]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/memcontrol.c
res_counter: return amount of charges after res_counter_uncharge()
[mirror_ubuntu-jammy-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
f64c3f54 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634
KS
47#include <linux/eventfd.h>
48#include <linux/sort.h>
66e1707b 49#include <linux/fs.h>
d2ceb9b7 50#include <linux/seq_file.h>
33327948 51#include <linux/vmalloc.h>
b69408e8 52#include <linux/mm_inline.h>
52d4b9ac 53#include <linux/page_cgroup.h>
cdec2e42 54#include <linux/cpu.h>
158e0a2d 55#include <linux/oom.h>
08e552c6 56#include "internal.h"
d1a4c0b3 57#include <net/sock.h>
4bd2c1ee 58#include <net/ip.h>
d1a4c0b3 59#include <net/tcp_memcontrol.h>
8cdea7c0 60
8697d331
BS
61#include <asm/uaccess.h>
62
cc8e970c
KM
63#include <trace/events/vmscan.h>
64
a181b0e8 65struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
66EXPORT_SYMBOL(mem_cgroup_subsys);
67
a181b0e8 68#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 69static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 70
c255a458 71#ifdef CONFIG_MEMCG_SWAP
338c8431 72/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 73int do_swap_account __read_mostly;
a42c390c
MH
74
75/* for remember boot option*/
c255a458 76#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
77static int really_do_swap_account __initdata = 1;
78#else
79static int really_do_swap_account __initdata = 0;
80#endif
81
c077719b 82#else
a0db00fc 83#define do_swap_account 0
c077719b
KH
84#endif
85
86
d52aa412
KH
87/*
88 * Statistics for memory cgroup.
89 */
90enum mem_cgroup_stat_index {
91 /*
92 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
93 */
94 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 95 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 96 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
bff6bb83 97 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
98 MEM_CGROUP_STAT_NSTATS,
99};
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "mapped_file",
105 "swap",
106};
107
e9f8974f
JW
108enum mem_cgroup_events_index {
109 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
110 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
111 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
112 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
113 MEM_CGROUP_EVENTS_NSTATS,
114};
af7c4b0e
JW
115
116static const char * const mem_cgroup_events_names[] = {
117 "pgpgin",
118 "pgpgout",
119 "pgfault",
120 "pgmajfault",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9
JW
146struct mem_cgroup_reclaim_iter {
147 /* css_id of the last scanned hierarchy member */
148 int position;
149 /* scan generation, increased every round-trip */
150 unsigned int generation;
151};
152
6d12e2d8
KH
153/*
154 * per-zone information in memory controller.
155 */
6d12e2d8 156struct mem_cgroup_per_zone {
6290df54 157 struct lruvec lruvec;
1eb49272 158 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 159
527a5ec9
JW
160 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
161
f64c3f54
BS
162 struct rb_node tree_node; /* RB tree node */
163 unsigned long long usage_in_excess;/* Set to the value by which */
164 /* the soft limit is exceeded*/
165 bool on_tree;
d79154bb 166 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 167 /* use container_of */
6d12e2d8 168};
6d12e2d8
KH
169
170struct mem_cgroup_per_node {
171 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
172};
173
174struct mem_cgroup_lru_info {
175 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
176};
177
f64c3f54
BS
178/*
179 * Cgroups above their limits are maintained in a RB-Tree, independent of
180 * their hierarchy representation
181 */
182
183struct mem_cgroup_tree_per_zone {
184 struct rb_root rb_root;
185 spinlock_t lock;
186};
187
188struct mem_cgroup_tree_per_node {
189 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
190};
191
192struct mem_cgroup_tree {
193 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
194};
195
196static struct mem_cgroup_tree soft_limit_tree __read_mostly;
197
2e72b634
KS
198struct mem_cgroup_threshold {
199 struct eventfd_ctx *eventfd;
200 u64 threshold;
201};
202
9490ff27 203/* For threshold */
2e72b634 204struct mem_cgroup_threshold_ary {
748dad36 205 /* An array index points to threshold just below or equal to usage. */
5407a562 206 int current_threshold;
2e72b634
KS
207 /* Size of entries[] */
208 unsigned int size;
209 /* Array of thresholds */
210 struct mem_cgroup_threshold entries[0];
211};
2c488db2
KS
212
213struct mem_cgroup_thresholds {
214 /* Primary thresholds array */
215 struct mem_cgroup_threshold_ary *primary;
216 /*
217 * Spare threshold array.
218 * This is needed to make mem_cgroup_unregister_event() "never fail".
219 * It must be able to store at least primary->size - 1 entries.
220 */
221 struct mem_cgroup_threshold_ary *spare;
222};
223
9490ff27
KH
224/* for OOM */
225struct mem_cgroup_eventfd_list {
226 struct list_head list;
227 struct eventfd_ctx *eventfd;
228};
2e72b634 229
c0ff4b85
R
230static void mem_cgroup_threshold(struct mem_cgroup *memcg);
231static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 232
8cdea7c0
BS
233/*
234 * The memory controller data structure. The memory controller controls both
235 * page cache and RSS per cgroup. We would eventually like to provide
236 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
237 * to help the administrator determine what knobs to tune.
238 *
239 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
240 * we hit the water mark. May be even add a low water mark, such that
241 * no reclaim occurs from a cgroup at it's low water mark, this is
242 * a feature that will be implemented much later in the future.
8cdea7c0
BS
243 */
244struct mem_cgroup {
245 struct cgroup_subsys_state css;
246 /*
247 * the counter to account for memory usage
248 */
249 struct res_counter res;
59927fb9
HD
250
251 union {
252 /*
253 * the counter to account for mem+swap usage.
254 */
255 struct res_counter memsw;
256
257 /*
258 * rcu_freeing is used only when freeing struct mem_cgroup,
259 * so put it into a union to avoid wasting more memory.
260 * It must be disjoint from the css field. It could be
261 * in a union with the res field, but res plays a much
262 * larger part in mem_cgroup life than memsw, and might
263 * be of interest, even at time of free, when debugging.
264 * So share rcu_head with the less interesting memsw.
265 */
266 struct rcu_head rcu_freeing;
267 /*
3afe36b1
GC
268 * We also need some space for a worker in deferred freeing.
269 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
270 */
271 struct work_struct work_freeing;
272 };
273
510fc4e1
GC
274 /*
275 * the counter to account for kernel memory usage.
276 */
277 struct res_counter kmem;
78fb7466
PE
278 /*
279 * Per cgroup active and inactive list, similar to the
280 * per zone LRU lists.
78fb7466 281 */
6d12e2d8 282 struct mem_cgroup_lru_info info;
889976db
YH
283 int last_scanned_node;
284#if MAX_NUMNODES > 1
285 nodemask_t scan_nodes;
453a9bf3
KH
286 atomic_t numainfo_events;
287 atomic_t numainfo_updating;
889976db 288#endif
18f59ea7
BS
289 /*
290 * Should the accounting and control be hierarchical, per subtree?
291 */
292 bool use_hierarchy;
510fc4e1 293 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
294
295 bool oom_lock;
296 atomic_t under_oom;
297
8c7c6e34 298 atomic_t refcnt;
14797e23 299
1f4c025b 300 int swappiness;
3c11ecf4
KH
301 /* OOM-Killer disable */
302 int oom_kill_disable;
a7885eb8 303
22a668d7
KH
304 /* set when res.limit == memsw.limit */
305 bool memsw_is_minimum;
306
2e72b634
KS
307 /* protect arrays of thresholds */
308 struct mutex thresholds_lock;
309
310 /* thresholds for memory usage. RCU-protected */
2c488db2 311 struct mem_cgroup_thresholds thresholds;
907860ed 312
2e72b634 313 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 314 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 315
9490ff27
KH
316 /* For oom notifier event fd */
317 struct list_head oom_notify;
185efc0f 318
7dc74be0
DN
319 /*
320 * Should we move charges of a task when a task is moved into this
321 * mem_cgroup ? And what type of charges should we move ?
322 */
323 unsigned long move_charge_at_immigrate;
619d094b
KH
324 /*
325 * set > 0 if pages under this cgroup are moving to other cgroup.
326 */
327 atomic_t moving_account;
312734c0
KH
328 /* taken only while moving_account > 0 */
329 spinlock_t move_lock;
d52aa412 330 /*
c62b1a3b 331 * percpu counter.
d52aa412 332 */
3a7951b4 333 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
334 /*
335 * used when a cpu is offlined or other synchronizations
336 * See mem_cgroup_read_stat().
337 */
338 struct mem_cgroup_stat_cpu nocpu_base;
339 spinlock_t pcp_counter_lock;
d1a4c0b3 340
4bd2c1ee 341#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
342 struct tcp_memcontrol tcp_mem;
343#endif
8cdea7c0
BS
344};
345
510fc4e1
GC
346/* internal only representation about the status of kmem accounting. */
347enum {
348 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
349};
350
351#define KMEM_ACCOUNTED_MASK (1 << KMEM_ACCOUNTED_ACTIVE)
352
353#ifdef CONFIG_MEMCG_KMEM
354static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
355{
356 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
357}
358#endif
359
7dc74be0
DN
360/* Stuffs for move charges at task migration. */
361/*
362 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
363 * left-shifted bitmap of these types.
364 */
365enum move_type {
4ffef5fe 366 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 367 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
368 NR_MOVE_TYPE,
369};
370
4ffef5fe
DN
371/* "mc" and its members are protected by cgroup_mutex */
372static struct move_charge_struct {
b1dd693e 373 spinlock_t lock; /* for from, to */
4ffef5fe
DN
374 struct mem_cgroup *from;
375 struct mem_cgroup *to;
376 unsigned long precharge;
854ffa8d 377 unsigned long moved_charge;
483c30b5 378 unsigned long moved_swap;
8033b97c
DN
379 struct task_struct *moving_task; /* a task moving charges */
380 wait_queue_head_t waitq; /* a waitq for other context */
381} mc = {
2bd9bb20 382 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
383 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
384};
4ffef5fe 385
90254a65
DN
386static bool move_anon(void)
387{
388 return test_bit(MOVE_CHARGE_TYPE_ANON,
389 &mc.to->move_charge_at_immigrate);
390}
391
87946a72
DN
392static bool move_file(void)
393{
394 return test_bit(MOVE_CHARGE_TYPE_FILE,
395 &mc.to->move_charge_at_immigrate);
396}
397
4e416953
BS
398/*
399 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
400 * limit reclaim to prevent infinite loops, if they ever occur.
401 */
a0db00fc
KS
402#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
403#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 404
217bc319
KH
405enum charge_type {
406 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 407 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 408 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 409 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
410 NR_CHARGE_TYPE,
411};
412
8c7c6e34 413/* for encoding cft->private value on file */
86ae53e1
GC
414enum res_type {
415 _MEM,
416 _MEMSWAP,
417 _OOM_TYPE,
510fc4e1 418 _KMEM,
86ae53e1
GC
419};
420
a0db00fc
KS
421#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
422#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 423#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
424/* Used for OOM nofiier */
425#define OOM_CONTROL (0)
8c7c6e34 426
75822b44
BS
427/*
428 * Reclaim flags for mem_cgroup_hierarchical_reclaim
429 */
430#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
431#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
432#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
433#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
434
c0ff4b85
R
435static void mem_cgroup_get(struct mem_cgroup *memcg);
436static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161 437
b2145145
WL
438static inline
439struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
440{
441 return container_of(s, struct mem_cgroup, css);
442}
443
7ffc0edc
MH
444static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
445{
446 return (memcg == root_mem_cgroup);
447}
448
e1aab161 449/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 450#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 451
e1aab161
GC
452void sock_update_memcg(struct sock *sk)
453{
376be5ff 454 if (mem_cgroup_sockets_enabled) {
e1aab161 455 struct mem_cgroup *memcg;
3f134619 456 struct cg_proto *cg_proto;
e1aab161
GC
457
458 BUG_ON(!sk->sk_prot->proto_cgroup);
459
f3f511e1
GC
460 /* Socket cloning can throw us here with sk_cgrp already
461 * filled. It won't however, necessarily happen from
462 * process context. So the test for root memcg given
463 * the current task's memcg won't help us in this case.
464 *
465 * Respecting the original socket's memcg is a better
466 * decision in this case.
467 */
468 if (sk->sk_cgrp) {
469 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
470 mem_cgroup_get(sk->sk_cgrp->memcg);
471 return;
472 }
473
e1aab161
GC
474 rcu_read_lock();
475 memcg = mem_cgroup_from_task(current);
3f134619
GC
476 cg_proto = sk->sk_prot->proto_cgroup(memcg);
477 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
e1aab161 478 mem_cgroup_get(memcg);
3f134619 479 sk->sk_cgrp = cg_proto;
e1aab161
GC
480 }
481 rcu_read_unlock();
482 }
483}
484EXPORT_SYMBOL(sock_update_memcg);
485
486void sock_release_memcg(struct sock *sk)
487{
376be5ff 488 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
489 struct mem_cgroup *memcg;
490 WARN_ON(!sk->sk_cgrp->memcg);
491 memcg = sk->sk_cgrp->memcg;
492 mem_cgroup_put(memcg);
493 }
494}
d1a4c0b3
GC
495
496struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
497{
498 if (!memcg || mem_cgroup_is_root(memcg))
499 return NULL;
500
501 return &memcg->tcp_mem.cg_proto;
502}
503EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 504
3f134619
GC
505static void disarm_sock_keys(struct mem_cgroup *memcg)
506{
507 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
508 return;
509 static_key_slow_dec(&memcg_socket_limit_enabled);
510}
511#else
512static void disarm_sock_keys(struct mem_cgroup *memcg)
513{
514}
515#endif
516
c0ff4b85 517static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 518
f64c3f54 519static struct mem_cgroup_per_zone *
c0ff4b85 520mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 521{
c0ff4b85 522 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
523}
524
c0ff4b85 525struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 526{
c0ff4b85 527 return &memcg->css;
d324236b
WF
528}
529
f64c3f54 530static struct mem_cgroup_per_zone *
c0ff4b85 531page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 532{
97a6c37b
JW
533 int nid = page_to_nid(page);
534 int zid = page_zonenum(page);
f64c3f54 535
c0ff4b85 536 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
537}
538
539static struct mem_cgroup_tree_per_zone *
540soft_limit_tree_node_zone(int nid, int zid)
541{
542 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
543}
544
545static struct mem_cgroup_tree_per_zone *
546soft_limit_tree_from_page(struct page *page)
547{
548 int nid = page_to_nid(page);
549 int zid = page_zonenum(page);
550
551 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
552}
553
554static void
c0ff4b85 555__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 556 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
557 struct mem_cgroup_tree_per_zone *mctz,
558 unsigned long long new_usage_in_excess)
f64c3f54
BS
559{
560 struct rb_node **p = &mctz->rb_root.rb_node;
561 struct rb_node *parent = NULL;
562 struct mem_cgroup_per_zone *mz_node;
563
564 if (mz->on_tree)
565 return;
566
ef8745c1
KH
567 mz->usage_in_excess = new_usage_in_excess;
568 if (!mz->usage_in_excess)
569 return;
f64c3f54
BS
570 while (*p) {
571 parent = *p;
572 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
573 tree_node);
574 if (mz->usage_in_excess < mz_node->usage_in_excess)
575 p = &(*p)->rb_left;
576 /*
577 * We can't avoid mem cgroups that are over their soft
578 * limit by the same amount
579 */
580 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
581 p = &(*p)->rb_right;
582 }
583 rb_link_node(&mz->tree_node, parent, p);
584 rb_insert_color(&mz->tree_node, &mctz->rb_root);
585 mz->on_tree = true;
4e416953
BS
586}
587
588static void
c0ff4b85 589__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
590 struct mem_cgroup_per_zone *mz,
591 struct mem_cgroup_tree_per_zone *mctz)
592{
593 if (!mz->on_tree)
594 return;
595 rb_erase(&mz->tree_node, &mctz->rb_root);
596 mz->on_tree = false;
597}
598
f64c3f54 599static void
c0ff4b85 600mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
601 struct mem_cgroup_per_zone *mz,
602 struct mem_cgroup_tree_per_zone *mctz)
603{
604 spin_lock(&mctz->lock);
c0ff4b85 605 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
606 spin_unlock(&mctz->lock);
607}
608
f64c3f54 609
c0ff4b85 610static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 611{
ef8745c1 612 unsigned long long excess;
f64c3f54
BS
613 struct mem_cgroup_per_zone *mz;
614 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
615 int nid = page_to_nid(page);
616 int zid = page_zonenum(page);
f64c3f54
BS
617 mctz = soft_limit_tree_from_page(page);
618
619 /*
4e649152
KH
620 * Necessary to update all ancestors when hierarchy is used.
621 * because their event counter is not touched.
f64c3f54 622 */
c0ff4b85
R
623 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
624 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
625 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
626 /*
627 * We have to update the tree if mz is on RB-tree or
628 * mem is over its softlimit.
629 */
ef8745c1 630 if (excess || mz->on_tree) {
4e649152
KH
631 spin_lock(&mctz->lock);
632 /* if on-tree, remove it */
633 if (mz->on_tree)
c0ff4b85 634 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 635 /*
ef8745c1
KH
636 * Insert again. mz->usage_in_excess will be updated.
637 * If excess is 0, no tree ops.
4e649152 638 */
c0ff4b85 639 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
640 spin_unlock(&mctz->lock);
641 }
f64c3f54
BS
642 }
643}
644
c0ff4b85 645static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
646{
647 int node, zone;
648 struct mem_cgroup_per_zone *mz;
649 struct mem_cgroup_tree_per_zone *mctz;
650
3ed28fa1 651 for_each_node(node) {
f64c3f54 652 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 653 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 654 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 655 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
656 }
657 }
658}
659
4e416953
BS
660static struct mem_cgroup_per_zone *
661__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
662{
663 struct rb_node *rightmost = NULL;
26251eaf 664 struct mem_cgroup_per_zone *mz;
4e416953
BS
665
666retry:
26251eaf 667 mz = NULL;
4e416953
BS
668 rightmost = rb_last(&mctz->rb_root);
669 if (!rightmost)
670 goto done; /* Nothing to reclaim from */
671
672 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
673 /*
674 * Remove the node now but someone else can add it back,
675 * we will to add it back at the end of reclaim to its correct
676 * position in the tree.
677 */
d79154bb
HD
678 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
679 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
680 !css_tryget(&mz->memcg->css))
4e416953
BS
681 goto retry;
682done:
683 return mz;
684}
685
686static struct mem_cgroup_per_zone *
687mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
688{
689 struct mem_cgroup_per_zone *mz;
690
691 spin_lock(&mctz->lock);
692 mz = __mem_cgroup_largest_soft_limit_node(mctz);
693 spin_unlock(&mctz->lock);
694 return mz;
695}
696
711d3d2c
KH
697/*
698 * Implementation Note: reading percpu statistics for memcg.
699 *
700 * Both of vmstat[] and percpu_counter has threshold and do periodic
701 * synchronization to implement "quick" read. There are trade-off between
702 * reading cost and precision of value. Then, we may have a chance to implement
703 * a periodic synchronizion of counter in memcg's counter.
704 *
705 * But this _read() function is used for user interface now. The user accounts
706 * memory usage by memory cgroup and he _always_ requires exact value because
707 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
708 * have to visit all online cpus and make sum. So, for now, unnecessary
709 * synchronization is not implemented. (just implemented for cpu hotplug)
710 *
711 * If there are kernel internal actions which can make use of some not-exact
712 * value, and reading all cpu value can be performance bottleneck in some
713 * common workload, threashold and synchonization as vmstat[] should be
714 * implemented.
715 */
c0ff4b85 716static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 717 enum mem_cgroup_stat_index idx)
c62b1a3b 718{
7a159cc9 719 long val = 0;
c62b1a3b 720 int cpu;
c62b1a3b 721
711d3d2c
KH
722 get_online_cpus();
723 for_each_online_cpu(cpu)
c0ff4b85 724 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 725#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
726 spin_lock(&memcg->pcp_counter_lock);
727 val += memcg->nocpu_base.count[idx];
728 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
729#endif
730 put_online_cpus();
c62b1a3b
KH
731 return val;
732}
733
c0ff4b85 734static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
735 bool charge)
736{
737 int val = (charge) ? 1 : -1;
bff6bb83 738 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
739}
740
c0ff4b85 741static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
742 enum mem_cgroup_events_index idx)
743{
744 unsigned long val = 0;
745 int cpu;
746
747 for_each_online_cpu(cpu)
c0ff4b85 748 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 749#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
750 spin_lock(&memcg->pcp_counter_lock);
751 val += memcg->nocpu_base.events[idx];
752 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
753#endif
754 return val;
755}
756
c0ff4b85 757static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 758 bool anon, int nr_pages)
d52aa412 759{
c62b1a3b
KH
760 preempt_disable();
761
b2402857
KH
762 /*
763 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
764 * counted as CACHE even if it's on ANON LRU.
765 */
766 if (anon)
767 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 768 nr_pages);
d52aa412 769 else
b2402857 770 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 771 nr_pages);
55e462b0 772
e401f176
KH
773 /* pagein of a big page is an event. So, ignore page size */
774 if (nr_pages > 0)
c0ff4b85 775 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 776 else {
c0ff4b85 777 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
778 nr_pages = -nr_pages; /* for event */
779 }
e401f176 780
13114716 781 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 782
c62b1a3b 783 preempt_enable();
6d12e2d8
KH
784}
785
bb2a0de9 786unsigned long
4d7dcca2 787mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
788{
789 struct mem_cgroup_per_zone *mz;
790
791 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
792 return mz->lru_size[lru];
793}
794
795static unsigned long
c0ff4b85 796mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 797 unsigned int lru_mask)
889976db
YH
798{
799 struct mem_cgroup_per_zone *mz;
f156ab93 800 enum lru_list lru;
bb2a0de9
KH
801 unsigned long ret = 0;
802
c0ff4b85 803 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 804
f156ab93
HD
805 for_each_lru(lru) {
806 if (BIT(lru) & lru_mask)
807 ret += mz->lru_size[lru];
bb2a0de9
KH
808 }
809 return ret;
810}
811
812static unsigned long
c0ff4b85 813mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
814 int nid, unsigned int lru_mask)
815{
889976db
YH
816 u64 total = 0;
817 int zid;
818
bb2a0de9 819 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
820 total += mem_cgroup_zone_nr_lru_pages(memcg,
821 nid, zid, lru_mask);
bb2a0de9 822
889976db
YH
823 return total;
824}
bb2a0de9 825
c0ff4b85 826static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 827 unsigned int lru_mask)
6d12e2d8 828{
889976db 829 int nid;
6d12e2d8
KH
830 u64 total = 0;
831
31aaea4a 832 for_each_node_state(nid, N_MEMORY)
c0ff4b85 833 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 834 return total;
d52aa412
KH
835}
836
f53d7ce3
JW
837static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
838 enum mem_cgroup_events_target target)
7a159cc9
JW
839{
840 unsigned long val, next;
841
13114716 842 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 843 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 844 /* from time_after() in jiffies.h */
f53d7ce3
JW
845 if ((long)next - (long)val < 0) {
846 switch (target) {
847 case MEM_CGROUP_TARGET_THRESH:
848 next = val + THRESHOLDS_EVENTS_TARGET;
849 break;
850 case MEM_CGROUP_TARGET_SOFTLIMIT:
851 next = val + SOFTLIMIT_EVENTS_TARGET;
852 break;
853 case MEM_CGROUP_TARGET_NUMAINFO:
854 next = val + NUMAINFO_EVENTS_TARGET;
855 break;
856 default:
857 break;
858 }
859 __this_cpu_write(memcg->stat->targets[target], next);
860 return true;
7a159cc9 861 }
f53d7ce3 862 return false;
d2265e6f
KH
863}
864
865/*
866 * Check events in order.
867 *
868 */
c0ff4b85 869static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 870{
4799401f 871 preempt_disable();
d2265e6f 872 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
873 if (unlikely(mem_cgroup_event_ratelimit(memcg,
874 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
875 bool do_softlimit;
876 bool do_numainfo __maybe_unused;
f53d7ce3
JW
877
878 do_softlimit = mem_cgroup_event_ratelimit(memcg,
879 MEM_CGROUP_TARGET_SOFTLIMIT);
880#if MAX_NUMNODES > 1
881 do_numainfo = mem_cgroup_event_ratelimit(memcg,
882 MEM_CGROUP_TARGET_NUMAINFO);
883#endif
884 preempt_enable();
885
c0ff4b85 886 mem_cgroup_threshold(memcg);
f53d7ce3 887 if (unlikely(do_softlimit))
c0ff4b85 888 mem_cgroup_update_tree(memcg, page);
453a9bf3 889#if MAX_NUMNODES > 1
f53d7ce3 890 if (unlikely(do_numainfo))
c0ff4b85 891 atomic_inc(&memcg->numainfo_events);
453a9bf3 892#endif
f53d7ce3
JW
893 } else
894 preempt_enable();
d2265e6f
KH
895}
896
d1a4c0b3 897struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0 898{
b2145145
WL
899 return mem_cgroup_from_css(
900 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
8cdea7c0
BS
901}
902
cf475ad2 903struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 904{
31a78f23
BS
905 /*
906 * mm_update_next_owner() may clear mm->owner to NULL
907 * if it races with swapoff, page migration, etc.
908 * So this can be called with p == NULL.
909 */
910 if (unlikely(!p))
911 return NULL;
912
b2145145 913 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
78fb7466
PE
914}
915
a433658c 916struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 917{
c0ff4b85 918 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
919
920 if (!mm)
921 return NULL;
54595fe2
KH
922 /*
923 * Because we have no locks, mm->owner's may be being moved to other
924 * cgroup. We use css_tryget() here even if this looks
925 * pessimistic (rather than adding locks here).
926 */
927 rcu_read_lock();
928 do {
c0ff4b85
R
929 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
930 if (unlikely(!memcg))
54595fe2 931 break;
c0ff4b85 932 } while (!css_tryget(&memcg->css));
54595fe2 933 rcu_read_unlock();
c0ff4b85 934 return memcg;
54595fe2
KH
935}
936
5660048c
JW
937/**
938 * mem_cgroup_iter - iterate over memory cgroup hierarchy
939 * @root: hierarchy root
940 * @prev: previously returned memcg, NULL on first invocation
941 * @reclaim: cookie for shared reclaim walks, NULL for full walks
942 *
943 * Returns references to children of the hierarchy below @root, or
944 * @root itself, or %NULL after a full round-trip.
945 *
946 * Caller must pass the return value in @prev on subsequent
947 * invocations for reference counting, or use mem_cgroup_iter_break()
948 * to cancel a hierarchy walk before the round-trip is complete.
949 *
950 * Reclaimers can specify a zone and a priority level in @reclaim to
951 * divide up the memcgs in the hierarchy among all concurrent
952 * reclaimers operating on the same zone and priority.
953 */
954struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
955 struct mem_cgroup *prev,
956 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 957{
9f3a0d09
JW
958 struct mem_cgroup *memcg = NULL;
959 int id = 0;
711d3d2c 960
5660048c
JW
961 if (mem_cgroup_disabled())
962 return NULL;
963
9f3a0d09
JW
964 if (!root)
965 root = root_mem_cgroup;
7d74b06f 966
9f3a0d09
JW
967 if (prev && !reclaim)
968 id = css_id(&prev->css);
14067bb3 969
9f3a0d09
JW
970 if (prev && prev != root)
971 css_put(&prev->css);
14067bb3 972
9f3a0d09
JW
973 if (!root->use_hierarchy && root != root_mem_cgroup) {
974 if (prev)
975 return NULL;
976 return root;
977 }
14067bb3 978
9f3a0d09 979 while (!memcg) {
527a5ec9 980 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 981 struct cgroup_subsys_state *css;
711d3d2c 982
527a5ec9
JW
983 if (reclaim) {
984 int nid = zone_to_nid(reclaim->zone);
985 int zid = zone_idx(reclaim->zone);
986 struct mem_cgroup_per_zone *mz;
987
988 mz = mem_cgroup_zoneinfo(root, nid, zid);
989 iter = &mz->reclaim_iter[reclaim->priority];
990 if (prev && reclaim->generation != iter->generation)
991 return NULL;
992 id = iter->position;
993 }
7d74b06f 994
9f3a0d09
JW
995 rcu_read_lock();
996 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
997 if (css) {
998 if (css == &root->css || css_tryget(css))
b2145145 999 memcg = mem_cgroup_from_css(css);
9f3a0d09
JW
1000 } else
1001 id = 0;
14067bb3 1002 rcu_read_unlock();
14067bb3 1003
527a5ec9
JW
1004 if (reclaim) {
1005 iter->position = id;
1006 if (!css)
1007 iter->generation++;
1008 else if (!prev && memcg)
1009 reclaim->generation = iter->generation;
1010 }
9f3a0d09
JW
1011
1012 if (prev && !css)
1013 return NULL;
1014 }
1015 return memcg;
14067bb3 1016}
7d74b06f 1017
5660048c
JW
1018/**
1019 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1020 * @root: hierarchy root
1021 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1022 */
1023void mem_cgroup_iter_break(struct mem_cgroup *root,
1024 struct mem_cgroup *prev)
9f3a0d09
JW
1025{
1026 if (!root)
1027 root = root_mem_cgroup;
1028 if (prev && prev != root)
1029 css_put(&prev->css);
1030}
7d74b06f 1031
9f3a0d09
JW
1032/*
1033 * Iteration constructs for visiting all cgroups (under a tree). If
1034 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1035 * be used for reference counting.
1036 */
1037#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1038 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1039 iter != NULL; \
527a5ec9 1040 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1041
9f3a0d09 1042#define for_each_mem_cgroup(iter) \
527a5ec9 1043 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1044 iter != NULL; \
527a5ec9 1045 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1046
68ae564b 1047void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1048{
c0ff4b85 1049 struct mem_cgroup *memcg;
456f998e 1050
456f998e 1051 rcu_read_lock();
c0ff4b85
R
1052 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1053 if (unlikely(!memcg))
456f998e
YH
1054 goto out;
1055
1056 switch (idx) {
456f998e 1057 case PGFAULT:
0e574a93
JW
1058 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1059 break;
1060 case PGMAJFAULT:
1061 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1062 break;
1063 default:
1064 BUG();
1065 }
1066out:
1067 rcu_read_unlock();
1068}
68ae564b 1069EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1070
925b7673
JW
1071/**
1072 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1073 * @zone: zone of the wanted lruvec
fa9add64 1074 * @memcg: memcg of the wanted lruvec
925b7673
JW
1075 *
1076 * Returns the lru list vector holding pages for the given @zone and
1077 * @mem. This can be the global zone lruvec, if the memory controller
1078 * is disabled.
1079 */
1080struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1081 struct mem_cgroup *memcg)
1082{
1083 struct mem_cgroup_per_zone *mz;
bea8c150 1084 struct lruvec *lruvec;
925b7673 1085
bea8c150
HD
1086 if (mem_cgroup_disabled()) {
1087 lruvec = &zone->lruvec;
1088 goto out;
1089 }
925b7673
JW
1090
1091 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1092 lruvec = &mz->lruvec;
1093out:
1094 /*
1095 * Since a node can be onlined after the mem_cgroup was created,
1096 * we have to be prepared to initialize lruvec->zone here;
1097 * and if offlined then reonlined, we need to reinitialize it.
1098 */
1099 if (unlikely(lruvec->zone != zone))
1100 lruvec->zone = zone;
1101 return lruvec;
925b7673
JW
1102}
1103
08e552c6
KH
1104/*
1105 * Following LRU functions are allowed to be used without PCG_LOCK.
1106 * Operations are called by routine of global LRU independently from memcg.
1107 * What we have to take care of here is validness of pc->mem_cgroup.
1108 *
1109 * Changes to pc->mem_cgroup happens when
1110 * 1. charge
1111 * 2. moving account
1112 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1113 * It is added to LRU before charge.
1114 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1115 * When moving account, the page is not on LRU. It's isolated.
1116 */
4f98a2fe 1117
925b7673 1118/**
fa9add64 1119 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1120 * @page: the page
fa9add64 1121 * @zone: zone of the page
925b7673 1122 */
fa9add64 1123struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1124{
08e552c6 1125 struct mem_cgroup_per_zone *mz;
925b7673
JW
1126 struct mem_cgroup *memcg;
1127 struct page_cgroup *pc;
bea8c150 1128 struct lruvec *lruvec;
6d12e2d8 1129
bea8c150
HD
1130 if (mem_cgroup_disabled()) {
1131 lruvec = &zone->lruvec;
1132 goto out;
1133 }
925b7673 1134
08e552c6 1135 pc = lookup_page_cgroup(page);
38c5d72f 1136 memcg = pc->mem_cgroup;
7512102c
HD
1137
1138 /*
fa9add64 1139 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1140 * an uncharged page off lru does nothing to secure
1141 * its former mem_cgroup from sudden removal.
1142 *
1143 * Our caller holds lru_lock, and PageCgroupUsed is updated
1144 * under page_cgroup lock: between them, they make all uses
1145 * of pc->mem_cgroup safe.
1146 */
fa9add64 1147 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1148 pc->mem_cgroup = memcg = root_mem_cgroup;
1149
925b7673 1150 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1151 lruvec = &mz->lruvec;
1152out:
1153 /*
1154 * Since a node can be onlined after the mem_cgroup was created,
1155 * we have to be prepared to initialize lruvec->zone here;
1156 * and if offlined then reonlined, we need to reinitialize it.
1157 */
1158 if (unlikely(lruvec->zone != zone))
1159 lruvec->zone = zone;
1160 return lruvec;
08e552c6 1161}
b69408e8 1162
925b7673 1163/**
fa9add64
HD
1164 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1165 * @lruvec: mem_cgroup per zone lru vector
1166 * @lru: index of lru list the page is sitting on
1167 * @nr_pages: positive when adding or negative when removing
925b7673 1168 *
fa9add64
HD
1169 * This function must be called when a page is added to or removed from an
1170 * lru list.
3f58a829 1171 */
fa9add64
HD
1172void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1173 int nr_pages)
3f58a829
MK
1174{
1175 struct mem_cgroup_per_zone *mz;
fa9add64 1176 unsigned long *lru_size;
3f58a829
MK
1177
1178 if (mem_cgroup_disabled())
1179 return;
1180
fa9add64
HD
1181 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1182 lru_size = mz->lru_size + lru;
1183 *lru_size += nr_pages;
1184 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1185}
544122e5 1186
3e92041d 1187/*
c0ff4b85 1188 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1189 * hierarchy subtree
1190 */
c3ac9a8a
JW
1191bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1192 struct mem_cgroup *memcg)
3e92041d 1193{
91c63734
JW
1194 if (root_memcg == memcg)
1195 return true;
3a981f48 1196 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1197 return false;
c3ac9a8a
JW
1198 return css_is_ancestor(&memcg->css, &root_memcg->css);
1199}
1200
1201static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1202 struct mem_cgroup *memcg)
1203{
1204 bool ret;
1205
91c63734 1206 rcu_read_lock();
c3ac9a8a 1207 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1208 rcu_read_unlock();
1209 return ret;
3e92041d
MH
1210}
1211
c0ff4b85 1212int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1213{
1214 int ret;
0b7f569e 1215 struct mem_cgroup *curr = NULL;
158e0a2d 1216 struct task_struct *p;
4c4a2214 1217
158e0a2d 1218 p = find_lock_task_mm(task);
de077d22
DR
1219 if (p) {
1220 curr = try_get_mem_cgroup_from_mm(p->mm);
1221 task_unlock(p);
1222 } else {
1223 /*
1224 * All threads may have already detached their mm's, but the oom
1225 * killer still needs to detect if they have already been oom
1226 * killed to prevent needlessly killing additional tasks.
1227 */
1228 task_lock(task);
1229 curr = mem_cgroup_from_task(task);
1230 if (curr)
1231 css_get(&curr->css);
1232 task_unlock(task);
1233 }
0b7f569e
KH
1234 if (!curr)
1235 return 0;
d31f56db 1236 /*
c0ff4b85 1237 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1238 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1239 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1240 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1241 */
c0ff4b85 1242 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1243 css_put(&curr->css);
4c4a2214
DR
1244 return ret;
1245}
1246
c56d5c7d 1247int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1248{
9b272977 1249 unsigned long inactive_ratio;
14797e23 1250 unsigned long inactive;
9b272977 1251 unsigned long active;
c772be93 1252 unsigned long gb;
14797e23 1253
4d7dcca2
HD
1254 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1255 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1256
c772be93
KM
1257 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1258 if (gb)
1259 inactive_ratio = int_sqrt(10 * gb);
1260 else
1261 inactive_ratio = 1;
1262
9b272977 1263 return inactive * inactive_ratio < active;
14797e23
KM
1264}
1265
c56d5c7d 1266int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
56e49d21
RR
1267{
1268 unsigned long active;
1269 unsigned long inactive;
1270
4d7dcca2
HD
1271 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1272 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21
RR
1273
1274 return (active > inactive);
1275}
1276
6d61ef40
BS
1277#define mem_cgroup_from_res_counter(counter, member) \
1278 container_of(counter, struct mem_cgroup, member)
1279
19942822 1280/**
9d11ea9f 1281 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1282 * @memcg: the memory cgroup
19942822 1283 *
9d11ea9f 1284 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1285 * pages.
19942822 1286 */
c0ff4b85 1287static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1288{
9d11ea9f
JW
1289 unsigned long long margin;
1290
c0ff4b85 1291 margin = res_counter_margin(&memcg->res);
9d11ea9f 1292 if (do_swap_account)
c0ff4b85 1293 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1294 return margin >> PAGE_SHIFT;
19942822
JW
1295}
1296
1f4c025b 1297int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1298{
1299 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1300
1301 /* root ? */
1302 if (cgrp->parent == NULL)
1303 return vm_swappiness;
1304
bf1ff263 1305 return memcg->swappiness;
a7885eb8
KM
1306}
1307
619d094b
KH
1308/*
1309 * memcg->moving_account is used for checking possibility that some thread is
1310 * calling move_account(). When a thread on CPU-A starts moving pages under
1311 * a memcg, other threads should check memcg->moving_account under
1312 * rcu_read_lock(), like this:
1313 *
1314 * CPU-A CPU-B
1315 * rcu_read_lock()
1316 * memcg->moving_account+1 if (memcg->mocing_account)
1317 * take heavy locks.
1318 * synchronize_rcu() update something.
1319 * rcu_read_unlock()
1320 * start move here.
1321 */
4331f7d3
KH
1322
1323/* for quick checking without looking up memcg */
1324atomic_t memcg_moving __read_mostly;
1325
c0ff4b85 1326static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1327{
4331f7d3 1328 atomic_inc(&memcg_moving);
619d094b 1329 atomic_inc(&memcg->moving_account);
32047e2a
KH
1330 synchronize_rcu();
1331}
1332
c0ff4b85 1333static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1334{
619d094b
KH
1335 /*
1336 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1337 * We check NULL in callee rather than caller.
1338 */
4331f7d3
KH
1339 if (memcg) {
1340 atomic_dec(&memcg_moving);
619d094b 1341 atomic_dec(&memcg->moving_account);
4331f7d3 1342 }
32047e2a 1343}
619d094b 1344
32047e2a
KH
1345/*
1346 * 2 routines for checking "mem" is under move_account() or not.
1347 *
13fd1dd9
AM
1348 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1349 * is used for avoiding races in accounting. If true,
32047e2a
KH
1350 * pc->mem_cgroup may be overwritten.
1351 *
1352 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1353 * under hierarchy of moving cgroups. This is for
1354 * waiting at hith-memory prressure caused by "move".
1355 */
1356
13fd1dd9 1357static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1358{
1359 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1360 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1361}
4b534334 1362
c0ff4b85 1363static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1364{
2bd9bb20
KH
1365 struct mem_cgroup *from;
1366 struct mem_cgroup *to;
4b534334 1367 bool ret = false;
2bd9bb20
KH
1368 /*
1369 * Unlike task_move routines, we access mc.to, mc.from not under
1370 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1371 */
1372 spin_lock(&mc.lock);
1373 from = mc.from;
1374 to = mc.to;
1375 if (!from)
1376 goto unlock;
3e92041d 1377
c0ff4b85
R
1378 ret = mem_cgroup_same_or_subtree(memcg, from)
1379 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1380unlock:
1381 spin_unlock(&mc.lock);
4b534334
KH
1382 return ret;
1383}
1384
c0ff4b85 1385static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1386{
1387 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1388 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1389 DEFINE_WAIT(wait);
1390 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1391 /* moving charge context might have finished. */
1392 if (mc.moving_task)
1393 schedule();
1394 finish_wait(&mc.waitq, &wait);
1395 return true;
1396 }
1397 }
1398 return false;
1399}
1400
312734c0
KH
1401/*
1402 * Take this lock when
1403 * - a code tries to modify page's memcg while it's USED.
1404 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1405 * see mem_cgroup_stolen(), too.
312734c0
KH
1406 */
1407static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1408 unsigned long *flags)
1409{
1410 spin_lock_irqsave(&memcg->move_lock, *flags);
1411}
1412
1413static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1414 unsigned long *flags)
1415{
1416 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1417}
1418
e222432b 1419/**
6a6135b6 1420 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1421 * @memcg: The memory cgroup that went over limit
1422 * @p: Task that is going to be killed
1423 *
1424 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1425 * enabled
1426 */
1427void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1428{
1429 struct cgroup *task_cgrp;
1430 struct cgroup *mem_cgrp;
1431 /*
1432 * Need a buffer in BSS, can't rely on allocations. The code relies
1433 * on the assumption that OOM is serialized for memory controller.
1434 * If this assumption is broken, revisit this code.
1435 */
1436 static char memcg_name[PATH_MAX];
1437 int ret;
1438
d31f56db 1439 if (!memcg || !p)
e222432b
BS
1440 return;
1441
e222432b
BS
1442 rcu_read_lock();
1443
1444 mem_cgrp = memcg->css.cgroup;
1445 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1446
1447 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1448 if (ret < 0) {
1449 /*
1450 * Unfortunately, we are unable to convert to a useful name
1451 * But we'll still print out the usage information
1452 */
1453 rcu_read_unlock();
1454 goto done;
1455 }
1456 rcu_read_unlock();
1457
1458 printk(KERN_INFO "Task in %s killed", memcg_name);
1459
1460 rcu_read_lock();
1461 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1462 if (ret < 0) {
1463 rcu_read_unlock();
1464 goto done;
1465 }
1466 rcu_read_unlock();
1467
1468 /*
1469 * Continues from above, so we don't need an KERN_ level
1470 */
1471 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1472done:
1473
1474 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1475 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1476 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1477 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1478 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1479 "failcnt %llu\n",
1480 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1481 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1482 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
510fc4e1
GC
1483 printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1484 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1485 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1486 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
e222432b
BS
1487}
1488
81d39c20
KH
1489/*
1490 * This function returns the number of memcg under hierarchy tree. Returns
1491 * 1(self count) if no children.
1492 */
c0ff4b85 1493static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1494{
1495 int num = 0;
7d74b06f
KH
1496 struct mem_cgroup *iter;
1497
c0ff4b85 1498 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1499 num++;
81d39c20
KH
1500 return num;
1501}
1502
a63d83f4
DR
1503/*
1504 * Return the memory (and swap, if configured) limit for a memcg.
1505 */
9cbb78bb 1506static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1507{
1508 u64 limit;
a63d83f4 1509
f3e8eb70 1510 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1511
a63d83f4 1512 /*
9a5a8f19 1513 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1514 */
9a5a8f19
MH
1515 if (mem_cgroup_swappiness(memcg)) {
1516 u64 memsw;
1517
1518 limit += total_swap_pages << PAGE_SHIFT;
1519 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1520
1521 /*
1522 * If memsw is finite and limits the amount of swap space
1523 * available to this memcg, return that limit.
1524 */
1525 limit = min(limit, memsw);
1526 }
1527
1528 return limit;
a63d83f4
DR
1529}
1530
19965460
DR
1531static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1532 int order)
9cbb78bb
DR
1533{
1534 struct mem_cgroup *iter;
1535 unsigned long chosen_points = 0;
1536 unsigned long totalpages;
1537 unsigned int points = 0;
1538 struct task_struct *chosen = NULL;
1539
876aafbf
DR
1540 /*
1541 * If current has a pending SIGKILL, then automatically select it. The
1542 * goal is to allow it to allocate so that it may quickly exit and free
1543 * its memory.
1544 */
1545 if (fatal_signal_pending(current)) {
1546 set_thread_flag(TIF_MEMDIE);
1547 return;
1548 }
1549
1550 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1551 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1552 for_each_mem_cgroup_tree(iter, memcg) {
1553 struct cgroup *cgroup = iter->css.cgroup;
1554 struct cgroup_iter it;
1555 struct task_struct *task;
1556
1557 cgroup_iter_start(cgroup, &it);
1558 while ((task = cgroup_iter_next(cgroup, &it))) {
1559 switch (oom_scan_process_thread(task, totalpages, NULL,
1560 false)) {
1561 case OOM_SCAN_SELECT:
1562 if (chosen)
1563 put_task_struct(chosen);
1564 chosen = task;
1565 chosen_points = ULONG_MAX;
1566 get_task_struct(chosen);
1567 /* fall through */
1568 case OOM_SCAN_CONTINUE:
1569 continue;
1570 case OOM_SCAN_ABORT:
1571 cgroup_iter_end(cgroup, &it);
1572 mem_cgroup_iter_break(memcg, iter);
1573 if (chosen)
1574 put_task_struct(chosen);
1575 return;
1576 case OOM_SCAN_OK:
1577 break;
1578 };
1579 points = oom_badness(task, memcg, NULL, totalpages);
1580 if (points > chosen_points) {
1581 if (chosen)
1582 put_task_struct(chosen);
1583 chosen = task;
1584 chosen_points = points;
1585 get_task_struct(chosen);
1586 }
1587 }
1588 cgroup_iter_end(cgroup, &it);
1589 }
1590
1591 if (!chosen)
1592 return;
1593 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1594 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1595 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1596}
1597
5660048c
JW
1598static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1599 gfp_t gfp_mask,
1600 unsigned long flags)
1601{
1602 unsigned long total = 0;
1603 bool noswap = false;
1604 int loop;
1605
1606 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1607 noswap = true;
1608 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1609 noswap = true;
1610
1611 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1612 if (loop)
1613 drain_all_stock_async(memcg);
1614 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1615 /*
1616 * Allow limit shrinkers, which are triggered directly
1617 * by userspace, to catch signals and stop reclaim
1618 * after minimal progress, regardless of the margin.
1619 */
1620 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1621 break;
1622 if (mem_cgroup_margin(memcg))
1623 break;
1624 /*
1625 * If nothing was reclaimed after two attempts, there
1626 * may be no reclaimable pages in this hierarchy.
1627 */
1628 if (loop && !total)
1629 break;
1630 }
1631 return total;
1632}
1633
4d0c066d
KH
1634/**
1635 * test_mem_cgroup_node_reclaimable
dad7557e 1636 * @memcg: the target memcg
4d0c066d
KH
1637 * @nid: the node ID to be checked.
1638 * @noswap : specify true here if the user wants flle only information.
1639 *
1640 * This function returns whether the specified memcg contains any
1641 * reclaimable pages on a node. Returns true if there are any reclaimable
1642 * pages in the node.
1643 */
c0ff4b85 1644static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1645 int nid, bool noswap)
1646{
c0ff4b85 1647 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1648 return true;
1649 if (noswap || !total_swap_pages)
1650 return false;
c0ff4b85 1651 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1652 return true;
1653 return false;
1654
1655}
889976db
YH
1656#if MAX_NUMNODES > 1
1657
1658/*
1659 * Always updating the nodemask is not very good - even if we have an empty
1660 * list or the wrong list here, we can start from some node and traverse all
1661 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1662 *
1663 */
c0ff4b85 1664static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1665{
1666 int nid;
453a9bf3
KH
1667 /*
1668 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1669 * pagein/pageout changes since the last update.
1670 */
c0ff4b85 1671 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1672 return;
c0ff4b85 1673 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1674 return;
1675
889976db 1676 /* make a nodemask where this memcg uses memory from */
31aaea4a 1677 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1678
31aaea4a 1679 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1680
c0ff4b85
R
1681 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1682 node_clear(nid, memcg->scan_nodes);
889976db 1683 }
453a9bf3 1684
c0ff4b85
R
1685 atomic_set(&memcg->numainfo_events, 0);
1686 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1687}
1688
1689/*
1690 * Selecting a node where we start reclaim from. Because what we need is just
1691 * reducing usage counter, start from anywhere is O,K. Considering
1692 * memory reclaim from current node, there are pros. and cons.
1693 *
1694 * Freeing memory from current node means freeing memory from a node which
1695 * we'll use or we've used. So, it may make LRU bad. And if several threads
1696 * hit limits, it will see a contention on a node. But freeing from remote
1697 * node means more costs for memory reclaim because of memory latency.
1698 *
1699 * Now, we use round-robin. Better algorithm is welcomed.
1700 */
c0ff4b85 1701int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1702{
1703 int node;
1704
c0ff4b85
R
1705 mem_cgroup_may_update_nodemask(memcg);
1706 node = memcg->last_scanned_node;
889976db 1707
c0ff4b85 1708 node = next_node(node, memcg->scan_nodes);
889976db 1709 if (node == MAX_NUMNODES)
c0ff4b85 1710 node = first_node(memcg->scan_nodes);
889976db
YH
1711 /*
1712 * We call this when we hit limit, not when pages are added to LRU.
1713 * No LRU may hold pages because all pages are UNEVICTABLE or
1714 * memcg is too small and all pages are not on LRU. In that case,
1715 * we use curret node.
1716 */
1717 if (unlikely(node == MAX_NUMNODES))
1718 node = numa_node_id();
1719
c0ff4b85 1720 memcg->last_scanned_node = node;
889976db
YH
1721 return node;
1722}
1723
4d0c066d
KH
1724/*
1725 * Check all nodes whether it contains reclaimable pages or not.
1726 * For quick scan, we make use of scan_nodes. This will allow us to skip
1727 * unused nodes. But scan_nodes is lazily updated and may not cotain
1728 * enough new information. We need to do double check.
1729 */
6bbda35c 1730static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1731{
1732 int nid;
1733
1734 /*
1735 * quick check...making use of scan_node.
1736 * We can skip unused nodes.
1737 */
c0ff4b85
R
1738 if (!nodes_empty(memcg->scan_nodes)) {
1739 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1740 nid < MAX_NUMNODES;
c0ff4b85 1741 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1742
c0ff4b85 1743 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1744 return true;
1745 }
1746 }
1747 /*
1748 * Check rest of nodes.
1749 */
31aaea4a 1750 for_each_node_state(nid, N_MEMORY) {
c0ff4b85 1751 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1752 continue;
c0ff4b85 1753 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1754 return true;
1755 }
1756 return false;
1757}
1758
889976db 1759#else
c0ff4b85 1760int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1761{
1762 return 0;
1763}
4d0c066d 1764
6bbda35c 1765static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1766{
c0ff4b85 1767 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1768}
889976db
YH
1769#endif
1770
5660048c
JW
1771static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1772 struct zone *zone,
1773 gfp_t gfp_mask,
1774 unsigned long *total_scanned)
6d61ef40 1775{
9f3a0d09 1776 struct mem_cgroup *victim = NULL;
5660048c 1777 int total = 0;
04046e1a 1778 int loop = 0;
9d11ea9f 1779 unsigned long excess;
185efc0f 1780 unsigned long nr_scanned;
527a5ec9
JW
1781 struct mem_cgroup_reclaim_cookie reclaim = {
1782 .zone = zone,
1783 .priority = 0,
1784 };
9d11ea9f 1785
c0ff4b85 1786 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1787
4e416953 1788 while (1) {
527a5ec9 1789 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1790 if (!victim) {
04046e1a 1791 loop++;
4e416953
BS
1792 if (loop >= 2) {
1793 /*
1794 * If we have not been able to reclaim
1795 * anything, it might because there are
1796 * no reclaimable pages under this hierarchy
1797 */
5660048c 1798 if (!total)
4e416953 1799 break;
4e416953 1800 /*
25985edc 1801 * We want to do more targeted reclaim.
4e416953
BS
1802 * excess >> 2 is not to excessive so as to
1803 * reclaim too much, nor too less that we keep
1804 * coming back to reclaim from this cgroup
1805 */
1806 if (total >= (excess >> 2) ||
9f3a0d09 1807 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1808 break;
4e416953 1809 }
9f3a0d09 1810 continue;
4e416953 1811 }
5660048c 1812 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1813 continue;
5660048c
JW
1814 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1815 zone, &nr_scanned);
1816 *total_scanned += nr_scanned;
1817 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1818 break;
6d61ef40 1819 }
9f3a0d09 1820 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1821 return total;
6d61ef40
BS
1822}
1823
867578cb
KH
1824/*
1825 * Check OOM-Killer is already running under our hierarchy.
1826 * If someone is running, return false.
1af8efe9 1827 * Has to be called with memcg_oom_lock
867578cb 1828 */
c0ff4b85 1829static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1830{
79dfdacc 1831 struct mem_cgroup *iter, *failed = NULL;
a636b327 1832
9f3a0d09 1833 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1834 if (iter->oom_lock) {
79dfdacc
MH
1835 /*
1836 * this subtree of our hierarchy is already locked
1837 * so we cannot give a lock.
1838 */
79dfdacc 1839 failed = iter;
9f3a0d09
JW
1840 mem_cgroup_iter_break(memcg, iter);
1841 break;
23751be0
JW
1842 } else
1843 iter->oom_lock = true;
7d74b06f 1844 }
867578cb 1845
79dfdacc 1846 if (!failed)
23751be0 1847 return true;
79dfdacc
MH
1848
1849 /*
1850 * OK, we failed to lock the whole subtree so we have to clean up
1851 * what we set up to the failing subtree
1852 */
9f3a0d09 1853 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1854 if (iter == failed) {
9f3a0d09
JW
1855 mem_cgroup_iter_break(memcg, iter);
1856 break;
79dfdacc
MH
1857 }
1858 iter->oom_lock = false;
1859 }
23751be0 1860 return false;
a636b327 1861}
0b7f569e 1862
79dfdacc 1863/*
1af8efe9 1864 * Has to be called with memcg_oom_lock
79dfdacc 1865 */
c0ff4b85 1866static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1867{
7d74b06f
KH
1868 struct mem_cgroup *iter;
1869
c0ff4b85 1870 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1871 iter->oom_lock = false;
1872 return 0;
1873}
1874
c0ff4b85 1875static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1876{
1877 struct mem_cgroup *iter;
1878
c0ff4b85 1879 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1880 atomic_inc(&iter->under_oom);
1881}
1882
c0ff4b85 1883static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1884{
1885 struct mem_cgroup *iter;
1886
867578cb
KH
1887 /*
1888 * When a new child is created while the hierarchy is under oom,
1889 * mem_cgroup_oom_lock() may not be called. We have to use
1890 * atomic_add_unless() here.
1891 */
c0ff4b85 1892 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1893 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1894}
1895
1af8efe9 1896static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1897static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1898
dc98df5a 1899struct oom_wait_info {
d79154bb 1900 struct mem_cgroup *memcg;
dc98df5a
KH
1901 wait_queue_t wait;
1902};
1903
1904static int memcg_oom_wake_function(wait_queue_t *wait,
1905 unsigned mode, int sync, void *arg)
1906{
d79154bb
HD
1907 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1908 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1909 struct oom_wait_info *oom_wait_info;
1910
1911 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1912 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1913
dc98df5a 1914 /*
d79154bb 1915 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1916 * Then we can use css_is_ancestor without taking care of RCU.
1917 */
c0ff4b85
R
1918 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1919 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1920 return 0;
dc98df5a
KH
1921 return autoremove_wake_function(wait, mode, sync, arg);
1922}
1923
c0ff4b85 1924static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1925{
c0ff4b85
R
1926 /* for filtering, pass "memcg" as argument. */
1927 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1928}
1929
c0ff4b85 1930static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1931{
c0ff4b85
R
1932 if (memcg && atomic_read(&memcg->under_oom))
1933 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1934}
1935
867578cb
KH
1936/*
1937 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1938 */
6bbda35c
KS
1939static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1940 int order)
0b7f569e 1941{
dc98df5a 1942 struct oom_wait_info owait;
3c11ecf4 1943 bool locked, need_to_kill;
867578cb 1944
d79154bb 1945 owait.memcg = memcg;
dc98df5a
KH
1946 owait.wait.flags = 0;
1947 owait.wait.func = memcg_oom_wake_function;
1948 owait.wait.private = current;
1949 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1950 need_to_kill = true;
c0ff4b85 1951 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1952
c0ff4b85 1953 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1954 spin_lock(&memcg_oom_lock);
c0ff4b85 1955 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1956 /*
1957 * Even if signal_pending(), we can't quit charge() loop without
1958 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1959 * under OOM is always welcomed, use TASK_KILLABLE here.
1960 */
3c11ecf4 1961 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1962 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1963 need_to_kill = false;
1964 if (locked)
c0ff4b85 1965 mem_cgroup_oom_notify(memcg);
1af8efe9 1966 spin_unlock(&memcg_oom_lock);
867578cb 1967
3c11ecf4
KH
1968 if (need_to_kill) {
1969 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1970 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1971 } else {
867578cb 1972 schedule();
dc98df5a 1973 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1974 }
1af8efe9 1975 spin_lock(&memcg_oom_lock);
79dfdacc 1976 if (locked)
c0ff4b85
R
1977 mem_cgroup_oom_unlock(memcg);
1978 memcg_wakeup_oom(memcg);
1af8efe9 1979 spin_unlock(&memcg_oom_lock);
867578cb 1980
c0ff4b85 1981 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1982
867578cb
KH
1983 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1984 return false;
1985 /* Give chance to dying process */
715a5ee8 1986 schedule_timeout_uninterruptible(1);
867578cb 1987 return true;
0b7f569e
KH
1988}
1989
d69b042f
BS
1990/*
1991 * Currently used to update mapped file statistics, but the routine can be
1992 * generalized to update other statistics as well.
32047e2a
KH
1993 *
1994 * Notes: Race condition
1995 *
1996 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1997 * it tends to be costly. But considering some conditions, we doesn't need
1998 * to do so _always_.
1999 *
2000 * Considering "charge", lock_page_cgroup() is not required because all
2001 * file-stat operations happen after a page is attached to radix-tree. There
2002 * are no race with "charge".
2003 *
2004 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2005 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2006 * if there are race with "uncharge". Statistics itself is properly handled
2007 * by flags.
2008 *
2009 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2010 * small, we check mm->moving_account and detect there are possibility of race
2011 * If there is, we take a lock.
d69b042f 2012 */
26174efd 2013
89c06bd5
KH
2014void __mem_cgroup_begin_update_page_stat(struct page *page,
2015 bool *locked, unsigned long *flags)
2016{
2017 struct mem_cgroup *memcg;
2018 struct page_cgroup *pc;
2019
2020 pc = lookup_page_cgroup(page);
2021again:
2022 memcg = pc->mem_cgroup;
2023 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2024 return;
2025 /*
2026 * If this memory cgroup is not under account moving, we don't
da92c47d 2027 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2028 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2029 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2030 */
13fd1dd9 2031 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2032 return;
2033
2034 move_lock_mem_cgroup(memcg, flags);
2035 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2036 move_unlock_mem_cgroup(memcg, flags);
2037 goto again;
2038 }
2039 *locked = true;
2040}
2041
2042void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2043{
2044 struct page_cgroup *pc = lookup_page_cgroup(page);
2045
2046 /*
2047 * It's guaranteed that pc->mem_cgroup never changes while
2048 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2049 * should take move_lock_mem_cgroup().
89c06bd5
KH
2050 */
2051 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2052}
2053
2a7106f2
GT
2054void mem_cgroup_update_page_stat(struct page *page,
2055 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 2056{
c0ff4b85 2057 struct mem_cgroup *memcg;
32047e2a 2058 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2059 unsigned long uninitialized_var(flags);
d69b042f 2060
cfa44946 2061 if (mem_cgroup_disabled())
d69b042f 2062 return;
89c06bd5 2063
c0ff4b85
R
2064 memcg = pc->mem_cgroup;
2065 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2066 return;
26174efd 2067
26174efd 2068 switch (idx) {
2a7106f2 2069 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2070 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2071 break;
2072 default:
2073 BUG();
8725d541 2074 }
d69b042f 2075
c0ff4b85 2076 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2077}
26174efd 2078
cdec2e42
KH
2079/*
2080 * size of first charge trial. "32" comes from vmscan.c's magic value.
2081 * TODO: maybe necessary to use big numbers in big irons.
2082 */
7ec99d62 2083#define CHARGE_BATCH 32U
cdec2e42
KH
2084struct memcg_stock_pcp {
2085 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2086 unsigned int nr_pages;
cdec2e42 2087 struct work_struct work;
26fe6168 2088 unsigned long flags;
a0db00fc 2089#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2090};
2091static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2092static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2093
a0956d54
SS
2094/**
2095 * consume_stock: Try to consume stocked charge on this cpu.
2096 * @memcg: memcg to consume from.
2097 * @nr_pages: how many pages to charge.
2098 *
2099 * The charges will only happen if @memcg matches the current cpu's memcg
2100 * stock, and at least @nr_pages are available in that stock. Failure to
2101 * service an allocation will refill the stock.
2102 *
2103 * returns true if successful, false otherwise.
cdec2e42 2104 */
a0956d54 2105static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2106{
2107 struct memcg_stock_pcp *stock;
2108 bool ret = true;
2109
a0956d54
SS
2110 if (nr_pages > CHARGE_BATCH)
2111 return false;
2112
cdec2e42 2113 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2114 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2115 stock->nr_pages -= nr_pages;
cdec2e42
KH
2116 else /* need to call res_counter_charge */
2117 ret = false;
2118 put_cpu_var(memcg_stock);
2119 return ret;
2120}
2121
2122/*
2123 * Returns stocks cached in percpu to res_counter and reset cached information.
2124 */
2125static void drain_stock(struct memcg_stock_pcp *stock)
2126{
2127 struct mem_cgroup *old = stock->cached;
2128
11c9ea4e
JW
2129 if (stock->nr_pages) {
2130 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2131
2132 res_counter_uncharge(&old->res, bytes);
cdec2e42 2133 if (do_swap_account)
11c9ea4e
JW
2134 res_counter_uncharge(&old->memsw, bytes);
2135 stock->nr_pages = 0;
cdec2e42
KH
2136 }
2137 stock->cached = NULL;
cdec2e42
KH
2138}
2139
2140/*
2141 * This must be called under preempt disabled or must be called by
2142 * a thread which is pinned to local cpu.
2143 */
2144static void drain_local_stock(struct work_struct *dummy)
2145{
2146 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2147 drain_stock(stock);
26fe6168 2148 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2149}
2150
2151/*
2152 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2153 * This will be consumed by consume_stock() function, later.
cdec2e42 2154 */
c0ff4b85 2155static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2156{
2157 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2158
c0ff4b85 2159 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2160 drain_stock(stock);
c0ff4b85 2161 stock->cached = memcg;
cdec2e42 2162 }
11c9ea4e 2163 stock->nr_pages += nr_pages;
cdec2e42
KH
2164 put_cpu_var(memcg_stock);
2165}
2166
2167/*
c0ff4b85 2168 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2169 * of the hierarchy under it. sync flag says whether we should block
2170 * until the work is done.
cdec2e42 2171 */
c0ff4b85 2172static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2173{
26fe6168 2174 int cpu, curcpu;
d38144b7 2175
cdec2e42 2176 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2177 get_online_cpus();
5af12d0e 2178 curcpu = get_cpu();
cdec2e42
KH
2179 for_each_online_cpu(cpu) {
2180 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2181 struct mem_cgroup *memcg;
26fe6168 2182
c0ff4b85
R
2183 memcg = stock->cached;
2184 if (!memcg || !stock->nr_pages)
26fe6168 2185 continue;
c0ff4b85 2186 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2187 continue;
d1a05b69
MH
2188 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2189 if (cpu == curcpu)
2190 drain_local_stock(&stock->work);
2191 else
2192 schedule_work_on(cpu, &stock->work);
2193 }
cdec2e42 2194 }
5af12d0e 2195 put_cpu();
d38144b7
MH
2196
2197 if (!sync)
2198 goto out;
2199
2200 for_each_online_cpu(cpu) {
2201 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2202 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2203 flush_work(&stock->work);
2204 }
2205out:
cdec2e42 2206 put_online_cpus();
d38144b7
MH
2207}
2208
2209/*
2210 * Tries to drain stocked charges in other cpus. This function is asynchronous
2211 * and just put a work per cpu for draining localy on each cpu. Caller can
2212 * expects some charges will be back to res_counter later but cannot wait for
2213 * it.
2214 */
c0ff4b85 2215static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2216{
9f50fad6
MH
2217 /*
2218 * If someone calls draining, avoid adding more kworker runs.
2219 */
2220 if (!mutex_trylock(&percpu_charge_mutex))
2221 return;
c0ff4b85 2222 drain_all_stock(root_memcg, false);
9f50fad6 2223 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2224}
2225
2226/* This is a synchronous drain interface. */
c0ff4b85 2227static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2228{
2229 /* called when force_empty is called */
9f50fad6 2230 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2231 drain_all_stock(root_memcg, true);
9f50fad6 2232 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2233}
2234
711d3d2c
KH
2235/*
2236 * This function drains percpu counter value from DEAD cpu and
2237 * move it to local cpu. Note that this function can be preempted.
2238 */
c0ff4b85 2239static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2240{
2241 int i;
2242
c0ff4b85 2243 spin_lock(&memcg->pcp_counter_lock);
6104621d 2244 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2245 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2246
c0ff4b85
R
2247 per_cpu(memcg->stat->count[i], cpu) = 0;
2248 memcg->nocpu_base.count[i] += x;
711d3d2c 2249 }
e9f8974f 2250 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2251 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2252
c0ff4b85
R
2253 per_cpu(memcg->stat->events[i], cpu) = 0;
2254 memcg->nocpu_base.events[i] += x;
e9f8974f 2255 }
c0ff4b85 2256 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2257}
2258
2259static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2260 unsigned long action,
2261 void *hcpu)
2262{
2263 int cpu = (unsigned long)hcpu;
2264 struct memcg_stock_pcp *stock;
711d3d2c 2265 struct mem_cgroup *iter;
cdec2e42 2266
619d094b 2267 if (action == CPU_ONLINE)
1489ebad 2268 return NOTIFY_OK;
1489ebad 2269
d833049b 2270 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2271 return NOTIFY_OK;
711d3d2c 2272
9f3a0d09 2273 for_each_mem_cgroup(iter)
711d3d2c
KH
2274 mem_cgroup_drain_pcp_counter(iter, cpu);
2275
cdec2e42
KH
2276 stock = &per_cpu(memcg_stock, cpu);
2277 drain_stock(stock);
2278 return NOTIFY_OK;
2279}
2280
4b534334
KH
2281
2282/* See __mem_cgroup_try_charge() for details */
2283enum {
2284 CHARGE_OK, /* success */
2285 CHARGE_RETRY, /* need to retry but retry is not bad */
2286 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2287 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2288 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2289};
2290
c0ff4b85 2291static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359
SS
2292 unsigned int nr_pages, unsigned int min_pages,
2293 bool oom_check)
4b534334 2294{
7ec99d62 2295 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2296 struct mem_cgroup *mem_over_limit;
2297 struct res_counter *fail_res;
2298 unsigned long flags = 0;
2299 int ret;
2300
c0ff4b85 2301 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2302
2303 if (likely(!ret)) {
2304 if (!do_swap_account)
2305 return CHARGE_OK;
c0ff4b85 2306 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2307 if (likely(!ret))
2308 return CHARGE_OK;
2309
c0ff4b85 2310 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2311 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2312 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2313 } else
2314 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2315 /*
9221edb7
JW
2316 * Never reclaim on behalf of optional batching, retry with a
2317 * single page instead.
2318 */
4c9c5359 2319 if (nr_pages > min_pages)
4b534334
KH
2320 return CHARGE_RETRY;
2321
2322 if (!(gfp_mask & __GFP_WAIT))
2323 return CHARGE_WOULDBLOCK;
2324
4c9c5359
SS
2325 if (gfp_mask & __GFP_NORETRY)
2326 return CHARGE_NOMEM;
2327
5660048c 2328 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2329 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2330 return CHARGE_RETRY;
4b534334 2331 /*
19942822
JW
2332 * Even though the limit is exceeded at this point, reclaim
2333 * may have been able to free some pages. Retry the charge
2334 * before killing the task.
2335 *
2336 * Only for regular pages, though: huge pages are rather
2337 * unlikely to succeed so close to the limit, and we fall back
2338 * to regular pages anyway in case of failure.
4b534334 2339 */
4c9c5359 2340 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2341 return CHARGE_RETRY;
2342
2343 /*
2344 * At task move, charge accounts can be doubly counted. So, it's
2345 * better to wait until the end of task_move if something is going on.
2346 */
2347 if (mem_cgroup_wait_acct_move(mem_over_limit))
2348 return CHARGE_RETRY;
2349
2350 /* If we don't need to call oom-killer at el, return immediately */
2351 if (!oom_check)
2352 return CHARGE_NOMEM;
2353 /* check OOM */
e845e199 2354 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2355 return CHARGE_OOM_DIE;
2356
2357 return CHARGE_RETRY;
2358}
2359
f817ed48 2360/*
38c5d72f
KH
2361 * __mem_cgroup_try_charge() does
2362 * 1. detect memcg to be charged against from passed *mm and *ptr,
2363 * 2. update res_counter
2364 * 3. call memory reclaim if necessary.
2365 *
2366 * In some special case, if the task is fatal, fatal_signal_pending() or
2367 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2368 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2369 * as possible without any hazards. 2: all pages should have a valid
2370 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2371 * pointer, that is treated as a charge to root_mem_cgroup.
2372 *
2373 * So __mem_cgroup_try_charge() will return
2374 * 0 ... on success, filling *ptr with a valid memcg pointer.
2375 * -ENOMEM ... charge failure because of resource limits.
2376 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2377 *
2378 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2379 * the oom-killer can be invoked.
8a9f3ccd 2380 */
f817ed48 2381static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2382 gfp_t gfp_mask,
7ec99d62 2383 unsigned int nr_pages,
c0ff4b85 2384 struct mem_cgroup **ptr,
7ec99d62 2385 bool oom)
8a9f3ccd 2386{
7ec99d62 2387 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2388 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2389 struct mem_cgroup *memcg = NULL;
4b534334 2390 int ret;
a636b327 2391
867578cb
KH
2392 /*
2393 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2394 * in system level. So, allow to go ahead dying process in addition to
2395 * MEMDIE process.
2396 */
2397 if (unlikely(test_thread_flag(TIF_MEMDIE)
2398 || fatal_signal_pending(current)))
2399 goto bypass;
a636b327 2400
8a9f3ccd 2401 /*
3be91277
HD
2402 * We always charge the cgroup the mm_struct belongs to.
2403 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2404 * thread group leader migrates. It's possible that mm is not
24467cac 2405 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2406 */
c0ff4b85 2407 if (!*ptr && !mm)
38c5d72f 2408 *ptr = root_mem_cgroup;
f75ca962 2409again:
c0ff4b85
R
2410 if (*ptr) { /* css should be a valid one */
2411 memcg = *ptr;
c0ff4b85 2412 if (mem_cgroup_is_root(memcg))
f75ca962 2413 goto done;
a0956d54 2414 if (consume_stock(memcg, nr_pages))
f75ca962 2415 goto done;
c0ff4b85 2416 css_get(&memcg->css);
4b534334 2417 } else {
f75ca962 2418 struct task_struct *p;
54595fe2 2419
f75ca962
KH
2420 rcu_read_lock();
2421 p = rcu_dereference(mm->owner);
f75ca962 2422 /*
ebb76ce1 2423 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2424 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2425 * race with swapoff. Then, we have small risk of mis-accouning.
2426 * But such kind of mis-account by race always happens because
2427 * we don't have cgroup_mutex(). It's overkill and we allo that
2428 * small race, here.
2429 * (*) swapoff at el will charge against mm-struct not against
2430 * task-struct. So, mm->owner can be NULL.
f75ca962 2431 */
c0ff4b85 2432 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2433 if (!memcg)
2434 memcg = root_mem_cgroup;
2435 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2436 rcu_read_unlock();
2437 goto done;
2438 }
a0956d54 2439 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2440 /*
2441 * It seems dagerous to access memcg without css_get().
2442 * But considering how consume_stok works, it's not
2443 * necessary. If consume_stock success, some charges
2444 * from this memcg are cached on this cpu. So, we
2445 * don't need to call css_get()/css_tryget() before
2446 * calling consume_stock().
2447 */
2448 rcu_read_unlock();
2449 goto done;
2450 }
2451 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2452 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2453 rcu_read_unlock();
2454 goto again;
2455 }
2456 rcu_read_unlock();
2457 }
8a9f3ccd 2458
4b534334
KH
2459 do {
2460 bool oom_check;
7a81b88c 2461
4b534334 2462 /* If killed, bypass charge */
f75ca962 2463 if (fatal_signal_pending(current)) {
c0ff4b85 2464 css_put(&memcg->css);
4b534334 2465 goto bypass;
f75ca962 2466 }
6d61ef40 2467
4b534334
KH
2468 oom_check = false;
2469 if (oom && !nr_oom_retries) {
2470 oom_check = true;
2471 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2472 }
66e1707b 2473
4c9c5359
SS
2474 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2475 oom_check);
4b534334
KH
2476 switch (ret) {
2477 case CHARGE_OK:
2478 break;
2479 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2480 batch = nr_pages;
c0ff4b85
R
2481 css_put(&memcg->css);
2482 memcg = NULL;
f75ca962 2483 goto again;
4b534334 2484 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2485 css_put(&memcg->css);
4b534334
KH
2486 goto nomem;
2487 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2488 if (!oom) {
c0ff4b85 2489 css_put(&memcg->css);
867578cb 2490 goto nomem;
f75ca962 2491 }
4b534334
KH
2492 /* If oom, we never return -ENOMEM */
2493 nr_oom_retries--;
2494 break;
2495 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2496 css_put(&memcg->css);
867578cb 2497 goto bypass;
66e1707b 2498 }
4b534334
KH
2499 } while (ret != CHARGE_OK);
2500
7ec99d62 2501 if (batch > nr_pages)
c0ff4b85
R
2502 refill_stock(memcg, batch - nr_pages);
2503 css_put(&memcg->css);
0c3e73e8 2504done:
c0ff4b85 2505 *ptr = memcg;
7a81b88c
KH
2506 return 0;
2507nomem:
c0ff4b85 2508 *ptr = NULL;
7a81b88c 2509 return -ENOMEM;
867578cb 2510bypass:
38c5d72f
KH
2511 *ptr = root_mem_cgroup;
2512 return -EINTR;
7a81b88c 2513}
8a9f3ccd 2514
a3032a2c
DN
2515/*
2516 * Somemtimes we have to undo a charge we got by try_charge().
2517 * This function is for that and do uncharge, put css's refcnt.
2518 * gotten by try_charge().
2519 */
c0ff4b85 2520static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2521 unsigned int nr_pages)
a3032a2c 2522{
c0ff4b85 2523 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2524 unsigned long bytes = nr_pages * PAGE_SIZE;
2525
c0ff4b85 2526 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2527 if (do_swap_account)
c0ff4b85 2528 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2529 }
854ffa8d
DN
2530}
2531
d01dd17f
KH
2532/*
2533 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2534 * This is useful when moving usage to parent cgroup.
2535 */
2536static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2537 unsigned int nr_pages)
2538{
2539 unsigned long bytes = nr_pages * PAGE_SIZE;
2540
2541 if (mem_cgroup_is_root(memcg))
2542 return;
2543
2544 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2545 if (do_swap_account)
2546 res_counter_uncharge_until(&memcg->memsw,
2547 memcg->memsw.parent, bytes);
2548}
2549
a3b2d692
KH
2550/*
2551 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2552 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2553 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2554 * called against removed memcg.)
a3b2d692
KH
2555 */
2556static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2557{
2558 struct cgroup_subsys_state *css;
2559
2560 /* ID 0 is unused ID */
2561 if (!id)
2562 return NULL;
2563 css = css_lookup(&mem_cgroup_subsys, id);
2564 if (!css)
2565 return NULL;
b2145145 2566 return mem_cgroup_from_css(css);
a3b2d692
KH
2567}
2568
e42d9d5d 2569struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2570{
c0ff4b85 2571 struct mem_cgroup *memcg = NULL;
3c776e64 2572 struct page_cgroup *pc;
a3b2d692 2573 unsigned short id;
b5a84319
KH
2574 swp_entry_t ent;
2575
3c776e64
DN
2576 VM_BUG_ON(!PageLocked(page));
2577
3c776e64 2578 pc = lookup_page_cgroup(page);
c0bd3f63 2579 lock_page_cgroup(pc);
a3b2d692 2580 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2581 memcg = pc->mem_cgroup;
2582 if (memcg && !css_tryget(&memcg->css))
2583 memcg = NULL;
e42d9d5d 2584 } else if (PageSwapCache(page)) {
3c776e64 2585 ent.val = page_private(page);
9fb4b7cc 2586 id = lookup_swap_cgroup_id(ent);
a3b2d692 2587 rcu_read_lock();
c0ff4b85
R
2588 memcg = mem_cgroup_lookup(id);
2589 if (memcg && !css_tryget(&memcg->css))
2590 memcg = NULL;
a3b2d692 2591 rcu_read_unlock();
3c776e64 2592 }
c0bd3f63 2593 unlock_page_cgroup(pc);
c0ff4b85 2594 return memcg;
b5a84319
KH
2595}
2596
c0ff4b85 2597static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2598 struct page *page,
7ec99d62 2599 unsigned int nr_pages,
9ce70c02
HD
2600 enum charge_type ctype,
2601 bool lrucare)
7a81b88c 2602{
ce587e65 2603 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2604 struct zone *uninitialized_var(zone);
fa9add64 2605 struct lruvec *lruvec;
9ce70c02 2606 bool was_on_lru = false;
b2402857 2607 bool anon;
9ce70c02 2608
ca3e0214 2609 lock_page_cgroup(pc);
90deb788 2610 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2611 /*
2612 * we don't need page_cgroup_lock about tail pages, becase they are not
2613 * accessed by any other context at this point.
2614 */
9ce70c02
HD
2615
2616 /*
2617 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2618 * may already be on some other mem_cgroup's LRU. Take care of it.
2619 */
2620 if (lrucare) {
2621 zone = page_zone(page);
2622 spin_lock_irq(&zone->lru_lock);
2623 if (PageLRU(page)) {
fa9add64 2624 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2625 ClearPageLRU(page);
fa9add64 2626 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2627 was_on_lru = true;
2628 }
2629 }
2630
c0ff4b85 2631 pc->mem_cgroup = memcg;
261fb61a
KH
2632 /*
2633 * We access a page_cgroup asynchronously without lock_page_cgroup().
2634 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2635 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2636 * before USED bit, we need memory barrier here.
2637 * See mem_cgroup_add_lru_list(), etc.
2638 */
08e552c6 2639 smp_wmb();
b2402857 2640 SetPageCgroupUsed(pc);
3be91277 2641
9ce70c02
HD
2642 if (lrucare) {
2643 if (was_on_lru) {
fa9add64 2644 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2645 VM_BUG_ON(PageLRU(page));
2646 SetPageLRU(page);
fa9add64 2647 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2648 }
2649 spin_unlock_irq(&zone->lru_lock);
2650 }
2651
41326c17 2652 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2653 anon = true;
2654 else
2655 anon = false;
2656
2657 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2658 unlock_page_cgroup(pc);
9ce70c02 2659
430e4863
KH
2660 /*
2661 * "charge_statistics" updated event counter. Then, check it.
2662 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2663 * if they exceeds softlimit.
2664 */
c0ff4b85 2665 memcg_check_events(memcg, page);
7a81b88c 2666}
66e1707b 2667
7ae1e1d0
GC
2668#ifdef CONFIG_MEMCG_KMEM
2669static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2670{
2671 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2672 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2673}
2674
2675static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2676{
2677 struct res_counter *fail_res;
2678 struct mem_cgroup *_memcg;
2679 int ret = 0;
2680 bool may_oom;
2681
2682 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2683 if (ret)
2684 return ret;
2685
2686 /*
2687 * Conditions under which we can wait for the oom_killer. Those are
2688 * the same conditions tested by the core page allocator
2689 */
2690 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2691
2692 _memcg = memcg;
2693 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2694 &_memcg, may_oom);
2695
2696 if (ret == -EINTR) {
2697 /*
2698 * __mem_cgroup_try_charge() chosed to bypass to root due to
2699 * OOM kill or fatal signal. Since our only options are to
2700 * either fail the allocation or charge it to this cgroup, do
2701 * it as a temporary condition. But we can't fail. From a
2702 * kmem/slab perspective, the cache has already been selected,
2703 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2704 * our minds.
2705 *
2706 * This condition will only trigger if the task entered
2707 * memcg_charge_kmem in a sane state, but was OOM-killed during
2708 * __mem_cgroup_try_charge() above. Tasks that were already
2709 * dying when the allocation triggers should have been already
2710 * directed to the root cgroup in memcontrol.h
2711 */
2712 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2713 if (do_swap_account)
2714 res_counter_charge_nofail(&memcg->memsw, size,
2715 &fail_res);
2716 ret = 0;
2717 } else if (ret)
2718 res_counter_uncharge(&memcg->kmem, size);
2719
2720 return ret;
2721}
2722
2723static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2724{
2725 res_counter_uncharge(&memcg->kmem, size);
2726 res_counter_uncharge(&memcg->res, size);
2727 if (do_swap_account)
2728 res_counter_uncharge(&memcg->memsw, size);
2729}
2730
2731/*
2732 * We need to verify if the allocation against current->mm->owner's memcg is
2733 * possible for the given order. But the page is not allocated yet, so we'll
2734 * need a further commit step to do the final arrangements.
2735 *
2736 * It is possible for the task to switch cgroups in this mean time, so at
2737 * commit time, we can't rely on task conversion any longer. We'll then use
2738 * the handle argument to return to the caller which cgroup we should commit
2739 * against. We could also return the memcg directly and avoid the pointer
2740 * passing, but a boolean return value gives better semantics considering
2741 * the compiled-out case as well.
2742 *
2743 * Returning true means the allocation is possible.
2744 */
2745bool
2746__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2747{
2748 struct mem_cgroup *memcg;
2749 int ret;
2750
2751 *_memcg = NULL;
2752 memcg = try_get_mem_cgroup_from_mm(current->mm);
2753
2754 /*
2755 * very rare case described in mem_cgroup_from_task. Unfortunately there
2756 * isn't much we can do without complicating this too much, and it would
2757 * be gfp-dependent anyway. Just let it go
2758 */
2759 if (unlikely(!memcg))
2760 return true;
2761
2762 if (!memcg_can_account_kmem(memcg)) {
2763 css_put(&memcg->css);
2764 return true;
2765 }
2766
2767 mem_cgroup_get(memcg);
2768
2769 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
2770 if (!ret)
2771 *_memcg = memcg;
2772 else
2773 mem_cgroup_put(memcg);
2774
2775 css_put(&memcg->css);
2776 return (ret == 0);
2777}
2778
2779void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2780 int order)
2781{
2782 struct page_cgroup *pc;
2783
2784 VM_BUG_ON(mem_cgroup_is_root(memcg));
2785
2786 /* The page allocation failed. Revert */
2787 if (!page) {
2788 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
2789 mem_cgroup_put(memcg);
2790 return;
2791 }
2792
2793 pc = lookup_page_cgroup(page);
2794 lock_page_cgroup(pc);
2795 pc->mem_cgroup = memcg;
2796 SetPageCgroupUsed(pc);
2797 unlock_page_cgroup(pc);
2798}
2799
2800void __memcg_kmem_uncharge_pages(struct page *page, int order)
2801{
2802 struct mem_cgroup *memcg = NULL;
2803 struct page_cgroup *pc;
2804
2805
2806 pc = lookup_page_cgroup(page);
2807 /*
2808 * Fast unlocked return. Theoretically might have changed, have to
2809 * check again after locking.
2810 */
2811 if (!PageCgroupUsed(pc))
2812 return;
2813
2814 lock_page_cgroup(pc);
2815 if (PageCgroupUsed(pc)) {
2816 memcg = pc->mem_cgroup;
2817 ClearPageCgroupUsed(pc);
2818 }
2819 unlock_page_cgroup(pc);
2820
2821 /*
2822 * We trust that only if there is a memcg associated with the page, it
2823 * is a valid allocation
2824 */
2825 if (!memcg)
2826 return;
2827
2828 VM_BUG_ON(mem_cgroup_is_root(memcg));
2829 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
2830 mem_cgroup_put(memcg);
2831}
2832#endif /* CONFIG_MEMCG_KMEM */
2833
ca3e0214
KH
2834#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2835
a0db00fc 2836#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
2837/*
2838 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2839 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2840 * charge/uncharge will be never happen and move_account() is done under
2841 * compound_lock(), so we don't have to take care of races.
ca3e0214 2842 */
e94c8a9c 2843void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2844{
2845 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2846 struct page_cgroup *pc;
2847 int i;
ca3e0214 2848
3d37c4a9
KH
2849 if (mem_cgroup_disabled())
2850 return;
e94c8a9c
KH
2851 for (i = 1; i < HPAGE_PMD_NR; i++) {
2852 pc = head_pc + i;
2853 pc->mem_cgroup = head_pc->mem_cgroup;
2854 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2855 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2856 }
ca3e0214 2857}
12d27107 2858#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2859
f817ed48 2860/**
de3638d9 2861 * mem_cgroup_move_account - move account of the page
5564e88b 2862 * @page: the page
7ec99d62 2863 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2864 * @pc: page_cgroup of the page.
2865 * @from: mem_cgroup which the page is moved from.
2866 * @to: mem_cgroup which the page is moved to. @from != @to.
2867 *
2868 * The caller must confirm following.
08e552c6 2869 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2870 * - compound_lock is held when nr_pages > 1
f817ed48 2871 *
2f3479b1
KH
2872 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2873 * from old cgroup.
f817ed48 2874 */
7ec99d62
JW
2875static int mem_cgroup_move_account(struct page *page,
2876 unsigned int nr_pages,
2877 struct page_cgroup *pc,
2878 struct mem_cgroup *from,
2f3479b1 2879 struct mem_cgroup *to)
f817ed48 2880{
de3638d9
JW
2881 unsigned long flags;
2882 int ret;
b2402857 2883 bool anon = PageAnon(page);
987eba66 2884
f817ed48 2885 VM_BUG_ON(from == to);
5564e88b 2886 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2887 /*
2888 * The page is isolated from LRU. So, collapse function
2889 * will not handle this page. But page splitting can happen.
2890 * Do this check under compound_page_lock(). The caller should
2891 * hold it.
2892 */
2893 ret = -EBUSY;
7ec99d62 2894 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2895 goto out;
2896
2897 lock_page_cgroup(pc);
2898
2899 ret = -EINVAL;
2900 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2901 goto unlock;
2902
312734c0 2903 move_lock_mem_cgroup(from, &flags);
f817ed48 2904
2ff76f11 2905 if (!anon && page_mapped(page)) {
c62b1a3b
KH
2906 /* Update mapped_file data for mem_cgroup */
2907 preempt_disable();
2908 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2909 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2910 preempt_enable();
d69b042f 2911 }
b2402857 2912 mem_cgroup_charge_statistics(from, anon, -nr_pages);
d69b042f 2913
854ffa8d 2914 /* caller should have done css_get */
08e552c6 2915 pc->mem_cgroup = to;
b2402857 2916 mem_cgroup_charge_statistics(to, anon, nr_pages);
312734c0 2917 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
2918 ret = 0;
2919unlock:
57f9fd7d 2920 unlock_page_cgroup(pc);
d2265e6f
KH
2921 /*
2922 * check events
2923 */
5564e88b
JW
2924 memcg_check_events(to, page);
2925 memcg_check_events(from, page);
de3638d9 2926out:
f817ed48
KH
2927 return ret;
2928}
2929
2ef37d3f
MH
2930/**
2931 * mem_cgroup_move_parent - moves page to the parent group
2932 * @page: the page to move
2933 * @pc: page_cgroup of the page
2934 * @child: page's cgroup
2935 *
2936 * move charges to its parent or the root cgroup if the group has no
2937 * parent (aka use_hierarchy==0).
2938 * Although this might fail (get_page_unless_zero, isolate_lru_page or
2939 * mem_cgroup_move_account fails) the failure is always temporary and
2940 * it signals a race with a page removal/uncharge or migration. In the
2941 * first case the page is on the way out and it will vanish from the LRU
2942 * on the next attempt and the call should be retried later.
2943 * Isolation from the LRU fails only if page has been isolated from
2944 * the LRU since we looked at it and that usually means either global
2945 * reclaim or migration going on. The page will either get back to the
2946 * LRU or vanish.
2947 * Finaly mem_cgroup_move_account fails only if the page got uncharged
2948 * (!PageCgroupUsed) or moved to a different group. The page will
2949 * disappear in the next attempt.
f817ed48 2950 */
5564e88b
JW
2951static int mem_cgroup_move_parent(struct page *page,
2952 struct page_cgroup *pc,
6068bf01 2953 struct mem_cgroup *child)
f817ed48 2954{
f817ed48 2955 struct mem_cgroup *parent;
7ec99d62 2956 unsigned int nr_pages;
4be4489f 2957 unsigned long uninitialized_var(flags);
f817ed48
KH
2958 int ret;
2959
d8423011 2960 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 2961
57f9fd7d
DN
2962 ret = -EBUSY;
2963 if (!get_page_unless_zero(page))
2964 goto out;
2965 if (isolate_lru_page(page))
2966 goto put;
52dbb905 2967
7ec99d62 2968 nr_pages = hpage_nr_pages(page);
08e552c6 2969
cc926f78
KH
2970 parent = parent_mem_cgroup(child);
2971 /*
2972 * If no parent, move charges to root cgroup.
2973 */
2974 if (!parent)
2975 parent = root_mem_cgroup;
f817ed48 2976
2ef37d3f
MH
2977 if (nr_pages > 1) {
2978 VM_BUG_ON(!PageTransHuge(page));
987eba66 2979 flags = compound_lock_irqsave(page);
2ef37d3f 2980 }
987eba66 2981
cc926f78 2982 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 2983 pc, child, parent);
cc926f78
KH
2984 if (!ret)
2985 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 2986
7ec99d62 2987 if (nr_pages > 1)
987eba66 2988 compound_unlock_irqrestore(page, flags);
08e552c6 2989 putback_lru_page(page);
57f9fd7d 2990put:
40d58138 2991 put_page(page);
57f9fd7d 2992out:
f817ed48
KH
2993 return ret;
2994}
2995
7a81b88c
KH
2996/*
2997 * Charge the memory controller for page usage.
2998 * Return
2999 * 0 if the charge was successful
3000 * < 0 if the cgroup is over its limit
3001 */
3002static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3003 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3004{
c0ff4b85 3005 struct mem_cgroup *memcg = NULL;
7ec99d62 3006 unsigned int nr_pages = 1;
8493ae43 3007 bool oom = true;
7a81b88c 3008 int ret;
ec168510 3009
37c2ac78 3010 if (PageTransHuge(page)) {
7ec99d62 3011 nr_pages <<= compound_order(page);
37c2ac78 3012 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3013 /*
3014 * Never OOM-kill a process for a huge page. The
3015 * fault handler will fall back to regular pages.
3016 */
3017 oom = false;
37c2ac78 3018 }
7a81b88c 3019
c0ff4b85 3020 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3021 if (ret == -ENOMEM)
7a81b88c 3022 return ret;
ce587e65 3023 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3024 return 0;
8a9f3ccd
BS
3025}
3026
7a81b88c
KH
3027int mem_cgroup_newpage_charge(struct page *page,
3028 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3029{
f8d66542 3030 if (mem_cgroup_disabled())
cede86ac 3031 return 0;
7a0524cf
JW
3032 VM_BUG_ON(page_mapped(page));
3033 VM_BUG_ON(page->mapping && !PageAnon(page));
3034 VM_BUG_ON(!mm);
217bc319 3035 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3036 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3037}
3038
54595fe2
KH
3039/*
3040 * While swap-in, try_charge -> commit or cancel, the page is locked.
3041 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3042 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3043 * "commit()" or removed by "cancel()"
3044 */
0435a2fd
JW
3045static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3046 struct page *page,
3047 gfp_t mask,
3048 struct mem_cgroup **memcgp)
8c7c6e34 3049{
c0ff4b85 3050 struct mem_cgroup *memcg;
90deb788 3051 struct page_cgroup *pc;
54595fe2 3052 int ret;
8c7c6e34 3053
90deb788
JW
3054 pc = lookup_page_cgroup(page);
3055 /*
3056 * Every swap fault against a single page tries to charge the
3057 * page, bail as early as possible. shmem_unuse() encounters
3058 * already charged pages, too. The USED bit is protected by
3059 * the page lock, which serializes swap cache removal, which
3060 * in turn serializes uncharging.
3061 */
3062 if (PageCgroupUsed(pc))
3063 return 0;
8c7c6e34
KH
3064 if (!do_swap_account)
3065 goto charge_cur_mm;
c0ff4b85
R
3066 memcg = try_get_mem_cgroup_from_page(page);
3067 if (!memcg)
54595fe2 3068 goto charge_cur_mm;
72835c86
JW
3069 *memcgp = memcg;
3070 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3071 css_put(&memcg->css);
38c5d72f
KH
3072 if (ret == -EINTR)
3073 ret = 0;
54595fe2 3074 return ret;
8c7c6e34 3075charge_cur_mm:
38c5d72f
KH
3076 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3077 if (ret == -EINTR)
3078 ret = 0;
3079 return ret;
8c7c6e34
KH
3080}
3081
0435a2fd
JW
3082int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3083 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3084{
3085 *memcgp = NULL;
3086 if (mem_cgroup_disabled())
3087 return 0;
bdf4f4d2
JW
3088 /*
3089 * A racing thread's fault, or swapoff, may have already
3090 * updated the pte, and even removed page from swap cache: in
3091 * those cases unuse_pte()'s pte_same() test will fail; but
3092 * there's also a KSM case which does need to charge the page.
3093 */
3094 if (!PageSwapCache(page)) {
3095 int ret;
3096
3097 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3098 if (ret == -EINTR)
3099 ret = 0;
3100 return ret;
3101 }
0435a2fd
JW
3102 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3103}
3104
827a03d2
JW
3105void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3106{
3107 if (mem_cgroup_disabled())
3108 return;
3109 if (!memcg)
3110 return;
3111 __mem_cgroup_cancel_charge(memcg, 1);
3112}
3113
83aae4c7 3114static void
72835c86 3115__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 3116 enum charge_type ctype)
7a81b88c 3117{
f8d66542 3118 if (mem_cgroup_disabled())
7a81b88c 3119 return;
72835c86 3120 if (!memcg)
7a81b88c 3121 return;
5a6475a4 3122
ce587e65 3123 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
3124 /*
3125 * Now swap is on-memory. This means this page may be
3126 * counted both as mem and swap....double count.
03f3c433
KH
3127 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3128 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3129 * may call delete_from_swap_cache() before reach here.
8c7c6e34 3130 */
03f3c433 3131 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 3132 swp_entry_t ent = {.val = page_private(page)};
86493009 3133 mem_cgroup_uncharge_swap(ent);
8c7c6e34 3134 }
7a81b88c
KH
3135}
3136
72835c86
JW
3137void mem_cgroup_commit_charge_swapin(struct page *page,
3138 struct mem_cgroup *memcg)
83aae4c7 3139{
72835c86 3140 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 3141 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
3142}
3143
827a03d2
JW
3144int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3145 gfp_t gfp_mask)
7a81b88c 3146{
827a03d2
JW
3147 struct mem_cgroup *memcg = NULL;
3148 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3149 int ret;
3150
f8d66542 3151 if (mem_cgroup_disabled())
827a03d2
JW
3152 return 0;
3153 if (PageCompound(page))
3154 return 0;
3155
827a03d2
JW
3156 if (!PageSwapCache(page))
3157 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3158 else { /* page is swapcache/shmem */
0435a2fd
JW
3159 ret = __mem_cgroup_try_charge_swapin(mm, page,
3160 gfp_mask, &memcg);
827a03d2
JW
3161 if (!ret)
3162 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3163 }
3164 return ret;
7a81b88c
KH
3165}
3166
c0ff4b85 3167static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
3168 unsigned int nr_pages,
3169 const enum charge_type ctype)
569b846d
KH
3170{
3171 struct memcg_batch_info *batch = NULL;
3172 bool uncharge_memsw = true;
7ec99d62 3173
569b846d
KH
3174 /* If swapout, usage of swap doesn't decrease */
3175 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3176 uncharge_memsw = false;
569b846d
KH
3177
3178 batch = &current->memcg_batch;
3179 /*
3180 * In usual, we do css_get() when we remember memcg pointer.
3181 * But in this case, we keep res->usage until end of a series of
3182 * uncharges. Then, it's ok to ignore memcg's refcnt.
3183 */
3184 if (!batch->memcg)
c0ff4b85 3185 batch->memcg = memcg;
3c11ecf4
KH
3186 /*
3187 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 3188 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
3189 * the same cgroup and we have chance to coalesce uncharges.
3190 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3191 * because we want to do uncharge as soon as possible.
3192 */
3193
3194 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3195 goto direct_uncharge;
3196
7ec99d62 3197 if (nr_pages > 1)
ec168510
AA
3198 goto direct_uncharge;
3199
569b846d
KH
3200 /*
3201 * In typical case, batch->memcg == mem. This means we can
3202 * merge a series of uncharges to an uncharge of res_counter.
3203 * If not, we uncharge res_counter ony by one.
3204 */
c0ff4b85 3205 if (batch->memcg != memcg)
569b846d
KH
3206 goto direct_uncharge;
3207 /* remember freed charge and uncharge it later */
7ffd4ca7 3208 batch->nr_pages++;
569b846d 3209 if (uncharge_memsw)
7ffd4ca7 3210 batch->memsw_nr_pages++;
569b846d
KH
3211 return;
3212direct_uncharge:
c0ff4b85 3213 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 3214 if (uncharge_memsw)
c0ff4b85
R
3215 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3216 if (unlikely(batch->memcg != memcg))
3217 memcg_oom_recover(memcg);
569b846d 3218}
7a81b88c 3219
8a9f3ccd 3220/*
69029cd5 3221 * uncharge if !page_mapped(page)
8a9f3ccd 3222 */
8c7c6e34 3223static struct mem_cgroup *
0030f535
JW
3224__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3225 bool end_migration)
8a9f3ccd 3226{
c0ff4b85 3227 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
3228 unsigned int nr_pages = 1;
3229 struct page_cgroup *pc;
b2402857 3230 bool anon;
8a9f3ccd 3231
f8d66542 3232 if (mem_cgroup_disabled())
8c7c6e34 3233 return NULL;
4077960e 3234
0c59b89c 3235 VM_BUG_ON(PageSwapCache(page));
d13d1443 3236
37c2ac78 3237 if (PageTransHuge(page)) {
7ec99d62 3238 nr_pages <<= compound_order(page);
37c2ac78
AA
3239 VM_BUG_ON(!PageTransHuge(page));
3240 }
8697d331 3241 /*
3c541e14 3242 * Check if our page_cgroup is valid
8697d331 3243 */
52d4b9ac 3244 pc = lookup_page_cgroup(page);
cfa44946 3245 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 3246 return NULL;
b9c565d5 3247
52d4b9ac 3248 lock_page_cgroup(pc);
d13d1443 3249
c0ff4b85 3250 memcg = pc->mem_cgroup;
8c7c6e34 3251
d13d1443
KH
3252 if (!PageCgroupUsed(pc))
3253 goto unlock_out;
3254
b2402857
KH
3255 anon = PageAnon(page);
3256
d13d1443 3257 switch (ctype) {
41326c17 3258 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
3259 /*
3260 * Generally PageAnon tells if it's the anon statistics to be
3261 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3262 * used before page reached the stage of being marked PageAnon.
3263 */
b2402857
KH
3264 anon = true;
3265 /* fallthrough */
8a9478ca 3266 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 3267 /* See mem_cgroup_prepare_migration() */
0030f535
JW
3268 if (page_mapped(page))
3269 goto unlock_out;
3270 /*
3271 * Pages under migration may not be uncharged. But
3272 * end_migration() /must/ be the one uncharging the
3273 * unused post-migration page and so it has to call
3274 * here with the migration bit still set. See the
3275 * res_counter handling below.
3276 */
3277 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
3278 goto unlock_out;
3279 break;
3280 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3281 if (!PageAnon(page)) { /* Shared memory */
3282 if (page->mapping && !page_is_file_cache(page))
3283 goto unlock_out;
3284 } else if (page_mapped(page)) /* Anon */
3285 goto unlock_out;
3286 break;
3287 default:
3288 break;
52d4b9ac 3289 }
d13d1443 3290
b2402857 3291 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 3292
52d4b9ac 3293 ClearPageCgroupUsed(pc);
544122e5
KH
3294 /*
3295 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3296 * freed from LRU. This is safe because uncharged page is expected not
3297 * to be reused (freed soon). Exception is SwapCache, it's handled by
3298 * special functions.
3299 */
b9c565d5 3300
52d4b9ac 3301 unlock_page_cgroup(pc);
f75ca962 3302 /*
c0ff4b85 3303 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3304 * will never be freed.
3305 */
c0ff4b85 3306 memcg_check_events(memcg, page);
f75ca962 3307 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3308 mem_cgroup_swap_statistics(memcg, true);
3309 mem_cgroup_get(memcg);
f75ca962 3310 }
0030f535
JW
3311 /*
3312 * Migration does not charge the res_counter for the
3313 * replacement page, so leave it alone when phasing out the
3314 * page that is unused after the migration.
3315 */
3316 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 3317 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3318
c0ff4b85 3319 return memcg;
d13d1443
KH
3320
3321unlock_out:
3322 unlock_page_cgroup(pc);
8c7c6e34 3323 return NULL;
3c541e14
BS
3324}
3325
69029cd5
KH
3326void mem_cgroup_uncharge_page(struct page *page)
3327{
52d4b9ac
KH
3328 /* early check. */
3329 if (page_mapped(page))
3330 return;
40f23a21 3331 VM_BUG_ON(page->mapping && !PageAnon(page));
0c59b89c
JW
3332 if (PageSwapCache(page))
3333 return;
0030f535 3334 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
3335}
3336
3337void mem_cgroup_uncharge_cache_page(struct page *page)
3338{
3339 VM_BUG_ON(page_mapped(page));
b7abea96 3340 VM_BUG_ON(page->mapping);
0030f535 3341 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
3342}
3343
569b846d
KH
3344/*
3345 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3346 * In that cases, pages are freed continuously and we can expect pages
3347 * are in the same memcg. All these calls itself limits the number of
3348 * pages freed at once, then uncharge_start/end() is called properly.
3349 * This may be called prural(2) times in a context,
3350 */
3351
3352void mem_cgroup_uncharge_start(void)
3353{
3354 current->memcg_batch.do_batch++;
3355 /* We can do nest. */
3356 if (current->memcg_batch.do_batch == 1) {
3357 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3358 current->memcg_batch.nr_pages = 0;
3359 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3360 }
3361}
3362
3363void mem_cgroup_uncharge_end(void)
3364{
3365 struct memcg_batch_info *batch = &current->memcg_batch;
3366
3367 if (!batch->do_batch)
3368 return;
3369
3370 batch->do_batch--;
3371 if (batch->do_batch) /* If stacked, do nothing. */
3372 return;
3373
3374 if (!batch->memcg)
3375 return;
3376 /*
3377 * This "batch->memcg" is valid without any css_get/put etc...
3378 * bacause we hide charges behind us.
3379 */
7ffd4ca7
JW
3380 if (batch->nr_pages)
3381 res_counter_uncharge(&batch->memcg->res,
3382 batch->nr_pages * PAGE_SIZE);
3383 if (batch->memsw_nr_pages)
3384 res_counter_uncharge(&batch->memcg->memsw,
3385 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3386 memcg_oom_recover(batch->memcg);
569b846d
KH
3387 /* forget this pointer (for sanity check) */
3388 batch->memcg = NULL;
3389}
3390
e767e056 3391#ifdef CONFIG_SWAP
8c7c6e34 3392/*
e767e056 3393 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3394 * memcg information is recorded to swap_cgroup of "ent"
3395 */
8a9478ca
KH
3396void
3397mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3398{
3399 struct mem_cgroup *memcg;
8a9478ca
KH
3400 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3401
3402 if (!swapout) /* this was a swap cache but the swap is unused ! */
3403 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3404
0030f535 3405 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 3406
f75ca962
KH
3407 /*
3408 * record memcg information, if swapout && memcg != NULL,
3409 * mem_cgroup_get() was called in uncharge().
3410 */
3411 if (do_swap_account && swapout && memcg)
a3b2d692 3412 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3413}
e767e056 3414#endif
8c7c6e34 3415
c255a458 3416#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
3417/*
3418 * called from swap_entry_free(). remove record in swap_cgroup and
3419 * uncharge "memsw" account.
3420 */
3421void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3422{
8c7c6e34 3423 struct mem_cgroup *memcg;
a3b2d692 3424 unsigned short id;
8c7c6e34
KH
3425
3426 if (!do_swap_account)
3427 return;
3428
a3b2d692
KH
3429 id = swap_cgroup_record(ent, 0);
3430 rcu_read_lock();
3431 memcg = mem_cgroup_lookup(id);
8c7c6e34 3432 if (memcg) {
a3b2d692
KH
3433 /*
3434 * We uncharge this because swap is freed.
3435 * This memcg can be obsolete one. We avoid calling css_tryget
3436 */
0c3e73e8 3437 if (!mem_cgroup_is_root(memcg))
4e649152 3438 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3439 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3440 mem_cgroup_put(memcg);
3441 }
a3b2d692 3442 rcu_read_unlock();
d13d1443 3443}
02491447
DN
3444
3445/**
3446 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3447 * @entry: swap entry to be moved
3448 * @from: mem_cgroup which the entry is moved from
3449 * @to: mem_cgroup which the entry is moved to
3450 *
3451 * It succeeds only when the swap_cgroup's record for this entry is the same
3452 * as the mem_cgroup's id of @from.
3453 *
3454 * Returns 0 on success, -EINVAL on failure.
3455 *
3456 * The caller must have charged to @to, IOW, called res_counter_charge() about
3457 * both res and memsw, and called css_get().
3458 */
3459static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3460 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3461{
3462 unsigned short old_id, new_id;
3463
3464 old_id = css_id(&from->css);
3465 new_id = css_id(&to->css);
3466
3467 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3468 mem_cgroup_swap_statistics(from, false);
483c30b5 3469 mem_cgroup_swap_statistics(to, true);
02491447 3470 /*
483c30b5
DN
3471 * This function is only called from task migration context now.
3472 * It postpones res_counter and refcount handling till the end
3473 * of task migration(mem_cgroup_clear_mc()) for performance
3474 * improvement. But we cannot postpone mem_cgroup_get(to)
3475 * because if the process that has been moved to @to does
3476 * swap-in, the refcount of @to might be decreased to 0.
02491447 3477 */
02491447 3478 mem_cgroup_get(to);
02491447
DN
3479 return 0;
3480 }
3481 return -EINVAL;
3482}
3483#else
3484static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3485 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3486{
3487 return -EINVAL;
3488}
8c7c6e34 3489#endif
d13d1443 3490
ae41be37 3491/*
01b1ae63
KH
3492 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3493 * page belongs to.
ae41be37 3494 */
0030f535
JW
3495void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3496 struct mem_cgroup **memcgp)
ae41be37 3497{
c0ff4b85 3498 struct mem_cgroup *memcg = NULL;
b32967ff 3499 unsigned int nr_pages = 1;
7ec99d62 3500 struct page_cgroup *pc;
ac39cf8c 3501 enum charge_type ctype;
8869b8f6 3502
72835c86 3503 *memcgp = NULL;
56039efa 3504
f8d66542 3505 if (mem_cgroup_disabled())
0030f535 3506 return;
4077960e 3507
b32967ff
MG
3508 if (PageTransHuge(page))
3509 nr_pages <<= compound_order(page);
3510
52d4b9ac
KH
3511 pc = lookup_page_cgroup(page);
3512 lock_page_cgroup(pc);
3513 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3514 memcg = pc->mem_cgroup;
3515 css_get(&memcg->css);
ac39cf8c
AM
3516 /*
3517 * At migrating an anonymous page, its mapcount goes down
3518 * to 0 and uncharge() will be called. But, even if it's fully
3519 * unmapped, migration may fail and this page has to be
3520 * charged again. We set MIGRATION flag here and delay uncharge
3521 * until end_migration() is called
3522 *
3523 * Corner Case Thinking
3524 * A)
3525 * When the old page was mapped as Anon and it's unmap-and-freed
3526 * while migration was ongoing.
3527 * If unmap finds the old page, uncharge() of it will be delayed
3528 * until end_migration(). If unmap finds a new page, it's
3529 * uncharged when it make mapcount to be 1->0. If unmap code
3530 * finds swap_migration_entry, the new page will not be mapped
3531 * and end_migration() will find it(mapcount==0).
3532 *
3533 * B)
3534 * When the old page was mapped but migraion fails, the kernel
3535 * remaps it. A charge for it is kept by MIGRATION flag even
3536 * if mapcount goes down to 0. We can do remap successfully
3537 * without charging it again.
3538 *
3539 * C)
3540 * The "old" page is under lock_page() until the end of
3541 * migration, so, the old page itself will not be swapped-out.
3542 * If the new page is swapped out before end_migraton, our
3543 * hook to usual swap-out path will catch the event.
3544 */
3545 if (PageAnon(page))
3546 SetPageCgroupMigration(pc);
e8589cc1 3547 }
52d4b9ac 3548 unlock_page_cgroup(pc);
ac39cf8c
AM
3549 /*
3550 * If the page is not charged at this point,
3551 * we return here.
3552 */
c0ff4b85 3553 if (!memcg)
0030f535 3554 return;
01b1ae63 3555
72835c86 3556 *memcgp = memcg;
ac39cf8c
AM
3557 /*
3558 * We charge new page before it's used/mapped. So, even if unlock_page()
3559 * is called before end_migration, we can catch all events on this new
3560 * page. In the case new page is migrated but not remapped, new page's
3561 * mapcount will be finally 0 and we call uncharge in end_migration().
3562 */
ac39cf8c 3563 if (PageAnon(page))
41326c17 3564 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 3565 else
62ba7442 3566 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
3567 /*
3568 * The page is committed to the memcg, but it's not actually
3569 * charged to the res_counter since we plan on replacing the
3570 * old one and only one page is going to be left afterwards.
3571 */
b32967ff 3572 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 3573}
8869b8f6 3574
69029cd5 3575/* remove redundant charge if migration failed*/
c0ff4b85 3576void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3577 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3578{
ac39cf8c 3579 struct page *used, *unused;
01b1ae63 3580 struct page_cgroup *pc;
b2402857 3581 bool anon;
01b1ae63 3582
c0ff4b85 3583 if (!memcg)
01b1ae63 3584 return;
b25ed609 3585
50de1dd9 3586 if (!migration_ok) {
ac39cf8c
AM
3587 used = oldpage;
3588 unused = newpage;
01b1ae63 3589 } else {
ac39cf8c 3590 used = newpage;
01b1ae63
KH
3591 unused = oldpage;
3592 }
0030f535 3593 anon = PageAnon(used);
7d188958
JW
3594 __mem_cgroup_uncharge_common(unused,
3595 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3596 : MEM_CGROUP_CHARGE_TYPE_CACHE,
3597 true);
0030f535 3598 css_put(&memcg->css);
69029cd5 3599 /*
ac39cf8c
AM
3600 * We disallowed uncharge of pages under migration because mapcount
3601 * of the page goes down to zero, temporarly.
3602 * Clear the flag and check the page should be charged.
01b1ae63 3603 */
ac39cf8c
AM
3604 pc = lookup_page_cgroup(oldpage);
3605 lock_page_cgroup(pc);
3606 ClearPageCgroupMigration(pc);
3607 unlock_page_cgroup(pc);
ac39cf8c 3608
01b1ae63 3609 /*
ac39cf8c
AM
3610 * If a page is a file cache, radix-tree replacement is very atomic
3611 * and we can skip this check. When it was an Anon page, its mapcount
3612 * goes down to 0. But because we added MIGRATION flage, it's not
3613 * uncharged yet. There are several case but page->mapcount check
3614 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3615 * check. (see prepare_charge() also)
69029cd5 3616 */
b2402857 3617 if (anon)
ac39cf8c 3618 mem_cgroup_uncharge_page(used);
ae41be37 3619}
78fb7466 3620
ab936cbc
KH
3621/*
3622 * At replace page cache, newpage is not under any memcg but it's on
3623 * LRU. So, this function doesn't touch res_counter but handles LRU
3624 * in correct way. Both pages are locked so we cannot race with uncharge.
3625 */
3626void mem_cgroup_replace_page_cache(struct page *oldpage,
3627 struct page *newpage)
3628{
bde05d1c 3629 struct mem_cgroup *memcg = NULL;
ab936cbc 3630 struct page_cgroup *pc;
ab936cbc 3631 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3632
3633 if (mem_cgroup_disabled())
3634 return;
3635
3636 pc = lookup_page_cgroup(oldpage);
3637 /* fix accounting on old pages */
3638 lock_page_cgroup(pc);
bde05d1c
HD
3639 if (PageCgroupUsed(pc)) {
3640 memcg = pc->mem_cgroup;
3641 mem_cgroup_charge_statistics(memcg, false, -1);
3642 ClearPageCgroupUsed(pc);
3643 }
ab936cbc
KH
3644 unlock_page_cgroup(pc);
3645
bde05d1c
HD
3646 /*
3647 * When called from shmem_replace_page(), in some cases the
3648 * oldpage has already been charged, and in some cases not.
3649 */
3650 if (!memcg)
3651 return;
ab936cbc
KH
3652 /*
3653 * Even if newpage->mapping was NULL before starting replacement,
3654 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3655 * LRU while we overwrite pc->mem_cgroup.
3656 */
ce587e65 3657 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
3658}
3659
f212ad7c
DN
3660#ifdef CONFIG_DEBUG_VM
3661static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3662{
3663 struct page_cgroup *pc;
3664
3665 pc = lookup_page_cgroup(page);
cfa44946
JW
3666 /*
3667 * Can be NULL while feeding pages into the page allocator for
3668 * the first time, i.e. during boot or memory hotplug;
3669 * or when mem_cgroup_disabled().
3670 */
f212ad7c
DN
3671 if (likely(pc) && PageCgroupUsed(pc))
3672 return pc;
3673 return NULL;
3674}
3675
3676bool mem_cgroup_bad_page_check(struct page *page)
3677{
3678 if (mem_cgroup_disabled())
3679 return false;
3680
3681 return lookup_page_cgroup_used(page) != NULL;
3682}
3683
3684void mem_cgroup_print_bad_page(struct page *page)
3685{
3686 struct page_cgroup *pc;
3687
3688 pc = lookup_page_cgroup_used(page);
3689 if (pc) {
90b3feae 3690 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3691 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3692 }
3693}
3694#endif
3695
8c7c6e34
KH
3696static DEFINE_MUTEX(set_limit_mutex);
3697
d38d2a75 3698static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3699 unsigned long long val)
628f4235 3700{
81d39c20 3701 int retry_count;
3c11ecf4 3702 u64 memswlimit, memlimit;
628f4235 3703 int ret = 0;
81d39c20
KH
3704 int children = mem_cgroup_count_children(memcg);
3705 u64 curusage, oldusage;
3c11ecf4 3706 int enlarge;
81d39c20
KH
3707
3708 /*
3709 * For keeping hierarchical_reclaim simple, how long we should retry
3710 * is depends on callers. We set our retry-count to be function
3711 * of # of children which we should visit in this loop.
3712 */
3713 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3714
3715 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3716
3c11ecf4 3717 enlarge = 0;
8c7c6e34 3718 while (retry_count) {
628f4235
KH
3719 if (signal_pending(current)) {
3720 ret = -EINTR;
3721 break;
3722 }
8c7c6e34
KH
3723 /*
3724 * Rather than hide all in some function, I do this in
3725 * open coded manner. You see what this really does.
aaad153e 3726 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3727 */
3728 mutex_lock(&set_limit_mutex);
3729 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3730 if (memswlimit < val) {
3731 ret = -EINVAL;
3732 mutex_unlock(&set_limit_mutex);
628f4235
KH
3733 break;
3734 }
3c11ecf4
KH
3735
3736 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3737 if (memlimit < val)
3738 enlarge = 1;
3739
8c7c6e34 3740 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3741 if (!ret) {
3742 if (memswlimit == val)
3743 memcg->memsw_is_minimum = true;
3744 else
3745 memcg->memsw_is_minimum = false;
3746 }
8c7c6e34
KH
3747 mutex_unlock(&set_limit_mutex);
3748
3749 if (!ret)
3750 break;
3751
5660048c
JW
3752 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3753 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3754 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3755 /* Usage is reduced ? */
3756 if (curusage >= oldusage)
3757 retry_count--;
3758 else
3759 oldusage = curusage;
8c7c6e34 3760 }
3c11ecf4
KH
3761 if (!ret && enlarge)
3762 memcg_oom_recover(memcg);
14797e23 3763
8c7c6e34
KH
3764 return ret;
3765}
3766
338c8431
LZ
3767static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3768 unsigned long long val)
8c7c6e34 3769{
81d39c20 3770 int retry_count;
3c11ecf4 3771 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3772 int children = mem_cgroup_count_children(memcg);
3773 int ret = -EBUSY;
3c11ecf4 3774 int enlarge = 0;
8c7c6e34 3775
81d39c20
KH
3776 /* see mem_cgroup_resize_res_limit */
3777 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3778 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3779 while (retry_count) {
3780 if (signal_pending(current)) {
3781 ret = -EINTR;
3782 break;
3783 }
3784 /*
3785 * Rather than hide all in some function, I do this in
3786 * open coded manner. You see what this really does.
aaad153e 3787 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3788 */
3789 mutex_lock(&set_limit_mutex);
3790 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3791 if (memlimit > val) {
3792 ret = -EINVAL;
3793 mutex_unlock(&set_limit_mutex);
3794 break;
3795 }
3c11ecf4
KH
3796 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3797 if (memswlimit < val)
3798 enlarge = 1;
8c7c6e34 3799 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3800 if (!ret) {
3801 if (memlimit == val)
3802 memcg->memsw_is_minimum = true;
3803 else
3804 memcg->memsw_is_minimum = false;
3805 }
8c7c6e34
KH
3806 mutex_unlock(&set_limit_mutex);
3807
3808 if (!ret)
3809 break;
3810
5660048c
JW
3811 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3812 MEM_CGROUP_RECLAIM_NOSWAP |
3813 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3814 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3815 /* Usage is reduced ? */
8c7c6e34 3816 if (curusage >= oldusage)
628f4235 3817 retry_count--;
81d39c20
KH
3818 else
3819 oldusage = curusage;
628f4235 3820 }
3c11ecf4
KH
3821 if (!ret && enlarge)
3822 memcg_oom_recover(memcg);
628f4235
KH
3823 return ret;
3824}
3825
4e416953 3826unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3827 gfp_t gfp_mask,
3828 unsigned long *total_scanned)
4e416953
BS
3829{
3830 unsigned long nr_reclaimed = 0;
3831 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3832 unsigned long reclaimed;
3833 int loop = 0;
3834 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3835 unsigned long long excess;
0ae5e89c 3836 unsigned long nr_scanned;
4e416953
BS
3837
3838 if (order > 0)
3839 return 0;
3840
00918b6a 3841 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3842 /*
3843 * This loop can run a while, specially if mem_cgroup's continuously
3844 * keep exceeding their soft limit and putting the system under
3845 * pressure
3846 */
3847 do {
3848 if (next_mz)
3849 mz = next_mz;
3850 else
3851 mz = mem_cgroup_largest_soft_limit_node(mctz);
3852 if (!mz)
3853 break;
3854
0ae5e89c 3855 nr_scanned = 0;
d79154bb 3856 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 3857 gfp_mask, &nr_scanned);
4e416953 3858 nr_reclaimed += reclaimed;
0ae5e89c 3859 *total_scanned += nr_scanned;
4e416953
BS
3860 spin_lock(&mctz->lock);
3861
3862 /*
3863 * If we failed to reclaim anything from this memory cgroup
3864 * it is time to move on to the next cgroup
3865 */
3866 next_mz = NULL;
3867 if (!reclaimed) {
3868 do {
3869 /*
3870 * Loop until we find yet another one.
3871 *
3872 * By the time we get the soft_limit lock
3873 * again, someone might have aded the
3874 * group back on the RB tree. Iterate to
3875 * make sure we get a different mem.
3876 * mem_cgroup_largest_soft_limit_node returns
3877 * NULL if no other cgroup is present on
3878 * the tree
3879 */
3880 next_mz =
3881 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3882 if (next_mz == mz)
d79154bb 3883 css_put(&next_mz->memcg->css);
39cc98f1 3884 else /* next_mz == NULL or other memcg */
4e416953
BS
3885 break;
3886 } while (1);
3887 }
d79154bb
HD
3888 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3889 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
3890 /*
3891 * One school of thought says that we should not add
3892 * back the node to the tree if reclaim returns 0.
3893 * But our reclaim could return 0, simply because due
3894 * to priority we are exposing a smaller subset of
3895 * memory to reclaim from. Consider this as a longer
3896 * term TODO.
3897 */
ef8745c1 3898 /* If excess == 0, no tree ops */
d79154bb 3899 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 3900 spin_unlock(&mctz->lock);
d79154bb 3901 css_put(&mz->memcg->css);
4e416953
BS
3902 loop++;
3903 /*
3904 * Could not reclaim anything and there are no more
3905 * mem cgroups to try or we seem to be looping without
3906 * reclaiming anything.
3907 */
3908 if (!nr_reclaimed &&
3909 (next_mz == NULL ||
3910 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3911 break;
3912 } while (!nr_reclaimed);
3913 if (next_mz)
d79154bb 3914 css_put(&next_mz->memcg->css);
4e416953
BS
3915 return nr_reclaimed;
3916}
3917
2ef37d3f
MH
3918/**
3919 * mem_cgroup_force_empty_list - clears LRU of a group
3920 * @memcg: group to clear
3921 * @node: NUMA node
3922 * @zid: zone id
3923 * @lru: lru to to clear
3924 *
3c935d18 3925 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
3926 * reclaim the pages page themselves - pages are moved to the parent (or root)
3927 * group.
cc847582 3928 */
2ef37d3f 3929static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3930 int node, int zid, enum lru_list lru)
cc847582 3931{
bea8c150 3932 struct lruvec *lruvec;
2ef37d3f 3933 unsigned long flags;
072c56c1 3934 struct list_head *list;
925b7673
JW
3935 struct page *busy;
3936 struct zone *zone;
072c56c1 3937
08e552c6 3938 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
3939 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3940 list = &lruvec->lists[lru];
cc847582 3941
f817ed48 3942 busy = NULL;
2ef37d3f 3943 do {
925b7673 3944 struct page_cgroup *pc;
5564e88b
JW
3945 struct page *page;
3946
08e552c6 3947 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3948 if (list_empty(list)) {
08e552c6 3949 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3950 break;
f817ed48 3951 }
925b7673
JW
3952 page = list_entry(list->prev, struct page, lru);
3953 if (busy == page) {
3954 list_move(&page->lru, list);
648bcc77 3955 busy = NULL;
08e552c6 3956 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3957 continue;
3958 }
08e552c6 3959 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3960
925b7673 3961 pc = lookup_page_cgroup(page);
5564e88b 3962
3c935d18 3963 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 3964 /* found lock contention or "pc" is obsolete. */
925b7673 3965 busy = page;
f817ed48
KH
3966 cond_resched();
3967 } else
3968 busy = NULL;
2ef37d3f 3969 } while (!list_empty(list));
cc847582
KH
3970}
3971
3972/*
c26251f9
MH
3973 * make mem_cgroup's charge to be 0 if there is no task by moving
3974 * all the charges and pages to the parent.
cc847582 3975 * This enables deleting this mem_cgroup.
c26251f9
MH
3976 *
3977 * Caller is responsible for holding css reference on the memcg.
cc847582 3978 */
ab5196c2 3979static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 3980{
c26251f9 3981 int node, zid;
f817ed48 3982
fce66477 3983 do {
52d4b9ac
KH
3984 /* This is for making all *used* pages to be on LRU. */
3985 lru_add_drain_all();
c0ff4b85 3986 drain_all_stock_sync(memcg);
c0ff4b85 3987 mem_cgroup_start_move(memcg);
31aaea4a 3988 for_each_node_state(node, N_MEMORY) {
2ef37d3f 3989 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3990 enum lru_list lru;
3991 for_each_lru(lru) {
2ef37d3f 3992 mem_cgroup_force_empty_list(memcg,
f156ab93 3993 node, zid, lru);
f817ed48 3994 }
1ecaab2b 3995 }
f817ed48 3996 }
c0ff4b85
R
3997 mem_cgroup_end_move(memcg);
3998 memcg_oom_recover(memcg);
52d4b9ac 3999 cond_resched();
f817ed48 4000
2ef37d3f
MH
4001 /*
4002 * This is a safety check because mem_cgroup_force_empty_list
4003 * could have raced with mem_cgroup_replace_page_cache callers
4004 * so the lru seemed empty but the page could have been added
4005 * right after the check. RES_USAGE should be safe as we always
4006 * charge before adding to the LRU.
4007 */
4008 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0);
c26251f9
MH
4009}
4010
4011/*
4012 * Reclaims as many pages from the given memcg as possible and moves
4013 * the rest to the parent.
4014 *
4015 * Caller is responsible for holding css reference for memcg.
4016 */
4017static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4018{
4019 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4020 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4021
c1e862c1 4022 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4023 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4024 return -EBUSY;
4025
c1e862c1
KH
4026 /* we call try-to-free pages for make this cgroup empty */
4027 lru_add_drain_all();
f817ed48 4028 /* try to free all pages in this cgroup */
569530fb 4029 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4030 int progress;
c1e862c1 4031
c26251f9
MH
4032 if (signal_pending(current))
4033 return -EINTR;
4034
c0ff4b85 4035 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4036 false);
c1e862c1 4037 if (!progress) {
f817ed48 4038 nr_retries--;
c1e862c1 4039 /* maybe some writeback is necessary */
8aa7e847 4040 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4041 }
f817ed48
KH
4042
4043 }
08e552c6 4044 lru_add_drain();
ab5196c2
MH
4045 mem_cgroup_reparent_charges(memcg);
4046
4047 return 0;
cc847582
KH
4048}
4049
6bbda35c 4050static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1 4051{
c26251f9
MH
4052 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4053 int ret;
4054
d8423011
MH
4055 if (mem_cgroup_is_root(memcg))
4056 return -EINVAL;
c26251f9
MH
4057 css_get(&memcg->css);
4058 ret = mem_cgroup_force_empty(memcg);
4059 css_put(&memcg->css);
4060
4061 return ret;
c1e862c1
KH
4062}
4063
4064
18f59ea7
BS
4065static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
4066{
4067 return mem_cgroup_from_cont(cont)->use_hierarchy;
4068}
4069
4070static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
4071 u64 val)
4072{
4073 int retval = 0;
c0ff4b85 4074 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 4075 struct cgroup *parent = cont->parent;
c0ff4b85 4076 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
4077
4078 if (parent)
c0ff4b85 4079 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
4080
4081 cgroup_lock();
567fb435
GC
4082
4083 if (memcg->use_hierarchy == val)
4084 goto out;
4085
18f59ea7 4086 /*
af901ca1 4087 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4088 * in the child subtrees. If it is unset, then the change can
4089 * occur, provided the current cgroup has no children.
4090 *
4091 * For the root cgroup, parent_mem is NULL, we allow value to be
4092 * set if there are no children.
4093 */
c0ff4b85 4094 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
4095 (val == 1 || val == 0)) {
4096 if (list_empty(&cont->children))
c0ff4b85 4097 memcg->use_hierarchy = val;
18f59ea7
BS
4098 else
4099 retval = -EBUSY;
4100 } else
4101 retval = -EINVAL;
567fb435
GC
4102
4103out:
18f59ea7
BS
4104 cgroup_unlock();
4105
4106 return retval;
4107}
4108
0c3e73e8 4109
c0ff4b85 4110static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 4111 enum mem_cgroup_stat_index idx)
0c3e73e8 4112{
7d74b06f 4113 struct mem_cgroup *iter;
7a159cc9 4114 long val = 0;
0c3e73e8 4115
7a159cc9 4116 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 4117 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
4118 val += mem_cgroup_read_stat(iter, idx);
4119
4120 if (val < 0) /* race ? */
4121 val = 0;
4122 return val;
0c3e73e8
BS
4123}
4124
c0ff4b85 4125static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 4126{
7d74b06f 4127 u64 val;
104f3928 4128
c0ff4b85 4129 if (!mem_cgroup_is_root(memcg)) {
104f3928 4130 if (!swap)
65c64ce8 4131 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 4132 else
65c64ce8 4133 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
4134 }
4135
c0ff4b85
R
4136 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4137 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 4138
7d74b06f 4139 if (swap)
bff6bb83 4140 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
4141
4142 return val << PAGE_SHIFT;
4143}
4144
af36f906
TH
4145static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
4146 struct file *file, char __user *buf,
4147 size_t nbytes, loff_t *ppos)
8cdea7c0 4148{
c0ff4b85 4149 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 4150 char str[64];
104f3928 4151 u64 val;
86ae53e1
GC
4152 int name, len;
4153 enum res_type type;
8c7c6e34
KH
4154
4155 type = MEMFILE_TYPE(cft->private);
4156 name = MEMFILE_ATTR(cft->private);
af36f906
TH
4157
4158 if (!do_swap_account && type == _MEMSWAP)
4159 return -EOPNOTSUPP;
4160
8c7c6e34
KH
4161 switch (type) {
4162 case _MEM:
104f3928 4163 if (name == RES_USAGE)
c0ff4b85 4164 val = mem_cgroup_usage(memcg, false);
104f3928 4165 else
c0ff4b85 4166 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
4167 break;
4168 case _MEMSWAP:
104f3928 4169 if (name == RES_USAGE)
c0ff4b85 4170 val = mem_cgroup_usage(memcg, true);
104f3928 4171 else
c0ff4b85 4172 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 4173 break;
510fc4e1
GC
4174 case _KMEM:
4175 val = res_counter_read_u64(&memcg->kmem, name);
4176 break;
8c7c6e34
KH
4177 default:
4178 BUG();
8c7c6e34 4179 }
af36f906
TH
4180
4181 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
4182 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 4183}
510fc4e1
GC
4184
4185static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
4186{
4187 int ret = -EINVAL;
4188#ifdef CONFIG_MEMCG_KMEM
4189 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4190 /*
4191 * For simplicity, we won't allow this to be disabled. It also can't
4192 * be changed if the cgroup has children already, or if tasks had
4193 * already joined.
4194 *
4195 * If tasks join before we set the limit, a person looking at
4196 * kmem.usage_in_bytes will have no way to determine when it took
4197 * place, which makes the value quite meaningless.
4198 *
4199 * After it first became limited, changes in the value of the limit are
4200 * of course permitted.
4201 *
4202 * Taking the cgroup_lock is really offensive, but it is so far the only
4203 * way to guarantee that no children will appear. There are plenty of
4204 * other offenders, and they should all go away. Fine grained locking
4205 * is probably the way to go here. When we are fully hierarchical, we
4206 * can also get rid of the use_hierarchy check.
4207 */
4208 cgroup_lock();
4209 mutex_lock(&set_limit_mutex);
4210 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
4211 if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
4212 !list_empty(&cont->children))) {
4213 ret = -EBUSY;
4214 goto out;
4215 }
4216 ret = res_counter_set_limit(&memcg->kmem, val);
4217 VM_BUG_ON(ret);
4218
4219 memcg_kmem_set_active(memcg);
4220 } else
4221 ret = res_counter_set_limit(&memcg->kmem, val);
4222out:
4223 mutex_unlock(&set_limit_mutex);
4224 cgroup_unlock();
4225#endif
4226 return ret;
4227}
4228
4229static void memcg_propagate_kmem(struct mem_cgroup *memcg)
4230{
4231 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4232 if (!parent)
4233 return;
4234 memcg->kmem_account_flags = parent->kmem_account_flags;
4235}
4236
628f4235
KH
4237/*
4238 * The user of this function is...
4239 * RES_LIMIT.
4240 */
856c13aa
PM
4241static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
4242 const char *buffer)
8cdea7c0 4243{
628f4235 4244 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
4245 enum res_type type;
4246 int name;
628f4235
KH
4247 unsigned long long val;
4248 int ret;
4249
8c7c6e34
KH
4250 type = MEMFILE_TYPE(cft->private);
4251 name = MEMFILE_ATTR(cft->private);
af36f906
TH
4252
4253 if (!do_swap_account && type == _MEMSWAP)
4254 return -EOPNOTSUPP;
4255
8c7c6e34 4256 switch (name) {
628f4235 4257 case RES_LIMIT:
4b3bde4c
BS
4258 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4259 ret = -EINVAL;
4260 break;
4261 }
628f4235
KH
4262 /* This function does all necessary parse...reuse it */
4263 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
4264 if (ret)
4265 break;
4266 if (type == _MEM)
628f4235 4267 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 4268 else if (type == _MEMSWAP)
8c7c6e34 4269 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1
GC
4270 else if (type == _KMEM)
4271 ret = memcg_update_kmem_limit(cont, val);
4272 else
4273 return -EINVAL;
628f4235 4274 break;
296c81d8
BS
4275 case RES_SOFT_LIMIT:
4276 ret = res_counter_memparse_write_strategy(buffer, &val);
4277 if (ret)
4278 break;
4279 /*
4280 * For memsw, soft limits are hard to implement in terms
4281 * of semantics, for now, we support soft limits for
4282 * control without swap
4283 */
4284 if (type == _MEM)
4285 ret = res_counter_set_soft_limit(&memcg->res, val);
4286 else
4287 ret = -EINVAL;
4288 break;
628f4235
KH
4289 default:
4290 ret = -EINVAL; /* should be BUG() ? */
4291 break;
4292 }
4293 return ret;
8cdea7c0
BS
4294}
4295
fee7b548
KH
4296static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4297 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4298{
4299 struct cgroup *cgroup;
4300 unsigned long long min_limit, min_memsw_limit, tmp;
4301
4302 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4303 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4304 cgroup = memcg->css.cgroup;
4305 if (!memcg->use_hierarchy)
4306 goto out;
4307
4308 while (cgroup->parent) {
4309 cgroup = cgroup->parent;
4310 memcg = mem_cgroup_from_cont(cgroup);
4311 if (!memcg->use_hierarchy)
4312 break;
4313 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4314 min_limit = min(min_limit, tmp);
4315 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4316 min_memsw_limit = min(min_memsw_limit, tmp);
4317 }
4318out:
4319 *mem_limit = min_limit;
4320 *memsw_limit = min_memsw_limit;
fee7b548
KH
4321}
4322
29f2a4da 4323static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 4324{
af36f906 4325 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
4326 int name;
4327 enum res_type type;
c84872e1 4328
8c7c6e34
KH
4329 type = MEMFILE_TYPE(event);
4330 name = MEMFILE_ATTR(event);
af36f906
TH
4331
4332 if (!do_swap_account && type == _MEMSWAP)
4333 return -EOPNOTSUPP;
4334
8c7c6e34 4335 switch (name) {
29f2a4da 4336 case RES_MAX_USAGE:
8c7c6e34 4337 if (type == _MEM)
c0ff4b85 4338 res_counter_reset_max(&memcg->res);
510fc4e1 4339 else if (type == _MEMSWAP)
c0ff4b85 4340 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
4341 else if (type == _KMEM)
4342 res_counter_reset_max(&memcg->kmem);
4343 else
4344 return -EINVAL;
29f2a4da
PE
4345 break;
4346 case RES_FAILCNT:
8c7c6e34 4347 if (type == _MEM)
c0ff4b85 4348 res_counter_reset_failcnt(&memcg->res);
510fc4e1 4349 else if (type == _MEMSWAP)
c0ff4b85 4350 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
4351 else if (type == _KMEM)
4352 res_counter_reset_failcnt(&memcg->kmem);
4353 else
4354 return -EINVAL;
29f2a4da
PE
4355 break;
4356 }
f64c3f54 4357
85cc59db 4358 return 0;
c84872e1
PE
4359}
4360
7dc74be0
DN
4361static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4362 struct cftype *cft)
4363{
4364 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4365}
4366
02491447 4367#ifdef CONFIG_MMU
7dc74be0
DN
4368static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4369 struct cftype *cft, u64 val)
4370{
c0ff4b85 4371 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4372
4373 if (val >= (1 << NR_MOVE_TYPE))
4374 return -EINVAL;
4375 /*
4376 * We check this value several times in both in can_attach() and
4377 * attach(), so we need cgroup lock to prevent this value from being
4378 * inconsistent.
4379 */
4380 cgroup_lock();
c0ff4b85 4381 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4382 cgroup_unlock();
4383
4384 return 0;
4385}
02491447
DN
4386#else
4387static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4388 struct cftype *cft, u64 val)
4389{
4390 return -ENOSYS;
4391}
4392#endif
7dc74be0 4393
406eb0c9 4394#ifdef CONFIG_NUMA
ab215884 4395static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
fada52ca 4396 struct seq_file *m)
406eb0c9
YH
4397{
4398 int nid;
4399 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4400 unsigned long node_nr;
d79154bb 4401 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4402
d79154bb 4403 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 4404 seq_printf(m, "total=%lu", total_nr);
31aaea4a 4405 for_each_node_state(nid, N_MEMORY) {
d79154bb 4406 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4407 seq_printf(m, " N%d=%lu", nid, node_nr);
4408 }
4409 seq_putc(m, '\n');
4410
d79154bb 4411 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 4412 seq_printf(m, "file=%lu", file_nr);
31aaea4a 4413 for_each_node_state(nid, N_MEMORY) {
d79154bb 4414 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4415 LRU_ALL_FILE);
406eb0c9
YH
4416 seq_printf(m, " N%d=%lu", nid, node_nr);
4417 }
4418 seq_putc(m, '\n');
4419
d79154bb 4420 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 4421 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 4422 for_each_node_state(nid, N_MEMORY) {
d79154bb 4423 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4424 LRU_ALL_ANON);
406eb0c9
YH
4425 seq_printf(m, " N%d=%lu", nid, node_nr);
4426 }
4427 seq_putc(m, '\n');
4428
d79154bb 4429 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 4430 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 4431 for_each_node_state(nid, N_MEMORY) {
d79154bb 4432 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4433 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4434 seq_printf(m, " N%d=%lu", nid, node_nr);
4435 }
4436 seq_putc(m, '\n');
4437 return 0;
4438}
4439#endif /* CONFIG_NUMA */
4440
af7c4b0e
JW
4441static const char * const mem_cgroup_lru_names[] = {
4442 "inactive_anon",
4443 "active_anon",
4444 "inactive_file",
4445 "active_file",
4446 "unevictable",
4447};
4448
4449static inline void mem_cgroup_lru_names_not_uptodate(void)
4450{
4451 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4452}
4453
ab215884 4454static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 4455 struct seq_file *m)
d2ceb9b7 4456{
d79154bb 4457 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
4458 struct mem_cgroup *mi;
4459 unsigned int i;
406eb0c9 4460
af7c4b0e 4461 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4462 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4463 continue;
af7c4b0e
JW
4464 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4465 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4466 }
7b854121 4467
af7c4b0e
JW
4468 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4469 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4470 mem_cgroup_read_events(memcg, i));
4471
4472 for (i = 0; i < NR_LRU_LISTS; i++)
4473 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4474 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4475
14067bb3 4476 /* Hierarchical information */
fee7b548
KH
4477 {
4478 unsigned long long limit, memsw_limit;
d79154bb 4479 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 4480 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 4481 if (do_swap_account)
78ccf5b5
JW
4482 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4483 memsw_limit);
fee7b548 4484 }
7f016ee8 4485
af7c4b0e
JW
4486 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4487 long long val = 0;
4488
bff6bb83 4489 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4490 continue;
af7c4b0e
JW
4491 for_each_mem_cgroup_tree(mi, memcg)
4492 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4493 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4494 }
4495
4496 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4497 unsigned long long val = 0;
4498
4499 for_each_mem_cgroup_tree(mi, memcg)
4500 val += mem_cgroup_read_events(mi, i);
4501 seq_printf(m, "total_%s %llu\n",
4502 mem_cgroup_events_names[i], val);
4503 }
4504
4505 for (i = 0; i < NR_LRU_LISTS; i++) {
4506 unsigned long long val = 0;
4507
4508 for_each_mem_cgroup_tree(mi, memcg)
4509 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4510 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4511 }
14067bb3 4512
7f016ee8 4513#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4514 {
4515 int nid, zid;
4516 struct mem_cgroup_per_zone *mz;
89abfab1 4517 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4518 unsigned long recent_rotated[2] = {0, 0};
4519 unsigned long recent_scanned[2] = {0, 0};
4520
4521 for_each_online_node(nid)
4522 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4523 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 4524 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4525
89abfab1
HD
4526 recent_rotated[0] += rstat->recent_rotated[0];
4527 recent_rotated[1] += rstat->recent_rotated[1];
4528 recent_scanned[0] += rstat->recent_scanned[0];
4529 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4530 }
78ccf5b5
JW
4531 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4532 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4533 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4534 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4535 }
4536#endif
4537
d2ceb9b7
KH
4538 return 0;
4539}
4540
a7885eb8
KM
4541static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4542{
4543 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4544
1f4c025b 4545 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4546}
4547
4548static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4549 u64 val)
4550{
4551 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4552 struct mem_cgroup *parent;
068b38c1 4553
a7885eb8
KM
4554 if (val > 100)
4555 return -EINVAL;
4556
4557 if (cgrp->parent == NULL)
4558 return -EINVAL;
4559
4560 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4561
4562 cgroup_lock();
4563
a7885eb8
KM
4564 /* If under hierarchy, only empty-root can set this value */
4565 if ((parent->use_hierarchy) ||
068b38c1
LZ
4566 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4567 cgroup_unlock();
a7885eb8 4568 return -EINVAL;
068b38c1 4569 }
a7885eb8 4570
a7885eb8 4571 memcg->swappiness = val;
a7885eb8 4572
068b38c1
LZ
4573 cgroup_unlock();
4574
a7885eb8
KM
4575 return 0;
4576}
4577
2e72b634
KS
4578static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4579{
4580 struct mem_cgroup_threshold_ary *t;
4581 u64 usage;
4582 int i;
4583
4584 rcu_read_lock();
4585 if (!swap)
2c488db2 4586 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4587 else
2c488db2 4588 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4589
4590 if (!t)
4591 goto unlock;
4592
4593 usage = mem_cgroup_usage(memcg, swap);
4594
4595 /*
748dad36 4596 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4597 * If it's not true, a threshold was crossed after last
4598 * call of __mem_cgroup_threshold().
4599 */
5407a562 4600 i = t->current_threshold;
2e72b634
KS
4601
4602 /*
4603 * Iterate backward over array of thresholds starting from
4604 * current_threshold and check if a threshold is crossed.
4605 * If none of thresholds below usage is crossed, we read
4606 * only one element of the array here.
4607 */
4608 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4609 eventfd_signal(t->entries[i].eventfd, 1);
4610
4611 /* i = current_threshold + 1 */
4612 i++;
4613
4614 /*
4615 * Iterate forward over array of thresholds starting from
4616 * current_threshold+1 and check if a threshold is crossed.
4617 * If none of thresholds above usage is crossed, we read
4618 * only one element of the array here.
4619 */
4620 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4621 eventfd_signal(t->entries[i].eventfd, 1);
4622
4623 /* Update current_threshold */
5407a562 4624 t->current_threshold = i - 1;
2e72b634
KS
4625unlock:
4626 rcu_read_unlock();
4627}
4628
4629static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4630{
ad4ca5f4
KS
4631 while (memcg) {
4632 __mem_cgroup_threshold(memcg, false);
4633 if (do_swap_account)
4634 __mem_cgroup_threshold(memcg, true);
4635
4636 memcg = parent_mem_cgroup(memcg);
4637 }
2e72b634
KS
4638}
4639
4640static int compare_thresholds(const void *a, const void *b)
4641{
4642 const struct mem_cgroup_threshold *_a = a;
4643 const struct mem_cgroup_threshold *_b = b;
4644
4645 return _a->threshold - _b->threshold;
4646}
4647
c0ff4b85 4648static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4649{
4650 struct mem_cgroup_eventfd_list *ev;
4651
c0ff4b85 4652 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4653 eventfd_signal(ev->eventfd, 1);
4654 return 0;
4655}
4656
c0ff4b85 4657static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4658{
7d74b06f
KH
4659 struct mem_cgroup *iter;
4660
c0ff4b85 4661 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4662 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4663}
4664
4665static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4666 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4667{
4668 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4669 struct mem_cgroup_thresholds *thresholds;
4670 struct mem_cgroup_threshold_ary *new;
86ae53e1 4671 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 4672 u64 threshold, usage;
2c488db2 4673 int i, size, ret;
2e72b634
KS
4674
4675 ret = res_counter_memparse_write_strategy(args, &threshold);
4676 if (ret)
4677 return ret;
4678
4679 mutex_lock(&memcg->thresholds_lock);
2c488db2 4680
2e72b634 4681 if (type == _MEM)
2c488db2 4682 thresholds = &memcg->thresholds;
2e72b634 4683 else if (type == _MEMSWAP)
2c488db2 4684 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4685 else
4686 BUG();
4687
4688 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4689
4690 /* Check if a threshold crossed before adding a new one */
2c488db2 4691 if (thresholds->primary)
2e72b634
KS
4692 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4693
2c488db2 4694 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4695
4696 /* Allocate memory for new array of thresholds */
2c488db2 4697 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4698 GFP_KERNEL);
2c488db2 4699 if (!new) {
2e72b634
KS
4700 ret = -ENOMEM;
4701 goto unlock;
4702 }
2c488db2 4703 new->size = size;
2e72b634
KS
4704
4705 /* Copy thresholds (if any) to new array */
2c488db2
KS
4706 if (thresholds->primary) {
4707 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4708 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4709 }
4710
2e72b634 4711 /* Add new threshold */
2c488db2
KS
4712 new->entries[size - 1].eventfd = eventfd;
4713 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4714
4715 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4716 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4717 compare_thresholds, NULL);
4718
4719 /* Find current threshold */
2c488db2 4720 new->current_threshold = -1;
2e72b634 4721 for (i = 0; i < size; i++) {
748dad36 4722 if (new->entries[i].threshold <= usage) {
2e72b634 4723 /*
2c488db2
KS
4724 * new->current_threshold will not be used until
4725 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4726 * it here.
4727 */
2c488db2 4728 ++new->current_threshold;
748dad36
SZ
4729 } else
4730 break;
2e72b634
KS
4731 }
4732
2c488db2
KS
4733 /* Free old spare buffer and save old primary buffer as spare */
4734 kfree(thresholds->spare);
4735 thresholds->spare = thresholds->primary;
4736
4737 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4738
907860ed 4739 /* To be sure that nobody uses thresholds */
2e72b634
KS
4740 synchronize_rcu();
4741
2e72b634
KS
4742unlock:
4743 mutex_unlock(&memcg->thresholds_lock);
4744
4745 return ret;
4746}
4747
907860ed 4748static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4749 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4750{
4751 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4752 struct mem_cgroup_thresholds *thresholds;
4753 struct mem_cgroup_threshold_ary *new;
86ae53e1 4754 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 4755 u64 usage;
2c488db2 4756 int i, j, size;
2e72b634
KS
4757
4758 mutex_lock(&memcg->thresholds_lock);
4759 if (type == _MEM)
2c488db2 4760 thresholds = &memcg->thresholds;
2e72b634 4761 else if (type == _MEMSWAP)
2c488db2 4762 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4763 else
4764 BUG();
4765
371528ca
AV
4766 if (!thresholds->primary)
4767 goto unlock;
4768
2e72b634
KS
4769 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4770
4771 /* Check if a threshold crossed before removing */
4772 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4773
4774 /* Calculate new number of threshold */
2c488db2
KS
4775 size = 0;
4776 for (i = 0; i < thresholds->primary->size; i++) {
4777 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4778 size++;
4779 }
4780
2c488db2 4781 new = thresholds->spare;
907860ed 4782
2e72b634
KS
4783 /* Set thresholds array to NULL if we don't have thresholds */
4784 if (!size) {
2c488db2
KS
4785 kfree(new);
4786 new = NULL;
907860ed 4787 goto swap_buffers;
2e72b634
KS
4788 }
4789
2c488db2 4790 new->size = size;
2e72b634
KS
4791
4792 /* Copy thresholds and find current threshold */
2c488db2
KS
4793 new->current_threshold = -1;
4794 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4795 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4796 continue;
4797
2c488db2 4798 new->entries[j] = thresholds->primary->entries[i];
748dad36 4799 if (new->entries[j].threshold <= usage) {
2e72b634 4800 /*
2c488db2 4801 * new->current_threshold will not be used
2e72b634
KS
4802 * until rcu_assign_pointer(), so it's safe to increment
4803 * it here.
4804 */
2c488db2 4805 ++new->current_threshold;
2e72b634
KS
4806 }
4807 j++;
4808 }
4809
907860ed 4810swap_buffers:
2c488db2
KS
4811 /* Swap primary and spare array */
4812 thresholds->spare = thresholds->primary;
8c757763
SZ
4813 /* If all events are unregistered, free the spare array */
4814 if (!new) {
4815 kfree(thresholds->spare);
4816 thresholds->spare = NULL;
4817 }
4818
2c488db2 4819 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4820
907860ed 4821 /* To be sure that nobody uses thresholds */
2e72b634 4822 synchronize_rcu();
371528ca 4823unlock:
2e72b634 4824 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4825}
c1e862c1 4826
9490ff27
KH
4827static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4828 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4829{
4830 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4831 struct mem_cgroup_eventfd_list *event;
86ae53e1 4832 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
4833
4834 BUG_ON(type != _OOM_TYPE);
4835 event = kmalloc(sizeof(*event), GFP_KERNEL);
4836 if (!event)
4837 return -ENOMEM;
4838
1af8efe9 4839 spin_lock(&memcg_oom_lock);
9490ff27
KH
4840
4841 event->eventfd = eventfd;
4842 list_add(&event->list, &memcg->oom_notify);
4843
4844 /* already in OOM ? */
79dfdacc 4845 if (atomic_read(&memcg->under_oom))
9490ff27 4846 eventfd_signal(eventfd, 1);
1af8efe9 4847 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4848
4849 return 0;
4850}
4851
907860ed 4852static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4853 struct cftype *cft, struct eventfd_ctx *eventfd)
4854{
c0ff4b85 4855 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27 4856 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 4857 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
4858
4859 BUG_ON(type != _OOM_TYPE);
4860
1af8efe9 4861 spin_lock(&memcg_oom_lock);
9490ff27 4862
c0ff4b85 4863 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4864 if (ev->eventfd == eventfd) {
4865 list_del(&ev->list);
4866 kfree(ev);
4867 }
4868 }
4869
1af8efe9 4870 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4871}
4872
3c11ecf4
KH
4873static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4874 struct cftype *cft, struct cgroup_map_cb *cb)
4875{
c0ff4b85 4876 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4877
c0ff4b85 4878 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4879
c0ff4b85 4880 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4881 cb->fill(cb, "under_oom", 1);
4882 else
4883 cb->fill(cb, "under_oom", 0);
4884 return 0;
4885}
4886
3c11ecf4
KH
4887static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4888 struct cftype *cft, u64 val)
4889{
c0ff4b85 4890 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4891 struct mem_cgroup *parent;
4892
4893 /* cannot set to root cgroup and only 0 and 1 are allowed */
4894 if (!cgrp->parent || !((val == 0) || (val == 1)))
4895 return -EINVAL;
4896
4897 parent = mem_cgroup_from_cont(cgrp->parent);
4898
4899 cgroup_lock();
4900 /* oom-kill-disable is a flag for subhierarchy. */
4901 if ((parent->use_hierarchy) ||
c0ff4b85 4902 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4903 cgroup_unlock();
4904 return -EINVAL;
4905 }
c0ff4b85 4906 memcg->oom_kill_disable = val;
4d845ebf 4907 if (!val)
c0ff4b85 4908 memcg_oom_recover(memcg);
3c11ecf4
KH
4909 cgroup_unlock();
4910 return 0;
4911}
4912
c255a458 4913#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4914static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4915{
510fc4e1 4916 memcg_propagate_kmem(memcg);
1d62e436 4917 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
4918};
4919
1d62e436 4920static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 4921{
1d62e436 4922 mem_cgroup_sockets_destroy(memcg);
d1a4c0b3 4923}
e5671dfa 4924#else
cbe128e3 4925static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4926{
4927 return 0;
4928}
d1a4c0b3 4929
1d62e436 4930static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
4931{
4932}
e5671dfa
GC
4933#endif
4934
8cdea7c0
BS
4935static struct cftype mem_cgroup_files[] = {
4936 {
0eea1030 4937 .name = "usage_in_bytes",
8c7c6e34 4938 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 4939 .read = mem_cgroup_read,
9490ff27
KH
4940 .register_event = mem_cgroup_usage_register_event,
4941 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4942 },
c84872e1
PE
4943 {
4944 .name = "max_usage_in_bytes",
8c7c6e34 4945 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4946 .trigger = mem_cgroup_reset,
af36f906 4947 .read = mem_cgroup_read,
c84872e1 4948 },
8cdea7c0 4949 {
0eea1030 4950 .name = "limit_in_bytes",
8c7c6e34 4951 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4952 .write_string = mem_cgroup_write,
af36f906 4953 .read = mem_cgroup_read,
8cdea7c0 4954 },
296c81d8
BS
4955 {
4956 .name = "soft_limit_in_bytes",
4957 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4958 .write_string = mem_cgroup_write,
af36f906 4959 .read = mem_cgroup_read,
296c81d8 4960 },
8cdea7c0
BS
4961 {
4962 .name = "failcnt",
8c7c6e34 4963 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4964 .trigger = mem_cgroup_reset,
af36f906 4965 .read = mem_cgroup_read,
8cdea7c0 4966 },
d2ceb9b7
KH
4967 {
4968 .name = "stat",
ab215884 4969 .read_seq_string = memcg_stat_show,
d2ceb9b7 4970 },
c1e862c1
KH
4971 {
4972 .name = "force_empty",
4973 .trigger = mem_cgroup_force_empty_write,
4974 },
18f59ea7
BS
4975 {
4976 .name = "use_hierarchy",
4977 .write_u64 = mem_cgroup_hierarchy_write,
4978 .read_u64 = mem_cgroup_hierarchy_read,
4979 },
a7885eb8
KM
4980 {
4981 .name = "swappiness",
4982 .read_u64 = mem_cgroup_swappiness_read,
4983 .write_u64 = mem_cgroup_swappiness_write,
4984 },
7dc74be0
DN
4985 {
4986 .name = "move_charge_at_immigrate",
4987 .read_u64 = mem_cgroup_move_charge_read,
4988 .write_u64 = mem_cgroup_move_charge_write,
4989 },
9490ff27
KH
4990 {
4991 .name = "oom_control",
3c11ecf4
KH
4992 .read_map = mem_cgroup_oom_control_read,
4993 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4994 .register_event = mem_cgroup_oom_register_event,
4995 .unregister_event = mem_cgroup_oom_unregister_event,
4996 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4997 },
406eb0c9
YH
4998#ifdef CONFIG_NUMA
4999 {
5000 .name = "numa_stat",
ab215884 5001 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
5002 },
5003#endif
c255a458 5004#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
5005 {
5006 .name = "memsw.usage_in_bytes",
5007 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 5008 .read = mem_cgroup_read,
9490ff27
KH
5009 .register_event = mem_cgroup_usage_register_event,
5010 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
5011 },
5012 {
5013 .name = "memsw.max_usage_in_bytes",
5014 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5015 .trigger = mem_cgroup_reset,
af36f906 5016 .read = mem_cgroup_read,
8c7c6e34
KH
5017 },
5018 {
5019 .name = "memsw.limit_in_bytes",
5020 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5021 .write_string = mem_cgroup_write,
af36f906 5022 .read = mem_cgroup_read,
8c7c6e34
KH
5023 },
5024 {
5025 .name = "memsw.failcnt",
5026 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5027 .trigger = mem_cgroup_reset,
af36f906 5028 .read = mem_cgroup_read,
8c7c6e34 5029 },
510fc4e1
GC
5030#endif
5031#ifdef CONFIG_MEMCG_KMEM
5032 {
5033 .name = "kmem.limit_in_bytes",
5034 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5035 .write_string = mem_cgroup_write,
5036 .read = mem_cgroup_read,
5037 },
5038 {
5039 .name = "kmem.usage_in_bytes",
5040 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5041 .read = mem_cgroup_read,
5042 },
5043 {
5044 .name = "kmem.failcnt",
5045 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5046 .trigger = mem_cgroup_reset,
5047 .read = mem_cgroup_read,
5048 },
5049 {
5050 .name = "kmem.max_usage_in_bytes",
5051 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5052 .trigger = mem_cgroup_reset,
5053 .read = mem_cgroup_read,
5054 },
8c7c6e34 5055#endif
6bc10349 5056 { }, /* terminate */
af36f906 5057};
8c7c6e34 5058
c0ff4b85 5059static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5060{
5061 struct mem_cgroup_per_node *pn;
1ecaab2b 5062 struct mem_cgroup_per_zone *mz;
41e3355d 5063 int zone, tmp = node;
1ecaab2b
KH
5064 /*
5065 * This routine is called against possible nodes.
5066 * But it's BUG to call kmalloc() against offline node.
5067 *
5068 * TODO: this routine can waste much memory for nodes which will
5069 * never be onlined. It's better to use memory hotplug callback
5070 * function.
5071 */
41e3355d
KH
5072 if (!node_state(node, N_NORMAL_MEMORY))
5073 tmp = -1;
17295c88 5074 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5075 if (!pn)
5076 return 1;
1ecaab2b 5077
1ecaab2b
KH
5078 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5079 mz = &pn->zoneinfo[zone];
bea8c150 5080 lruvec_init(&mz->lruvec);
f64c3f54 5081 mz->usage_in_excess = 0;
4e416953 5082 mz->on_tree = false;
d79154bb 5083 mz->memcg = memcg;
1ecaab2b 5084 }
0a619e58 5085 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
5086 return 0;
5087}
5088
c0ff4b85 5089static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5090{
c0ff4b85 5091 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
5092}
5093
33327948
KH
5094static struct mem_cgroup *mem_cgroup_alloc(void)
5095{
d79154bb 5096 struct mem_cgroup *memcg;
c62b1a3b 5097 int size = sizeof(struct mem_cgroup);
33327948 5098
c62b1a3b 5099 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 5100 if (size < PAGE_SIZE)
d79154bb 5101 memcg = kzalloc(size, GFP_KERNEL);
33327948 5102 else
d79154bb 5103 memcg = vzalloc(size);
33327948 5104
d79154bb 5105 if (!memcg)
e7bbcdf3
DC
5106 return NULL;
5107
d79154bb
HD
5108 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5109 if (!memcg->stat)
d2e61b8d 5110 goto out_free;
d79154bb
HD
5111 spin_lock_init(&memcg->pcp_counter_lock);
5112 return memcg;
d2e61b8d
DC
5113
5114out_free:
5115 if (size < PAGE_SIZE)
d79154bb 5116 kfree(memcg);
d2e61b8d 5117 else
d79154bb 5118 vfree(memcg);
d2e61b8d 5119 return NULL;
33327948
KH
5120}
5121
59927fb9 5122/*
3afe36b1 5123 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
59927fb9
HD
5124 * but in process context. The work_freeing structure is overlaid
5125 * on the rcu_freeing structure, which itself is overlaid on memsw.
5126 */
3afe36b1 5127static void free_work(struct work_struct *work)
59927fb9
HD
5128{
5129 struct mem_cgroup *memcg;
3afe36b1 5130 int size = sizeof(struct mem_cgroup);
59927fb9
HD
5131
5132 memcg = container_of(work, struct mem_cgroup, work_freeing);
3f134619
GC
5133 /*
5134 * We need to make sure that (at least for now), the jump label
5135 * destruction code runs outside of the cgroup lock. This is because
5136 * get_online_cpus(), which is called from the static_branch update,
5137 * can't be called inside the cgroup_lock. cpusets are the ones
5138 * enforcing this dependency, so if they ever change, we might as well.
5139 *
5140 * schedule_work() will guarantee this happens. Be careful if you need
5141 * to move this code around, and make sure it is outside
5142 * the cgroup_lock.
5143 */
5144 disarm_sock_keys(memcg);
3afe36b1
GC
5145 if (size < PAGE_SIZE)
5146 kfree(memcg);
5147 else
5148 vfree(memcg);
59927fb9 5149}
3afe36b1
GC
5150
5151static void free_rcu(struct rcu_head *rcu_head)
59927fb9
HD
5152{
5153 struct mem_cgroup *memcg;
5154
5155 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
3afe36b1 5156 INIT_WORK(&memcg->work_freeing, free_work);
59927fb9
HD
5157 schedule_work(&memcg->work_freeing);
5158}
5159
8c7c6e34
KH
5160/*
5161 * At destroying mem_cgroup, references from swap_cgroup can remain.
5162 * (scanning all at force_empty is too costly...)
5163 *
5164 * Instead of clearing all references at force_empty, we remember
5165 * the number of reference from swap_cgroup and free mem_cgroup when
5166 * it goes down to 0.
5167 *
8c7c6e34
KH
5168 * Removal of cgroup itself succeeds regardless of refs from swap.
5169 */
5170
c0ff4b85 5171static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 5172{
08e552c6
KH
5173 int node;
5174
c0ff4b85
R
5175 mem_cgroup_remove_from_trees(memcg);
5176 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 5177
3ed28fa1 5178 for_each_node(node)
c0ff4b85 5179 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 5180
c0ff4b85 5181 free_percpu(memcg->stat);
3afe36b1 5182 call_rcu(&memcg->rcu_freeing, free_rcu);
33327948
KH
5183}
5184
c0ff4b85 5185static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 5186{
c0ff4b85 5187 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
5188}
5189
c0ff4b85 5190static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 5191{
c0ff4b85
R
5192 if (atomic_sub_and_test(count, &memcg->refcnt)) {
5193 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5194 __mem_cgroup_free(memcg);
7bcc1bb1
DN
5195 if (parent)
5196 mem_cgroup_put(parent);
5197 }
8c7c6e34
KH
5198}
5199
c0ff4b85 5200static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 5201{
c0ff4b85 5202 __mem_cgroup_put(memcg, 1);
483c30b5
DN
5203}
5204
7bcc1bb1
DN
5205/*
5206 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5207 */
e1aab161 5208struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 5209{
c0ff4b85 5210 if (!memcg->res.parent)
7bcc1bb1 5211 return NULL;
c0ff4b85 5212 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 5213}
e1aab161 5214EXPORT_SYMBOL(parent_mem_cgroup);
33327948 5215
c255a458 5216#ifdef CONFIG_MEMCG_SWAP
c077719b
KH
5217static void __init enable_swap_cgroup(void)
5218{
f8d66542 5219 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
5220 do_swap_account = 1;
5221}
5222#else
5223static void __init enable_swap_cgroup(void)
5224{
5225}
5226#endif
5227
f64c3f54
BS
5228static int mem_cgroup_soft_limit_tree_init(void)
5229{
5230 struct mem_cgroup_tree_per_node *rtpn;
5231 struct mem_cgroup_tree_per_zone *rtpz;
5232 int tmp, node, zone;
5233
3ed28fa1 5234 for_each_node(node) {
f64c3f54
BS
5235 tmp = node;
5236 if (!node_state(node, N_NORMAL_MEMORY))
5237 tmp = -1;
5238 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5239 if (!rtpn)
c3cecc68 5240 goto err_cleanup;
f64c3f54
BS
5241
5242 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5243
5244 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5245 rtpz = &rtpn->rb_tree_per_zone[zone];
5246 rtpz->rb_root = RB_ROOT;
5247 spin_lock_init(&rtpz->lock);
5248 }
5249 }
5250 return 0;
c3cecc68
MH
5251
5252err_cleanup:
3ed28fa1 5253 for_each_node(node) {
c3cecc68
MH
5254 if (!soft_limit_tree.rb_tree_per_node[node])
5255 break;
5256 kfree(soft_limit_tree.rb_tree_per_node[node]);
5257 soft_limit_tree.rb_tree_per_node[node] = NULL;
5258 }
5259 return 1;
5260
f64c3f54
BS
5261}
5262
0eb253e2 5263static struct cgroup_subsys_state * __ref
92fb9748 5264mem_cgroup_css_alloc(struct cgroup *cont)
8cdea7c0 5265{
c0ff4b85 5266 struct mem_cgroup *memcg, *parent;
04046e1a 5267 long error = -ENOMEM;
6d12e2d8 5268 int node;
8cdea7c0 5269
c0ff4b85
R
5270 memcg = mem_cgroup_alloc();
5271 if (!memcg)
04046e1a 5272 return ERR_PTR(error);
78fb7466 5273
3ed28fa1 5274 for_each_node(node)
c0ff4b85 5275 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 5276 goto free_out;
f64c3f54 5277
c077719b 5278 /* root ? */
28dbc4b6 5279 if (cont->parent == NULL) {
cdec2e42 5280 int cpu;
c077719b 5281 enable_swap_cgroup();
28dbc4b6 5282 parent = NULL;
f64c3f54
BS
5283 if (mem_cgroup_soft_limit_tree_init())
5284 goto free_out;
a41c58a6 5285 root_mem_cgroup = memcg;
cdec2e42
KH
5286 for_each_possible_cpu(cpu) {
5287 struct memcg_stock_pcp *stock =
5288 &per_cpu(memcg_stock, cpu);
5289 INIT_WORK(&stock->work, drain_local_stock);
5290 }
711d3d2c 5291 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 5292 } else {
28dbc4b6 5293 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
5294 memcg->use_hierarchy = parent->use_hierarchy;
5295 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 5296 }
28dbc4b6 5297
18f59ea7 5298 if (parent && parent->use_hierarchy) {
c0ff4b85
R
5299 res_counter_init(&memcg->res, &parent->res);
5300 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 5301 res_counter_init(&memcg->kmem, &parent->kmem);
7bcc1bb1
DN
5302 /*
5303 * We increment refcnt of the parent to ensure that we can
5304 * safely access it on res_counter_charge/uncharge.
5305 * This refcnt will be decremented when freeing this
5306 * mem_cgroup(see mem_cgroup_put).
5307 */
5308 mem_cgroup_get(parent);
18f59ea7 5309 } else {
c0ff4b85
R
5310 res_counter_init(&memcg->res, NULL);
5311 res_counter_init(&memcg->memsw, NULL);
510fc4e1 5312 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
5313 /*
5314 * Deeper hierachy with use_hierarchy == false doesn't make
5315 * much sense so let cgroup subsystem know about this
5316 * unfortunate state in our controller.
5317 */
5318 if (parent && parent != root_mem_cgroup)
5319 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 5320 }
c0ff4b85
R
5321 memcg->last_scanned_node = MAX_NUMNODES;
5322 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 5323
a7885eb8 5324 if (parent)
c0ff4b85
R
5325 memcg->swappiness = mem_cgroup_swappiness(parent);
5326 atomic_set(&memcg->refcnt, 1);
5327 memcg->move_charge_at_immigrate = 0;
5328 mutex_init(&memcg->thresholds_lock);
312734c0 5329 spin_lock_init(&memcg->move_lock);
cbe128e3
GC
5330
5331 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
5332 if (error) {
5333 /*
5334 * We call put now because our (and parent's) refcnts
5335 * are already in place. mem_cgroup_put() will internally
5336 * call __mem_cgroup_free, so return directly
5337 */
5338 mem_cgroup_put(memcg);
5339 return ERR_PTR(error);
5340 }
c0ff4b85 5341 return &memcg->css;
6d12e2d8 5342free_out:
c0ff4b85 5343 __mem_cgroup_free(memcg);
04046e1a 5344 return ERR_PTR(error);
8cdea7c0
BS
5345}
5346
92fb9748 5347static void mem_cgroup_css_offline(struct cgroup *cont)
df878fb0 5348{
c0ff4b85 5349 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 5350
ab5196c2 5351 mem_cgroup_reparent_charges(memcg);
df878fb0
KH
5352}
5353
92fb9748 5354static void mem_cgroup_css_free(struct cgroup *cont)
8cdea7c0 5355{
c0ff4b85 5356 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5357
1d62e436 5358 kmem_cgroup_destroy(memcg);
d1a4c0b3 5359
c0ff4b85 5360 mem_cgroup_put(memcg);
8cdea7c0
BS
5361}
5362
02491447 5363#ifdef CONFIG_MMU
7dc74be0 5364/* Handlers for move charge at task migration. */
854ffa8d
DN
5365#define PRECHARGE_COUNT_AT_ONCE 256
5366static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5367{
854ffa8d
DN
5368 int ret = 0;
5369 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5370 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5371
c0ff4b85 5372 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5373 mc.precharge += count;
5374 /* we don't need css_get for root */
5375 return ret;
5376 }
5377 /* try to charge at once */
5378 if (count > 1) {
5379 struct res_counter *dummy;
5380 /*
c0ff4b85 5381 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5382 * by cgroup_lock_live_cgroup() that it is not removed and we
5383 * are still under the same cgroup_mutex. So we can postpone
5384 * css_get().
5385 */
c0ff4b85 5386 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5387 goto one_by_one;
c0ff4b85 5388 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5389 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5390 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5391 goto one_by_one;
5392 }
5393 mc.precharge += count;
854ffa8d
DN
5394 return ret;
5395 }
5396one_by_one:
5397 /* fall back to one by one charge */
5398 while (count--) {
5399 if (signal_pending(current)) {
5400 ret = -EINTR;
5401 break;
5402 }
5403 if (!batch_count--) {
5404 batch_count = PRECHARGE_COUNT_AT_ONCE;
5405 cond_resched();
5406 }
c0ff4b85
R
5407 ret = __mem_cgroup_try_charge(NULL,
5408 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5409 if (ret)
854ffa8d 5410 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5411 return ret;
854ffa8d
DN
5412 mc.precharge++;
5413 }
4ffef5fe
DN
5414 return ret;
5415}
5416
5417/**
8d32ff84 5418 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5419 * @vma: the vma the pte to be checked belongs
5420 * @addr: the address corresponding to the pte to be checked
5421 * @ptent: the pte to be checked
02491447 5422 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5423 *
5424 * Returns
5425 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5426 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5427 * move charge. if @target is not NULL, the page is stored in target->page
5428 * with extra refcnt got(Callers should handle it).
02491447
DN
5429 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5430 * target for charge migration. if @target is not NULL, the entry is stored
5431 * in target->ent.
4ffef5fe
DN
5432 *
5433 * Called with pte lock held.
5434 */
4ffef5fe
DN
5435union mc_target {
5436 struct page *page;
02491447 5437 swp_entry_t ent;
4ffef5fe
DN
5438};
5439
4ffef5fe 5440enum mc_target_type {
8d32ff84 5441 MC_TARGET_NONE = 0,
4ffef5fe 5442 MC_TARGET_PAGE,
02491447 5443 MC_TARGET_SWAP,
4ffef5fe
DN
5444};
5445
90254a65
DN
5446static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5447 unsigned long addr, pte_t ptent)
4ffef5fe 5448{
90254a65 5449 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5450
90254a65
DN
5451 if (!page || !page_mapped(page))
5452 return NULL;
5453 if (PageAnon(page)) {
5454 /* we don't move shared anon */
4b91355e 5455 if (!move_anon())
90254a65 5456 return NULL;
87946a72
DN
5457 } else if (!move_file())
5458 /* we ignore mapcount for file pages */
90254a65
DN
5459 return NULL;
5460 if (!get_page_unless_zero(page))
5461 return NULL;
5462
5463 return page;
5464}
5465
4b91355e 5466#ifdef CONFIG_SWAP
90254a65
DN
5467static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5468 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5469{
90254a65
DN
5470 struct page *page = NULL;
5471 swp_entry_t ent = pte_to_swp_entry(ptent);
5472
5473 if (!move_anon() || non_swap_entry(ent))
5474 return NULL;
4b91355e
KH
5475 /*
5476 * Because lookup_swap_cache() updates some statistics counter,
5477 * we call find_get_page() with swapper_space directly.
5478 */
5479 page = find_get_page(&swapper_space, ent.val);
90254a65
DN
5480 if (do_swap_account)
5481 entry->val = ent.val;
5482
5483 return page;
5484}
4b91355e
KH
5485#else
5486static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5487 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5488{
5489 return NULL;
5490}
5491#endif
90254a65 5492
87946a72
DN
5493static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5494 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5495{
5496 struct page *page = NULL;
87946a72
DN
5497 struct address_space *mapping;
5498 pgoff_t pgoff;
5499
5500 if (!vma->vm_file) /* anonymous vma */
5501 return NULL;
5502 if (!move_file())
5503 return NULL;
5504
87946a72
DN
5505 mapping = vma->vm_file->f_mapping;
5506 if (pte_none(ptent))
5507 pgoff = linear_page_index(vma, addr);
5508 else /* pte_file(ptent) is true */
5509 pgoff = pte_to_pgoff(ptent);
5510
5511 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5512 page = find_get_page(mapping, pgoff);
5513
5514#ifdef CONFIG_SWAP
5515 /* shmem/tmpfs may report page out on swap: account for that too. */
5516 if (radix_tree_exceptional_entry(page)) {
5517 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5518 if (do_swap_account)
aa3b1895
HD
5519 *entry = swap;
5520 page = find_get_page(&swapper_space, swap.val);
87946a72 5521 }
aa3b1895 5522#endif
87946a72
DN
5523 return page;
5524}
5525
8d32ff84 5526static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5527 unsigned long addr, pte_t ptent, union mc_target *target)
5528{
5529 struct page *page = NULL;
5530 struct page_cgroup *pc;
8d32ff84 5531 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5532 swp_entry_t ent = { .val = 0 };
5533
5534 if (pte_present(ptent))
5535 page = mc_handle_present_pte(vma, addr, ptent);
5536 else if (is_swap_pte(ptent))
5537 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5538 else if (pte_none(ptent) || pte_file(ptent))
5539 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5540
5541 if (!page && !ent.val)
8d32ff84 5542 return ret;
02491447
DN
5543 if (page) {
5544 pc = lookup_page_cgroup(page);
5545 /*
5546 * Do only loose check w/o page_cgroup lock.
5547 * mem_cgroup_move_account() checks the pc is valid or not under
5548 * the lock.
5549 */
5550 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5551 ret = MC_TARGET_PAGE;
5552 if (target)
5553 target->page = page;
5554 }
5555 if (!ret || !target)
5556 put_page(page);
5557 }
90254a65
DN
5558 /* There is a swap entry and a page doesn't exist or isn't charged */
5559 if (ent.val && !ret &&
9fb4b7cc 5560 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5561 ret = MC_TARGET_SWAP;
5562 if (target)
5563 target->ent = ent;
4ffef5fe 5564 }
4ffef5fe
DN
5565 return ret;
5566}
5567
12724850
NH
5568#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5569/*
5570 * We don't consider swapping or file mapped pages because THP does not
5571 * support them for now.
5572 * Caller should make sure that pmd_trans_huge(pmd) is true.
5573 */
5574static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5575 unsigned long addr, pmd_t pmd, union mc_target *target)
5576{
5577 struct page *page = NULL;
5578 struct page_cgroup *pc;
5579 enum mc_target_type ret = MC_TARGET_NONE;
5580
5581 page = pmd_page(pmd);
5582 VM_BUG_ON(!page || !PageHead(page));
5583 if (!move_anon())
5584 return ret;
5585 pc = lookup_page_cgroup(page);
5586 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5587 ret = MC_TARGET_PAGE;
5588 if (target) {
5589 get_page(page);
5590 target->page = page;
5591 }
5592 }
5593 return ret;
5594}
5595#else
5596static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5597 unsigned long addr, pmd_t pmd, union mc_target *target)
5598{
5599 return MC_TARGET_NONE;
5600}
5601#endif
5602
4ffef5fe
DN
5603static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5604 unsigned long addr, unsigned long end,
5605 struct mm_walk *walk)
5606{
5607 struct vm_area_struct *vma = walk->private;
5608 pte_t *pte;
5609 spinlock_t *ptl;
5610
12724850
NH
5611 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5612 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5613 mc.precharge += HPAGE_PMD_NR;
5614 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5615 return 0;
12724850 5616 }
03319327 5617
45f83cef
AA
5618 if (pmd_trans_unstable(pmd))
5619 return 0;
4ffef5fe
DN
5620 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5621 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5622 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5623 mc.precharge++; /* increment precharge temporarily */
5624 pte_unmap_unlock(pte - 1, ptl);
5625 cond_resched();
5626
7dc74be0
DN
5627 return 0;
5628}
5629
4ffef5fe
DN
5630static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5631{
5632 unsigned long precharge;
5633 struct vm_area_struct *vma;
5634
dfe076b0 5635 down_read(&mm->mmap_sem);
4ffef5fe
DN
5636 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5637 struct mm_walk mem_cgroup_count_precharge_walk = {
5638 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5639 .mm = mm,
5640 .private = vma,
5641 };
5642 if (is_vm_hugetlb_page(vma))
5643 continue;
4ffef5fe
DN
5644 walk_page_range(vma->vm_start, vma->vm_end,
5645 &mem_cgroup_count_precharge_walk);
5646 }
dfe076b0 5647 up_read(&mm->mmap_sem);
4ffef5fe
DN
5648
5649 precharge = mc.precharge;
5650 mc.precharge = 0;
5651
5652 return precharge;
5653}
5654
4ffef5fe
DN
5655static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5656{
dfe076b0
DN
5657 unsigned long precharge = mem_cgroup_count_precharge(mm);
5658
5659 VM_BUG_ON(mc.moving_task);
5660 mc.moving_task = current;
5661 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5662}
5663
dfe076b0
DN
5664/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5665static void __mem_cgroup_clear_mc(void)
4ffef5fe 5666{
2bd9bb20
KH
5667 struct mem_cgroup *from = mc.from;
5668 struct mem_cgroup *to = mc.to;
5669
4ffef5fe 5670 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5671 if (mc.precharge) {
5672 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5673 mc.precharge = 0;
5674 }
5675 /*
5676 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5677 * we must uncharge here.
5678 */
5679 if (mc.moved_charge) {
5680 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5681 mc.moved_charge = 0;
4ffef5fe 5682 }
483c30b5
DN
5683 /* we must fixup refcnts and charges */
5684 if (mc.moved_swap) {
483c30b5
DN
5685 /* uncharge swap account from the old cgroup */
5686 if (!mem_cgroup_is_root(mc.from))
5687 res_counter_uncharge(&mc.from->memsw,
5688 PAGE_SIZE * mc.moved_swap);
5689 __mem_cgroup_put(mc.from, mc.moved_swap);
5690
5691 if (!mem_cgroup_is_root(mc.to)) {
5692 /*
5693 * we charged both to->res and to->memsw, so we should
5694 * uncharge to->res.
5695 */
5696 res_counter_uncharge(&mc.to->res,
5697 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5698 }
5699 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5700 mc.moved_swap = 0;
5701 }
dfe076b0
DN
5702 memcg_oom_recover(from);
5703 memcg_oom_recover(to);
5704 wake_up_all(&mc.waitq);
5705}
5706
5707static void mem_cgroup_clear_mc(void)
5708{
5709 struct mem_cgroup *from = mc.from;
5710
5711 /*
5712 * we must clear moving_task before waking up waiters at the end of
5713 * task migration.
5714 */
5715 mc.moving_task = NULL;
5716 __mem_cgroup_clear_mc();
2bd9bb20 5717 spin_lock(&mc.lock);
4ffef5fe
DN
5718 mc.from = NULL;
5719 mc.to = NULL;
2bd9bb20 5720 spin_unlock(&mc.lock);
32047e2a 5721 mem_cgroup_end_move(from);
4ffef5fe
DN
5722}
5723
761b3ef5
LZ
5724static int mem_cgroup_can_attach(struct cgroup *cgroup,
5725 struct cgroup_taskset *tset)
7dc74be0 5726{
2f7ee569 5727 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5728 int ret = 0;
c0ff4b85 5729 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5730
c0ff4b85 5731 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5732 struct mm_struct *mm;
5733 struct mem_cgroup *from = mem_cgroup_from_task(p);
5734
c0ff4b85 5735 VM_BUG_ON(from == memcg);
7dc74be0
DN
5736
5737 mm = get_task_mm(p);
5738 if (!mm)
5739 return 0;
7dc74be0 5740 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5741 if (mm->owner == p) {
5742 VM_BUG_ON(mc.from);
5743 VM_BUG_ON(mc.to);
5744 VM_BUG_ON(mc.precharge);
854ffa8d 5745 VM_BUG_ON(mc.moved_charge);
483c30b5 5746 VM_BUG_ON(mc.moved_swap);
32047e2a 5747 mem_cgroup_start_move(from);
2bd9bb20 5748 spin_lock(&mc.lock);
4ffef5fe 5749 mc.from = from;
c0ff4b85 5750 mc.to = memcg;
2bd9bb20 5751 spin_unlock(&mc.lock);
dfe076b0 5752 /* We set mc.moving_task later */
4ffef5fe
DN
5753
5754 ret = mem_cgroup_precharge_mc(mm);
5755 if (ret)
5756 mem_cgroup_clear_mc();
dfe076b0
DN
5757 }
5758 mmput(mm);
7dc74be0
DN
5759 }
5760 return ret;
5761}
5762
761b3ef5
LZ
5763static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5764 struct cgroup_taskset *tset)
7dc74be0 5765{
4ffef5fe 5766 mem_cgroup_clear_mc();
7dc74be0
DN
5767}
5768
4ffef5fe
DN
5769static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5770 unsigned long addr, unsigned long end,
5771 struct mm_walk *walk)
7dc74be0 5772{
4ffef5fe
DN
5773 int ret = 0;
5774 struct vm_area_struct *vma = walk->private;
5775 pte_t *pte;
5776 spinlock_t *ptl;
12724850
NH
5777 enum mc_target_type target_type;
5778 union mc_target target;
5779 struct page *page;
5780 struct page_cgroup *pc;
4ffef5fe 5781
12724850
NH
5782 /*
5783 * We don't take compound_lock() here but no race with splitting thp
5784 * happens because:
5785 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5786 * under splitting, which means there's no concurrent thp split,
5787 * - if another thread runs into split_huge_page() just after we
5788 * entered this if-block, the thread must wait for page table lock
5789 * to be unlocked in __split_huge_page_splitting(), where the main
5790 * part of thp split is not executed yet.
5791 */
5792 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 5793 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
5794 spin_unlock(&vma->vm_mm->page_table_lock);
5795 return 0;
5796 }
5797 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5798 if (target_type == MC_TARGET_PAGE) {
5799 page = target.page;
5800 if (!isolate_lru_page(page)) {
5801 pc = lookup_page_cgroup(page);
5802 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5803 pc, mc.from, mc.to)) {
12724850
NH
5804 mc.precharge -= HPAGE_PMD_NR;
5805 mc.moved_charge += HPAGE_PMD_NR;
5806 }
5807 putback_lru_page(page);
5808 }
5809 put_page(page);
5810 }
5811 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5812 return 0;
12724850
NH
5813 }
5814
45f83cef
AA
5815 if (pmd_trans_unstable(pmd))
5816 return 0;
4ffef5fe
DN
5817retry:
5818 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5819 for (; addr != end; addr += PAGE_SIZE) {
5820 pte_t ptent = *(pte++);
02491447 5821 swp_entry_t ent;
4ffef5fe
DN
5822
5823 if (!mc.precharge)
5824 break;
5825
8d32ff84 5826 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5827 case MC_TARGET_PAGE:
5828 page = target.page;
5829 if (isolate_lru_page(page))
5830 goto put;
5831 pc = lookup_page_cgroup(page);
7ec99d62 5832 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5833 mc.from, mc.to)) {
4ffef5fe 5834 mc.precharge--;
854ffa8d
DN
5835 /* we uncharge from mc.from later. */
5836 mc.moved_charge++;
4ffef5fe
DN
5837 }
5838 putback_lru_page(page);
8d32ff84 5839put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5840 put_page(page);
5841 break;
02491447
DN
5842 case MC_TARGET_SWAP:
5843 ent = target.ent;
e91cbb42 5844 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5845 mc.precharge--;
483c30b5
DN
5846 /* we fixup refcnts and charges later. */
5847 mc.moved_swap++;
5848 }
02491447 5849 break;
4ffef5fe
DN
5850 default:
5851 break;
5852 }
5853 }
5854 pte_unmap_unlock(pte - 1, ptl);
5855 cond_resched();
5856
5857 if (addr != end) {
5858 /*
5859 * We have consumed all precharges we got in can_attach().
5860 * We try charge one by one, but don't do any additional
5861 * charges to mc.to if we have failed in charge once in attach()
5862 * phase.
5863 */
854ffa8d 5864 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5865 if (!ret)
5866 goto retry;
5867 }
5868
5869 return ret;
5870}
5871
5872static void mem_cgroup_move_charge(struct mm_struct *mm)
5873{
5874 struct vm_area_struct *vma;
5875
5876 lru_add_drain_all();
dfe076b0
DN
5877retry:
5878 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5879 /*
5880 * Someone who are holding the mmap_sem might be waiting in
5881 * waitq. So we cancel all extra charges, wake up all waiters,
5882 * and retry. Because we cancel precharges, we might not be able
5883 * to move enough charges, but moving charge is a best-effort
5884 * feature anyway, so it wouldn't be a big problem.
5885 */
5886 __mem_cgroup_clear_mc();
5887 cond_resched();
5888 goto retry;
5889 }
4ffef5fe
DN
5890 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5891 int ret;
5892 struct mm_walk mem_cgroup_move_charge_walk = {
5893 .pmd_entry = mem_cgroup_move_charge_pte_range,
5894 .mm = mm,
5895 .private = vma,
5896 };
5897 if (is_vm_hugetlb_page(vma))
5898 continue;
4ffef5fe
DN
5899 ret = walk_page_range(vma->vm_start, vma->vm_end,
5900 &mem_cgroup_move_charge_walk);
5901 if (ret)
5902 /*
5903 * means we have consumed all precharges and failed in
5904 * doing additional charge. Just abandon here.
5905 */
5906 break;
5907 }
dfe076b0 5908 up_read(&mm->mmap_sem);
7dc74be0
DN
5909}
5910
761b3ef5
LZ
5911static void mem_cgroup_move_task(struct cgroup *cont,
5912 struct cgroup_taskset *tset)
67e465a7 5913{
2f7ee569 5914 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5915 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5916
dfe076b0 5917 if (mm) {
a433658c
KM
5918 if (mc.to)
5919 mem_cgroup_move_charge(mm);
dfe076b0
DN
5920 mmput(mm);
5921 }
a433658c
KM
5922 if (mc.to)
5923 mem_cgroup_clear_mc();
67e465a7 5924}
5cfb80a7 5925#else /* !CONFIG_MMU */
761b3ef5
LZ
5926static int mem_cgroup_can_attach(struct cgroup *cgroup,
5927 struct cgroup_taskset *tset)
5cfb80a7
DN
5928{
5929 return 0;
5930}
761b3ef5
LZ
5931static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5932 struct cgroup_taskset *tset)
5cfb80a7
DN
5933{
5934}
761b3ef5
LZ
5935static void mem_cgroup_move_task(struct cgroup *cont,
5936 struct cgroup_taskset *tset)
5cfb80a7
DN
5937{
5938}
5939#endif
67e465a7 5940
8cdea7c0
BS
5941struct cgroup_subsys mem_cgroup_subsys = {
5942 .name = "memory",
5943 .subsys_id = mem_cgroup_subsys_id,
92fb9748
TH
5944 .css_alloc = mem_cgroup_css_alloc,
5945 .css_offline = mem_cgroup_css_offline,
5946 .css_free = mem_cgroup_css_free,
7dc74be0
DN
5947 .can_attach = mem_cgroup_can_attach,
5948 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5949 .attach = mem_cgroup_move_task,
6bc10349 5950 .base_cftypes = mem_cgroup_files,
6d12e2d8 5951 .early_init = 0,
04046e1a 5952 .use_id = 1,
8cdea7c0 5953};
c077719b 5954
c255a458 5955#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5956static int __init enable_swap_account(char *s)
5957{
5958 /* consider enabled if no parameter or 1 is given */
a2c8990a 5959 if (!strcmp(s, "1"))
a42c390c 5960 really_do_swap_account = 1;
a2c8990a 5961 else if (!strcmp(s, "0"))
a42c390c
MH
5962 really_do_swap_account = 0;
5963 return 1;
5964}
a2c8990a 5965__setup("swapaccount=", enable_swap_account);
c077719b 5966
c077719b 5967#endif