]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/hugetlb.c
mm,hugetlb: drop clearing of flag from prep_new_huge_page
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
d6606683 33
63551ae0 34#include <asm/page.h>
ca15ca40 35#include <asm/pgalloc.h>
24669e58 36#include <asm/tlb.h>
63551ae0 37
24669e58 38#include <linux/io.h>
63551ae0 39#include <linux/hugetlb.h>
9dd540e2 40#include <linux/hugetlb_cgroup.h>
9a305230 41#include <linux/node.h>
1a1aad8a 42#include <linux/userfaultfd_k.h>
ab5ac90a 43#include <linux/page_owner.h>
7835e98b 44#include "internal.h"
1da177e4 45
c3f38a38 46int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
47unsigned int default_hstate_idx;
48struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 49
dbda8fea 50#ifdef CONFIG_CMA
cf11e85f 51static struct cma *hugetlb_cma[MAX_NUMNODES];
dbda8fea
BS
52#endif
53static unsigned long hugetlb_cma_size __initdata;
cf11e85f 54
641844f5
NH
55/*
56 * Minimum page order among possible hugepage sizes, set to a proper value
57 * at boot time.
58 */
59static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 60
53ba51d2
JT
61__initdata LIST_HEAD(huge_boot_pages);
62
e5ff2159
AK
63/* for command line parsing */
64static struct hstate * __initdata parsed_hstate;
65static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 66static bool __initdata parsed_valid_hugepagesz = true;
282f4214 67static bool __initdata parsed_default_hugepagesz;
e5ff2159 68
3935baa9 69/*
31caf665
NH
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
3935baa9 72 */
c3f38a38 73DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 74
8382d914
DB
75/*
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
78 */
79static int num_fault_mutexes;
c672c7f2 80struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 81
7ca02d0a
MK
82/* Forward declaration */
83static int hugetlb_acct_memory(struct hstate *h, long delta);
84
1d88433b 85static inline bool subpool_is_free(struct hugepage_subpool *spool)
90481622 86{
1d88433b
ML
87 if (spool->count)
88 return false;
89 if (spool->max_hpages != -1)
90 return spool->used_hpages == 0;
91 if (spool->min_hpages != -1)
92 return spool->rsv_hpages == spool->min_hpages;
93
94 return true;
95}
90481622 96
db71ef79
MK
97static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
98 unsigned long irq_flags)
1d88433b 99{
db71ef79 100 spin_unlock_irqrestore(&spool->lock, irq_flags);
90481622
DG
101
102 /* If no pages are used, and no other handles to the subpool
7c8de358 103 * remain, give up any reservations based on minimum size and
7ca02d0a 104 * free the subpool */
1d88433b 105 if (subpool_is_free(spool)) {
7ca02d0a
MK
106 if (spool->min_hpages != -1)
107 hugetlb_acct_memory(spool->hstate,
108 -spool->min_hpages);
90481622 109 kfree(spool);
7ca02d0a 110 }
90481622
DG
111}
112
7ca02d0a
MK
113struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
114 long min_hpages)
90481622
DG
115{
116 struct hugepage_subpool *spool;
117
c6a91820 118 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
119 if (!spool)
120 return NULL;
121
122 spin_lock_init(&spool->lock);
123 spool->count = 1;
7ca02d0a
MK
124 spool->max_hpages = max_hpages;
125 spool->hstate = h;
126 spool->min_hpages = min_hpages;
127
128 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
129 kfree(spool);
130 return NULL;
131 }
132 spool->rsv_hpages = min_hpages;
90481622
DG
133
134 return spool;
135}
136
137void hugepage_put_subpool(struct hugepage_subpool *spool)
138{
db71ef79
MK
139 unsigned long flags;
140
141 spin_lock_irqsave(&spool->lock, flags);
90481622
DG
142 BUG_ON(!spool->count);
143 spool->count--;
db71ef79 144 unlock_or_release_subpool(spool, flags);
90481622
DG
145}
146
1c5ecae3
MK
147/*
148 * Subpool accounting for allocating and reserving pages.
149 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 150 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
151 * global pools must be adjusted (upward). The returned value may
152 * only be different than the passed value (delta) in the case where
7c8de358 153 * a subpool minimum size must be maintained.
1c5ecae3
MK
154 */
155static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
156 long delta)
157{
1c5ecae3 158 long ret = delta;
90481622
DG
159
160 if (!spool)
1c5ecae3 161 return ret;
90481622 162
db71ef79 163 spin_lock_irq(&spool->lock);
1c5ecae3
MK
164
165 if (spool->max_hpages != -1) { /* maximum size accounting */
166 if ((spool->used_hpages + delta) <= spool->max_hpages)
167 spool->used_hpages += delta;
168 else {
169 ret = -ENOMEM;
170 goto unlock_ret;
171 }
90481622 172 }
90481622 173
09a95e29
MK
174 /* minimum size accounting */
175 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
176 if (delta > spool->rsv_hpages) {
177 /*
178 * Asking for more reserves than those already taken on
179 * behalf of subpool. Return difference.
180 */
181 ret = delta - spool->rsv_hpages;
182 spool->rsv_hpages = 0;
183 } else {
184 ret = 0; /* reserves already accounted for */
185 spool->rsv_hpages -= delta;
186 }
187 }
188
189unlock_ret:
db71ef79 190 spin_unlock_irq(&spool->lock);
90481622
DG
191 return ret;
192}
193
1c5ecae3
MK
194/*
195 * Subpool accounting for freeing and unreserving pages.
196 * Return the number of global page reservations that must be dropped.
197 * The return value may only be different than the passed value (delta)
198 * in the case where a subpool minimum size must be maintained.
199 */
200static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
201 long delta)
202{
1c5ecae3 203 long ret = delta;
db71ef79 204 unsigned long flags;
1c5ecae3 205
90481622 206 if (!spool)
1c5ecae3 207 return delta;
90481622 208
db71ef79 209 spin_lock_irqsave(&spool->lock, flags);
1c5ecae3
MK
210
211 if (spool->max_hpages != -1) /* maximum size accounting */
212 spool->used_hpages -= delta;
213
09a95e29
MK
214 /* minimum size accounting */
215 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
216 if (spool->rsv_hpages + delta <= spool->min_hpages)
217 ret = 0;
218 else
219 ret = spool->rsv_hpages + delta - spool->min_hpages;
220
221 spool->rsv_hpages += delta;
222 if (spool->rsv_hpages > spool->min_hpages)
223 spool->rsv_hpages = spool->min_hpages;
224 }
225
226 /*
227 * If hugetlbfs_put_super couldn't free spool due to an outstanding
228 * quota reference, free it now.
229 */
db71ef79 230 unlock_or_release_subpool(spool, flags);
1c5ecae3
MK
231
232 return ret;
90481622
DG
233}
234
235static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
236{
237 return HUGETLBFS_SB(inode->i_sb)->spool;
238}
239
240static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
241{
496ad9aa 242 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
243}
244
0db9d74e
MA
245/* Helper that removes a struct file_region from the resv_map cache and returns
246 * it for use.
247 */
248static struct file_region *
249get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
250{
251 struct file_region *nrg = NULL;
252
253 VM_BUG_ON(resv->region_cache_count <= 0);
254
255 resv->region_cache_count--;
256 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
257 list_del(&nrg->link);
258
259 nrg->from = from;
260 nrg->to = to;
261
262 return nrg;
263}
264
075a61d0
MA
265static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
266 struct file_region *rg)
267{
268#ifdef CONFIG_CGROUP_HUGETLB
269 nrg->reservation_counter = rg->reservation_counter;
270 nrg->css = rg->css;
271 if (rg->css)
272 css_get(rg->css);
273#endif
274}
275
276/* Helper that records hugetlb_cgroup uncharge info. */
277static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
278 struct hstate *h,
279 struct resv_map *resv,
280 struct file_region *nrg)
281{
282#ifdef CONFIG_CGROUP_HUGETLB
283 if (h_cg) {
284 nrg->reservation_counter =
285 &h_cg->rsvd_hugepage[hstate_index(h)];
286 nrg->css = &h_cg->css;
d85aecf2
ML
287 /*
288 * The caller will hold exactly one h_cg->css reference for the
289 * whole contiguous reservation region. But this area might be
290 * scattered when there are already some file_regions reside in
291 * it. As a result, many file_regions may share only one css
292 * reference. In order to ensure that one file_region must hold
293 * exactly one h_cg->css reference, we should do css_get for
294 * each file_region and leave the reference held by caller
295 * untouched.
296 */
297 css_get(&h_cg->css);
075a61d0
MA
298 if (!resv->pages_per_hpage)
299 resv->pages_per_hpage = pages_per_huge_page(h);
300 /* pages_per_hpage should be the same for all entries in
301 * a resv_map.
302 */
303 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
304 } else {
305 nrg->reservation_counter = NULL;
306 nrg->css = NULL;
307 }
308#endif
309}
310
d85aecf2
ML
311static void put_uncharge_info(struct file_region *rg)
312{
313#ifdef CONFIG_CGROUP_HUGETLB
314 if (rg->css)
315 css_put(rg->css);
316#endif
317}
318
a9b3f867
MA
319static bool has_same_uncharge_info(struct file_region *rg,
320 struct file_region *org)
321{
322#ifdef CONFIG_CGROUP_HUGETLB
323 return rg && org &&
324 rg->reservation_counter == org->reservation_counter &&
325 rg->css == org->css;
326
327#else
328 return true;
329#endif
330}
331
332static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
333{
334 struct file_region *nrg = NULL, *prg = NULL;
335
336 prg = list_prev_entry(rg, link);
337 if (&prg->link != &resv->regions && prg->to == rg->from &&
338 has_same_uncharge_info(prg, rg)) {
339 prg->to = rg->to;
340
341 list_del(&rg->link);
d85aecf2 342 put_uncharge_info(rg);
a9b3f867
MA
343 kfree(rg);
344
7db5e7b6 345 rg = prg;
a9b3f867
MA
346 }
347
348 nrg = list_next_entry(rg, link);
349 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
350 has_same_uncharge_info(nrg, rg)) {
351 nrg->from = rg->from;
352
353 list_del(&rg->link);
d85aecf2 354 put_uncharge_info(rg);
a9b3f867 355 kfree(rg);
a9b3f867
MA
356 }
357}
358
2103cf9c
PX
359static inline long
360hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
361 long to, struct hstate *h, struct hugetlb_cgroup *cg,
362 long *regions_needed)
363{
364 struct file_region *nrg;
365
366 if (!regions_needed) {
367 nrg = get_file_region_entry_from_cache(map, from, to);
368 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
369 list_add(&nrg->link, rg->link.prev);
370 coalesce_file_region(map, nrg);
371 } else
372 *regions_needed += 1;
373
374 return to - from;
375}
376
972a3da3
WY
377/*
378 * Must be called with resv->lock held.
379 *
380 * Calling this with regions_needed != NULL will count the number of pages
381 * to be added but will not modify the linked list. And regions_needed will
382 * indicate the number of file_regions needed in the cache to carry out to add
383 * the regions for this range.
d75c6af9
MA
384 */
385static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 386 struct hugetlb_cgroup *h_cg,
972a3da3 387 struct hstate *h, long *regions_needed)
d75c6af9 388{
0db9d74e 389 long add = 0;
d75c6af9 390 struct list_head *head = &resv->regions;
0db9d74e 391 long last_accounted_offset = f;
2103cf9c 392 struct file_region *rg = NULL, *trg = NULL;
d75c6af9 393
0db9d74e
MA
394 if (regions_needed)
395 *regions_needed = 0;
d75c6af9 396
0db9d74e
MA
397 /* In this loop, we essentially handle an entry for the range
398 * [last_accounted_offset, rg->from), at every iteration, with some
399 * bounds checking.
400 */
401 list_for_each_entry_safe(rg, trg, head, link) {
402 /* Skip irrelevant regions that start before our range. */
403 if (rg->from < f) {
404 /* If this region ends after the last accounted offset,
405 * then we need to update last_accounted_offset.
406 */
407 if (rg->to > last_accounted_offset)
408 last_accounted_offset = rg->to;
409 continue;
410 }
d75c6af9 411
0db9d74e
MA
412 /* When we find a region that starts beyond our range, we've
413 * finished.
414 */
ca7e0457 415 if (rg->from >= t)
d75c6af9
MA
416 break;
417
0db9d74e
MA
418 /* Add an entry for last_accounted_offset -> rg->from, and
419 * update last_accounted_offset.
420 */
2103cf9c
PX
421 if (rg->from > last_accounted_offset)
422 add += hugetlb_resv_map_add(resv, rg,
423 last_accounted_offset,
424 rg->from, h, h_cg,
425 regions_needed);
0db9d74e
MA
426
427 last_accounted_offset = rg->to;
428 }
429
430 /* Handle the case where our range extends beyond
431 * last_accounted_offset.
432 */
2103cf9c
PX
433 if (last_accounted_offset < t)
434 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
435 t, h, h_cg, regions_needed);
0db9d74e
MA
436
437 VM_BUG_ON(add < 0);
438 return add;
439}
440
441/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
442 */
443static int allocate_file_region_entries(struct resv_map *resv,
444 int regions_needed)
445 __must_hold(&resv->lock)
446{
447 struct list_head allocated_regions;
448 int to_allocate = 0, i = 0;
449 struct file_region *trg = NULL, *rg = NULL;
450
451 VM_BUG_ON(regions_needed < 0);
452
453 INIT_LIST_HEAD(&allocated_regions);
454
455 /*
456 * Check for sufficient descriptors in the cache to accommodate
457 * the number of in progress add operations plus regions_needed.
458 *
459 * This is a while loop because when we drop the lock, some other call
460 * to region_add or region_del may have consumed some region_entries,
461 * so we keep looping here until we finally have enough entries for
462 * (adds_in_progress + regions_needed).
463 */
464 while (resv->region_cache_count <
465 (resv->adds_in_progress + regions_needed)) {
466 to_allocate = resv->adds_in_progress + regions_needed -
467 resv->region_cache_count;
468
469 /* At this point, we should have enough entries in the cache
470 * for all the existings adds_in_progress. We should only be
471 * needing to allocate for regions_needed.
d75c6af9 472 */
0db9d74e
MA
473 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
474
475 spin_unlock(&resv->lock);
476 for (i = 0; i < to_allocate; i++) {
477 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
478 if (!trg)
479 goto out_of_memory;
480 list_add(&trg->link, &allocated_regions);
d75c6af9 481 }
d75c6af9 482
0db9d74e
MA
483 spin_lock(&resv->lock);
484
d3ec7b6e
WY
485 list_splice(&allocated_regions, &resv->region_cache);
486 resv->region_cache_count += to_allocate;
d75c6af9
MA
487 }
488
0db9d74e 489 return 0;
d75c6af9 490
0db9d74e
MA
491out_of_memory:
492 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
493 list_del(&rg->link);
494 kfree(rg);
495 }
496 return -ENOMEM;
d75c6af9
MA
497}
498
1dd308a7
MK
499/*
500 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
501 * map. Regions will be taken from the cache to fill in this range.
502 * Sufficient regions should exist in the cache due to the previous
503 * call to region_chg with the same range, but in some cases the cache will not
504 * have sufficient entries due to races with other code doing region_add or
505 * region_del. The extra needed entries will be allocated.
cf3ad20b 506 *
0db9d74e
MA
507 * regions_needed is the out value provided by a previous call to region_chg.
508 *
509 * Return the number of new huge pages added to the map. This number is greater
510 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 511 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
512 * region_add of regions of length 1 never allocate file_regions and cannot
513 * fail; region_chg will always allocate at least 1 entry and a region_add for
514 * 1 page will only require at most 1 entry.
1dd308a7 515 */
0db9d74e 516static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
517 long in_regions_needed, struct hstate *h,
518 struct hugetlb_cgroup *h_cg)
96822904 519{
0db9d74e 520 long add = 0, actual_regions_needed = 0;
96822904 521
7b24d861 522 spin_lock(&resv->lock);
0db9d74e
MA
523retry:
524
525 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
526 add_reservation_in_range(resv, f, t, NULL, NULL,
527 &actual_regions_needed);
96822904 528
5e911373 529 /*
0db9d74e
MA
530 * Check for sufficient descriptors in the cache to accommodate
531 * this add operation. Note that actual_regions_needed may be greater
532 * than in_regions_needed, as the resv_map may have been modified since
533 * the region_chg call. In this case, we need to make sure that we
534 * allocate extra entries, such that we have enough for all the
535 * existing adds_in_progress, plus the excess needed for this
536 * operation.
5e911373 537 */
0db9d74e
MA
538 if (actual_regions_needed > in_regions_needed &&
539 resv->region_cache_count <
540 resv->adds_in_progress +
541 (actual_regions_needed - in_regions_needed)) {
542 /* region_add operation of range 1 should never need to
543 * allocate file_region entries.
544 */
545 VM_BUG_ON(t - f <= 1);
5e911373 546
0db9d74e
MA
547 if (allocate_file_region_entries(
548 resv, actual_regions_needed - in_regions_needed)) {
549 return -ENOMEM;
550 }
5e911373 551
0db9d74e 552 goto retry;
5e911373
MK
553 }
554
972a3da3 555 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
556
557 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 558
7b24d861 559 spin_unlock(&resv->lock);
cf3ad20b 560 return add;
96822904
AW
561}
562
1dd308a7
MK
563/*
564 * Examine the existing reserve map and determine how many
565 * huge pages in the specified range [f, t) are NOT currently
566 * represented. This routine is called before a subsequent
567 * call to region_add that will actually modify the reserve
568 * map to add the specified range [f, t). region_chg does
569 * not change the number of huge pages represented by the
0db9d74e
MA
570 * map. A number of new file_region structures is added to the cache as a
571 * placeholder, for the subsequent region_add call to use. At least 1
572 * file_region structure is added.
573 *
574 * out_regions_needed is the number of regions added to the
575 * resv->adds_in_progress. This value needs to be provided to a follow up call
576 * to region_add or region_abort for proper accounting.
5e911373
MK
577 *
578 * Returns the number of huge pages that need to be added to the existing
579 * reservation map for the range [f, t). This number is greater or equal to
580 * zero. -ENOMEM is returned if a new file_region structure or cache entry
581 * is needed and can not be allocated.
1dd308a7 582 */
0db9d74e
MA
583static long region_chg(struct resv_map *resv, long f, long t,
584 long *out_regions_needed)
96822904 585{
96822904
AW
586 long chg = 0;
587
7b24d861 588 spin_lock(&resv->lock);
5e911373 589
972a3da3 590 /* Count how many hugepages in this range are NOT represented. */
075a61d0 591 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 592 out_regions_needed);
5e911373 593
0db9d74e
MA
594 if (*out_regions_needed == 0)
595 *out_regions_needed = 1;
5e911373 596
0db9d74e
MA
597 if (allocate_file_region_entries(resv, *out_regions_needed))
598 return -ENOMEM;
5e911373 599
0db9d74e 600 resv->adds_in_progress += *out_regions_needed;
7b24d861 601
7b24d861 602 spin_unlock(&resv->lock);
96822904
AW
603 return chg;
604}
605
5e911373
MK
606/*
607 * Abort the in progress add operation. The adds_in_progress field
608 * of the resv_map keeps track of the operations in progress between
609 * calls to region_chg and region_add. Operations are sometimes
610 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
611 * is called to decrement the adds_in_progress counter. regions_needed
612 * is the value returned by the region_chg call, it is used to decrement
613 * the adds_in_progress counter.
5e911373
MK
614 *
615 * NOTE: The range arguments [f, t) are not needed or used in this
616 * routine. They are kept to make reading the calling code easier as
617 * arguments will match the associated region_chg call.
618 */
0db9d74e
MA
619static void region_abort(struct resv_map *resv, long f, long t,
620 long regions_needed)
5e911373
MK
621{
622 spin_lock(&resv->lock);
623 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 624 resv->adds_in_progress -= regions_needed;
5e911373
MK
625 spin_unlock(&resv->lock);
626}
627
1dd308a7 628/*
feba16e2
MK
629 * Delete the specified range [f, t) from the reserve map. If the
630 * t parameter is LONG_MAX, this indicates that ALL regions after f
631 * should be deleted. Locate the regions which intersect [f, t)
632 * and either trim, delete or split the existing regions.
633 *
634 * Returns the number of huge pages deleted from the reserve map.
635 * In the normal case, the return value is zero or more. In the
636 * case where a region must be split, a new region descriptor must
637 * be allocated. If the allocation fails, -ENOMEM will be returned.
638 * NOTE: If the parameter t == LONG_MAX, then we will never split
639 * a region and possibly return -ENOMEM. Callers specifying
640 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 641 */
feba16e2 642static long region_del(struct resv_map *resv, long f, long t)
96822904 643{
1406ec9b 644 struct list_head *head = &resv->regions;
96822904 645 struct file_region *rg, *trg;
feba16e2
MK
646 struct file_region *nrg = NULL;
647 long del = 0;
96822904 648
feba16e2 649retry:
7b24d861 650 spin_lock(&resv->lock);
feba16e2 651 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
652 /*
653 * Skip regions before the range to be deleted. file_region
654 * ranges are normally of the form [from, to). However, there
655 * may be a "placeholder" entry in the map which is of the form
656 * (from, to) with from == to. Check for placeholder entries
657 * at the beginning of the range to be deleted.
658 */
659 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 660 continue;
dbe409e4 661
feba16e2 662 if (rg->from >= t)
96822904 663 break;
96822904 664
feba16e2
MK
665 if (f > rg->from && t < rg->to) { /* Must split region */
666 /*
667 * Check for an entry in the cache before dropping
668 * lock and attempting allocation.
669 */
670 if (!nrg &&
671 resv->region_cache_count > resv->adds_in_progress) {
672 nrg = list_first_entry(&resv->region_cache,
673 struct file_region,
674 link);
675 list_del(&nrg->link);
676 resv->region_cache_count--;
677 }
96822904 678
feba16e2
MK
679 if (!nrg) {
680 spin_unlock(&resv->lock);
681 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
682 if (!nrg)
683 return -ENOMEM;
684 goto retry;
685 }
686
687 del += t - f;
79aa925b 688 hugetlb_cgroup_uncharge_file_region(
d85aecf2 689 resv, rg, t - f, false);
feba16e2
MK
690
691 /* New entry for end of split region */
692 nrg->from = t;
693 nrg->to = rg->to;
075a61d0
MA
694
695 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
696
feba16e2
MK
697 INIT_LIST_HEAD(&nrg->link);
698
699 /* Original entry is trimmed */
700 rg->to = f;
701
702 list_add(&nrg->link, &rg->link);
703 nrg = NULL;
96822904 704 break;
feba16e2
MK
705 }
706
707 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
708 del += rg->to - rg->from;
075a61d0 709 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 710 rg->to - rg->from, true);
feba16e2
MK
711 list_del(&rg->link);
712 kfree(rg);
713 continue;
714 }
715
716 if (f <= rg->from) { /* Trim beginning of region */
075a61d0 717 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 718 t - rg->from, false);
075a61d0 719
79aa925b
MK
720 del += t - rg->from;
721 rg->from = t;
722 } else { /* Trim end of region */
075a61d0 723 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 724 rg->to - f, false);
79aa925b
MK
725
726 del += rg->to - f;
727 rg->to = f;
feba16e2 728 }
96822904 729 }
7b24d861 730
7b24d861 731 spin_unlock(&resv->lock);
feba16e2
MK
732 kfree(nrg);
733 return del;
96822904
AW
734}
735
b5cec28d
MK
736/*
737 * A rare out of memory error was encountered which prevented removal of
738 * the reserve map region for a page. The huge page itself was free'ed
739 * and removed from the page cache. This routine will adjust the subpool
740 * usage count, and the global reserve count if needed. By incrementing
741 * these counts, the reserve map entry which could not be deleted will
742 * appear as a "reserved" entry instead of simply dangling with incorrect
743 * counts.
744 */
72e2936c 745void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
746{
747 struct hugepage_subpool *spool = subpool_inode(inode);
748 long rsv_adjust;
da56388c 749 bool reserved = false;
b5cec28d
MK
750
751 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
da56388c 752 if (rsv_adjust > 0) {
b5cec28d
MK
753 struct hstate *h = hstate_inode(inode);
754
da56388c
ML
755 if (!hugetlb_acct_memory(h, 1))
756 reserved = true;
757 } else if (!rsv_adjust) {
758 reserved = true;
b5cec28d 759 }
da56388c
ML
760
761 if (!reserved)
762 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
b5cec28d
MK
763}
764
1dd308a7
MK
765/*
766 * Count and return the number of huge pages in the reserve map
767 * that intersect with the range [f, t).
768 */
1406ec9b 769static long region_count(struct resv_map *resv, long f, long t)
84afd99b 770{
1406ec9b 771 struct list_head *head = &resv->regions;
84afd99b
AW
772 struct file_region *rg;
773 long chg = 0;
774
7b24d861 775 spin_lock(&resv->lock);
84afd99b
AW
776 /* Locate each segment we overlap with, and count that overlap. */
777 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
778 long seg_from;
779 long seg_to;
84afd99b
AW
780
781 if (rg->to <= f)
782 continue;
783 if (rg->from >= t)
784 break;
785
786 seg_from = max(rg->from, f);
787 seg_to = min(rg->to, t);
788
789 chg += seg_to - seg_from;
790 }
7b24d861 791 spin_unlock(&resv->lock);
84afd99b
AW
792
793 return chg;
794}
795
e7c4b0bf
AW
796/*
797 * Convert the address within this vma to the page offset within
798 * the mapping, in pagecache page units; huge pages here.
799 */
a5516438
AK
800static pgoff_t vma_hugecache_offset(struct hstate *h,
801 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 802{
a5516438
AK
803 return ((address - vma->vm_start) >> huge_page_shift(h)) +
804 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
805}
806
0fe6e20b
NH
807pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
808 unsigned long address)
809{
810 return vma_hugecache_offset(hstate_vma(vma), vma, address);
811}
dee41079 812EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 813
08fba699
MG
814/*
815 * Return the size of the pages allocated when backing a VMA. In the majority
816 * cases this will be same size as used by the page table entries.
817 */
818unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
819{
05ea8860
DW
820 if (vma->vm_ops && vma->vm_ops->pagesize)
821 return vma->vm_ops->pagesize(vma);
822 return PAGE_SIZE;
08fba699 823}
f340ca0f 824EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 825
3340289d
MG
826/*
827 * Return the page size being used by the MMU to back a VMA. In the majority
828 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
829 * architectures where it differs, an architecture-specific 'strong'
830 * version of this symbol is required.
3340289d 831 */
09135cc5 832__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
833{
834 return vma_kernel_pagesize(vma);
835}
3340289d 836
84afd99b
AW
837/*
838 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
839 * bits of the reservation map pointer, which are always clear due to
840 * alignment.
841 */
842#define HPAGE_RESV_OWNER (1UL << 0)
843#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 844#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 845
a1e78772
MG
846/*
847 * These helpers are used to track how many pages are reserved for
848 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
849 * is guaranteed to have their future faults succeed.
850 *
851 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
852 * the reserve counters are updated with the hugetlb_lock held. It is safe
853 * to reset the VMA at fork() time as it is not in use yet and there is no
854 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
855 *
856 * The private mapping reservation is represented in a subtly different
857 * manner to a shared mapping. A shared mapping has a region map associated
858 * with the underlying file, this region map represents the backing file
859 * pages which have ever had a reservation assigned which this persists even
860 * after the page is instantiated. A private mapping has a region map
861 * associated with the original mmap which is attached to all VMAs which
862 * reference it, this region map represents those offsets which have consumed
863 * reservation ie. where pages have been instantiated.
a1e78772 864 */
e7c4b0bf
AW
865static unsigned long get_vma_private_data(struct vm_area_struct *vma)
866{
867 return (unsigned long)vma->vm_private_data;
868}
869
870static void set_vma_private_data(struct vm_area_struct *vma,
871 unsigned long value)
872{
873 vma->vm_private_data = (void *)value;
874}
875
e9fe92ae
MA
876static void
877resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
878 struct hugetlb_cgroup *h_cg,
879 struct hstate *h)
880{
881#ifdef CONFIG_CGROUP_HUGETLB
882 if (!h_cg || !h) {
883 resv_map->reservation_counter = NULL;
884 resv_map->pages_per_hpage = 0;
885 resv_map->css = NULL;
886 } else {
887 resv_map->reservation_counter =
888 &h_cg->rsvd_hugepage[hstate_index(h)];
889 resv_map->pages_per_hpage = pages_per_huge_page(h);
890 resv_map->css = &h_cg->css;
891 }
892#endif
893}
894
9119a41e 895struct resv_map *resv_map_alloc(void)
84afd99b
AW
896{
897 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
898 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
899
900 if (!resv_map || !rg) {
901 kfree(resv_map);
902 kfree(rg);
84afd99b 903 return NULL;
5e911373 904 }
84afd99b
AW
905
906 kref_init(&resv_map->refs);
7b24d861 907 spin_lock_init(&resv_map->lock);
84afd99b
AW
908 INIT_LIST_HEAD(&resv_map->regions);
909
5e911373 910 resv_map->adds_in_progress = 0;
e9fe92ae
MA
911 /*
912 * Initialize these to 0. On shared mappings, 0's here indicate these
913 * fields don't do cgroup accounting. On private mappings, these will be
914 * re-initialized to the proper values, to indicate that hugetlb cgroup
915 * reservations are to be un-charged from here.
916 */
917 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
918
919 INIT_LIST_HEAD(&resv_map->region_cache);
920 list_add(&rg->link, &resv_map->region_cache);
921 resv_map->region_cache_count = 1;
922
84afd99b
AW
923 return resv_map;
924}
925
9119a41e 926void resv_map_release(struct kref *ref)
84afd99b
AW
927{
928 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
929 struct list_head *head = &resv_map->region_cache;
930 struct file_region *rg, *trg;
84afd99b
AW
931
932 /* Clear out any active regions before we release the map. */
feba16e2 933 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
934
935 /* ... and any entries left in the cache */
936 list_for_each_entry_safe(rg, trg, head, link) {
937 list_del(&rg->link);
938 kfree(rg);
939 }
940
941 VM_BUG_ON(resv_map->adds_in_progress);
942
84afd99b
AW
943 kfree(resv_map);
944}
945
4e35f483
JK
946static inline struct resv_map *inode_resv_map(struct inode *inode)
947{
f27a5136
MK
948 /*
949 * At inode evict time, i_mapping may not point to the original
950 * address space within the inode. This original address space
951 * contains the pointer to the resv_map. So, always use the
952 * address space embedded within the inode.
953 * The VERY common case is inode->mapping == &inode->i_data but,
954 * this may not be true for device special inodes.
955 */
956 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
957}
958
84afd99b 959static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 960{
81d1b09c 961 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
962 if (vma->vm_flags & VM_MAYSHARE) {
963 struct address_space *mapping = vma->vm_file->f_mapping;
964 struct inode *inode = mapping->host;
965
966 return inode_resv_map(inode);
967
968 } else {
84afd99b
AW
969 return (struct resv_map *)(get_vma_private_data(vma) &
970 ~HPAGE_RESV_MASK);
4e35f483 971 }
a1e78772
MG
972}
973
84afd99b 974static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 975{
81d1b09c
SL
976 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
977 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 978
84afd99b
AW
979 set_vma_private_data(vma, (get_vma_private_data(vma) &
980 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
981}
982
983static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
984{
81d1b09c
SL
985 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
986 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
987
988 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
989}
990
991static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
992{
81d1b09c 993 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
994
995 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
996}
997
04f2cbe3 998/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
999void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1000{
81d1b09c 1001 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 1002 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
1003 vma->vm_private_data = (void *)0;
1004}
1005
1006/* Returns true if the VMA has associated reserve pages */
559ec2f8 1007static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 1008{
af0ed73e
JK
1009 if (vma->vm_flags & VM_NORESERVE) {
1010 /*
1011 * This address is already reserved by other process(chg == 0),
1012 * so, we should decrement reserved count. Without decrementing,
1013 * reserve count remains after releasing inode, because this
1014 * allocated page will go into page cache and is regarded as
1015 * coming from reserved pool in releasing step. Currently, we
1016 * don't have any other solution to deal with this situation
1017 * properly, so add work-around here.
1018 */
1019 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 1020 return true;
af0ed73e 1021 else
559ec2f8 1022 return false;
af0ed73e 1023 }
a63884e9
JK
1024
1025 /* Shared mappings always use reserves */
1fb1b0e9
MK
1026 if (vma->vm_flags & VM_MAYSHARE) {
1027 /*
1028 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1029 * be a region map for all pages. The only situation where
1030 * there is no region map is if a hole was punched via
7c8de358 1031 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
1032 * use. This situation is indicated if chg != 0.
1033 */
1034 if (chg)
1035 return false;
1036 else
1037 return true;
1038 }
a63884e9
JK
1039
1040 /*
1041 * Only the process that called mmap() has reserves for
1042 * private mappings.
1043 */
67961f9d
MK
1044 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1045 /*
1046 * Like the shared case above, a hole punch or truncate
1047 * could have been performed on the private mapping.
1048 * Examine the value of chg to determine if reserves
1049 * actually exist or were previously consumed.
1050 * Very Subtle - The value of chg comes from a previous
1051 * call to vma_needs_reserves(). The reserve map for
1052 * private mappings has different (opposite) semantics
1053 * than that of shared mappings. vma_needs_reserves()
1054 * has already taken this difference in semantics into
1055 * account. Therefore, the meaning of chg is the same
1056 * as in the shared case above. Code could easily be
1057 * combined, but keeping it separate draws attention to
1058 * subtle differences.
1059 */
1060 if (chg)
1061 return false;
1062 else
1063 return true;
1064 }
a63884e9 1065
559ec2f8 1066 return false;
a1e78772
MG
1067}
1068
a5516438 1069static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
1070{
1071 int nid = page_to_nid(page);
9487ca60
MK
1072
1073 lockdep_assert_held(&hugetlb_lock);
0edaecfa 1074 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1075 h->free_huge_pages++;
1076 h->free_huge_pages_node[nid]++;
6c037149 1077 SetHPageFreed(page);
1da177e4
LT
1078}
1079
94310cbc 1080static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1081{
1082 struct page *page;
bbe88753
JK
1083 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1084
9487ca60 1085 lockdep_assert_held(&hugetlb_lock);
bbe88753
JK
1086 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1087 if (nocma && is_migrate_cma_page(page))
1088 continue;
bf50bab2 1089
6664bfc8
WY
1090 if (PageHWPoison(page))
1091 continue;
1092
1093 list_move(&page->lru, &h->hugepage_activelist);
1094 set_page_refcounted(page);
6c037149 1095 ClearHPageFreed(page);
6664bfc8
WY
1096 h->free_huge_pages--;
1097 h->free_huge_pages_node[nid]--;
1098 return page;
bbe88753
JK
1099 }
1100
6664bfc8 1101 return NULL;
bf50bab2
NH
1102}
1103
3e59fcb0
MH
1104static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1105 nodemask_t *nmask)
94310cbc 1106{
3e59fcb0
MH
1107 unsigned int cpuset_mems_cookie;
1108 struct zonelist *zonelist;
1109 struct zone *zone;
1110 struct zoneref *z;
98fa15f3 1111 int node = NUMA_NO_NODE;
94310cbc 1112
3e59fcb0
MH
1113 zonelist = node_zonelist(nid, gfp_mask);
1114
1115retry_cpuset:
1116 cpuset_mems_cookie = read_mems_allowed_begin();
1117 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1118 struct page *page;
1119
1120 if (!cpuset_zone_allowed(zone, gfp_mask))
1121 continue;
1122 /*
1123 * no need to ask again on the same node. Pool is node rather than
1124 * zone aware
1125 */
1126 if (zone_to_nid(zone) == node)
1127 continue;
1128 node = zone_to_nid(zone);
94310cbc 1129
94310cbc
AK
1130 page = dequeue_huge_page_node_exact(h, node);
1131 if (page)
1132 return page;
1133 }
3e59fcb0
MH
1134 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1135 goto retry_cpuset;
1136
94310cbc
AK
1137 return NULL;
1138}
1139
a5516438
AK
1140static struct page *dequeue_huge_page_vma(struct hstate *h,
1141 struct vm_area_struct *vma,
af0ed73e
JK
1142 unsigned long address, int avoid_reserve,
1143 long chg)
1da177e4 1144{
3e59fcb0 1145 struct page *page;
480eccf9 1146 struct mempolicy *mpol;
04ec6264 1147 gfp_t gfp_mask;
3e59fcb0 1148 nodemask_t *nodemask;
04ec6264 1149 int nid;
1da177e4 1150
a1e78772
MG
1151 /*
1152 * A child process with MAP_PRIVATE mappings created by their parent
1153 * have no page reserves. This check ensures that reservations are
1154 * not "stolen". The child may still get SIGKILLed
1155 */
af0ed73e 1156 if (!vma_has_reserves(vma, chg) &&
a5516438 1157 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 1158 goto err;
a1e78772 1159
04f2cbe3 1160 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 1161 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 1162 goto err;
04f2cbe3 1163
04ec6264
VB
1164 gfp_mask = htlb_alloc_mask(h);
1165 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
1166 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1167 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
d6995da3 1168 SetHPageRestoreReserve(page);
3e59fcb0 1169 h->resv_huge_pages--;
1da177e4 1170 }
cc9a6c87 1171
52cd3b07 1172 mpol_cond_put(mpol);
1da177e4 1173 return page;
cc9a6c87
MG
1174
1175err:
cc9a6c87 1176 return NULL;
1da177e4
LT
1177}
1178
1cac6f2c
LC
1179/*
1180 * common helper functions for hstate_next_node_to_{alloc|free}.
1181 * We may have allocated or freed a huge page based on a different
1182 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1183 * be outside of *nodes_allowed. Ensure that we use an allowed
1184 * node for alloc or free.
1185 */
1186static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1187{
0edaf86c 1188 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1189 VM_BUG_ON(nid >= MAX_NUMNODES);
1190
1191 return nid;
1192}
1193
1194static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1195{
1196 if (!node_isset(nid, *nodes_allowed))
1197 nid = next_node_allowed(nid, nodes_allowed);
1198 return nid;
1199}
1200
1201/*
1202 * returns the previously saved node ["this node"] from which to
1203 * allocate a persistent huge page for the pool and advance the
1204 * next node from which to allocate, handling wrap at end of node
1205 * mask.
1206 */
1207static int hstate_next_node_to_alloc(struct hstate *h,
1208 nodemask_t *nodes_allowed)
1209{
1210 int nid;
1211
1212 VM_BUG_ON(!nodes_allowed);
1213
1214 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1215 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1216
1217 return nid;
1218}
1219
1220/*
10c6ec49 1221 * helper for remove_pool_huge_page() - return the previously saved
1cac6f2c
LC
1222 * node ["this node"] from which to free a huge page. Advance the
1223 * next node id whether or not we find a free huge page to free so
1224 * that the next attempt to free addresses the next node.
1225 */
1226static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1227{
1228 int nid;
1229
1230 VM_BUG_ON(!nodes_allowed);
1231
1232 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1233 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1234
1235 return nid;
1236}
1237
1238#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1239 for (nr_nodes = nodes_weight(*mask); \
1240 nr_nodes > 0 && \
1241 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1242 nr_nodes--)
1243
1244#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1245 for (nr_nodes = nodes_weight(*mask); \
1246 nr_nodes > 0 && \
1247 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1248 nr_nodes--)
1249
e1073d1e 1250#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1251static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1252 unsigned int order)
944d9fec
LC
1253{
1254 int i;
1255 int nr_pages = 1 << order;
1256 struct page *p = page + 1;
1257
c8cc708a 1258 atomic_set(compound_mapcount_ptr(page), 0);
5291c09b 1259 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 1260
944d9fec 1261 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1262 clear_compound_head(p);
944d9fec 1263 set_page_refcounted(p);
944d9fec
LC
1264 }
1265
1266 set_compound_order(page, 0);
ba9c1201 1267 page[1].compound_nr = 0;
944d9fec
LC
1268 __ClearPageHead(page);
1269}
1270
d00181b9 1271static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec 1272{
cf11e85f
RG
1273 /*
1274 * If the page isn't allocated using the cma allocator,
1275 * cma_release() returns false.
1276 */
dbda8fea
BS
1277#ifdef CONFIG_CMA
1278 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
cf11e85f 1279 return;
dbda8fea 1280#endif
cf11e85f 1281
944d9fec
LC
1282 free_contig_range(page_to_pfn(page), 1 << order);
1283}
1284
4eb0716e 1285#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1286static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1287 int nid, nodemask_t *nodemask)
944d9fec 1288{
04adbc3f 1289 unsigned long nr_pages = pages_per_huge_page(h);
953f064a
LX
1290 if (nid == NUMA_NO_NODE)
1291 nid = numa_mem_id();
944d9fec 1292
dbda8fea
BS
1293#ifdef CONFIG_CMA
1294 {
cf11e85f
RG
1295 struct page *page;
1296 int node;
1297
953f064a
LX
1298 if (hugetlb_cma[nid]) {
1299 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1300 huge_page_order(h), true);
cf11e85f
RG
1301 if (page)
1302 return page;
1303 }
953f064a
LX
1304
1305 if (!(gfp_mask & __GFP_THISNODE)) {
1306 for_each_node_mask(node, *nodemask) {
1307 if (node == nid || !hugetlb_cma[node])
1308 continue;
1309
1310 page = cma_alloc(hugetlb_cma[node], nr_pages,
1311 huge_page_order(h), true);
1312 if (page)
1313 return page;
1314 }
1315 }
cf11e85f 1316 }
dbda8fea 1317#endif
cf11e85f 1318
5e27a2df 1319 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1320}
1321
1322static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1323static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1324#else /* !CONFIG_CONTIG_ALLOC */
1325static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1326 int nid, nodemask_t *nodemask)
1327{
1328 return NULL;
1329}
1330#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1331
e1073d1e 1332#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1333static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1334 int nid, nodemask_t *nodemask)
1335{
1336 return NULL;
1337}
d00181b9 1338static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1339static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1340 unsigned int order) { }
944d9fec
LC
1341#endif
1342
6eb4e88a
MK
1343/*
1344 * Remove hugetlb page from lists, and update dtor so that page appears
1345 * as just a compound page. A reference is held on the page.
1346 *
1347 * Must be called with hugetlb lock held.
1348 */
1349static void remove_hugetlb_page(struct hstate *h, struct page *page,
1350 bool adjust_surplus)
1351{
1352 int nid = page_to_nid(page);
1353
1354 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1355 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1356
9487ca60 1357 lockdep_assert_held(&hugetlb_lock);
6eb4e88a
MK
1358 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1359 return;
1360
1361 list_del(&page->lru);
1362
1363 if (HPageFreed(page)) {
1364 h->free_huge_pages--;
1365 h->free_huge_pages_node[nid]--;
1366 }
1367 if (adjust_surplus) {
1368 h->surplus_huge_pages--;
1369 h->surplus_huge_pages_node[nid]--;
1370 }
1371
1372 set_page_refcounted(page);
1373 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1374
1375 h->nr_huge_pages--;
1376 h->nr_huge_pages_node[nid]--;
1377}
1378
a5516438 1379static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1380{
1381 int i;
dbfee5ae 1382 struct page *subpage = page;
a5516438 1383
4eb0716e 1384 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1385 return;
18229df5 1386
dbfee5ae
MK
1387 for (i = 0; i < pages_per_huge_page(h);
1388 i++, subpage = mem_map_next(subpage, page, i)) {
1389 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
32f84528 1390 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1391 1 << PG_active | 1 << PG_private |
1392 1 << PG_writeback);
6af2acb6 1393 }
944d9fec
LC
1394 if (hstate_is_gigantic(h)) {
1395 destroy_compound_gigantic_page(page, huge_page_order(h));
1396 free_gigantic_page(page, huge_page_order(h));
1397 } else {
944d9fec
LC
1398 __free_pages(page, huge_page_order(h));
1399 }
6af2acb6
AL
1400}
1401
10c6ec49
MK
1402static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1403{
1404 struct page *page, *t_page;
1405
1406 list_for_each_entry_safe(page, t_page, list, lru) {
1407 update_and_free_page(h, page);
1408 cond_resched();
1409 }
1410}
1411
e5ff2159
AK
1412struct hstate *size_to_hstate(unsigned long size)
1413{
1414 struct hstate *h;
1415
1416 for_each_hstate(h) {
1417 if (huge_page_size(h) == size)
1418 return h;
1419 }
1420 return NULL;
1421}
1422
db71ef79 1423void free_huge_page(struct page *page)
27a85ef1 1424{
a5516438
AK
1425 /*
1426 * Can't pass hstate in here because it is called from the
1427 * compound page destructor.
1428 */
e5ff2159 1429 struct hstate *h = page_hstate(page);
7893d1d5 1430 int nid = page_to_nid(page);
d6995da3 1431 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
07443a85 1432 bool restore_reserve;
db71ef79 1433 unsigned long flags;
27a85ef1 1434
b4330afb
MK
1435 VM_BUG_ON_PAGE(page_count(page), page);
1436 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc 1437
d6995da3 1438 hugetlb_set_page_subpool(page, NULL);
8ace22bc 1439 page->mapping = NULL;
d6995da3
MK
1440 restore_reserve = HPageRestoreReserve(page);
1441 ClearHPageRestoreReserve(page);
27a85ef1 1442
1c5ecae3 1443 /*
d6995da3 1444 * If HPageRestoreReserve was set on page, page allocation consumed a
0919e1b6
MK
1445 * reservation. If the page was associated with a subpool, there
1446 * would have been a page reserved in the subpool before allocation
1447 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
6c26d310 1448 * reservation, do not call hugepage_subpool_put_pages() as this will
0919e1b6 1449 * remove the reserved page from the subpool.
1c5ecae3 1450 */
0919e1b6
MK
1451 if (!restore_reserve) {
1452 /*
1453 * A return code of zero implies that the subpool will be
1454 * under its minimum size if the reservation is not restored
1455 * after page is free. Therefore, force restore_reserve
1456 * operation.
1457 */
1458 if (hugepage_subpool_put_pages(spool, 1) == 0)
1459 restore_reserve = true;
1460 }
1c5ecae3 1461
db71ef79 1462 spin_lock_irqsave(&hugetlb_lock, flags);
8f251a3d 1463 ClearHPageMigratable(page);
6d76dcf4
AK
1464 hugetlb_cgroup_uncharge_page(hstate_index(h),
1465 pages_per_huge_page(h), page);
08cf9faf
MA
1466 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1467 pages_per_huge_page(h), page);
07443a85
JK
1468 if (restore_reserve)
1469 h->resv_huge_pages++;
1470
9157c311 1471 if (HPageTemporary(page)) {
6eb4e88a 1472 remove_hugetlb_page(h, page, false);
db71ef79 1473 spin_unlock_irqrestore(&hugetlb_lock, flags);
ab5ac90a
MH
1474 update_and_free_page(h, page);
1475 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa 1476 /* remove the page from active list */
6eb4e88a 1477 remove_hugetlb_page(h, page, true);
db71ef79 1478 spin_unlock_irqrestore(&hugetlb_lock, flags);
a5516438 1479 update_and_free_page(h, page);
7893d1d5 1480 } else {
5d3a551c 1481 arch_clear_hugepage_flags(page);
a5516438 1482 enqueue_huge_page(h, page);
db71ef79 1483 spin_unlock_irqrestore(&hugetlb_lock, flags);
c77c0a8a 1484 }
c77c0a8a
WL
1485}
1486
a5516438 1487static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1488{
0edaecfa 1489 INIT_LIST_HEAD(&page->lru);
f1e61557 1490 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
ff546117 1491 hugetlb_set_page_subpool(page, NULL);
9dd540e2 1492 set_hugetlb_cgroup(page, NULL);
1adc4d41 1493 set_hugetlb_cgroup_rsvd(page, NULL);
db71ef79 1494 spin_lock_irq(&hugetlb_lock);
a5516438
AK
1495 h->nr_huge_pages++;
1496 h->nr_huge_pages_node[nid]++;
db71ef79 1497 spin_unlock_irq(&hugetlb_lock);
b7ba30c6
AK
1498}
1499
d00181b9 1500static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1501{
1502 int i;
1503 int nr_pages = 1 << order;
1504 struct page *p = page + 1;
1505
1506 /* we rely on prep_new_huge_page to set the destructor */
1507 set_compound_order(page, order);
ef5a22be 1508 __ClearPageReserved(page);
de09d31d 1509 __SetPageHead(page);
20a0307c 1510 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1511 /*
1512 * For gigantic hugepages allocated through bootmem at
1513 * boot, it's safer to be consistent with the not-gigantic
1514 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1515 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1516 * pages may get the reference counting wrong if they see
1517 * PG_reserved set on a tail page (despite the head page not
1518 * having PG_reserved set). Enforcing this consistency between
1519 * head and tail pages allows drivers to optimize away a check
1520 * on the head page when they need know if put_page() is needed
1521 * after get_user_pages().
1522 */
1523 __ClearPageReserved(p);
58a84aa9 1524 set_page_count(p, 0);
1d798ca3 1525 set_compound_head(p, page);
20a0307c 1526 }
b4330afb 1527 atomic_set(compound_mapcount_ptr(page), -1);
5291c09b 1528 atomic_set(compound_pincount_ptr(page), 0);
20a0307c
WF
1529}
1530
7795912c
AM
1531/*
1532 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1533 * transparent huge pages. See the PageTransHuge() documentation for more
1534 * details.
1535 */
20a0307c
WF
1536int PageHuge(struct page *page)
1537{
20a0307c
WF
1538 if (!PageCompound(page))
1539 return 0;
1540
1541 page = compound_head(page);
f1e61557 1542 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1543}
43131e14
NH
1544EXPORT_SYMBOL_GPL(PageHuge);
1545
27c73ae7
AA
1546/*
1547 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1548 * normal or transparent huge pages.
1549 */
1550int PageHeadHuge(struct page *page_head)
1551{
27c73ae7
AA
1552 if (!PageHead(page_head))
1553 return 0;
1554
d4af73e3 1555 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 1556}
27c73ae7 1557
c0d0381a
MK
1558/*
1559 * Find and lock address space (mapping) in write mode.
1560 *
336bf30e
MK
1561 * Upon entry, the page is locked which means that page_mapping() is
1562 * stable. Due to locking order, we can only trylock_write. If we can
1563 * not get the lock, simply return NULL to caller.
c0d0381a
MK
1564 */
1565struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1566{
336bf30e 1567 struct address_space *mapping = page_mapping(hpage);
c0d0381a 1568
c0d0381a
MK
1569 if (!mapping)
1570 return mapping;
1571
c0d0381a
MK
1572 if (i_mmap_trylock_write(mapping))
1573 return mapping;
1574
336bf30e 1575 return NULL;
c0d0381a
MK
1576}
1577
13d60f4b
ZY
1578pgoff_t __basepage_index(struct page *page)
1579{
1580 struct page *page_head = compound_head(page);
1581 pgoff_t index = page_index(page_head);
1582 unsigned long compound_idx;
1583
1584 if (!PageHuge(page_head))
1585 return page_index(page);
1586
1587 if (compound_order(page_head) >= MAX_ORDER)
1588 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1589 else
1590 compound_idx = page - page_head;
1591
1592 return (index << compound_order(page_head)) + compound_idx;
1593}
1594
0c397dae 1595static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1596 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1597 nodemask_t *node_alloc_noretry)
1da177e4 1598{
af0fb9df 1599 int order = huge_page_order(h);
1da177e4 1600 struct page *page;
f60858f9 1601 bool alloc_try_hard = true;
f96efd58 1602
f60858f9
MK
1603 /*
1604 * By default we always try hard to allocate the page with
1605 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1606 * a loop (to adjust global huge page counts) and previous allocation
1607 * failed, do not continue to try hard on the same node. Use the
1608 * node_alloc_noretry bitmap to manage this state information.
1609 */
1610 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1611 alloc_try_hard = false;
1612 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1613 if (alloc_try_hard)
1614 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1615 if (nid == NUMA_NO_NODE)
1616 nid = numa_mem_id();
84172f4b 1617 page = __alloc_pages(gfp_mask, order, nid, nmask);
af0fb9df
MH
1618 if (page)
1619 __count_vm_event(HTLB_BUDDY_PGALLOC);
1620 else
1621 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1622
f60858f9
MK
1623 /*
1624 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1625 * indicates an overall state change. Clear bit so that we resume
1626 * normal 'try hard' allocations.
1627 */
1628 if (node_alloc_noretry && page && !alloc_try_hard)
1629 node_clear(nid, *node_alloc_noretry);
1630
1631 /*
1632 * If we tried hard to get a page but failed, set bit so that
1633 * subsequent attempts will not try as hard until there is an
1634 * overall state change.
1635 */
1636 if (node_alloc_noretry && !page && alloc_try_hard)
1637 node_set(nid, *node_alloc_noretry);
1638
63b4613c
NA
1639 return page;
1640}
1641
0c397dae
MH
1642/*
1643 * Common helper to allocate a fresh hugetlb page. All specific allocators
1644 * should use this function to get new hugetlb pages
1645 */
1646static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1647 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1648 nodemask_t *node_alloc_noretry)
0c397dae
MH
1649{
1650 struct page *page;
1651
1652 if (hstate_is_gigantic(h))
1653 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1654 else
1655 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1656 nid, nmask, node_alloc_noretry);
0c397dae
MH
1657 if (!page)
1658 return NULL;
1659
1660 if (hstate_is_gigantic(h))
1661 prep_compound_gigantic_page(page, huge_page_order(h));
1662 prep_new_huge_page(h, page, page_to_nid(page));
1663
1664 return page;
1665}
1666
af0fb9df
MH
1667/*
1668 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1669 * manner.
1670 */
f60858f9
MK
1671static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1672 nodemask_t *node_alloc_noretry)
b2261026
JK
1673{
1674 struct page *page;
1675 int nr_nodes, node;
af0fb9df 1676 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1677
1678 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1679 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1680 node_alloc_noretry);
af0fb9df 1681 if (page)
b2261026 1682 break;
b2261026
JK
1683 }
1684
af0fb9df
MH
1685 if (!page)
1686 return 0;
b2261026 1687
af0fb9df
MH
1688 put_page(page); /* free it into the hugepage allocator */
1689
1690 return 1;
b2261026
JK
1691}
1692
e8c5c824 1693/*
10c6ec49
MK
1694 * Remove huge page from pool from next node to free. Attempt to keep
1695 * persistent huge pages more or less balanced over allowed nodes.
1696 * This routine only 'removes' the hugetlb page. The caller must make
1697 * an additional call to free the page to low level allocators.
e8c5c824
LS
1698 * Called with hugetlb_lock locked.
1699 */
10c6ec49
MK
1700static struct page *remove_pool_huge_page(struct hstate *h,
1701 nodemask_t *nodes_allowed,
1702 bool acct_surplus)
e8c5c824 1703{
b2261026 1704 int nr_nodes, node;
10c6ec49 1705 struct page *page = NULL;
e8c5c824 1706
9487ca60 1707 lockdep_assert_held(&hugetlb_lock);
b2261026 1708 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1709 /*
1710 * If we're returning unused surplus pages, only examine
1711 * nodes with surplus pages.
1712 */
b2261026
JK
1713 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1714 !list_empty(&h->hugepage_freelists[node])) {
10c6ec49 1715 page = list_entry(h->hugepage_freelists[node].next,
e8c5c824 1716 struct page, lru);
6eb4e88a 1717 remove_hugetlb_page(h, page, acct_surplus);
9a76db09 1718 break;
e8c5c824 1719 }
b2261026 1720 }
e8c5c824 1721
10c6ec49 1722 return page;
e8c5c824
LS
1723}
1724
c8721bbb
NH
1725/*
1726 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1727 * nothing for in-use hugepages and non-hugepages.
1728 * This function returns values like below:
1729 *
1730 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1731 * (allocated or reserved.)
1732 * 0: successfully dissolved free hugepages or the page is not a
1733 * hugepage (considered as already dissolved)
c8721bbb 1734 */
c3114a84 1735int dissolve_free_huge_page(struct page *page)
c8721bbb 1736{
6bc9b564 1737 int rc = -EBUSY;
082d5b6b 1738
7ffddd49 1739retry:
faf53def
NH
1740 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1741 if (!PageHuge(page))
1742 return 0;
1743
db71ef79 1744 spin_lock_irq(&hugetlb_lock);
faf53def
NH
1745 if (!PageHuge(page)) {
1746 rc = 0;
1747 goto out;
1748 }
1749
1750 if (!page_count(page)) {
2247bb33
GS
1751 struct page *head = compound_head(page);
1752 struct hstate *h = page_hstate(head);
6bc9b564 1753 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1754 goto out;
7ffddd49
MS
1755
1756 /*
1757 * We should make sure that the page is already on the free list
1758 * when it is dissolved.
1759 */
6c037149 1760 if (unlikely(!HPageFreed(head))) {
db71ef79 1761 spin_unlock_irq(&hugetlb_lock);
7ffddd49
MS
1762 cond_resched();
1763
1764 /*
1765 * Theoretically, we should return -EBUSY when we
1766 * encounter this race. In fact, we have a chance
1767 * to successfully dissolve the page if we do a
1768 * retry. Because the race window is quite small.
1769 * If we seize this opportunity, it is an optimization
1770 * for increasing the success rate of dissolving page.
1771 */
1772 goto retry;
1773 }
1774
c3114a84
AK
1775 /*
1776 * Move PageHWPoison flag from head page to the raw error page,
1777 * which makes any subpages rather than the error page reusable.
1778 */
1779 if (PageHWPoison(head) && page != head) {
1780 SetPageHWPoison(page);
1781 ClearPageHWPoison(head);
1782 }
6eb4e88a 1783 remove_hugetlb_page(h, page, false);
c1470b33 1784 h->max_huge_pages--;
db71ef79 1785 spin_unlock_irq(&hugetlb_lock);
2247bb33 1786 update_and_free_page(h, head);
1121828a 1787 return 0;
c8721bbb 1788 }
082d5b6b 1789out:
db71ef79 1790 spin_unlock_irq(&hugetlb_lock);
082d5b6b 1791 return rc;
c8721bbb
NH
1792}
1793
1794/*
1795 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1796 * make specified memory blocks removable from the system.
2247bb33
GS
1797 * Note that this will dissolve a free gigantic hugepage completely, if any
1798 * part of it lies within the given range.
082d5b6b
GS
1799 * Also note that if dissolve_free_huge_page() returns with an error, all
1800 * free hugepages that were dissolved before that error are lost.
c8721bbb 1801 */
082d5b6b 1802int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1803{
c8721bbb 1804 unsigned long pfn;
eb03aa00 1805 struct page *page;
082d5b6b 1806 int rc = 0;
c8721bbb 1807
d0177639 1808 if (!hugepages_supported())
082d5b6b 1809 return rc;
d0177639 1810
eb03aa00
GS
1811 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1812 page = pfn_to_page(pfn);
faf53def
NH
1813 rc = dissolve_free_huge_page(page);
1814 if (rc)
1815 break;
eb03aa00 1816 }
082d5b6b
GS
1817
1818 return rc;
c8721bbb
NH
1819}
1820
ab5ac90a
MH
1821/*
1822 * Allocates a fresh surplus page from the page allocator.
1823 */
0c397dae 1824static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1825 int nid, nodemask_t *nmask)
7893d1d5 1826{
9980d744 1827 struct page *page = NULL;
7893d1d5 1828
bae7f4ae 1829 if (hstate_is_gigantic(h))
aa888a74
AK
1830 return NULL;
1831
db71ef79 1832 spin_lock_irq(&hugetlb_lock);
9980d744
MH
1833 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1834 goto out_unlock;
db71ef79 1835 spin_unlock_irq(&hugetlb_lock);
d1c3fb1f 1836
f60858f9 1837 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 1838 if (!page)
0c397dae 1839 return NULL;
d1c3fb1f 1840
db71ef79 1841 spin_lock_irq(&hugetlb_lock);
9980d744
MH
1842 /*
1843 * We could have raced with the pool size change.
1844 * Double check that and simply deallocate the new page
1845 * if we would end up overcommiting the surpluses. Abuse
1846 * temporary page to workaround the nasty free_huge_page
1847 * codeflow
1848 */
1849 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
9157c311 1850 SetHPageTemporary(page);
db71ef79 1851 spin_unlock_irq(&hugetlb_lock);
9980d744 1852 put_page(page);
2bf753e6 1853 return NULL;
9980d744 1854 } else {
9980d744 1855 h->surplus_huge_pages++;
4704dea3 1856 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1857 }
9980d744
MH
1858
1859out_unlock:
db71ef79 1860 spin_unlock_irq(&hugetlb_lock);
7893d1d5
AL
1861
1862 return page;
1863}
1864
bbe88753 1865static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 1866 int nid, nodemask_t *nmask)
ab5ac90a
MH
1867{
1868 struct page *page;
1869
1870 if (hstate_is_gigantic(h))
1871 return NULL;
1872
f60858f9 1873 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
1874 if (!page)
1875 return NULL;
1876
1877 /*
1878 * We do not account these pages as surplus because they are only
1879 * temporary and will be released properly on the last reference
1880 */
9157c311 1881 SetHPageTemporary(page);
ab5ac90a
MH
1882
1883 return page;
1884}
1885
099730d6
DH
1886/*
1887 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1888 */
e0ec90ee 1889static
0c397dae 1890struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1891 struct vm_area_struct *vma, unsigned long addr)
1892{
aaf14e40
MH
1893 struct page *page;
1894 struct mempolicy *mpol;
1895 gfp_t gfp_mask = htlb_alloc_mask(h);
1896 int nid;
1897 nodemask_t *nodemask;
1898
1899 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1900 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1901 mpol_cond_put(mpol);
1902
1903 return page;
099730d6
DH
1904}
1905
ab5ac90a 1906/* page migration callback function */
3e59fcb0 1907struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 1908 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 1909{
db71ef79 1910 spin_lock_irq(&hugetlb_lock);
4db9b2ef 1911 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1912 struct page *page;
1913
1914 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1915 if (page) {
db71ef79 1916 spin_unlock_irq(&hugetlb_lock);
3e59fcb0 1917 return page;
4db9b2ef
MH
1918 }
1919 }
db71ef79 1920 spin_unlock_irq(&hugetlb_lock);
4db9b2ef 1921
0c397dae 1922 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1923}
1924
ebd63723 1925/* mempolicy aware migration callback */
389c8178
MH
1926struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1927 unsigned long address)
ebd63723
MH
1928{
1929 struct mempolicy *mpol;
1930 nodemask_t *nodemask;
1931 struct page *page;
ebd63723
MH
1932 gfp_t gfp_mask;
1933 int node;
1934
ebd63723
MH
1935 gfp_mask = htlb_alloc_mask(h);
1936 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 1937 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
1938 mpol_cond_put(mpol);
1939
1940 return page;
1941}
1942
e4e574b7 1943/*
25985edc 1944 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1945 * of size 'delta'.
1946 */
0a4f3d1b 1947static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 1948 __must_hold(&hugetlb_lock)
e4e574b7
AL
1949{
1950 struct list_head surplus_list;
1951 struct page *page, *tmp;
0a4f3d1b
LX
1952 int ret;
1953 long i;
1954 long needed, allocated;
28073b02 1955 bool alloc_ok = true;
e4e574b7 1956
9487ca60 1957 lockdep_assert_held(&hugetlb_lock);
a5516438 1958 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1959 if (needed <= 0) {
a5516438 1960 h->resv_huge_pages += delta;
e4e574b7 1961 return 0;
ac09b3a1 1962 }
e4e574b7
AL
1963
1964 allocated = 0;
1965 INIT_LIST_HEAD(&surplus_list);
1966
1967 ret = -ENOMEM;
1968retry:
db71ef79 1969 spin_unlock_irq(&hugetlb_lock);
e4e574b7 1970 for (i = 0; i < needed; i++) {
0c397dae 1971 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1972 NUMA_NO_NODE, NULL);
28073b02
HD
1973 if (!page) {
1974 alloc_ok = false;
1975 break;
1976 }
e4e574b7 1977 list_add(&page->lru, &surplus_list);
69ed779a 1978 cond_resched();
e4e574b7 1979 }
28073b02 1980 allocated += i;
e4e574b7
AL
1981
1982 /*
1983 * After retaking hugetlb_lock, we need to recalculate 'needed'
1984 * because either resv_huge_pages or free_huge_pages may have changed.
1985 */
db71ef79 1986 spin_lock_irq(&hugetlb_lock);
a5516438
AK
1987 needed = (h->resv_huge_pages + delta) -
1988 (h->free_huge_pages + allocated);
28073b02
HD
1989 if (needed > 0) {
1990 if (alloc_ok)
1991 goto retry;
1992 /*
1993 * We were not able to allocate enough pages to
1994 * satisfy the entire reservation so we free what
1995 * we've allocated so far.
1996 */
1997 goto free;
1998 }
e4e574b7
AL
1999 /*
2000 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2001 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2002 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2003 * allocator. Commit the entire reservation here to prevent another
2004 * process from stealing the pages as they are added to the pool but
2005 * before they are reserved.
e4e574b7
AL
2006 */
2007 needed += allocated;
a5516438 2008 h->resv_huge_pages += delta;
e4e574b7 2009 ret = 0;
a9869b83 2010
19fc3f0a 2011 /* Free the needed pages to the hugetlb pool */
e4e574b7 2012 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
e558464b
MS
2013 int zeroed;
2014
19fc3f0a
AL
2015 if ((--needed) < 0)
2016 break;
a9869b83
NH
2017 /*
2018 * This page is now managed by the hugetlb allocator and has
2019 * no users -- drop the buddy allocator's reference.
2020 */
e558464b
MS
2021 zeroed = put_page_testzero(page);
2022 VM_BUG_ON_PAGE(!zeroed, page);
a5516438 2023 enqueue_huge_page(h, page);
19fc3f0a 2024 }
28073b02 2025free:
db71ef79 2026 spin_unlock_irq(&hugetlb_lock);
19fc3f0a
AL
2027
2028 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
2029 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2030 put_page(page);
db71ef79 2031 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2032
2033 return ret;
2034}
2035
2036/*
e5bbc8a6
MK
2037 * This routine has two main purposes:
2038 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2039 * in unused_resv_pages. This corresponds to the prior adjustments made
2040 * to the associated reservation map.
2041 * 2) Free any unused surplus pages that may have been allocated to satisfy
2042 * the reservation. As many as unused_resv_pages may be freed.
e4e574b7 2043 */
a5516438
AK
2044static void return_unused_surplus_pages(struct hstate *h,
2045 unsigned long unused_resv_pages)
e4e574b7 2046{
e4e574b7 2047 unsigned long nr_pages;
10c6ec49
MK
2048 struct page *page;
2049 LIST_HEAD(page_list);
2050
9487ca60 2051 lockdep_assert_held(&hugetlb_lock);
10c6ec49
MK
2052 /* Uncommit the reservation */
2053 h->resv_huge_pages -= unused_resv_pages;
e4e574b7 2054
aa888a74 2055 /* Cannot return gigantic pages currently */
bae7f4ae 2056 if (hstate_is_gigantic(h))
e5bbc8a6 2057 goto out;
aa888a74 2058
e5bbc8a6
MK
2059 /*
2060 * Part (or even all) of the reservation could have been backed
2061 * by pre-allocated pages. Only free surplus pages.
2062 */
a5516438 2063 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2064
685f3457
LS
2065 /*
2066 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2067 * evenly across all nodes with memory. Iterate across these nodes
2068 * until we can no longer free unreserved surplus pages. This occurs
2069 * when the nodes with surplus pages have no free pages.
10c6ec49 2070 * remove_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2071 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
2072 */
2073 while (nr_pages--) {
10c6ec49
MK
2074 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2075 if (!page)
e5bbc8a6 2076 goto out;
10c6ec49
MK
2077
2078 list_add(&page->lru, &page_list);
e4e574b7 2079 }
e5bbc8a6
MK
2080
2081out:
db71ef79 2082 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2083 update_and_free_pages_bulk(h, &page_list);
db71ef79 2084 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2085}
2086
5e911373 2087
c37f9fb1 2088/*
feba16e2 2089 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2090 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2091 *
2092 * vma_needs_reservation is called to determine if the huge page at addr
2093 * within the vma has an associated reservation. If a reservation is
2094 * needed, the value 1 is returned. The caller is then responsible for
2095 * managing the global reservation and subpool usage counts. After
2096 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2097 * to add the page to the reservation map. If the page allocation fails,
2098 * the reservation must be ended instead of committed. vma_end_reservation
2099 * is called in such cases.
cf3ad20b
MK
2100 *
2101 * In the normal case, vma_commit_reservation returns the same value
2102 * as the preceding vma_needs_reservation call. The only time this
2103 * is not the case is if a reserve map was changed between calls. It
2104 * is the responsibility of the caller to notice the difference and
2105 * take appropriate action.
96b96a96
MK
2106 *
2107 * vma_add_reservation is used in error paths where a reservation must
2108 * be restored when a newly allocated huge page must be freed. It is
2109 * to be called after calling vma_needs_reservation to determine if a
2110 * reservation exists.
c37f9fb1 2111 */
5e911373
MK
2112enum vma_resv_mode {
2113 VMA_NEEDS_RESV,
2114 VMA_COMMIT_RESV,
feba16e2 2115 VMA_END_RESV,
96b96a96 2116 VMA_ADD_RESV,
5e911373 2117};
cf3ad20b
MK
2118static long __vma_reservation_common(struct hstate *h,
2119 struct vm_area_struct *vma, unsigned long addr,
5e911373 2120 enum vma_resv_mode mode)
c37f9fb1 2121{
4e35f483
JK
2122 struct resv_map *resv;
2123 pgoff_t idx;
cf3ad20b 2124 long ret;
0db9d74e 2125 long dummy_out_regions_needed;
c37f9fb1 2126
4e35f483
JK
2127 resv = vma_resv_map(vma);
2128 if (!resv)
84afd99b 2129 return 1;
c37f9fb1 2130
4e35f483 2131 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2132 switch (mode) {
2133 case VMA_NEEDS_RESV:
0db9d74e
MA
2134 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2135 /* We assume that vma_reservation_* routines always operate on
2136 * 1 page, and that adding to resv map a 1 page entry can only
2137 * ever require 1 region.
2138 */
2139 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2140 break;
2141 case VMA_COMMIT_RESV:
075a61d0 2142 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2143 /* region_add calls of range 1 should never fail. */
2144 VM_BUG_ON(ret < 0);
5e911373 2145 break;
feba16e2 2146 case VMA_END_RESV:
0db9d74e 2147 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2148 ret = 0;
2149 break;
96b96a96 2150 case VMA_ADD_RESV:
0db9d74e 2151 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2152 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2153 /* region_add calls of range 1 should never fail. */
2154 VM_BUG_ON(ret < 0);
2155 } else {
2156 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2157 ret = region_del(resv, idx, idx + 1);
2158 }
2159 break;
5e911373
MK
2160 default:
2161 BUG();
2162 }
84afd99b 2163
4e35f483 2164 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 2165 return ret;
bf3d12b9
ML
2166 /*
2167 * We know private mapping must have HPAGE_RESV_OWNER set.
2168 *
2169 * In most cases, reserves always exist for private mappings.
2170 * However, a file associated with mapping could have been
2171 * hole punched or truncated after reserves were consumed.
2172 * As subsequent fault on such a range will not use reserves.
2173 * Subtle - The reserve map for private mappings has the
2174 * opposite meaning than that of shared mappings. If NO
2175 * entry is in the reserve map, it means a reservation exists.
2176 * If an entry exists in the reserve map, it means the
2177 * reservation has already been consumed. As a result, the
2178 * return value of this routine is the opposite of the
2179 * value returned from reserve map manipulation routines above.
2180 */
2181 if (ret > 0)
2182 return 0;
2183 if (ret == 0)
2184 return 1;
2185 return ret;
c37f9fb1 2186}
cf3ad20b
MK
2187
2188static long vma_needs_reservation(struct hstate *h,
a5516438 2189 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2190{
5e911373 2191 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2192}
84afd99b 2193
cf3ad20b
MK
2194static long vma_commit_reservation(struct hstate *h,
2195 struct vm_area_struct *vma, unsigned long addr)
2196{
5e911373
MK
2197 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2198}
2199
feba16e2 2200static void vma_end_reservation(struct hstate *h,
5e911373
MK
2201 struct vm_area_struct *vma, unsigned long addr)
2202{
feba16e2 2203 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2204}
2205
96b96a96
MK
2206static long vma_add_reservation(struct hstate *h,
2207 struct vm_area_struct *vma, unsigned long addr)
2208{
2209 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2210}
2211
2212/*
2213 * This routine is called to restore a reservation on error paths. In the
2214 * specific error paths, a huge page was allocated (via alloc_huge_page)
2215 * and is about to be freed. If a reservation for the page existed,
d6995da3
MK
2216 * alloc_huge_page would have consumed the reservation and set
2217 * HPageRestoreReserve in the newly allocated page. When the page is freed
2218 * via free_huge_page, the global reservation count will be incremented if
2219 * HPageRestoreReserve is set. However, free_huge_page can not adjust the
2220 * reserve map. Adjust the reserve map here to be consistent with global
2221 * reserve count adjustments to be made by free_huge_page.
96b96a96
MK
2222 */
2223static void restore_reserve_on_error(struct hstate *h,
2224 struct vm_area_struct *vma, unsigned long address,
2225 struct page *page)
2226{
d6995da3 2227 if (unlikely(HPageRestoreReserve(page))) {
96b96a96
MK
2228 long rc = vma_needs_reservation(h, vma, address);
2229
2230 if (unlikely(rc < 0)) {
2231 /*
2232 * Rare out of memory condition in reserve map
d6995da3 2233 * manipulation. Clear HPageRestoreReserve so that
96b96a96
MK
2234 * global reserve count will not be incremented
2235 * by free_huge_page. This will make it appear
2236 * as though the reservation for this page was
2237 * consumed. This may prevent the task from
2238 * faulting in the page at a later time. This
2239 * is better than inconsistent global huge page
2240 * accounting of reserve counts.
2241 */
d6995da3 2242 ClearHPageRestoreReserve(page);
96b96a96
MK
2243 } else if (rc) {
2244 rc = vma_add_reservation(h, vma, address);
2245 if (unlikely(rc < 0))
2246 /*
2247 * See above comment about rare out of
2248 * memory condition.
2249 */
d6995da3 2250 ClearHPageRestoreReserve(page);
96b96a96
MK
2251 } else
2252 vma_end_reservation(h, vma, address);
2253 }
2254}
2255
70c3547e 2256struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2257 unsigned long addr, int avoid_reserve)
1da177e4 2258{
90481622 2259 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2260 struct hstate *h = hstate_vma(vma);
348ea204 2261 struct page *page;
d85f69b0
MK
2262 long map_chg, map_commit;
2263 long gbl_chg;
6d76dcf4
AK
2264 int ret, idx;
2265 struct hugetlb_cgroup *h_cg;
08cf9faf 2266 bool deferred_reserve;
a1e78772 2267
6d76dcf4 2268 idx = hstate_index(h);
a1e78772 2269 /*
d85f69b0
MK
2270 * Examine the region/reserve map to determine if the process
2271 * has a reservation for the page to be allocated. A return
2272 * code of zero indicates a reservation exists (no change).
a1e78772 2273 */
d85f69b0
MK
2274 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2275 if (map_chg < 0)
76dcee75 2276 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2277
2278 /*
2279 * Processes that did not create the mapping will have no
2280 * reserves as indicated by the region/reserve map. Check
2281 * that the allocation will not exceed the subpool limit.
2282 * Allocations for MAP_NORESERVE mappings also need to be
2283 * checked against any subpool limit.
2284 */
2285 if (map_chg || avoid_reserve) {
2286 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2287 if (gbl_chg < 0) {
feba16e2 2288 vma_end_reservation(h, vma, addr);
76dcee75 2289 return ERR_PTR(-ENOSPC);
5e911373 2290 }
1da177e4 2291
d85f69b0
MK
2292 /*
2293 * Even though there was no reservation in the region/reserve
2294 * map, there could be reservations associated with the
2295 * subpool that can be used. This would be indicated if the
2296 * return value of hugepage_subpool_get_pages() is zero.
2297 * However, if avoid_reserve is specified we still avoid even
2298 * the subpool reservations.
2299 */
2300 if (avoid_reserve)
2301 gbl_chg = 1;
2302 }
2303
08cf9faf
MA
2304 /* If this allocation is not consuming a reservation, charge it now.
2305 */
6501fe5f 2306 deferred_reserve = map_chg || avoid_reserve;
08cf9faf
MA
2307 if (deferred_reserve) {
2308 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2309 idx, pages_per_huge_page(h), &h_cg);
2310 if (ret)
2311 goto out_subpool_put;
2312 }
2313
6d76dcf4 2314 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 2315 if (ret)
08cf9faf 2316 goto out_uncharge_cgroup_reservation;
8f34af6f 2317
db71ef79 2318 spin_lock_irq(&hugetlb_lock);
d85f69b0
MK
2319 /*
2320 * glb_chg is passed to indicate whether or not a page must be taken
2321 * from the global free pool (global change). gbl_chg == 0 indicates
2322 * a reservation exists for the allocation.
2323 */
2324 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2325 if (!page) {
db71ef79 2326 spin_unlock_irq(&hugetlb_lock);
0c397dae 2327 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2328 if (!page)
2329 goto out_uncharge_cgroup;
a88c7695 2330 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
d6995da3 2331 SetHPageRestoreReserve(page);
a88c7695
NH
2332 h->resv_huge_pages--;
2333 }
db71ef79 2334 spin_lock_irq(&hugetlb_lock);
15a8d68e 2335 list_add(&page->lru, &h->hugepage_activelist);
81a6fcae 2336 /* Fall through */
68842c9b 2337 }
81a6fcae 2338 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
2339 /* If allocation is not consuming a reservation, also store the
2340 * hugetlb_cgroup pointer on the page.
2341 */
2342 if (deferred_reserve) {
2343 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2344 h_cg, page);
2345 }
2346
db71ef79 2347 spin_unlock_irq(&hugetlb_lock);
348ea204 2348
d6995da3 2349 hugetlb_set_page_subpool(page, spool);
90d8b7e6 2350
d85f69b0
MK
2351 map_commit = vma_commit_reservation(h, vma, addr);
2352 if (unlikely(map_chg > map_commit)) {
33039678
MK
2353 /*
2354 * The page was added to the reservation map between
2355 * vma_needs_reservation and vma_commit_reservation.
2356 * This indicates a race with hugetlb_reserve_pages.
2357 * Adjust for the subpool count incremented above AND
2358 * in hugetlb_reserve_pages for the same page. Also,
2359 * the reservation count added in hugetlb_reserve_pages
2360 * no longer applies.
2361 */
2362 long rsv_adjust;
2363
2364 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2365 hugetlb_acct_memory(h, -rsv_adjust);
79aa925b
MK
2366 if (deferred_reserve)
2367 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2368 pages_per_huge_page(h), page);
33039678 2369 }
90d8b7e6 2370 return page;
8f34af6f
JZ
2371
2372out_uncharge_cgroup:
2373 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
2374out_uncharge_cgroup_reservation:
2375 if (deferred_reserve)
2376 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2377 h_cg);
8f34af6f 2378out_subpool_put:
d85f69b0 2379 if (map_chg || avoid_reserve)
8f34af6f 2380 hugepage_subpool_put_pages(spool, 1);
feba16e2 2381 vma_end_reservation(h, vma, addr);
8f34af6f 2382 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2383}
2384
e24a1307
AK
2385int alloc_bootmem_huge_page(struct hstate *h)
2386 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2387int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2388{
2389 struct huge_bootmem_page *m;
b2261026 2390 int nr_nodes, node;
aa888a74 2391
b2261026 2392 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2393 void *addr;
2394
eb31d559 2395 addr = memblock_alloc_try_nid_raw(
8b89a116 2396 huge_page_size(h), huge_page_size(h),
97ad1087 2397 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2398 if (addr) {
2399 /*
2400 * Use the beginning of the huge page to store the
2401 * huge_bootmem_page struct (until gather_bootmem
2402 * puts them into the mem_map).
2403 */
2404 m = addr;
91f47662 2405 goto found;
aa888a74 2406 }
aa888a74
AK
2407 }
2408 return 0;
2409
2410found:
df994ead 2411 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2412 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2413 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2414 list_add(&m->list, &huge_boot_pages);
2415 m->hstate = h;
2416 return 1;
2417}
2418
d00181b9
KS
2419static void __init prep_compound_huge_page(struct page *page,
2420 unsigned int order)
18229df5
AW
2421{
2422 if (unlikely(order > (MAX_ORDER - 1)))
2423 prep_compound_gigantic_page(page, order);
2424 else
2425 prep_compound_page(page, order);
2426}
2427
aa888a74
AK
2428/* Put bootmem huge pages into the standard lists after mem_map is up */
2429static void __init gather_bootmem_prealloc(void)
2430{
2431 struct huge_bootmem_page *m;
2432
2433 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2434 struct page *page = virt_to_page(m);
aa888a74 2435 struct hstate *h = m->hstate;
ee8f248d 2436
aa888a74 2437 WARN_ON(page_count(page) != 1);
c78a7f36 2438 prep_compound_huge_page(page, huge_page_order(h));
ef5a22be 2439 WARN_ON(PageReserved(page));
aa888a74 2440 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2441 put_page(page); /* free it into the hugepage allocator */
2442
b0320c7b
RA
2443 /*
2444 * If we had gigantic hugepages allocated at boot time, we need
2445 * to restore the 'stolen' pages to totalram_pages in order to
2446 * fix confusing memory reports from free(1) and another
2447 * side-effects, like CommitLimit going negative.
2448 */
bae7f4ae 2449 if (hstate_is_gigantic(h))
c78a7f36 2450 adjust_managed_page_count(page, pages_per_huge_page(h));
520495fe 2451 cond_resched();
aa888a74
AK
2452 }
2453}
2454
8faa8b07 2455static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2456{
2457 unsigned long i;
f60858f9
MK
2458 nodemask_t *node_alloc_noretry;
2459
2460 if (!hstate_is_gigantic(h)) {
2461 /*
2462 * Bit mask controlling how hard we retry per-node allocations.
2463 * Ignore errors as lower level routines can deal with
2464 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2465 * time, we are likely in bigger trouble.
2466 */
2467 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2468 GFP_KERNEL);
2469 } else {
2470 /* allocations done at boot time */
2471 node_alloc_noretry = NULL;
2472 }
2473
2474 /* bit mask controlling how hard we retry per-node allocations */
2475 if (node_alloc_noretry)
2476 nodes_clear(*node_alloc_noretry);
a5516438 2477
e5ff2159 2478 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2479 if (hstate_is_gigantic(h)) {
dbda8fea 2480 if (hugetlb_cma_size) {
cf11e85f 2481 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
7ecc9565 2482 goto free;
cf11e85f 2483 }
aa888a74
AK
2484 if (!alloc_bootmem_huge_page(h))
2485 break;
0c397dae 2486 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2487 &node_states[N_MEMORY],
2488 node_alloc_noretry))
1da177e4 2489 break;
69ed779a 2490 cond_resched();
1da177e4 2491 }
d715cf80
LH
2492 if (i < h->max_huge_pages) {
2493 char buf[32];
2494
c6247f72 2495 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2496 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2497 h->max_huge_pages, buf, i);
2498 h->max_huge_pages = i;
2499 }
7ecc9565 2500free:
f60858f9 2501 kfree(node_alloc_noretry);
e5ff2159
AK
2502}
2503
2504static void __init hugetlb_init_hstates(void)
2505{
2506 struct hstate *h;
2507
2508 for_each_hstate(h) {
641844f5
NH
2509 if (minimum_order > huge_page_order(h))
2510 minimum_order = huge_page_order(h);
2511
8faa8b07 2512 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2513 if (!hstate_is_gigantic(h))
8faa8b07 2514 hugetlb_hstate_alloc_pages(h);
e5ff2159 2515 }
641844f5 2516 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2517}
2518
2519static void __init report_hugepages(void)
2520{
2521 struct hstate *h;
2522
2523 for_each_hstate(h) {
4abd32db 2524 char buf[32];
c6247f72
MW
2525
2526 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2527 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2528 buf, h->free_huge_pages);
e5ff2159
AK
2529 }
2530}
2531
1da177e4 2532#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2533static void try_to_free_low(struct hstate *h, unsigned long count,
2534 nodemask_t *nodes_allowed)
1da177e4 2535{
4415cc8d 2536 int i;
1121828a 2537 LIST_HEAD(page_list);
4415cc8d 2538
9487ca60 2539 lockdep_assert_held(&hugetlb_lock);
bae7f4ae 2540 if (hstate_is_gigantic(h))
aa888a74
AK
2541 return;
2542
1121828a
MK
2543 /*
2544 * Collect pages to be freed on a list, and free after dropping lock
2545 */
6ae11b27 2546 for_each_node_mask(i, *nodes_allowed) {
10c6ec49 2547 struct page *page, *next;
a5516438
AK
2548 struct list_head *freel = &h->hugepage_freelists[i];
2549 list_for_each_entry_safe(page, next, freel, lru) {
2550 if (count >= h->nr_huge_pages)
1121828a 2551 goto out;
1da177e4
LT
2552 if (PageHighMem(page))
2553 continue;
6eb4e88a 2554 remove_hugetlb_page(h, page, false);
1121828a 2555 list_add(&page->lru, &page_list);
1da177e4
LT
2556 }
2557 }
1121828a
MK
2558
2559out:
db71ef79 2560 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2561 update_and_free_pages_bulk(h, &page_list);
db71ef79 2562 spin_lock_irq(&hugetlb_lock);
1da177e4
LT
2563}
2564#else
6ae11b27
LS
2565static inline void try_to_free_low(struct hstate *h, unsigned long count,
2566 nodemask_t *nodes_allowed)
1da177e4
LT
2567{
2568}
2569#endif
2570
20a0307c
WF
2571/*
2572 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2573 * balanced by operating on them in a round-robin fashion.
2574 * Returns 1 if an adjustment was made.
2575 */
6ae11b27
LS
2576static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2577 int delta)
20a0307c 2578{
b2261026 2579 int nr_nodes, node;
20a0307c 2580
9487ca60 2581 lockdep_assert_held(&hugetlb_lock);
20a0307c 2582 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2583
b2261026
JK
2584 if (delta < 0) {
2585 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2586 if (h->surplus_huge_pages_node[node])
2587 goto found;
e8c5c824 2588 }
b2261026
JK
2589 } else {
2590 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2591 if (h->surplus_huge_pages_node[node] <
2592 h->nr_huge_pages_node[node])
2593 goto found;
e8c5c824 2594 }
b2261026
JK
2595 }
2596 return 0;
20a0307c 2597
b2261026
JK
2598found:
2599 h->surplus_huge_pages += delta;
2600 h->surplus_huge_pages_node[node] += delta;
2601 return 1;
20a0307c
WF
2602}
2603
a5516438 2604#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2605static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2606 nodemask_t *nodes_allowed)
1da177e4 2607{
7893d1d5 2608 unsigned long min_count, ret;
10c6ec49
MK
2609 struct page *page;
2610 LIST_HEAD(page_list);
f60858f9
MK
2611 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2612
2613 /*
2614 * Bit mask controlling how hard we retry per-node allocations.
2615 * If we can not allocate the bit mask, do not attempt to allocate
2616 * the requested huge pages.
2617 */
2618 if (node_alloc_noretry)
2619 nodes_clear(*node_alloc_noretry);
2620 else
2621 return -ENOMEM;
1da177e4 2622
29383967
MK
2623 /*
2624 * resize_lock mutex prevents concurrent adjustments to number of
2625 * pages in hstate via the proc/sysfs interfaces.
2626 */
2627 mutex_lock(&h->resize_lock);
db71ef79 2628 spin_lock_irq(&hugetlb_lock);
4eb0716e 2629
fd875dca
MK
2630 /*
2631 * Check for a node specific request.
2632 * Changing node specific huge page count may require a corresponding
2633 * change to the global count. In any case, the passed node mask
2634 * (nodes_allowed) will restrict alloc/free to the specified node.
2635 */
2636 if (nid != NUMA_NO_NODE) {
2637 unsigned long old_count = count;
2638
2639 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2640 /*
2641 * User may have specified a large count value which caused the
2642 * above calculation to overflow. In this case, they wanted
2643 * to allocate as many huge pages as possible. Set count to
2644 * largest possible value to align with their intention.
2645 */
2646 if (count < old_count)
2647 count = ULONG_MAX;
2648 }
2649
4eb0716e
AG
2650 /*
2651 * Gigantic pages runtime allocation depend on the capability for large
2652 * page range allocation.
2653 * If the system does not provide this feature, return an error when
2654 * the user tries to allocate gigantic pages but let the user free the
2655 * boottime allocated gigantic pages.
2656 */
2657 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2658 if (count > persistent_huge_pages(h)) {
db71ef79 2659 spin_unlock_irq(&hugetlb_lock);
29383967 2660 mutex_unlock(&h->resize_lock);
f60858f9 2661 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
2662 return -EINVAL;
2663 }
2664 /* Fall through to decrease pool */
2665 }
aa888a74 2666
7893d1d5
AL
2667 /*
2668 * Increase the pool size
2669 * First take pages out of surplus state. Then make up the
2670 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2671 *
0c397dae 2672 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2673 * to convert a surplus huge page to a normal huge page. That is
2674 * not critical, though, it just means the overall size of the
2675 * pool might be one hugepage larger than it needs to be, but
2676 * within all the constraints specified by the sysctls.
7893d1d5 2677 */
a5516438 2678 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2679 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2680 break;
2681 }
2682
a5516438 2683 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2684 /*
2685 * If this allocation races such that we no longer need the
2686 * page, free_huge_page will handle it by freeing the page
2687 * and reducing the surplus.
2688 */
db71ef79 2689 spin_unlock_irq(&hugetlb_lock);
649920c6
JH
2690
2691 /* yield cpu to avoid soft lockup */
2692 cond_resched();
2693
f60858f9
MK
2694 ret = alloc_pool_huge_page(h, nodes_allowed,
2695 node_alloc_noretry);
db71ef79 2696 spin_lock_irq(&hugetlb_lock);
7893d1d5
AL
2697 if (!ret)
2698 goto out;
2699
536240f2
MG
2700 /* Bail for signals. Probably ctrl-c from user */
2701 if (signal_pending(current))
2702 goto out;
7893d1d5 2703 }
7893d1d5
AL
2704
2705 /*
2706 * Decrease the pool size
2707 * First return free pages to the buddy allocator (being careful
2708 * to keep enough around to satisfy reservations). Then place
2709 * pages into surplus state as needed so the pool will shrink
2710 * to the desired size as pages become free.
d1c3fb1f
NA
2711 *
2712 * By placing pages into the surplus state independent of the
2713 * overcommit value, we are allowing the surplus pool size to
2714 * exceed overcommit. There are few sane options here. Since
0c397dae 2715 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2716 * though, we'll note that we're not allowed to exceed surplus
2717 * and won't grow the pool anywhere else. Not until one of the
2718 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2719 */
a5516438 2720 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2721 min_count = max(count, min_count);
6ae11b27 2722 try_to_free_low(h, min_count, nodes_allowed);
10c6ec49
MK
2723
2724 /*
2725 * Collect pages to be removed on list without dropping lock
2726 */
a5516438 2727 while (min_count < persistent_huge_pages(h)) {
10c6ec49
MK
2728 page = remove_pool_huge_page(h, nodes_allowed, 0);
2729 if (!page)
1da177e4 2730 break;
10c6ec49
MK
2731
2732 list_add(&page->lru, &page_list);
1da177e4 2733 }
10c6ec49 2734 /* free the pages after dropping lock */
db71ef79 2735 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2736 update_and_free_pages_bulk(h, &page_list);
db71ef79 2737 spin_lock_irq(&hugetlb_lock);
10c6ec49 2738
a5516438 2739 while (count < persistent_huge_pages(h)) {
6ae11b27 2740 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2741 break;
2742 }
2743out:
4eb0716e 2744 h->max_huge_pages = persistent_huge_pages(h);
db71ef79 2745 spin_unlock_irq(&hugetlb_lock);
29383967 2746 mutex_unlock(&h->resize_lock);
4eb0716e 2747
f60858f9
MK
2748 NODEMASK_FREE(node_alloc_noretry);
2749
4eb0716e 2750 return 0;
1da177e4
LT
2751}
2752
a3437870
NA
2753#define HSTATE_ATTR_RO(_name) \
2754 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2755
2756#define HSTATE_ATTR(_name) \
2757 static struct kobj_attribute _name##_attr = \
2758 __ATTR(_name, 0644, _name##_show, _name##_store)
2759
2760static struct kobject *hugepages_kobj;
2761static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2762
9a305230
LS
2763static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2764
2765static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2766{
2767 int i;
9a305230 2768
a3437870 2769 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2770 if (hstate_kobjs[i] == kobj) {
2771 if (nidp)
2772 *nidp = NUMA_NO_NODE;
a3437870 2773 return &hstates[i];
9a305230
LS
2774 }
2775
2776 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2777}
2778
06808b08 2779static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2780 struct kobj_attribute *attr, char *buf)
2781{
9a305230
LS
2782 struct hstate *h;
2783 unsigned long nr_huge_pages;
2784 int nid;
2785
2786 h = kobj_to_hstate(kobj, &nid);
2787 if (nid == NUMA_NO_NODE)
2788 nr_huge_pages = h->nr_huge_pages;
2789 else
2790 nr_huge_pages = h->nr_huge_pages_node[nid];
2791
ae7a927d 2792 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 2793}
adbe8726 2794
238d3c13
DR
2795static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2796 struct hstate *h, int nid,
2797 unsigned long count, size_t len)
a3437870
NA
2798{
2799 int err;
2d0adf7e 2800 nodemask_t nodes_allowed, *n_mask;
a3437870 2801
2d0adf7e
OS
2802 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2803 return -EINVAL;
adbe8726 2804
9a305230
LS
2805 if (nid == NUMA_NO_NODE) {
2806 /*
2807 * global hstate attribute
2808 */
2809 if (!(obey_mempolicy &&
2d0adf7e
OS
2810 init_nodemask_of_mempolicy(&nodes_allowed)))
2811 n_mask = &node_states[N_MEMORY];
2812 else
2813 n_mask = &nodes_allowed;
2814 } else {
9a305230 2815 /*
fd875dca
MK
2816 * Node specific request. count adjustment happens in
2817 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2818 */
2d0adf7e
OS
2819 init_nodemask_of_node(&nodes_allowed, nid);
2820 n_mask = &nodes_allowed;
fd875dca 2821 }
9a305230 2822
2d0adf7e 2823 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2824
4eb0716e 2825 return err ? err : len;
06808b08
LS
2826}
2827
238d3c13
DR
2828static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2829 struct kobject *kobj, const char *buf,
2830 size_t len)
2831{
2832 struct hstate *h;
2833 unsigned long count;
2834 int nid;
2835 int err;
2836
2837 err = kstrtoul(buf, 10, &count);
2838 if (err)
2839 return err;
2840
2841 h = kobj_to_hstate(kobj, &nid);
2842 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2843}
2844
06808b08
LS
2845static ssize_t nr_hugepages_show(struct kobject *kobj,
2846 struct kobj_attribute *attr, char *buf)
2847{
2848 return nr_hugepages_show_common(kobj, attr, buf);
2849}
2850
2851static ssize_t nr_hugepages_store(struct kobject *kobj,
2852 struct kobj_attribute *attr, const char *buf, size_t len)
2853{
238d3c13 2854 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2855}
2856HSTATE_ATTR(nr_hugepages);
2857
06808b08
LS
2858#ifdef CONFIG_NUMA
2859
2860/*
2861 * hstate attribute for optionally mempolicy-based constraint on persistent
2862 * huge page alloc/free.
2863 */
2864static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
2865 struct kobj_attribute *attr,
2866 char *buf)
06808b08
LS
2867{
2868 return nr_hugepages_show_common(kobj, attr, buf);
2869}
2870
2871static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2872 struct kobj_attribute *attr, const char *buf, size_t len)
2873{
238d3c13 2874 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2875}
2876HSTATE_ATTR(nr_hugepages_mempolicy);
2877#endif
2878
2879
a3437870
NA
2880static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2881 struct kobj_attribute *attr, char *buf)
2882{
9a305230 2883 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 2884 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 2885}
adbe8726 2886
a3437870
NA
2887static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2888 struct kobj_attribute *attr, const char *buf, size_t count)
2889{
2890 int err;
2891 unsigned long input;
9a305230 2892 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2893
bae7f4ae 2894 if (hstate_is_gigantic(h))
adbe8726
EM
2895 return -EINVAL;
2896
3dbb95f7 2897 err = kstrtoul(buf, 10, &input);
a3437870 2898 if (err)
73ae31e5 2899 return err;
a3437870 2900
db71ef79 2901 spin_lock_irq(&hugetlb_lock);
a3437870 2902 h->nr_overcommit_huge_pages = input;
db71ef79 2903 spin_unlock_irq(&hugetlb_lock);
a3437870
NA
2904
2905 return count;
2906}
2907HSTATE_ATTR(nr_overcommit_hugepages);
2908
2909static ssize_t free_hugepages_show(struct kobject *kobj,
2910 struct kobj_attribute *attr, char *buf)
2911{
9a305230
LS
2912 struct hstate *h;
2913 unsigned long free_huge_pages;
2914 int nid;
2915
2916 h = kobj_to_hstate(kobj, &nid);
2917 if (nid == NUMA_NO_NODE)
2918 free_huge_pages = h->free_huge_pages;
2919 else
2920 free_huge_pages = h->free_huge_pages_node[nid];
2921
ae7a927d 2922 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
2923}
2924HSTATE_ATTR_RO(free_hugepages);
2925
2926static ssize_t resv_hugepages_show(struct kobject *kobj,
2927 struct kobj_attribute *attr, char *buf)
2928{
9a305230 2929 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 2930 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
2931}
2932HSTATE_ATTR_RO(resv_hugepages);
2933
2934static ssize_t surplus_hugepages_show(struct kobject *kobj,
2935 struct kobj_attribute *attr, char *buf)
2936{
9a305230
LS
2937 struct hstate *h;
2938 unsigned long surplus_huge_pages;
2939 int nid;
2940
2941 h = kobj_to_hstate(kobj, &nid);
2942 if (nid == NUMA_NO_NODE)
2943 surplus_huge_pages = h->surplus_huge_pages;
2944 else
2945 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2946
ae7a927d 2947 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2948}
2949HSTATE_ATTR_RO(surplus_hugepages);
2950
2951static struct attribute *hstate_attrs[] = {
2952 &nr_hugepages_attr.attr,
2953 &nr_overcommit_hugepages_attr.attr,
2954 &free_hugepages_attr.attr,
2955 &resv_hugepages_attr.attr,
2956 &surplus_hugepages_attr.attr,
06808b08
LS
2957#ifdef CONFIG_NUMA
2958 &nr_hugepages_mempolicy_attr.attr,
2959#endif
a3437870
NA
2960 NULL,
2961};
2962
67e5ed96 2963static const struct attribute_group hstate_attr_group = {
a3437870
NA
2964 .attrs = hstate_attrs,
2965};
2966
094e9539
JM
2967static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2968 struct kobject **hstate_kobjs,
67e5ed96 2969 const struct attribute_group *hstate_attr_group)
a3437870
NA
2970{
2971 int retval;
972dc4de 2972 int hi = hstate_index(h);
a3437870 2973
9a305230
LS
2974 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2975 if (!hstate_kobjs[hi])
a3437870
NA
2976 return -ENOMEM;
2977
9a305230 2978 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
cc2205a6 2979 if (retval) {
9a305230 2980 kobject_put(hstate_kobjs[hi]);
cc2205a6
ML
2981 hstate_kobjs[hi] = NULL;
2982 }
a3437870
NA
2983
2984 return retval;
2985}
2986
2987static void __init hugetlb_sysfs_init(void)
2988{
2989 struct hstate *h;
2990 int err;
2991
2992 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2993 if (!hugepages_kobj)
2994 return;
2995
2996 for_each_hstate(h) {
9a305230
LS
2997 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2998 hstate_kobjs, &hstate_attr_group);
a3437870 2999 if (err)
282f4214 3000 pr_err("HugeTLB: Unable to add hstate %s", h->name);
a3437870
NA
3001 }
3002}
3003
9a305230
LS
3004#ifdef CONFIG_NUMA
3005
3006/*
3007 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
3008 * with node devices in node_devices[] using a parallel array. The array
3009 * index of a node device or _hstate == node id.
3010 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
3011 * the base kernel, on the hugetlb module.
3012 */
3013struct node_hstate {
3014 struct kobject *hugepages_kobj;
3015 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3016};
b4e289a6 3017static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
3018
3019/*
10fbcf4c 3020 * A subset of global hstate attributes for node devices
9a305230
LS
3021 */
3022static struct attribute *per_node_hstate_attrs[] = {
3023 &nr_hugepages_attr.attr,
3024 &free_hugepages_attr.attr,
3025 &surplus_hugepages_attr.attr,
3026 NULL,
3027};
3028
67e5ed96 3029static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
3030 .attrs = per_node_hstate_attrs,
3031};
3032
3033/*
10fbcf4c 3034 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
3035 * Returns node id via non-NULL nidp.
3036 */
3037static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3038{
3039 int nid;
3040
3041 for (nid = 0; nid < nr_node_ids; nid++) {
3042 struct node_hstate *nhs = &node_hstates[nid];
3043 int i;
3044 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3045 if (nhs->hstate_kobjs[i] == kobj) {
3046 if (nidp)
3047 *nidp = nid;
3048 return &hstates[i];
3049 }
3050 }
3051
3052 BUG();
3053 return NULL;
3054}
3055
3056/*
10fbcf4c 3057 * Unregister hstate attributes from a single node device.
9a305230
LS
3058 * No-op if no hstate attributes attached.
3059 */
3cd8b44f 3060static void hugetlb_unregister_node(struct node *node)
9a305230
LS
3061{
3062 struct hstate *h;
10fbcf4c 3063 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3064
3065 if (!nhs->hugepages_kobj)
9b5e5d0f 3066 return; /* no hstate attributes */
9a305230 3067
972dc4de
AK
3068 for_each_hstate(h) {
3069 int idx = hstate_index(h);
3070 if (nhs->hstate_kobjs[idx]) {
3071 kobject_put(nhs->hstate_kobjs[idx]);
3072 nhs->hstate_kobjs[idx] = NULL;
9a305230 3073 }
972dc4de 3074 }
9a305230
LS
3075
3076 kobject_put(nhs->hugepages_kobj);
3077 nhs->hugepages_kobj = NULL;
3078}
3079
9a305230
LS
3080
3081/*
10fbcf4c 3082 * Register hstate attributes for a single node device.
9a305230
LS
3083 * No-op if attributes already registered.
3084 */
3cd8b44f 3085static void hugetlb_register_node(struct node *node)
9a305230
LS
3086{
3087 struct hstate *h;
10fbcf4c 3088 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3089 int err;
3090
3091 if (nhs->hugepages_kobj)
3092 return; /* already allocated */
3093
3094 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3095 &node->dev.kobj);
9a305230
LS
3096 if (!nhs->hugepages_kobj)
3097 return;
3098
3099 for_each_hstate(h) {
3100 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3101 nhs->hstate_kobjs,
3102 &per_node_hstate_attr_group);
3103 if (err) {
282f4214 3104 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 3105 h->name, node->dev.id);
9a305230
LS
3106 hugetlb_unregister_node(node);
3107 break;
3108 }
3109 }
3110}
3111
3112/*
9b5e5d0f 3113 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3114 * devices of nodes that have memory. All on-line nodes should have
3115 * registered their associated device by this time.
9a305230 3116 */
7d9ca000 3117static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3118{
3119 int nid;
3120
8cebfcd0 3121 for_each_node_state(nid, N_MEMORY) {
8732794b 3122 struct node *node = node_devices[nid];
10fbcf4c 3123 if (node->dev.id == nid)
9a305230
LS
3124 hugetlb_register_node(node);
3125 }
3126
3127 /*
10fbcf4c 3128 * Let the node device driver know we're here so it can
9a305230
LS
3129 * [un]register hstate attributes on node hotplug.
3130 */
3131 register_hugetlbfs_with_node(hugetlb_register_node,
3132 hugetlb_unregister_node);
3133}
3134#else /* !CONFIG_NUMA */
3135
3136static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3137{
3138 BUG();
3139 if (nidp)
3140 *nidp = -1;
3141 return NULL;
3142}
3143
9a305230
LS
3144static void hugetlb_register_all_nodes(void) { }
3145
3146#endif
3147
a3437870
NA
3148static int __init hugetlb_init(void)
3149{
8382d914
DB
3150 int i;
3151
d6995da3
MK
3152 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3153 __NR_HPAGEFLAGS);
3154
c2833a5b
MK
3155 if (!hugepages_supported()) {
3156 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3157 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 3158 return 0;
c2833a5b 3159 }
a3437870 3160
282f4214
MK
3161 /*
3162 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3163 * architectures depend on setup being done here.
3164 */
3165 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3166 if (!parsed_default_hugepagesz) {
3167 /*
3168 * If we did not parse a default huge page size, set
3169 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3170 * number of huge pages for this default size was implicitly
3171 * specified, set that here as well.
3172 * Note that the implicit setting will overwrite an explicit
3173 * setting. A warning will be printed in this case.
3174 */
3175 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3176 if (default_hstate_max_huge_pages) {
3177 if (default_hstate.max_huge_pages) {
3178 char buf[32];
3179
3180 string_get_size(huge_page_size(&default_hstate),
3181 1, STRING_UNITS_2, buf, 32);
3182 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3183 default_hstate.max_huge_pages, buf);
3184 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3185 default_hstate_max_huge_pages);
3186 }
3187 default_hstate.max_huge_pages =
3188 default_hstate_max_huge_pages;
d715cf80 3189 }
f8b74815 3190 }
a3437870 3191
cf11e85f 3192 hugetlb_cma_check();
a3437870 3193 hugetlb_init_hstates();
aa888a74 3194 gather_bootmem_prealloc();
a3437870
NA
3195 report_hugepages();
3196
3197 hugetlb_sysfs_init();
9a305230 3198 hugetlb_register_all_nodes();
7179e7bf 3199 hugetlb_cgroup_file_init();
9a305230 3200
8382d914
DB
3201#ifdef CONFIG_SMP
3202 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3203#else
3204 num_fault_mutexes = 1;
3205#endif
c672c7f2 3206 hugetlb_fault_mutex_table =
6da2ec56
KC
3207 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3208 GFP_KERNEL);
c672c7f2 3209 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
3210
3211 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 3212 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
3213 return 0;
3214}
3e89e1c5 3215subsys_initcall(hugetlb_init);
a3437870 3216
ae94da89
MK
3217/* Overwritten by architectures with more huge page sizes */
3218bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 3219{
ae94da89 3220 return size == HPAGE_SIZE;
9fee021d
VT
3221}
3222
d00181b9 3223void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
3224{
3225 struct hstate *h;
8faa8b07
AK
3226 unsigned long i;
3227
a3437870 3228 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
3229 return;
3230 }
47d38344 3231 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 3232 BUG_ON(order == 0);
47d38344 3233 h = &hstates[hugetlb_max_hstate++];
29383967 3234 mutex_init(&h->resize_lock);
a3437870 3235 h->order = order;
aca78307 3236 h->mask = ~(huge_page_size(h) - 1);
8faa8b07
AK
3237 for (i = 0; i < MAX_NUMNODES; ++i)
3238 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 3239 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
3240 h->next_nid_to_alloc = first_memory_node;
3241 h->next_nid_to_free = first_memory_node;
a3437870
NA
3242 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3243 huge_page_size(h)/1024);
8faa8b07 3244
a3437870
NA
3245 parsed_hstate = h;
3246}
3247
282f4214
MK
3248/*
3249 * hugepages command line processing
3250 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3251 * specification. If not, ignore the hugepages value. hugepages can also
3252 * be the first huge page command line option in which case it implicitly
3253 * specifies the number of huge pages for the default size.
3254 */
3255static int __init hugepages_setup(char *s)
a3437870
NA
3256{
3257 unsigned long *mhp;
8faa8b07 3258 static unsigned long *last_mhp;
a3437870 3259
9fee021d 3260 if (!parsed_valid_hugepagesz) {
282f4214 3261 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 3262 parsed_valid_hugepagesz = true;
282f4214 3263 return 0;
9fee021d 3264 }
282f4214 3265
a3437870 3266 /*
282f4214
MK
3267 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3268 * yet, so this hugepages= parameter goes to the "default hstate".
3269 * Otherwise, it goes with the previously parsed hugepagesz or
3270 * default_hugepagesz.
a3437870 3271 */
9fee021d 3272 else if (!hugetlb_max_hstate)
a3437870
NA
3273 mhp = &default_hstate_max_huge_pages;
3274 else
3275 mhp = &parsed_hstate->max_huge_pages;
3276
8faa8b07 3277 if (mhp == last_mhp) {
282f4214
MK
3278 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3279 return 0;
8faa8b07
AK
3280 }
3281
a3437870
NA
3282 if (sscanf(s, "%lu", mhp) <= 0)
3283 *mhp = 0;
3284
8faa8b07
AK
3285 /*
3286 * Global state is always initialized later in hugetlb_init.
04adbc3f 3287 * But we need to allocate gigantic hstates here early to still
8faa8b07
AK
3288 * use the bootmem allocator.
3289 */
04adbc3f 3290 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
8faa8b07
AK
3291 hugetlb_hstate_alloc_pages(parsed_hstate);
3292
3293 last_mhp = mhp;
3294
a3437870
NA
3295 return 1;
3296}
282f4214 3297__setup("hugepages=", hugepages_setup);
e11bfbfc 3298
282f4214
MK
3299/*
3300 * hugepagesz command line processing
3301 * A specific huge page size can only be specified once with hugepagesz.
3302 * hugepagesz is followed by hugepages on the command line. The global
3303 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3304 * hugepagesz argument was valid.
3305 */
359f2544 3306static int __init hugepagesz_setup(char *s)
e11bfbfc 3307{
359f2544 3308 unsigned long size;
282f4214
MK
3309 struct hstate *h;
3310
3311 parsed_valid_hugepagesz = false;
359f2544
MK
3312 size = (unsigned long)memparse(s, NULL);
3313
3314 if (!arch_hugetlb_valid_size(size)) {
282f4214 3315 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
359f2544
MK
3316 return 0;
3317 }
3318
282f4214
MK
3319 h = size_to_hstate(size);
3320 if (h) {
3321 /*
3322 * hstate for this size already exists. This is normally
3323 * an error, but is allowed if the existing hstate is the
3324 * default hstate. More specifically, it is only allowed if
3325 * the number of huge pages for the default hstate was not
3326 * previously specified.
3327 */
3328 if (!parsed_default_hugepagesz || h != &default_hstate ||
3329 default_hstate.max_huge_pages) {
3330 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3331 return 0;
3332 }
3333
3334 /*
3335 * No need to call hugetlb_add_hstate() as hstate already
3336 * exists. But, do set parsed_hstate so that a following
3337 * hugepages= parameter will be applied to this hstate.
3338 */
3339 parsed_hstate = h;
3340 parsed_valid_hugepagesz = true;
3341 return 1;
38237830
MK
3342 }
3343
359f2544 3344 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 3345 parsed_valid_hugepagesz = true;
e11bfbfc
NP
3346 return 1;
3347}
359f2544
MK
3348__setup("hugepagesz=", hugepagesz_setup);
3349
282f4214
MK
3350/*
3351 * default_hugepagesz command line input
3352 * Only one instance of default_hugepagesz allowed on command line.
3353 */
ae94da89 3354static int __init default_hugepagesz_setup(char *s)
e11bfbfc 3355{
ae94da89
MK
3356 unsigned long size;
3357
282f4214 3358 parsed_valid_hugepagesz = false;
282f4214
MK
3359 if (parsed_default_hugepagesz) {
3360 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3361 return 0;
3362 }
3363
ae94da89
MK
3364 size = (unsigned long)memparse(s, NULL);
3365
3366 if (!arch_hugetlb_valid_size(size)) {
282f4214 3367 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
ae94da89
MK
3368 return 0;
3369 }
3370
282f4214
MK
3371 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3372 parsed_valid_hugepagesz = true;
3373 parsed_default_hugepagesz = true;
3374 default_hstate_idx = hstate_index(size_to_hstate(size));
3375
3376 /*
3377 * The number of default huge pages (for this size) could have been
3378 * specified as the first hugetlb parameter: hugepages=X. If so,
3379 * then default_hstate_max_huge_pages is set. If the default huge
3380 * page size is gigantic (>= MAX_ORDER), then the pages must be
3381 * allocated here from bootmem allocator.
3382 */
3383 if (default_hstate_max_huge_pages) {
3384 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3385 if (hstate_is_gigantic(&default_hstate))
3386 hugetlb_hstate_alloc_pages(&default_hstate);
3387 default_hstate_max_huge_pages = 0;
3388 }
3389
e11bfbfc
NP
3390 return 1;
3391}
ae94da89 3392__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 3393
8ca39e68 3394static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
3395{
3396 int node;
3397 unsigned int nr = 0;
8ca39e68
MS
3398 nodemask_t *mpol_allowed;
3399 unsigned int *array = h->free_huge_pages_node;
3400 gfp_t gfp_mask = htlb_alloc_mask(h);
3401
3402 mpol_allowed = policy_nodemask_current(gfp_mask);
8a213460 3403
8ca39e68 3404 for_each_node_mask(node, cpuset_current_mems_allowed) {
c93b0a99 3405 if (!mpol_allowed || node_isset(node, *mpol_allowed))
8ca39e68
MS
3406 nr += array[node];
3407 }
8a213460
NA
3408
3409 return nr;
3410}
3411
3412#ifdef CONFIG_SYSCTL
17743798
MS
3413static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3414 void *buffer, size_t *length,
3415 loff_t *ppos, unsigned long *out)
3416{
3417 struct ctl_table dup_table;
3418
3419 /*
3420 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3421 * can duplicate the @table and alter the duplicate of it.
3422 */
3423 dup_table = *table;
3424 dup_table.data = out;
3425
3426 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3427}
3428
06808b08
LS
3429static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3430 struct ctl_table *table, int write,
32927393 3431 void *buffer, size_t *length, loff_t *ppos)
1da177e4 3432{
e5ff2159 3433 struct hstate *h = &default_hstate;
238d3c13 3434 unsigned long tmp = h->max_huge_pages;
08d4a246 3435 int ret;
e5ff2159 3436
457c1b27 3437 if (!hugepages_supported())
86613628 3438 return -EOPNOTSUPP;
457c1b27 3439
17743798
MS
3440 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3441 &tmp);
08d4a246
MH
3442 if (ret)
3443 goto out;
e5ff2159 3444
238d3c13
DR
3445 if (write)
3446 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3447 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
3448out:
3449 return ret;
1da177e4 3450}
396faf03 3451
06808b08 3452int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 3453 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3454{
3455
3456 return hugetlb_sysctl_handler_common(false, table, write,
3457 buffer, length, ppos);
3458}
3459
3460#ifdef CONFIG_NUMA
3461int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 3462 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3463{
3464 return hugetlb_sysctl_handler_common(true, table, write,
3465 buffer, length, ppos);
3466}
3467#endif /* CONFIG_NUMA */
3468
a3d0c6aa 3469int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 3470 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 3471{
a5516438 3472 struct hstate *h = &default_hstate;
e5ff2159 3473 unsigned long tmp;
08d4a246 3474 int ret;
e5ff2159 3475
457c1b27 3476 if (!hugepages_supported())
86613628 3477 return -EOPNOTSUPP;
457c1b27 3478
c033a93c 3479 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3480
bae7f4ae 3481 if (write && hstate_is_gigantic(h))
adbe8726
EM
3482 return -EINVAL;
3483
17743798
MS
3484 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3485 &tmp);
08d4a246
MH
3486 if (ret)
3487 goto out;
e5ff2159
AK
3488
3489 if (write) {
db71ef79 3490 spin_lock_irq(&hugetlb_lock);
e5ff2159 3491 h->nr_overcommit_huge_pages = tmp;
db71ef79 3492 spin_unlock_irq(&hugetlb_lock);
e5ff2159 3493 }
08d4a246
MH
3494out:
3495 return ret;
a3d0c6aa
NA
3496}
3497
1da177e4
LT
3498#endif /* CONFIG_SYSCTL */
3499
e1759c21 3500void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3501{
fcb2b0c5
RG
3502 struct hstate *h;
3503 unsigned long total = 0;
3504
457c1b27
NA
3505 if (!hugepages_supported())
3506 return;
fcb2b0c5
RG
3507
3508 for_each_hstate(h) {
3509 unsigned long count = h->nr_huge_pages;
3510
aca78307 3511 total += huge_page_size(h) * count;
fcb2b0c5
RG
3512
3513 if (h == &default_hstate)
3514 seq_printf(m,
3515 "HugePages_Total: %5lu\n"
3516 "HugePages_Free: %5lu\n"
3517 "HugePages_Rsvd: %5lu\n"
3518 "HugePages_Surp: %5lu\n"
3519 "Hugepagesize: %8lu kB\n",
3520 count,
3521 h->free_huge_pages,
3522 h->resv_huge_pages,
3523 h->surplus_huge_pages,
aca78307 3524 huge_page_size(h) / SZ_1K);
fcb2b0c5
RG
3525 }
3526
aca78307 3527 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
1da177e4
LT
3528}
3529
7981593b 3530int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 3531{
a5516438 3532 struct hstate *h = &default_hstate;
7981593b 3533
457c1b27
NA
3534 if (!hugepages_supported())
3535 return 0;
7981593b
JP
3536
3537 return sysfs_emit_at(buf, len,
3538 "Node %d HugePages_Total: %5u\n"
3539 "Node %d HugePages_Free: %5u\n"
3540 "Node %d HugePages_Surp: %5u\n",
3541 nid, h->nr_huge_pages_node[nid],
3542 nid, h->free_huge_pages_node[nid],
3543 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3544}
3545
949f7ec5
DR
3546void hugetlb_show_meminfo(void)
3547{
3548 struct hstate *h;
3549 int nid;
3550
457c1b27
NA
3551 if (!hugepages_supported())
3552 return;
3553
949f7ec5
DR
3554 for_each_node_state(nid, N_MEMORY)
3555 for_each_hstate(h)
3556 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3557 nid,
3558 h->nr_huge_pages_node[nid],
3559 h->free_huge_pages_node[nid],
3560 h->surplus_huge_pages_node[nid],
aca78307 3561 huge_page_size(h) / SZ_1K);
949f7ec5
DR
3562}
3563
5d317b2b
NH
3564void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3565{
3566 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3567 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3568}
3569
1da177e4
LT
3570/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3571unsigned long hugetlb_total_pages(void)
3572{
d0028588
WL
3573 struct hstate *h;
3574 unsigned long nr_total_pages = 0;
3575
3576 for_each_hstate(h)
3577 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3578 return nr_total_pages;
1da177e4 3579}
1da177e4 3580
a5516438 3581static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3582{
3583 int ret = -ENOMEM;
3584
0aa7f354
ML
3585 if (!delta)
3586 return 0;
3587
db71ef79 3588 spin_lock_irq(&hugetlb_lock);
fc1b8a73
MG
3589 /*
3590 * When cpuset is configured, it breaks the strict hugetlb page
3591 * reservation as the accounting is done on a global variable. Such
3592 * reservation is completely rubbish in the presence of cpuset because
3593 * the reservation is not checked against page availability for the
3594 * current cpuset. Application can still potentially OOM'ed by kernel
3595 * with lack of free htlb page in cpuset that the task is in.
3596 * Attempt to enforce strict accounting with cpuset is almost
3597 * impossible (or too ugly) because cpuset is too fluid that
3598 * task or memory node can be dynamically moved between cpusets.
3599 *
3600 * The change of semantics for shared hugetlb mapping with cpuset is
3601 * undesirable. However, in order to preserve some of the semantics,
3602 * we fall back to check against current free page availability as
3603 * a best attempt and hopefully to minimize the impact of changing
3604 * semantics that cpuset has.
8ca39e68
MS
3605 *
3606 * Apart from cpuset, we also have memory policy mechanism that
3607 * also determines from which node the kernel will allocate memory
3608 * in a NUMA system. So similar to cpuset, we also should consider
3609 * the memory policy of the current task. Similar to the description
3610 * above.
fc1b8a73
MG
3611 */
3612 if (delta > 0) {
a5516438 3613 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3614 goto out;
3615
8ca39e68 3616 if (delta > allowed_mems_nr(h)) {
a5516438 3617 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3618 goto out;
3619 }
3620 }
3621
3622 ret = 0;
3623 if (delta < 0)
a5516438 3624 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3625
3626out:
db71ef79 3627 spin_unlock_irq(&hugetlb_lock);
fc1b8a73
MG
3628 return ret;
3629}
3630
84afd99b
AW
3631static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3632{
f522c3ac 3633 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3634
3635 /*
3636 * This new VMA should share its siblings reservation map if present.
3637 * The VMA will only ever have a valid reservation map pointer where
3638 * it is being copied for another still existing VMA. As that VMA
25985edc 3639 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3640 * after this open call completes. It is therefore safe to take a
3641 * new reference here without additional locking.
3642 */
4e35f483 3643 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3644 kref_get(&resv->refs);
84afd99b
AW
3645}
3646
a1e78772
MG
3647static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3648{
a5516438 3649 struct hstate *h = hstate_vma(vma);
f522c3ac 3650 struct resv_map *resv = vma_resv_map(vma);
90481622 3651 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3652 unsigned long reserve, start, end;
1c5ecae3 3653 long gbl_reserve;
84afd99b 3654
4e35f483
JK
3655 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3656 return;
84afd99b 3657
4e35f483
JK
3658 start = vma_hugecache_offset(h, vma, vma->vm_start);
3659 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3660
4e35f483 3661 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 3662 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 3663 if (reserve) {
1c5ecae3
MK
3664 /*
3665 * Decrement reserve counts. The global reserve count may be
3666 * adjusted if the subpool has a minimum size.
3667 */
3668 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3669 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3670 }
e9fe92ae
MA
3671
3672 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
3673}
3674
31383c68
DW
3675static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3676{
3677 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3678 return -EINVAL;
3679 return 0;
3680}
3681
05ea8860
DW
3682static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3683{
aca78307 3684 return huge_page_size(hstate_vma(vma));
05ea8860
DW
3685}
3686
1da177e4
LT
3687/*
3688 * We cannot handle pagefaults against hugetlb pages at all. They cause
3689 * handle_mm_fault() to try to instantiate regular-sized pages in the
6c26d310 3690 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1da177e4
LT
3691 * this far.
3692 */
b3ec9f33 3693static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3694{
3695 BUG();
d0217ac0 3696 return 0;
1da177e4
LT
3697}
3698
eec3636a
JC
3699/*
3700 * When a new function is introduced to vm_operations_struct and added
3701 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3702 * This is because under System V memory model, mappings created via
3703 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3704 * their original vm_ops are overwritten with shm_vm_ops.
3705 */
f0f37e2f 3706const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3707 .fault = hugetlb_vm_op_fault,
84afd99b 3708 .open = hugetlb_vm_op_open,
a1e78772 3709 .close = hugetlb_vm_op_close,
dd3b614f 3710 .may_split = hugetlb_vm_op_split,
05ea8860 3711 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3712};
3713
1e8f889b
DG
3714static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3715 int writable)
63551ae0
DG
3716{
3717 pte_t entry;
3718
1e8f889b 3719 if (writable) {
106c992a
GS
3720 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3721 vma->vm_page_prot)));
63551ae0 3722 } else {
106c992a
GS
3723 entry = huge_pte_wrprotect(mk_huge_pte(page,
3724 vma->vm_page_prot));
63551ae0
DG
3725 }
3726 entry = pte_mkyoung(entry);
3727 entry = pte_mkhuge(entry);
d9ed9faa 3728 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3729
3730 return entry;
3731}
3732
1e8f889b
DG
3733static void set_huge_ptep_writable(struct vm_area_struct *vma,
3734 unsigned long address, pte_t *ptep)
3735{
3736 pte_t entry;
3737
106c992a 3738 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3739 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3740 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3741}
3742
d5ed7444 3743bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3744{
3745 swp_entry_t swp;
3746
3747 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3748 return false;
4a705fef 3749 swp = pte_to_swp_entry(pte);
d79d176a 3750 if (is_migration_entry(swp))
d5ed7444 3751 return true;
4a705fef 3752 else
d5ed7444 3753 return false;
4a705fef
NH
3754}
3755
3e5c3600 3756static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
3757{
3758 swp_entry_t swp;
3759
3760 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 3761 return false;
4a705fef 3762 swp = pte_to_swp_entry(pte);
d79d176a 3763 if (is_hwpoison_entry(swp))
3e5c3600 3764 return true;
4a705fef 3765 else
3e5c3600 3766 return false;
4a705fef 3767}
1e8f889b 3768
4eae4efa
PX
3769static void
3770hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3771 struct page *new_page)
3772{
3773 __SetPageUptodate(new_page);
3774 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3775 hugepage_add_new_anon_rmap(new_page, vma, addr);
3776 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3777 ClearHPageRestoreReserve(new_page);
3778 SetHPageMigratable(new_page);
3779}
3780
63551ae0
DG
3781int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3782 struct vm_area_struct *vma)
3783{
5e41540c 3784 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3785 struct page *ptepage;
1c59827d 3786 unsigned long addr;
ca6eb14d 3787 bool cow = is_cow_mapping(vma->vm_flags);
a5516438
AK
3788 struct hstate *h = hstate_vma(vma);
3789 unsigned long sz = huge_page_size(h);
4eae4efa 3790 unsigned long npages = pages_per_huge_page(h);
c0d0381a 3791 struct address_space *mapping = vma->vm_file->f_mapping;
ac46d4f3 3792 struct mmu_notifier_range range;
e8569dd2 3793 int ret = 0;
1e8f889b 3794
ac46d4f3 3795 if (cow) {
7269f999 3796 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3797 vma->vm_start,
ac46d4f3
JG
3798 vma->vm_end);
3799 mmu_notifier_invalidate_range_start(&range);
c0d0381a
MK
3800 } else {
3801 /*
3802 * For shared mappings i_mmap_rwsem must be held to call
3803 * huge_pte_alloc, otherwise the returned ptep could go
3804 * away if part of a shared pmd and another thread calls
3805 * huge_pmd_unshare.
3806 */
3807 i_mmap_lock_read(mapping);
ac46d4f3 3808 }
e8569dd2 3809
a5516438 3810 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3811 spinlock_t *src_ptl, *dst_ptl;
7868a208 3812 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3813 if (!src_pte)
3814 continue;
aec44e0f 3815 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
e8569dd2
AS
3816 if (!dst_pte) {
3817 ret = -ENOMEM;
3818 break;
3819 }
c5c99429 3820
5e41540c
MK
3821 /*
3822 * If the pagetables are shared don't copy or take references.
3823 * dst_pte == src_pte is the common case of src/dest sharing.
3824 *
3825 * However, src could have 'unshared' and dst shares with
3826 * another vma. If dst_pte !none, this implies sharing.
3827 * Check here before taking page table lock, and once again
3828 * after taking the lock below.
3829 */
3830 dst_entry = huge_ptep_get(dst_pte);
3831 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3832 continue;
3833
cb900f41
KS
3834 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3835 src_ptl = huge_pte_lockptr(h, src, src_pte);
3836 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3837 entry = huge_ptep_get(src_pte);
5e41540c 3838 dst_entry = huge_ptep_get(dst_pte);
4eae4efa 3839again:
5e41540c
MK
3840 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3841 /*
3842 * Skip if src entry none. Also, skip in the
3843 * unlikely case dst entry !none as this implies
3844 * sharing with another vma.
3845 */
4a705fef
NH
3846 ;
3847 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3848 is_hugetlb_entry_hwpoisoned(entry))) {
3849 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3850
3851 if (is_write_migration_entry(swp_entry) && cow) {
3852 /*
3853 * COW mappings require pages in both
3854 * parent and child to be set to read.
3855 */
3856 make_migration_entry_read(&swp_entry);
3857 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3858 set_huge_swap_pte_at(src, addr, src_pte,
3859 entry, sz);
4a705fef 3860 }
e5251fd4 3861 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3862 } else {
4eae4efa
PX
3863 entry = huge_ptep_get(src_pte);
3864 ptepage = pte_page(entry);
3865 get_page(ptepage);
3866
3867 /*
3868 * This is a rare case where we see pinned hugetlb
3869 * pages while they're prone to COW. We need to do the
3870 * COW earlier during fork.
3871 *
3872 * When pre-allocating the page or copying data, we
3873 * need to be without the pgtable locks since we could
3874 * sleep during the process.
3875 */
3876 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
3877 pte_t src_pte_old = entry;
3878 struct page *new;
3879
3880 spin_unlock(src_ptl);
3881 spin_unlock(dst_ptl);
3882 /* Do not use reserve as it's private owned */
3883 new = alloc_huge_page(vma, addr, 1);
3884 if (IS_ERR(new)) {
3885 put_page(ptepage);
3886 ret = PTR_ERR(new);
3887 break;
3888 }
3889 copy_user_huge_page(new, ptepage, addr, vma,
3890 npages);
3891 put_page(ptepage);
3892
3893 /* Install the new huge page if src pte stable */
3894 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3895 src_ptl = huge_pte_lockptr(h, src, src_pte);
3896 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3897 entry = huge_ptep_get(src_pte);
3898 if (!pte_same(src_pte_old, entry)) {
3899 put_page(new);
3900 /* dst_entry won't change as in child */
3901 goto again;
3902 }
3903 hugetlb_install_page(vma, dst_pte, addr, new);
3904 spin_unlock(src_ptl);
3905 spin_unlock(dst_ptl);
3906 continue;
3907 }
3908
34ee645e 3909 if (cow) {
0f10851e
JG
3910 /*
3911 * No need to notify as we are downgrading page
3912 * table protection not changing it to point
3913 * to a new page.
3914 *
ad56b738 3915 * See Documentation/vm/mmu_notifier.rst
0f10851e 3916 */
7f2e9525 3917 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3918 }
4eae4efa 3919
53f9263b 3920 page_dup_rmap(ptepage, true);
1c59827d 3921 set_huge_pte_at(dst, addr, dst_pte, entry);
4eae4efa 3922 hugetlb_count_add(npages, dst);
1c59827d 3923 }
cb900f41
KS
3924 spin_unlock(src_ptl);
3925 spin_unlock(dst_ptl);
63551ae0 3926 }
63551ae0 3927
e8569dd2 3928 if (cow)
ac46d4f3 3929 mmu_notifier_invalidate_range_end(&range);
c0d0381a
MK
3930 else
3931 i_mmap_unlock_read(mapping);
e8569dd2
AS
3932
3933 return ret;
63551ae0
DG
3934}
3935
24669e58
AK
3936void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3937 unsigned long start, unsigned long end,
3938 struct page *ref_page)
63551ae0
DG
3939{
3940 struct mm_struct *mm = vma->vm_mm;
3941 unsigned long address;
c7546f8f 3942 pte_t *ptep;
63551ae0 3943 pte_t pte;
cb900f41 3944 spinlock_t *ptl;
63551ae0 3945 struct page *page;
a5516438
AK
3946 struct hstate *h = hstate_vma(vma);
3947 unsigned long sz = huge_page_size(h);
ac46d4f3 3948 struct mmu_notifier_range range;
a5516438 3949
63551ae0 3950 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3951 BUG_ON(start & ~huge_page_mask(h));
3952 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3953
07e32661
AK
3954 /*
3955 * This is a hugetlb vma, all the pte entries should point
3956 * to huge page.
3957 */
ed6a7935 3958 tlb_change_page_size(tlb, sz);
24669e58 3959 tlb_start_vma(tlb, vma);
dff11abe
MK
3960
3961 /*
3962 * If sharing possible, alert mmu notifiers of worst case.
3963 */
6f4f13e8
JG
3964 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3965 end);
ac46d4f3
JG
3966 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3967 mmu_notifier_invalidate_range_start(&range);
569f48b8 3968 address = start;
569f48b8 3969 for (; address < end; address += sz) {
7868a208 3970 ptep = huge_pte_offset(mm, address, sz);
4c887265 3971 if (!ptep)
c7546f8f
DG
3972 continue;
3973
cb900f41 3974 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 3975 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
31d49da5 3976 spin_unlock(ptl);
dff11abe
MK
3977 /*
3978 * We just unmapped a page of PMDs by clearing a PUD.
3979 * The caller's TLB flush range should cover this area.
3980 */
31d49da5
AK
3981 continue;
3982 }
39dde65c 3983
6629326b 3984 pte = huge_ptep_get(ptep);
31d49da5
AK
3985 if (huge_pte_none(pte)) {
3986 spin_unlock(ptl);
3987 continue;
3988 }
6629326b
HD
3989
3990 /*
9fbc1f63
NH
3991 * Migrating hugepage or HWPoisoned hugepage is already
3992 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3993 */
9fbc1f63 3994 if (unlikely(!pte_present(pte))) {
9386fac3 3995 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3996 spin_unlock(ptl);
3997 continue;
8c4894c6 3998 }
6629326b
HD
3999
4000 page = pte_page(pte);
04f2cbe3
MG
4001 /*
4002 * If a reference page is supplied, it is because a specific
4003 * page is being unmapped, not a range. Ensure the page we
4004 * are about to unmap is the actual page of interest.
4005 */
4006 if (ref_page) {
31d49da5
AK
4007 if (page != ref_page) {
4008 spin_unlock(ptl);
4009 continue;
4010 }
04f2cbe3
MG
4011 /*
4012 * Mark the VMA as having unmapped its page so that
4013 * future faults in this VMA will fail rather than
4014 * looking like data was lost
4015 */
4016 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4017 }
4018
c7546f8f 4019 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 4020 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 4021 if (huge_pte_dirty(pte))
6649a386 4022 set_page_dirty(page);
9e81130b 4023
5d317b2b 4024 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 4025 page_remove_rmap(page, true);
31d49da5 4026
cb900f41 4027 spin_unlock(ptl);
e77b0852 4028 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
4029 /*
4030 * Bail out after unmapping reference page if supplied
4031 */
4032 if (ref_page)
4033 break;
fe1668ae 4034 }
ac46d4f3 4035 mmu_notifier_invalidate_range_end(&range);
24669e58 4036 tlb_end_vma(tlb, vma);
1da177e4 4037}
63551ae0 4038
d833352a
MG
4039void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4040 struct vm_area_struct *vma, unsigned long start,
4041 unsigned long end, struct page *ref_page)
4042{
4043 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4044
4045 /*
4046 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4047 * test will fail on a vma being torn down, and not grab a page table
4048 * on its way out. We're lucky that the flag has such an appropriate
4049 * name, and can in fact be safely cleared here. We could clear it
4050 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 4051 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 4052 * because in the context this is called, the VMA is about to be
c8c06efa 4053 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
4054 */
4055 vma->vm_flags &= ~VM_MAYSHARE;
4056}
4057
502717f4 4058void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 4059 unsigned long end, struct page *ref_page)
502717f4 4060{
24669e58 4061 struct mmu_gather tlb;
dff11abe 4062
a72afd87 4063 tlb_gather_mmu(&tlb, vma->vm_mm);
24669e58 4064 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
ae8eba8b 4065 tlb_finish_mmu(&tlb);
502717f4
KC
4066}
4067
04f2cbe3
MG
4068/*
4069 * This is called when the original mapper is failing to COW a MAP_PRIVATE
578b7725 4070 * mapping it owns the reserve page for. The intention is to unmap the page
04f2cbe3
MG
4071 * from other VMAs and let the children be SIGKILLed if they are faulting the
4072 * same region.
4073 */
2f4612af
DB
4074static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4075 struct page *page, unsigned long address)
04f2cbe3 4076{
7526674d 4077 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
4078 struct vm_area_struct *iter_vma;
4079 struct address_space *mapping;
04f2cbe3
MG
4080 pgoff_t pgoff;
4081
4082 /*
4083 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4084 * from page cache lookup which is in HPAGE_SIZE units.
4085 */
7526674d 4086 address = address & huge_page_mask(h);
36e4f20a
MH
4087 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4088 vma->vm_pgoff;
93c76a3d 4089 mapping = vma->vm_file->f_mapping;
04f2cbe3 4090
4eb2b1dc
MG
4091 /*
4092 * Take the mapping lock for the duration of the table walk. As
4093 * this mapping should be shared between all the VMAs,
4094 * __unmap_hugepage_range() is called as the lock is already held
4095 */
83cde9e8 4096 i_mmap_lock_write(mapping);
6b2dbba8 4097 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
4098 /* Do not unmap the current VMA */
4099 if (iter_vma == vma)
4100 continue;
4101
2f84a899
MG
4102 /*
4103 * Shared VMAs have their own reserves and do not affect
4104 * MAP_PRIVATE accounting but it is possible that a shared
4105 * VMA is using the same page so check and skip such VMAs.
4106 */
4107 if (iter_vma->vm_flags & VM_MAYSHARE)
4108 continue;
4109
04f2cbe3
MG
4110 /*
4111 * Unmap the page from other VMAs without their own reserves.
4112 * They get marked to be SIGKILLed if they fault in these
4113 * areas. This is because a future no-page fault on this VMA
4114 * could insert a zeroed page instead of the data existing
4115 * from the time of fork. This would look like data corruption
4116 */
4117 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
4118 unmap_hugepage_range(iter_vma, address,
4119 address + huge_page_size(h), page);
04f2cbe3 4120 }
83cde9e8 4121 i_mmap_unlock_write(mapping);
04f2cbe3
MG
4122}
4123
0fe6e20b
NH
4124/*
4125 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
4126 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4127 * cannot race with other handlers or page migration.
4128 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 4129 */
2b740303 4130static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 4131 unsigned long address, pte_t *ptep,
3999f52e 4132 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 4133{
3999f52e 4134 pte_t pte;
a5516438 4135 struct hstate *h = hstate_vma(vma);
1e8f889b 4136 struct page *old_page, *new_page;
2b740303
SJ
4137 int outside_reserve = 0;
4138 vm_fault_t ret = 0;
974e6d66 4139 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 4140 struct mmu_notifier_range range;
1e8f889b 4141
3999f52e 4142 pte = huge_ptep_get(ptep);
1e8f889b
DG
4143 old_page = pte_page(pte);
4144
04f2cbe3 4145retry_avoidcopy:
1e8f889b
DG
4146 /* If no-one else is actually using this page, avoid the copy
4147 * and just make the page writable */
37a2140d 4148 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 4149 page_move_anon_rmap(old_page, vma);
5b7a1d40 4150 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 4151 return 0;
1e8f889b
DG
4152 }
4153
04f2cbe3
MG
4154 /*
4155 * If the process that created a MAP_PRIVATE mapping is about to
4156 * perform a COW due to a shared page count, attempt to satisfy
4157 * the allocation without using the existing reserves. The pagecache
4158 * page is used to determine if the reserve at this address was
4159 * consumed or not. If reserves were used, a partial faulted mapping
4160 * at the time of fork() could consume its reserves on COW instead
4161 * of the full address range.
4162 */
5944d011 4163 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
4164 old_page != pagecache_page)
4165 outside_reserve = 1;
4166
09cbfeaf 4167 get_page(old_page);
b76c8cfb 4168
ad4404a2
DB
4169 /*
4170 * Drop page table lock as buddy allocator may be called. It will
4171 * be acquired again before returning to the caller, as expected.
4172 */
cb900f41 4173 spin_unlock(ptl);
5b7a1d40 4174 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 4175
2fc39cec 4176 if (IS_ERR(new_page)) {
04f2cbe3
MG
4177 /*
4178 * If a process owning a MAP_PRIVATE mapping fails to COW,
4179 * it is due to references held by a child and an insufficient
4180 * huge page pool. To guarantee the original mappers
4181 * reliability, unmap the page from child processes. The child
4182 * may get SIGKILLed if it later faults.
4183 */
4184 if (outside_reserve) {
e7dd91c4
MK
4185 struct address_space *mapping = vma->vm_file->f_mapping;
4186 pgoff_t idx;
4187 u32 hash;
4188
09cbfeaf 4189 put_page(old_page);
04f2cbe3 4190 BUG_ON(huge_pte_none(pte));
e7dd91c4
MK
4191 /*
4192 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4193 * unmapping. unmapping needs to hold i_mmap_rwsem
4194 * in write mode. Dropping i_mmap_rwsem in read mode
4195 * here is OK as COW mappings do not interact with
4196 * PMD sharing.
4197 *
4198 * Reacquire both after unmap operation.
4199 */
4200 idx = vma_hugecache_offset(h, vma, haddr);
4201 hash = hugetlb_fault_mutex_hash(mapping, idx);
4202 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4203 i_mmap_unlock_read(mapping);
4204
5b7a1d40 4205 unmap_ref_private(mm, vma, old_page, haddr);
e7dd91c4
MK
4206
4207 i_mmap_lock_read(mapping);
4208 mutex_lock(&hugetlb_fault_mutex_table[hash]);
2f4612af 4209 spin_lock(ptl);
5b7a1d40 4210 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
4211 if (likely(ptep &&
4212 pte_same(huge_ptep_get(ptep), pte)))
4213 goto retry_avoidcopy;
4214 /*
4215 * race occurs while re-acquiring page table
4216 * lock, and our job is done.
4217 */
4218 return 0;
04f2cbe3
MG
4219 }
4220
2b740303 4221 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 4222 goto out_release_old;
1e8f889b
DG
4223 }
4224
0fe6e20b
NH
4225 /*
4226 * When the original hugepage is shared one, it does not have
4227 * anon_vma prepared.
4228 */
44e2aa93 4229 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
4230 ret = VM_FAULT_OOM;
4231 goto out_release_all;
44e2aa93 4232 }
0fe6e20b 4233
974e6d66 4234 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 4235 pages_per_huge_page(h));
0ed361de 4236 __SetPageUptodate(new_page);
1e8f889b 4237
7269f999 4238 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 4239 haddr + huge_page_size(h));
ac46d4f3 4240 mmu_notifier_invalidate_range_start(&range);
ad4404a2 4241
b76c8cfb 4242 /*
cb900f41 4243 * Retake the page table lock to check for racing updates
b76c8cfb
LW
4244 * before the page tables are altered
4245 */
cb900f41 4246 spin_lock(ptl);
5b7a1d40 4247 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 4248 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
d6995da3 4249 ClearHPageRestoreReserve(new_page);
07443a85 4250
1e8f889b 4251 /* Break COW */
5b7a1d40 4252 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 4253 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 4254 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 4255 make_huge_pte(vma, new_page, 1));
d281ee61 4256 page_remove_rmap(old_page, true);
5b7a1d40 4257 hugepage_add_new_anon_rmap(new_page, vma, haddr);
8f251a3d 4258 SetHPageMigratable(new_page);
1e8f889b
DG
4259 /* Make the old page be freed below */
4260 new_page = old_page;
4261 }
cb900f41 4262 spin_unlock(ptl);
ac46d4f3 4263 mmu_notifier_invalidate_range_end(&range);
ad4404a2 4264out_release_all:
5b7a1d40 4265 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 4266 put_page(new_page);
ad4404a2 4267out_release_old:
09cbfeaf 4268 put_page(old_page);
8312034f 4269
ad4404a2
DB
4270 spin_lock(ptl); /* Caller expects lock to be held */
4271 return ret;
1e8f889b
DG
4272}
4273
04f2cbe3 4274/* Return the pagecache page at a given address within a VMA */
a5516438
AK
4275static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4276 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
4277{
4278 struct address_space *mapping;
e7c4b0bf 4279 pgoff_t idx;
04f2cbe3
MG
4280
4281 mapping = vma->vm_file->f_mapping;
a5516438 4282 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
4283
4284 return find_lock_page(mapping, idx);
4285}
4286
3ae77f43
HD
4287/*
4288 * Return whether there is a pagecache page to back given address within VMA.
4289 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4290 */
4291static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
4292 struct vm_area_struct *vma, unsigned long address)
4293{
4294 struct address_space *mapping;
4295 pgoff_t idx;
4296 struct page *page;
4297
4298 mapping = vma->vm_file->f_mapping;
4299 idx = vma_hugecache_offset(h, vma, address);
4300
4301 page = find_get_page(mapping, idx);
4302 if (page)
4303 put_page(page);
4304 return page != NULL;
4305}
4306
ab76ad54
MK
4307int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4308 pgoff_t idx)
4309{
4310 struct inode *inode = mapping->host;
4311 struct hstate *h = hstate_inode(inode);
4312 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4313
4314 if (err)
4315 return err;
d6995da3 4316 ClearHPageRestoreReserve(page);
ab76ad54 4317
22146c3c
MK
4318 /*
4319 * set page dirty so that it will not be removed from cache/file
4320 * by non-hugetlbfs specific code paths.
4321 */
4322 set_page_dirty(page);
4323
ab76ad54
MK
4324 spin_lock(&inode->i_lock);
4325 inode->i_blocks += blocks_per_huge_page(h);
4326 spin_unlock(&inode->i_lock);
4327 return 0;
4328}
4329
2b740303
SJ
4330static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4331 struct vm_area_struct *vma,
4332 struct address_space *mapping, pgoff_t idx,
4333 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 4334{
a5516438 4335 struct hstate *h = hstate_vma(vma);
2b740303 4336 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 4337 int anon_rmap = 0;
4c887265 4338 unsigned long size;
4c887265 4339 struct page *page;
1e8f889b 4340 pte_t new_pte;
cb900f41 4341 spinlock_t *ptl;
285b8dca 4342 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 4343 bool new_page = false;
4c887265 4344
04f2cbe3
MG
4345 /*
4346 * Currently, we are forced to kill the process in the event the
4347 * original mapper has unmapped pages from the child due to a failed
25985edc 4348 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
4349 */
4350 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 4351 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 4352 current->pid);
04f2cbe3
MG
4353 return ret;
4354 }
4355
4c887265 4356 /*
87bf91d3
MK
4357 * We can not race with truncation due to holding i_mmap_rwsem.
4358 * i_size is modified when holding i_mmap_rwsem, so check here
4359 * once for faults beyond end of file.
4c887265 4360 */
87bf91d3
MK
4361 size = i_size_read(mapping->host) >> huge_page_shift(h);
4362 if (idx >= size)
4363 goto out;
4364
6bda666a
CL
4365retry:
4366 page = find_lock_page(mapping, idx);
4367 if (!page) {
1a1aad8a
MK
4368 /*
4369 * Check for page in userfault range
4370 */
4371 if (userfaultfd_missing(vma)) {
4372 u32 hash;
4373 struct vm_fault vmf = {
4374 .vma = vma,
285b8dca 4375 .address = haddr,
1a1aad8a
MK
4376 .flags = flags,
4377 /*
4378 * Hard to debug if it ends up being
4379 * used by a callee that assumes
4380 * something about the other
4381 * uninitialized fields... same as in
4382 * memory.c
4383 */
4384 };
4385
4386 /*
c0d0381a
MK
4387 * hugetlb_fault_mutex and i_mmap_rwsem must be
4388 * dropped before handling userfault. Reacquire
4389 * after handling fault to make calling code simpler.
1a1aad8a 4390 */
188b04a7 4391 hash = hugetlb_fault_mutex_hash(mapping, idx);
1a1aad8a 4392 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4393 i_mmap_unlock_read(mapping);
1a1aad8a 4394 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
c0d0381a 4395 i_mmap_lock_read(mapping);
1a1aad8a
MK
4396 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4397 goto out;
4398 }
4399
285b8dca 4400 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 4401 if (IS_ERR(page)) {
4643d67e
MK
4402 /*
4403 * Returning error will result in faulting task being
4404 * sent SIGBUS. The hugetlb fault mutex prevents two
4405 * tasks from racing to fault in the same page which
4406 * could result in false unable to allocate errors.
4407 * Page migration does not take the fault mutex, but
4408 * does a clear then write of pte's under page table
4409 * lock. Page fault code could race with migration,
4410 * notice the clear pte and try to allocate a page
4411 * here. Before returning error, get ptl and make
4412 * sure there really is no pte entry.
4413 */
4414 ptl = huge_pte_lock(h, mm, ptep);
d83e6c8a
ML
4415 ret = 0;
4416 if (huge_pte_none(huge_ptep_get(ptep)))
4417 ret = vmf_error(PTR_ERR(page));
4643d67e 4418 spin_unlock(ptl);
6bda666a
CL
4419 goto out;
4420 }
47ad8475 4421 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 4422 __SetPageUptodate(page);
cb6acd01 4423 new_page = true;
ac9b9c66 4424
f83a275d 4425 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 4426 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
4427 if (err) {
4428 put_page(page);
6bda666a
CL
4429 if (err == -EEXIST)
4430 goto retry;
4431 goto out;
4432 }
23be7468 4433 } else {
6bda666a 4434 lock_page(page);
0fe6e20b
NH
4435 if (unlikely(anon_vma_prepare(vma))) {
4436 ret = VM_FAULT_OOM;
4437 goto backout_unlocked;
4438 }
409eb8c2 4439 anon_rmap = 1;
23be7468 4440 }
0fe6e20b 4441 } else {
998b4382
NH
4442 /*
4443 * If memory error occurs between mmap() and fault, some process
4444 * don't have hwpoisoned swap entry for errored virtual address.
4445 * So we need to block hugepage fault by PG_hwpoison bit check.
4446 */
4447 if (unlikely(PageHWPoison(page))) {
0eb98f15 4448 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 4449 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
4450 goto backout_unlocked;
4451 }
6bda666a 4452 }
1e8f889b 4453
57303d80
AW
4454 /*
4455 * If we are going to COW a private mapping later, we examine the
4456 * pending reservations for this page now. This will ensure that
4457 * any allocations necessary to record that reservation occur outside
4458 * the spinlock.
4459 */
5e911373 4460 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 4461 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
4462 ret = VM_FAULT_OOM;
4463 goto backout_unlocked;
4464 }
5e911373 4465 /* Just decrements count, does not deallocate */
285b8dca 4466 vma_end_reservation(h, vma, haddr);
5e911373 4467 }
57303d80 4468
8bea8052 4469 ptl = huge_pte_lock(h, mm, ptep);
83c54070 4470 ret = 0;
7f2e9525 4471 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
4472 goto backout;
4473
07443a85 4474 if (anon_rmap) {
d6995da3 4475 ClearHPageRestoreReserve(page);
285b8dca 4476 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 4477 } else
53f9263b 4478 page_dup_rmap(page, true);
1e8f889b
DG
4479 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4480 && (vma->vm_flags & VM_SHARED)));
285b8dca 4481 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 4482
5d317b2b 4483 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 4484 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 4485 /* Optimization, do the COW without a second fault */
974e6d66 4486 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
4487 }
4488
cb900f41 4489 spin_unlock(ptl);
cb6acd01
MK
4490
4491 /*
8f251a3d
MK
4492 * Only set HPageMigratable in newly allocated pages. Existing pages
4493 * found in the pagecache may not have HPageMigratableset if they have
4494 * been isolated for migration.
cb6acd01
MK
4495 */
4496 if (new_page)
8f251a3d 4497 SetHPageMigratable(page);
cb6acd01 4498
4c887265
AL
4499 unlock_page(page);
4500out:
ac9b9c66 4501 return ret;
4c887265
AL
4502
4503backout:
cb900f41 4504 spin_unlock(ptl);
2b26736c 4505backout_unlocked:
4c887265 4506 unlock_page(page);
285b8dca 4507 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
4508 put_page(page);
4509 goto out;
ac9b9c66
HD
4510}
4511
8382d914 4512#ifdef CONFIG_SMP
188b04a7 4513u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4514{
4515 unsigned long key[2];
4516 u32 hash;
4517
1b426bac
MK
4518 key[0] = (unsigned long) mapping;
4519 key[1] = idx;
8382d914 4520
55254636 4521 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
4522
4523 return hash & (num_fault_mutexes - 1);
4524}
4525#else
4526/*
6c26d310 4527 * For uniprocessor systems we always use a single mutex, so just
8382d914
DB
4528 * return 0 and avoid the hashing overhead.
4529 */
188b04a7 4530u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4531{
4532 return 0;
4533}
4534#endif
4535
2b740303 4536vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 4537 unsigned long address, unsigned int flags)
86e5216f 4538{
8382d914 4539 pte_t *ptep, entry;
cb900f41 4540 spinlock_t *ptl;
2b740303 4541 vm_fault_t ret;
8382d914
DB
4542 u32 hash;
4543 pgoff_t idx;
0fe6e20b 4544 struct page *page = NULL;
57303d80 4545 struct page *pagecache_page = NULL;
a5516438 4546 struct hstate *h = hstate_vma(vma);
8382d914 4547 struct address_space *mapping;
0f792cf9 4548 int need_wait_lock = 0;
285b8dca 4549 unsigned long haddr = address & huge_page_mask(h);
86e5216f 4550
285b8dca 4551 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 4552 if (ptep) {
c0d0381a
MK
4553 /*
4554 * Since we hold no locks, ptep could be stale. That is
4555 * OK as we are only making decisions based on content and
4556 * not actually modifying content here.
4557 */
fd6a03ed 4558 entry = huge_ptep_get(ptep);
290408d4 4559 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4560 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4561 return 0;
4562 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4563 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4564 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
4565 }
4566
c0d0381a
MK
4567 /*
4568 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
87bf91d3
MK
4569 * until finished with ptep. This serves two purposes:
4570 * 1) It prevents huge_pmd_unshare from being called elsewhere
4571 * and making the ptep no longer valid.
4572 * 2) It synchronizes us with i_size modifications during truncation.
c0d0381a
MK
4573 *
4574 * ptep could have already be assigned via huge_pte_offset. That
4575 * is OK, as huge_pte_alloc will return the same value unless
4576 * something has changed.
4577 */
8382d914 4578 mapping = vma->vm_file->f_mapping;
c0d0381a 4579 i_mmap_lock_read(mapping);
aec44e0f 4580 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
c0d0381a
MK
4581 if (!ptep) {
4582 i_mmap_unlock_read(mapping);
4583 return VM_FAULT_OOM;
4584 }
8382d914 4585
3935baa9
DG
4586 /*
4587 * Serialize hugepage allocation and instantiation, so that we don't
4588 * get spurious allocation failures if two CPUs race to instantiate
4589 * the same page in the page cache.
4590 */
c0d0381a 4591 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 4592 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 4593 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4594
7f2e9525
GS
4595 entry = huge_ptep_get(ptep);
4596 if (huge_pte_none(entry)) {
8382d914 4597 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4598 goto out_mutex;
3935baa9 4599 }
86e5216f 4600
83c54070 4601 ret = 0;
1e8f889b 4602
0f792cf9
NH
4603 /*
4604 * entry could be a migration/hwpoison entry at this point, so this
4605 * check prevents the kernel from going below assuming that we have
7c8de358
EP
4606 * an active hugepage in pagecache. This goto expects the 2nd page
4607 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4608 * properly handle it.
0f792cf9
NH
4609 */
4610 if (!pte_present(entry))
4611 goto out_mutex;
4612
57303d80
AW
4613 /*
4614 * If we are going to COW the mapping later, we examine the pending
4615 * reservations for this page now. This will ensure that any
4616 * allocations necessary to record that reservation occur outside the
4617 * spinlock. For private mappings, we also lookup the pagecache
4618 * page now as it is used to determine if a reservation has been
4619 * consumed.
4620 */
106c992a 4621 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4622 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4623 ret = VM_FAULT_OOM;
b4d1d99f 4624 goto out_mutex;
2b26736c 4625 }
5e911373 4626 /* Just decrements count, does not deallocate */
285b8dca 4627 vma_end_reservation(h, vma, haddr);
57303d80 4628
f83a275d 4629 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4630 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4631 vma, haddr);
57303d80
AW
4632 }
4633
0f792cf9
NH
4634 ptl = huge_pte_lock(h, mm, ptep);
4635
4636 /* Check for a racing update before calling hugetlb_cow */
4637 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4638 goto out_ptl;
4639
56c9cfb1
NH
4640 /*
4641 * hugetlb_cow() requires page locks of pte_page(entry) and
4642 * pagecache_page, so here we need take the former one
4643 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4644 */
4645 page = pte_page(entry);
4646 if (page != pagecache_page)
0f792cf9
NH
4647 if (!trylock_page(page)) {
4648 need_wait_lock = 1;
4649 goto out_ptl;
4650 }
b4d1d99f 4651
0f792cf9 4652 get_page(page);
b4d1d99f 4653
788c7df4 4654 if (flags & FAULT_FLAG_WRITE) {
106c992a 4655 if (!huge_pte_write(entry)) {
974e6d66 4656 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4657 pagecache_page, ptl);
0f792cf9 4658 goto out_put_page;
b4d1d99f 4659 }
106c992a 4660 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4661 }
4662 entry = pte_mkyoung(entry);
285b8dca 4663 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4664 flags & FAULT_FLAG_WRITE))
285b8dca 4665 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4666out_put_page:
4667 if (page != pagecache_page)
4668 unlock_page(page);
4669 put_page(page);
cb900f41
KS
4670out_ptl:
4671 spin_unlock(ptl);
57303d80
AW
4672
4673 if (pagecache_page) {
4674 unlock_page(pagecache_page);
4675 put_page(pagecache_page);
4676 }
b4d1d99f 4677out_mutex:
c672c7f2 4678 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4679 i_mmap_unlock_read(mapping);
0f792cf9
NH
4680 /*
4681 * Generally it's safe to hold refcount during waiting page lock. But
4682 * here we just wait to defer the next page fault to avoid busy loop and
4683 * the page is not used after unlocked before returning from the current
4684 * page fault. So we are safe from accessing freed page, even if we wait
4685 * here without taking refcount.
4686 */
4687 if (need_wait_lock)
4688 wait_on_page_locked(page);
1e8f889b 4689 return ret;
86e5216f
AL
4690}
4691
8fb5debc
MK
4692/*
4693 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4694 * modifications for huge pages.
4695 */
4696int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4697 pte_t *dst_pte,
4698 struct vm_area_struct *dst_vma,
4699 unsigned long dst_addr,
4700 unsigned long src_addr,
4701 struct page **pagep)
4702{
1e392147
AA
4703 struct address_space *mapping;
4704 pgoff_t idx;
4705 unsigned long size;
1c9e8def 4706 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4707 struct hstate *h = hstate_vma(dst_vma);
4708 pte_t _dst_pte;
4709 spinlock_t *ptl;
4710 int ret;
4711 struct page *page;
4712
4713 if (!*pagep) {
4714 ret = -ENOMEM;
4715 page = alloc_huge_page(dst_vma, dst_addr, 0);
4716 if (IS_ERR(page))
4717 goto out;
4718
4719 ret = copy_huge_page_from_user(page,
4720 (const void __user *) src_addr,
810a56b9 4721 pages_per_huge_page(h), false);
8fb5debc 4722
c1e8d7c6 4723 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 4724 if (unlikely(ret)) {
9e368259 4725 ret = -ENOENT;
8fb5debc
MK
4726 *pagep = page;
4727 /* don't free the page */
4728 goto out;
4729 }
4730 } else {
4731 page = *pagep;
4732 *pagep = NULL;
4733 }
4734
4735 /*
4736 * The memory barrier inside __SetPageUptodate makes sure that
4737 * preceding stores to the page contents become visible before
4738 * the set_pte_at() write.
4739 */
4740 __SetPageUptodate(page);
8fb5debc 4741
1e392147
AA
4742 mapping = dst_vma->vm_file->f_mapping;
4743 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4744
1c9e8def
MK
4745 /*
4746 * If shared, add to page cache
4747 */
4748 if (vm_shared) {
1e392147
AA
4749 size = i_size_read(mapping->host) >> huge_page_shift(h);
4750 ret = -EFAULT;
4751 if (idx >= size)
4752 goto out_release_nounlock;
1c9e8def 4753
1e392147
AA
4754 /*
4755 * Serialization between remove_inode_hugepages() and
4756 * huge_add_to_page_cache() below happens through the
4757 * hugetlb_fault_mutex_table that here must be hold by
4758 * the caller.
4759 */
1c9e8def
MK
4760 ret = huge_add_to_page_cache(page, mapping, idx);
4761 if (ret)
4762 goto out_release_nounlock;
4763 }
4764
8fb5debc
MK
4765 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4766 spin_lock(ptl);
4767
1e392147
AA
4768 /*
4769 * Recheck the i_size after holding PT lock to make sure not
4770 * to leave any page mapped (as page_mapped()) beyond the end
4771 * of the i_size (remove_inode_hugepages() is strict about
4772 * enforcing that). If we bail out here, we'll also leave a
4773 * page in the radix tree in the vm_shared case beyond the end
4774 * of the i_size, but remove_inode_hugepages() will take care
4775 * of it as soon as we drop the hugetlb_fault_mutex_table.
4776 */
4777 size = i_size_read(mapping->host) >> huge_page_shift(h);
4778 ret = -EFAULT;
4779 if (idx >= size)
4780 goto out_release_unlock;
4781
8fb5debc
MK
4782 ret = -EEXIST;
4783 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4784 goto out_release_unlock;
4785
1c9e8def
MK
4786 if (vm_shared) {
4787 page_dup_rmap(page, true);
4788 } else {
d6995da3 4789 ClearHPageRestoreReserve(page);
1c9e8def
MK
4790 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4791 }
8fb5debc
MK
4792
4793 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4794 if (dst_vma->vm_flags & VM_WRITE)
4795 _dst_pte = huge_pte_mkdirty(_dst_pte);
4796 _dst_pte = pte_mkyoung(_dst_pte);
4797
4798 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4799
4800 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4801 dst_vma->vm_flags & VM_WRITE);
4802 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4803
4804 /* No need to invalidate - it was non-present before */
4805 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4806
4807 spin_unlock(ptl);
8f251a3d 4808 SetHPageMigratable(page);
1c9e8def
MK
4809 if (vm_shared)
4810 unlock_page(page);
8fb5debc
MK
4811 ret = 0;
4812out:
4813 return ret;
4814out_release_unlock:
4815 spin_unlock(ptl);
1c9e8def
MK
4816 if (vm_shared)
4817 unlock_page(page);
5af10dfd 4818out_release_nounlock:
8fb5debc
MK
4819 put_page(page);
4820 goto out;
4821}
4822
82e5d378
JM
4823static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4824 int refs, struct page **pages,
4825 struct vm_area_struct **vmas)
4826{
4827 int nr;
4828
4829 for (nr = 0; nr < refs; nr++) {
4830 if (likely(pages))
4831 pages[nr] = mem_map_offset(page, nr);
4832 if (vmas)
4833 vmas[nr] = vma;
4834 }
4835}
4836
28a35716
ML
4837long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4838 struct page **pages, struct vm_area_struct **vmas,
4839 unsigned long *position, unsigned long *nr_pages,
4f6da934 4840 long i, unsigned int flags, int *locked)
63551ae0 4841{
d5d4b0aa
KC
4842 unsigned long pfn_offset;
4843 unsigned long vaddr = *position;
28a35716 4844 unsigned long remainder = *nr_pages;
a5516438 4845 struct hstate *h = hstate_vma(vma);
0fa5bc40 4846 int err = -EFAULT, refs;
63551ae0 4847
63551ae0 4848 while (vaddr < vma->vm_end && remainder) {
4c887265 4849 pte_t *pte;
cb900f41 4850 spinlock_t *ptl = NULL;
2a15efc9 4851 int absent;
4c887265 4852 struct page *page;
63551ae0 4853
02057967
DR
4854 /*
4855 * If we have a pending SIGKILL, don't keep faulting pages and
4856 * potentially allocating memory.
4857 */
fa45f116 4858 if (fatal_signal_pending(current)) {
02057967
DR
4859 remainder = 0;
4860 break;
4861 }
4862
4c887265
AL
4863 /*
4864 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4865 * each hugepage. We have to make sure we get the
4c887265 4866 * first, for the page indexing below to work.
cb900f41
KS
4867 *
4868 * Note that page table lock is not held when pte is null.
4c887265 4869 */
7868a208
PA
4870 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4871 huge_page_size(h));
cb900f41
KS
4872 if (pte)
4873 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4874 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4875
4876 /*
4877 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4878 * an error where there's an empty slot with no huge pagecache
4879 * to back it. This way, we avoid allocating a hugepage, and
4880 * the sparse dumpfile avoids allocating disk blocks, but its
4881 * huge holes still show up with zeroes where they need to be.
2a15efc9 4882 */
3ae77f43
HD
4883 if (absent && (flags & FOLL_DUMP) &&
4884 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4885 if (pte)
4886 spin_unlock(ptl);
2a15efc9
HD
4887 remainder = 0;
4888 break;
4889 }
63551ae0 4890
9cc3a5bd
NH
4891 /*
4892 * We need call hugetlb_fault for both hugepages under migration
4893 * (in which case hugetlb_fault waits for the migration,) and
4894 * hwpoisoned hugepages (in which case we need to prevent the
4895 * caller from accessing to them.) In order to do this, we use
4896 * here is_swap_pte instead of is_hugetlb_entry_migration and
4897 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4898 * both cases, and because we can't follow correct pages
4899 * directly from any kind of swap entries.
4900 */
4901 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4902 ((flags & FOLL_WRITE) &&
4903 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4904 vm_fault_t ret;
87ffc118 4905 unsigned int fault_flags = 0;
63551ae0 4906
cb900f41
KS
4907 if (pte)
4908 spin_unlock(ptl);
87ffc118
AA
4909 if (flags & FOLL_WRITE)
4910 fault_flags |= FAULT_FLAG_WRITE;
4f6da934 4911 if (locked)
71335f37
PX
4912 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4913 FAULT_FLAG_KILLABLE;
87ffc118
AA
4914 if (flags & FOLL_NOWAIT)
4915 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4916 FAULT_FLAG_RETRY_NOWAIT;
4917 if (flags & FOLL_TRIED) {
4426e945
PX
4918 /*
4919 * Note: FAULT_FLAG_ALLOW_RETRY and
4920 * FAULT_FLAG_TRIED can co-exist
4921 */
87ffc118
AA
4922 fault_flags |= FAULT_FLAG_TRIED;
4923 }
4924 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4925 if (ret & VM_FAULT_ERROR) {
2be7cfed 4926 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4927 remainder = 0;
4928 break;
4929 }
4930 if (ret & VM_FAULT_RETRY) {
4f6da934 4931 if (locked &&
1ac25013 4932 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 4933 *locked = 0;
87ffc118
AA
4934 *nr_pages = 0;
4935 /*
4936 * VM_FAULT_RETRY must not return an
4937 * error, it will return zero
4938 * instead.
4939 *
4940 * No need to update "position" as the
4941 * caller will not check it after
4942 * *nr_pages is set to 0.
4943 */
4944 return i;
4945 }
4946 continue;
4c887265
AL
4947 }
4948
a5516438 4949 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4950 page = pte_page(huge_ptep_get(pte));
8fde12ca 4951
acbfb087
ZL
4952 /*
4953 * If subpage information not requested, update counters
4954 * and skip the same_page loop below.
4955 */
4956 if (!pages && !vmas && !pfn_offset &&
4957 (vaddr + huge_page_size(h) < vma->vm_end) &&
4958 (remainder >= pages_per_huge_page(h))) {
4959 vaddr += huge_page_size(h);
4960 remainder -= pages_per_huge_page(h);
4961 i += pages_per_huge_page(h);
4962 spin_unlock(ptl);
4963 continue;
4964 }
4965
82e5d378
JM
4966 refs = min3(pages_per_huge_page(h) - pfn_offset,
4967 (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
0fa5bc40 4968
82e5d378
JM
4969 if (pages || vmas)
4970 record_subpages_vmas(mem_map_offset(page, pfn_offset),
4971 vma, refs,
4972 likely(pages) ? pages + i : NULL,
4973 vmas ? vmas + i : NULL);
63551ae0 4974
82e5d378 4975 if (pages) {
0fa5bc40
JM
4976 /*
4977 * try_grab_compound_head() should always succeed here,
4978 * because: a) we hold the ptl lock, and b) we've just
4979 * checked that the huge page is present in the page
4980 * tables. If the huge page is present, then the tail
4981 * pages must also be present. The ptl prevents the
4982 * head page and tail pages from being rearranged in
4983 * any way. So this page must be available at this
4984 * point, unless the page refcount overflowed:
4985 */
82e5d378 4986 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
0fa5bc40
JM
4987 refs,
4988 flags))) {
4989 spin_unlock(ptl);
4990 remainder = 0;
4991 err = -ENOMEM;
4992 break;
4993 }
d5d4b0aa 4994 }
82e5d378
JM
4995
4996 vaddr += (refs << PAGE_SHIFT);
4997 remainder -= refs;
4998 i += refs;
4999
cb900f41 5000 spin_unlock(ptl);
63551ae0 5001 }
28a35716 5002 *nr_pages = remainder;
87ffc118
AA
5003 /*
5004 * setting position is actually required only if remainder is
5005 * not zero but it's faster not to add a "if (remainder)"
5006 * branch.
5007 */
63551ae0
DG
5008 *position = vaddr;
5009
2be7cfed 5010 return i ? i : err;
63551ae0 5011}
8f860591 5012
7da4d641 5013unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
5014 unsigned long address, unsigned long end, pgprot_t newprot)
5015{
5016 struct mm_struct *mm = vma->vm_mm;
5017 unsigned long start = address;
5018 pte_t *ptep;
5019 pte_t pte;
a5516438 5020 struct hstate *h = hstate_vma(vma);
7da4d641 5021 unsigned long pages = 0;
dff11abe 5022 bool shared_pmd = false;
ac46d4f3 5023 struct mmu_notifier_range range;
dff11abe
MK
5024
5025 /*
5026 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 5027 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
5028 * range if PMD sharing is possible.
5029 */
7269f999
JG
5030 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5031 0, vma, mm, start, end);
ac46d4f3 5032 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
5033
5034 BUG_ON(address >= end);
ac46d4f3 5035 flush_cache_range(vma, range.start, range.end);
8f860591 5036
ac46d4f3 5037 mmu_notifier_invalidate_range_start(&range);
83cde9e8 5038 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 5039 for (; address < end; address += huge_page_size(h)) {
cb900f41 5040 spinlock_t *ptl;
7868a208 5041 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
5042 if (!ptep)
5043 continue;
cb900f41 5044 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 5045 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
7da4d641 5046 pages++;
cb900f41 5047 spin_unlock(ptl);
dff11abe 5048 shared_pmd = true;
39dde65c 5049 continue;
7da4d641 5050 }
a8bda28d
NH
5051 pte = huge_ptep_get(ptep);
5052 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5053 spin_unlock(ptl);
5054 continue;
5055 }
5056 if (unlikely(is_hugetlb_entry_migration(pte))) {
5057 swp_entry_t entry = pte_to_swp_entry(pte);
5058
5059 if (is_write_migration_entry(entry)) {
5060 pte_t newpte;
5061
5062 make_migration_entry_read(&entry);
5063 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
5064 set_huge_swap_pte_at(mm, address, ptep,
5065 newpte, huge_page_size(h));
a8bda28d
NH
5066 pages++;
5067 }
5068 spin_unlock(ptl);
5069 continue;
5070 }
5071 if (!huge_pte_none(pte)) {
023bdd00
AK
5072 pte_t old_pte;
5073
5074 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5075 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 5076 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 5077 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 5078 pages++;
8f860591 5079 }
cb900f41 5080 spin_unlock(ptl);
8f860591 5081 }
d833352a 5082 /*
c8c06efa 5083 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 5084 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 5085 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
5086 * and that page table be reused and filled with junk. If we actually
5087 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 5088 */
dff11abe 5089 if (shared_pmd)
ac46d4f3 5090 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
5091 else
5092 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
5093 /*
5094 * No need to call mmu_notifier_invalidate_range() we are downgrading
5095 * page table protection not changing it to point to a new page.
5096 *
ad56b738 5097 * See Documentation/vm/mmu_notifier.rst
0f10851e 5098 */
83cde9e8 5099 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 5100 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
5101
5102 return pages << h->order;
8f860591
ZY
5103}
5104
33b8f84a
MK
5105/* Return true if reservation was successful, false otherwise. */
5106bool hugetlb_reserve_pages(struct inode *inode,
a1e78772 5107 long from, long to,
5a6fe125 5108 struct vm_area_struct *vma,
ca16d140 5109 vm_flags_t vm_flags)
e4e574b7 5110{
33b8f84a 5111 long chg, add = -1;
a5516438 5112 struct hstate *h = hstate_inode(inode);
90481622 5113 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 5114 struct resv_map *resv_map;
075a61d0 5115 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 5116 long gbl_reserve, regions_needed = 0;
e4e574b7 5117
63489f8e
MK
5118 /* This should never happen */
5119 if (from > to) {
5120 VM_WARN(1, "%s called with a negative range\n", __func__);
33b8f84a 5121 return false;
63489f8e
MK
5122 }
5123
17c9d12e
MG
5124 /*
5125 * Only apply hugepage reservation if asked. At fault time, an
5126 * attempt will be made for VM_NORESERVE to allocate a page
90481622 5127 * without using reserves
17c9d12e 5128 */
ca16d140 5129 if (vm_flags & VM_NORESERVE)
33b8f84a 5130 return true;
17c9d12e 5131
a1e78772
MG
5132 /*
5133 * Shared mappings base their reservation on the number of pages that
5134 * are already allocated on behalf of the file. Private mappings need
5135 * to reserve the full area even if read-only as mprotect() may be
5136 * called to make the mapping read-write. Assume !vma is a shm mapping
5137 */
9119a41e 5138 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
5139 /*
5140 * resv_map can not be NULL as hugetlb_reserve_pages is only
5141 * called for inodes for which resv_maps were created (see
5142 * hugetlbfs_get_inode).
5143 */
4e35f483 5144 resv_map = inode_resv_map(inode);
9119a41e 5145
0db9d74e 5146 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e
JK
5147
5148 } else {
e9fe92ae 5149 /* Private mapping. */
9119a41e 5150 resv_map = resv_map_alloc();
17c9d12e 5151 if (!resv_map)
33b8f84a 5152 return false;
17c9d12e 5153
a1e78772 5154 chg = to - from;
84afd99b 5155
17c9d12e
MG
5156 set_vma_resv_map(vma, resv_map);
5157 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5158 }
5159
33b8f84a 5160 if (chg < 0)
c50ac050 5161 goto out_err;
8a630112 5162
33b8f84a
MK
5163 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5164 chg * pages_per_huge_page(h), &h_cg) < 0)
075a61d0 5165 goto out_err;
075a61d0
MA
5166
5167 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5168 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5169 * of the resv_map.
5170 */
5171 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5172 }
5173
1c5ecae3
MK
5174 /*
5175 * There must be enough pages in the subpool for the mapping. If
5176 * the subpool has a minimum size, there may be some global
5177 * reservations already in place (gbl_reserve).
5178 */
5179 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
33b8f84a 5180 if (gbl_reserve < 0)
075a61d0 5181 goto out_uncharge_cgroup;
5a6fe125
MG
5182
5183 /*
17c9d12e 5184 * Check enough hugepages are available for the reservation.
90481622 5185 * Hand the pages back to the subpool if there are not
5a6fe125 5186 */
33b8f84a 5187 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
075a61d0 5188 goto out_put_pages;
17c9d12e
MG
5189
5190 /*
5191 * Account for the reservations made. Shared mappings record regions
5192 * that have reservations as they are shared by multiple VMAs.
5193 * When the last VMA disappears, the region map says how much
5194 * the reservation was and the page cache tells how much of
5195 * the reservation was consumed. Private mappings are per-VMA and
5196 * only the consumed reservations are tracked. When the VMA
5197 * disappears, the original reservation is the VMA size and the
5198 * consumed reservations are stored in the map. Hence, nothing
5199 * else has to be done for private mappings here
5200 */
33039678 5201 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 5202 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
5203
5204 if (unlikely(add < 0)) {
5205 hugetlb_acct_memory(h, -gbl_reserve);
075a61d0 5206 goto out_put_pages;
0db9d74e 5207 } else if (unlikely(chg > add)) {
33039678
MK
5208 /*
5209 * pages in this range were added to the reserve
5210 * map between region_chg and region_add. This
5211 * indicates a race with alloc_huge_page. Adjust
5212 * the subpool and reserve counts modified above
5213 * based on the difference.
5214 */
5215 long rsv_adjust;
5216
d85aecf2
ML
5217 /*
5218 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5219 * reference to h_cg->css. See comment below for detail.
5220 */
075a61d0
MA
5221 hugetlb_cgroup_uncharge_cgroup_rsvd(
5222 hstate_index(h),
5223 (chg - add) * pages_per_huge_page(h), h_cg);
5224
33039678
MK
5225 rsv_adjust = hugepage_subpool_put_pages(spool,
5226 chg - add);
5227 hugetlb_acct_memory(h, -rsv_adjust);
d85aecf2
ML
5228 } else if (h_cg) {
5229 /*
5230 * The file_regions will hold their own reference to
5231 * h_cg->css. So we should release the reference held
5232 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5233 * done.
5234 */
5235 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
33039678
MK
5236 }
5237 }
33b8f84a
MK
5238 return true;
5239
075a61d0
MA
5240out_put_pages:
5241 /* put back original number of pages, chg */
5242 (void)hugepage_subpool_put_pages(spool, chg);
5243out_uncharge_cgroup:
5244 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5245 chg * pages_per_huge_page(h), h_cg);
c50ac050 5246out_err:
5e911373 5247 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
5248 /* Only call region_abort if the region_chg succeeded but the
5249 * region_add failed or didn't run.
5250 */
5251 if (chg >= 0 && add < 0)
5252 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
5253 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5254 kref_put(&resv_map->refs, resv_map_release);
33b8f84a 5255 return false;
a43a8c39
KC
5256}
5257
b5cec28d
MK
5258long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5259 long freed)
a43a8c39 5260{
a5516438 5261 struct hstate *h = hstate_inode(inode);
4e35f483 5262 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 5263 long chg = 0;
90481622 5264 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 5265 long gbl_reserve;
45c682a6 5266
f27a5136
MK
5267 /*
5268 * Since this routine can be called in the evict inode path for all
5269 * hugetlbfs inodes, resv_map could be NULL.
5270 */
b5cec28d
MK
5271 if (resv_map) {
5272 chg = region_del(resv_map, start, end);
5273 /*
5274 * region_del() can fail in the rare case where a region
5275 * must be split and another region descriptor can not be
5276 * allocated. If end == LONG_MAX, it will not fail.
5277 */
5278 if (chg < 0)
5279 return chg;
5280 }
5281
45c682a6 5282 spin_lock(&inode->i_lock);
e4c6f8be 5283 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
5284 spin_unlock(&inode->i_lock);
5285
1c5ecae3
MK
5286 /*
5287 * If the subpool has a minimum size, the number of global
5288 * reservations to be released may be adjusted.
dddf31a4
ML
5289 *
5290 * Note that !resv_map implies freed == 0. So (chg - freed)
5291 * won't go negative.
1c5ecae3
MK
5292 */
5293 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5294 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
5295
5296 return 0;
a43a8c39 5297}
93f70f90 5298
3212b535
SC
5299#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5300static unsigned long page_table_shareable(struct vm_area_struct *svma,
5301 struct vm_area_struct *vma,
5302 unsigned long addr, pgoff_t idx)
5303{
5304 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5305 svma->vm_start;
5306 unsigned long sbase = saddr & PUD_MASK;
5307 unsigned long s_end = sbase + PUD_SIZE;
5308
5309 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
5310 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5311 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
5312
5313 /*
5314 * match the virtual addresses, permission and the alignment of the
5315 * page table page.
5316 */
5317 if (pmd_index(addr) != pmd_index(saddr) ||
5318 vm_flags != svm_flags ||
07e51edf 5319 !range_in_vma(svma, sbase, s_end))
3212b535
SC
5320 return 0;
5321
5322 return saddr;
5323}
5324
31aafb45 5325static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
5326{
5327 unsigned long base = addr & PUD_MASK;
5328 unsigned long end = base + PUD_SIZE;
5329
5330 /*
5331 * check on proper vm_flags and page table alignment
5332 */
017b1660 5333 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
5334 return true;
5335 return false;
3212b535
SC
5336}
5337
c1991e07
PX
5338bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5339{
5340#ifdef CONFIG_USERFAULTFD
5341 if (uffd_disable_huge_pmd_share(vma))
5342 return false;
5343#endif
5344 return vma_shareable(vma, addr);
5345}
5346
017b1660
MK
5347/*
5348 * Determine if start,end range within vma could be mapped by shared pmd.
5349 * If yes, adjust start and end to cover range associated with possible
5350 * shared pmd mappings.
5351 */
5352void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5353 unsigned long *start, unsigned long *end)
5354{
a1ba9da8
LX
5355 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5356 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 5357
a1ba9da8
LX
5358 /*
5359 * vma need span at least one aligned PUD size and the start,end range
5360 * must at least partialy within it.
5361 */
5362 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5363 (*end <= v_start) || (*start >= v_end))
017b1660
MK
5364 return;
5365
75802ca6 5366 /* Extend the range to be PUD aligned for a worst case scenario */
a1ba9da8
LX
5367 if (*start > v_start)
5368 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 5369
a1ba9da8
LX
5370 if (*end < v_end)
5371 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
5372}
5373
3212b535
SC
5374/*
5375 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5376 * and returns the corresponding pte. While this is not necessary for the
5377 * !shared pmd case because we can allocate the pmd later as well, it makes the
c0d0381a
MK
5378 * code much cleaner.
5379 *
0bf7b64e
MK
5380 * This routine must be called with i_mmap_rwsem held in at least read mode if
5381 * sharing is possible. For hugetlbfs, this prevents removal of any page
5382 * table entries associated with the address space. This is important as we
5383 * are setting up sharing based on existing page table entries (mappings).
5384 *
5385 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5386 * huge_pte_alloc know that sharing is not possible and do not take
5387 * i_mmap_rwsem as a performance optimization. This is handled by the
5388 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5389 * only required for subsequent processing.
3212b535 5390 */
aec44e0f
PX
5391pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5392 unsigned long addr, pud_t *pud)
3212b535 5393{
3212b535
SC
5394 struct address_space *mapping = vma->vm_file->f_mapping;
5395 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5396 vma->vm_pgoff;
5397 struct vm_area_struct *svma;
5398 unsigned long saddr;
5399 pte_t *spte = NULL;
5400 pte_t *pte;
cb900f41 5401 spinlock_t *ptl;
3212b535 5402
0bf7b64e 5403 i_mmap_assert_locked(mapping);
3212b535
SC
5404 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5405 if (svma == vma)
5406 continue;
5407
5408 saddr = page_table_shareable(svma, vma, addr, idx);
5409 if (saddr) {
7868a208
PA
5410 spte = huge_pte_offset(svma->vm_mm, saddr,
5411 vma_mmu_pagesize(svma));
3212b535
SC
5412 if (spte) {
5413 get_page(virt_to_page(spte));
5414 break;
5415 }
5416 }
5417 }
5418
5419 if (!spte)
5420 goto out;
5421
8bea8052 5422 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 5423 if (pud_none(*pud)) {
3212b535
SC
5424 pud_populate(mm, pud,
5425 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 5426 mm_inc_nr_pmds(mm);
dc6c9a35 5427 } else {
3212b535 5428 put_page(virt_to_page(spte));
dc6c9a35 5429 }
cb900f41 5430 spin_unlock(ptl);
3212b535
SC
5431out:
5432 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3212b535
SC
5433 return pte;
5434}
5435
5436/*
5437 * unmap huge page backed by shared pte.
5438 *
5439 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5440 * indicated by page_count > 1, unmap is achieved by clearing pud and
5441 * decrementing the ref count. If count == 1, the pte page is not shared.
5442 *
c0d0381a 5443 * Called with page table lock held and i_mmap_rwsem held in write mode.
3212b535
SC
5444 *
5445 * returns: 1 successfully unmapped a shared pte page
5446 * 0 the underlying pte page is not shared, or it is the last user
5447 */
34ae204f
MK
5448int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5449 unsigned long *addr, pte_t *ptep)
3212b535
SC
5450{
5451 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
5452 p4d_t *p4d = p4d_offset(pgd, *addr);
5453 pud_t *pud = pud_offset(p4d, *addr);
3212b535 5454
34ae204f 5455 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
3212b535
SC
5456 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5457 if (page_count(virt_to_page(ptep)) == 1)
5458 return 0;
5459
5460 pud_clear(pud);
5461 put_page(virt_to_page(ptep));
dc6c9a35 5462 mm_dec_nr_pmds(mm);
3212b535
SC
5463 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5464 return 1;
5465}
c1991e07 5466
9e5fc74c 5467#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
aec44e0f
PX
5468pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5469 unsigned long addr, pud_t *pud)
9e5fc74c
SC
5470{
5471 return NULL;
5472}
e81f2d22 5473
34ae204f
MK
5474int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5475 unsigned long *addr, pte_t *ptep)
e81f2d22
ZZ
5476{
5477 return 0;
5478}
017b1660
MK
5479
5480void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5481 unsigned long *start, unsigned long *end)
5482{
5483}
c1991e07
PX
5484
5485bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5486{
5487 return false;
5488}
3212b535
SC
5489#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5490
9e5fc74c 5491#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
aec44e0f 5492pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
9e5fc74c
SC
5493 unsigned long addr, unsigned long sz)
5494{
5495 pgd_t *pgd;
c2febafc 5496 p4d_t *p4d;
9e5fc74c
SC
5497 pud_t *pud;
5498 pte_t *pte = NULL;
5499
5500 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
5501 p4d = p4d_alloc(mm, pgd, addr);
5502 if (!p4d)
5503 return NULL;
c2febafc 5504 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
5505 if (pud) {
5506 if (sz == PUD_SIZE) {
5507 pte = (pte_t *)pud;
5508 } else {
5509 BUG_ON(sz != PMD_SIZE);
c1991e07 5510 if (want_pmd_share(vma, addr) && pud_none(*pud))
aec44e0f 5511 pte = huge_pmd_share(mm, vma, addr, pud);
9e5fc74c
SC
5512 else
5513 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5514 }
5515 }
4e666314 5516 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
5517
5518 return pte;
5519}
5520
9b19df29
PA
5521/*
5522 * huge_pte_offset() - Walk the page table to resolve the hugepage
5523 * entry at address @addr
5524 *
8ac0b81a
LX
5525 * Return: Pointer to page table entry (PUD or PMD) for
5526 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
5527 * size @sz doesn't match the hugepage size at this level of the page
5528 * table.
5529 */
7868a208
PA
5530pte_t *huge_pte_offset(struct mm_struct *mm,
5531 unsigned long addr, unsigned long sz)
9e5fc74c
SC
5532{
5533 pgd_t *pgd;
c2febafc 5534 p4d_t *p4d;
8ac0b81a
LX
5535 pud_t *pud;
5536 pmd_t *pmd;
9e5fc74c
SC
5537
5538 pgd = pgd_offset(mm, addr);
c2febafc
KS
5539 if (!pgd_present(*pgd))
5540 return NULL;
5541 p4d = p4d_offset(pgd, addr);
5542 if (!p4d_present(*p4d))
5543 return NULL;
9b19df29 5544
c2febafc 5545 pud = pud_offset(p4d, addr);
8ac0b81a
LX
5546 if (sz == PUD_SIZE)
5547 /* must be pud huge, non-present or none */
c2febafc 5548 return (pte_t *)pud;
8ac0b81a 5549 if (!pud_present(*pud))
9b19df29 5550 return NULL;
8ac0b81a 5551 /* must have a valid entry and size to go further */
9b19df29 5552
8ac0b81a
LX
5553 pmd = pmd_offset(pud, addr);
5554 /* must be pmd huge, non-present or none */
5555 return (pte_t *)pmd;
9e5fc74c
SC
5556}
5557
61f77eda
NH
5558#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5559
5560/*
5561 * These functions are overwritable if your architecture needs its own
5562 * behavior.
5563 */
5564struct page * __weak
5565follow_huge_addr(struct mm_struct *mm, unsigned long address,
5566 int write)
5567{
5568 return ERR_PTR(-EINVAL);
5569}
5570
4dc71451
AK
5571struct page * __weak
5572follow_huge_pd(struct vm_area_struct *vma,
5573 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5574{
5575 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5576 return NULL;
5577}
5578
61f77eda 5579struct page * __weak
9e5fc74c 5580follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 5581 pmd_t *pmd, int flags)
9e5fc74c 5582{
e66f17ff
NH
5583 struct page *page = NULL;
5584 spinlock_t *ptl;
c9d398fa 5585 pte_t pte;
3faa52c0
JH
5586
5587 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5588 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5589 (FOLL_PIN | FOLL_GET)))
5590 return NULL;
5591
e66f17ff
NH
5592retry:
5593 ptl = pmd_lockptr(mm, pmd);
5594 spin_lock(ptl);
5595 /*
5596 * make sure that the address range covered by this pmd is not
5597 * unmapped from other threads.
5598 */
5599 if (!pmd_huge(*pmd))
5600 goto out;
c9d398fa
NH
5601 pte = huge_ptep_get((pte_t *)pmd);
5602 if (pte_present(pte)) {
97534127 5603 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3faa52c0
JH
5604 /*
5605 * try_grab_page() should always succeed here, because: a) we
5606 * hold the pmd (ptl) lock, and b) we've just checked that the
5607 * huge pmd (head) page is present in the page tables. The ptl
5608 * prevents the head page and tail pages from being rearranged
5609 * in any way. So this page must be available at this point,
5610 * unless the page refcount overflowed:
5611 */
5612 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5613 page = NULL;
5614 goto out;
5615 }
e66f17ff 5616 } else {
c9d398fa 5617 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
5618 spin_unlock(ptl);
5619 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5620 goto retry;
5621 }
5622 /*
5623 * hwpoisoned entry is treated as no_page_table in
5624 * follow_page_mask().
5625 */
5626 }
5627out:
5628 spin_unlock(ptl);
9e5fc74c
SC
5629 return page;
5630}
5631
61f77eda 5632struct page * __weak
9e5fc74c 5633follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 5634 pud_t *pud, int flags)
9e5fc74c 5635{
3faa52c0 5636 if (flags & (FOLL_GET | FOLL_PIN))
e66f17ff 5637 return NULL;
9e5fc74c 5638
e66f17ff 5639 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
5640}
5641
faaa5b62
AK
5642struct page * __weak
5643follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5644{
3faa52c0 5645 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
5646 return NULL;
5647
5648 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5649}
5650
31caf665
NH
5651bool isolate_huge_page(struct page *page, struct list_head *list)
5652{
bcc54222
NH
5653 bool ret = true;
5654
db71ef79 5655 spin_lock_irq(&hugetlb_lock);
8f251a3d
MK
5656 if (!PageHeadHuge(page) ||
5657 !HPageMigratable(page) ||
0eb2df2b 5658 !get_page_unless_zero(page)) {
bcc54222
NH
5659 ret = false;
5660 goto unlock;
5661 }
8f251a3d 5662 ClearHPageMigratable(page);
31caf665 5663 list_move_tail(&page->lru, list);
bcc54222 5664unlock:
db71ef79 5665 spin_unlock_irq(&hugetlb_lock);
bcc54222 5666 return ret;
31caf665
NH
5667}
5668
5669void putback_active_hugepage(struct page *page)
5670{
db71ef79 5671 spin_lock_irq(&hugetlb_lock);
8f251a3d 5672 SetHPageMigratable(page);
31caf665 5673 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
db71ef79 5674 spin_unlock_irq(&hugetlb_lock);
31caf665
NH
5675 put_page(page);
5676}
ab5ac90a
MH
5677
5678void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5679{
5680 struct hstate *h = page_hstate(oldpage);
5681
5682 hugetlb_cgroup_migrate(oldpage, newpage);
5683 set_page_owner_migrate_reason(newpage, reason);
5684
5685 /*
5686 * transfer temporary state of the new huge page. This is
5687 * reverse to other transitions because the newpage is going to
5688 * be final while the old one will be freed so it takes over
5689 * the temporary status.
5690 *
5691 * Also note that we have to transfer the per-node surplus state
5692 * here as well otherwise the global surplus count will not match
5693 * the per-node's.
5694 */
9157c311 5695 if (HPageTemporary(newpage)) {
ab5ac90a
MH
5696 int old_nid = page_to_nid(oldpage);
5697 int new_nid = page_to_nid(newpage);
5698
9157c311
MK
5699 SetHPageTemporary(oldpage);
5700 ClearHPageTemporary(newpage);
ab5ac90a 5701
5af1ab1d
ML
5702 /*
5703 * There is no need to transfer the per-node surplus state
5704 * when we do not cross the node.
5705 */
5706 if (new_nid == old_nid)
5707 return;
db71ef79 5708 spin_lock_irq(&hugetlb_lock);
ab5ac90a
MH
5709 if (h->surplus_huge_pages_node[old_nid]) {
5710 h->surplus_huge_pages_node[old_nid]--;
5711 h->surplus_huge_pages_node[new_nid]++;
5712 }
db71ef79 5713 spin_unlock_irq(&hugetlb_lock);
ab5ac90a
MH
5714 }
5715}
cf11e85f 5716
6dfeaff9
PX
5717/*
5718 * This function will unconditionally remove all the shared pmd pgtable entries
5719 * within the specific vma for a hugetlbfs memory range.
5720 */
5721void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
5722{
5723 struct hstate *h = hstate_vma(vma);
5724 unsigned long sz = huge_page_size(h);
5725 struct mm_struct *mm = vma->vm_mm;
5726 struct mmu_notifier_range range;
5727 unsigned long address, start, end;
5728 spinlock_t *ptl;
5729 pte_t *ptep;
5730
5731 if (!(vma->vm_flags & VM_MAYSHARE))
5732 return;
5733
5734 start = ALIGN(vma->vm_start, PUD_SIZE);
5735 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5736
5737 if (start >= end)
5738 return;
5739
5740 /*
5741 * No need to call adjust_range_if_pmd_sharing_possible(), because
5742 * we have already done the PUD_SIZE alignment.
5743 */
5744 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
5745 start, end);
5746 mmu_notifier_invalidate_range_start(&range);
5747 i_mmap_lock_write(vma->vm_file->f_mapping);
5748 for (address = start; address < end; address += PUD_SIZE) {
5749 unsigned long tmp = address;
5750
5751 ptep = huge_pte_offset(mm, address, sz);
5752 if (!ptep)
5753 continue;
5754 ptl = huge_pte_lock(h, mm, ptep);
5755 /* We don't want 'address' to be changed */
5756 huge_pmd_unshare(mm, vma, &tmp, ptep);
5757 spin_unlock(ptl);
5758 }
5759 flush_hugetlb_tlb_range(vma, start, end);
5760 i_mmap_unlock_write(vma->vm_file->f_mapping);
5761 /*
5762 * No need to call mmu_notifier_invalidate_range(), see
5763 * Documentation/vm/mmu_notifier.rst.
5764 */
5765 mmu_notifier_invalidate_range_end(&range);
5766}
5767
cf11e85f 5768#ifdef CONFIG_CMA
cf11e85f
RG
5769static bool cma_reserve_called __initdata;
5770
5771static int __init cmdline_parse_hugetlb_cma(char *p)
5772{
5773 hugetlb_cma_size = memparse(p, &p);
5774 return 0;
5775}
5776
5777early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5778
5779void __init hugetlb_cma_reserve(int order)
5780{
5781 unsigned long size, reserved, per_node;
5782 int nid;
5783
5784 cma_reserve_called = true;
5785
5786 if (!hugetlb_cma_size)
5787 return;
5788
5789 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5790 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5791 (PAGE_SIZE << order) / SZ_1M);
5792 return;
5793 }
5794
5795 /*
5796 * If 3 GB area is requested on a machine with 4 numa nodes,
5797 * let's allocate 1 GB on first three nodes and ignore the last one.
5798 */
5799 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5800 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5801 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5802
5803 reserved = 0;
5804 for_each_node_state(nid, N_ONLINE) {
5805 int res;
2281f797 5806 char name[CMA_MAX_NAME];
cf11e85f
RG
5807
5808 size = min(per_node, hugetlb_cma_size - reserved);
5809 size = round_up(size, PAGE_SIZE << order);
5810
2281f797 5811 snprintf(name, sizeof(name), "hugetlb%d", nid);
cf11e85f 5812 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
29d0f41d 5813 0, false, name,
cf11e85f
RG
5814 &hugetlb_cma[nid], nid);
5815 if (res) {
5816 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5817 res, nid);
5818 continue;
5819 }
5820
5821 reserved += size;
5822 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5823 size / SZ_1M, nid);
5824
5825 if (reserved >= hugetlb_cma_size)
5826 break;
5827 }
5828}
5829
5830void __init hugetlb_cma_check(void)
5831{
5832 if (!hugetlb_cma_size || cma_reserve_called)
5833 return;
5834
5835 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5836}
5837
5838#endif /* CONFIG_CMA */