]> git.proxmox.com Git - qemu.git/blame - linux-user/elfload.c
linux-user: fix for loopmount ioctl
[qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
edf8e2af
MW
2#include <sys/time.h>
3#include <sys/param.h>
31e31b8a
FB
4
5#include <stdio.h>
6#include <sys/types.h>
7#include <fcntl.h>
31e31b8a
FB
8#include <errno.h>
9#include <unistd.h>
10#include <sys/mman.h>
edf8e2af 11#include <sys/resource.h>
31e31b8a
FB
12#include <stdlib.h>
13#include <string.h>
edf8e2af 14#include <time.h>
31e31b8a 15
3ef693a0 16#include "qemu.h"
689f936f 17#include "disas.h"
31e31b8a 18
e58ffeb3 19#ifdef _ARCH_PPC64
a6cc84f4 20#undef ARCH_DLINFO
21#undef ELF_PLATFORM
22#undef ELF_HWCAP
23#undef ELF_CLASS
24#undef ELF_DATA
25#undef ELF_ARCH
26#endif
27
edf8e2af
MW
28#define ELF_OSABI ELFOSABI_SYSV
29
cb33da57
BS
30/* from personality.h */
31
32/*
33 * Flags for bug emulation.
34 *
35 * These occupy the top three bytes.
36 */
37enum {
d97ef72e
RH
38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
40 descriptors (signal handling) */
41 MMAP_PAGE_ZERO = 0x0100000,
42 ADDR_COMPAT_LAYOUT = 0x0200000,
43 READ_IMPLIES_EXEC = 0x0400000,
44 ADDR_LIMIT_32BIT = 0x0800000,
45 SHORT_INODE = 0x1000000,
46 WHOLE_SECONDS = 0x2000000,
47 STICKY_TIMEOUTS = 0x4000000,
48 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
49};
50
51/*
52 * Personality types.
53 *
54 * These go in the low byte. Avoid using the top bit, it will
55 * conflict with error returns.
56 */
57enum {
d97ef72e
RH
58 PER_LINUX = 0x0000,
59 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
60 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
61 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
67 PER_BSD = 0x0006,
68 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
69 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70 PER_LINUX32 = 0x0008,
71 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
72 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75 PER_RISCOS = 0x000c,
76 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
77 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78 PER_OSF4 = 0x000f, /* OSF/1 v4 */
79 PER_HPUX = 0x0010,
80 PER_MASK = 0x00ff,
cb33da57
BS
81};
82
83/*
84 * Return the base personality without flags.
85 */
d97ef72e 86#define personality(pers) (pers & PER_MASK)
cb33da57 87
83fb7adf
FB
88/* this flag is uneffective under linux too, should be deleted */
89#ifndef MAP_DENYWRITE
90#define MAP_DENYWRITE 0
91#endif
92
93/* should probably go in elf.h */
94#ifndef ELIBBAD
95#define ELIBBAD 80
96#endif
97
28490231
RH
98#ifdef TARGET_WORDS_BIGENDIAN
99#define ELF_DATA ELFDATA2MSB
100#else
101#define ELF_DATA ELFDATA2LSB
102#endif
103
d97ef72e 104typedef target_ulong target_elf_greg_t;
21e807fa 105#ifdef USE_UID16
d97ef72e
RH
106typedef uint16_t target_uid_t;
107typedef uint16_t target_gid_t;
21e807fa 108#else
d97ef72e
RH
109typedef uint32_t target_uid_t;
110typedef uint32_t target_gid_t;
21e807fa 111#endif
d97ef72e 112typedef int32_t target_pid_t;
21e807fa 113
30ac07d4
FB
114#ifdef TARGET_I386
115
15338fd7
FB
116#define ELF_PLATFORM get_elf_platform()
117
118static const char *get_elf_platform(void)
119{
120 static char elf_platform[] = "i386";
d5975363 121 int family = (thread_env->cpuid_version >> 8) & 0xff;
15338fd7
FB
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
127}
128
129#define ELF_HWCAP get_elf_hwcap()
130
131static uint32_t get_elf_hwcap(void)
132{
d97ef72e 133 return thread_env->cpuid_features;
15338fd7
FB
134}
135
84409ddb
JM
136#ifdef TARGET_X86_64
137#define ELF_START_MMAP 0x2aaaaab000ULL
138#define elf_check_arch(x) ( ((x) == ELF_ARCH) )
139
140#define ELF_CLASS ELFCLASS64
84409ddb
JM
141#define ELF_ARCH EM_X86_64
142
143static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
144{
145 regs->rax = 0;
146 regs->rsp = infop->start_stack;
147 regs->rip = infop->entry;
148}
149
9edc5d79 150#define ELF_NREG 27
c227f099 151typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
152
153/*
154 * Note that ELF_NREG should be 29 as there should be place for
155 * TRAPNO and ERR "registers" as well but linux doesn't dump
156 * those.
157 *
158 * See linux kernel: arch/x86/include/asm/elf.h
159 */
c227f099 160static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
9edc5d79
MW
161{
162 (*regs)[0] = env->regs[15];
163 (*regs)[1] = env->regs[14];
164 (*regs)[2] = env->regs[13];
165 (*regs)[3] = env->regs[12];
166 (*regs)[4] = env->regs[R_EBP];
167 (*regs)[5] = env->regs[R_EBX];
168 (*regs)[6] = env->regs[11];
169 (*regs)[7] = env->regs[10];
170 (*regs)[8] = env->regs[9];
171 (*regs)[9] = env->regs[8];
172 (*regs)[10] = env->regs[R_EAX];
173 (*regs)[11] = env->regs[R_ECX];
174 (*regs)[12] = env->regs[R_EDX];
175 (*regs)[13] = env->regs[R_ESI];
176 (*regs)[14] = env->regs[R_EDI];
177 (*regs)[15] = env->regs[R_EAX]; /* XXX */
178 (*regs)[16] = env->eip;
179 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
180 (*regs)[18] = env->eflags;
181 (*regs)[19] = env->regs[R_ESP];
182 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
183 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
184 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
185 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
186 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
187 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
188 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
189}
190
84409ddb
JM
191#else
192
30ac07d4
FB
193#define ELF_START_MMAP 0x80000000
194
30ac07d4
FB
195/*
196 * This is used to ensure we don't load something for the wrong architecture.
197 */
198#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
199
200/*
201 * These are used to set parameters in the core dumps.
202 */
d97ef72e 203#define ELF_CLASS ELFCLASS32
d97ef72e 204#define ELF_ARCH EM_386
30ac07d4 205
d97ef72e
RH
206static inline void init_thread(struct target_pt_regs *regs,
207 struct image_info *infop)
b346ff46
FB
208{
209 regs->esp = infop->start_stack;
210 regs->eip = infop->entry;
e5fe0c52
PB
211
212 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
213 starts %edx contains a pointer to a function which might be
214 registered using `atexit'. This provides a mean for the
215 dynamic linker to call DT_FINI functions for shared libraries
216 that have been loaded before the code runs.
217
218 A value of 0 tells we have no such handler. */
219 regs->edx = 0;
b346ff46 220}
9edc5d79 221
9edc5d79 222#define ELF_NREG 17
c227f099 223typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
224
225/*
226 * Note that ELF_NREG should be 19 as there should be place for
227 * TRAPNO and ERR "registers" as well but linux doesn't dump
228 * those.
229 *
230 * See linux kernel: arch/x86/include/asm/elf.h
231 */
c227f099 232static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
9edc5d79
MW
233{
234 (*regs)[0] = env->regs[R_EBX];
235 (*regs)[1] = env->regs[R_ECX];
236 (*regs)[2] = env->regs[R_EDX];
237 (*regs)[3] = env->regs[R_ESI];
238 (*regs)[4] = env->regs[R_EDI];
239 (*regs)[5] = env->regs[R_EBP];
240 (*regs)[6] = env->regs[R_EAX];
241 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
242 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
243 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
244 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
245 (*regs)[11] = env->regs[R_EAX]; /* XXX */
246 (*regs)[12] = env->eip;
247 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
248 (*regs)[14] = env->eflags;
249 (*regs)[15] = env->regs[R_ESP];
250 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
251}
84409ddb 252#endif
b346ff46 253
9edc5d79 254#define USE_ELF_CORE_DUMP
d97ef72e 255#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
256
257#endif
258
259#ifdef TARGET_ARM
260
261#define ELF_START_MMAP 0x80000000
262
263#define elf_check_arch(x) ( (x) == EM_ARM )
264
d97ef72e 265#define ELF_CLASS ELFCLASS32
d97ef72e 266#define ELF_ARCH EM_ARM
b346ff46 267
d97ef72e
RH
268static inline void init_thread(struct target_pt_regs *regs,
269 struct image_info *infop)
b346ff46 270{
992f48a0 271 abi_long stack = infop->start_stack;
b346ff46
FB
272 memset(regs, 0, sizeof(*regs));
273 regs->ARM_cpsr = 0x10;
0240ded8 274 if (infop->entry & 1)
d97ef72e 275 regs->ARM_cpsr |= CPSR_T;
0240ded8 276 regs->ARM_pc = infop->entry & 0xfffffffe;
b346ff46 277 regs->ARM_sp = infop->start_stack;
2f619698
FB
278 /* FIXME - what to for failure of get_user()? */
279 get_user_ual(regs->ARM_r2, stack + 8); /* envp */
280 get_user_ual(regs->ARM_r1, stack + 4); /* envp */
a1516e92 281 /* XXX: it seems that r0 is zeroed after ! */
e5fe0c52
PB
282 regs->ARM_r0 = 0;
283 /* For uClinux PIC binaries. */
863cf0b7 284 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
e5fe0c52 285 regs->ARM_r10 = infop->start_data;
b346ff46
FB
286}
287
edf8e2af 288#define ELF_NREG 18
c227f099 289typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 290
c227f099 291static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
edf8e2af 292{
d049e626
NF
293 (*regs)[0] = tswapl(env->regs[0]);
294 (*regs)[1] = tswapl(env->regs[1]);
295 (*regs)[2] = tswapl(env->regs[2]);
296 (*regs)[3] = tswapl(env->regs[3]);
297 (*regs)[4] = tswapl(env->regs[4]);
298 (*regs)[5] = tswapl(env->regs[5]);
299 (*regs)[6] = tswapl(env->regs[6]);
300 (*regs)[7] = tswapl(env->regs[7]);
301 (*regs)[8] = tswapl(env->regs[8]);
302 (*regs)[9] = tswapl(env->regs[9]);
303 (*regs)[10] = tswapl(env->regs[10]);
304 (*regs)[11] = tswapl(env->regs[11]);
305 (*regs)[12] = tswapl(env->regs[12]);
306 (*regs)[13] = tswapl(env->regs[13]);
307 (*regs)[14] = tswapl(env->regs[14]);
308 (*regs)[15] = tswapl(env->regs[15]);
309
310 (*regs)[16] = tswapl(cpsr_read((CPUState *)env));
311 (*regs)[17] = tswapl(env->regs[0]); /* XXX */
edf8e2af
MW
312}
313
30ac07d4 314#define USE_ELF_CORE_DUMP
d97ef72e 315#define ELF_EXEC_PAGESIZE 4096
30ac07d4 316
afce2927
FB
317enum
318{
d97ef72e
RH
319 ARM_HWCAP_ARM_SWP = 1 << 0,
320 ARM_HWCAP_ARM_HALF = 1 << 1,
321 ARM_HWCAP_ARM_THUMB = 1 << 2,
322 ARM_HWCAP_ARM_26BIT = 1 << 3,
323 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
324 ARM_HWCAP_ARM_FPA = 1 << 5,
325 ARM_HWCAP_ARM_VFP = 1 << 6,
326 ARM_HWCAP_ARM_EDSP = 1 << 7,
327 ARM_HWCAP_ARM_JAVA = 1 << 8,
328 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
329 ARM_HWCAP_ARM_THUMBEE = 1 << 10,
330 ARM_HWCAP_ARM_NEON = 1 << 11,
331 ARM_HWCAP_ARM_VFPv3 = 1 << 12,
332 ARM_HWCAP_ARM_VFPv3D16 = 1 << 13,
afce2927
FB
333};
334
d97ef72e
RH
335#define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \
336 | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \
337 | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP \
338 | ARM_HWCAP_ARM_NEON | ARM_HWCAP_ARM_VFPv3 )
afce2927 339
30ac07d4
FB
340#endif
341
853d6f7a 342#ifdef TARGET_SPARC
a315a145 343#ifdef TARGET_SPARC64
853d6f7a
FB
344
345#define ELF_START_MMAP 0x80000000
346
992f48a0 347#ifndef TARGET_ABI32
cb33da57 348#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
349#else
350#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
351#endif
853d6f7a 352
a315a145 353#define ELF_CLASS ELFCLASS64
5ef54116
FB
354#define ELF_ARCH EM_SPARCV9
355
d97ef72e 356#define STACK_BIAS 2047
a315a145 357
d97ef72e
RH
358static inline void init_thread(struct target_pt_regs *regs,
359 struct image_info *infop)
a315a145 360{
992f48a0 361#ifndef TARGET_ABI32
a315a145 362 regs->tstate = 0;
992f48a0 363#endif
a315a145
FB
364 regs->pc = infop->entry;
365 regs->npc = regs->pc + 4;
366 regs->y = 0;
992f48a0
BS
367#ifdef TARGET_ABI32
368 regs->u_regs[14] = infop->start_stack - 16 * 4;
369#else
cb33da57
BS
370 if (personality(infop->personality) == PER_LINUX32)
371 regs->u_regs[14] = infop->start_stack - 16 * 4;
372 else
373 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 374#endif
a315a145
FB
375}
376
377#else
378#define ELF_START_MMAP 0x80000000
379
380#define elf_check_arch(x) ( (x) == EM_SPARC )
381
853d6f7a 382#define ELF_CLASS ELFCLASS32
853d6f7a
FB
383#define ELF_ARCH EM_SPARC
384
d97ef72e
RH
385static inline void init_thread(struct target_pt_regs *regs,
386 struct image_info *infop)
853d6f7a 387{
f5155289
FB
388 regs->psr = 0;
389 regs->pc = infop->entry;
390 regs->npc = regs->pc + 4;
391 regs->y = 0;
392 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
393}
394
a315a145 395#endif
853d6f7a
FB
396#endif
397
67867308
FB
398#ifdef TARGET_PPC
399
400#define ELF_START_MMAP 0x80000000
401
e85e7c6e 402#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
403
404#define elf_check_arch(x) ( (x) == EM_PPC64 )
405
d97ef72e 406#define ELF_CLASS ELFCLASS64
84409ddb
JM
407
408#else
409
67867308
FB
410#define elf_check_arch(x) ( (x) == EM_PPC )
411
d97ef72e 412#define ELF_CLASS ELFCLASS32
84409ddb
JM
413
414#endif
415
d97ef72e 416#define ELF_ARCH EM_PPC
67867308 417
df84e4f3
NF
418/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
419 See arch/powerpc/include/asm/cputable.h. */
420enum {
3efa9a67 421 QEMU_PPC_FEATURE_32 = 0x80000000,
422 QEMU_PPC_FEATURE_64 = 0x40000000,
423 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
424 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
425 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
426 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
427 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
428 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
429 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
430 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
431 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
432 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
433 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
434 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
435 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
436 QEMU_PPC_FEATURE_CELL = 0x00010000,
437 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
438 QEMU_PPC_FEATURE_SMT = 0x00004000,
439 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
440 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
441 QEMU_PPC_FEATURE_PA6T = 0x00000800,
442 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
443 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
444 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
445 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
446 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
447
448 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
449 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
df84e4f3
NF
450};
451
452#define ELF_HWCAP get_elf_hwcap()
453
454static uint32_t get_elf_hwcap(void)
455{
456 CPUState *e = thread_env;
457 uint32_t features = 0;
458
459 /* We don't have to be terribly complete here; the high points are
460 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 461#define GET_FEATURE(flag, feature) \
df84e4f3 462 do {if (e->insns_flags & flag) features |= feature; } while(0)
3efa9a67 463 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
464 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
465 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
466 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
467 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
468 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
469 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
470 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
df84e4f3
NF
471#undef GET_FEATURE
472
473 return features;
474}
475
f5155289
FB
476/*
477 * The requirements here are:
478 * - keep the final alignment of sp (sp & 0xf)
479 * - make sure the 32-bit value at the first 16 byte aligned position of
480 * AUXV is greater than 16 for glibc compatibility.
481 * AT_IGNOREPPC is used for that.
482 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
483 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
484 */
0bccf03d 485#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
486#define ARCH_DLINFO \
487 do { \
488 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \
489 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \
490 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
491 /* \
492 * Now handle glibc compatibility. \
493 */ \
494 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
495 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
496 } while (0)
f5155289 497
67867308
FB
498static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
499{
67867308 500 _regs->gpr[1] = infop->start_stack;
e85e7c6e 501#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
7983f435
RL
502 _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_addr;
503 infop->entry = ldq_raw(infop->entry) + infop->load_addr;
84409ddb 504#endif
67867308
FB
505 _regs->nip = infop->entry;
506}
507
e2f3e741
NF
508/* See linux kernel: arch/powerpc/include/asm/elf.h. */
509#define ELF_NREG 48
510typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
511
512static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
513{
514 int i;
515 target_ulong ccr = 0;
516
517 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
518 (*regs)[i] = tswapl(env->gpr[i]);
519 }
520
521 (*regs)[32] = tswapl(env->nip);
522 (*regs)[33] = tswapl(env->msr);
523 (*regs)[35] = tswapl(env->ctr);
524 (*regs)[36] = tswapl(env->lr);
525 (*regs)[37] = tswapl(env->xer);
526
527 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
528 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
529 }
530 (*regs)[38] = tswapl(ccr);
531}
532
533#define USE_ELF_CORE_DUMP
d97ef72e 534#define ELF_EXEC_PAGESIZE 4096
67867308
FB
535
536#endif
537
048f6b4d
FB
538#ifdef TARGET_MIPS
539
540#define ELF_START_MMAP 0x80000000
541
542#define elf_check_arch(x) ( (x) == EM_MIPS )
543
388bb21a
TS
544#ifdef TARGET_MIPS64
545#define ELF_CLASS ELFCLASS64
546#else
048f6b4d 547#define ELF_CLASS ELFCLASS32
388bb21a 548#endif
048f6b4d
FB
549#define ELF_ARCH EM_MIPS
550
d97ef72e
RH
551static inline void init_thread(struct target_pt_regs *regs,
552 struct image_info *infop)
048f6b4d 553{
623a930e 554 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
555 regs->cp0_epc = infop->entry;
556 regs->regs[29] = infop->start_stack;
557}
558
51e52606
NF
559/* See linux kernel: arch/mips/include/asm/elf.h. */
560#define ELF_NREG 45
561typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
562
563/* See linux kernel: arch/mips/include/asm/reg.h. */
564enum {
565#ifdef TARGET_MIPS64
566 TARGET_EF_R0 = 0,
567#else
568 TARGET_EF_R0 = 6,
569#endif
570 TARGET_EF_R26 = TARGET_EF_R0 + 26,
571 TARGET_EF_R27 = TARGET_EF_R0 + 27,
572 TARGET_EF_LO = TARGET_EF_R0 + 32,
573 TARGET_EF_HI = TARGET_EF_R0 + 33,
574 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
575 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
576 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
577 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
578};
579
580/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
581static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
582{
583 int i;
584
585 for (i = 0; i < TARGET_EF_R0; i++) {
586 (*regs)[i] = 0;
587 }
588 (*regs)[TARGET_EF_R0] = 0;
589
590 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
591 (*regs)[TARGET_EF_R0 + i] = tswapl(env->active_tc.gpr[i]);
592 }
593
594 (*regs)[TARGET_EF_R26] = 0;
595 (*regs)[TARGET_EF_R27] = 0;
596 (*regs)[TARGET_EF_LO] = tswapl(env->active_tc.LO[0]);
597 (*regs)[TARGET_EF_HI] = tswapl(env->active_tc.HI[0]);
598 (*regs)[TARGET_EF_CP0_EPC] = tswapl(env->active_tc.PC);
599 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapl(env->CP0_BadVAddr);
600 (*regs)[TARGET_EF_CP0_STATUS] = tswapl(env->CP0_Status);
601 (*regs)[TARGET_EF_CP0_CAUSE] = tswapl(env->CP0_Cause);
602}
603
604#define USE_ELF_CORE_DUMP
388bb21a
TS
605#define ELF_EXEC_PAGESIZE 4096
606
048f6b4d
FB
607#endif /* TARGET_MIPS */
608
b779e29e
EI
609#ifdef TARGET_MICROBLAZE
610
611#define ELF_START_MMAP 0x80000000
612
0d5d4699 613#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
614
615#define ELF_CLASS ELFCLASS32
0d5d4699 616#define ELF_ARCH EM_MICROBLAZE
b779e29e 617
d97ef72e
RH
618static inline void init_thread(struct target_pt_regs *regs,
619 struct image_info *infop)
b779e29e
EI
620{
621 regs->pc = infop->entry;
622 regs->r1 = infop->start_stack;
623
624}
625
b779e29e
EI
626#define ELF_EXEC_PAGESIZE 4096
627
e4cbd44d
EI
628#define USE_ELF_CORE_DUMP
629#define ELF_NREG 38
630typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
631
632/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
633static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
634{
635 int i, pos = 0;
636
637 for (i = 0; i < 32; i++) {
638 (*regs)[pos++] = tswapl(env->regs[i]);
639 }
640
641 for (i = 0; i < 6; i++) {
642 (*regs)[pos++] = tswapl(env->sregs[i]);
643 }
644}
645
b779e29e
EI
646#endif /* TARGET_MICROBLAZE */
647
fdf9b3e8
FB
648#ifdef TARGET_SH4
649
650#define ELF_START_MMAP 0x80000000
651
652#define elf_check_arch(x) ( (x) == EM_SH )
653
654#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
655#define ELF_ARCH EM_SH
656
d97ef72e
RH
657static inline void init_thread(struct target_pt_regs *regs,
658 struct image_info *infop)
fdf9b3e8 659{
d97ef72e
RH
660 /* Check other registers XXXXX */
661 regs->pc = infop->entry;
662 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
663}
664
7631c97e
NF
665/* See linux kernel: arch/sh/include/asm/elf.h. */
666#define ELF_NREG 23
667typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
668
669/* See linux kernel: arch/sh/include/asm/ptrace.h. */
670enum {
671 TARGET_REG_PC = 16,
672 TARGET_REG_PR = 17,
673 TARGET_REG_SR = 18,
674 TARGET_REG_GBR = 19,
675 TARGET_REG_MACH = 20,
676 TARGET_REG_MACL = 21,
677 TARGET_REG_SYSCALL = 22
678};
679
d97ef72e
RH
680static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
681 const CPUState *env)
7631c97e
NF
682{
683 int i;
684
685 for (i = 0; i < 16; i++) {
686 (*regs[i]) = tswapl(env->gregs[i]);
687 }
688
689 (*regs)[TARGET_REG_PC] = tswapl(env->pc);
690 (*regs)[TARGET_REG_PR] = tswapl(env->pr);
691 (*regs)[TARGET_REG_SR] = tswapl(env->sr);
692 (*regs)[TARGET_REG_GBR] = tswapl(env->gbr);
693 (*regs)[TARGET_REG_MACH] = tswapl(env->mach);
694 (*regs)[TARGET_REG_MACL] = tswapl(env->macl);
695 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
696}
697
698#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
699#define ELF_EXEC_PAGESIZE 4096
700
701#endif
702
48733d19
TS
703#ifdef TARGET_CRIS
704
705#define ELF_START_MMAP 0x80000000
706
707#define elf_check_arch(x) ( (x) == EM_CRIS )
708
709#define ELF_CLASS ELFCLASS32
48733d19
TS
710#define ELF_ARCH EM_CRIS
711
d97ef72e
RH
712static inline void init_thread(struct target_pt_regs *regs,
713 struct image_info *infop)
48733d19 714{
d97ef72e 715 regs->erp = infop->entry;
48733d19
TS
716}
717
48733d19
TS
718#define ELF_EXEC_PAGESIZE 8192
719
720#endif
721
e6e5906b
PB
722#ifdef TARGET_M68K
723
724#define ELF_START_MMAP 0x80000000
725
726#define elf_check_arch(x) ( (x) == EM_68K )
727
d97ef72e 728#define ELF_CLASS ELFCLASS32
d97ef72e 729#define ELF_ARCH EM_68K
e6e5906b
PB
730
731/* ??? Does this need to do anything?
d97ef72e 732 #define ELF_PLAT_INIT(_r) */
e6e5906b 733
d97ef72e
RH
734static inline void init_thread(struct target_pt_regs *regs,
735 struct image_info *infop)
e6e5906b
PB
736{
737 regs->usp = infop->start_stack;
738 regs->sr = 0;
739 regs->pc = infop->entry;
740}
741
7a93cc55
NF
742/* See linux kernel: arch/m68k/include/asm/elf.h. */
743#define ELF_NREG 20
744typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
745
746static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
747{
748 (*regs)[0] = tswapl(env->dregs[1]);
749 (*regs)[1] = tswapl(env->dregs[2]);
750 (*regs)[2] = tswapl(env->dregs[3]);
751 (*regs)[3] = tswapl(env->dregs[4]);
752 (*regs)[4] = tswapl(env->dregs[5]);
753 (*regs)[5] = tswapl(env->dregs[6]);
754 (*regs)[6] = tswapl(env->dregs[7]);
755 (*regs)[7] = tswapl(env->aregs[0]);
756 (*regs)[8] = tswapl(env->aregs[1]);
757 (*regs)[9] = tswapl(env->aregs[2]);
758 (*regs)[10] = tswapl(env->aregs[3]);
759 (*regs)[11] = tswapl(env->aregs[4]);
760 (*regs)[12] = tswapl(env->aregs[5]);
761 (*regs)[13] = tswapl(env->aregs[6]);
762 (*regs)[14] = tswapl(env->dregs[0]);
763 (*regs)[15] = tswapl(env->aregs[7]);
764 (*regs)[16] = tswapl(env->dregs[0]); /* FIXME: orig_d0 */
765 (*regs)[17] = tswapl(env->sr);
766 (*regs)[18] = tswapl(env->pc);
767 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
768}
769
770#define USE_ELF_CORE_DUMP
d97ef72e 771#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
772
773#endif
774
7a3148a9
JM
775#ifdef TARGET_ALPHA
776
777#define ELF_START_MMAP (0x30000000000ULL)
778
779#define elf_check_arch(x) ( (x) == ELF_ARCH )
780
781#define ELF_CLASS ELFCLASS64
7a3148a9
JM
782#define ELF_ARCH EM_ALPHA
783
d97ef72e
RH
784static inline void init_thread(struct target_pt_regs *regs,
785 struct image_info *infop)
7a3148a9
JM
786{
787 regs->pc = infop->entry;
788 regs->ps = 8;
789 regs->usp = infop->start_stack;
7a3148a9
JM
790}
791
7a3148a9
JM
792#define ELF_EXEC_PAGESIZE 8192
793
794#endif /* TARGET_ALPHA */
795
15338fd7
FB
796#ifndef ELF_PLATFORM
797#define ELF_PLATFORM (NULL)
798#endif
799
800#ifndef ELF_HWCAP
801#define ELF_HWCAP 0
802#endif
803
992f48a0 804#ifdef TARGET_ABI32
cb33da57 805#undef ELF_CLASS
992f48a0 806#define ELF_CLASS ELFCLASS32
cb33da57
BS
807#undef bswaptls
808#define bswaptls(ptr) bswap32s(ptr)
809#endif
810
31e31b8a 811#include "elf.h"
09bfb054 812
09bfb054
FB
813struct exec
814{
d97ef72e
RH
815 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
816 unsigned int a_text; /* length of text, in bytes */
817 unsigned int a_data; /* length of data, in bytes */
818 unsigned int a_bss; /* length of uninitialized data area, in bytes */
819 unsigned int a_syms; /* length of symbol table data in file, in bytes */
820 unsigned int a_entry; /* start address */
821 unsigned int a_trsize; /* length of relocation info for text, in bytes */
822 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
823};
824
825
826#define N_MAGIC(exec) ((exec).a_info & 0xffff)
827#define OMAGIC 0407
828#define NMAGIC 0410
829#define ZMAGIC 0413
830#define QMAGIC 0314
831
31e31b8a 832/* Necessary parameters */
54936004
FB
833#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
834#define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
835#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 836
15338fd7 837#define DLINFO_ITEMS 12
31e31b8a 838
09bfb054
FB
839static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
840{
d97ef72e 841 memcpy(to, from, n);
09bfb054 842}
d691f669 843
31e31b8a 844#ifdef BSWAP_NEEDED
92a31b1f 845static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 846{
d97ef72e
RH
847 bswap16s(&ehdr->e_type); /* Object file type */
848 bswap16s(&ehdr->e_machine); /* Architecture */
849 bswap32s(&ehdr->e_version); /* Object file version */
850 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
851 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
852 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
853 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
854 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
855 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
856 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
857 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
858 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
859 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
860}
861
991f8f0c 862static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 863{
991f8f0c
RH
864 int i;
865 for (i = 0; i < phnum; ++i, ++phdr) {
866 bswap32s(&phdr->p_type); /* Segment type */
867 bswap32s(&phdr->p_flags); /* Segment flags */
868 bswaptls(&phdr->p_offset); /* Segment file offset */
869 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
870 bswaptls(&phdr->p_paddr); /* Segment physical address */
871 bswaptls(&phdr->p_filesz); /* Segment size in file */
872 bswaptls(&phdr->p_memsz); /* Segment size in memory */
873 bswaptls(&phdr->p_align); /* Segment alignment */
874 }
31e31b8a 875}
689f936f 876
991f8f0c 877static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 878{
991f8f0c
RH
879 int i;
880 for (i = 0; i < shnum; ++i, ++shdr) {
881 bswap32s(&shdr->sh_name);
882 bswap32s(&shdr->sh_type);
883 bswaptls(&shdr->sh_flags);
884 bswaptls(&shdr->sh_addr);
885 bswaptls(&shdr->sh_offset);
886 bswaptls(&shdr->sh_size);
887 bswap32s(&shdr->sh_link);
888 bswap32s(&shdr->sh_info);
889 bswaptls(&shdr->sh_addralign);
890 bswaptls(&shdr->sh_entsize);
891 }
689f936f
FB
892}
893
7a3148a9 894static void bswap_sym(struct elf_sym *sym)
689f936f
FB
895{
896 bswap32s(&sym->st_name);
7a3148a9
JM
897 bswaptls(&sym->st_value);
898 bswaptls(&sym->st_size);
689f936f
FB
899 bswap16s(&sym->st_shndx);
900}
991f8f0c
RH
901#else
902static inline void bswap_ehdr(struct elfhdr *ehdr) { }
903static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
904static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
905static inline void bswap_sym(struct elf_sym *sym) { }
31e31b8a
FB
906#endif
907
edf8e2af
MW
908#ifdef USE_ELF_CORE_DUMP
909static int elf_core_dump(int, const CPUState *);
edf8e2af 910#endif /* USE_ELF_CORE_DUMP */
682674b8 911static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 912
9058abdd
RH
913/* Verify the portions of EHDR within E_IDENT for the target.
914 This can be performed before bswapping the entire header. */
915static bool elf_check_ident(struct elfhdr *ehdr)
916{
917 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
918 && ehdr->e_ident[EI_MAG1] == ELFMAG1
919 && ehdr->e_ident[EI_MAG2] == ELFMAG2
920 && ehdr->e_ident[EI_MAG3] == ELFMAG3
921 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
922 && ehdr->e_ident[EI_DATA] == ELF_DATA
923 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
924}
925
926/* Verify the portions of EHDR outside of E_IDENT for the target.
927 This has to wait until after bswapping the header. */
928static bool elf_check_ehdr(struct elfhdr *ehdr)
929{
930 return (elf_check_arch(ehdr->e_machine)
931 && ehdr->e_ehsize == sizeof(struct elfhdr)
932 && ehdr->e_phentsize == sizeof(struct elf_phdr)
933 && ehdr->e_shentsize == sizeof(struct elf_shdr)
934 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
935}
936
31e31b8a 937/*
e5fe0c52 938 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
939 * memory to free pages in kernel mem. These are in a format ready
940 * to be put directly into the top of new user memory.
941 *
942 */
992f48a0
BS
943static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
944 abi_ulong p)
31e31b8a
FB
945{
946 char *tmp, *tmp1, *pag = NULL;
947 int len, offset = 0;
948
949 if (!p) {
d97ef72e 950 return 0; /* bullet-proofing */
31e31b8a
FB
951 }
952 while (argc-- > 0) {
edf779ff
FB
953 tmp = argv[argc];
954 if (!tmp) {
d97ef72e
RH
955 fprintf(stderr, "VFS: argc is wrong");
956 exit(-1);
957 }
edf779ff 958 tmp1 = tmp;
d97ef72e
RH
959 while (*tmp++);
960 len = tmp - tmp1;
961 if (p < len) { /* this shouldn't happen - 128kB */
962 return 0;
963 }
964 while (len) {
965 --p; --tmp; --len;
966 if (--offset < 0) {
967 offset = p % TARGET_PAGE_SIZE;
53a5960a 968 pag = (char *)page[p/TARGET_PAGE_SIZE];
44a91cae 969 if (!pag) {
53a5960a 970 pag = (char *)malloc(TARGET_PAGE_SIZE);
4118a970 971 memset(pag, 0, TARGET_PAGE_SIZE);
53a5960a 972 page[p/TARGET_PAGE_SIZE] = pag;
44a91cae
FB
973 if (!pag)
974 return 0;
d97ef72e
RH
975 }
976 }
977 if (len == 0 || offset == 0) {
978 *(pag + offset) = *tmp;
979 }
980 else {
981 int bytes_to_copy = (len > offset) ? offset : len;
982 tmp -= bytes_to_copy;
983 p -= bytes_to_copy;
984 offset -= bytes_to_copy;
985 len -= bytes_to_copy;
986 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
987 }
988 }
31e31b8a
FB
989 }
990 return p;
991}
992
992f48a0
BS
993static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
994 struct image_info *info)
53a5960a 995{
60dcbcb5 996 abi_ulong stack_base, size, error, guard;
31e31b8a 997 int i;
31e31b8a 998
09bfb054 999 /* Create enough stack to hold everything. If we don't use
60dcbcb5 1000 it for args, we'll use it for something else. */
703e0e89 1001 size = guest_stack_size;
60dcbcb5 1002 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
54936004 1003 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
60dcbcb5
RH
1004 }
1005 guard = TARGET_PAGE_SIZE;
1006 if (guard < qemu_real_host_page_size) {
1007 guard = qemu_real_host_page_size;
1008 }
1009
1010 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1011 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1012 if (error == -1) {
60dcbcb5 1013 perror("mmap stack");
09bfb054
FB
1014 exit(-1);
1015 }
31e31b8a 1016
60dcbcb5
RH
1017 /* We reserve one extra page at the top of the stack as guard. */
1018 target_mprotect(error, guard, PROT_NONE);
1019
1020 info->stack_limit = error + guard;
1021 stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
31e31b8a 1022 p += stack_base;
09bfb054 1023
31e31b8a 1024 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
d97ef72e
RH
1025 if (bprm->page[i]) {
1026 info->rss++;
579a97f7 1027 /* FIXME - check return value of memcpy_to_target() for failure */
d97ef72e
RH
1028 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
1029 free(bprm->page[i]);
1030 }
53a5960a 1031 stack_base += TARGET_PAGE_SIZE;
31e31b8a
FB
1032 }
1033 return p;
1034}
1035
cf129f3a
RH
1036/* Map and zero the bss. We need to explicitly zero any fractional pages
1037 after the data section (i.e. bss). */
1038static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1039{
cf129f3a
RH
1040 uintptr_t host_start, host_map_start, host_end;
1041
1042 last_bss = TARGET_PAGE_ALIGN(last_bss);
1043
1044 /* ??? There is confusion between qemu_real_host_page_size and
1045 qemu_host_page_size here and elsewhere in target_mmap, which
1046 may lead to the end of the data section mapping from the file
1047 not being mapped. At least there was an explicit test and
1048 comment for that here, suggesting that "the file size must
1049 be known". The comment probably pre-dates the introduction
1050 of the fstat system call in target_mmap which does in fact
1051 find out the size. What isn't clear is if the workaround
1052 here is still actually needed. For now, continue with it,
1053 but merge it with the "normal" mmap that would allocate the bss. */
1054
1055 host_start = (uintptr_t) g2h(elf_bss);
1056 host_end = (uintptr_t) g2h(last_bss);
1057 host_map_start = (host_start + qemu_real_host_page_size - 1);
1058 host_map_start &= -qemu_real_host_page_size;
1059
1060 if (host_map_start < host_end) {
1061 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1062 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1063 if (p == MAP_FAILED) {
1064 perror("cannot mmap brk");
1065 exit(-1);
853d6f7a
FB
1066 }
1067
cf129f3a
RH
1068 /* Since we didn't use target_mmap, make sure to record
1069 the validity of the pages with qemu. */
1070 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot|PAGE_VALID);
1071 }
31e31b8a 1072
cf129f3a
RH
1073 if (host_start < host_map_start) {
1074 memset((void *)host_start, 0, host_map_start - host_start);
1075 }
1076}
53a5960a 1077
992f48a0 1078static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1079 struct elfhdr *exec,
1080 struct image_info *info,
1081 struct image_info *interp_info)
31e31b8a 1082{
d97ef72e
RH
1083 abi_ulong sp;
1084 int size;
1085 abi_ulong u_platform;
1086 const char *k_platform;
1087 const int n = sizeof(elf_addr_t);
1088
1089 sp = p;
1090 u_platform = 0;
1091 k_platform = ELF_PLATFORM;
1092 if (k_platform) {
1093 size_t len = strlen(k_platform) + 1;
1094 sp -= (len + n - 1) & ~(n - 1);
1095 u_platform = sp;
1096 /* FIXME - check return value of memcpy_to_target() for failure */
1097 memcpy_to_target(sp, k_platform, len);
1098 }
1099 /*
1100 * Force 16 byte _final_ alignment here for generality.
1101 */
1102 sp = sp &~ (abi_ulong)15;
1103 size = (DLINFO_ITEMS + 1) * 2;
1104 if (k_platform)
1105 size += 2;
f5155289 1106#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1107 size += DLINFO_ARCH_ITEMS * 2;
f5155289 1108#endif
d97ef72e 1109 size += envc + argc + 2;
b9329d4b 1110 size += 1; /* argc itself */
d97ef72e
RH
1111 size *= n;
1112 if (size & 15)
1113 sp -= 16 - (size & 15);
1114
1115 /* This is correct because Linux defines
1116 * elf_addr_t as Elf32_Off / Elf64_Off
1117 */
1118#define NEW_AUX_ENT(id, val) do { \
1119 sp -= n; put_user_ual(val, sp); \
1120 sp -= n; put_user_ual(id, sp); \
1121 } while(0)
1122
1123 NEW_AUX_ENT (AT_NULL, 0);
1124
1125 /* There must be exactly DLINFO_ITEMS entries here. */
8e62a717 1126 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1127 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1128 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1129 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
8e62a717 1130 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1131 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1132 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1133 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1134 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1135 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1136 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1137 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1138 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1139 if (k_platform)
1140 NEW_AUX_ENT(AT_PLATFORM, u_platform);
f5155289 1141#ifdef ARCH_DLINFO
d97ef72e
RH
1142 /*
1143 * ARCH_DLINFO must come last so platform specific code can enforce
1144 * special alignment requirements on the AUXV if necessary (eg. PPC).
1145 */
1146 ARCH_DLINFO;
f5155289
FB
1147#endif
1148#undef NEW_AUX_ENT
1149
d97ef72e 1150 info->saved_auxv = sp;
edf8e2af 1151
b9329d4b 1152 sp = loader_build_argptr(envc, argc, sp, p, 0);
d97ef72e 1153 return sp;
31e31b8a
FB
1154}
1155
8e62a717 1156/* Load an ELF image into the address space.
31e31b8a 1157
8e62a717
RH
1158 IMAGE_NAME is the filename of the image, to use in error messages.
1159 IMAGE_FD is the open file descriptor for the image.
1160
1161 BPRM_BUF is a copy of the beginning of the file; this of course
1162 contains the elf file header at offset 0. It is assumed that this
1163 buffer is sufficiently aligned to present no problems to the host
1164 in accessing data at aligned offsets within the buffer.
1165
1166 On return: INFO values will be filled in, as necessary or available. */
1167
1168static void load_elf_image(const char *image_name, int image_fd,
bf858897 1169 struct image_info *info, char **pinterp_name,
8e62a717 1170 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 1171{
8e62a717
RH
1172 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1173 struct elf_phdr *phdr;
1174 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1175 int i, retval;
1176 const char *errmsg;
5fafdf24 1177
8e62a717
RH
1178 /* First of all, some simple consistency checks */
1179 errmsg = "Invalid ELF image for this architecture";
1180 if (!elf_check_ident(ehdr)) {
1181 goto exit_errmsg;
1182 }
1183 bswap_ehdr(ehdr);
1184 if (!elf_check_ehdr(ehdr)) {
1185 goto exit_errmsg;
d97ef72e 1186 }
5fafdf24 1187
8e62a717
RH
1188 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1189 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1190 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 1191 } else {
8e62a717
RH
1192 phdr = (struct elf_phdr *) alloca(i);
1193 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 1194 if (retval != i) {
8e62a717 1195 goto exit_read;
9955ffac 1196 }
d97ef72e 1197 }
8e62a717 1198 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 1199
682674b8
RH
1200 /* Find the maximum size of the image and allocate an appropriate
1201 amount of memory to handle that. */
1202 loaddr = -1, hiaddr = 0;
8e62a717
RH
1203 for (i = 0; i < ehdr->e_phnum; ++i) {
1204 if (phdr[i].p_type == PT_LOAD) {
1205 abi_ulong a = phdr[i].p_vaddr;
682674b8
RH
1206 if (a < loaddr) {
1207 loaddr = a;
1208 }
8e62a717 1209 a += phdr[i].p_memsz;
682674b8
RH
1210 if (a > hiaddr) {
1211 hiaddr = a;
1212 }
1213 }
1214 }
1215
1216 load_addr = loaddr;
8e62a717 1217 if (ehdr->e_type == ET_DYN) {
682674b8
RH
1218 /* The image indicates that it can be loaded anywhere. Find a
1219 location that can hold the memory space required. If the
1220 image is pre-linked, LOADDR will be non-zero. Since we do
1221 not supply MAP_FIXED here we'll use that address if and
1222 only if it remains available. */
1223 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1224 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1225 -1, 0);
1226 if (load_addr == -1) {
8e62a717 1227 goto exit_perror;
d97ef72e 1228 }
bf858897
RH
1229 } else if (pinterp_name != NULL) {
1230 /* This is the main executable. Make sure that the low
1231 address does not conflict with MMAP_MIN_ADDR or the
1232 QEMU application itself. */
1233#if defined(CONFIG_USE_GUEST_BASE)
1234 /*
1235 * In case where user has not explicitly set the guest_base, we
1236 * probe here that should we set it automatically.
1237 */
1238 if (!have_guest_base && !reserved_va) {
1239 unsigned long host_start, real_start, host_size;
1240
1241 /* Round addresses to page boundaries. */
1242 loaddr &= qemu_host_page_mask;
1243 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1244
1245 if (loaddr < mmap_min_addr) {
1246 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1247 } else {
1248 host_start = loaddr;
1249 if (host_start != loaddr) {
1250 errmsg = "Address overflow loading ELF binary";
1251 goto exit_errmsg;
1252 }
1253 }
1254 host_size = hiaddr - loaddr;
1255 while (1) {
1256 /* Do not use mmap_find_vma here because that is limited to the
1257 guest address space. We are going to make the
1258 guest address space fit whatever we're given. */
1259 real_start = (unsigned long)
1260 mmap((void *)host_start, host_size, PROT_NONE,
1261 MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0);
1262 if (real_start == (unsigned long)-1) {
1263 goto exit_perror;
1264 }
1265 if (real_start == host_start) {
1266 break;
1267 }
1268 /* That address didn't work. Unmap and try a different one.
1269 The address the host picked because is typically right at
1270 the top of the host address space and leaves the guest with
1271 no usable address space. Resort to a linear search. We
1272 already compensated for mmap_min_addr, so this should not
1273 happen often. Probably means we got unlucky and host
1274 address space randomization put a shared library somewhere
1275 inconvenient. */
1276 munmap((void *)real_start, host_size);
1277 host_start += qemu_host_page_size;
1278 if (host_start == loaddr) {
1279 /* Theoretically possible if host doesn't have any suitably
1280 aligned areas. Normally the first mmap will fail. */
1281 errmsg = "Unable to find space for application";
1282 goto exit_errmsg;
1283 }
1284 }
1285 qemu_log("Relocating guest address space from 0x"
1286 TARGET_ABI_FMT_lx " to 0x%lx\n", loaddr, real_start);
1287 guest_base = real_start - loaddr;
1288 }
1289#endif
d97ef72e 1290 }
682674b8 1291 load_bias = load_addr - loaddr;
d97ef72e 1292
8e62a717
RH
1293 info->load_bias = load_bias;
1294 info->load_addr = load_addr;
1295 info->entry = ehdr->e_entry + load_bias;
1296 info->start_code = -1;
1297 info->end_code = 0;
1298 info->start_data = -1;
1299 info->end_data = 0;
1300 info->brk = 0;
1301
1302 for (i = 0; i < ehdr->e_phnum; i++) {
1303 struct elf_phdr *eppnt = phdr + i;
d97ef72e 1304 if (eppnt->p_type == PT_LOAD) {
682674b8 1305 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
d97ef72e 1306 int elf_prot = 0;
d97ef72e
RH
1307
1308 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1309 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1310 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 1311
682674b8
RH
1312 vaddr = load_bias + eppnt->p_vaddr;
1313 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1314 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1315
1316 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1317 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 1318 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 1319 if (error == -1) {
8e62a717 1320 goto exit_perror;
09bfb054 1321 }
09bfb054 1322
682674b8
RH
1323 vaddr_ef = vaddr + eppnt->p_filesz;
1324 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 1325
cf129f3a 1326 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
1327 if (vaddr_ef < vaddr_em) {
1328 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 1329 }
8e62a717
RH
1330
1331 /* Find the full program boundaries. */
1332 if (elf_prot & PROT_EXEC) {
1333 if (vaddr < info->start_code) {
1334 info->start_code = vaddr;
1335 }
1336 if (vaddr_ef > info->end_code) {
1337 info->end_code = vaddr_ef;
1338 }
1339 }
1340 if (elf_prot & PROT_WRITE) {
1341 if (vaddr < info->start_data) {
1342 info->start_data = vaddr;
1343 }
1344 if (vaddr_ef > info->end_data) {
1345 info->end_data = vaddr_ef;
1346 }
1347 if (vaddr_em > info->brk) {
1348 info->brk = vaddr_em;
1349 }
1350 }
bf858897
RH
1351 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1352 char *interp_name;
1353
1354 if (*pinterp_name) {
1355 errmsg = "Multiple PT_INTERP entries";
1356 goto exit_errmsg;
1357 }
1358 interp_name = malloc(eppnt->p_filesz);
1359 if (!interp_name) {
1360 goto exit_perror;
1361 }
1362
1363 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1364 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1365 eppnt->p_filesz);
1366 } else {
1367 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1368 eppnt->p_offset);
1369 if (retval != eppnt->p_filesz) {
1370 goto exit_perror;
1371 }
1372 }
1373 if (interp_name[eppnt->p_filesz - 1] != 0) {
1374 errmsg = "Invalid PT_INTERP entry";
1375 goto exit_errmsg;
1376 }
1377 *pinterp_name = interp_name;
d97ef72e 1378 }
682674b8 1379 }
5fafdf24 1380
8e62a717
RH
1381 if (info->end_data == 0) {
1382 info->start_data = info->end_code;
1383 info->end_data = info->end_code;
1384 info->brk = info->end_code;
1385 }
1386
682674b8 1387 if (qemu_log_enabled()) {
8e62a717 1388 load_symbols(ehdr, image_fd, load_bias);
682674b8 1389 }
31e31b8a 1390
8e62a717
RH
1391 close(image_fd);
1392 return;
1393
1394 exit_read:
1395 if (retval >= 0) {
1396 errmsg = "Incomplete read of file header";
1397 goto exit_errmsg;
1398 }
1399 exit_perror:
1400 errmsg = strerror(errno);
1401 exit_errmsg:
1402 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1403 exit(-1);
1404}
1405
1406static void load_elf_interp(const char *filename, struct image_info *info,
1407 char bprm_buf[BPRM_BUF_SIZE])
1408{
1409 int fd, retval;
1410
1411 fd = open(path(filename), O_RDONLY);
1412 if (fd < 0) {
1413 goto exit_perror;
1414 }
31e31b8a 1415
8e62a717
RH
1416 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
1417 if (retval < 0) {
1418 goto exit_perror;
1419 }
1420 if (retval < BPRM_BUF_SIZE) {
1421 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
1422 }
1423
bf858897 1424 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
1425 return;
1426
1427 exit_perror:
1428 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
1429 exit(-1);
31e31b8a
FB
1430}
1431
49918a75
PB
1432static int symfind(const void *s0, const void *s1)
1433{
1434 struct elf_sym *key = (struct elf_sym *)s0;
1435 struct elf_sym *sym = (struct elf_sym *)s1;
1436 int result = 0;
1437 if (key->st_value < sym->st_value) {
1438 result = -1;
ec822001 1439 } else if (key->st_value >= sym->st_value + sym->st_size) {
49918a75
PB
1440 result = 1;
1441 }
1442 return result;
1443}
1444
1445static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
1446{
1447#if ELF_CLASS == ELFCLASS32
1448 struct elf_sym *syms = s->disas_symtab.elf32;
1449#else
1450 struct elf_sym *syms = s->disas_symtab.elf64;
1451#endif
1452
1453 // binary search
1454 struct elf_sym key;
1455 struct elf_sym *sym;
1456
1457 key.st_value = orig_addr;
1458
1459 sym = bsearch(&key, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 1460 if (sym != NULL) {
49918a75
PB
1461 return s->disas_strtab + sym->st_name;
1462 }
1463
1464 return "";
1465}
1466
1467/* FIXME: This should use elf_ops.h */
1468static int symcmp(const void *s0, const void *s1)
1469{
1470 struct elf_sym *sym0 = (struct elf_sym *)s0;
1471 struct elf_sym *sym1 = (struct elf_sym *)s1;
1472 return (sym0->st_value < sym1->st_value)
1473 ? -1
1474 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
1475}
1476
689f936f 1477/* Best attempt to load symbols from this ELF object. */
682674b8 1478static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 1479{
682674b8
RH
1480 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1481 struct elf_shdr *shdr;
689f936f 1482 char *strings;
e80cfcfc 1483 struct syminfo *s;
49918a75 1484 struct elf_sym *syms;
689f936f 1485
682674b8
RH
1486 shnum = hdr->e_shnum;
1487 i = shnum * sizeof(struct elf_shdr);
1488 shdr = (struct elf_shdr *)alloca(i);
1489 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
1490 return;
1491 }
1492
1493 bswap_shdr(shdr, shnum);
1494 for (i = 0; i < shnum; ++i) {
1495 if (shdr[i].sh_type == SHT_SYMTAB) {
1496 sym_idx = i;
1497 str_idx = shdr[i].sh_link;
49918a75
PB
1498 goto found;
1499 }
689f936f 1500 }
682674b8
RH
1501
1502 /* There will be no symbol table if the file was stripped. */
1503 return;
689f936f
FB
1504
1505 found:
682674b8 1506 /* Now know where the strtab and symtab are. Snarf them. */
e80cfcfc 1507 s = malloc(sizeof(*s));
682674b8 1508 if (!s) {
49918a75 1509 return;
682674b8 1510 }
5fafdf24 1511
682674b8
RH
1512 i = shdr[str_idx].sh_size;
1513 s->disas_strtab = strings = malloc(i);
1514 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
1515 free(s);
1516 free(strings);
49918a75 1517 return;
682674b8 1518 }
49918a75 1519
682674b8
RH
1520 i = shdr[sym_idx].sh_size;
1521 syms = malloc(i);
1522 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
1523 free(s);
1524 free(strings);
1525 free(syms);
1526 return;
1527 }
31e31b8a 1528
682674b8
RH
1529 nsyms = i / sizeof(struct elf_sym);
1530 for (i = 0; i < nsyms; ) {
49918a75 1531 bswap_sym(syms + i);
682674b8
RH
1532 /* Throw away entries which we do not need. */
1533 if (syms[i].st_shndx == SHN_UNDEF
1534 || syms[i].st_shndx >= SHN_LORESERVE
1535 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
1536 if (i < --nsyms) {
49918a75
PB
1537 syms[i] = syms[nsyms];
1538 }
682674b8 1539 } else {
49918a75 1540#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
1541 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
1542 syms[i].st_value &= ~(target_ulong)1;
0774bed1 1543#endif
682674b8
RH
1544 syms[i].st_value += load_bias;
1545 i++;
1546 }
0774bed1 1547 }
49918a75 1548
5d5c9930
RH
1549 /* Attempt to free the storage associated with the local symbols
1550 that we threw away. Whether or not this has any effect on the
1551 memory allocation depends on the malloc implementation and how
1552 many symbols we managed to discard. */
682674b8 1553 syms = realloc(syms, nsyms * sizeof(*syms));
5d5c9930
RH
1554 if (syms == NULL) {
1555 free(s);
1556 free(strings);
1557 return;
1558 }
1559
49918a75 1560 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 1561
49918a75
PB
1562 s->disas_num_syms = nsyms;
1563#if ELF_CLASS == ELFCLASS32
1564 s->disas_symtab.elf32 = syms;
49918a75
PB
1565#else
1566 s->disas_symtab.elf64 = syms;
49918a75 1567#endif
682674b8 1568 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
1569 s->next = syminfos;
1570 syminfos = s;
689f936f 1571}
31e31b8a 1572
e5fe0c52
PB
1573int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
1574 struct image_info * info)
31e31b8a 1575{
8e62a717 1576 struct image_info interp_info;
31e31b8a 1577 struct elfhdr elf_ex;
8e62a717 1578 char *elf_interpreter = NULL;
31e31b8a 1579
bf858897
RH
1580 info->start_mmap = (abi_ulong)ELF_START_MMAP;
1581 info->mmap = 0;
1582 info->rss = 0;
1583
1584 load_elf_image(bprm->filename, bprm->fd, info,
1585 &elf_interpreter, bprm->buf);
31e31b8a 1586
bf858897
RH
1587 /* ??? We need a copy of the elf header for passing to create_elf_tables.
1588 If we do nothing, we'll have overwritten this when we re-use bprm->buf
1589 when we load the interpreter. */
1590 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 1591
e5fe0c52
PB
1592 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
1593 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
1594 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
1595 if (!bprm->p) {
bf858897
RH
1596 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
1597 exit(-1);
379f6698 1598 }
379f6698 1599
31e31b8a
FB
1600 /* Do this so that we can load the interpreter, if need be. We will
1601 change some of these later */
31e31b8a 1602 bprm->p = setup_arg_pages(bprm->p, bprm, info);
31e31b8a 1603
8e62a717
RH
1604 if (elf_interpreter) {
1605 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 1606
8e62a717
RH
1607 /* If the program interpreter is one of these two, then assume
1608 an iBCS2 image. Otherwise assume a native linux image. */
1609
1610 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
1611 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
1612 info->personality = PER_SVR4;
31e31b8a 1613
8e62a717
RH
1614 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1615 and some applications "depend" upon this behavior. Since
1616 we do not have the power to recompile these, we emulate
1617 the SVr4 behavior. Sigh. */
1618 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
1619 MAP_FIXED | MAP_PRIVATE, -1, 0);
1620 }
31e31b8a
FB
1621 }
1622
8e62a717
RH
1623 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
1624 info, (elf_interpreter ? &interp_info : NULL));
1625 info->start_stack = bprm->p;
1626
1627 /* If we have an interpreter, set that as the program's entry point.
1628 Copy the load_addr as well, to help PPC64 interpret the entry
1629 point as a function descriptor. Do this after creating elf tables
1630 so that we copy the original program entry point into the AUXV. */
1631 if (elf_interpreter) {
1632 info->load_addr = interp_info.load_addr;
1633 info->entry = interp_info.entry;
bf858897 1634 free(elf_interpreter);
8e62a717 1635 }
31e31b8a 1636
edf8e2af
MW
1637#ifdef USE_ELF_CORE_DUMP
1638 bprm->core_dump = &elf_core_dump;
1639#endif
1640
31e31b8a
FB
1641 return 0;
1642}
1643
edf8e2af 1644#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
1645/*
1646 * Definitions to generate Intel SVR4-like core files.
a2547a13 1647 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
1648 * tacked on the front to prevent clashes with linux definitions,
1649 * and the typedef forms have been avoided. This is mostly like
1650 * the SVR4 structure, but more Linuxy, with things that Linux does
1651 * not support and which gdb doesn't really use excluded.
1652 *
1653 * Fields we don't dump (their contents is zero) in linux-user qemu
1654 * are marked with XXX.
1655 *
1656 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
1657 *
1658 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 1659 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
1660 * the target resides):
1661 *
1662 * #define USE_ELF_CORE_DUMP
1663 *
1664 * Next you define type of register set used for dumping. ELF specification
1665 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
1666 *
c227f099 1667 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 1668 * #define ELF_NREG <number of registers>
c227f099 1669 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 1670 *
edf8e2af
MW
1671 * Last step is to implement target specific function that copies registers
1672 * from given cpu into just specified register set. Prototype is:
1673 *
c227f099 1674 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
a2547a13 1675 * const CPUState *env);
edf8e2af
MW
1676 *
1677 * Parameters:
1678 * regs - copy register values into here (allocated and zeroed by caller)
1679 * env - copy registers from here
1680 *
1681 * Example for ARM target is provided in this file.
1682 */
1683
1684/* An ELF note in memory */
1685struct memelfnote {
1686 const char *name;
1687 size_t namesz;
1688 size_t namesz_rounded;
1689 int type;
1690 size_t datasz;
1691 void *data;
1692 size_t notesz;
1693};
1694
a2547a13 1695struct target_elf_siginfo {
edf8e2af
MW
1696 int si_signo; /* signal number */
1697 int si_code; /* extra code */
1698 int si_errno; /* errno */
1699};
1700
a2547a13
LD
1701struct target_elf_prstatus {
1702 struct target_elf_siginfo pr_info; /* Info associated with signal */
edf8e2af
MW
1703 short pr_cursig; /* Current signal */
1704 target_ulong pr_sigpend; /* XXX */
1705 target_ulong pr_sighold; /* XXX */
c227f099
AL
1706 target_pid_t pr_pid;
1707 target_pid_t pr_ppid;
1708 target_pid_t pr_pgrp;
1709 target_pid_t pr_sid;
edf8e2af
MW
1710 struct target_timeval pr_utime; /* XXX User time */
1711 struct target_timeval pr_stime; /* XXX System time */
1712 struct target_timeval pr_cutime; /* XXX Cumulative user time */
1713 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 1714 target_elf_gregset_t pr_reg; /* GP registers */
edf8e2af
MW
1715 int pr_fpvalid; /* XXX */
1716};
1717
1718#define ELF_PRARGSZ (80) /* Number of chars for args */
1719
a2547a13 1720struct target_elf_prpsinfo {
edf8e2af
MW
1721 char pr_state; /* numeric process state */
1722 char pr_sname; /* char for pr_state */
1723 char pr_zomb; /* zombie */
1724 char pr_nice; /* nice val */
1725 target_ulong pr_flag; /* flags */
c227f099
AL
1726 target_uid_t pr_uid;
1727 target_gid_t pr_gid;
1728 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
1729 /* Lots missing */
1730 char pr_fname[16]; /* filename of executable */
1731 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
1732};
1733
1734/* Here is the structure in which status of each thread is captured. */
1735struct elf_thread_status {
72cf2d4f 1736 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 1737 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
1738#if 0
1739 elf_fpregset_t fpu; /* NT_PRFPREG */
1740 struct task_struct *thread;
1741 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1742#endif
1743 struct memelfnote notes[1];
1744 int num_notes;
1745};
1746
1747struct elf_note_info {
1748 struct memelfnote *notes;
a2547a13
LD
1749 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
1750 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 1751
72cf2d4f 1752 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
1753#if 0
1754 /*
1755 * Current version of ELF coredump doesn't support
1756 * dumping fp regs etc.
1757 */
1758 elf_fpregset_t *fpu;
1759 elf_fpxregset_t *xfpu;
1760 int thread_status_size;
1761#endif
1762 int notes_size;
1763 int numnote;
1764};
1765
1766struct vm_area_struct {
1767 abi_ulong vma_start; /* start vaddr of memory region */
1768 abi_ulong vma_end; /* end vaddr of memory region */
1769 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 1770 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
1771};
1772
1773struct mm_struct {
72cf2d4f 1774 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
1775 int mm_count; /* number of mappings */
1776};
1777
1778static struct mm_struct *vma_init(void);
1779static void vma_delete(struct mm_struct *);
1780static int vma_add_mapping(struct mm_struct *, abi_ulong,
d97ef72e 1781 abi_ulong, abi_ulong);
edf8e2af
MW
1782static int vma_get_mapping_count(const struct mm_struct *);
1783static struct vm_area_struct *vma_first(const struct mm_struct *);
1784static struct vm_area_struct *vma_next(struct vm_area_struct *);
1785static abi_ulong vma_dump_size(const struct vm_area_struct *);
b480d9b7 1786static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
d97ef72e 1787 unsigned long flags);
edf8e2af
MW
1788
1789static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
1790static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 1791 unsigned int, void *);
a2547a13
LD
1792static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
1793static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
1794static void fill_auxv_note(struct memelfnote *, const TaskState *);
1795static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
1796static size_t note_size(const struct memelfnote *);
1797static void free_note_info(struct elf_note_info *);
1798static int fill_note_info(struct elf_note_info *, long, const CPUState *);
1799static void fill_thread_info(struct elf_note_info *, const CPUState *);
1800static int core_dump_filename(const TaskState *, char *, size_t);
1801
1802static int dump_write(int, const void *, size_t);
1803static int write_note(struct memelfnote *, int);
1804static int write_note_info(struct elf_note_info *, int);
1805
1806#ifdef BSWAP_NEEDED
a2547a13 1807static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af
MW
1808{
1809 prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo);
1810 prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code);
1811 prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno);
1812 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
1813 prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend);
1814 prstatus->pr_sighold = tswapl(prstatus->pr_sighold);
1815 prstatus->pr_pid = tswap32(prstatus->pr_pid);
1816 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
1817 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
1818 prstatus->pr_sid = tswap32(prstatus->pr_sid);
1819 /* cpu times are not filled, so we skip them */
1820 /* regs should be in correct format already */
1821 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
1822}
1823
a2547a13 1824static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af
MW
1825{
1826 psinfo->pr_flag = tswapl(psinfo->pr_flag);
1827 psinfo->pr_uid = tswap16(psinfo->pr_uid);
1828 psinfo->pr_gid = tswap16(psinfo->pr_gid);
1829 psinfo->pr_pid = tswap32(psinfo->pr_pid);
1830 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
1831 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
1832 psinfo->pr_sid = tswap32(psinfo->pr_sid);
1833}
991f8f0c
RH
1834
1835static void bswap_note(struct elf_note *en)
1836{
1837 bswap32s(&en->n_namesz);
1838 bswap32s(&en->n_descsz);
1839 bswap32s(&en->n_type);
1840}
1841#else
1842static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
1843static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
1844static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
1845#endif /* BSWAP_NEEDED */
1846
1847/*
1848 * Minimal support for linux memory regions. These are needed
1849 * when we are finding out what memory exactly belongs to
1850 * emulated process. No locks needed here, as long as
1851 * thread that received the signal is stopped.
1852 */
1853
1854static struct mm_struct *vma_init(void)
1855{
1856 struct mm_struct *mm;
1857
1858 if ((mm = qemu_malloc(sizeof (*mm))) == NULL)
1859 return (NULL);
1860
1861 mm->mm_count = 0;
72cf2d4f 1862 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
1863
1864 return (mm);
1865}
1866
1867static void vma_delete(struct mm_struct *mm)
1868{
1869 struct vm_area_struct *vma;
1870
1871 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 1872 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
1873 qemu_free(vma);
1874 }
1875 qemu_free(mm);
1876}
1877
1878static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
d97ef72e 1879 abi_ulong end, abi_ulong flags)
edf8e2af
MW
1880{
1881 struct vm_area_struct *vma;
1882
1883 if ((vma = qemu_mallocz(sizeof (*vma))) == NULL)
1884 return (-1);
1885
1886 vma->vma_start = start;
1887 vma->vma_end = end;
1888 vma->vma_flags = flags;
1889
72cf2d4f 1890 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
1891 mm->mm_count++;
1892
1893 return (0);
1894}
1895
1896static struct vm_area_struct *vma_first(const struct mm_struct *mm)
1897{
72cf2d4f 1898 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
1899}
1900
1901static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
1902{
72cf2d4f 1903 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
1904}
1905
1906static int vma_get_mapping_count(const struct mm_struct *mm)
1907{
1908 return (mm->mm_count);
1909}
1910
1911/*
1912 * Calculate file (dump) size of given memory region.
1913 */
1914static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
1915{
1916 /* if we cannot even read the first page, skip it */
1917 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
1918 return (0);
1919
1920 /*
1921 * Usually we don't dump executable pages as they contain
1922 * non-writable code that debugger can read directly from
1923 * target library etc. However, thread stacks are marked
1924 * also executable so we read in first page of given region
1925 * and check whether it contains elf header. If there is
1926 * no elf header, we dump it.
1927 */
1928 if (vma->vma_flags & PROT_EXEC) {
1929 char page[TARGET_PAGE_SIZE];
1930
1931 copy_from_user(page, vma->vma_start, sizeof (page));
1932 if ((page[EI_MAG0] == ELFMAG0) &&
1933 (page[EI_MAG1] == ELFMAG1) &&
1934 (page[EI_MAG2] == ELFMAG2) &&
1935 (page[EI_MAG3] == ELFMAG3)) {
1936 /*
1937 * Mappings are possibly from ELF binary. Don't dump
1938 * them.
1939 */
1940 return (0);
1941 }
1942 }
1943
1944 return (vma->vma_end - vma->vma_start);
1945}
1946
b480d9b7 1947static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
d97ef72e 1948 unsigned long flags)
edf8e2af
MW
1949{
1950 struct mm_struct *mm = (struct mm_struct *)priv;
1951
edf8e2af
MW
1952 vma_add_mapping(mm, start, end, flags);
1953 return (0);
1954}
1955
1956static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 1957 unsigned int sz, void *data)
edf8e2af
MW
1958{
1959 unsigned int namesz;
1960
1961 namesz = strlen(name) + 1;
1962 note->name = name;
1963 note->namesz = namesz;
1964 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
1965 note->type = type;
1966 note->datasz = roundup(sz, sizeof (int32_t));;
1967 note->data = data;
1968
1969 /*
1970 * We calculate rounded up note size here as specified by
1971 * ELF document.
1972 */
1973 note->notesz = sizeof (struct elf_note) +
1974 note->namesz_rounded + note->datasz;
1975}
1976
1977static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 1978 uint32_t flags)
edf8e2af
MW
1979{
1980 (void) memset(elf, 0, sizeof(*elf));
1981
1982 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
1983 elf->e_ident[EI_CLASS] = ELF_CLASS;
1984 elf->e_ident[EI_DATA] = ELF_DATA;
1985 elf->e_ident[EI_VERSION] = EV_CURRENT;
1986 elf->e_ident[EI_OSABI] = ELF_OSABI;
1987
1988 elf->e_type = ET_CORE;
1989 elf->e_machine = machine;
1990 elf->e_version = EV_CURRENT;
1991 elf->e_phoff = sizeof(struct elfhdr);
1992 elf->e_flags = flags;
1993 elf->e_ehsize = sizeof(struct elfhdr);
1994 elf->e_phentsize = sizeof(struct elf_phdr);
1995 elf->e_phnum = segs;
1996
edf8e2af 1997 bswap_ehdr(elf);
edf8e2af
MW
1998}
1999
2000static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2001{
2002 phdr->p_type = PT_NOTE;
2003 phdr->p_offset = offset;
2004 phdr->p_vaddr = 0;
2005 phdr->p_paddr = 0;
2006 phdr->p_filesz = sz;
2007 phdr->p_memsz = 0;
2008 phdr->p_flags = 0;
2009 phdr->p_align = 0;
2010
991f8f0c 2011 bswap_phdr(phdr, 1);
edf8e2af
MW
2012}
2013
2014static size_t note_size(const struct memelfnote *note)
2015{
2016 return (note->notesz);
2017}
2018
a2547a13 2019static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 2020 const TaskState *ts, int signr)
edf8e2af
MW
2021{
2022 (void) memset(prstatus, 0, sizeof (*prstatus));
2023 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2024 prstatus->pr_pid = ts->ts_tid;
2025 prstatus->pr_ppid = getppid();
2026 prstatus->pr_pgrp = getpgrp();
2027 prstatus->pr_sid = getsid(0);
2028
edf8e2af 2029 bswap_prstatus(prstatus);
edf8e2af
MW
2030}
2031
a2547a13 2032static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af
MW
2033{
2034 char *filename, *base_filename;
2035 unsigned int i, len;
2036
2037 (void) memset(psinfo, 0, sizeof (*psinfo));
2038
2039 len = ts->info->arg_end - ts->info->arg_start;
2040 if (len >= ELF_PRARGSZ)
2041 len = ELF_PRARGSZ - 1;
2042 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2043 return -EFAULT;
2044 for (i = 0; i < len; i++)
2045 if (psinfo->pr_psargs[i] == 0)
2046 psinfo->pr_psargs[i] = ' ';
2047 psinfo->pr_psargs[len] = 0;
2048
2049 psinfo->pr_pid = getpid();
2050 psinfo->pr_ppid = getppid();
2051 psinfo->pr_pgrp = getpgrp();
2052 psinfo->pr_sid = getsid(0);
2053 psinfo->pr_uid = getuid();
2054 psinfo->pr_gid = getgid();
2055
2056 filename = strdup(ts->bprm->filename);
2057 base_filename = strdup(basename(filename));
2058 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 2059 sizeof(psinfo->pr_fname));
edf8e2af
MW
2060 free(base_filename);
2061 free(filename);
2062
edf8e2af 2063 bswap_psinfo(psinfo);
edf8e2af
MW
2064 return (0);
2065}
2066
2067static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2068{
2069 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2070 elf_addr_t orig_auxv = auxv;
2071 abi_ulong val;
2072 void *ptr;
2073 int i, len;
2074
2075 /*
2076 * Auxiliary vector is stored in target process stack. It contains
2077 * {type, value} pairs that we need to dump into note. This is not
2078 * strictly necessary but we do it here for sake of completeness.
2079 */
2080
2081 /* find out lenght of the vector, AT_NULL is terminator */
2082 i = len = 0;
2083 do {
2084 get_user_ual(val, auxv);
2085 i += 2;
2086 auxv += 2 * sizeof (elf_addr_t);
2087 } while (val != AT_NULL);
2088 len = i * sizeof (elf_addr_t);
2089
2090 /* read in whole auxv vector and copy it to memelfnote */
2091 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2092 if (ptr != NULL) {
2093 fill_note(note, "CORE", NT_AUXV, len, ptr);
2094 unlock_user(ptr, auxv, len);
2095 }
2096}
2097
2098/*
2099 * Constructs name of coredump file. We have following convention
2100 * for the name:
2101 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2102 *
2103 * Returns 0 in case of success, -1 otherwise (errno is set).
2104 */
2105static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 2106 size_t bufsize)
edf8e2af
MW
2107{
2108 char timestamp[64];
2109 char *filename = NULL;
2110 char *base_filename = NULL;
2111 struct timeval tv;
2112 struct tm tm;
2113
2114 assert(bufsize >= PATH_MAX);
2115
2116 if (gettimeofday(&tv, NULL) < 0) {
2117 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 2118 strerror(errno));
edf8e2af
MW
2119 return (-1);
2120 }
2121
2122 filename = strdup(ts->bprm->filename);
2123 base_filename = strdup(basename(filename));
2124 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 2125 localtime_r(&tv.tv_sec, &tm));
edf8e2af 2126 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 2127 base_filename, timestamp, (int)getpid());
edf8e2af
MW
2128 free(base_filename);
2129 free(filename);
2130
2131 return (0);
2132}
2133
2134static int dump_write(int fd, const void *ptr, size_t size)
2135{
2136 const char *bufp = (const char *)ptr;
2137 ssize_t bytes_written, bytes_left;
2138 struct rlimit dumpsize;
2139 off_t pos;
2140
2141 bytes_written = 0;
2142 getrlimit(RLIMIT_CORE, &dumpsize);
2143 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2144 if (errno == ESPIPE) { /* not a seekable stream */
2145 bytes_left = size;
2146 } else {
2147 return pos;
2148 }
2149 } else {
2150 if (dumpsize.rlim_cur <= pos) {
2151 return -1;
2152 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2153 bytes_left = size;
2154 } else {
2155 size_t limit_left=dumpsize.rlim_cur - pos;
2156 bytes_left = limit_left >= size ? size : limit_left ;
2157 }
2158 }
2159
2160 /*
2161 * In normal conditions, single write(2) should do but
2162 * in case of socket etc. this mechanism is more portable.
2163 */
2164 do {
2165 bytes_written = write(fd, bufp, bytes_left);
2166 if (bytes_written < 0) {
2167 if (errno == EINTR)
2168 continue;
2169 return (-1);
2170 } else if (bytes_written == 0) { /* eof */
2171 return (-1);
2172 }
2173 bufp += bytes_written;
2174 bytes_left -= bytes_written;
2175 } while (bytes_left > 0);
2176
2177 return (0);
2178}
2179
2180static int write_note(struct memelfnote *men, int fd)
2181{
2182 struct elf_note en;
2183
2184 en.n_namesz = men->namesz;
2185 en.n_type = men->type;
2186 en.n_descsz = men->datasz;
2187
edf8e2af 2188 bswap_note(&en);
edf8e2af
MW
2189
2190 if (dump_write(fd, &en, sizeof(en)) != 0)
2191 return (-1);
2192 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2193 return (-1);
2194 if (dump_write(fd, men->data, men->datasz) != 0)
2195 return (-1);
2196
2197 return (0);
2198}
2199
2200static void fill_thread_info(struct elf_note_info *info, const CPUState *env)
2201{
2202 TaskState *ts = (TaskState *)env->opaque;
2203 struct elf_thread_status *ets;
2204
2205 ets = qemu_mallocz(sizeof (*ets));
2206 ets->num_notes = 1; /* only prstatus is dumped */
2207 fill_prstatus(&ets->prstatus, ts, 0);
2208 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2209 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 2210 &ets->prstatus);
edf8e2af 2211
72cf2d4f 2212 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
2213
2214 info->notes_size += note_size(&ets->notes[0]);
2215}
2216
2217static int fill_note_info(struct elf_note_info *info,
d97ef72e 2218 long signr, const CPUState *env)
edf8e2af
MW
2219{
2220#define NUMNOTES 3
2221 CPUState *cpu = NULL;
2222 TaskState *ts = (TaskState *)env->opaque;
2223 int i;
2224
2225 (void) memset(info, 0, sizeof (*info));
2226
72cf2d4f 2227 QTAILQ_INIT(&info->thread_list);
edf8e2af
MW
2228
2229 info->notes = qemu_mallocz(NUMNOTES * sizeof (struct memelfnote));
2230 if (info->notes == NULL)
2231 return (-ENOMEM);
2232 info->prstatus = qemu_mallocz(sizeof (*info->prstatus));
2233 if (info->prstatus == NULL)
2234 return (-ENOMEM);
2235 info->psinfo = qemu_mallocz(sizeof (*info->psinfo));
2236 if (info->prstatus == NULL)
2237 return (-ENOMEM);
2238
2239 /*
2240 * First fill in status (and registers) of current thread
2241 * including process info & aux vector.
2242 */
2243 fill_prstatus(info->prstatus, ts, signr);
2244 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2245 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 2246 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
2247 fill_psinfo(info->psinfo, ts);
2248 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 2249 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
2250 fill_auxv_note(&info->notes[2], ts);
2251 info->numnote = 3;
2252
2253 info->notes_size = 0;
2254 for (i = 0; i < info->numnote; i++)
2255 info->notes_size += note_size(&info->notes[i]);
2256
2257 /* read and fill status of all threads */
2258 cpu_list_lock();
2259 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2260 if (cpu == thread_env)
2261 continue;
2262 fill_thread_info(info, cpu);
2263 }
2264 cpu_list_unlock();
2265
2266 return (0);
2267}
2268
2269static void free_note_info(struct elf_note_info *info)
2270{
2271 struct elf_thread_status *ets;
2272
72cf2d4f
BS
2273 while (!QTAILQ_EMPTY(&info->thread_list)) {
2274 ets = QTAILQ_FIRST(&info->thread_list);
2275 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
edf8e2af
MW
2276 qemu_free(ets);
2277 }
2278
2279 qemu_free(info->prstatus);
2280 qemu_free(info->psinfo);
2281 qemu_free(info->notes);
2282}
2283
2284static int write_note_info(struct elf_note_info *info, int fd)
2285{
2286 struct elf_thread_status *ets;
2287 int i, error = 0;
2288
2289 /* write prstatus, psinfo and auxv for current thread */
2290 for (i = 0; i < info->numnote; i++)
2291 if ((error = write_note(&info->notes[i], fd)) != 0)
2292 return (error);
2293
2294 /* write prstatus for each thread */
2295 for (ets = info->thread_list.tqh_first; ets != NULL;
d97ef72e 2296 ets = ets->ets_link.tqe_next) {
edf8e2af
MW
2297 if ((error = write_note(&ets->notes[0], fd)) != 0)
2298 return (error);
2299 }
2300
2301 return (0);
2302}
2303
2304/*
2305 * Write out ELF coredump.
2306 *
2307 * See documentation of ELF object file format in:
2308 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2309 *
2310 * Coredump format in linux is following:
2311 *
2312 * 0 +----------------------+ \
2313 * | ELF header | ET_CORE |
2314 * +----------------------+ |
2315 * | ELF program headers | |--- headers
2316 * | - NOTE section | |
2317 * | - PT_LOAD sections | |
2318 * +----------------------+ /
2319 * | NOTEs: |
2320 * | - NT_PRSTATUS |
2321 * | - NT_PRSINFO |
2322 * | - NT_AUXV |
2323 * +----------------------+ <-- aligned to target page
2324 * | Process memory dump |
2325 * : :
2326 * . .
2327 * : :
2328 * | |
2329 * +----------------------+
2330 *
2331 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2332 * NT_PRSINFO -> struct elf_prpsinfo
2333 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2334 *
2335 * Format follows System V format as close as possible. Current
2336 * version limitations are as follows:
2337 * - no floating point registers are dumped
2338 *
2339 * Function returns 0 in case of success, negative errno otherwise.
2340 *
2341 * TODO: make this work also during runtime: it should be
2342 * possible to force coredump from running process and then
2343 * continue processing. For example qemu could set up SIGUSR2
2344 * handler (provided that target process haven't registered
2345 * handler for that) that does the dump when signal is received.
2346 */
2347static int elf_core_dump(int signr, const CPUState *env)
2348{
2349 const TaskState *ts = (const TaskState *)env->opaque;
2350 struct vm_area_struct *vma = NULL;
2351 char corefile[PATH_MAX];
2352 struct elf_note_info info;
2353 struct elfhdr elf;
2354 struct elf_phdr phdr;
2355 struct rlimit dumpsize;
2356 struct mm_struct *mm = NULL;
2357 off_t offset = 0, data_offset = 0;
2358 int segs = 0;
2359 int fd = -1;
2360
2361 errno = 0;
2362 getrlimit(RLIMIT_CORE, &dumpsize);
2363 if (dumpsize.rlim_cur == 0)
d97ef72e 2364 return 0;
edf8e2af
MW
2365
2366 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2367 return (-errno);
2368
2369 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 2370 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
2371 return (-errno);
2372
2373 /*
2374 * Walk through target process memory mappings and
2375 * set up structure containing this information. After
2376 * this point vma_xxx functions can be used.
2377 */
2378 if ((mm = vma_init()) == NULL)
2379 goto out;
2380
2381 walk_memory_regions(mm, vma_walker);
2382 segs = vma_get_mapping_count(mm);
2383
2384 /*
2385 * Construct valid coredump ELF header. We also
2386 * add one more segment for notes.
2387 */
2388 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2389 if (dump_write(fd, &elf, sizeof (elf)) != 0)
2390 goto out;
2391
2392 /* fill in in-memory version of notes */
2393 if (fill_note_info(&info, signr, env) < 0)
2394 goto out;
2395
2396 offset += sizeof (elf); /* elf header */
2397 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
2398
2399 /* write out notes program header */
2400 fill_elf_note_phdr(&phdr, info.notes_size, offset);
2401
2402 offset += info.notes_size;
2403 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
2404 goto out;
2405
2406 /*
2407 * ELF specification wants data to start at page boundary so
2408 * we align it here.
2409 */
2410 offset = roundup(offset, ELF_EXEC_PAGESIZE);
2411
2412 /*
2413 * Write program headers for memory regions mapped in
2414 * the target process.
2415 */
2416 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2417 (void) memset(&phdr, 0, sizeof (phdr));
2418
2419 phdr.p_type = PT_LOAD;
2420 phdr.p_offset = offset;
2421 phdr.p_vaddr = vma->vma_start;
2422 phdr.p_paddr = 0;
2423 phdr.p_filesz = vma_dump_size(vma);
2424 offset += phdr.p_filesz;
2425 phdr.p_memsz = vma->vma_end - vma->vma_start;
2426 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
2427 if (vma->vma_flags & PROT_WRITE)
2428 phdr.p_flags |= PF_W;
2429 if (vma->vma_flags & PROT_EXEC)
2430 phdr.p_flags |= PF_X;
2431 phdr.p_align = ELF_EXEC_PAGESIZE;
2432
2433 dump_write(fd, &phdr, sizeof (phdr));
2434 }
2435
2436 /*
2437 * Next we write notes just after program headers. No
2438 * alignment needed here.
2439 */
2440 if (write_note_info(&info, fd) < 0)
2441 goto out;
2442
2443 /* align data to page boundary */
2444 data_offset = lseek(fd, 0, SEEK_CUR);
2445 data_offset = TARGET_PAGE_ALIGN(data_offset);
2446 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
2447 goto out;
2448
2449 /*
2450 * Finally we can dump process memory into corefile as well.
2451 */
2452 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2453 abi_ulong addr;
2454 abi_ulong end;
2455
2456 end = vma->vma_start + vma_dump_size(vma);
2457
2458 for (addr = vma->vma_start; addr < end;
d97ef72e 2459 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
2460 char page[TARGET_PAGE_SIZE];
2461 int error;
2462
2463 /*
2464 * Read in page from target process memory and
2465 * write it to coredump file.
2466 */
2467 error = copy_from_user(page, addr, sizeof (page));
2468 if (error != 0) {
49995e17 2469 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 2470 addr);
edf8e2af
MW
2471 errno = -error;
2472 goto out;
2473 }
2474 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
2475 goto out;
2476 }
2477 }
2478
d97ef72e 2479 out:
edf8e2af
MW
2480 free_note_info(&info);
2481 if (mm != NULL)
2482 vma_delete(mm);
2483 (void) close(fd);
2484
2485 if (errno != 0)
2486 return (-errno);
2487 return (0);
2488}
edf8e2af
MW
2489#endif /* USE_ELF_CORE_DUMP */
2490
e5fe0c52
PB
2491void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
2492{
2493 init_thread(regs, infop);
2494}