
2372 */
e6e66b03
RH
2373static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss,
2374 int prot, Error **errp)
2d385be6
RH
2375{
2376 abi_ulong align_bss;
853d6f7a 2377
e6e66b03
RH
2378 /* We only expect writable bss; the code segment shouldn't need this. */
2379 if (!(prot & PROT_WRITE)) {
2380 error_setg(errp, "PT_LOAD with non-writable bss");
2381 return false;
2382 }
2383
2d385be6
RH
2384 align_bss = TARGET_PAGE_ALIGN(start_bss);
2385 end_bss = TARGET_PAGE_ALIGN(end_bss);
2386
2387 if (start_bss < align_bss) {
2388 int flags = page_get_flags(start_bss);
31e31b8a 2389
e6e66b03
RH
2390 if (!(flags & PAGE_BITS)) {
2391 /*
2392 * The whole address space of the executable was reserved
2393 * at the start, therefore all pages will be VALID.
2394 * But assuming there are no PROT_NONE PT_LOAD segments,
2395 * a PROT_NONE page means no data all bss, and we can
2396 * simply extend the new anon mapping back to the start
2397 * of the page of bss.
2398 */
2d385be6 2399 align_bss -= TARGET_PAGE_SIZE;
2d385be6 2400 } else {
e6e66b03
RH
2401 /*
2402 * The start of the bss shares a page with something.
2403 * The only thing that we expect is the data section,
2404 * which would already be marked writable.
2405 * Overlapping the RX code segment seems malformed.
2406 */
2407 if (!(flags & PAGE_WRITE)) {
2408 error_setg(errp, "PT_LOAD with bss overlapping "
2409 "non-writable page");
2410 return false;
2411 }
2412
2413 /* The page is already mapped and writable. */
2414 memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
2d385be6 2415 }
cf129f3a 2416 }
2d385be6 2417
e6e66b03
RH
2418 if (align_bss < end_bss &&
2419 target_mmap(align_bss, end_bss - align_bss, prot,
2420 MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) {
2421 error_setg_errno(errp, errno, "Error mapping bss");
2422 return false;
2423 }
2424 return true;
cf129f3a 2425}
53a5960a 2426
d2796be6 2427#if defined(TARGET_ARM)
cf58affe
CL
2428static int elf_is_fdpic(struct elfhdr *exec)
2429{
2430 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2431}
d2796be6
MF
2432#elif defined(TARGET_XTENSA)
2433static int elf_is_fdpic(struct elfhdr *exec)
2434{
2435 return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2436}
cf58affe 2437#else
a99856cd
CL
2438/* Default implementation, always false. */
2439static int elf_is_fdpic(struct elfhdr *exec)
2440{
2441 return 0;
2442}
cf58affe 2443#endif
a99856cd 2444
1af02e83
MF
2445static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2446{
2447 uint16_t n;
2448 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2449
2450 /* elf32_fdpic_loadseg */
2451 n = info->nsegs;
2452 while (n--) {
2453 sp -= 12;
2454 put_user_u32(loadsegs[n].addr, sp+0);
2455 put_user_u32(loadsegs[n].p_vaddr, sp+4);
2456 put_user_u32(loadsegs[n].p_memsz, sp+8);
2457 }
2458
2459 /* elf32_fdpic_loadmap */
2460 sp -= 4;
2461 put_user_u16(0, sp+0); /* version */
2462 put_user_u16(info->nsegs, sp+2); /* nsegs */
2463
2464 info->personality = PER_LINUX_FDPIC;
2465 info->loadmap_addr = sp;
2466
2467 return sp;
2468}
1af02e83 2469
992f48a0 2470static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
2471 struct elfhdr *exec,
2472 struct image_info *info,
2473 struct image_info *interp_info)
31e31b8a 2474{
d97ef72e 2475 abi_ulong sp;
7c4ee5bc 2476 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 2477 int size;
14322bad
LA
2478 int i;
2479 abi_ulong u_rand_bytes;
2480 uint8_t k_rand_bytes[16];
fcdc0ab4
JY
2481 abi_ulong u_platform, u_base_platform;
2482 const char *k_platform, *k_base_platform;
d97ef72e
RH
2483 const int n = sizeof(elf_addr_t);
2484
2485 sp = p;
1af02e83 2486
1af02e83
MF
2487 /* Needs to be before we load the env/argc/... */
2488 if (elf_is_fdpic(exec)) {
2489 /* Need 4 byte alignment for these structs */
2490 sp &= ~3;
2491 sp = loader_build_fdpic_loadmap(info, sp);
2492 info->other_info = interp_info;
2493 if (interp_info) {
2494 interp_info->other_info = info;
2495 sp = loader_build_fdpic_loadmap(interp_info, sp);
3cb10cfa
CL
2496 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2497 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2498 } else {
2499 info->interpreter_loadmap_addr = 0;
2500 info->interpreter_pt_dynamic_addr = 0;
1af02e83
MF
2501 }
2502 }
1af02e83 2503
fcdc0ab4
JY
2504 u_base_platform = 0;
2505 k_base_platform = ELF_BASE_PLATFORM;
2506 if (k_base_platform) {
2507 size_t len = strlen(k_base_platform) + 1;
2508 if (STACK_GROWS_DOWN) {
2509 sp -= (len + n - 1) & ~(n - 1);
2510 u_base_platform = sp;
2511 /* FIXME - check return value of memcpy_to_target() for failure */
2512 memcpy_to_target(sp, k_base_platform, len);
2513 } else {
2514 memcpy_to_target(sp, k_base_platform, len);
2515 u_base_platform = sp;
2516 sp += len + 1;
2517 }
2518 }
2519
d97ef72e
RH
2520 u_platform = 0;
2521 k_platform = ELF_PLATFORM;
2522 if (k_platform) {
2523 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
2524 if (STACK_GROWS_DOWN) {
2525 sp -= (len + n - 1) & ~(n - 1);
2526 u_platform = sp;
2527 /* FIXME - check return value of memcpy_to_target() for failure */
2528 memcpy_to_target(sp, k_platform, len);
2529 } else {
2530 memcpy_to_target(sp, k_platform, len);
2531 u_platform = sp;
2532 sp += len + 1;
2533 }
2534 }
2535
2536 /* Provide 16 byte alignment for the PRNG, and basic alignment for
2537 * the argv and envp pointers.
2538 */
2539 if (STACK_GROWS_DOWN) {
2540 sp = QEMU_ALIGN_DOWN(sp, 16);
2541 } else {
2542 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 2543 }
14322bad
LA
2544
2545 /*
c6a2377f 2546 * Generate 16 random bytes for userspace PRNG seeding.
14322bad 2547 */
c6a2377f 2548 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
7c4ee5bc
RH
2549 if (STACK_GROWS_DOWN) {
2550 sp -= 16;
2551 u_rand_bytes = sp;
2552 /* FIXME - check return value of memcpy_to_target() for failure */
2553 memcpy_to_target(sp, k_rand_bytes, 16);
2554 } else {
2555 memcpy_to_target(sp, k_rand_bytes, 16);
2556 u_rand_bytes = sp;
2557 sp += 16;
2558 }
14322bad 2559
d97ef72e 2560 size = (DLINFO_ITEMS + 1) * 2;
fcdc0ab4
JY
2561 if (k_base_platform)
2562 size += 2;
d97ef72e
RH
2563 if (k_platform)
2564 size += 2;
f5155289 2565#ifdef DLINFO_ARCH_ITEMS
d97ef72e 2566 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
2567#endif
2568#ifdef ELF_HWCAP2
2569 size += 2;
f5155289 2570#endif
f516511e
PM
2571 info->auxv_len = size * n;
2572
d97ef72e 2573 size += envc + argc + 2;
b9329d4b 2574 size += 1; /* argc itself */
d97ef72e 2575 size *= n;
7c4ee5bc
RH
2576
2577 /* Allocate space and finalize stack alignment for entry now. */
2578 if (STACK_GROWS_DOWN) {
2579 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2580 sp = u_argc;
2581 } else {
2582 u_argc = sp;
2583 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2584 }
2585
2586 u_argv = u_argc + n;
2587 u_envp = u_argv + (argc + 1) * n;
2588 u_auxv = u_envp + (envc + 1) * n;
2589 info->saved_auxv = u_auxv;
60f1c801
RH
2590 info->argc = argc;
2591 info->envc = envc;
2592 info->argv = u_argv;
2593 info->envp = u_envp;
d97ef72e
RH
2594
2595 /* This is correct because Linux defines
2596 * elf_addr_t as Elf32_Off / Elf64_Off
2597 */
2598#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
2599 put_user_ual(id, u_auxv); u_auxv += n; \
2600 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
2601 } while(0)
2602
82991bed
PM
2603#ifdef ARCH_DLINFO
2604 /*
2605 * ARCH_DLINFO must come first so platform specific code can enforce
2606 * special alignment requirements on the AUXV if necessary (eg. PPC).
2607 */
2608 ARCH_DLINFO;
2609#endif
f516511e
PM
2610 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2611 * on info->auxv_len will trigger.
2612 */
8e62a717 2613 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
2614 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2615 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
33143c44
LV
2616 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2617 /* Target doesn't support host page size alignment */
2618 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2619 } else {
2620 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2621 qemu_host_page_size)));
2622 }
8e62a717 2623 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 2624 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 2625 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
2626 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2627 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2628 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2629 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2630 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2631 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 2632 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 2633 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
e0d1673d 2634 NEW_AUX_ENT(AT_EXECFN, info->file_string);
14322bad 2635
ad6919dc
PM
2636#ifdef ELF_HWCAP2
2637 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2638#endif
2639
fcdc0ab4
JY
2640 if (u_base_platform) {
2641 NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2642 }
7c4ee5bc 2643 if (u_platform) {
d97ef72e 2644 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 2645 }
7c4ee5bc 2646 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
2647#undef NEW_AUX_ENT
2648
f516511e
PM
2649 /* Check that our initial calculation of the auxv length matches how much
2650 * we actually put into it.
2651 */
2652 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
2653
2654 put_user_ual(argc, u_argc);
2655
2656 p = info->arg_strings;
2657 for (i = 0; i < argc; ++i) {
2658 put_user_ual(p, u_argv);
2659 u_argv += n;
2660 p += target_strlen(p) + 1;
2661 }
2662 put_user_ual(0, u_argv);
2663
2664 p = info->env_strings;
2665 for (i = 0; i < envc; ++i) {
2666 put_user_ual(p, u_envp);
2667 u_envp += n;
2668 p += target_strlen(p) + 1;
2669 }
2670 put_user_ual(0, u_envp);
edf8e2af 2671
d97ef72e 2672 return sp;
31e31b8a
FB
2673}
2674
f5ef0e51 2675#if defined(HI_COMMPAGE)
eee816c0 2676#define LO_COMMPAGE -1
f5ef0e51
RH
2677#elif defined(LO_COMMPAGE)
2678#define HI_COMMPAGE 0
2679#else
66346faf 2680#define HI_COMMPAGE 0
eee816c0 2681#define LO_COMMPAGE -1
d461b73e 2682#ifndef INIT_GUEST_COMMPAGE
ee947430 2683#define init_guest_commpage() true
8756e136 2684#endif
d461b73e 2685#endif
dce10401 2686
06f38c66
RH
2687/**
2688 * pgb_try_mmap:
2689 * @addr: host start address
2690 * @addr_last: host last address
2691 * @keep: do not unmap the probe region
2692 *
2693 * Return 1 if [@addr, @addr_last] is not mapped in the host,
2694 * return 0 if it is not available to map, and -1 on mmap error.
2695 * If @keep, the region is left mapped on success, otherwise unmapped.
2696 */
2697static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep)
2698{
2699 size_t size = addr_last - addr + 1;
2700 void *p = mmap((void *)addr, size, PROT_NONE,
2701 MAP_ANONYMOUS | MAP_PRIVATE |
2702 MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0);
2703 int ret;
2704
2705 if (p == MAP_FAILED) {
2706 return errno == EEXIST ? 0 : -1;
2707 }
2708 ret = p == (void *)addr;
2709 if (!keep || !ret) {
2710 munmap(p, size);
2711 }
2712 return ret;
2713}
2714
2715/**
2716 * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
2717 * @addr: host address
2718 * @addr_last: host last address
2719 * @brk: host brk
2720 *
2721 * Like pgb_try_mmap, but additionally reserve some memory following brk.
2722 */
2723static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last,
2724 uintptr_t brk, bool keep)
2725{
2726 uintptr_t brk_last = brk + 16 * MiB - 1;
2727
2728 /* Do not map anything close to the host brk. */
2729 if (addr <= brk_last && brk <= addr_last) {
2730 return 0;
2731 }
2732 return pgb_try_mmap(addr, addr_last, keep);
2733}
2734
2735/**
2736 * pgb_try_mmap_set:
2737 * @ga: set of guest addrs
2738 * @base: guest_base
2739 * @brk: host brk
2740 *
2741 * Return true if all @ga can be mapped by the host at @base.
2742 * On success, retain the mapping at index 0 for reserved_va.
2743 */
2744
2745typedef struct PGBAddrs {
2746 uintptr_t bounds[3][2]; /* start/last pairs */
2747 int nbounds;
2748} PGBAddrs;
2749
2750static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk)
2751{
2752 for (int i = ga->nbounds - 1; i >= 0; --i) {
2753 if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base,
2754 ga->bounds[i][1] + base,
2755 brk, i == 0 && reserved_va) <= 0) {
2756 return false;
2757 }
2758 }
2759 return true;
2760}
2761
2762/**
2763 * pgb_addr_set:
2764 * @ga: output set of guest addrs
2765 * @guest_loaddr: guest image low address
2766 * @guest_loaddr: guest image high address
2767 * @identity: create for identity mapping
2768 *
2769 * Fill in @ga with the image, COMMPAGE and NULL page.
2770 */
2771static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr,
2772 abi_ulong guest_hiaddr, bool try_identity)
2773{
2774 int n;
2775
2776 /*
2777 * With a low commpage, or a guest mapped very low,
2778 * we may not be able to use the identity map.
2779 */
2780 if (try_identity) {
2781 if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) {
2782 return false;
2783 }
2784 if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) {
2785 return false;
2786 }
2787 }
2788
2789 memset(ga, 0, sizeof(*ga));
2790 n = 0;
2791
2792 if (reserved_va) {
2793 ga->bounds[n][0] = try_identity ? mmap_min_addr : 0;
2794 ga->bounds[n][1] = reserved_va;
2795 n++;
2796 /* LO_COMMPAGE and NULL handled by reserving from 0. */
2797 } else {
2798 /* Add any LO_COMMPAGE or NULL page. */
2799 if (LO_COMMPAGE != -1) {
2800 ga->bounds[n][0] = 0;
2801 ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1;
2802 n++;
2803 } else if (!try_identity) {
2804 ga->bounds[n][0] = 0;
2805 ga->bounds[n][1] = TARGET_PAGE_SIZE - 1;
2806 n++;
2807 }
2808
2809 /* Add the guest image for ET_EXEC. */
2810 if (guest_loaddr) {
2811 ga->bounds[n][0] = guest_loaddr;
2812 ga->bounds[n][1] = guest_hiaddr;
2813 n++;
2814 }
2815 }
2816
2817 /*
2818 * Temporarily disable
2819 * "comparison is always false due to limited range of data type"
2820 * due to comparison between unsigned and (possible) 0.
2821 */
2822#pragma GCC diagnostic push
2823#pragma GCC diagnostic ignored "-Wtype-limits"
2824
2825 /* Add any HI_COMMPAGE not covered by reserved_va. */
2826 if (reserved_va < HI_COMMPAGE) {
2827 ga->bounds[n][0] = HI_COMMPAGE & qemu_host_page_mask;
2828 ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1;
2829 n++;
2830 }
2831
2832#pragma GCC diagnostic pop
2833
2834 ga->nbounds = n;
2835 return true;
2836}
2837
ee947430
AB
2838static void pgb_fail_in_use(const char *image_name)
2839{
2840 error_report("%s: requires virtual address space that is in use "
2841 "(omit the -B option or choose a different value)",
2842 image_name);
2843 exit(EXIT_FAILURE);
2844}
dce10401 2845
06f38c66
RH
2846static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr,
2847 uintptr_t guest_hiaddr, uintptr_t align)
ee947430 2848{
06f38c66
RH
2849 PGBAddrs ga;
2850 uintptr_t brk = (uintptr_t)sbrk(0);
2a53535a 2851
ee947430 2852 if (!QEMU_IS_ALIGNED(guest_base, align)) {
5ca870b9 2853 fprintf(stderr, "Requested guest base %p does not satisfy "
06f38c66 2854 "host minimum alignment (0x%" PRIxPTR ")\n",
5ca870b9 2855 (void *)guest_base, align);
ee947430
AB
2856 exit(EXIT_FAILURE);
2857 }
2858
06f38c66
RH
2859 if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base)
2860 || !pgb_try_mmap_set(&ga, guest_base, brk)) {
ee947430
AB
2861 pgb_fail_in_use(image_name);
2862 }
2863}
2864
ad592e37 2865/**
dd558855 2866 * pgb_find_fallback:
ad592e37 2867 *
dd558855
RH
2868 * This is a fallback method for finding holes in the host address space
2869 * if we don't have the benefit of being able to access /proc/self/map.
2870 * It can potentially take a very long time as we can only dumbly iterate
2871 * up the host address space seeing if the allocation would work.
ad592e37 2872 */
dd558855
RH
2873static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align,
2874 uintptr_t brk)
ad592e37 2875{
dd558855
RH
2876 /* TODO: come up with a better estimate of how much to skip. */
2877 uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB;
ad592e37 2878
dd558855
RH
2879 for (uintptr_t base = skip; ; base += skip) {
2880 base = ROUND_UP(base, align);
2881 if (pgb_try_mmap_set(ga, base, brk)) {
2882 return base;
2883 }
2884 if (base >= -skip) {
ad592e37 2885 return -1;
ad592e37
AB
2886 }
2887 }
2888}
2889
dd558855
RH
2890static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base,
2891 IntervalTreeRoot *root)
ee947430 2892{
dd558855
RH
2893 for (int i = ga->nbounds - 1; i >= 0; --i) {
2894 uintptr_t s = base + ga->bounds[i][0];
2895 uintptr_t l = base + ga->bounds[i][1];
2896 IntervalTreeNode *n;
dce10401 2897
dd558855
RH
2898 if (l < s) {
2899 /* Wraparound. Skip to advance S to mmap_min_addr. */
2900 return mmap_min_addr - s;
2901 }
ee947430 2902
dd558855
RH
2903 n = interval_tree_iter_first(root, s, l);
2904 if (n != NULL) {
2905 /* Conflict. Skip to advance S to LAST + 1. */
2906 return n->last - s + 1;
2907 }
ad592e37 2908 }
dd558855
RH
2909 return 0; /* success */
2910}
ad592e37 2911
dd558855
RH
2912static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root,
2913 uintptr_t align, uintptr_t brk)
2914{
2915 uintptr_t last = mmap_min_addr;
2916 uintptr_t base, skip;
ee947430 2917
dd558855
RH
2918 while (true) {
2919 base = ROUND_UP(last, align);
2920 if (base < last) {
2921 return -1;
aac362e4
LS
2922 }
2923
dd558855
RH
2924 skip = pgb_try_itree(ga, base, root);
2925 if (skip == 0) {
2926 break;
806d1021
MI
2927 }
2928
dd558855
RH
2929 last = base + skip;
2930 if (last < base) {
2931 return -1;
dce10401
MI
2932 }
2933 }
dd558855
RH
2934
2935 /*
2936 * We've chosen 'base' based on holes in the interval tree,
2937 * but we don't yet know if it is a valid host address.
2938 * Because it is the first matching hole, if the host addresses
2939 * are invalid we know there are no further matches.
2940 */
2941 return pgb_try_mmap_set(ga, base, brk) ? base : -1;
dce10401
MI
2942}
2943
dd558855
RH
2944static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr,
2945 uintptr_t guest_hiaddr, uintptr_t align)
f3ed1f5d 2946{
dd558855
RH
2947 IntervalTreeRoot *root;
2948 uintptr_t brk, ret;
2949 PGBAddrs ga;
f3ed1f5d 2950
dd558855 2951 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
dce10401 2952
dd558855
RH
2953 /* Try the identity map first. */
2954 if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) {
2955 brk = (uintptr_t)sbrk(0);
2956 if (pgb_try_mmap_set(&ga, 0, brk)) {
2957 guest_base = 0;
2958 return;
2959 }
ee947430
AB
2960 }
2961
ee947430 2962 /*
dd558855
RH
2963 * Rebuild the address set for non-identity map.
2964 * This differs in the mapping of the guest NULL page.
ee947430 2965 */
dd558855 2966 pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false);
ee947430 2967
dd558855
RH
2968 root = read_self_maps();
2969
2970 /* Read brk after we've read the maps, which will malloc. */
2971 brk = (uintptr_t)sbrk(0);
ee947430 2972
dd558855
RH
2973 if (!root) {
2974 ret = pgb_find_fallback(&ga, align, brk);
2975 } else {
ee947430 2976 /*
dd558855
RH
2977 * Reserve the area close to the host brk.
2978 * This will be freed with the rest of the tree.
ee947430 2979 */
dd558855
RH
2980 IntervalTreeNode *b = g_new0(IntervalTreeNode, 1);
2981 b->start = brk;
2982 b->last = brk + 16 * MiB - 1;
2983 interval_tree_insert(b, root);
ee947430 2984
dd558855
RH
2985 ret = pgb_find_itree(&ga, root, align, brk);
2986 free_self_maps(root);
2987 }
ee947430 2988
dd558855
RH
2989 if (ret == -1) {
2990 int w = TARGET_LONG_BITS / 4;
ee947430 2991
dd558855
RH
2992 error_report("%s: Unable to find a guest_base to satisfy all "
2993 "guest address mapping requirements", image_name);
c1f6ad79 2994
dd558855
RH
2995 for (int i = 0; i < ga.nbounds; ++i) {
2996 error_printf(" %0*" PRIx64 "-%0*" PRIx64 "\n",
2997 w, (uint64_t)ga.bounds[i][0],
2998 w, (uint64_t)ga.bounds[i][1]);
2999 }
ee947430
AB
3000 exit(EXIT_FAILURE);
3001 }
dd558855 3002 guest_base = ret;
f3ed1f5d
PM
3003}
3004
ee947430
AB
3005void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
3006 abi_ulong guest_hiaddr)
3007{
3008 /* In order to use host shmat, we must be able to honor SHMLBA. */
3009 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
3010
0c441aeb
RH
3011 /* Sanity check the guest binary. */
3012 if (reserved_va) {
3013 if (guest_hiaddr > reserved_va) {
3014 error_report("%s: requires more than reserved virtual "
3015 "address space (0x%" PRIx64 " > 0x%lx)",
3016 image_name, (uint64_t)guest_hiaddr, reserved_va);
3017 exit(EXIT_FAILURE);
3018 }
3019 } else {
3020 if (guest_hiaddr != (uintptr_t)guest_hiaddr) {
3021 error_report("%s: requires more virtual address space "
3022 "than the host can provide (0x%" PRIx64 ")",
3023 image_name, (uint64_t)guest_hiaddr + 1);
3024 exit(EXIT_FAILURE);
3025 }
3026 }
3027
ee947430 3028 if (have_guest_base) {
06f38c66 3029 pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align);
ee947430 3030 } else {
dd558855 3031 pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align);
ee947430
AB
3032 }
3033
3034 /* Reserve and initialize the commpage. */
3035 if (!init_guest_commpage()) {
06f38c66
RH
3036 /* We have already probed for the commpage being free. */
3037 g_assert_not_reached();
ee947430
AB
3038 }
3039
3040 assert(QEMU_IS_ALIGNED(guest_base, align));
3041 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
3042 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
3043}
f3ed1f5d 3044
83f990eb
RH
3045enum {
3046 /* The string "GNU\0" as a magic number. */
3047 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
3048 NOTE_DATA_SZ = 1 * KiB,
3049 NOTE_NAME_SZ = 4,
3050 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
3051};
3052
3053/*
3054 * Process a single gnu_property entry.
3055 * Return false for error.
3056 */
3057static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
3058 struct image_info *info, bool have_prev_type,
3059 uint32_t *prev_type, Error **errp)
3060{
3061 uint32_t pr_type, pr_datasz, step;
3062
3063 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
3064 goto error_data;
3065 }
3066 datasz -= *off;
3067 data += *off / sizeof(uint32_t);
3068
3069 if (datasz < 2 * sizeof(uint32_t)) {
3070 goto error_data;
3071 }
3072 pr_type = data[0];
3073 pr_datasz = data[1];
3074 data += 2;
3075 datasz -= 2 * sizeof(uint32_t);
3076 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
3077 if (step > datasz) {
3078 goto error_data;
3079 }
3080
3081 /* Properties are supposed to be unique and sorted on pr_type. */
3082 if (have_prev_type && pr_type <= *prev_type) {
3083 if (pr_type == *prev_type) {
3084 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
3085 } else {
3086 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
3087 }
3088 return false;
3089 }
3090 *prev_type = pr_type;
3091
3092 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
3093 return false;
3094 }
3095
3096 *off += 2 * sizeof(uint32_t) + step;
3097 return true;
3098
3099 error_data:
3100 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
3101 return false;
3102}
3103
3104/* Process NT_GNU_PROPERTY_TYPE_0. */
3105static bool parse_elf_properties(int image_fd,
3106 struct image_info *info,
3107 const struct elf_phdr *phdr,
3108 char bprm_buf[BPRM_BUF_SIZE],
3109 Error **errp)
3110{
3111 union {
3112 struct elf_note nhdr;
3113 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
3114 } note;
3115
3116 int n, off, datasz;
3117 bool have_prev_type;
3118 uint32_t prev_type;
3119
3120 /* Unless the arch requires properties, ignore them. */
3121 if (!ARCH_USE_GNU_PROPERTY) {
3122 return true;
3123 }
3124
3125 /* If the properties are crazy large, that's too bad. */
3126 n = phdr->p_filesz;
3127 if (n > sizeof(note)) {
3128 error_setg(errp, "PT_GNU_PROPERTY too large");
3129 return false;
3130 }
3131 if (n < sizeof(note.nhdr)) {
3132 error_setg(errp, "PT_GNU_PROPERTY too small");
3133 return false;
3134 }
3135
3136 if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
3137 memcpy(&note, bprm_buf + phdr->p_offset, n);
3138 } else {
3139 ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
3140 if (len != n) {
3141 error_setg_errno(errp, errno, "Error reading file header");
3142 return false;
3143 }
3144 }
3145
3146 /*
3147 * The contents of a valid PT_GNU_PROPERTY is a sequence
3148 * of uint32_t -- swap them all now.
3149 */
3150#ifdef BSWAP_NEEDED
3151 for (int i = 0; i < n / 4; i++) {
3152 bswap32s(note.data + i);
3153 }
3154#endif
3155
3156 /*
3157 * Note that nhdr is 3 words, and that the "name" described by namesz
3158 * immediately follows nhdr and is thus at the 4th word. Further, all
3159 * of the inputs to the kernel's round_up are multiples of 4.
3160 */
3161 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
3162 note.nhdr.n_namesz != NOTE_NAME_SZ ||
3163 note.data[3] != GNU0_MAGIC) {
3164 error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
3165 return false;
3166 }
3167 off = sizeof(note.nhdr) + NOTE_NAME_SZ;
3168
3169 datasz = note.nhdr.n_descsz + off;
3170 if (datasz > n) {
3171 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
3172 return false;
3173 }
3174
3175 have_prev_type = false;
3176 prev_type = 0;
3177 while (1) {
3178 if (off == datasz) {
3179 return true; /* end, exit ok */
3180 }
3181 if (!parse_elf_property(note.data, &off, datasz, info,
3182 have_prev_type, &prev_type, errp)) {
3183 return false;
3184 }
3185 have_prev_type = true;
3186 }
3187}
3188
8e62a717 3189/* Load an ELF image into the address space.
31e31b8a 3190
8e62a717
RH
3191 IMAGE_NAME is the filename of the image, to use in error messages.
3192 IMAGE_FD is the open file descriptor for the image.
3193
3194 BPRM_BUF is a copy of the beginning of the file; this of course
3195 contains the elf file header at offset 0. It is assumed that this
3196 buffer is sufficiently aligned to present no problems to the host
3197 in accessing data at aligned offsets within the buffer.
3198
3199 On return: INFO values will be filled in, as necessary or available. */
3200
3201static void load_elf_image(const char *image_name, int image_fd,
bf858897 3202 struct image_info *info, char **pinterp_name,
8e62a717 3203 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 3204{
8e62a717
RH
3205 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
3206 struct elf_phdr *phdr;
3207 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
e8384b37 3208 int i, retval, prot_exec;
c7f17e7b 3209 Error *err = NULL;
5fafdf24 3210
8e62a717 3211 /* First of all, some simple consistency checks */
8e62a717 3212 if (!elf_check_ident(ehdr)) {
c7f17e7b 3213 error_setg(&err, "Invalid ELF image for this architecture");
8e62a717
RH
3214 goto exit_errmsg;
3215 }
3216 bswap_ehdr(ehdr);
3217 if (!elf_check_ehdr(ehdr)) {
c7f17e7b 3218 error_setg(&err, "Invalid ELF image for this architecture");
8e62a717 3219 goto exit_errmsg;
d97ef72e 3220 }
5fafdf24 3221
8e62a717
RH
3222 i = ehdr->e_phnum * sizeof(struct elf_phdr);
3223 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
3224 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 3225 } else {
8e62a717
RH
3226 phdr = (struct elf_phdr *) alloca(i);
3227 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 3228 if (retval != i) {
8e62a717 3229 goto exit_read;
9955ffac 3230 }
d97ef72e 3231 }
8e62a717 3232 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 3233
1af02e83
MF
3234 info->nsegs = 0;
3235 info->pt_dynamic_addr = 0;
1af02e83 3236
98c1076c
AB
3237 mmap_lock();
3238
8a1a5274
RH
3239 /*
3240 * Find the maximum size of the image and allocate an appropriate
3241 * amount of memory to handle that. Locate the interpreter, if any.
3242 */
682674b8 3243 loaddr = -1, hiaddr = 0;
33143c44 3244 info->alignment = 0;
872f3d04 3245 info->exec_stack = EXSTACK_DEFAULT;
8e62a717 3246 for (i = 0; i < ehdr->e_phnum; ++i) {
4d9d535a
RH
3247 struct elf_phdr *eppnt = phdr + i;
3248 if (eppnt->p_type == PT_LOAD) {
3249 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
682674b8
RH
3250 if (a < loaddr) {
3251 loaddr = a;
3252 }
a3a67f54 3253 a = eppnt->p_vaddr + eppnt->p_memsz - 1;
682674b8
RH
3254 if (a > hiaddr) {
3255 hiaddr = a;
3256 }
1af02e83 3257 ++info->nsegs;
4d9d535a 3258 info->alignment |= eppnt->p_align;
8a1a5274
RH
3259 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3260 g_autofree char *interp_name = NULL;
3261
3262 if (*pinterp_name) {
c7f17e7b 3263 error_setg(&err, "Multiple PT_INTERP entries");
8a1a5274
RH
3264 goto exit_errmsg;
3265 }
c7f17e7b 3266
8a1a5274 3267 interp_name = g_malloc(eppnt->p_filesz);
8a1a5274
RH
3268
3269 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3270 memcpy(interp_name, bprm_buf + eppnt->p_offset,
3271 eppnt->p_filesz);
3272 } else {
3273 retval = pread(image_fd, interp_name, eppnt->p_filesz,
3274 eppnt->p_offset);
3275 if (retval != eppnt->p_filesz) {
c7f17e7b 3276 goto exit_read;
8a1a5274
RH
3277 }
3278 }
3279 if (interp_name[eppnt->p_filesz - 1] != 0) {
c7f17e7b 3280 error_setg(&err, "Invalid PT_INTERP entry");
8a1a5274
RH
3281 goto exit_errmsg;
3282 }
3283 *pinterp_name = g_steal_pointer(&interp_name);
83f990eb
RH
3284 } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3285 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
3286 goto exit_errmsg;
3287 }
872f3d04
RH
3288 } else if (eppnt->p_type == PT_GNU_STACK) {
3289 info->exec_stack = eppnt->p_flags & PF_X;
682674b8
RH
3290 }
3291 }
3292
1ea06ded
RH
3293 load_addr = loaddr;
3294
6fd59449 3295 if (pinterp_name != NULL) {
6fd59449
RH
3296 if (ehdr->e_type == ET_EXEC) {
3297 /*
3298 * Make sure that the low address does not conflict with
3299 * MMAP_MIN_ADDR or the QEMU application itself.
3300 */
3301 probe_guest_base(image_name, loaddr, hiaddr);
ee947430 3302 } else {
1ea06ded
RH
3303 abi_ulong align;
3304
ee947430
AB
3305 /*
3306 * The binary is dynamic, but we still need to
3307 * select guest_base. In this case we pass a size.
3308 */
3309 probe_guest_base(image_name, 0, hiaddr - loaddr);
1ea06ded
RH
3310
3311 /*
3312 * Avoid collision with the loader by providing a different
3313 * default load address.
3314 */
3315 load_addr += elf_et_dyn_base;
3316
3317 /*
3318 * TODO: Better support for mmap alignment is desirable.
3319 * Since we do not have complete control over the guest
3320 * address space, we prefer the kernel to choose some address
3321 * rather than force the use of LOAD_ADDR via MAP_FIXED.
3322 * But without MAP_FIXED we cannot guarantee alignment,
3323 * only suggest it.
3324 */
3325 align = pow2ceil(info->alignment);
3326 if (align) {
3327 load_addr &= -align;
3328 }
d97ef72e 3329 }
6fd59449
RH
3330 }
3331
3332 /*
3333 * Reserve address space for all of this.
3334 *
ad25051b
RH
3335 * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3336 * exactly the address range that is required. Without reserved_va,
3337 * the guest address space is not isolated. We have attempted to avoid
3338 * conflict with the host program itself via probe_guest_base, but using
3339 * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
6fd59449
RH
3340 *
3341 * Otherwise this is ET_DYN, and we are searching for a location
3342 * that can hold the memory space required. If the image is
1ea06ded 3343 * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
6fd59449
RH
3344 * honor that address if it happens to be free.
3345 *
3346 * In both cases, we will overwrite pages in this range with mappings
3347 * from the executable.
3348 */
1ea06ded 3349 load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
6fd59449 3350 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
ad25051b 3351 (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
6fd59449
RH
3352 -1, 0);
3353 if (load_addr == -1) {
c7f17e7b 3354 goto exit_mmap;
d97ef72e 3355 }
682674b8 3356 load_bias = load_addr - loaddr;
d97ef72e 3357
a99856cd 3358 if (elf_is_fdpic(ehdr)) {
1af02e83 3359 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 3360 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
3361
3362 for (i = 0; i < ehdr->e_phnum; ++i) {
3363 switch (phdr[i].p_type) {
3364 case PT_DYNAMIC:
3365 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3366 break;
3367 case PT_LOAD:
3368 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3369 loadsegs->p_vaddr = phdr[i].p_vaddr;
3370 loadsegs->p_memsz = phdr[i].p_memsz;
3371 ++loadsegs;
3372 break;
3373 }
3374 }
3375 }
1af02e83 3376
8e62a717 3377 info->load_bias = load_bias;
dc12567a
JK
3378 info->code_offset = load_bias;
3379 info->data_offset = load_bias;
8e62a717
RH
3380 info->load_addr = load_addr;
3381 info->entry = ehdr->e_entry + load_bias;
3382 info->start_code = -1;
3383 info->end_code = 0;
3384 info->start_data = -1;
3385 info->end_data = 0;
1f356e8c 3386 /* Usual start for brk is after all sections of the main executable. */
aec338d6 3387 info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias);
d8fd2954 3388 info->elf_flags = ehdr->e_flags;
8e62a717 3389
e8384b37
RH
3390 prot_exec = PROT_EXEC;
3391#ifdef TARGET_AARCH64
3392 /*
3393 * If the BTI feature is present, this indicates that the executable
3394 * pages of the startup binary should be mapped with PROT_BTI, so that
3395 * branch targets are enforced.
3396 *
3397 * The startup binary is either the interpreter or the static executable.
3398 * The interpreter is responsible for all pages of a dynamic executable.
3399 *
3400 * Elf notes are backward compatible to older cpus.
3401 * Do not enable BTI unless it is supported.
3402 */
3403 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3404 && (pinterp_name == NULL || *pinterp_name == 0)
3405 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3406 prot_exec |= TARGET_PROT_BTI;
3407 }
3408#endif
3409
8e62a717
RH
3410 for (i = 0; i < ehdr->e_phnum; i++) {
3411 struct elf_phdr *eppnt = phdr + i;
d97ef72e 3412 if (eppnt->p_type == PT_LOAD) {
5f4e5b34 3413 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
d97ef72e 3414 int elf_prot = 0;
d97ef72e 3415
e5eaf570
RH
3416 if (eppnt->p_flags & PF_R) {
3417 elf_prot |= PROT_READ;
3418 }
3419 if (eppnt->p_flags & PF_W) {
3420 elf_prot |= PROT_WRITE;
3421 }
3422 if (eppnt->p_flags & PF_X) {
e8384b37 3423 elf_prot |= prot_exec;
e5eaf570 3424 }
d97ef72e 3425
682674b8 3426 vaddr = load_bias + eppnt->p_vaddr;
e3d97d5c
RH
3427 vaddr_po = vaddr & ~TARGET_PAGE_MASK;
3428 vaddr_ps = vaddr & TARGET_PAGE_MASK;
22d113b5
GM
3429
3430 vaddr_ef = vaddr + eppnt->p_filesz;
3431 vaddr_em = vaddr + eppnt->p_memsz;
682674b8 3432
d87146bc 3433 /*
22d113b5
GM
3434 * Some segments may be completely empty, with a non-zero p_memsz
3435 * but no backing file segment.
d87146bc
GM
3436 */
3437 if (eppnt->p_filesz != 0) {
5f4e5b34
RH
3438 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
3439 elf_prot, MAP_PRIVATE | MAP_FIXED,
d87146bc 3440 image_fd, eppnt->p_offset - vaddr_po);
d87146bc 3441 if (error == -1) {
c7f17e7b 3442 goto exit_mmap;
d87146bc 3443 }
5f4e5b34 3444 }
09bfb054 3445
5f4e5b34
RH
3446 /* If the load segment requests extra zeros (e.g. bss), map it. */
3447 if (vaddr_ef < vaddr_em &&
e6e66b03
RH
3448 !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) {
3449 goto exit_errmsg;
cf129f3a 3450 }
8e62a717
RH
3451
3452 /* Find the full program boundaries. */
3453 if (elf_prot & PROT_EXEC) {
3454 if (vaddr < info->start_code) {
3455 info->start_code = vaddr;
3456 }
3457 if (vaddr_ef > info->end_code) {
3458 info->end_code = vaddr_ef;
3459 }
3460 }
3461 if (elf_prot & PROT_WRITE) {
3462 if (vaddr < info->start_data) {
3463 info->start_data = vaddr;
3464 }
3465 if (vaddr_ef > info->end_data) {
3466 info->end_data = vaddr_ef;
3467 }
8a045188 3468 }
5dd0db52
SM
3469#ifdef TARGET_MIPS
3470 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3471 Mips_elf_abiflags_v0 abiflags;
3472 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
c7f17e7b 3473 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
5dd0db52
SM
3474 goto exit_errmsg;
3475 }
3476 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3477 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3478 sizeof(Mips_elf_abiflags_v0));
3479 } else {
3480 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3481 eppnt->p_offset);
3482 if (retval != sizeof(Mips_elf_abiflags_v0)) {
c7f17e7b 3483 goto exit_read;
5dd0db52
SM
3484 }
3485 }
3486 bswap_mips_abiflags(&abiflags);
c94cb6c9 3487 info->fp_abi = abiflags.fp_abi;
5dd0db52 3488#endif
d97ef72e 3489 }
682674b8 3490 }
5fafdf24 3491
8e62a717
RH
3492 if (info->end_data == 0) {
3493 info->start_data = info->end_code;
3494 info->end_data = info->end_code;
8e62a717
RH
3495 }
3496
682674b8 3497 if (qemu_log_enabled()) {
8e62a717 3498 load_symbols(ehdr, image_fd, load_bias);
682674b8 3499 }
31e31b8a 3500
7c10cb38
IL
3501 debuginfo_report_elf(image_name, image_fd, load_bias);
3502
98c1076c
AB
3503 mmap_unlock();
3504
8e62a717
RH
3505 close(image_fd);
3506 return;
3507
3508 exit_read:
3509 if (retval >= 0) {
c7f17e7b
RH
3510 error_setg(&err, "Incomplete read of file header");
3511 } else {
3512 error_setg_errno(&err, errno, "Error reading file header");
8e62a717 3513 }
c7f17e7b
RH
3514 goto exit_errmsg;
3515 exit_mmap:
3516 error_setg_errno(&err, errno, "Error mapping file");
3517 goto exit_errmsg;
8e62a717 3518 exit_errmsg:
c7f17e7b 3519 error_reportf_err(err, "%s: ", image_name);
8e62a717
RH
3520 exit(-1);
3521}
3522
3523static void load_elf_interp(const char *filename, struct image_info *info,
3524 char bprm_buf[BPRM_BUF_SIZE])
3525{
3526 int fd, retval;
808f6563 3527 Error *err = NULL;
8e62a717
RH
3528
3529 fd = open(path(filename), O_RDONLY);
3530 if (fd < 0) {
808f6563
RH
3531 error_setg_file_open(&err, errno, filename);
3532 error_report_err(err);
3533 exit(-1);
8e62a717 3534 }
31e31b8a 3535
8e62a717
RH
3536 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3537 if (retval < 0) {
808f6563
RH
3538 error_setg_errno(&err, errno, "Error reading file header");
3539 error_reportf_err(err, "%s: ", filename);
3540 exit(-1);
8e62a717 3541 }
808f6563 3542
8e62a717
RH
3543 if (retval < BPRM_BUF_SIZE) {
3544 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3545 }
3546
bf858897 3547 load_elf_image(filename, fd, info, NULL, bprm_buf);
31e31b8a
FB
3548}
3549
49918a75
PB
3550static int symfind(const void *s0, const void *s1)
3551{
49918a75 3552 struct elf_sym *sym = (struct elf_sym *)s1;
b6235a75 3553 __typeof(sym->st_value) addr = *(uint64_t *)s0;
49918a75 3554 int result = 0;
b6235a75 3555
c7c530cd 3556 if (addr < sym->st_value) {
49918a75 3557 result = -1;
c7c530cd 3558 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
3559 result = 1;
3560 }
3561 return result;
3562}
3563
b6235a75 3564static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
49918a75
PB
3565{
3566#if ELF_CLASS == ELFCLASS32
3567 struct elf_sym *syms = s->disas_symtab.elf32;
3568#else
3569 struct elf_sym *syms = s->disas_symtab.elf64;
3570#endif
3571
3572 // binary search
49918a75
PB
3573 struct elf_sym *sym;
3574
c7c530cd 3575 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 3576 if (sym != NULL) {
49918a75
PB
3577 return s->disas_strtab + sym->st_name;
3578 }
3579
3580 return "";
3581}
3582
3583/* FIXME: This should use elf_ops.h */
3584static int symcmp(const void *s0, const void *s1)
3585{
3586 struct elf_sym *sym0 = (struct elf_sym *)s0;
3587 struct elf_sym *sym1 = (struct elf_sym *)s1;
3588 return (sym0->st_value < sym1->st_value)
3589 ? -1
3590 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3591}
3592
689f936f 3593/* Best attempt to load symbols from this ELF object. */
682674b8 3594static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 3595{
682674b8 3596 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 3597 uint64_t segsz;
682674b8 3598 struct elf_shdr *shdr;
b9475279
CV
3599 char *strings = NULL;
3600 struct syminfo *s = NULL;
3601 struct elf_sym *new_syms, *syms = NULL;
689f936f 3602
682674b8
RH
3603 shnum = hdr->e_shnum;
3604 i = shnum * sizeof(struct elf_shdr);
3605 shdr = (struct elf_shdr *)alloca(i);
3606 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3607 return;
3608 }
3609
3610 bswap_shdr(shdr, shnum);
3611 for (i = 0; i < shnum; ++i) {
3612 if (shdr[i].sh_type == SHT_SYMTAB) {
3613 sym_idx = i;
3614 str_idx = shdr[i].sh_link;
49918a75
PB
3615 goto found;
3616 }
689f936f 3617 }
682674b8
RH
3618
3619 /* There will be no symbol table if the file was stripped. */
3620 return;
689f936f
FB
3621
3622 found:
682674b8 3623 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 3624 s = g_try_new(struct syminfo, 1);
682674b8 3625 if (!s) {
b9475279 3626 goto give_up;
682674b8 3627 }
5fafdf24 3628
1e06262d
PM
3629 segsz = shdr[str_idx].sh_size;
3630 s->disas_strtab = strings = g_try_malloc(segsz);
3631 if (!strings ||
3632 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 3633 goto give_up;
682674b8 3634 }
49918a75 3635
1e06262d
PM
3636 segsz = shdr[sym_idx].sh_size;
3637 syms = g_try_malloc(segsz);
3638 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 3639 goto give_up;
682674b8 3640 }
31e31b8a 3641
1e06262d
PM
3642 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3643 /* Implausibly large symbol table: give up rather than ploughing
3644 * on with the number of symbols calculation overflowing
3645 */
3646 goto give_up;
3647 }
3648 nsyms = segsz / sizeof(struct elf_sym);
682674b8 3649 for (i = 0; i < nsyms; ) {
49918a75 3650 bswap_sym(syms + i);
682674b8
RH
3651 /* Throw away entries which we do not need. */
3652 if (syms[i].st_shndx == SHN_UNDEF
3653 || syms[i].st_shndx >= SHN_LORESERVE
3654 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3655 if (i < --nsyms) {
49918a75
PB
3656 syms[i] = syms[nsyms];
3657 }
682674b8 3658 } else {
49918a75 3659#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
3660 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3661 syms[i].st_value &= ~(target_ulong)1;
0774bed1 3662#endif
682674b8
RH
3663 syms[i].st_value += load_bias;
3664 i++;
3665 }
0774bed1 3666 }
49918a75 3667
b9475279
CV
3668 /* No "useful" symbol. */
3669 if (nsyms == 0) {
3670 goto give_up;
3671 }
3672
5d5c9930
RH
3673 /* Attempt to free the storage associated with the local symbols
3674 that we threw away. Whether or not this has any effect on the
3675 memory allocation depends on the malloc implementation and how
3676 many symbols we managed to discard. */
0ef9ea29 3677 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 3678 if (new_syms == NULL) {
b9475279 3679 goto give_up;
5d5c9930 3680 }
8d79de6e 3681 syms = new_syms;
5d5c9930 3682
49918a75 3683 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 3684
49918a75
PB
3685 s->disas_num_syms = nsyms;
3686#if ELF_CLASS == ELFCLASS32
3687 s->disas_symtab.elf32 = syms;
49918a75
PB
3688#else
3689 s->disas_symtab.elf64 = syms;
49918a75 3690#endif
682674b8 3691 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
3692 s->next = syminfos;
3693 syminfos = s;
b9475279
CV
3694
3695 return;
3696
3697give_up:
0ef9ea29
PM
3698 g_free(s);
3699 g_free(strings);
3700 g_free(syms);
689f936f 3701}
31e31b8a 3702
768fe76e
YS
3703uint32_t get_elf_eflags(int fd)
3704{
3705 struct elfhdr ehdr;
3706 off_t offset;
3707 int ret;
3708
3709 /* Read ELF header */
3710 offset = lseek(fd, 0, SEEK_SET);
3711 if (offset == (off_t) -1) {
3712 return 0;
3713 }
3714 ret = read(fd, &ehdr, sizeof(ehdr));
3715 if (ret < sizeof(ehdr)) {
3716 return 0;
3717 }
3718 offset = lseek(fd, offset, SEEK_SET);
3719 if (offset == (off_t) -1) {
3720 return 0;
3721 }
3722
3723 /* Check ELF signature */
3724 if (!elf_check_ident(&ehdr)) {
3725 return 0;
3726 }
3727
3728 /* check header */
3729 bswap_ehdr(&ehdr);
3730 if (!elf_check_ehdr(&ehdr)) {
3731 return 0;
3732 }
3733
3734 /* return architecture id */
3735 return ehdr.e_flags;
3736}
3737
f0116c54 3738int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 3739{
8e62a717 3740 struct image_info interp_info;
31e31b8a 3741 struct elfhdr elf_ex;
8e62a717 3742 char *elf_interpreter = NULL;
59baae9a 3743 char *scratch;
31e31b8a 3744
abcac736
DS
3745 memset(&interp_info, 0, sizeof(interp_info));
3746#ifdef TARGET_MIPS
3747 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3748#endif
3749
bf858897
RH
3750 load_elf_image(bprm->filename, bprm->fd, info,
3751 &elf_interpreter, bprm->buf);
31e31b8a 3752
bf858897
RH
3753 /* ??? We need a copy of the elf header for passing to create_elf_tables.
3754 If we do nothing, we'll have overwritten this when we re-use bprm->buf
3755 when we load the interpreter. */
3756 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 3757
59baae9a
SB
3758 /* Do this so that we can load the interpreter, if need be. We will
3759 change some of these later */
3760 bprm->p = setup_arg_pages(bprm, info);
3761
3762 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
3763 if (STACK_GROWS_DOWN) {
3764 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3765 bprm->p, info->stack_limit);
3766 info->file_string = bprm->p;
3767 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3768 bprm->p, info->stack_limit);
3769 info->env_strings = bprm->p;
3770 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3771 bprm->p, info->stack_limit);
3772 info->arg_strings = bprm->p;
3773 } else {
3774 info->arg_strings = bprm->p;
3775 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3776 bprm->p, info->stack_limit);
3777 info->env_strings = bprm->p;
3778 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3779 bprm->p, info->stack_limit);
3780 info->file_string = bprm->p;
3781 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3782 bprm->p, info->stack_limit);
3783 }
3784
59baae9a
SB
3785 g_free(scratch);
3786
e5fe0c52 3787 if (!bprm->p) {
bf858897
RH
3788 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3789 exit(-1);
379f6698 3790 }
379f6698 3791
8e62a717
RH
3792 if (elf_interpreter) {
3793 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 3794
1f356e8c
HD
3795 /*
3796 * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
3797 * with the mappings the interpreter can be loaded above but
3798 * near the main executable, which can leave very little room
3799 * for the heap.
3800 * If the current brk has less than 16MB, use the end of the
3801 * interpreter.
3802 */
3803 if (interp_info.brk > info->brk &&
3804 interp_info.load_bias - info->brk < 16 * MiB) {
3805 info->brk = interp_info.brk;
3806 }
3807
8e62a717
RH
3808 /* If the program interpreter is one of these two, then assume
3809 an iBCS2 image. Otherwise assume a native linux image. */
3810
3811 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3812 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3813 info->personality = PER_SVR4;
31e31b8a 3814
8e62a717
RH
3815 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3816 and some applications "depend" upon this behavior. Since
3817 we do not have the power to recompile these, we emulate
3818 the SVr4 behavior. Sigh. */
3819 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 3820 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 3821 }
c94cb6c9
SM
3822#ifdef TARGET_MIPS
3823 info->interp_fp_abi = interp_info.fp_abi;
3824#endif
31e31b8a
FB
3825 }
3826
db2af69d
RH
3827 /*
3828 * TODO: load a vdso, which would also contain the signal trampolines.
3829 * Otherwise, allocate a private page to hold them.
3830 */
3831 if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
802ae45e
LV
3832 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3833 PROT_READ | PROT_WRITE,
3834 MAP_PRIVATE | MAP_ANON, -1, 0);
3835 if (tramp_page == -1) {
3836 return -errno;
3837 }
3838
db2af69d
RH
3839 setup_sigtramp(tramp_page);
3840 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3841 }
3842
8e62a717
RH
3843 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3844 info, (elf_interpreter ? &interp_info : NULL));
3845 info->start_stack = bprm->p;
3846
3847 /* If we have an interpreter, set that as the program's entry point.
8e78064e 3848 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
3849 point as a function descriptor. Do this after creating elf tables
3850 so that we copy the original program entry point into the AUXV. */
3851 if (elf_interpreter) {
8e78064e 3852 info->load_bias = interp_info.load_bias;
8e62a717 3853 info->entry = interp_info.entry;
2b323087 3854 g_free(elf_interpreter);
8e62a717 3855 }
31e31b8a 3856
edf8e2af
MW
3857#ifdef USE_ELF_CORE_DUMP
3858 bprm->core_dump = &elf_core_dump;
3859#endif
3860
31e31b8a
FB
3861 return 0;
3862}
3863
edf8e2af 3864#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
3865/*
3866 * Definitions to generate Intel SVR4-like core files.
a2547a13 3867 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
3868 * tacked on the front to prevent clashes with linux definitions,
3869 * and the typedef forms have been avoided. This is mostly like
3870 * the SVR4 structure, but more Linuxy, with things that Linux does
3871 * not support and which gdb doesn't really use excluded.
3872 *
3873 * Fields we don't dump (their contents is zero) in linux-user qemu
3874 * are marked with XXX.
3875 *
3876 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3877 *
3878 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 3879 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
3880 * the target resides):
3881 *
3882 * #define USE_ELF_CORE_DUMP
3883 *
3884 * Next you define type of register set used for dumping. ELF specification
3885 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3886 *
c227f099 3887 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 3888 * #define ELF_NREG <number of registers>
c227f099 3889 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 3890 *
edf8e2af
MW
3891 * Last step is to implement target specific function that copies registers
3892 * from given cpu into just specified register set. Prototype is:
3893 *
c227f099 3894 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 3895 * const CPUArchState *env);
edf8e2af
MW
3896 *
3897 * Parameters:
3898 * regs - copy register values into here (allocated and zeroed by caller)
3899 * env - copy registers from here
3900 *
3901 * Example for ARM target is provided in this file.
3902 */
3903
3904/* An ELF note in memory */
3905struct memelfnote {
3906 const char *name;
3907 size_t namesz;
3908 size_t namesz_rounded;
3909 int type;
3910 size_t datasz;
80f5ce75 3911 size_t datasz_rounded;
edf8e2af
MW
3912 void *data;
3913 size_t notesz;
3914};
3915
a2547a13 3916struct target_elf_siginfo {
f8fd4fc4
PB
3917 abi_int si_signo; /* signal number */
3918 abi_int si_code; /* extra code */
3919 abi_int si_errno; /* errno */
edf8e2af
MW
3920};
3921
a2547a13
LD
3922struct target_elf_prstatus {
3923 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 3924 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
3925 abi_ulong pr_sigpend; /* XXX */
3926 abi_ulong pr_sighold; /* XXX */
c227f099
AL
3927 target_pid_t pr_pid;
3928 target_pid_t pr_ppid;
3929 target_pid_t pr_pgrp;
3930 target_pid_t pr_sid;
edf8e2af
MW
3931 struct target_timeval pr_utime; /* XXX User time */
3932 struct target_timeval pr_stime; /* XXX System time */
3933 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3934 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 3935 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 3936 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
3937};
3938
3939#define ELF_PRARGSZ (80) /* Number of chars for args */
3940
a2547a13 3941struct target_elf_prpsinfo {
edf8e2af
MW
3942 char pr_state; /* numeric process state */
3943 char pr_sname; /* char for pr_state */
3944 char pr_zomb; /* zombie */
3945 char pr_nice; /* nice val */
ca98ac83 3946 abi_ulong pr_flag; /* flags */
c227f099
AL
3947 target_uid_t pr_uid;
3948 target_gid_t pr_gid;
3949 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af 3950 /* Lots missing */
d7eb2b92 3951 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
edf8e2af
MW
3952 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3953};
3954
3955/* Here is the structure in which status of each thread is captured. */
3956struct elf_thread_status {
72cf2d4f 3957 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 3958 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
3959#if 0
3960 elf_fpregset_t fpu; /* NT_PRFPREG */
3961 struct task_struct *thread;
3962 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3963#endif
3964 struct memelfnote notes[1];
3965 int num_notes;
3966};
3967
3968struct elf_note_info {
3969 struct memelfnote *notes;
a2547a13
LD
3970 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3971 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 3972
b58deb34 3973 QTAILQ_HEAD(, elf_thread_status) thread_list;
edf8e2af
MW
3974#if 0
3975 /*
3976 * Current version of ELF coredump doesn't support
3977 * dumping fp regs etc.
3978 */
3979 elf_fpregset_t *fpu;
3980 elf_fpxregset_t *xfpu;
3981 int thread_status_size;
3982#endif
3983 int notes_size;
3984 int numnote;
3985};
3986
3987struct vm_area_struct {
1a1c4db9
MI
3988 target_ulong vma_start; /* start vaddr of memory region */
3989 target_ulong vma_end; /* end vaddr of memory region */
3990 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 3991 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
3992};
3993
3994struct mm_struct {
72cf2d4f 3995 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
3996 int mm_count; /* number of mappings */
3997};
3998
3999static struct mm_struct *vma_init(void);
4000static void vma_delete(struct mm_struct *);
1a1c4db9
MI
4001static int vma_add_mapping(struct mm_struct *, target_ulong,
4002 target_ulong, abi_ulong);
edf8e2af
MW
4003static int vma_get_mapping_count(const struct mm_struct *);
4004static struct vm_area_struct *vma_first(const struct mm_struct *);
4005static struct vm_area_struct *vma_next(struct vm_area_struct *);
4006static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 4007static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 4008 unsigned long flags);
edf8e2af
MW
4009
4010static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
4011static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 4012 unsigned int, void *);
a2547a13
LD
4013static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
4014static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
4015static void fill_auxv_note(struct memelfnote *, const TaskState *);
4016static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
4017static size_t note_size(const struct memelfnote *);
4018static void free_note_info(struct elf_note_info *);
9349b4f9
AF
4019static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
4020static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
4021
4022static int dump_write(int, const void *, size_t);
4023static int write_note(struct memelfnote *, int);
4024static int write_note_info(struct elf_note_info *, int);
4025
4026#ifdef BSWAP_NEEDED
a2547a13 4027static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 4028{
ca98ac83
PB
4029 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
4030 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
4031 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 4032 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
4033 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
4034 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
4035 prstatus->pr_pid = tswap32(prstatus->pr_pid);
4036 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
4037 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
4038 prstatus->pr_sid = tswap32(prstatus->pr_sid);
4039 /* cpu times are not filled, so we skip them */
4040 /* regs should be in correct format already */
4041 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
4042}
4043
a2547a13 4044static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 4045{
ca98ac83 4046 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
4047 psinfo->pr_uid = tswap16(psinfo->pr_uid);
4048 psinfo->pr_gid = tswap16(psinfo->pr_gid);
4049 psinfo->pr_pid = tswap32(psinfo->pr_pid);
4050 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
4051 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
4052 psinfo->pr_sid = tswap32(psinfo->pr_sid);
4053}
991f8f0c
RH
4054
4055static void bswap_note(struct elf_note *en)
4056{
4057 bswap32s(&en->n_namesz);
4058 bswap32s(&en->n_descsz);
4059 bswap32s(&en->n_type);
4060}
4061#else
4062static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
4063static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
4064static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
4065#endif /* BSWAP_NEEDED */
4066
4067/*
4068 * Minimal support for linux memory regions. These are needed
4069 * when we are finding out what memory exactly belongs to
4070 * emulated process. No locks needed here, as long as
4071 * thread that received the signal is stopped.
4072 */
4073
4074static struct mm_struct *vma_init(void)
4075{
4076 struct mm_struct *mm;
4077
7267c094 4078 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
4079 return (NULL);
4080
4081 mm->mm_count = 0;
72cf2d4f 4082 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
4083
4084 return (mm);
4085}
4086
4087static void vma_delete(struct mm_struct *mm)
4088{
4089 struct vm_area_struct *vma;
4090
4091 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 4092 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 4093 g_free(vma);
edf8e2af 4094 }
7267c094 4095 g_free(mm);
edf8e2af
MW
4096}
4097
1a1c4db9
MI
4098static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
4099 target_ulong end, abi_ulong flags)
edf8e2af
MW
4100{
4101 struct vm_area_struct *vma;
4102
7267c094 4103 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
4104 return (-1);
4105
4106 vma->vma_start = start;
4107 vma->vma_end = end;
4108 vma->vma_flags = flags;
4109
72cf2d4f 4110 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
4111 mm->mm_count++;
4112
4113 return (0);
4114}
4115
4116static struct vm_area_struct *vma_first(const struct mm_struct *mm)
4117{
72cf2d4f 4118 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
4119}
4120
4121static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
4122{
72cf2d4f 4123 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
4124}
4125
4126static int vma_get_mapping_count(const struct mm_struct *mm)
4127{
4128 return (mm->mm_count);
4129}
4130
4131/*
4132 * Calculate file (dump) size of given memory region.
4133 */
4134static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
4135{
4136 /* if we cannot even read the first page, skip it */
c7169b02 4137 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
edf8e2af
MW
4138 return (0);
4139
4140 /*
4141 * Usually we don't dump executable pages as they contain
4142 * non-writable code that debugger can read directly from
4143 * target library etc. However, thread stacks are marked
4144 * also executable so we read in first page of given region
4145 * and check whether it contains elf header. If there is
4146 * no elf header, we dump it.
4147 */
4148 if (vma->vma_flags & PROT_EXEC) {
4149 char page[TARGET_PAGE_SIZE];
4150
022625a8
PM
4151 if (copy_from_user(page, vma->vma_start, sizeof (page))) {
4152 return 0;
4153 }
edf8e2af
MW
4154 if ((page[EI_MAG0] == ELFMAG0) &&
4155 (page[EI_MAG1] == ELFMAG1) &&
4156 (page[EI_MAG2] == ELFMAG2) &&
4157 (page[EI_MAG3] == ELFMAG3)) {
4158 /*
4159 * Mappings are possibly from ELF binary. Don't dump
4160 * them.
4161 */
4162 return (0);
4163 }
4164 }
4165
4166 return (vma->vma_end - vma->vma_start);
4167}
4168
1a1c4db9 4169static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 4170 unsigned long flags)
edf8e2af
MW
4171{
4172 struct mm_struct *mm = (struct mm_struct *)priv;
4173
edf8e2af
MW
4174 vma_add_mapping(mm, start, end, flags);
4175 return (0);
4176}
4177
4178static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 4179 unsigned int sz, void *data)
edf8e2af
MW
4180{
4181 unsigned int namesz;
4182
4183 namesz = strlen(name) + 1;
4184 note->name = name;
4185 note->namesz = namesz;
4186 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
4187 note->type = type;
80f5ce75
LV
4188 note->datasz = sz;
4189 note->datasz_rounded = roundup(sz, sizeof (int32_t));
4190
edf8e2af
MW
4191 note->data = data;
4192
4193 /*
4194 * We calculate rounded up note size here as specified by
4195 * ELF document.
4196 */
4197 note->notesz = sizeof (struct elf_note) +
80f5ce75 4198 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
4199}
4200
4201static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 4202 uint32_t flags)
edf8e2af
MW
4203{
4204 (void) memset(elf, 0, sizeof(*elf));
4205
4206 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
4207 elf->e_ident[EI_CLASS] = ELF_CLASS;
4208 elf->e_ident[EI_DATA] = ELF_DATA;
4209 elf->e_ident[EI_VERSION] = EV_CURRENT;
4210 elf->e_ident[EI_OSABI] = ELF_OSABI;
4211
4212 elf->e_type = ET_CORE;
4213 elf->e_machine = machine;
4214 elf->e_version = EV_CURRENT;
4215 elf->e_phoff = sizeof(struct elfhdr);
4216 elf->e_flags = flags;
4217 elf->e_ehsize = sizeof(struct elfhdr);
4218 elf->e_phentsize = sizeof(struct elf_phdr);
4219 elf->e_phnum = segs;
4220
edf8e2af 4221 bswap_ehdr(elf);
edf8e2af
MW
4222}
4223
4224static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
4225{
4226 phdr->p_type = PT_NOTE;
4227 phdr->p_offset = offset;
4228 phdr->p_vaddr = 0;
4229 phdr->p_paddr = 0;
4230 phdr->p_filesz = sz;
4231 phdr->p_memsz = 0;
4232 phdr->p_flags = 0;
4233 phdr->p_align = 0;
4234
991f8f0c 4235 bswap_phdr(phdr, 1);
edf8e2af
MW
4236}
4237
4238static size_t note_size(const struct memelfnote *note)
4239{
4240 return (note->notesz);
4241}
4242
a2547a13 4243static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 4244 const TaskState *ts, int signr)
edf8e2af
MW
4245{
4246 (void) memset(prstatus, 0, sizeof (*prstatus));
4247 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4248 prstatus->pr_pid = ts->ts_tid;
4249 prstatus->pr_ppid = getppid();
4250 prstatus->pr_pgrp = getpgrp();
4251 prstatus->pr_sid = getsid(0);
4252
edf8e2af 4253 bswap_prstatus(prstatus);
edf8e2af
MW
4254}
4255
a2547a13 4256static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 4257{
900cfbca 4258 char *base_filename;
edf8e2af
MW
4259 unsigned int i, len;
4260
4261 (void) memset(psinfo, 0, sizeof (*psinfo));
4262
5f779a3a 4263 len = ts->info->env_strings - ts->info->arg_strings;
edf8e2af
MW
4264 if (len >= ELF_PRARGSZ)
4265 len = ELF_PRARGSZ - 1;
5f779a3a 4266 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
edf8e2af 4267 return -EFAULT;
5f779a3a 4268 }
edf8e2af
MW
4269 for (i = 0; i < len; i++)
4270 if (psinfo->pr_psargs[i] == 0)
4271 psinfo->pr_psargs[i] = ' ';
4272 psinfo->pr_psargs[len] = 0;
4273
4274 psinfo->pr_pid = getpid();
4275 psinfo->pr_ppid = getppid();
4276 psinfo->pr_pgrp = getpgrp();
4277 psinfo->pr_sid = getsid(0);
4278 psinfo->pr_uid = getuid();
4279 psinfo->pr_gid = getgid();
4280
900cfbca
JM
4281 base_filename = g_path_get_basename(ts->bprm->filename);
4282 /*
4283 * Using strncpy here is fine: at max-length,
4284 * this field is not NUL-terminated.
4285 */
edf8e2af 4286 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 4287 sizeof(psinfo->pr_fname));
edf8e2af 4288
900cfbca 4289 g_free(base_filename);
edf8e2af 4290 bswap_psinfo(psinfo);
edf8e2af
MW
4291 return (0);
4292}
4293
4294static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4295{
4296 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4297 elf_addr_t orig_auxv = auxv;
edf8e2af 4298 void *ptr;
125b0f55 4299 int len = ts->info->auxv_len;
edf8e2af
MW
4300
4301 /*
4302 * Auxiliary vector is stored in target process stack. It contains
4303 * {type, value} pairs that we need to dump into note. This is not
4304 * strictly necessary but we do it here for sake of completeness.
4305 */
4306
edf8e2af
MW
4307 /* read in whole auxv vector and copy it to memelfnote */
4308 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4309 if (ptr != NULL) {
4310 fill_note(note, "CORE", NT_AUXV, len, ptr);
4311 unlock_user(ptr, auxv, len);
4312 }
4313}
4314
4315/*
4316 * Constructs name of coredump file. We have following convention
4317 * for the name:
4318 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4319 *
68af19ad 4320 * Returns the filename
edf8e2af 4321 */
68af19ad 4322static char *core_dump_filename(const TaskState *ts)
edf8e2af 4323{
68af19ad
DB
4324 g_autoptr(GDateTime) now = g_date_time_new_now_local();
4325 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4326 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 4327
68af19ad
DB
4328 return g_strdup_printf("qemu_%s_%s_%d.core",
4329 base_filename, nowstr, (int)getpid());
edf8e2af
MW
4330}
4331
4332static int dump_write(int fd, const void *ptr, size_t size)
4333{
4334 const char *bufp = (const char *)ptr;
4335 ssize_t bytes_written, bytes_left;
4336 struct rlimit dumpsize;
4337 off_t pos;
4338
4339 bytes_written = 0;
4340 getrlimit(RLIMIT_CORE, &dumpsize);
4341 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4342 if (errno == ESPIPE) { /* not a seekable stream */
4343 bytes_left = size;
4344 } else {
4345 return pos;
4346 }
4347 } else {
4348 if (dumpsize.rlim_cur <= pos) {
4349 return -1;
4350 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4351 bytes_left = size;
4352 } else {
4353 size_t limit_left=dumpsize.rlim_cur - pos;
4354 bytes_left = limit_left >= size ? size : limit_left ;
4355 }
4356 }
4357
4358 /*
4359 * In normal conditions, single write(2) should do but
4360 * in case of socket etc. this mechanism is more portable.
4361 */
4362 do {
4363 bytes_written = write(fd, bufp, bytes_left);
4364 if (bytes_written < 0) {
4365 if (errno == EINTR)
4366 continue;
4367 return (-1);
4368 } else if (bytes_written == 0) { /* eof */
4369 return (-1);
4370 }
4371 bufp += bytes_written;
4372 bytes_left -= bytes_written;
4373 } while (bytes_left > 0);
4374
4375 return (0);
4376}
4377
4378static int write_note(struct memelfnote *men, int fd)
4379{
4380 struct elf_note en;
4381
4382 en.n_namesz = men->namesz;
4383 en.n_type = men->type;
4384 en.n_descsz = men->datasz;
4385
edf8e2af 4386 bswap_note(&en);
edf8e2af
MW
4387
4388 if (dump_write(fd, &en, sizeof(en)) != 0)
4389 return (-1);
4390 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4391 return (-1);
80f5ce75 4392 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
4393 return (-1);
4394
4395 return (0);
4396}
4397
9349b4f9 4398static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 4399{
29a0af61 4400 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 4401 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
4402 struct elf_thread_status *ets;
4403
7267c094 4404 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
4405 ets->num_notes = 1; /* only prstatus is dumped */
4406 fill_prstatus(&ets->prstatus, ts, 0);
4407 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4408 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 4409 &ets->prstatus);
edf8e2af 4410
72cf2d4f 4411 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
4412
4413 info->notes_size += note_size(&ets->notes[0]);
4414}
4415
6afafa86
PM
4416static void init_note_info(struct elf_note_info *info)
4417{
4418 /* Initialize the elf_note_info structure so that it is at
4419 * least safe to call free_note_info() on it. Must be
4420 * called before calling fill_note_info().
4421 */
4422 memset(info, 0, sizeof (*info));
4423 QTAILQ_INIT(&info->thread_list);
4424}
4425
edf8e2af 4426static int fill_note_info(struct elf_note_info *info,
9349b4f9 4427 long signr, const CPUArchState *env)
edf8e2af
MW
4428{
4429#define NUMNOTES 3
29a0af61 4430 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 4431 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
4432 int i;
4433
c78d65e8 4434 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
4435 if (info->notes == NULL)
4436 return (-ENOMEM);
7267c094 4437 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
4438 if (info->prstatus == NULL)
4439 return (-ENOMEM);
7267c094 4440 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
4441 if (info->prstatus == NULL)
4442 return (-ENOMEM);
4443
4444 /*
4445 * First fill in status (and registers) of current thread
4446 * including process info & aux vector.
4447 */
4448 fill_prstatus(info->prstatus, ts, signr);
4449 elf_core_copy_regs(&info->prstatus->pr_reg, env);
4450 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 4451 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
4452 fill_psinfo(info->psinfo, ts);
4453 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 4454 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
4455 fill_auxv_note(&info->notes[2], ts);
4456 info->numnote = 3;
4457
4458 info->notes_size = 0;
4459 for (i = 0; i < info->numnote; i++)
4460 info->notes_size += note_size(&info->notes[i]);
4461
4462 /* read and fill status of all threads */
370ed600
JI
4463 WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock) {
4464 CPU_FOREACH(cpu) {
4465 if (cpu == thread_cpu) {
4466 continue;
4467 }
b77af26e 4468 fill_thread_info(info, cpu_env(cpu));
182735ef 4469 }
edf8e2af 4470 }
edf8e2af
MW
4471
4472 return (0);
4473}
4474
4475static void free_note_info(struct elf_note_info *info)
4476{
4477 struct elf_thread_status *ets;
4478
72cf2d4f
BS
4479 while (!QTAILQ_EMPTY(&info->thread_list)) {
4480 ets = QTAILQ_FIRST(&info->thread_list);
4481 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 4482 g_free(ets);
edf8e2af
MW
4483 }
4484
7267c094
AL
4485 g_free(info->prstatus);
4486 g_free(info->psinfo);
4487 g_free(info->notes);
edf8e2af
MW
4488}
4489
4490static int write_note_info(struct elf_note_info *info, int fd)
4491{
4492 struct elf_thread_status *ets;
4493 int i, error = 0;
4494
4495 /* write prstatus, psinfo and auxv for current thread */
4496 for (i = 0; i < info->numnote; i++)
4497 if ((error = write_note(&info->notes[i], fd)) != 0)
4498 return (error);
4499
4500 /* write prstatus for each thread */
52a53afe 4501 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
4502 if ((error = write_note(&ets->notes[0], fd)) != 0)
4503 return (error);
4504 }
4505
4506 return (0);
4507}
4508
4509/*
4510 * Write out ELF coredump.
4511 *
4512 * See documentation of ELF object file format in:
4513 * http://www.caldera.com/developers/devspecs/gabi41.pdf
4514 *
4515 * Coredump format in linux is following:
4516 *
4517 * 0 +----------------------+ \
4518 * | ELF header | ET_CORE |
4519 * +----------------------+ |
4520 * | ELF program headers | |--- headers
4521 * | - NOTE section | |
4522 * | - PT_LOAD sections | |
4523 * +----------------------+ /
4524 * | NOTEs: |
4525 * | - NT_PRSTATUS |
4526 * | - NT_PRSINFO |
4527 * | - NT_AUXV |
4528 * +----------------------+ <-- aligned to target page
4529 * | Process memory dump |
4530 * : :
4531 * . .
4532 * : :
4533 * | |
4534 * +----------------------+
4535 *
4536 * NT_PRSTATUS -> struct elf_prstatus (per thread)
4537 * NT_PRSINFO -> struct elf_prpsinfo
4538 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4539 *
4540 * Format follows System V format as close as possible. Current
4541 * version limitations are as follows:
4542 * - no floating point registers are dumped
4543 *
4544 * Function returns 0 in case of success, negative errno otherwise.
4545 *
4546 * TODO: make this work also during runtime: it should be
4547 * possible to force coredump from running process and then
4548 * continue processing. For example qemu could set up SIGUSR2
4549 * handler (provided that target process haven't registered
4550 * handler for that) that does the dump when signal is received.
4551 */
9349b4f9 4552static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 4553{
29a0af61 4554 const CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 4555 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af 4556 struct vm_area_struct *vma = NULL;
68af19ad 4557 g_autofree char *corefile = NULL;
edf8e2af
MW
4558 struct elf_note_info info;
4559 struct elfhdr elf;
4560 struct elf_phdr phdr;
4561 struct rlimit dumpsize;
4562 struct mm_struct *mm = NULL;
4563 off_t offset = 0, data_offset = 0;
4564 int segs = 0;
4565 int fd = -1;
4566
6afafa86
PM
4567 init_note_info(&info);
4568
edf8e2af
MW
4569 errno = 0;
4570 getrlimit(RLIMIT_CORE, &dumpsize);
4571 if (dumpsize.rlim_cur == 0)
d97ef72e 4572 return 0;
edf8e2af 4573
68af19ad 4574 corefile = core_dump_filename(ts);
edf8e2af
MW
4575
4576 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 4577 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
4578 return (-errno);
4579
4580 /*
4581 * Walk through target process memory mappings and
4582 * set up structure containing this information. After
4583 * this point vma_xxx functions can be used.
4584 */
4585 if ((mm = vma_init()) == NULL)
4586 goto out;
4587
4588 walk_memory_regions(mm, vma_walker);
4589 segs = vma_get_mapping_count(mm);
4590
4591 /*
4592 * Construct valid coredump ELF header. We also
4593 * add one more segment for notes.
4594 */
4595 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4596 if (dump_write(fd, &elf, sizeof (elf)) != 0)
4597 goto out;
4598
b6af0975 4599 /* fill in the in-memory version of notes */
edf8e2af
MW
4600 if (fill_note_info(&info, signr, env) < 0)
4601 goto out;
4602
4603 offset += sizeof (elf); /* elf header */
4604 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
4605
4606 /* write out notes program header */
4607 fill_elf_note_phdr(&phdr, info.notes_size, offset);
4608
4609 offset += info.notes_size;
4610 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4611 goto out;
4612
4613 /*
4614 * ELF specification wants data to start at page boundary so
4615 * we align it here.
4616 */
80f5ce75 4617 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
4618
4619 /*
4620 * Write program headers for memory regions mapped in
4621 * the target process.
4622 */
4623 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4624 (void) memset(&phdr, 0, sizeof (phdr));
4625
4626 phdr.p_type = PT_LOAD;
4627 phdr.p_offset = offset;
4628 phdr.p_vaddr = vma->vma_start;
4629 phdr.p_paddr = 0;
4630 phdr.p_filesz = vma_dump_size(vma);
4631 offset += phdr.p_filesz;
4632 phdr.p_memsz = vma->vma_end - vma->vma_start;
4633 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4634 if (vma->vma_flags & PROT_WRITE)
4635 phdr.p_flags |= PF_W;
4636 if (vma->vma_flags & PROT_EXEC)
4637 phdr.p_flags |= PF_X;
4638 phdr.p_align = ELF_EXEC_PAGESIZE;
4639
80f5ce75 4640 bswap_phdr(&phdr, 1);
772034b6
PM
4641 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4642 goto out;
4643 }
edf8e2af
MW
4644 }
4645
4646 /*
4647 * Next we write notes just after program headers. No
4648 * alignment needed here.
4649 */
4650 if (write_note_info(&info, fd) < 0)
4651 goto out;
4652
4653 /* align data to page boundary */
edf8e2af
MW
4654 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4655 goto out;
4656
4657 /*
4658 * Finally we can dump process memory into corefile as well.
4659 */
4660 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4661 abi_ulong addr;
4662 abi_ulong end;
4663
4664 end = vma->vma_start + vma_dump_size(vma);
4665
4666 for (addr = vma->vma_start; addr < end;
d97ef72e 4667 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
4668 char page[TARGET_PAGE_SIZE];
4669 int error;
4670
4671 /*
4672 * Read in page from target process memory and
4673 * write it to coredump file.
4674 */
4675 error = copy_from_user(page, addr, sizeof (page));
4676 if (error != 0) {
49995e17 4677 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 4678 addr);
edf8e2af
MW
4679 errno = -error;
4680 goto out;
4681 }
4682 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4683 goto out;
4684 }
4685 }
4686
d97ef72e 4687 out:
edf8e2af
MW
4688 free_note_info(&info);
4689 if (mm != NULL)
4690 vma_delete(mm);
4691 (void) close(fd);
4692
4693 if (errno != 0)
4694 return (-errno);
4695 return (0);
4696}
edf8e2af
MW
4697#endif /* USE_ELF_CORE_DUMP */
4698
e5fe0c52
PB
4699void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4700{
4701 init_thread(regs, infop);
4702}