]> git.proxmox.com Git - mirror_qemu.git/blame - linux-user/elfload.c
linux-user: added support for preadv() system call.
[mirror_qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
31e31b8a 6
3ef693a0 7#include "qemu.h"
76cad711 8#include "disas/disas.h"
f348b6d1 9#include "qemu/path.h"
31e31b8a 10
e58ffeb3 11#ifdef _ARCH_PPC64
a6cc84f4 12#undef ARCH_DLINFO
13#undef ELF_PLATFORM
14#undef ELF_HWCAP
ad6919dc 15#undef ELF_HWCAP2
a6cc84f4 16#undef ELF_CLASS
17#undef ELF_DATA
18#undef ELF_ARCH
19#endif
20
edf8e2af
MW
21#define ELF_OSABI ELFOSABI_SYSV
22
cb33da57
BS
23/* from personality.h */
24
25/*
26 * Flags for bug emulation.
27 *
28 * These occupy the top three bytes.
29 */
30enum {
d97ef72e
RH
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
42};
43
44/*
45 * Personality types.
46 *
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
49 */
50enum {
d97ef72e
RH
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
cb33da57
BS
74};
75
76/*
77 * Return the base personality without flags.
78 */
d97ef72e 79#define personality(pers) (pers & PER_MASK)
cb33da57 80
83fb7adf
FB
81/* this flag is uneffective under linux too, should be deleted */
82#ifndef MAP_DENYWRITE
83#define MAP_DENYWRITE 0
84#endif
85
86/* should probably go in elf.h */
87#ifndef ELIBBAD
88#define ELIBBAD 80
89#endif
90
28490231
RH
91#ifdef TARGET_WORDS_BIGENDIAN
92#define ELF_DATA ELFDATA2MSB
93#else
94#define ELF_DATA ELFDATA2LSB
95#endif
96
a29f998d 97#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
98typedef abi_ullong target_elf_greg_t;
99#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
100#else
101typedef abi_ulong target_elf_greg_t;
102#define tswapreg(ptr) tswapal(ptr)
103#endif
104
21e807fa 105#ifdef USE_UID16
1ddd592f
PB
106typedef abi_ushort target_uid_t;
107typedef abi_ushort target_gid_t;
21e807fa 108#else
f8fd4fc4
PB
109typedef abi_uint target_uid_t;
110typedef abi_uint target_gid_t;
21e807fa 111#endif
f8fd4fc4 112typedef abi_int target_pid_t;
21e807fa 113
30ac07d4
FB
114#ifdef TARGET_I386
115
15338fd7
FB
116#define ELF_PLATFORM get_elf_platform()
117
118static const char *get_elf_platform(void)
119{
120 static char elf_platform[] = "i386";
a2247f8e 121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
127}
128
129#define ELF_HWCAP get_elf_hwcap()
130
131static uint32_t get_elf_hwcap(void)
132{
a2247f8e
AF
133 X86CPU *cpu = X86_CPU(thread_cpu);
134
135 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
136}
137
84409ddb
JM
138#ifdef TARGET_X86_64
139#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
140
141#define ELF_CLASS ELFCLASS64
84409ddb
JM
142#define ELF_ARCH EM_X86_64
143
144static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
145{
146 regs->rax = 0;
147 regs->rsp = infop->start_stack;
148 regs->rip = infop->entry;
149}
150
9edc5d79 151#define ELF_NREG 27
c227f099 152typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
153
154/*
155 * Note that ELF_NREG should be 29 as there should be place for
156 * TRAPNO and ERR "registers" as well but linux doesn't dump
157 * those.
158 *
159 * See linux kernel: arch/x86/include/asm/elf.h
160 */
05390248 161static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
162{
163 (*regs)[0] = env->regs[15];
164 (*regs)[1] = env->regs[14];
165 (*regs)[2] = env->regs[13];
166 (*regs)[3] = env->regs[12];
167 (*regs)[4] = env->regs[R_EBP];
168 (*regs)[5] = env->regs[R_EBX];
169 (*regs)[6] = env->regs[11];
170 (*regs)[7] = env->regs[10];
171 (*regs)[8] = env->regs[9];
172 (*regs)[9] = env->regs[8];
173 (*regs)[10] = env->regs[R_EAX];
174 (*regs)[11] = env->regs[R_ECX];
175 (*regs)[12] = env->regs[R_EDX];
176 (*regs)[13] = env->regs[R_ESI];
177 (*regs)[14] = env->regs[R_EDI];
178 (*regs)[15] = env->regs[R_EAX]; /* XXX */
179 (*regs)[16] = env->eip;
180 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
181 (*regs)[18] = env->eflags;
182 (*regs)[19] = env->regs[R_ESP];
183 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
184 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
185 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
186 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
187 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
188 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
189 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
190}
191
84409ddb
JM
192#else
193
30ac07d4
FB
194#define ELF_START_MMAP 0x80000000
195
30ac07d4
FB
196/*
197 * This is used to ensure we don't load something for the wrong architecture.
198 */
199#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
200
201/*
202 * These are used to set parameters in the core dumps.
203 */
d97ef72e 204#define ELF_CLASS ELFCLASS32
d97ef72e 205#define ELF_ARCH EM_386
30ac07d4 206
d97ef72e
RH
207static inline void init_thread(struct target_pt_regs *regs,
208 struct image_info *infop)
b346ff46
FB
209{
210 regs->esp = infop->start_stack;
211 regs->eip = infop->entry;
e5fe0c52
PB
212
213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214 starts %edx contains a pointer to a function which might be
215 registered using `atexit'. This provides a mean for the
216 dynamic linker to call DT_FINI functions for shared libraries
217 that have been loaded before the code runs.
218
219 A value of 0 tells we have no such handler. */
220 regs->edx = 0;
b346ff46 221}
9edc5d79 222
9edc5d79 223#define ELF_NREG 17
c227f099 224typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
225
226/*
227 * Note that ELF_NREG should be 19 as there should be place for
228 * TRAPNO and ERR "registers" as well but linux doesn't dump
229 * those.
230 *
231 * See linux kernel: arch/x86/include/asm/elf.h
232 */
05390248 233static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
234{
235 (*regs)[0] = env->regs[R_EBX];
236 (*regs)[1] = env->regs[R_ECX];
237 (*regs)[2] = env->regs[R_EDX];
238 (*regs)[3] = env->regs[R_ESI];
239 (*regs)[4] = env->regs[R_EDI];
240 (*regs)[5] = env->regs[R_EBP];
241 (*regs)[6] = env->regs[R_EAX];
242 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
243 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
244 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
245 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
246 (*regs)[11] = env->regs[R_EAX]; /* XXX */
247 (*regs)[12] = env->eip;
248 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
249 (*regs)[14] = env->eflags;
250 (*regs)[15] = env->regs[R_ESP];
251 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
252}
84409ddb 253#endif
b346ff46 254
9edc5d79 255#define USE_ELF_CORE_DUMP
d97ef72e 256#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
257
258#endif
259
260#ifdef TARGET_ARM
261
24e76ff0
PM
262#ifndef TARGET_AARCH64
263/* 32 bit ARM definitions */
264
b346ff46
FB
265#define ELF_START_MMAP 0x80000000
266
b597c3f7 267#define ELF_ARCH EM_ARM
d97ef72e 268#define ELF_CLASS ELFCLASS32
b346ff46 269
d97ef72e
RH
270static inline void init_thread(struct target_pt_regs *regs,
271 struct image_info *infop)
b346ff46 272{
992f48a0 273 abi_long stack = infop->start_stack;
b346ff46 274 memset(regs, 0, sizeof(*regs));
99033cae 275
167e4cdc
PM
276 regs->uregs[16] = ARM_CPU_MODE_USR;
277 if (infop->entry & 1) {
278 regs->uregs[16] |= CPSR_T;
279 }
280 regs->uregs[15] = infop->entry & 0xfffffffe;
281 regs->uregs[13] = infop->start_stack;
2f619698 282 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
283 get_user_ual(regs->uregs[2], stack + 8); /* envp */
284 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 285 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 286 regs->uregs[0] = 0;
e5fe0c52 287 /* For uClinux PIC binaries. */
863cf0b7 288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 289 regs->uregs[10] = infop->start_data;
b346ff46
FB
290}
291
edf8e2af 292#define ELF_NREG 18
c227f099 293typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 294
05390248 295static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 296{
86cd7b2d
PB
297 (*regs)[0] = tswapreg(env->regs[0]);
298 (*regs)[1] = tswapreg(env->regs[1]);
299 (*regs)[2] = tswapreg(env->regs[2]);
300 (*regs)[3] = tswapreg(env->regs[3]);
301 (*regs)[4] = tswapreg(env->regs[4]);
302 (*regs)[5] = tswapreg(env->regs[5]);
303 (*regs)[6] = tswapreg(env->regs[6]);
304 (*regs)[7] = tswapreg(env->regs[7]);
305 (*regs)[8] = tswapreg(env->regs[8]);
306 (*regs)[9] = tswapreg(env->regs[9]);
307 (*regs)[10] = tswapreg(env->regs[10]);
308 (*regs)[11] = tswapreg(env->regs[11]);
309 (*regs)[12] = tswapreg(env->regs[12]);
310 (*regs)[13] = tswapreg(env->regs[13]);
311 (*regs)[14] = tswapreg(env->regs[14]);
312 (*regs)[15] = tswapreg(env->regs[15]);
313
314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
316}
317
30ac07d4 318#define USE_ELF_CORE_DUMP
d97ef72e 319#define ELF_EXEC_PAGESIZE 4096
30ac07d4 320
afce2927
FB
321enum
322{
d97ef72e
RH
323 ARM_HWCAP_ARM_SWP = 1 << 0,
324 ARM_HWCAP_ARM_HALF = 1 << 1,
325 ARM_HWCAP_ARM_THUMB = 1 << 2,
326 ARM_HWCAP_ARM_26BIT = 1 << 3,
327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
328 ARM_HWCAP_ARM_FPA = 1 << 5,
329 ARM_HWCAP_ARM_VFP = 1 << 6,
330 ARM_HWCAP_ARM_EDSP = 1 << 7,
331 ARM_HWCAP_ARM_JAVA = 1 << 8,
332 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
333 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
334 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
335 ARM_HWCAP_ARM_NEON = 1 << 12,
336 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
338 ARM_HWCAP_ARM_TLS = 1 << 15,
339 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
340 ARM_HWCAP_ARM_IDIVA = 1 << 17,
341 ARM_HWCAP_ARM_IDIVT = 1 << 18,
342 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
343 ARM_HWCAP_ARM_LPAE = 1 << 20,
344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
345};
346
ad6919dc
PM
347enum {
348 ARM_HWCAP2_ARM_AES = 1 << 0,
349 ARM_HWCAP2_ARM_PMULL = 1 << 1,
350 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
351 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
352 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
353};
354
6b1275ff
PM
355/* The commpage only exists for 32 bit kernels */
356
806d1021
MI
357#define TARGET_HAS_VALIDATE_GUEST_SPACE
358/* Return 1 if the proposed guest space is suitable for the guest.
359 * Return 0 if the proposed guest space isn't suitable, but another
360 * address space should be tried.
361 * Return -1 if there is no way the proposed guest space can be
362 * valid regardless of the base.
363 * The guest code may leave a page mapped and populate it if the
364 * address is suitable.
365 */
366static int validate_guest_space(unsigned long guest_base,
367 unsigned long guest_size)
97cc7560
DDAG
368{
369 unsigned long real_start, test_page_addr;
370
371 /* We need to check that we can force a fault on access to the
372 * commpage at 0xffff0fxx
373 */
374 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
375
376 /* If the commpage lies within the already allocated guest space,
377 * then there is no way we can allocate it.
378 */
379 if (test_page_addr >= guest_base
380 && test_page_addr <= (guest_base + guest_size)) {
381 return -1;
382 }
383
97cc7560
DDAG
384 /* Note it needs to be writeable to let us initialise it */
385 real_start = (unsigned long)
386 mmap((void *)test_page_addr, qemu_host_page_size,
387 PROT_READ | PROT_WRITE,
388 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
389
390 /* If we can't map it then try another address */
391 if (real_start == -1ul) {
392 return 0;
393 }
394
395 if (real_start != test_page_addr) {
396 /* OS didn't put the page where we asked - unmap and reject */
397 munmap((void *)real_start, qemu_host_page_size);
398 return 0;
399 }
400
401 /* Leave the page mapped
402 * Populate it (mmap should have left it all 0'd)
403 */
404
405 /* Kernel helper versions */
406 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
407
408 /* Now it's populated make it RO */
409 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
410 perror("Protecting guest commpage");
411 exit(-1);
412 }
413
414 return 1; /* All good */
415}
adf050b1
BC
416
417#define ELF_HWCAP get_elf_hwcap()
ad6919dc 418#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
419
420static uint32_t get_elf_hwcap(void)
421{
a2247f8e 422 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
423 uint32_t hwcaps = 0;
424
425 hwcaps |= ARM_HWCAP_ARM_SWP;
426 hwcaps |= ARM_HWCAP_ARM_HALF;
427 hwcaps |= ARM_HWCAP_ARM_THUMB;
428 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
429
430 /* probe for the extra features */
431#define GET_FEATURE(feat, hwcap) \
a2247f8e 432 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
24682654
PM
433 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
434 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
435 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
24682654
PM
440 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
441 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
442 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
443 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
444 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
445 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
446 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
447 * to our VFP_FP16 feature bit.
448 */
449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
450 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
adf050b1
BC
451
452 return hwcaps;
453}
afce2927 454
ad6919dc
PM
455static uint32_t get_elf_hwcap2(void)
456{
457 ARMCPU *cpu = ARM_CPU(thread_cpu);
458 uint32_t hwcaps = 0;
459
460 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
4e624eda 461 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
f1ecb913
AB
462 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
463 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
ad6919dc
PM
464 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
465 return hwcaps;
466}
467
468#undef GET_FEATURE
469
24e76ff0
PM
470#else
471/* 64 bit ARM definitions */
472#define ELF_START_MMAP 0x80000000
473
b597c3f7 474#define ELF_ARCH EM_AARCH64
24e76ff0
PM
475#define ELF_CLASS ELFCLASS64
476#define ELF_PLATFORM "aarch64"
477
478static inline void init_thread(struct target_pt_regs *regs,
479 struct image_info *infop)
480{
481 abi_long stack = infop->start_stack;
482 memset(regs, 0, sizeof(*regs));
483
484 regs->pc = infop->entry & ~0x3ULL;
485 regs->sp = stack;
486}
487
488#define ELF_NREG 34
489typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
490
491static void elf_core_copy_regs(target_elf_gregset_t *regs,
492 const CPUARMState *env)
493{
494 int i;
495
496 for (i = 0; i < 32; i++) {
497 (*regs)[i] = tswapreg(env->xregs[i]);
498 }
499 (*regs)[32] = tswapreg(env->pc);
500 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
501}
502
503#define USE_ELF_CORE_DUMP
504#define ELF_EXEC_PAGESIZE 4096
505
506enum {
507 ARM_HWCAP_A64_FP = 1 << 0,
508 ARM_HWCAP_A64_ASIMD = 1 << 1,
509 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
510 ARM_HWCAP_A64_AES = 1 << 3,
511 ARM_HWCAP_A64_PMULL = 1 << 4,
512 ARM_HWCAP_A64_SHA1 = 1 << 5,
513 ARM_HWCAP_A64_SHA2 = 1 << 6,
514 ARM_HWCAP_A64_CRC32 = 1 << 7,
515};
516
517#define ELF_HWCAP get_elf_hwcap()
518
519static uint32_t get_elf_hwcap(void)
520{
521 ARMCPU *cpu = ARM_CPU(thread_cpu);
522 uint32_t hwcaps = 0;
523
524 hwcaps |= ARM_HWCAP_A64_FP;
525 hwcaps |= ARM_HWCAP_A64_ASIMD;
526
527 /* probe for the extra features */
528#define GET_FEATURE(feat, hwcap) \
529 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
5acc765c 530 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
411bdc78 531 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
f6fe04d5
PM
532 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
533 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
130f2e7d 534 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
24e76ff0
PM
535#undef GET_FEATURE
536
537 return hwcaps;
538}
539
540#endif /* not TARGET_AARCH64 */
541#endif /* TARGET_ARM */
30ac07d4 542
d2fbca94
GX
543#ifdef TARGET_UNICORE32
544
545#define ELF_START_MMAP 0x80000000
546
d2fbca94
GX
547#define ELF_CLASS ELFCLASS32
548#define ELF_DATA ELFDATA2LSB
549#define ELF_ARCH EM_UNICORE32
550
551static inline void init_thread(struct target_pt_regs *regs,
552 struct image_info *infop)
553{
554 abi_long stack = infop->start_stack;
555 memset(regs, 0, sizeof(*regs));
556 regs->UC32_REG_asr = 0x10;
557 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
558 regs->UC32_REG_sp = infop->start_stack;
559 /* FIXME - what to for failure of get_user()? */
560 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
561 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
562 /* XXX: it seems that r0 is zeroed after ! */
563 regs->UC32_REG_00 = 0;
564}
565
566#define ELF_NREG 34
567typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
568
05390248 569static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
d2fbca94
GX
570{
571 (*regs)[0] = env->regs[0];
572 (*regs)[1] = env->regs[1];
573 (*regs)[2] = env->regs[2];
574 (*regs)[3] = env->regs[3];
575 (*regs)[4] = env->regs[4];
576 (*regs)[5] = env->regs[5];
577 (*regs)[6] = env->regs[6];
578 (*regs)[7] = env->regs[7];
579 (*regs)[8] = env->regs[8];
580 (*regs)[9] = env->regs[9];
581 (*regs)[10] = env->regs[10];
582 (*regs)[11] = env->regs[11];
583 (*regs)[12] = env->regs[12];
584 (*regs)[13] = env->regs[13];
585 (*regs)[14] = env->regs[14];
586 (*regs)[15] = env->regs[15];
587 (*regs)[16] = env->regs[16];
588 (*regs)[17] = env->regs[17];
589 (*regs)[18] = env->regs[18];
590 (*regs)[19] = env->regs[19];
591 (*regs)[20] = env->regs[20];
592 (*regs)[21] = env->regs[21];
593 (*regs)[22] = env->regs[22];
594 (*regs)[23] = env->regs[23];
595 (*regs)[24] = env->regs[24];
596 (*regs)[25] = env->regs[25];
597 (*regs)[26] = env->regs[26];
598 (*regs)[27] = env->regs[27];
599 (*regs)[28] = env->regs[28];
600 (*regs)[29] = env->regs[29];
601 (*regs)[30] = env->regs[30];
602 (*regs)[31] = env->regs[31];
603
05390248 604 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
d2fbca94
GX
605 (*regs)[33] = env->regs[0]; /* XXX */
606}
607
608#define USE_ELF_CORE_DUMP
609#define ELF_EXEC_PAGESIZE 4096
610
611#define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
612
613#endif
614
853d6f7a 615#ifdef TARGET_SPARC
a315a145 616#ifdef TARGET_SPARC64
853d6f7a
FB
617
618#define ELF_START_MMAP 0x80000000
cf973e46
AT
619#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
620 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 621#ifndef TARGET_ABI32
cb33da57 622#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
623#else
624#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
625#endif
853d6f7a 626
a315a145 627#define ELF_CLASS ELFCLASS64
5ef54116
FB
628#define ELF_ARCH EM_SPARCV9
629
d97ef72e 630#define STACK_BIAS 2047
a315a145 631
d97ef72e
RH
632static inline void init_thread(struct target_pt_regs *regs,
633 struct image_info *infop)
a315a145 634{
992f48a0 635#ifndef TARGET_ABI32
a315a145 636 regs->tstate = 0;
992f48a0 637#endif
a315a145
FB
638 regs->pc = infop->entry;
639 regs->npc = regs->pc + 4;
640 regs->y = 0;
992f48a0
BS
641#ifdef TARGET_ABI32
642 regs->u_regs[14] = infop->start_stack - 16 * 4;
643#else
cb33da57
BS
644 if (personality(infop->personality) == PER_LINUX32)
645 regs->u_regs[14] = infop->start_stack - 16 * 4;
646 else
647 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 648#endif
a315a145
FB
649}
650
651#else
652#define ELF_START_MMAP 0x80000000
cf973e46
AT
653#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
654 | HWCAP_SPARC_MULDIV)
a315a145 655
853d6f7a 656#define ELF_CLASS ELFCLASS32
853d6f7a
FB
657#define ELF_ARCH EM_SPARC
658
d97ef72e
RH
659static inline void init_thread(struct target_pt_regs *regs,
660 struct image_info *infop)
853d6f7a 661{
f5155289
FB
662 regs->psr = 0;
663 regs->pc = infop->entry;
664 regs->npc = regs->pc + 4;
665 regs->y = 0;
666 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
667}
668
a315a145 669#endif
853d6f7a
FB
670#endif
671
67867308
FB
672#ifdef TARGET_PPC
673
4ecd4d16 674#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
675#define ELF_START_MMAP 0x80000000
676
e85e7c6e 677#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
678
679#define elf_check_arch(x) ( (x) == EM_PPC64 )
680
d97ef72e 681#define ELF_CLASS ELFCLASS64
84409ddb
JM
682
683#else
684
d97ef72e 685#define ELF_CLASS ELFCLASS32
84409ddb
JM
686
687#endif
688
d97ef72e 689#define ELF_ARCH EM_PPC
67867308 690
df84e4f3
NF
691/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
692 See arch/powerpc/include/asm/cputable.h. */
693enum {
3efa9a67 694 QEMU_PPC_FEATURE_32 = 0x80000000,
695 QEMU_PPC_FEATURE_64 = 0x40000000,
696 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
697 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
698 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
699 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
700 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
701 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
702 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
703 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
704 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
705 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
706 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
707 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
708 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
709 QEMU_PPC_FEATURE_CELL = 0x00010000,
710 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
711 QEMU_PPC_FEATURE_SMT = 0x00004000,
712 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
713 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
714 QEMU_PPC_FEATURE_PA6T = 0x00000800,
715 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
716 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
717 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
718 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
719 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
720
721 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
722 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
723
724 /* Feature definitions in AT_HWCAP2. */
725 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
726 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
727 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
728 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
729 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
730 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
df84e4f3
NF
731};
732
733#define ELF_HWCAP get_elf_hwcap()
734
735static uint32_t get_elf_hwcap(void)
736{
a2247f8e 737 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
738 uint32_t features = 0;
739
740 /* We don't have to be terribly complete here; the high points are
741 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 742#define GET_FEATURE(flag, feature) \
a2247f8e 743 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
744#define GET_FEATURE2(flags, feature) \
745 do { \
746 if ((cpu->env.insns_flags2 & flags) == flags) { \
747 features |= feature; \
748 } \
749 } while (0)
3efa9a67 750 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
751 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
752 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
753 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
754 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
755 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
756 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
757 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
758 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
759 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
760 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
761 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
762 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 763#undef GET_FEATURE
0e019746 764#undef GET_FEATURE2
df84e4f3
NF
765
766 return features;
767}
768
a60438dd
TM
769#define ELF_HWCAP2 get_elf_hwcap2()
770
771static uint32_t get_elf_hwcap2(void)
772{
773 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
774 uint32_t features = 0;
775
776#define GET_FEATURE(flag, feature) \
777 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
778#define GET_FEATURE2(flag, feature) \
779 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
780
781 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
782 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
783 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
784 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
785
786#undef GET_FEATURE
787#undef GET_FEATURE2
788
789 return features;
790}
791
f5155289
FB
792/*
793 * The requirements here are:
794 * - keep the final alignment of sp (sp & 0xf)
795 * - make sure the 32-bit value at the first 16 byte aligned position of
796 * AUXV is greater than 16 for glibc compatibility.
797 * AT_IGNOREPPC is used for that.
798 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
799 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
800 */
0bccf03d 801#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
802#define ARCH_DLINFO \
803 do { \
623e250a
TM
804 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
805 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
806 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
d97ef72e
RH
807 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
808 /* \
809 * Now handle glibc compatibility. \
810 */ \
811 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
812 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
813 } while (0)
f5155289 814
67867308
FB
815static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
816{
67867308 817 _regs->gpr[1] = infop->start_stack;
e85e7c6e 818#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 819 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
820 uint64_t val;
821 get_user_u64(val, infop->entry + 8);
822 _regs->gpr[2] = val + infop->load_bias;
823 get_user_u64(val, infop->entry);
824 infop->entry = val + infop->load_bias;
d90b94cd
DK
825 } else {
826 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
827 }
84409ddb 828#endif
67867308
FB
829 _regs->nip = infop->entry;
830}
831
e2f3e741
NF
832/* See linux kernel: arch/powerpc/include/asm/elf.h. */
833#define ELF_NREG 48
834typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
835
05390248 836static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
837{
838 int i;
839 target_ulong ccr = 0;
840
841 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 842 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
843 }
844
86cd7b2d
PB
845 (*regs)[32] = tswapreg(env->nip);
846 (*regs)[33] = tswapreg(env->msr);
847 (*regs)[35] = tswapreg(env->ctr);
848 (*regs)[36] = tswapreg(env->lr);
849 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
850
851 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
852 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
853 }
86cd7b2d 854 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
855}
856
857#define USE_ELF_CORE_DUMP
d97ef72e 858#define ELF_EXEC_PAGESIZE 4096
67867308
FB
859
860#endif
861
048f6b4d
FB
862#ifdef TARGET_MIPS
863
864#define ELF_START_MMAP 0x80000000
865
388bb21a
TS
866#ifdef TARGET_MIPS64
867#define ELF_CLASS ELFCLASS64
868#else
048f6b4d 869#define ELF_CLASS ELFCLASS32
388bb21a 870#endif
048f6b4d
FB
871#define ELF_ARCH EM_MIPS
872
d97ef72e
RH
873static inline void init_thread(struct target_pt_regs *regs,
874 struct image_info *infop)
048f6b4d 875{
623a930e 876 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
877 regs->cp0_epc = infop->entry;
878 regs->regs[29] = infop->start_stack;
879}
880
51e52606
NF
881/* See linux kernel: arch/mips/include/asm/elf.h. */
882#define ELF_NREG 45
883typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
884
885/* See linux kernel: arch/mips/include/asm/reg.h. */
886enum {
887#ifdef TARGET_MIPS64
888 TARGET_EF_R0 = 0,
889#else
890 TARGET_EF_R0 = 6,
891#endif
892 TARGET_EF_R26 = TARGET_EF_R0 + 26,
893 TARGET_EF_R27 = TARGET_EF_R0 + 27,
894 TARGET_EF_LO = TARGET_EF_R0 + 32,
895 TARGET_EF_HI = TARGET_EF_R0 + 33,
896 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
897 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
898 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
899 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
900};
901
902/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 903static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
904{
905 int i;
906
907 for (i = 0; i < TARGET_EF_R0; i++) {
908 (*regs)[i] = 0;
909 }
910 (*regs)[TARGET_EF_R0] = 0;
911
912 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 913 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
914 }
915
916 (*regs)[TARGET_EF_R26] = 0;
917 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
918 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
919 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
920 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
921 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
922 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
923 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
924}
925
926#define USE_ELF_CORE_DUMP
388bb21a
TS
927#define ELF_EXEC_PAGESIZE 4096
928
048f6b4d
FB
929#endif /* TARGET_MIPS */
930
b779e29e
EI
931#ifdef TARGET_MICROBLAZE
932
933#define ELF_START_MMAP 0x80000000
934
0d5d4699 935#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
936
937#define ELF_CLASS ELFCLASS32
0d5d4699 938#define ELF_ARCH EM_MICROBLAZE
b779e29e 939
d97ef72e
RH
940static inline void init_thread(struct target_pt_regs *regs,
941 struct image_info *infop)
b779e29e
EI
942{
943 regs->pc = infop->entry;
944 regs->r1 = infop->start_stack;
945
946}
947
b779e29e
EI
948#define ELF_EXEC_PAGESIZE 4096
949
e4cbd44d
EI
950#define USE_ELF_CORE_DUMP
951#define ELF_NREG 38
952typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
953
954/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 955static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
956{
957 int i, pos = 0;
958
959 for (i = 0; i < 32; i++) {
86cd7b2d 960 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
961 }
962
963 for (i = 0; i < 6; i++) {
86cd7b2d 964 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
965 }
966}
967
b779e29e
EI
968#endif /* TARGET_MICROBLAZE */
969
d962783e
JL
970#ifdef TARGET_OPENRISC
971
972#define ELF_START_MMAP 0x08000000
973
d962783e
JL
974#define ELF_ARCH EM_OPENRISC
975#define ELF_CLASS ELFCLASS32
976#define ELF_DATA ELFDATA2MSB
977
978static inline void init_thread(struct target_pt_regs *regs,
979 struct image_info *infop)
980{
981 regs->pc = infop->entry;
982 regs->gpr[1] = infop->start_stack;
983}
984
985#define USE_ELF_CORE_DUMP
986#define ELF_EXEC_PAGESIZE 8192
987
988/* See linux kernel arch/openrisc/include/asm/elf.h. */
989#define ELF_NREG 34 /* gprs and pc, sr */
990typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
991
992static void elf_core_copy_regs(target_elf_gregset_t *regs,
993 const CPUOpenRISCState *env)
994{
995 int i;
996
997 for (i = 0; i < 32; i++) {
86cd7b2d 998 (*regs)[i] = tswapreg(env->gpr[i]);
d962783e
JL
999 }
1000
86cd7b2d
PB
1001 (*regs)[32] = tswapreg(env->pc);
1002 (*regs)[33] = tswapreg(env->sr);
d962783e
JL
1003}
1004#define ELF_HWCAP 0
1005#define ELF_PLATFORM NULL
1006
1007#endif /* TARGET_OPENRISC */
1008
fdf9b3e8
FB
1009#ifdef TARGET_SH4
1010
1011#define ELF_START_MMAP 0x80000000
1012
fdf9b3e8 1013#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1014#define ELF_ARCH EM_SH
1015
d97ef72e
RH
1016static inline void init_thread(struct target_pt_regs *regs,
1017 struct image_info *infop)
fdf9b3e8 1018{
d97ef72e
RH
1019 /* Check other registers XXXXX */
1020 regs->pc = infop->entry;
1021 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1022}
1023
7631c97e
NF
1024/* See linux kernel: arch/sh/include/asm/elf.h. */
1025#define ELF_NREG 23
1026typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1027
1028/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1029enum {
1030 TARGET_REG_PC = 16,
1031 TARGET_REG_PR = 17,
1032 TARGET_REG_SR = 18,
1033 TARGET_REG_GBR = 19,
1034 TARGET_REG_MACH = 20,
1035 TARGET_REG_MACL = 21,
1036 TARGET_REG_SYSCALL = 22
1037};
1038
d97ef72e 1039static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1040 const CPUSH4State *env)
7631c97e
NF
1041{
1042 int i;
1043
1044 for (i = 0; i < 16; i++) {
86cd7b2d 1045 (*regs[i]) = tswapreg(env->gregs[i]);
7631c97e
NF
1046 }
1047
86cd7b2d
PB
1048 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1049 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1050 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1051 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1052 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1053 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1054 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1055}
1056
1057#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1058#define ELF_EXEC_PAGESIZE 4096
1059
e42fd944
RH
1060enum {
1061 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1062 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1063 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1064 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1065 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1066 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1067 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1068 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1069 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1070 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1071};
1072
1073#define ELF_HWCAP get_elf_hwcap()
1074
1075static uint32_t get_elf_hwcap(void)
1076{
1077 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1078 uint32_t hwcap = 0;
1079
1080 hwcap |= SH_CPU_HAS_FPU;
1081
1082 if (cpu->env.features & SH_FEATURE_SH4A) {
1083 hwcap |= SH_CPU_HAS_LLSC;
1084 }
1085
1086 return hwcap;
1087}
1088
fdf9b3e8
FB
1089#endif
1090
48733d19
TS
1091#ifdef TARGET_CRIS
1092
1093#define ELF_START_MMAP 0x80000000
1094
48733d19 1095#define ELF_CLASS ELFCLASS32
48733d19
TS
1096#define ELF_ARCH EM_CRIS
1097
d97ef72e
RH
1098static inline void init_thread(struct target_pt_regs *regs,
1099 struct image_info *infop)
48733d19 1100{
d97ef72e 1101 regs->erp = infop->entry;
48733d19
TS
1102}
1103
48733d19
TS
1104#define ELF_EXEC_PAGESIZE 8192
1105
1106#endif
1107
e6e5906b
PB
1108#ifdef TARGET_M68K
1109
1110#define ELF_START_MMAP 0x80000000
1111
d97ef72e 1112#define ELF_CLASS ELFCLASS32
d97ef72e 1113#define ELF_ARCH EM_68K
e6e5906b
PB
1114
1115/* ??? Does this need to do anything?
d97ef72e 1116 #define ELF_PLAT_INIT(_r) */
e6e5906b 1117
d97ef72e
RH
1118static inline void init_thread(struct target_pt_regs *regs,
1119 struct image_info *infop)
e6e5906b
PB
1120{
1121 regs->usp = infop->start_stack;
1122 regs->sr = 0;
1123 regs->pc = infop->entry;
1124}
1125
7a93cc55
NF
1126/* See linux kernel: arch/m68k/include/asm/elf.h. */
1127#define ELF_NREG 20
1128typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1129
05390248 1130static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1131{
86cd7b2d
PB
1132 (*regs)[0] = tswapreg(env->dregs[1]);
1133 (*regs)[1] = tswapreg(env->dregs[2]);
1134 (*regs)[2] = tswapreg(env->dregs[3]);
1135 (*regs)[3] = tswapreg(env->dregs[4]);
1136 (*regs)[4] = tswapreg(env->dregs[5]);
1137 (*regs)[5] = tswapreg(env->dregs[6]);
1138 (*regs)[6] = tswapreg(env->dregs[7]);
1139 (*regs)[7] = tswapreg(env->aregs[0]);
1140 (*regs)[8] = tswapreg(env->aregs[1]);
1141 (*regs)[9] = tswapreg(env->aregs[2]);
1142 (*regs)[10] = tswapreg(env->aregs[3]);
1143 (*regs)[11] = tswapreg(env->aregs[4]);
1144 (*regs)[12] = tswapreg(env->aregs[5]);
1145 (*regs)[13] = tswapreg(env->aregs[6]);
1146 (*regs)[14] = tswapreg(env->dregs[0]);
1147 (*regs)[15] = tswapreg(env->aregs[7]);
1148 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1149 (*regs)[17] = tswapreg(env->sr);
1150 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1151 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1152}
1153
1154#define USE_ELF_CORE_DUMP
d97ef72e 1155#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1156
1157#endif
1158
7a3148a9
JM
1159#ifdef TARGET_ALPHA
1160
1161#define ELF_START_MMAP (0x30000000000ULL)
1162
7a3148a9 1163#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1164#define ELF_ARCH EM_ALPHA
1165
d97ef72e
RH
1166static inline void init_thread(struct target_pt_regs *regs,
1167 struct image_info *infop)
7a3148a9
JM
1168{
1169 regs->pc = infop->entry;
1170 regs->ps = 8;
1171 regs->usp = infop->start_stack;
7a3148a9
JM
1172}
1173
7a3148a9
JM
1174#define ELF_EXEC_PAGESIZE 8192
1175
1176#endif /* TARGET_ALPHA */
1177
a4c075f1
UH
1178#ifdef TARGET_S390X
1179
1180#define ELF_START_MMAP (0x20000000000ULL)
1181
a4c075f1
UH
1182#define ELF_CLASS ELFCLASS64
1183#define ELF_DATA ELFDATA2MSB
1184#define ELF_ARCH EM_S390
1185
1186static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1187{
1188 regs->psw.addr = infop->entry;
1189 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1190 regs->gprs[15] = infop->start_stack;
1191}
1192
1193#endif /* TARGET_S390X */
1194
b16189b2
CG
1195#ifdef TARGET_TILEGX
1196
1197/* 42 bits real used address, a half for user mode */
1198#define ELF_START_MMAP (0x00000020000000000ULL)
1199
1200#define elf_check_arch(x) ((x) == EM_TILEGX)
1201
1202#define ELF_CLASS ELFCLASS64
1203#define ELF_DATA ELFDATA2LSB
1204#define ELF_ARCH EM_TILEGX
1205
1206static inline void init_thread(struct target_pt_regs *regs,
1207 struct image_info *infop)
1208{
1209 regs->pc = infop->entry;
1210 regs->sp = infop->start_stack;
1211
1212}
1213
1214#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1215
1216#endif /* TARGET_TILEGX */
1217
15338fd7
FB
1218#ifndef ELF_PLATFORM
1219#define ELF_PLATFORM (NULL)
1220#endif
1221
75be901c
PC
1222#ifndef ELF_MACHINE
1223#define ELF_MACHINE ELF_ARCH
1224#endif
1225
d276a604
PC
1226#ifndef elf_check_arch
1227#define elf_check_arch(x) ((x) == ELF_ARCH)
1228#endif
1229
15338fd7
FB
1230#ifndef ELF_HWCAP
1231#define ELF_HWCAP 0
1232#endif
1233
992f48a0 1234#ifdef TARGET_ABI32
cb33da57 1235#undef ELF_CLASS
992f48a0 1236#define ELF_CLASS ELFCLASS32
cb33da57
BS
1237#undef bswaptls
1238#define bswaptls(ptr) bswap32s(ptr)
1239#endif
1240
31e31b8a 1241#include "elf.h"
09bfb054 1242
09bfb054
FB
1243struct exec
1244{
d97ef72e
RH
1245 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1246 unsigned int a_text; /* length of text, in bytes */
1247 unsigned int a_data; /* length of data, in bytes */
1248 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1249 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1250 unsigned int a_entry; /* start address */
1251 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1252 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1253};
1254
1255
1256#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1257#define OMAGIC 0407
1258#define NMAGIC 0410
1259#define ZMAGIC 0413
1260#define QMAGIC 0314
1261
31e31b8a 1262/* Necessary parameters */
54936004 1263#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
79cb1f1d
YK
1264#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1265 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1266#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1267
ad1c7e0f 1268#define DLINFO_ITEMS 14
31e31b8a 1269
09bfb054
FB
1270static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1271{
d97ef72e 1272 memcpy(to, from, n);
09bfb054 1273}
d691f669 1274
31e31b8a 1275#ifdef BSWAP_NEEDED
92a31b1f 1276static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1277{
d97ef72e
RH
1278 bswap16s(&ehdr->e_type); /* Object file type */
1279 bswap16s(&ehdr->e_machine); /* Architecture */
1280 bswap32s(&ehdr->e_version); /* Object file version */
1281 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1282 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1283 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1284 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1285 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1286 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1287 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1288 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1289 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1290 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1291}
1292
991f8f0c 1293static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1294{
991f8f0c
RH
1295 int i;
1296 for (i = 0; i < phnum; ++i, ++phdr) {
1297 bswap32s(&phdr->p_type); /* Segment type */
1298 bswap32s(&phdr->p_flags); /* Segment flags */
1299 bswaptls(&phdr->p_offset); /* Segment file offset */
1300 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1301 bswaptls(&phdr->p_paddr); /* Segment physical address */
1302 bswaptls(&phdr->p_filesz); /* Segment size in file */
1303 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1304 bswaptls(&phdr->p_align); /* Segment alignment */
1305 }
31e31b8a 1306}
689f936f 1307
991f8f0c 1308static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1309{
991f8f0c
RH
1310 int i;
1311 for (i = 0; i < shnum; ++i, ++shdr) {
1312 bswap32s(&shdr->sh_name);
1313 bswap32s(&shdr->sh_type);
1314 bswaptls(&shdr->sh_flags);
1315 bswaptls(&shdr->sh_addr);
1316 bswaptls(&shdr->sh_offset);
1317 bswaptls(&shdr->sh_size);
1318 bswap32s(&shdr->sh_link);
1319 bswap32s(&shdr->sh_info);
1320 bswaptls(&shdr->sh_addralign);
1321 bswaptls(&shdr->sh_entsize);
1322 }
689f936f
FB
1323}
1324
7a3148a9 1325static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1326{
1327 bswap32s(&sym->st_name);
7a3148a9
JM
1328 bswaptls(&sym->st_value);
1329 bswaptls(&sym->st_size);
689f936f
FB
1330 bswap16s(&sym->st_shndx);
1331}
991f8f0c
RH
1332#else
1333static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1334static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1335static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1336static inline void bswap_sym(struct elf_sym *sym) { }
31e31b8a
FB
1337#endif
1338
edf8e2af 1339#ifdef USE_ELF_CORE_DUMP
9349b4f9 1340static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1341#endif /* USE_ELF_CORE_DUMP */
682674b8 1342static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1343
9058abdd
RH
1344/* Verify the portions of EHDR within E_IDENT for the target.
1345 This can be performed before bswapping the entire header. */
1346static bool elf_check_ident(struct elfhdr *ehdr)
1347{
1348 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1349 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1350 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1351 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1352 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1353 && ehdr->e_ident[EI_DATA] == ELF_DATA
1354 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1355}
1356
1357/* Verify the portions of EHDR outside of E_IDENT for the target.
1358 This has to wait until after bswapping the header. */
1359static bool elf_check_ehdr(struct elfhdr *ehdr)
1360{
1361 return (elf_check_arch(ehdr->e_machine)
1362 && ehdr->e_ehsize == sizeof(struct elfhdr)
1363 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1364 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1365}
1366
31e31b8a 1367/*
e5fe0c52 1368 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1369 * memory to free pages in kernel mem. These are in a format ready
1370 * to be put directly into the top of new user memory.
1371 *
1372 */
59baae9a
SB
1373static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1374 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1375{
59baae9a
SB
1376 char *tmp;
1377 int len, offset;
1378 abi_ulong top = p;
31e31b8a
FB
1379
1380 if (!p) {
d97ef72e 1381 return 0; /* bullet-proofing */
31e31b8a 1382 }
59baae9a
SB
1383
1384 offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1385
31e31b8a 1386 while (argc-- > 0) {
edf779ff
FB
1387 tmp = argv[argc];
1388 if (!tmp) {
d97ef72e
RH
1389 fprintf(stderr, "VFS: argc is wrong");
1390 exit(-1);
1391 }
59baae9a
SB
1392 len = strlen(tmp) + 1;
1393 tmp += len;
1394
1395 if (len > (p - stack_limit)) {
d97ef72e
RH
1396 return 0;
1397 }
1398 while (len) {
59baae9a
SB
1399 int bytes_to_copy = (len > offset) ? offset : len;
1400 tmp -= bytes_to_copy;
1401 p -= bytes_to_copy;
1402 offset -= bytes_to_copy;
1403 len -= bytes_to_copy;
1404
1405 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1406
1407 if (offset == 0) {
1408 memcpy_to_target(p, scratch, top - p);
1409 top = p;
1410 offset = TARGET_PAGE_SIZE;
d97ef72e
RH
1411 }
1412 }
31e31b8a 1413 }
59baae9a
SB
1414 if (offset) {
1415 memcpy_to_target(p, scratch + offset, top - p);
1416 }
1417
31e31b8a
FB
1418 return p;
1419}
1420
59baae9a
SB
1421/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1422 * argument/environment space. Newer kernels (>2.6.33) allow more,
1423 * dependent on stack size, but guarantee at least 32 pages for
1424 * backwards compatibility.
1425 */
1426#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1427
1428static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1429 struct image_info *info)
53a5960a 1430{
59baae9a 1431 abi_ulong size, error, guard;
31e31b8a 1432
703e0e89 1433 size = guest_stack_size;
59baae9a
SB
1434 if (size < STACK_LOWER_LIMIT) {
1435 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1436 }
1437 guard = TARGET_PAGE_SIZE;
1438 if (guard < qemu_real_host_page_size) {
1439 guard = qemu_real_host_page_size;
1440 }
1441
1442 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1443 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1444 if (error == -1) {
60dcbcb5 1445 perror("mmap stack");
09bfb054
FB
1446 exit(-1);
1447 }
31e31b8a 1448
60dcbcb5
RH
1449 /* We reserve one extra page at the top of the stack as guard. */
1450 target_mprotect(error, guard, PROT_NONE);
1451
1452 info->stack_limit = error + guard;
59baae9a
SB
1453
1454 return info->stack_limit + size - sizeof(void *);
31e31b8a
FB
1455}
1456
cf129f3a
RH
1457/* Map and zero the bss. We need to explicitly zero any fractional pages
1458 after the data section (i.e. bss). */
1459static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1460{
cf129f3a
RH
1461 uintptr_t host_start, host_map_start, host_end;
1462
1463 last_bss = TARGET_PAGE_ALIGN(last_bss);
1464
1465 /* ??? There is confusion between qemu_real_host_page_size and
1466 qemu_host_page_size here and elsewhere in target_mmap, which
1467 may lead to the end of the data section mapping from the file
1468 not being mapped. At least there was an explicit test and
1469 comment for that here, suggesting that "the file size must
1470 be known". The comment probably pre-dates the introduction
1471 of the fstat system call in target_mmap which does in fact
1472 find out the size. What isn't clear is if the workaround
1473 here is still actually needed. For now, continue with it,
1474 but merge it with the "normal" mmap that would allocate the bss. */
1475
1476 host_start = (uintptr_t) g2h(elf_bss);
1477 host_end = (uintptr_t) g2h(last_bss);
0c2d70c4 1478 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1479
1480 if (host_map_start < host_end) {
1481 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1482 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1483 if (p == MAP_FAILED) {
1484 perror("cannot mmap brk");
1485 exit(-1);
853d6f7a 1486 }
f46e9a0b 1487 }
853d6f7a 1488
f46e9a0b
TM
1489 /* Ensure that the bss page(s) are valid */
1490 if ((page_get_flags(last_bss-1) & prot) != prot) {
1491 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1492 }
31e31b8a 1493
cf129f3a
RH
1494 if (host_start < host_map_start) {
1495 memset((void *)host_start, 0, host_map_start - host_start);
1496 }
1497}
53a5960a 1498
1af02e83
MF
1499#ifdef CONFIG_USE_FDPIC
1500static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1501{
1502 uint16_t n;
1503 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1504
1505 /* elf32_fdpic_loadseg */
1506 n = info->nsegs;
1507 while (n--) {
1508 sp -= 12;
1509 put_user_u32(loadsegs[n].addr, sp+0);
1510 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1511 put_user_u32(loadsegs[n].p_memsz, sp+8);
1512 }
1513
1514 /* elf32_fdpic_loadmap */
1515 sp -= 4;
1516 put_user_u16(0, sp+0); /* version */
1517 put_user_u16(info->nsegs, sp+2); /* nsegs */
1518
1519 info->personality = PER_LINUX_FDPIC;
1520 info->loadmap_addr = sp;
1521
1522 return sp;
1523}
1524#endif
1525
992f48a0 1526static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1527 struct elfhdr *exec,
1528 struct image_info *info,
1529 struct image_info *interp_info)
31e31b8a 1530{
d97ef72e 1531 abi_ulong sp;
125b0f55 1532 abi_ulong sp_auxv;
d97ef72e 1533 int size;
14322bad
LA
1534 int i;
1535 abi_ulong u_rand_bytes;
1536 uint8_t k_rand_bytes[16];
d97ef72e
RH
1537 abi_ulong u_platform;
1538 const char *k_platform;
1539 const int n = sizeof(elf_addr_t);
1540
1541 sp = p;
1af02e83
MF
1542
1543#ifdef CONFIG_USE_FDPIC
1544 /* Needs to be before we load the env/argc/... */
1545 if (elf_is_fdpic(exec)) {
1546 /* Need 4 byte alignment for these structs */
1547 sp &= ~3;
1548 sp = loader_build_fdpic_loadmap(info, sp);
1549 info->other_info = interp_info;
1550 if (interp_info) {
1551 interp_info->other_info = info;
1552 sp = loader_build_fdpic_loadmap(interp_info, sp);
1553 }
1554 }
1555#endif
1556
d97ef72e
RH
1557 u_platform = 0;
1558 k_platform = ELF_PLATFORM;
1559 if (k_platform) {
1560 size_t len = strlen(k_platform) + 1;
1561 sp -= (len + n - 1) & ~(n - 1);
1562 u_platform = sp;
1563 /* FIXME - check return value of memcpy_to_target() for failure */
1564 memcpy_to_target(sp, k_platform, len);
1565 }
14322bad
LA
1566
1567 /*
1568 * Generate 16 random bytes for userspace PRNG seeding (not
1569 * cryptically secure but it's not the aim of QEMU).
1570 */
14322bad
LA
1571 for (i = 0; i < 16; i++) {
1572 k_rand_bytes[i] = rand();
1573 }
1574 sp -= 16;
1575 u_rand_bytes = sp;
1576 /* FIXME - check return value of memcpy_to_target() for failure */
1577 memcpy_to_target(sp, k_rand_bytes, 16);
1578
d97ef72e
RH
1579 /*
1580 * Force 16 byte _final_ alignment here for generality.
1581 */
1582 sp = sp &~ (abi_ulong)15;
1583 size = (DLINFO_ITEMS + 1) * 2;
1584 if (k_platform)
1585 size += 2;
f5155289 1586#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1587 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1588#endif
1589#ifdef ELF_HWCAP2
1590 size += 2;
f5155289 1591#endif
d97ef72e 1592 size += envc + argc + 2;
b9329d4b 1593 size += 1; /* argc itself */
d97ef72e
RH
1594 size *= n;
1595 if (size & 15)
1596 sp -= 16 - (size & 15);
1597
1598 /* This is correct because Linux defines
1599 * elf_addr_t as Elf32_Off / Elf64_Off
1600 */
1601#define NEW_AUX_ENT(id, val) do { \
1602 sp -= n; put_user_ual(val, sp); \
1603 sp -= n; put_user_ual(id, sp); \
1604 } while(0)
1605
125b0f55 1606 sp_auxv = sp;
d97ef72e
RH
1607 NEW_AUX_ENT (AT_NULL, 0);
1608
1609 /* There must be exactly DLINFO_ITEMS entries here. */
8e62a717 1610 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1611 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1612 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
a70daba3 1613 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
8e62a717 1614 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1615 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1616 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1617 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1618 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1619 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1620 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1621 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1622 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad
LA
1623 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1624
ad6919dc
PM
1625#ifdef ELF_HWCAP2
1626 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1627#endif
1628
d97ef72e
RH
1629 if (k_platform)
1630 NEW_AUX_ENT(AT_PLATFORM, u_platform);
f5155289 1631#ifdef ARCH_DLINFO
d97ef72e
RH
1632 /*
1633 * ARCH_DLINFO must come last so platform specific code can enforce
1634 * special alignment requirements on the AUXV if necessary (eg. PPC).
1635 */
1636 ARCH_DLINFO;
f5155289
FB
1637#endif
1638#undef NEW_AUX_ENT
1639
d97ef72e 1640 info->saved_auxv = sp;
125b0f55 1641 info->auxv_len = sp_auxv - sp;
edf8e2af 1642
b9329d4b 1643 sp = loader_build_argptr(envc, argc, sp, p, 0);
8c0f0a60
JH
1644 /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1645 assert(sp_auxv - sp == size);
d97ef72e 1646 return sp;
31e31b8a
FB
1647}
1648
806d1021 1649#ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
97cc7560 1650/* If the guest doesn't have a validation function just agree */
806d1021
MI
1651static int validate_guest_space(unsigned long guest_base,
1652 unsigned long guest_size)
97cc7560
DDAG
1653{
1654 return 1;
1655}
1656#endif
1657
dce10401
MI
1658unsigned long init_guest_space(unsigned long host_start,
1659 unsigned long host_size,
1660 unsigned long guest_start,
1661 bool fixed)
1662{
1663 unsigned long current_start, real_start;
1664 int flags;
1665
1666 assert(host_start || host_size);
1667
1668 /* If just a starting address is given, then just verify that
1669 * address. */
1670 if (host_start && !host_size) {
806d1021 1671 if (validate_guest_space(host_start, host_size) == 1) {
dce10401
MI
1672 return host_start;
1673 } else {
1674 return (unsigned long)-1;
1675 }
1676 }
1677
1678 /* Setup the initial flags and start address. */
1679 current_start = host_start & qemu_host_page_mask;
1680 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1681 if (fixed) {
1682 flags |= MAP_FIXED;
1683 }
1684
1685 /* Otherwise, a non-zero size region of memory needs to be mapped
1686 * and validated. */
1687 while (1) {
806d1021
MI
1688 unsigned long real_size = host_size;
1689
dce10401
MI
1690 /* Do not use mmap_find_vma here because that is limited to the
1691 * guest address space. We are going to make the
1692 * guest address space fit whatever we're given.
1693 */
1694 real_start = (unsigned long)
1695 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1696 if (real_start == (unsigned long)-1) {
1697 return (unsigned long)-1;
1698 }
1699
806d1021
MI
1700 /* Ensure the address is properly aligned. */
1701 if (real_start & ~qemu_host_page_mask) {
1702 munmap((void *)real_start, host_size);
1703 real_size = host_size + qemu_host_page_size;
1704 real_start = (unsigned long)
1705 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1706 if (real_start == (unsigned long)-1) {
1707 return (unsigned long)-1;
1708 }
1709 real_start = HOST_PAGE_ALIGN(real_start);
1710 }
1711
1712 /* Check to see if the address is valid. */
1713 if (!host_start || real_start == current_start) {
1714 int valid = validate_guest_space(real_start - guest_start,
1715 real_size);
1716 if (valid == 1) {
1717 break;
1718 } else if (valid == -1) {
1719 return (unsigned long)-1;
1720 }
1721 /* valid == 0, so try again. */
dce10401
MI
1722 }
1723
1724 /* That address didn't work. Unmap and try a different one.
1725 * The address the host picked because is typically right at
1726 * the top of the host address space and leaves the guest with
1727 * no usable address space. Resort to a linear search. We
1728 * already compensated for mmap_min_addr, so this should not
1729 * happen often. Probably means we got unlucky and host
1730 * address space randomization put a shared library somewhere
1731 * inconvenient.
1732 */
1733 munmap((void *)real_start, host_size);
1734 current_start += qemu_host_page_size;
1735 if (host_start == current_start) {
1736 /* Theoretically possible if host doesn't have any suitably
1737 * aligned areas. Normally the first mmap will fail.
1738 */
1739 return (unsigned long)-1;
1740 }
1741 }
1742
13829020 1743 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
806d1021 1744
dce10401
MI
1745 return real_start;
1746}
1747
f3ed1f5d
PM
1748static void probe_guest_base(const char *image_name,
1749 abi_ulong loaddr, abi_ulong hiaddr)
1750{
1751 /* Probe for a suitable guest base address, if the user has not set
1752 * it explicitly, and set guest_base appropriately.
1753 * In case of error we will print a suitable message and exit.
1754 */
f3ed1f5d
PM
1755 const char *errmsg;
1756 if (!have_guest_base && !reserved_va) {
1757 unsigned long host_start, real_start, host_size;
1758
1759 /* Round addresses to page boundaries. */
1760 loaddr &= qemu_host_page_mask;
1761 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1762
1763 if (loaddr < mmap_min_addr) {
1764 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1765 } else {
1766 host_start = loaddr;
1767 if (host_start != loaddr) {
1768 errmsg = "Address overflow loading ELF binary";
1769 goto exit_errmsg;
1770 }
1771 }
1772 host_size = hiaddr - loaddr;
dce10401
MI
1773
1774 /* Setup the initial guest memory space with ranges gleaned from
1775 * the ELF image that is being loaded.
1776 */
1777 real_start = init_guest_space(host_start, host_size, loaddr, false);
1778 if (real_start == (unsigned long)-1) {
1779 errmsg = "Unable to find space for application";
1780 goto exit_errmsg;
f3ed1f5d 1781 }
dce10401
MI
1782 guest_base = real_start - loaddr;
1783
13829020
PB
1784 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
1785 TARGET_ABI_FMT_lx " to 0x%lx\n",
1786 loaddr, real_start);
f3ed1f5d
PM
1787 }
1788 return;
1789
f3ed1f5d
PM
1790exit_errmsg:
1791 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1792 exit(-1);
f3ed1f5d
PM
1793}
1794
1795
8e62a717 1796/* Load an ELF image into the address space.
31e31b8a 1797
8e62a717
RH
1798 IMAGE_NAME is the filename of the image, to use in error messages.
1799 IMAGE_FD is the open file descriptor for the image.
1800
1801 BPRM_BUF is a copy of the beginning of the file; this of course
1802 contains the elf file header at offset 0. It is assumed that this
1803 buffer is sufficiently aligned to present no problems to the host
1804 in accessing data at aligned offsets within the buffer.
1805
1806 On return: INFO values will be filled in, as necessary or available. */
1807
1808static void load_elf_image(const char *image_name, int image_fd,
bf858897 1809 struct image_info *info, char **pinterp_name,
8e62a717 1810 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 1811{
8e62a717
RH
1812 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1813 struct elf_phdr *phdr;
1814 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1815 int i, retval;
1816 const char *errmsg;
5fafdf24 1817
8e62a717
RH
1818 /* First of all, some simple consistency checks */
1819 errmsg = "Invalid ELF image for this architecture";
1820 if (!elf_check_ident(ehdr)) {
1821 goto exit_errmsg;
1822 }
1823 bswap_ehdr(ehdr);
1824 if (!elf_check_ehdr(ehdr)) {
1825 goto exit_errmsg;
d97ef72e 1826 }
5fafdf24 1827
8e62a717
RH
1828 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1829 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1830 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 1831 } else {
8e62a717
RH
1832 phdr = (struct elf_phdr *) alloca(i);
1833 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 1834 if (retval != i) {
8e62a717 1835 goto exit_read;
9955ffac 1836 }
d97ef72e 1837 }
8e62a717 1838 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 1839
1af02e83
MF
1840#ifdef CONFIG_USE_FDPIC
1841 info->nsegs = 0;
1842 info->pt_dynamic_addr = 0;
1843#endif
1844
682674b8
RH
1845 /* Find the maximum size of the image and allocate an appropriate
1846 amount of memory to handle that. */
1847 loaddr = -1, hiaddr = 0;
8e62a717
RH
1848 for (i = 0; i < ehdr->e_phnum; ++i) {
1849 if (phdr[i].p_type == PT_LOAD) {
a93934fe 1850 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
1851 if (a < loaddr) {
1852 loaddr = a;
1853 }
ccf661f8 1854 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
1855 if (a > hiaddr) {
1856 hiaddr = a;
1857 }
1af02e83
MF
1858#ifdef CONFIG_USE_FDPIC
1859 ++info->nsegs;
1860#endif
682674b8
RH
1861 }
1862 }
1863
1864 load_addr = loaddr;
8e62a717 1865 if (ehdr->e_type == ET_DYN) {
682674b8
RH
1866 /* The image indicates that it can be loaded anywhere. Find a
1867 location that can hold the memory space required. If the
1868 image is pre-linked, LOADDR will be non-zero. Since we do
1869 not supply MAP_FIXED here we'll use that address if and
1870 only if it remains available. */
1871 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1872 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1873 -1, 0);
1874 if (load_addr == -1) {
8e62a717 1875 goto exit_perror;
d97ef72e 1876 }
bf858897
RH
1877 } else if (pinterp_name != NULL) {
1878 /* This is the main executable. Make sure that the low
1879 address does not conflict with MMAP_MIN_ADDR or the
1880 QEMU application itself. */
f3ed1f5d 1881 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 1882 }
682674b8 1883 load_bias = load_addr - loaddr;
d97ef72e 1884
1af02e83
MF
1885#ifdef CONFIG_USE_FDPIC
1886 {
1887 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 1888 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
1889
1890 for (i = 0; i < ehdr->e_phnum; ++i) {
1891 switch (phdr[i].p_type) {
1892 case PT_DYNAMIC:
1893 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1894 break;
1895 case PT_LOAD:
1896 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1897 loadsegs->p_vaddr = phdr[i].p_vaddr;
1898 loadsegs->p_memsz = phdr[i].p_memsz;
1899 ++loadsegs;
1900 break;
1901 }
1902 }
1903 }
1904#endif
1905
8e62a717
RH
1906 info->load_bias = load_bias;
1907 info->load_addr = load_addr;
1908 info->entry = ehdr->e_entry + load_bias;
1909 info->start_code = -1;
1910 info->end_code = 0;
1911 info->start_data = -1;
1912 info->end_data = 0;
1913 info->brk = 0;
d8fd2954 1914 info->elf_flags = ehdr->e_flags;
8e62a717
RH
1915
1916 for (i = 0; i < ehdr->e_phnum; i++) {
1917 struct elf_phdr *eppnt = phdr + i;
d97ef72e 1918 if (eppnt->p_type == PT_LOAD) {
682674b8 1919 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
d97ef72e 1920 int elf_prot = 0;
d97ef72e
RH
1921
1922 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1923 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1924 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 1925
682674b8
RH
1926 vaddr = load_bias + eppnt->p_vaddr;
1927 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1928 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1929
1930 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1931 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 1932 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 1933 if (error == -1) {
8e62a717 1934 goto exit_perror;
09bfb054 1935 }
09bfb054 1936
682674b8
RH
1937 vaddr_ef = vaddr + eppnt->p_filesz;
1938 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 1939
cf129f3a 1940 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
1941 if (vaddr_ef < vaddr_em) {
1942 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 1943 }
8e62a717
RH
1944
1945 /* Find the full program boundaries. */
1946 if (elf_prot & PROT_EXEC) {
1947 if (vaddr < info->start_code) {
1948 info->start_code = vaddr;
1949 }
1950 if (vaddr_ef > info->end_code) {
1951 info->end_code = vaddr_ef;
1952 }
1953 }
1954 if (elf_prot & PROT_WRITE) {
1955 if (vaddr < info->start_data) {
1956 info->start_data = vaddr;
1957 }
1958 if (vaddr_ef > info->end_data) {
1959 info->end_data = vaddr_ef;
1960 }
1961 if (vaddr_em > info->brk) {
1962 info->brk = vaddr_em;
1963 }
1964 }
bf858897
RH
1965 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1966 char *interp_name;
1967
1968 if (*pinterp_name) {
1969 errmsg = "Multiple PT_INTERP entries";
1970 goto exit_errmsg;
1971 }
1972 interp_name = malloc(eppnt->p_filesz);
1973 if (!interp_name) {
1974 goto exit_perror;
1975 }
1976
1977 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1978 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1979 eppnt->p_filesz);
1980 } else {
1981 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1982 eppnt->p_offset);
1983 if (retval != eppnt->p_filesz) {
1984 goto exit_perror;
1985 }
1986 }
1987 if (interp_name[eppnt->p_filesz - 1] != 0) {
1988 errmsg = "Invalid PT_INTERP entry";
1989 goto exit_errmsg;
1990 }
1991 *pinterp_name = interp_name;
d97ef72e 1992 }
682674b8 1993 }
5fafdf24 1994
8e62a717
RH
1995 if (info->end_data == 0) {
1996 info->start_data = info->end_code;
1997 info->end_data = info->end_code;
1998 info->brk = info->end_code;
1999 }
2000
682674b8 2001 if (qemu_log_enabled()) {
8e62a717 2002 load_symbols(ehdr, image_fd, load_bias);
682674b8 2003 }
31e31b8a 2004
8e62a717
RH
2005 close(image_fd);
2006 return;
2007
2008 exit_read:
2009 if (retval >= 0) {
2010 errmsg = "Incomplete read of file header";
2011 goto exit_errmsg;
2012 }
2013 exit_perror:
2014 errmsg = strerror(errno);
2015 exit_errmsg:
2016 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2017 exit(-1);
2018}
2019
2020static void load_elf_interp(const char *filename, struct image_info *info,
2021 char bprm_buf[BPRM_BUF_SIZE])
2022{
2023 int fd, retval;
2024
2025 fd = open(path(filename), O_RDONLY);
2026 if (fd < 0) {
2027 goto exit_perror;
2028 }
31e31b8a 2029
8e62a717
RH
2030 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2031 if (retval < 0) {
2032 goto exit_perror;
2033 }
2034 if (retval < BPRM_BUF_SIZE) {
2035 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2036 }
2037
bf858897 2038 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2039 return;
2040
2041 exit_perror:
2042 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2043 exit(-1);
31e31b8a
FB
2044}
2045
49918a75
PB
2046static int symfind(const void *s0, const void *s1)
2047{
c7c530cd 2048 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2049 struct elf_sym *sym = (struct elf_sym *)s1;
2050 int result = 0;
c7c530cd 2051 if (addr < sym->st_value) {
49918a75 2052 result = -1;
c7c530cd 2053 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2054 result = 1;
2055 }
2056 return result;
2057}
2058
2059static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2060{
2061#if ELF_CLASS == ELFCLASS32
2062 struct elf_sym *syms = s->disas_symtab.elf32;
2063#else
2064 struct elf_sym *syms = s->disas_symtab.elf64;
2065#endif
2066
2067 // binary search
49918a75
PB
2068 struct elf_sym *sym;
2069
c7c530cd 2070 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2071 if (sym != NULL) {
49918a75
PB
2072 return s->disas_strtab + sym->st_name;
2073 }
2074
2075 return "";
2076}
2077
2078/* FIXME: This should use elf_ops.h */
2079static int symcmp(const void *s0, const void *s1)
2080{
2081 struct elf_sym *sym0 = (struct elf_sym *)s0;
2082 struct elf_sym *sym1 = (struct elf_sym *)s1;
2083 return (sym0->st_value < sym1->st_value)
2084 ? -1
2085 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2086}
2087
689f936f 2088/* Best attempt to load symbols from this ELF object. */
682674b8 2089static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2090{
682674b8
RH
2091 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2092 struct elf_shdr *shdr;
b9475279
CV
2093 char *strings = NULL;
2094 struct syminfo *s = NULL;
2095 struct elf_sym *new_syms, *syms = NULL;
689f936f 2096
682674b8
RH
2097 shnum = hdr->e_shnum;
2098 i = shnum * sizeof(struct elf_shdr);
2099 shdr = (struct elf_shdr *)alloca(i);
2100 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2101 return;
2102 }
2103
2104 bswap_shdr(shdr, shnum);
2105 for (i = 0; i < shnum; ++i) {
2106 if (shdr[i].sh_type == SHT_SYMTAB) {
2107 sym_idx = i;
2108 str_idx = shdr[i].sh_link;
49918a75
PB
2109 goto found;
2110 }
689f936f 2111 }
682674b8
RH
2112
2113 /* There will be no symbol table if the file was stripped. */
2114 return;
689f936f
FB
2115
2116 found:
682674b8 2117 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 2118 s = g_try_new(struct syminfo, 1);
682674b8 2119 if (!s) {
b9475279 2120 goto give_up;
682674b8 2121 }
5fafdf24 2122
682674b8 2123 i = shdr[str_idx].sh_size;
0ef9ea29 2124 s->disas_strtab = strings = g_try_malloc(i);
682674b8 2125 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
b9475279 2126 goto give_up;
682674b8 2127 }
49918a75 2128
682674b8 2129 i = shdr[sym_idx].sh_size;
0ef9ea29 2130 syms = g_try_malloc(i);
682674b8 2131 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
b9475279 2132 goto give_up;
682674b8 2133 }
31e31b8a 2134
682674b8
RH
2135 nsyms = i / sizeof(struct elf_sym);
2136 for (i = 0; i < nsyms; ) {
49918a75 2137 bswap_sym(syms + i);
682674b8
RH
2138 /* Throw away entries which we do not need. */
2139 if (syms[i].st_shndx == SHN_UNDEF
2140 || syms[i].st_shndx >= SHN_LORESERVE
2141 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2142 if (i < --nsyms) {
49918a75
PB
2143 syms[i] = syms[nsyms];
2144 }
682674b8 2145 } else {
49918a75 2146#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2147 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2148 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2149#endif
682674b8
RH
2150 syms[i].st_value += load_bias;
2151 i++;
2152 }
0774bed1 2153 }
49918a75 2154
b9475279
CV
2155 /* No "useful" symbol. */
2156 if (nsyms == 0) {
2157 goto give_up;
2158 }
2159
5d5c9930
RH
2160 /* Attempt to free the storage associated with the local symbols
2161 that we threw away. Whether or not this has any effect on the
2162 memory allocation depends on the malloc implementation and how
2163 many symbols we managed to discard. */
0ef9ea29 2164 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 2165 if (new_syms == NULL) {
b9475279 2166 goto give_up;
5d5c9930 2167 }
8d79de6e 2168 syms = new_syms;
5d5c9930 2169
49918a75 2170 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2171
49918a75
PB
2172 s->disas_num_syms = nsyms;
2173#if ELF_CLASS == ELFCLASS32
2174 s->disas_symtab.elf32 = syms;
49918a75
PB
2175#else
2176 s->disas_symtab.elf64 = syms;
49918a75 2177#endif
682674b8 2178 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2179 s->next = syminfos;
2180 syminfos = s;
b9475279
CV
2181
2182 return;
2183
2184give_up:
0ef9ea29
PM
2185 g_free(s);
2186 g_free(strings);
2187 g_free(syms);
689f936f 2188}
31e31b8a 2189
f0116c54 2190int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2191{
8e62a717 2192 struct image_info interp_info;
31e31b8a 2193 struct elfhdr elf_ex;
8e62a717 2194 char *elf_interpreter = NULL;
59baae9a 2195 char *scratch;
31e31b8a 2196
bf858897 2197 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
2198
2199 load_elf_image(bprm->filename, bprm->fd, info,
2200 &elf_interpreter, bprm->buf);
31e31b8a 2201
bf858897
RH
2202 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2203 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2204 when we load the interpreter. */
2205 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2206
59baae9a
SB
2207 /* Do this so that we can load the interpreter, if need be. We will
2208 change some of these later */
2209 bprm->p = setup_arg_pages(bprm, info);
2210
2211 scratch = g_new0(char, TARGET_PAGE_SIZE);
2212 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2213 bprm->p, info->stack_limit);
2214 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2215 bprm->p, info->stack_limit);
2216 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2217 bprm->p, info->stack_limit);
2218 g_free(scratch);
2219
e5fe0c52 2220 if (!bprm->p) {
bf858897
RH
2221 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2222 exit(-1);
379f6698 2223 }
379f6698 2224
8e62a717
RH
2225 if (elf_interpreter) {
2226 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2227
8e62a717
RH
2228 /* If the program interpreter is one of these two, then assume
2229 an iBCS2 image. Otherwise assume a native linux image. */
2230
2231 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2232 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2233 info->personality = PER_SVR4;
31e31b8a 2234
8e62a717
RH
2235 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2236 and some applications "depend" upon this behavior. Since
2237 we do not have the power to recompile these, we emulate
2238 the SVr4 behavior. Sigh. */
2239 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 2240 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 2241 }
31e31b8a
FB
2242 }
2243
8e62a717
RH
2244 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2245 info, (elf_interpreter ? &interp_info : NULL));
2246 info->start_stack = bprm->p;
2247
2248 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2249 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2250 point as a function descriptor. Do this after creating elf tables
2251 so that we copy the original program entry point into the AUXV. */
2252 if (elf_interpreter) {
8e78064e 2253 info->load_bias = interp_info.load_bias;
8e62a717 2254 info->entry = interp_info.entry;
bf858897 2255 free(elf_interpreter);
8e62a717 2256 }
31e31b8a 2257
edf8e2af
MW
2258#ifdef USE_ELF_CORE_DUMP
2259 bprm->core_dump = &elf_core_dump;
2260#endif
2261
31e31b8a
FB
2262 return 0;
2263}
2264
edf8e2af 2265#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2266/*
2267 * Definitions to generate Intel SVR4-like core files.
a2547a13 2268 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2269 * tacked on the front to prevent clashes with linux definitions,
2270 * and the typedef forms have been avoided. This is mostly like
2271 * the SVR4 structure, but more Linuxy, with things that Linux does
2272 * not support and which gdb doesn't really use excluded.
2273 *
2274 * Fields we don't dump (their contents is zero) in linux-user qemu
2275 * are marked with XXX.
2276 *
2277 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2278 *
2279 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2280 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2281 * the target resides):
2282 *
2283 * #define USE_ELF_CORE_DUMP
2284 *
2285 * Next you define type of register set used for dumping. ELF specification
2286 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2287 *
c227f099 2288 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2289 * #define ELF_NREG <number of registers>
c227f099 2290 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2291 *
edf8e2af
MW
2292 * Last step is to implement target specific function that copies registers
2293 * from given cpu into just specified register set. Prototype is:
2294 *
c227f099 2295 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2296 * const CPUArchState *env);
edf8e2af
MW
2297 *
2298 * Parameters:
2299 * regs - copy register values into here (allocated and zeroed by caller)
2300 * env - copy registers from here
2301 *
2302 * Example for ARM target is provided in this file.
2303 */
2304
2305/* An ELF note in memory */
2306struct memelfnote {
2307 const char *name;
2308 size_t namesz;
2309 size_t namesz_rounded;
2310 int type;
2311 size_t datasz;
80f5ce75 2312 size_t datasz_rounded;
edf8e2af
MW
2313 void *data;
2314 size_t notesz;
2315};
2316
a2547a13 2317struct target_elf_siginfo {
f8fd4fc4
PB
2318 abi_int si_signo; /* signal number */
2319 abi_int si_code; /* extra code */
2320 abi_int si_errno; /* errno */
edf8e2af
MW
2321};
2322
a2547a13
LD
2323struct target_elf_prstatus {
2324 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2325 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2326 abi_ulong pr_sigpend; /* XXX */
2327 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2328 target_pid_t pr_pid;
2329 target_pid_t pr_ppid;
2330 target_pid_t pr_pgrp;
2331 target_pid_t pr_sid;
edf8e2af
MW
2332 struct target_timeval pr_utime; /* XXX User time */
2333 struct target_timeval pr_stime; /* XXX System time */
2334 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2335 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2336 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2337 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2338};
2339
2340#define ELF_PRARGSZ (80) /* Number of chars for args */
2341
a2547a13 2342struct target_elf_prpsinfo {
edf8e2af
MW
2343 char pr_state; /* numeric process state */
2344 char pr_sname; /* char for pr_state */
2345 char pr_zomb; /* zombie */
2346 char pr_nice; /* nice val */
ca98ac83 2347 abi_ulong pr_flag; /* flags */
c227f099
AL
2348 target_uid_t pr_uid;
2349 target_gid_t pr_gid;
2350 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2351 /* Lots missing */
2352 char pr_fname[16]; /* filename of executable */
2353 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2354};
2355
2356/* Here is the structure in which status of each thread is captured. */
2357struct elf_thread_status {
72cf2d4f 2358 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2359 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2360#if 0
2361 elf_fpregset_t fpu; /* NT_PRFPREG */
2362 struct task_struct *thread;
2363 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2364#endif
2365 struct memelfnote notes[1];
2366 int num_notes;
2367};
2368
2369struct elf_note_info {
2370 struct memelfnote *notes;
a2547a13
LD
2371 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2372 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2373
72cf2d4f 2374 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
2375#if 0
2376 /*
2377 * Current version of ELF coredump doesn't support
2378 * dumping fp regs etc.
2379 */
2380 elf_fpregset_t *fpu;
2381 elf_fpxregset_t *xfpu;
2382 int thread_status_size;
2383#endif
2384 int notes_size;
2385 int numnote;
2386};
2387
2388struct vm_area_struct {
1a1c4db9
MI
2389 target_ulong vma_start; /* start vaddr of memory region */
2390 target_ulong vma_end; /* end vaddr of memory region */
2391 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2392 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2393};
2394
2395struct mm_struct {
72cf2d4f 2396 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2397 int mm_count; /* number of mappings */
2398};
2399
2400static struct mm_struct *vma_init(void);
2401static void vma_delete(struct mm_struct *);
1a1c4db9
MI
2402static int vma_add_mapping(struct mm_struct *, target_ulong,
2403 target_ulong, abi_ulong);
edf8e2af
MW
2404static int vma_get_mapping_count(const struct mm_struct *);
2405static struct vm_area_struct *vma_first(const struct mm_struct *);
2406static struct vm_area_struct *vma_next(struct vm_area_struct *);
2407static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 2408static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2409 unsigned long flags);
edf8e2af
MW
2410
2411static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2412static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2413 unsigned int, void *);
a2547a13
LD
2414static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2415static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2416static void fill_auxv_note(struct memelfnote *, const TaskState *);
2417static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2418static size_t note_size(const struct memelfnote *);
2419static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2420static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2421static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2422static int core_dump_filename(const TaskState *, char *, size_t);
2423
2424static int dump_write(int, const void *, size_t);
2425static int write_note(struct memelfnote *, int);
2426static int write_note_info(struct elf_note_info *, int);
2427
2428#ifdef BSWAP_NEEDED
a2547a13 2429static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 2430{
ca98ac83
PB
2431 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2432 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2433 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 2434 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
2435 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2436 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
2437 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2438 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2439 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2440 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2441 /* cpu times are not filled, so we skip them */
2442 /* regs should be in correct format already */
2443 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2444}
2445
a2547a13 2446static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 2447{
ca98ac83 2448 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
2449 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2450 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2451 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2452 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2453 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2454 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2455}
991f8f0c
RH
2456
2457static void bswap_note(struct elf_note *en)
2458{
2459 bswap32s(&en->n_namesz);
2460 bswap32s(&en->n_descsz);
2461 bswap32s(&en->n_type);
2462}
2463#else
2464static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2465static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2466static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
2467#endif /* BSWAP_NEEDED */
2468
2469/*
2470 * Minimal support for linux memory regions. These are needed
2471 * when we are finding out what memory exactly belongs to
2472 * emulated process. No locks needed here, as long as
2473 * thread that received the signal is stopped.
2474 */
2475
2476static struct mm_struct *vma_init(void)
2477{
2478 struct mm_struct *mm;
2479
7267c094 2480 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
2481 return (NULL);
2482
2483 mm->mm_count = 0;
72cf2d4f 2484 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
2485
2486 return (mm);
2487}
2488
2489static void vma_delete(struct mm_struct *mm)
2490{
2491 struct vm_area_struct *vma;
2492
2493 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 2494 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 2495 g_free(vma);
edf8e2af 2496 }
7267c094 2497 g_free(mm);
edf8e2af
MW
2498}
2499
1a1c4db9
MI
2500static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2501 target_ulong end, abi_ulong flags)
edf8e2af
MW
2502{
2503 struct vm_area_struct *vma;
2504
7267c094 2505 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
2506 return (-1);
2507
2508 vma->vma_start = start;
2509 vma->vma_end = end;
2510 vma->vma_flags = flags;
2511
72cf2d4f 2512 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2513 mm->mm_count++;
2514
2515 return (0);
2516}
2517
2518static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2519{
72cf2d4f 2520 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
2521}
2522
2523static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2524{
72cf2d4f 2525 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
2526}
2527
2528static int vma_get_mapping_count(const struct mm_struct *mm)
2529{
2530 return (mm->mm_count);
2531}
2532
2533/*
2534 * Calculate file (dump) size of given memory region.
2535 */
2536static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2537{
2538 /* if we cannot even read the first page, skip it */
2539 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2540 return (0);
2541
2542 /*
2543 * Usually we don't dump executable pages as they contain
2544 * non-writable code that debugger can read directly from
2545 * target library etc. However, thread stacks are marked
2546 * also executable so we read in first page of given region
2547 * and check whether it contains elf header. If there is
2548 * no elf header, we dump it.
2549 */
2550 if (vma->vma_flags & PROT_EXEC) {
2551 char page[TARGET_PAGE_SIZE];
2552
2553 copy_from_user(page, vma->vma_start, sizeof (page));
2554 if ((page[EI_MAG0] == ELFMAG0) &&
2555 (page[EI_MAG1] == ELFMAG1) &&
2556 (page[EI_MAG2] == ELFMAG2) &&
2557 (page[EI_MAG3] == ELFMAG3)) {
2558 /*
2559 * Mappings are possibly from ELF binary. Don't dump
2560 * them.
2561 */
2562 return (0);
2563 }
2564 }
2565
2566 return (vma->vma_end - vma->vma_start);
2567}
2568
1a1c4db9 2569static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2570 unsigned long flags)
edf8e2af
MW
2571{
2572 struct mm_struct *mm = (struct mm_struct *)priv;
2573
edf8e2af
MW
2574 vma_add_mapping(mm, start, end, flags);
2575 return (0);
2576}
2577
2578static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 2579 unsigned int sz, void *data)
edf8e2af
MW
2580{
2581 unsigned int namesz;
2582
2583 namesz = strlen(name) + 1;
2584 note->name = name;
2585 note->namesz = namesz;
2586 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2587 note->type = type;
80f5ce75
LV
2588 note->datasz = sz;
2589 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2590
edf8e2af
MW
2591 note->data = data;
2592
2593 /*
2594 * We calculate rounded up note size here as specified by
2595 * ELF document.
2596 */
2597 note->notesz = sizeof (struct elf_note) +
80f5ce75 2598 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
2599}
2600
2601static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 2602 uint32_t flags)
edf8e2af
MW
2603{
2604 (void) memset(elf, 0, sizeof(*elf));
2605
2606 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2607 elf->e_ident[EI_CLASS] = ELF_CLASS;
2608 elf->e_ident[EI_DATA] = ELF_DATA;
2609 elf->e_ident[EI_VERSION] = EV_CURRENT;
2610 elf->e_ident[EI_OSABI] = ELF_OSABI;
2611
2612 elf->e_type = ET_CORE;
2613 elf->e_machine = machine;
2614 elf->e_version = EV_CURRENT;
2615 elf->e_phoff = sizeof(struct elfhdr);
2616 elf->e_flags = flags;
2617 elf->e_ehsize = sizeof(struct elfhdr);
2618 elf->e_phentsize = sizeof(struct elf_phdr);
2619 elf->e_phnum = segs;
2620
edf8e2af 2621 bswap_ehdr(elf);
edf8e2af
MW
2622}
2623
2624static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2625{
2626 phdr->p_type = PT_NOTE;
2627 phdr->p_offset = offset;
2628 phdr->p_vaddr = 0;
2629 phdr->p_paddr = 0;
2630 phdr->p_filesz = sz;
2631 phdr->p_memsz = 0;
2632 phdr->p_flags = 0;
2633 phdr->p_align = 0;
2634
991f8f0c 2635 bswap_phdr(phdr, 1);
edf8e2af
MW
2636}
2637
2638static size_t note_size(const struct memelfnote *note)
2639{
2640 return (note->notesz);
2641}
2642
a2547a13 2643static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 2644 const TaskState *ts, int signr)
edf8e2af
MW
2645{
2646 (void) memset(prstatus, 0, sizeof (*prstatus));
2647 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2648 prstatus->pr_pid = ts->ts_tid;
2649 prstatus->pr_ppid = getppid();
2650 prstatus->pr_pgrp = getpgrp();
2651 prstatus->pr_sid = getsid(0);
2652
edf8e2af 2653 bswap_prstatus(prstatus);
edf8e2af
MW
2654}
2655
a2547a13 2656static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 2657{
900cfbca 2658 char *base_filename;
edf8e2af
MW
2659 unsigned int i, len;
2660
2661 (void) memset(psinfo, 0, sizeof (*psinfo));
2662
2663 len = ts->info->arg_end - ts->info->arg_start;
2664 if (len >= ELF_PRARGSZ)
2665 len = ELF_PRARGSZ - 1;
2666 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2667 return -EFAULT;
2668 for (i = 0; i < len; i++)
2669 if (psinfo->pr_psargs[i] == 0)
2670 psinfo->pr_psargs[i] = ' ';
2671 psinfo->pr_psargs[len] = 0;
2672
2673 psinfo->pr_pid = getpid();
2674 psinfo->pr_ppid = getppid();
2675 psinfo->pr_pgrp = getpgrp();
2676 psinfo->pr_sid = getsid(0);
2677 psinfo->pr_uid = getuid();
2678 psinfo->pr_gid = getgid();
2679
900cfbca
JM
2680 base_filename = g_path_get_basename(ts->bprm->filename);
2681 /*
2682 * Using strncpy here is fine: at max-length,
2683 * this field is not NUL-terminated.
2684 */
edf8e2af 2685 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 2686 sizeof(psinfo->pr_fname));
edf8e2af 2687
900cfbca 2688 g_free(base_filename);
edf8e2af 2689 bswap_psinfo(psinfo);
edf8e2af
MW
2690 return (0);
2691}
2692
2693static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2694{
2695 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2696 elf_addr_t orig_auxv = auxv;
edf8e2af 2697 void *ptr;
125b0f55 2698 int len = ts->info->auxv_len;
edf8e2af
MW
2699
2700 /*
2701 * Auxiliary vector is stored in target process stack. It contains
2702 * {type, value} pairs that we need to dump into note. This is not
2703 * strictly necessary but we do it here for sake of completeness.
2704 */
2705
edf8e2af
MW
2706 /* read in whole auxv vector and copy it to memelfnote */
2707 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2708 if (ptr != NULL) {
2709 fill_note(note, "CORE", NT_AUXV, len, ptr);
2710 unlock_user(ptr, auxv, len);
2711 }
2712}
2713
2714/*
2715 * Constructs name of coredump file. We have following convention
2716 * for the name:
2717 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2718 *
2719 * Returns 0 in case of success, -1 otherwise (errno is set).
2720 */
2721static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 2722 size_t bufsize)
edf8e2af
MW
2723{
2724 char timestamp[64];
edf8e2af
MW
2725 char *base_filename = NULL;
2726 struct timeval tv;
2727 struct tm tm;
2728
2729 assert(bufsize >= PATH_MAX);
2730
2731 if (gettimeofday(&tv, NULL) < 0) {
2732 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 2733 strerror(errno));
edf8e2af
MW
2734 return (-1);
2735 }
2736
b8da57fa 2737 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 2738 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 2739 localtime_r(&tv.tv_sec, &tm));
edf8e2af 2740 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 2741 base_filename, timestamp, (int)getpid());
b8da57fa 2742 g_free(base_filename);
edf8e2af
MW
2743
2744 return (0);
2745}
2746
2747static int dump_write(int fd, const void *ptr, size_t size)
2748{
2749 const char *bufp = (const char *)ptr;
2750 ssize_t bytes_written, bytes_left;
2751 struct rlimit dumpsize;
2752 off_t pos;
2753
2754 bytes_written = 0;
2755 getrlimit(RLIMIT_CORE, &dumpsize);
2756 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2757 if (errno == ESPIPE) { /* not a seekable stream */
2758 bytes_left = size;
2759 } else {
2760 return pos;
2761 }
2762 } else {
2763 if (dumpsize.rlim_cur <= pos) {
2764 return -1;
2765 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2766 bytes_left = size;
2767 } else {
2768 size_t limit_left=dumpsize.rlim_cur - pos;
2769 bytes_left = limit_left >= size ? size : limit_left ;
2770 }
2771 }
2772
2773 /*
2774 * In normal conditions, single write(2) should do but
2775 * in case of socket etc. this mechanism is more portable.
2776 */
2777 do {
2778 bytes_written = write(fd, bufp, bytes_left);
2779 if (bytes_written < 0) {
2780 if (errno == EINTR)
2781 continue;
2782 return (-1);
2783 } else if (bytes_written == 0) { /* eof */
2784 return (-1);
2785 }
2786 bufp += bytes_written;
2787 bytes_left -= bytes_written;
2788 } while (bytes_left > 0);
2789
2790 return (0);
2791}
2792
2793static int write_note(struct memelfnote *men, int fd)
2794{
2795 struct elf_note en;
2796
2797 en.n_namesz = men->namesz;
2798 en.n_type = men->type;
2799 en.n_descsz = men->datasz;
2800
edf8e2af 2801 bswap_note(&en);
edf8e2af
MW
2802
2803 if (dump_write(fd, &en, sizeof(en)) != 0)
2804 return (-1);
2805 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2806 return (-1);
80f5ce75 2807 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
2808 return (-1);
2809
2810 return (0);
2811}
2812
9349b4f9 2813static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 2814{
0429a971
AF
2815 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2816 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
2817 struct elf_thread_status *ets;
2818
7267c094 2819 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
2820 ets->num_notes = 1; /* only prstatus is dumped */
2821 fill_prstatus(&ets->prstatus, ts, 0);
2822 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2823 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 2824 &ets->prstatus);
edf8e2af 2825
72cf2d4f 2826 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
2827
2828 info->notes_size += note_size(&ets->notes[0]);
2829}
2830
6afafa86
PM
2831static void init_note_info(struct elf_note_info *info)
2832{
2833 /* Initialize the elf_note_info structure so that it is at
2834 * least safe to call free_note_info() on it. Must be
2835 * called before calling fill_note_info().
2836 */
2837 memset(info, 0, sizeof (*info));
2838 QTAILQ_INIT(&info->thread_list);
2839}
2840
edf8e2af 2841static int fill_note_info(struct elf_note_info *info,
9349b4f9 2842 long signr, const CPUArchState *env)
edf8e2af
MW
2843{
2844#define NUMNOTES 3
0429a971
AF
2845 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2846 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
2847 int i;
2848
c78d65e8 2849 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
2850 if (info->notes == NULL)
2851 return (-ENOMEM);
7267c094 2852 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
2853 if (info->prstatus == NULL)
2854 return (-ENOMEM);
7267c094 2855 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
2856 if (info->prstatus == NULL)
2857 return (-ENOMEM);
2858
2859 /*
2860 * First fill in status (and registers) of current thread
2861 * including process info & aux vector.
2862 */
2863 fill_prstatus(info->prstatus, ts, signr);
2864 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2865 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 2866 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
2867 fill_psinfo(info->psinfo, ts);
2868 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 2869 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
2870 fill_auxv_note(&info->notes[2], ts);
2871 info->numnote = 3;
2872
2873 info->notes_size = 0;
2874 for (i = 0; i < info->numnote; i++)
2875 info->notes_size += note_size(&info->notes[i]);
2876
2877 /* read and fill status of all threads */
2878 cpu_list_lock();
bdc44640 2879 CPU_FOREACH(cpu) {
a2247f8e 2880 if (cpu == thread_cpu) {
edf8e2af 2881 continue;
182735ef
AF
2882 }
2883 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
2884 }
2885 cpu_list_unlock();
2886
2887 return (0);
2888}
2889
2890static void free_note_info(struct elf_note_info *info)
2891{
2892 struct elf_thread_status *ets;
2893
72cf2d4f
BS
2894 while (!QTAILQ_EMPTY(&info->thread_list)) {
2895 ets = QTAILQ_FIRST(&info->thread_list);
2896 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 2897 g_free(ets);
edf8e2af
MW
2898 }
2899
7267c094
AL
2900 g_free(info->prstatus);
2901 g_free(info->psinfo);
2902 g_free(info->notes);
edf8e2af
MW
2903}
2904
2905static int write_note_info(struct elf_note_info *info, int fd)
2906{
2907 struct elf_thread_status *ets;
2908 int i, error = 0;
2909
2910 /* write prstatus, psinfo and auxv for current thread */
2911 for (i = 0; i < info->numnote; i++)
2912 if ((error = write_note(&info->notes[i], fd)) != 0)
2913 return (error);
2914
2915 /* write prstatus for each thread */
52a53afe 2916 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
2917 if ((error = write_note(&ets->notes[0], fd)) != 0)
2918 return (error);
2919 }
2920
2921 return (0);
2922}
2923
2924/*
2925 * Write out ELF coredump.
2926 *
2927 * See documentation of ELF object file format in:
2928 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2929 *
2930 * Coredump format in linux is following:
2931 *
2932 * 0 +----------------------+ \
2933 * | ELF header | ET_CORE |
2934 * +----------------------+ |
2935 * | ELF program headers | |--- headers
2936 * | - NOTE section | |
2937 * | - PT_LOAD sections | |
2938 * +----------------------+ /
2939 * | NOTEs: |
2940 * | - NT_PRSTATUS |
2941 * | - NT_PRSINFO |
2942 * | - NT_AUXV |
2943 * +----------------------+ <-- aligned to target page
2944 * | Process memory dump |
2945 * : :
2946 * . .
2947 * : :
2948 * | |
2949 * +----------------------+
2950 *
2951 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2952 * NT_PRSINFO -> struct elf_prpsinfo
2953 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2954 *
2955 * Format follows System V format as close as possible. Current
2956 * version limitations are as follows:
2957 * - no floating point registers are dumped
2958 *
2959 * Function returns 0 in case of success, negative errno otherwise.
2960 *
2961 * TODO: make this work also during runtime: it should be
2962 * possible to force coredump from running process and then
2963 * continue processing. For example qemu could set up SIGUSR2
2964 * handler (provided that target process haven't registered
2965 * handler for that) that does the dump when signal is received.
2966 */
9349b4f9 2967static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 2968{
0429a971
AF
2969 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2970 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
2971 struct vm_area_struct *vma = NULL;
2972 char corefile[PATH_MAX];
2973 struct elf_note_info info;
2974 struct elfhdr elf;
2975 struct elf_phdr phdr;
2976 struct rlimit dumpsize;
2977 struct mm_struct *mm = NULL;
2978 off_t offset = 0, data_offset = 0;
2979 int segs = 0;
2980 int fd = -1;
2981
6afafa86
PM
2982 init_note_info(&info);
2983
edf8e2af
MW
2984 errno = 0;
2985 getrlimit(RLIMIT_CORE, &dumpsize);
2986 if (dumpsize.rlim_cur == 0)
d97ef72e 2987 return 0;
edf8e2af
MW
2988
2989 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2990 return (-errno);
2991
2992 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 2993 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
2994 return (-errno);
2995
2996 /*
2997 * Walk through target process memory mappings and
2998 * set up structure containing this information. After
2999 * this point vma_xxx functions can be used.
3000 */
3001 if ((mm = vma_init()) == NULL)
3002 goto out;
3003
3004 walk_memory_regions(mm, vma_walker);
3005 segs = vma_get_mapping_count(mm);
3006
3007 /*
3008 * Construct valid coredump ELF header. We also
3009 * add one more segment for notes.
3010 */
3011 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3012 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3013 goto out;
3014
b6af0975 3015 /* fill in the in-memory version of notes */
edf8e2af
MW
3016 if (fill_note_info(&info, signr, env) < 0)
3017 goto out;
3018
3019 offset += sizeof (elf); /* elf header */
3020 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3021
3022 /* write out notes program header */
3023 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3024
3025 offset += info.notes_size;
3026 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3027 goto out;
3028
3029 /*
3030 * ELF specification wants data to start at page boundary so
3031 * we align it here.
3032 */
80f5ce75 3033 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3034
3035 /*
3036 * Write program headers for memory regions mapped in
3037 * the target process.
3038 */
3039 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3040 (void) memset(&phdr, 0, sizeof (phdr));
3041
3042 phdr.p_type = PT_LOAD;
3043 phdr.p_offset = offset;
3044 phdr.p_vaddr = vma->vma_start;
3045 phdr.p_paddr = 0;
3046 phdr.p_filesz = vma_dump_size(vma);
3047 offset += phdr.p_filesz;
3048 phdr.p_memsz = vma->vma_end - vma->vma_start;
3049 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3050 if (vma->vma_flags & PROT_WRITE)
3051 phdr.p_flags |= PF_W;
3052 if (vma->vma_flags & PROT_EXEC)
3053 phdr.p_flags |= PF_X;
3054 phdr.p_align = ELF_EXEC_PAGESIZE;
3055
80f5ce75 3056 bswap_phdr(&phdr, 1);
772034b6
PM
3057 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3058 goto out;
3059 }
edf8e2af
MW
3060 }
3061
3062 /*
3063 * Next we write notes just after program headers. No
3064 * alignment needed here.
3065 */
3066 if (write_note_info(&info, fd) < 0)
3067 goto out;
3068
3069 /* align data to page boundary */
edf8e2af
MW
3070 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3071 goto out;
3072
3073 /*
3074 * Finally we can dump process memory into corefile as well.
3075 */
3076 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3077 abi_ulong addr;
3078 abi_ulong end;
3079
3080 end = vma->vma_start + vma_dump_size(vma);
3081
3082 for (addr = vma->vma_start; addr < end;
d97ef72e 3083 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3084 char page[TARGET_PAGE_SIZE];
3085 int error;
3086
3087 /*
3088 * Read in page from target process memory and
3089 * write it to coredump file.
3090 */
3091 error = copy_from_user(page, addr, sizeof (page));
3092 if (error != 0) {
49995e17 3093 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3094 addr);
edf8e2af
MW
3095 errno = -error;
3096 goto out;
3097 }
3098 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3099 goto out;
3100 }
3101 }
3102
d97ef72e 3103 out:
edf8e2af
MW
3104 free_note_info(&info);
3105 if (mm != NULL)
3106 vma_delete(mm);
3107 (void) close(fd);
3108
3109 if (errno != 0)
3110 return (-errno);
3111 return (0);
3112}
edf8e2af
MW
3113#endif /* USE_ELF_CORE_DUMP */
3114
e5fe0c52
PB
3115void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3116{
3117 init_thread(regs, infop);
3118}