]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/memcontrol.c
memcg: remove activate_kmem_mutex
[mirror_ubuntu-jammy-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
5ac8fb31
JW
146struct reclaim_iter {
147 struct mem_cgroup *position;
527a5ec9
JW
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150};
151
6d12e2d8
KH
152/*
153 * per-zone information in memory controller.
154 */
6d12e2d8 155struct mem_cgroup_per_zone {
6290df54 156 struct lruvec lruvec;
1eb49272 157 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 158
5ac8fb31 159 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 160
bb4cc1a8 161 struct rb_node tree_node; /* RB tree node */
3e32cb2e 162 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
163 /* the soft limit is exceeded*/
164 bool on_tree;
d79154bb 165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 166 /* use container_of */
6d12e2d8 167};
6d12e2d8
KH
168
169struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171};
172
bb4cc1a8
AM
173/*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181};
182
183struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185};
186
187struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189};
190
191static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
2e72b634
KS
193struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
3e32cb2e 195 unsigned long threshold;
2e72b634
KS
196};
197
9490ff27 198/* For threshold */
2e72b634 199struct mem_cgroup_threshold_ary {
748dad36 200 /* An array index points to threshold just below or equal to usage. */
5407a562 201 int current_threshold;
2e72b634
KS
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206};
2c488db2
KS
207
208struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217};
218
9490ff27
KH
219/* for OOM */
220struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223};
2e72b634 224
79bd9814
TH
225/*
226 * cgroup_event represents events which userspace want to receive.
227 */
3bc942f3 228struct mem_cgroup_event {
79bd9814 229 /*
59b6f873 230 * memcg which the event belongs to.
79bd9814 231 */
59b6f873 232 struct mem_cgroup *memcg;
79bd9814
TH
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
fba94807
TH
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
59b6f873 246 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 247 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
59b6f873 253 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 254 struct eventfd_ctx *eventfd);
79bd9814
TH
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263};
264
c0ff4b85
R
265static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 267
8cdea7c0
BS
268/*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
8cdea7c0
BS
278 */
279struct mem_cgroup {
280 struct cgroup_subsys_state css;
3e32cb2e
JW
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
59927fb9 288
70ddf637
AV
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
2f7dd7a4
JW
292 /* css_online() has been completed */
293 int initialized;
294
18f59ea7
BS
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
510fc4e1 299 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
300
301 bool oom_lock;
302 atomic_t under_oom;
3812c8c8 303 atomic_t oom_wakeups;
79dfdacc 304
1f4c025b 305 int swappiness;
3c11ecf4
KH
306 /* OOM-Killer disable */
307 int oom_kill_disable;
a7885eb8 308
2e72b634
KS
309 /* protect arrays of thresholds */
310 struct mutex thresholds_lock;
311
312 /* thresholds for memory usage. RCU-protected */
2c488db2 313 struct mem_cgroup_thresholds thresholds;
907860ed 314
2e72b634 315 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 316 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 317
9490ff27
KH
318 /* For oom notifier event fd */
319 struct list_head oom_notify;
185efc0f 320
7dc74be0
DN
321 /*
322 * Should we move charges of a task when a task is moved into this
323 * mem_cgroup ? And what type of charges should we move ?
324 */
f894ffa8 325 unsigned long move_charge_at_immigrate;
619d094b
KH
326 /*
327 * set > 0 if pages under this cgroup are moving to other cgroup.
328 */
329 atomic_t moving_account;
312734c0
KH
330 /* taken only while moving_account > 0 */
331 spinlock_t move_lock;
d52aa412 332 /*
c62b1a3b 333 * percpu counter.
d52aa412 334 */
3a7951b4 335 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
336 /*
337 * used when a cpu is offlined or other synchronizations
338 * See mem_cgroup_read_stat().
339 */
340 struct mem_cgroup_stat_cpu nocpu_base;
341 spinlock_t pcp_counter_lock;
d1a4c0b3 342
4bd2c1ee 343#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 344 struct cg_proto tcp_mem;
d1a4c0b3 345#endif
2633d7a0 346#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
347 /* analogous to slab_common's slab_caches list, but per-memcg;
348 * protected by memcg_slab_mutex */
2633d7a0 349 struct list_head memcg_slab_caches;
2633d7a0
GC
350 /* Index in the kmem_cache->memcg_params->memcg_caches array */
351 int kmemcg_id;
352#endif
45cf7ebd
GC
353
354 int last_scanned_node;
355#if MAX_NUMNODES > 1
356 nodemask_t scan_nodes;
357 atomic_t numainfo_events;
358 atomic_t numainfo_updating;
359#endif
70ddf637 360
fba94807
TH
361 /* List of events which userspace want to receive */
362 struct list_head event_list;
363 spinlock_t event_list_lock;
364
54f72fe0
JW
365 struct mem_cgroup_per_node *nodeinfo[0];
366 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
367};
368
510fc4e1
GC
369/* internal only representation about the status of kmem accounting. */
370enum {
6de64beb 371 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
510fc4e1
GC
372};
373
510fc4e1
GC
374#ifdef CONFIG_MEMCG_KMEM
375static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
376{
377 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
378}
7de37682
GC
379
380static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
381{
382 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
383}
384
510fc4e1
GC
385#endif
386
7dc74be0
DN
387/* Stuffs for move charges at task migration. */
388/*
ee5e8472
GC
389 * Types of charges to be moved. "move_charge_at_immitgrate" and
390 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
391 */
392enum move_type {
4ffef5fe 393 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 394 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
395 NR_MOVE_TYPE,
396};
397
4ffef5fe
DN
398/* "mc" and its members are protected by cgroup_mutex */
399static struct move_charge_struct {
b1dd693e 400 spinlock_t lock; /* for from, to */
4ffef5fe
DN
401 struct mem_cgroup *from;
402 struct mem_cgroup *to;
ee5e8472 403 unsigned long immigrate_flags;
4ffef5fe 404 unsigned long precharge;
854ffa8d 405 unsigned long moved_charge;
483c30b5 406 unsigned long moved_swap;
8033b97c
DN
407 struct task_struct *moving_task; /* a task moving charges */
408 wait_queue_head_t waitq; /* a waitq for other context */
409} mc = {
2bd9bb20 410 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
411 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
412};
4ffef5fe 413
90254a65
DN
414static bool move_anon(void)
415{
ee5e8472 416 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
417}
418
87946a72
DN
419static bool move_file(void)
420{
ee5e8472 421 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
422}
423
4e416953
BS
424/*
425 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
426 * limit reclaim to prevent infinite loops, if they ever occur.
427 */
a0db00fc 428#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 429#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 430
217bc319
KH
431enum charge_type {
432 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 433 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 434 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 435 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
436 NR_CHARGE_TYPE,
437};
438
8c7c6e34 439/* for encoding cft->private value on file */
86ae53e1
GC
440enum res_type {
441 _MEM,
442 _MEMSWAP,
443 _OOM_TYPE,
510fc4e1 444 _KMEM,
86ae53e1
GC
445};
446
a0db00fc
KS
447#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
448#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 449#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
450/* Used for OOM nofiier */
451#define OOM_CONTROL (0)
8c7c6e34 452
0999821b
GC
453/*
454 * The memcg_create_mutex will be held whenever a new cgroup is created.
455 * As a consequence, any change that needs to protect against new child cgroups
456 * appearing has to hold it as well.
457 */
458static DEFINE_MUTEX(memcg_create_mutex);
459
b2145145
WL
460struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
461{
a7c6d554 462 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
463}
464
70ddf637
AV
465/* Some nice accessors for the vmpressure. */
466struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
467{
468 if (!memcg)
469 memcg = root_mem_cgroup;
470 return &memcg->vmpressure;
471}
472
473struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
474{
475 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
476}
477
7ffc0edc
MH
478static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
479{
480 return (memcg == root_mem_cgroup);
481}
482
4219b2da
LZ
483/*
484 * We restrict the id in the range of [1, 65535], so it can fit into
485 * an unsigned short.
486 */
487#define MEM_CGROUP_ID_MAX USHRT_MAX
488
34c00c31
LZ
489static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
490{
15a4c835 491 return memcg->css.id;
34c00c31
LZ
492}
493
494static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
495{
496 struct cgroup_subsys_state *css;
497
7d699ddb 498 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
499 return mem_cgroup_from_css(css);
500}
501
e1aab161 502/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 503#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 504
e1aab161
GC
505void sock_update_memcg(struct sock *sk)
506{
376be5ff 507 if (mem_cgroup_sockets_enabled) {
e1aab161 508 struct mem_cgroup *memcg;
3f134619 509 struct cg_proto *cg_proto;
e1aab161
GC
510
511 BUG_ON(!sk->sk_prot->proto_cgroup);
512
f3f511e1
GC
513 /* Socket cloning can throw us here with sk_cgrp already
514 * filled. It won't however, necessarily happen from
515 * process context. So the test for root memcg given
516 * the current task's memcg won't help us in this case.
517 *
518 * Respecting the original socket's memcg is a better
519 * decision in this case.
520 */
521 if (sk->sk_cgrp) {
522 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 523 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
524 return;
525 }
526
e1aab161
GC
527 rcu_read_lock();
528 memcg = mem_cgroup_from_task(current);
3f134619 529 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 530 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
531 memcg_proto_active(cg_proto) &&
532 css_tryget_online(&memcg->css)) {
3f134619 533 sk->sk_cgrp = cg_proto;
e1aab161
GC
534 }
535 rcu_read_unlock();
536 }
537}
538EXPORT_SYMBOL(sock_update_memcg);
539
540void sock_release_memcg(struct sock *sk)
541{
376be5ff 542 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
543 struct mem_cgroup *memcg;
544 WARN_ON(!sk->sk_cgrp->memcg);
545 memcg = sk->sk_cgrp->memcg;
5347e5ae 546 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
547 }
548}
d1a4c0b3
GC
549
550struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
551{
552 if (!memcg || mem_cgroup_is_root(memcg))
553 return NULL;
554
2e685cad 555 return &memcg->tcp_mem;
d1a4c0b3
GC
556}
557EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 558
3f134619
GC
559static void disarm_sock_keys(struct mem_cgroup *memcg)
560{
2e685cad 561 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
562 return;
563 static_key_slow_dec(&memcg_socket_limit_enabled);
564}
565#else
566static void disarm_sock_keys(struct mem_cgroup *memcg)
567{
568}
569#endif
570
a8964b9b 571#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
572/*
573 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
574 * The main reason for not using cgroup id for this:
575 * this works better in sparse environments, where we have a lot of memcgs,
576 * but only a few kmem-limited. Or also, if we have, for instance, 200
577 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
578 * 200 entry array for that.
55007d84
GC
579 *
580 * The current size of the caches array is stored in
581 * memcg_limited_groups_array_size. It will double each time we have to
582 * increase it.
583 */
584static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
585int memcg_limited_groups_array_size;
586
55007d84
GC
587/*
588 * MIN_SIZE is different than 1, because we would like to avoid going through
589 * the alloc/free process all the time. In a small machine, 4 kmem-limited
590 * cgroups is a reasonable guess. In the future, it could be a parameter or
591 * tunable, but that is strictly not necessary.
592 *
b8627835 593 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
594 * this constant directly from cgroup, but it is understandable that this is
595 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 596 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
597 * increase ours as well if it increases.
598 */
599#define MEMCG_CACHES_MIN_SIZE 4
b8627835 600#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 601
d7f25f8a
GC
602/*
603 * A lot of the calls to the cache allocation functions are expected to be
604 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
605 * conditional to this static branch, we'll have to allow modules that does
606 * kmem_cache_alloc and the such to see this symbol as well
607 */
a8964b9b 608struct static_key memcg_kmem_enabled_key;
d7f25f8a 609EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 610
f3bb3043
VD
611static void memcg_free_cache_id(int id);
612
a8964b9b
GC
613static void disarm_kmem_keys(struct mem_cgroup *memcg)
614{
55007d84 615 if (memcg_kmem_is_active(memcg)) {
a8964b9b 616 static_key_slow_dec(&memcg_kmem_enabled_key);
f3bb3043 617 memcg_free_cache_id(memcg->kmemcg_id);
55007d84 618 }
bea207c8
GC
619 /*
620 * This check can't live in kmem destruction function,
621 * since the charges will outlive the cgroup
622 */
3e32cb2e 623 WARN_ON(page_counter_read(&memcg->kmem));
a8964b9b
GC
624}
625#else
626static void disarm_kmem_keys(struct mem_cgroup *memcg)
627{
628}
629#endif /* CONFIG_MEMCG_KMEM */
630
631static void disarm_static_keys(struct mem_cgroup *memcg)
632{
633 disarm_sock_keys(memcg);
634 disarm_kmem_keys(memcg);
635}
636
f64c3f54 637static struct mem_cgroup_per_zone *
e231875b 638mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 639{
e231875b
JZ
640 int nid = zone_to_nid(zone);
641 int zid = zone_idx(zone);
642
54f72fe0 643 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
644}
645
c0ff4b85 646struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 647{
c0ff4b85 648 return &memcg->css;
d324236b
WF
649}
650
f64c3f54 651static struct mem_cgroup_per_zone *
e231875b 652mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 653{
97a6c37b
JW
654 int nid = page_to_nid(page);
655 int zid = page_zonenum(page);
f64c3f54 656
e231875b 657 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
658}
659
bb4cc1a8
AM
660static struct mem_cgroup_tree_per_zone *
661soft_limit_tree_node_zone(int nid, int zid)
662{
663 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
664}
665
666static struct mem_cgroup_tree_per_zone *
667soft_limit_tree_from_page(struct page *page)
668{
669 int nid = page_to_nid(page);
670 int zid = page_zonenum(page);
671
672 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
673}
674
cf2c8127
JW
675static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
676 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 677 unsigned long new_usage_in_excess)
bb4cc1a8
AM
678{
679 struct rb_node **p = &mctz->rb_root.rb_node;
680 struct rb_node *parent = NULL;
681 struct mem_cgroup_per_zone *mz_node;
682
683 if (mz->on_tree)
684 return;
685
686 mz->usage_in_excess = new_usage_in_excess;
687 if (!mz->usage_in_excess)
688 return;
689 while (*p) {
690 parent = *p;
691 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
692 tree_node);
693 if (mz->usage_in_excess < mz_node->usage_in_excess)
694 p = &(*p)->rb_left;
695 /*
696 * We can't avoid mem cgroups that are over their soft
697 * limit by the same amount
698 */
699 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
700 p = &(*p)->rb_right;
701 }
702 rb_link_node(&mz->tree_node, parent, p);
703 rb_insert_color(&mz->tree_node, &mctz->rb_root);
704 mz->on_tree = true;
705}
706
cf2c8127
JW
707static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
708 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
709{
710 if (!mz->on_tree)
711 return;
712 rb_erase(&mz->tree_node, &mctz->rb_root);
713 mz->on_tree = false;
714}
715
cf2c8127
JW
716static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
717 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 718{
0a31bc97
JW
719 unsigned long flags;
720
721 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 722 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 723 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
724}
725
3e32cb2e
JW
726static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
727{
728 unsigned long nr_pages = page_counter_read(&memcg->memory);
729 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
730 unsigned long excess = 0;
731
732 if (nr_pages > soft_limit)
733 excess = nr_pages - soft_limit;
734
735 return excess;
736}
bb4cc1a8
AM
737
738static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
739{
3e32cb2e 740 unsigned long excess;
bb4cc1a8
AM
741 struct mem_cgroup_per_zone *mz;
742 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 743
e231875b 744 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
745 /*
746 * Necessary to update all ancestors when hierarchy is used.
747 * because their event counter is not touched.
748 */
749 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 750 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 751 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
752 /*
753 * We have to update the tree if mz is on RB-tree or
754 * mem is over its softlimit.
755 */
756 if (excess || mz->on_tree) {
0a31bc97
JW
757 unsigned long flags;
758
759 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
760 /* if on-tree, remove it */
761 if (mz->on_tree)
cf2c8127 762 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
763 /*
764 * Insert again. mz->usage_in_excess will be updated.
765 * If excess is 0, no tree ops.
766 */
cf2c8127 767 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 768 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
769 }
770 }
771}
772
773static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
774{
bb4cc1a8 775 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
776 struct mem_cgroup_per_zone *mz;
777 int nid, zid;
bb4cc1a8 778
e231875b
JZ
779 for_each_node(nid) {
780 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
781 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
782 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 783 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
784 }
785 }
786}
787
788static struct mem_cgroup_per_zone *
789__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
790{
791 struct rb_node *rightmost = NULL;
792 struct mem_cgroup_per_zone *mz;
793
794retry:
795 mz = NULL;
796 rightmost = rb_last(&mctz->rb_root);
797 if (!rightmost)
798 goto done; /* Nothing to reclaim from */
799
800 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
801 /*
802 * Remove the node now but someone else can add it back,
803 * we will to add it back at the end of reclaim to its correct
804 * position in the tree.
805 */
cf2c8127 806 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 807 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 808 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
809 goto retry;
810done:
811 return mz;
812}
813
814static struct mem_cgroup_per_zone *
815mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
816{
817 struct mem_cgroup_per_zone *mz;
818
0a31bc97 819 spin_lock_irq(&mctz->lock);
bb4cc1a8 820 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 821 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
822 return mz;
823}
824
711d3d2c
KH
825/*
826 * Implementation Note: reading percpu statistics for memcg.
827 *
828 * Both of vmstat[] and percpu_counter has threshold and do periodic
829 * synchronization to implement "quick" read. There are trade-off between
830 * reading cost and precision of value. Then, we may have a chance to implement
831 * a periodic synchronizion of counter in memcg's counter.
832 *
833 * But this _read() function is used for user interface now. The user accounts
834 * memory usage by memory cgroup and he _always_ requires exact value because
835 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
836 * have to visit all online cpus and make sum. So, for now, unnecessary
837 * synchronization is not implemented. (just implemented for cpu hotplug)
838 *
839 * If there are kernel internal actions which can make use of some not-exact
840 * value, and reading all cpu value can be performance bottleneck in some
841 * common workload, threashold and synchonization as vmstat[] should be
842 * implemented.
843 */
c0ff4b85 844static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 845 enum mem_cgroup_stat_index idx)
c62b1a3b 846{
7a159cc9 847 long val = 0;
c62b1a3b 848 int cpu;
c62b1a3b 849
711d3d2c
KH
850 get_online_cpus();
851 for_each_online_cpu(cpu)
c0ff4b85 852 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 853#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
854 spin_lock(&memcg->pcp_counter_lock);
855 val += memcg->nocpu_base.count[idx];
856 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
857#endif
858 put_online_cpus();
c62b1a3b
KH
859 return val;
860}
861
c0ff4b85 862static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
863 enum mem_cgroup_events_index idx)
864{
865 unsigned long val = 0;
866 int cpu;
867
9c567512 868 get_online_cpus();
e9f8974f 869 for_each_online_cpu(cpu)
c0ff4b85 870 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 871#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
872 spin_lock(&memcg->pcp_counter_lock);
873 val += memcg->nocpu_base.events[idx];
874 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 875#endif
9c567512 876 put_online_cpus();
e9f8974f
JW
877 return val;
878}
879
c0ff4b85 880static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 881 struct page *page,
0a31bc97 882 int nr_pages)
d52aa412 883{
b2402857
KH
884 /*
885 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
886 * counted as CACHE even if it's on ANON LRU.
887 */
0a31bc97 888 if (PageAnon(page))
b2402857 889 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 890 nr_pages);
d52aa412 891 else
b2402857 892 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 893 nr_pages);
55e462b0 894
b070e65c
DR
895 if (PageTransHuge(page))
896 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
897 nr_pages);
898
e401f176
KH
899 /* pagein of a big page is an event. So, ignore page size */
900 if (nr_pages > 0)
c0ff4b85 901 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 902 else {
c0ff4b85 903 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
904 nr_pages = -nr_pages; /* for event */
905 }
e401f176 906
13114716 907 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
908}
909
e231875b 910unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
911{
912 struct mem_cgroup_per_zone *mz;
913
914 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
915 return mz->lru_size[lru];
916}
917
e231875b
JZ
918static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
919 int nid,
920 unsigned int lru_mask)
bb2a0de9 921{
e231875b 922 unsigned long nr = 0;
889976db
YH
923 int zid;
924
e231875b 925 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 926
e231875b
JZ
927 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
928 struct mem_cgroup_per_zone *mz;
929 enum lru_list lru;
930
931 for_each_lru(lru) {
932 if (!(BIT(lru) & lru_mask))
933 continue;
934 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
935 nr += mz->lru_size[lru];
936 }
937 }
938 return nr;
889976db 939}
bb2a0de9 940
c0ff4b85 941static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 942 unsigned int lru_mask)
6d12e2d8 943{
e231875b 944 unsigned long nr = 0;
889976db 945 int nid;
6d12e2d8 946
31aaea4a 947 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
948 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
949 return nr;
d52aa412
KH
950}
951
f53d7ce3
JW
952static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
953 enum mem_cgroup_events_target target)
7a159cc9
JW
954{
955 unsigned long val, next;
956
13114716 957 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 958 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 959 /* from time_after() in jiffies.h */
f53d7ce3
JW
960 if ((long)next - (long)val < 0) {
961 switch (target) {
962 case MEM_CGROUP_TARGET_THRESH:
963 next = val + THRESHOLDS_EVENTS_TARGET;
964 break;
bb4cc1a8
AM
965 case MEM_CGROUP_TARGET_SOFTLIMIT:
966 next = val + SOFTLIMIT_EVENTS_TARGET;
967 break;
f53d7ce3
JW
968 case MEM_CGROUP_TARGET_NUMAINFO:
969 next = val + NUMAINFO_EVENTS_TARGET;
970 break;
971 default:
972 break;
973 }
974 __this_cpu_write(memcg->stat->targets[target], next);
975 return true;
7a159cc9 976 }
f53d7ce3 977 return false;
d2265e6f
KH
978}
979
980/*
981 * Check events in order.
982 *
983 */
c0ff4b85 984static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
985{
986 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
987 if (unlikely(mem_cgroup_event_ratelimit(memcg,
988 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 989 bool do_softlimit;
82b3f2a7 990 bool do_numainfo __maybe_unused;
f53d7ce3 991
bb4cc1a8
AM
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
994#if MAX_NUMNODES > 1
995 do_numainfo = mem_cgroup_event_ratelimit(memcg,
996 MEM_CGROUP_TARGET_NUMAINFO);
997#endif
c0ff4b85 998 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
999 if (unlikely(do_softlimit))
1000 mem_cgroup_update_tree(memcg, page);
453a9bf3 1001#if MAX_NUMNODES > 1
f53d7ce3 1002 if (unlikely(do_numainfo))
c0ff4b85 1003 atomic_inc(&memcg->numainfo_events);
453a9bf3 1004#endif
0a31bc97 1005 }
d2265e6f
KH
1006}
1007
cf475ad2 1008struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1009{
31a78f23
BS
1010 /*
1011 * mm_update_next_owner() may clear mm->owner to NULL
1012 * if it races with swapoff, page migration, etc.
1013 * So this can be called with p == NULL.
1014 */
1015 if (unlikely(!p))
1016 return NULL;
1017
073219e9 1018 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1019}
1020
df381975 1021static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1022{
c0ff4b85 1023 struct mem_cgroup *memcg = NULL;
0b7f569e 1024
54595fe2
KH
1025 rcu_read_lock();
1026 do {
6f6acb00
MH
1027 /*
1028 * Page cache insertions can happen withou an
1029 * actual mm context, e.g. during disk probing
1030 * on boot, loopback IO, acct() writes etc.
1031 */
1032 if (unlikely(!mm))
df381975 1033 memcg = root_mem_cgroup;
6f6acb00
MH
1034 else {
1035 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1036 if (unlikely(!memcg))
1037 memcg = root_mem_cgroup;
1038 }
ec903c0c 1039 } while (!css_tryget_online(&memcg->css));
54595fe2 1040 rcu_read_unlock();
c0ff4b85 1041 return memcg;
54595fe2
KH
1042}
1043
5660048c
JW
1044/**
1045 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1046 * @root: hierarchy root
1047 * @prev: previously returned memcg, NULL on first invocation
1048 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1049 *
1050 * Returns references to children of the hierarchy below @root, or
1051 * @root itself, or %NULL after a full round-trip.
1052 *
1053 * Caller must pass the return value in @prev on subsequent
1054 * invocations for reference counting, or use mem_cgroup_iter_break()
1055 * to cancel a hierarchy walk before the round-trip is complete.
1056 *
1057 * Reclaimers can specify a zone and a priority level in @reclaim to
1058 * divide up the memcgs in the hierarchy among all concurrent
1059 * reclaimers operating on the same zone and priority.
1060 */
694fbc0f 1061struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1062 struct mem_cgroup *prev,
694fbc0f 1063 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1064{
5ac8fb31
JW
1065 struct reclaim_iter *uninitialized_var(iter);
1066 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1067 struct mem_cgroup *memcg = NULL;
5ac8fb31 1068 struct mem_cgroup *pos = NULL;
711d3d2c 1069
694fbc0f
AM
1070 if (mem_cgroup_disabled())
1071 return NULL;
5660048c 1072
9f3a0d09
JW
1073 if (!root)
1074 root = root_mem_cgroup;
7d74b06f 1075
9f3a0d09 1076 if (prev && !reclaim)
5ac8fb31 1077 pos = prev;
14067bb3 1078
9f3a0d09
JW
1079 if (!root->use_hierarchy && root != root_mem_cgroup) {
1080 if (prev)
5ac8fb31 1081 goto out;
694fbc0f 1082 return root;
9f3a0d09 1083 }
14067bb3 1084
542f85f9 1085 rcu_read_lock();
5f578161 1086
5ac8fb31
JW
1087 if (reclaim) {
1088 struct mem_cgroup_per_zone *mz;
1089
1090 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1091 iter = &mz->iter[reclaim->priority];
1092
1093 if (prev && reclaim->generation != iter->generation)
1094 goto out_unlock;
1095
1096 do {
1097 pos = ACCESS_ONCE(iter->position);
1098 /*
1099 * A racing update may change the position and
1100 * put the last reference, hence css_tryget(),
1101 * or retry to see the updated position.
1102 */
1103 } while (pos && !css_tryget(&pos->css));
1104 }
1105
1106 if (pos)
1107 css = &pos->css;
1108
1109 for (;;) {
1110 css = css_next_descendant_pre(css, &root->css);
1111 if (!css) {
1112 /*
1113 * Reclaimers share the hierarchy walk, and a
1114 * new one might jump in right at the end of
1115 * the hierarchy - make sure they see at least
1116 * one group and restart from the beginning.
1117 */
1118 if (!prev)
1119 continue;
1120 break;
527a5ec9 1121 }
7d74b06f 1122
5ac8fb31
JW
1123 /*
1124 * Verify the css and acquire a reference. The root
1125 * is provided by the caller, so we know it's alive
1126 * and kicking, and don't take an extra reference.
1127 */
1128 memcg = mem_cgroup_from_css(css);
14067bb3 1129
5ac8fb31
JW
1130 if (css == &root->css)
1131 break;
542f85f9 1132
b2052564 1133 if (css_tryget(css)) {
5ac8fb31
JW
1134 /*
1135 * Make sure the memcg is initialized:
1136 * mem_cgroup_css_online() orders the the
1137 * initialization against setting the flag.
1138 */
1139 if (smp_load_acquire(&memcg->initialized))
1140 break;
1141
1142 css_put(css);
527a5ec9 1143 }
9f3a0d09 1144
5ac8fb31
JW
1145 memcg = NULL;
1146 }
1147
1148 if (reclaim) {
1149 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1150 if (memcg)
1151 css_get(&memcg->css);
1152 if (pos)
1153 css_put(&pos->css);
1154 }
1155
1156 /*
1157 * pairs with css_tryget when dereferencing iter->position
1158 * above.
1159 */
1160 if (pos)
1161 css_put(&pos->css);
1162
1163 if (!memcg)
1164 iter->generation++;
1165 else if (!prev)
1166 reclaim->generation = iter->generation;
9f3a0d09 1167 }
5ac8fb31 1168
542f85f9
MH
1169out_unlock:
1170 rcu_read_unlock();
5ac8fb31 1171out:
c40046f3
MH
1172 if (prev && prev != root)
1173 css_put(&prev->css);
1174
9f3a0d09 1175 return memcg;
14067bb3 1176}
7d74b06f 1177
5660048c
JW
1178/**
1179 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1180 * @root: hierarchy root
1181 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1182 */
1183void mem_cgroup_iter_break(struct mem_cgroup *root,
1184 struct mem_cgroup *prev)
9f3a0d09
JW
1185{
1186 if (!root)
1187 root = root_mem_cgroup;
1188 if (prev && prev != root)
1189 css_put(&prev->css);
1190}
7d74b06f 1191
9f3a0d09
JW
1192/*
1193 * Iteration constructs for visiting all cgroups (under a tree). If
1194 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1195 * be used for reference counting.
1196 */
1197#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1198 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1199 iter != NULL; \
527a5ec9 1200 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1201
9f3a0d09 1202#define for_each_mem_cgroup(iter) \
527a5ec9 1203 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1204 iter != NULL; \
527a5ec9 1205 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1206
68ae564b 1207void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1208{
c0ff4b85 1209 struct mem_cgroup *memcg;
456f998e 1210
456f998e 1211 rcu_read_lock();
c0ff4b85
R
1212 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1213 if (unlikely(!memcg))
456f998e
YH
1214 goto out;
1215
1216 switch (idx) {
456f998e 1217 case PGFAULT:
0e574a93
JW
1218 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1219 break;
1220 case PGMAJFAULT:
1221 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1222 break;
1223 default:
1224 BUG();
1225 }
1226out:
1227 rcu_read_unlock();
1228}
68ae564b 1229EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1230
925b7673
JW
1231/**
1232 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1233 * @zone: zone of the wanted lruvec
fa9add64 1234 * @memcg: memcg of the wanted lruvec
925b7673
JW
1235 *
1236 * Returns the lru list vector holding pages for the given @zone and
1237 * @mem. This can be the global zone lruvec, if the memory controller
1238 * is disabled.
1239 */
1240struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1241 struct mem_cgroup *memcg)
1242{
1243 struct mem_cgroup_per_zone *mz;
bea8c150 1244 struct lruvec *lruvec;
925b7673 1245
bea8c150
HD
1246 if (mem_cgroup_disabled()) {
1247 lruvec = &zone->lruvec;
1248 goto out;
1249 }
925b7673 1250
e231875b 1251 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1252 lruvec = &mz->lruvec;
1253out:
1254 /*
1255 * Since a node can be onlined after the mem_cgroup was created,
1256 * we have to be prepared to initialize lruvec->zone here;
1257 * and if offlined then reonlined, we need to reinitialize it.
1258 */
1259 if (unlikely(lruvec->zone != zone))
1260 lruvec->zone = zone;
1261 return lruvec;
925b7673
JW
1262}
1263
925b7673 1264/**
dfe0e773 1265 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1266 * @page: the page
fa9add64 1267 * @zone: zone of the page
dfe0e773
JW
1268 *
1269 * This function is only safe when following the LRU page isolation
1270 * and putback protocol: the LRU lock must be held, and the page must
1271 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1272 */
fa9add64 1273struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1274{
08e552c6 1275 struct mem_cgroup_per_zone *mz;
925b7673
JW
1276 struct mem_cgroup *memcg;
1277 struct page_cgroup *pc;
bea8c150 1278 struct lruvec *lruvec;
6d12e2d8 1279
bea8c150
HD
1280 if (mem_cgroup_disabled()) {
1281 lruvec = &zone->lruvec;
1282 goto out;
1283 }
925b7673 1284
08e552c6 1285 pc = lookup_page_cgroup(page);
38c5d72f 1286 memcg = pc->mem_cgroup;
7512102c
HD
1287
1288 /*
dfe0e773
JW
1289 * Swapcache readahead pages are added to the LRU - and
1290 * possibly migrated - before they are charged. Ensure
1291 * pc->mem_cgroup is sane.
7512102c 1292 */
fa9add64 1293 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1294 pc->mem_cgroup = memcg = root_mem_cgroup;
1295
e231875b 1296 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1297 lruvec = &mz->lruvec;
1298out:
1299 /*
1300 * Since a node can be onlined after the mem_cgroup was created,
1301 * we have to be prepared to initialize lruvec->zone here;
1302 * and if offlined then reonlined, we need to reinitialize it.
1303 */
1304 if (unlikely(lruvec->zone != zone))
1305 lruvec->zone = zone;
1306 return lruvec;
08e552c6 1307}
b69408e8 1308
925b7673 1309/**
fa9add64
HD
1310 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1311 * @lruvec: mem_cgroup per zone lru vector
1312 * @lru: index of lru list the page is sitting on
1313 * @nr_pages: positive when adding or negative when removing
925b7673 1314 *
fa9add64
HD
1315 * This function must be called when a page is added to or removed from an
1316 * lru list.
3f58a829 1317 */
fa9add64
HD
1318void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1319 int nr_pages)
3f58a829
MK
1320{
1321 struct mem_cgroup_per_zone *mz;
fa9add64 1322 unsigned long *lru_size;
3f58a829
MK
1323
1324 if (mem_cgroup_disabled())
1325 return;
1326
fa9add64
HD
1327 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1328 lru_size = mz->lru_size + lru;
1329 *lru_size += nr_pages;
1330 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1331}
544122e5 1332
3e92041d 1333/*
c0ff4b85 1334 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1335 * hierarchy subtree
1336 */
c3ac9a8a
JW
1337bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1338 struct mem_cgroup *memcg)
3e92041d 1339{
91c63734
JW
1340 if (root_memcg == memcg)
1341 return true;
3a981f48 1342 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1343 return false;
b47f77b5 1344 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1345}
1346
1347static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1348 struct mem_cgroup *memcg)
1349{
1350 bool ret;
1351
91c63734 1352 rcu_read_lock();
c3ac9a8a 1353 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1354 rcu_read_unlock();
1355 return ret;
3e92041d
MH
1356}
1357
ffbdccf5
DR
1358bool task_in_mem_cgroup(struct task_struct *task,
1359 const struct mem_cgroup *memcg)
4c4a2214 1360{
0b7f569e 1361 struct mem_cgroup *curr = NULL;
158e0a2d 1362 struct task_struct *p;
ffbdccf5 1363 bool ret;
4c4a2214 1364
158e0a2d 1365 p = find_lock_task_mm(task);
de077d22 1366 if (p) {
df381975 1367 curr = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1368 task_unlock(p);
1369 } else {
1370 /*
1371 * All threads may have already detached their mm's, but the oom
1372 * killer still needs to detect if they have already been oom
1373 * killed to prevent needlessly killing additional tasks.
1374 */
ffbdccf5 1375 rcu_read_lock();
de077d22
DR
1376 curr = mem_cgroup_from_task(task);
1377 if (curr)
1378 css_get(&curr->css);
ffbdccf5 1379 rcu_read_unlock();
de077d22 1380 }
d31f56db 1381 /*
c0ff4b85 1382 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1383 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1384 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1385 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1386 */
c0ff4b85 1387 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1388 css_put(&curr->css);
4c4a2214
DR
1389 return ret;
1390}
1391
c56d5c7d 1392int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1393{
9b272977 1394 unsigned long inactive_ratio;
14797e23 1395 unsigned long inactive;
9b272977 1396 unsigned long active;
c772be93 1397 unsigned long gb;
14797e23 1398
4d7dcca2
HD
1399 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1400 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1401
c772be93
KM
1402 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1403 if (gb)
1404 inactive_ratio = int_sqrt(10 * gb);
1405 else
1406 inactive_ratio = 1;
1407
9b272977 1408 return inactive * inactive_ratio < active;
14797e23
KM
1409}
1410
3e32cb2e 1411#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1412 container_of(counter, struct mem_cgroup, member)
1413
19942822 1414/**
9d11ea9f 1415 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1416 * @memcg: the memory cgroup
19942822 1417 *
9d11ea9f 1418 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1419 * pages.
19942822 1420 */
c0ff4b85 1421static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1422{
3e32cb2e
JW
1423 unsigned long margin = 0;
1424 unsigned long count;
1425 unsigned long limit;
9d11ea9f 1426
3e32cb2e
JW
1427 count = page_counter_read(&memcg->memory);
1428 limit = ACCESS_ONCE(memcg->memory.limit);
1429 if (count < limit)
1430 margin = limit - count;
1431
1432 if (do_swap_account) {
1433 count = page_counter_read(&memcg->memsw);
1434 limit = ACCESS_ONCE(memcg->memsw.limit);
1435 if (count <= limit)
1436 margin = min(margin, limit - count);
1437 }
1438
1439 return margin;
19942822
JW
1440}
1441
1f4c025b 1442int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1443{
a7885eb8 1444 /* root ? */
14208b0e 1445 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1446 return vm_swappiness;
1447
bf1ff263 1448 return memcg->swappiness;
a7885eb8
KM
1449}
1450
619d094b
KH
1451/*
1452 * memcg->moving_account is used for checking possibility that some thread is
1453 * calling move_account(). When a thread on CPU-A starts moving pages under
1454 * a memcg, other threads should check memcg->moving_account under
1455 * rcu_read_lock(), like this:
1456 *
1457 * CPU-A CPU-B
1458 * rcu_read_lock()
1459 * memcg->moving_account+1 if (memcg->mocing_account)
1460 * take heavy locks.
1461 * synchronize_rcu() update something.
1462 * rcu_read_unlock()
1463 * start move here.
1464 */
4331f7d3 1465
c0ff4b85 1466static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1467{
619d094b 1468 atomic_inc(&memcg->moving_account);
32047e2a
KH
1469 synchronize_rcu();
1470}
1471
c0ff4b85 1472static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1473{
619d094b
KH
1474 /*
1475 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1476 * We check NULL in callee rather than caller.
1477 */
d7365e78 1478 if (memcg)
619d094b 1479 atomic_dec(&memcg->moving_account);
32047e2a 1480}
619d094b 1481
32047e2a 1482/*
bdcbb659 1483 * A routine for checking "mem" is under move_account() or not.
32047e2a 1484 *
bdcbb659
QH
1485 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1486 * moving cgroups. This is for waiting at high-memory pressure
1487 * caused by "move".
32047e2a 1488 */
c0ff4b85 1489static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1490{
2bd9bb20
KH
1491 struct mem_cgroup *from;
1492 struct mem_cgroup *to;
4b534334 1493 bool ret = false;
2bd9bb20
KH
1494 /*
1495 * Unlike task_move routines, we access mc.to, mc.from not under
1496 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1497 */
1498 spin_lock(&mc.lock);
1499 from = mc.from;
1500 to = mc.to;
1501 if (!from)
1502 goto unlock;
3e92041d 1503
c0ff4b85
R
1504 ret = mem_cgroup_same_or_subtree(memcg, from)
1505 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1506unlock:
1507 spin_unlock(&mc.lock);
4b534334
KH
1508 return ret;
1509}
1510
c0ff4b85 1511static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1512{
1513 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1514 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1515 DEFINE_WAIT(wait);
1516 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1517 /* moving charge context might have finished. */
1518 if (mc.moving_task)
1519 schedule();
1520 finish_wait(&mc.waitq, &wait);
1521 return true;
1522 }
1523 }
1524 return false;
1525}
1526
312734c0
KH
1527/*
1528 * Take this lock when
1529 * - a code tries to modify page's memcg while it's USED.
1530 * - a code tries to modify page state accounting in a memcg.
312734c0
KH
1531 */
1532static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1533 unsigned long *flags)
1534{
1535 spin_lock_irqsave(&memcg->move_lock, *flags);
1536}
1537
1538static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1539 unsigned long *flags)
1540{
1541 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1542}
1543
58cf188e 1544#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1545/**
58cf188e 1546 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1547 * @memcg: The memory cgroup that went over limit
1548 * @p: Task that is going to be killed
1549 *
1550 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1551 * enabled
1552 */
1553void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1554{
e61734c5 1555 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1556 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1557 struct mem_cgroup *iter;
1558 unsigned int i;
e222432b 1559
58cf188e 1560 if (!p)
e222432b
BS
1561 return;
1562
08088cb9 1563 mutex_lock(&oom_info_lock);
e222432b
BS
1564 rcu_read_lock();
1565
e61734c5
TH
1566 pr_info("Task in ");
1567 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1568 pr_info(" killed as a result of limit of ");
1569 pr_cont_cgroup_path(memcg->css.cgroup);
1570 pr_info("\n");
e222432b 1571
e222432b
BS
1572 rcu_read_unlock();
1573
3e32cb2e
JW
1574 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1575 K((u64)page_counter_read(&memcg->memory)),
1576 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1577 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1578 K((u64)page_counter_read(&memcg->memsw)),
1579 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1580 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1581 K((u64)page_counter_read(&memcg->kmem)),
1582 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1583
1584 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1585 pr_info("Memory cgroup stats for ");
1586 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1587 pr_cont(":");
1588
1589 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1590 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1591 continue;
1592 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1593 K(mem_cgroup_read_stat(iter, i)));
1594 }
1595
1596 for (i = 0; i < NR_LRU_LISTS; i++)
1597 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1598 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1599
1600 pr_cont("\n");
1601 }
08088cb9 1602 mutex_unlock(&oom_info_lock);
e222432b
BS
1603}
1604
81d39c20
KH
1605/*
1606 * This function returns the number of memcg under hierarchy tree. Returns
1607 * 1(self count) if no children.
1608 */
c0ff4b85 1609static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1610{
1611 int num = 0;
7d74b06f
KH
1612 struct mem_cgroup *iter;
1613
c0ff4b85 1614 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1615 num++;
81d39c20
KH
1616 return num;
1617}
1618
a63d83f4
DR
1619/*
1620 * Return the memory (and swap, if configured) limit for a memcg.
1621 */
3e32cb2e 1622static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1623{
3e32cb2e 1624 unsigned long limit;
a63d83f4 1625
3e32cb2e 1626 limit = memcg->memory.limit;
9a5a8f19 1627 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1628 unsigned long memsw_limit;
9a5a8f19 1629
3e32cb2e
JW
1630 memsw_limit = memcg->memsw.limit;
1631 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1632 }
9a5a8f19 1633 return limit;
a63d83f4
DR
1634}
1635
19965460
DR
1636static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1637 int order)
9cbb78bb
DR
1638{
1639 struct mem_cgroup *iter;
1640 unsigned long chosen_points = 0;
1641 unsigned long totalpages;
1642 unsigned int points = 0;
1643 struct task_struct *chosen = NULL;
1644
876aafbf 1645 /*
465adcf1
DR
1646 * If current has a pending SIGKILL or is exiting, then automatically
1647 * select it. The goal is to allow it to allocate so that it may
1648 * quickly exit and free its memory.
876aafbf 1649 */
465adcf1 1650 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1651 set_thread_flag(TIF_MEMDIE);
1652 return;
1653 }
1654
1655 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
3e32cb2e 1656 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1657 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1658 struct css_task_iter it;
9cbb78bb
DR
1659 struct task_struct *task;
1660
72ec7029
TH
1661 css_task_iter_start(&iter->css, &it);
1662 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1663 switch (oom_scan_process_thread(task, totalpages, NULL,
1664 false)) {
1665 case OOM_SCAN_SELECT:
1666 if (chosen)
1667 put_task_struct(chosen);
1668 chosen = task;
1669 chosen_points = ULONG_MAX;
1670 get_task_struct(chosen);
1671 /* fall through */
1672 case OOM_SCAN_CONTINUE:
1673 continue;
1674 case OOM_SCAN_ABORT:
72ec7029 1675 css_task_iter_end(&it);
9cbb78bb
DR
1676 mem_cgroup_iter_break(memcg, iter);
1677 if (chosen)
1678 put_task_struct(chosen);
1679 return;
1680 case OOM_SCAN_OK:
1681 break;
1682 };
1683 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1684 if (!points || points < chosen_points)
1685 continue;
1686 /* Prefer thread group leaders for display purposes */
1687 if (points == chosen_points &&
1688 thread_group_leader(chosen))
1689 continue;
1690
1691 if (chosen)
1692 put_task_struct(chosen);
1693 chosen = task;
1694 chosen_points = points;
1695 get_task_struct(chosen);
9cbb78bb 1696 }
72ec7029 1697 css_task_iter_end(&it);
9cbb78bb
DR
1698 }
1699
1700 if (!chosen)
1701 return;
1702 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1703 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1704 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1705}
1706
4d0c066d
KH
1707/**
1708 * test_mem_cgroup_node_reclaimable
dad7557e 1709 * @memcg: the target memcg
4d0c066d
KH
1710 * @nid: the node ID to be checked.
1711 * @noswap : specify true here if the user wants flle only information.
1712 *
1713 * This function returns whether the specified memcg contains any
1714 * reclaimable pages on a node. Returns true if there are any reclaimable
1715 * pages in the node.
1716 */
c0ff4b85 1717static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1718 int nid, bool noswap)
1719{
c0ff4b85 1720 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1721 return true;
1722 if (noswap || !total_swap_pages)
1723 return false;
c0ff4b85 1724 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1725 return true;
1726 return false;
1727
1728}
bb4cc1a8 1729#if MAX_NUMNODES > 1
889976db
YH
1730
1731/*
1732 * Always updating the nodemask is not very good - even if we have an empty
1733 * list or the wrong list here, we can start from some node and traverse all
1734 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1735 *
1736 */
c0ff4b85 1737static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1738{
1739 int nid;
453a9bf3
KH
1740 /*
1741 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1742 * pagein/pageout changes since the last update.
1743 */
c0ff4b85 1744 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1745 return;
c0ff4b85 1746 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1747 return;
1748
889976db 1749 /* make a nodemask where this memcg uses memory from */
31aaea4a 1750 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1751
31aaea4a 1752 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1753
c0ff4b85
R
1754 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1755 node_clear(nid, memcg->scan_nodes);
889976db 1756 }
453a9bf3 1757
c0ff4b85
R
1758 atomic_set(&memcg->numainfo_events, 0);
1759 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1760}
1761
1762/*
1763 * Selecting a node where we start reclaim from. Because what we need is just
1764 * reducing usage counter, start from anywhere is O,K. Considering
1765 * memory reclaim from current node, there are pros. and cons.
1766 *
1767 * Freeing memory from current node means freeing memory from a node which
1768 * we'll use or we've used. So, it may make LRU bad. And if several threads
1769 * hit limits, it will see a contention on a node. But freeing from remote
1770 * node means more costs for memory reclaim because of memory latency.
1771 *
1772 * Now, we use round-robin. Better algorithm is welcomed.
1773 */
c0ff4b85 1774int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1775{
1776 int node;
1777
c0ff4b85
R
1778 mem_cgroup_may_update_nodemask(memcg);
1779 node = memcg->last_scanned_node;
889976db 1780
c0ff4b85 1781 node = next_node(node, memcg->scan_nodes);
889976db 1782 if (node == MAX_NUMNODES)
c0ff4b85 1783 node = first_node(memcg->scan_nodes);
889976db
YH
1784 /*
1785 * We call this when we hit limit, not when pages are added to LRU.
1786 * No LRU may hold pages because all pages are UNEVICTABLE or
1787 * memcg is too small and all pages are not on LRU. In that case,
1788 * we use curret node.
1789 */
1790 if (unlikely(node == MAX_NUMNODES))
1791 node = numa_node_id();
1792
c0ff4b85 1793 memcg->last_scanned_node = node;
889976db
YH
1794 return node;
1795}
1796
bb4cc1a8
AM
1797/*
1798 * Check all nodes whether it contains reclaimable pages or not.
1799 * For quick scan, we make use of scan_nodes. This will allow us to skip
1800 * unused nodes. But scan_nodes is lazily updated and may not cotain
1801 * enough new information. We need to do double check.
1802 */
1803static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1804{
1805 int nid;
1806
1807 /*
1808 * quick check...making use of scan_node.
1809 * We can skip unused nodes.
1810 */
1811 if (!nodes_empty(memcg->scan_nodes)) {
1812 for (nid = first_node(memcg->scan_nodes);
1813 nid < MAX_NUMNODES;
1814 nid = next_node(nid, memcg->scan_nodes)) {
1815
1816 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1817 return true;
1818 }
1819 }
1820 /*
1821 * Check rest of nodes.
1822 */
1823 for_each_node_state(nid, N_MEMORY) {
1824 if (node_isset(nid, memcg->scan_nodes))
1825 continue;
1826 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1827 return true;
1828 }
1829 return false;
1830}
1831
889976db 1832#else
c0ff4b85 1833int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1834{
1835 return 0;
1836}
4d0c066d 1837
bb4cc1a8
AM
1838static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1839{
1840 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1841}
889976db
YH
1842#endif
1843
0608f43d
AM
1844static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1845 struct zone *zone,
1846 gfp_t gfp_mask,
1847 unsigned long *total_scanned)
1848{
1849 struct mem_cgroup *victim = NULL;
1850 int total = 0;
1851 int loop = 0;
1852 unsigned long excess;
1853 unsigned long nr_scanned;
1854 struct mem_cgroup_reclaim_cookie reclaim = {
1855 .zone = zone,
1856 .priority = 0,
1857 };
1858
3e32cb2e 1859 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1860
1861 while (1) {
1862 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1863 if (!victim) {
1864 loop++;
1865 if (loop >= 2) {
1866 /*
1867 * If we have not been able to reclaim
1868 * anything, it might because there are
1869 * no reclaimable pages under this hierarchy
1870 */
1871 if (!total)
1872 break;
1873 /*
1874 * We want to do more targeted reclaim.
1875 * excess >> 2 is not to excessive so as to
1876 * reclaim too much, nor too less that we keep
1877 * coming back to reclaim from this cgroup
1878 */
1879 if (total >= (excess >> 2) ||
1880 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1881 break;
1882 }
1883 continue;
1884 }
1885 if (!mem_cgroup_reclaimable(victim, false))
1886 continue;
1887 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1888 zone, &nr_scanned);
1889 *total_scanned += nr_scanned;
3e32cb2e 1890 if (!soft_limit_excess(root_memcg))
0608f43d 1891 break;
6d61ef40 1892 }
0608f43d
AM
1893 mem_cgroup_iter_break(root_memcg, victim);
1894 return total;
6d61ef40
BS
1895}
1896
0056f4e6
JW
1897#ifdef CONFIG_LOCKDEP
1898static struct lockdep_map memcg_oom_lock_dep_map = {
1899 .name = "memcg_oom_lock",
1900};
1901#endif
1902
fb2a6fc5
JW
1903static DEFINE_SPINLOCK(memcg_oom_lock);
1904
867578cb
KH
1905/*
1906 * Check OOM-Killer is already running under our hierarchy.
1907 * If someone is running, return false.
1908 */
fb2a6fc5 1909static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1910{
79dfdacc 1911 struct mem_cgroup *iter, *failed = NULL;
a636b327 1912
fb2a6fc5
JW
1913 spin_lock(&memcg_oom_lock);
1914
9f3a0d09 1915 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1916 if (iter->oom_lock) {
79dfdacc
MH
1917 /*
1918 * this subtree of our hierarchy is already locked
1919 * so we cannot give a lock.
1920 */
79dfdacc 1921 failed = iter;
9f3a0d09
JW
1922 mem_cgroup_iter_break(memcg, iter);
1923 break;
23751be0
JW
1924 } else
1925 iter->oom_lock = true;
7d74b06f 1926 }
867578cb 1927
fb2a6fc5
JW
1928 if (failed) {
1929 /*
1930 * OK, we failed to lock the whole subtree so we have
1931 * to clean up what we set up to the failing subtree
1932 */
1933 for_each_mem_cgroup_tree(iter, memcg) {
1934 if (iter == failed) {
1935 mem_cgroup_iter_break(memcg, iter);
1936 break;
1937 }
1938 iter->oom_lock = false;
79dfdacc 1939 }
0056f4e6
JW
1940 } else
1941 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1942
1943 spin_unlock(&memcg_oom_lock);
1944
1945 return !failed;
a636b327 1946}
0b7f569e 1947
fb2a6fc5 1948static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1949{
7d74b06f
KH
1950 struct mem_cgroup *iter;
1951
fb2a6fc5 1952 spin_lock(&memcg_oom_lock);
0056f4e6 1953 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1954 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1955 iter->oom_lock = false;
fb2a6fc5 1956 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1957}
1958
c0ff4b85 1959static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1960{
1961 struct mem_cgroup *iter;
1962
c0ff4b85 1963 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1964 atomic_inc(&iter->under_oom);
1965}
1966
c0ff4b85 1967static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1968{
1969 struct mem_cgroup *iter;
1970
867578cb
KH
1971 /*
1972 * When a new child is created while the hierarchy is under oom,
1973 * mem_cgroup_oom_lock() may not be called. We have to use
1974 * atomic_add_unless() here.
1975 */
c0ff4b85 1976 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1977 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1978}
1979
867578cb
KH
1980static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1981
dc98df5a 1982struct oom_wait_info {
d79154bb 1983 struct mem_cgroup *memcg;
dc98df5a
KH
1984 wait_queue_t wait;
1985};
1986
1987static int memcg_oom_wake_function(wait_queue_t *wait,
1988 unsigned mode, int sync, void *arg)
1989{
d79154bb
HD
1990 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1991 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1992 struct oom_wait_info *oom_wait_info;
1993
1994 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1995 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1996
dc98df5a 1997 /*
d79154bb 1998 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1999 * Then we can use css_is_ancestor without taking care of RCU.
2000 */
c0ff4b85
R
2001 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2002 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2003 return 0;
dc98df5a
KH
2004 return autoremove_wake_function(wait, mode, sync, arg);
2005}
2006
c0ff4b85 2007static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2008{
3812c8c8 2009 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2010 /* for filtering, pass "memcg" as argument. */
2011 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2012}
2013
c0ff4b85 2014static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2015{
c0ff4b85
R
2016 if (memcg && atomic_read(&memcg->under_oom))
2017 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2018}
2019
3812c8c8 2020static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2021{
3812c8c8
JW
2022 if (!current->memcg_oom.may_oom)
2023 return;
867578cb 2024 /*
49426420
JW
2025 * We are in the middle of the charge context here, so we
2026 * don't want to block when potentially sitting on a callstack
2027 * that holds all kinds of filesystem and mm locks.
2028 *
2029 * Also, the caller may handle a failed allocation gracefully
2030 * (like optional page cache readahead) and so an OOM killer
2031 * invocation might not even be necessary.
2032 *
2033 * That's why we don't do anything here except remember the
2034 * OOM context and then deal with it at the end of the page
2035 * fault when the stack is unwound, the locks are released,
2036 * and when we know whether the fault was overall successful.
867578cb 2037 */
49426420
JW
2038 css_get(&memcg->css);
2039 current->memcg_oom.memcg = memcg;
2040 current->memcg_oom.gfp_mask = mask;
2041 current->memcg_oom.order = order;
3812c8c8
JW
2042}
2043
2044/**
2045 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2046 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2047 *
49426420
JW
2048 * This has to be called at the end of a page fault if the memcg OOM
2049 * handler was enabled.
3812c8c8 2050 *
49426420 2051 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2052 * sleep on a waitqueue until the userspace task resolves the
2053 * situation. Sleeping directly in the charge context with all kinds
2054 * of locks held is not a good idea, instead we remember an OOM state
2055 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2056 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2057 *
2058 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2059 * completed, %false otherwise.
3812c8c8 2060 */
49426420 2061bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2062{
49426420 2063 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2064 struct oom_wait_info owait;
49426420 2065 bool locked;
3812c8c8
JW
2066
2067 /* OOM is global, do not handle */
3812c8c8 2068 if (!memcg)
49426420 2069 return false;
3812c8c8 2070
49426420
JW
2071 if (!handle)
2072 goto cleanup;
3812c8c8
JW
2073
2074 owait.memcg = memcg;
2075 owait.wait.flags = 0;
2076 owait.wait.func = memcg_oom_wake_function;
2077 owait.wait.private = current;
2078 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2079
3812c8c8 2080 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2081 mem_cgroup_mark_under_oom(memcg);
2082
2083 locked = mem_cgroup_oom_trylock(memcg);
2084
2085 if (locked)
2086 mem_cgroup_oom_notify(memcg);
2087
2088 if (locked && !memcg->oom_kill_disable) {
2089 mem_cgroup_unmark_under_oom(memcg);
2090 finish_wait(&memcg_oom_waitq, &owait.wait);
2091 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2092 current->memcg_oom.order);
2093 } else {
3812c8c8 2094 schedule();
49426420
JW
2095 mem_cgroup_unmark_under_oom(memcg);
2096 finish_wait(&memcg_oom_waitq, &owait.wait);
2097 }
2098
2099 if (locked) {
fb2a6fc5
JW
2100 mem_cgroup_oom_unlock(memcg);
2101 /*
2102 * There is no guarantee that an OOM-lock contender
2103 * sees the wakeups triggered by the OOM kill
2104 * uncharges. Wake any sleepers explicitely.
2105 */
2106 memcg_oom_recover(memcg);
2107 }
49426420
JW
2108cleanup:
2109 current->memcg_oom.memcg = NULL;
3812c8c8 2110 css_put(&memcg->css);
867578cb 2111 return true;
0b7f569e
KH
2112}
2113
d7365e78
JW
2114/**
2115 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
2116 * @page: page that is going to change accounted state
2117 * @locked: &memcg->move_lock slowpath was taken
2118 * @flags: IRQ-state flags for &memcg->move_lock
32047e2a 2119 *
d7365e78
JW
2120 * This function must mark the beginning of an accounted page state
2121 * change to prevent double accounting when the page is concurrently
2122 * being moved to another memcg:
32047e2a 2123 *
d7365e78
JW
2124 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
2125 * if (TestClearPageState(page))
2126 * mem_cgroup_update_page_stat(memcg, state, -1);
2127 * mem_cgroup_end_page_stat(memcg, locked, flags);
32047e2a 2128 *
d7365e78
JW
2129 * The RCU lock is held throughout the transaction. The fast path can
2130 * get away without acquiring the memcg->move_lock (@locked is false)
2131 * because page moving starts with an RCU grace period.
32047e2a 2132 *
d7365e78
JW
2133 * The RCU lock also protects the memcg from being freed when the page
2134 * state that is going to change is the only thing preventing the page
2135 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2136 * which allows migration to go ahead and uncharge the page before the
2137 * account transaction might be complete.
d69b042f 2138 */
d7365e78
JW
2139struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2140 bool *locked,
2141 unsigned long *flags)
89c06bd5
KH
2142{
2143 struct mem_cgroup *memcg;
2144 struct page_cgroup *pc;
2145
d7365e78
JW
2146 rcu_read_lock();
2147
2148 if (mem_cgroup_disabled())
2149 return NULL;
2150
89c06bd5
KH
2151 pc = lookup_page_cgroup(page);
2152again:
2153 memcg = pc->mem_cgroup;
2154 if (unlikely(!memcg || !PageCgroupUsed(pc)))
d7365e78
JW
2155 return NULL;
2156
2157 *locked = false;
bdcbb659 2158 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2159 return memcg;
89c06bd5
KH
2160
2161 move_lock_mem_cgroup(memcg, flags);
2162 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2163 move_unlock_mem_cgroup(memcg, flags);
2164 goto again;
2165 }
2166 *locked = true;
d7365e78
JW
2167
2168 return memcg;
89c06bd5
KH
2169}
2170
d7365e78
JW
2171/**
2172 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2173 * @memcg: the memcg that was accounted against
2174 * @locked: value received from mem_cgroup_begin_page_stat()
2175 * @flags: value received from mem_cgroup_begin_page_stat()
2176 */
2177void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
2178 unsigned long flags)
89c06bd5 2179{
d7365e78
JW
2180 if (memcg && locked)
2181 move_unlock_mem_cgroup(memcg, &flags);
89c06bd5 2182
d7365e78 2183 rcu_read_unlock();
89c06bd5
KH
2184}
2185
d7365e78
JW
2186/**
2187 * mem_cgroup_update_page_stat - update page state statistics
2188 * @memcg: memcg to account against
2189 * @idx: page state item to account
2190 * @val: number of pages (positive or negative)
2191 *
2192 * See mem_cgroup_begin_page_stat() for locking requirements.
2193 */
2194void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2195 enum mem_cgroup_stat_index idx, int val)
d69b042f 2196{
658b72c5 2197 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2198
d7365e78
JW
2199 if (memcg)
2200 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2201}
26174efd 2202
cdec2e42
KH
2203/*
2204 * size of first charge trial. "32" comes from vmscan.c's magic value.
2205 * TODO: maybe necessary to use big numbers in big irons.
2206 */
7ec99d62 2207#define CHARGE_BATCH 32U
cdec2e42
KH
2208struct memcg_stock_pcp {
2209 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2210 unsigned int nr_pages;
cdec2e42 2211 struct work_struct work;
26fe6168 2212 unsigned long flags;
a0db00fc 2213#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2214};
2215static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2216static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2217
a0956d54
SS
2218/**
2219 * consume_stock: Try to consume stocked charge on this cpu.
2220 * @memcg: memcg to consume from.
2221 * @nr_pages: how many pages to charge.
2222 *
2223 * The charges will only happen if @memcg matches the current cpu's memcg
2224 * stock, and at least @nr_pages are available in that stock. Failure to
2225 * service an allocation will refill the stock.
2226 *
2227 * returns true if successful, false otherwise.
cdec2e42 2228 */
a0956d54 2229static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2230{
2231 struct memcg_stock_pcp *stock;
3e32cb2e 2232 bool ret = false;
cdec2e42 2233
a0956d54 2234 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2235 return ret;
a0956d54 2236
cdec2e42 2237 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2238 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2239 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2240 ret = true;
2241 }
cdec2e42
KH
2242 put_cpu_var(memcg_stock);
2243 return ret;
2244}
2245
2246/*
3e32cb2e 2247 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2248 */
2249static void drain_stock(struct memcg_stock_pcp *stock)
2250{
2251 struct mem_cgroup *old = stock->cached;
2252
11c9ea4e 2253 if (stock->nr_pages) {
3e32cb2e 2254 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2255 if (do_swap_account)
3e32cb2e 2256 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2257 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2258 stock->nr_pages = 0;
cdec2e42
KH
2259 }
2260 stock->cached = NULL;
cdec2e42
KH
2261}
2262
2263/*
2264 * This must be called under preempt disabled or must be called by
2265 * a thread which is pinned to local cpu.
2266 */
2267static void drain_local_stock(struct work_struct *dummy)
2268{
7c8e0181 2269 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2270 drain_stock(stock);
26fe6168 2271 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2272}
2273
e4777496
MH
2274static void __init memcg_stock_init(void)
2275{
2276 int cpu;
2277
2278 for_each_possible_cpu(cpu) {
2279 struct memcg_stock_pcp *stock =
2280 &per_cpu(memcg_stock, cpu);
2281 INIT_WORK(&stock->work, drain_local_stock);
2282 }
2283}
2284
cdec2e42 2285/*
3e32cb2e 2286 * Cache charges(val) to local per_cpu area.
320cc51d 2287 * This will be consumed by consume_stock() function, later.
cdec2e42 2288 */
c0ff4b85 2289static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2290{
2291 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2292
c0ff4b85 2293 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2294 drain_stock(stock);
c0ff4b85 2295 stock->cached = memcg;
cdec2e42 2296 }
11c9ea4e 2297 stock->nr_pages += nr_pages;
cdec2e42
KH
2298 put_cpu_var(memcg_stock);
2299}
2300
2301/*
c0ff4b85 2302 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2303 * of the hierarchy under it.
cdec2e42 2304 */
6d3d6aa2 2305static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2306{
26fe6168 2307 int cpu, curcpu;
d38144b7 2308
6d3d6aa2
JW
2309 /* If someone's already draining, avoid adding running more workers. */
2310 if (!mutex_trylock(&percpu_charge_mutex))
2311 return;
cdec2e42 2312 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2313 get_online_cpus();
5af12d0e 2314 curcpu = get_cpu();
cdec2e42
KH
2315 for_each_online_cpu(cpu) {
2316 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2317 struct mem_cgroup *memcg;
26fe6168 2318
c0ff4b85
R
2319 memcg = stock->cached;
2320 if (!memcg || !stock->nr_pages)
26fe6168 2321 continue;
c0ff4b85 2322 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2323 continue;
d1a05b69
MH
2324 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2325 if (cpu == curcpu)
2326 drain_local_stock(&stock->work);
2327 else
2328 schedule_work_on(cpu, &stock->work);
2329 }
cdec2e42 2330 }
5af12d0e 2331 put_cpu();
f894ffa8 2332 put_online_cpus();
9f50fad6 2333 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2334}
2335
711d3d2c
KH
2336/*
2337 * This function drains percpu counter value from DEAD cpu and
2338 * move it to local cpu. Note that this function can be preempted.
2339 */
c0ff4b85 2340static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2341{
2342 int i;
2343
c0ff4b85 2344 spin_lock(&memcg->pcp_counter_lock);
6104621d 2345 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2346 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2347
c0ff4b85
R
2348 per_cpu(memcg->stat->count[i], cpu) = 0;
2349 memcg->nocpu_base.count[i] += x;
711d3d2c 2350 }
e9f8974f 2351 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2352 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2353
c0ff4b85
R
2354 per_cpu(memcg->stat->events[i], cpu) = 0;
2355 memcg->nocpu_base.events[i] += x;
e9f8974f 2356 }
c0ff4b85 2357 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2358}
2359
0db0628d 2360static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2361 unsigned long action,
2362 void *hcpu)
2363{
2364 int cpu = (unsigned long)hcpu;
2365 struct memcg_stock_pcp *stock;
711d3d2c 2366 struct mem_cgroup *iter;
cdec2e42 2367
619d094b 2368 if (action == CPU_ONLINE)
1489ebad 2369 return NOTIFY_OK;
1489ebad 2370
d833049b 2371 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2372 return NOTIFY_OK;
711d3d2c 2373
9f3a0d09 2374 for_each_mem_cgroup(iter)
711d3d2c
KH
2375 mem_cgroup_drain_pcp_counter(iter, cpu);
2376
cdec2e42
KH
2377 stock = &per_cpu(memcg_stock, cpu);
2378 drain_stock(stock);
2379 return NOTIFY_OK;
2380}
2381
00501b53
JW
2382static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2383 unsigned int nr_pages)
8a9f3ccd 2384{
7ec99d62 2385 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2386 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2387 struct mem_cgroup *mem_over_limit;
3e32cb2e 2388 struct page_counter *counter;
6539cc05 2389 unsigned long nr_reclaimed;
b70a2a21
JW
2390 bool may_swap = true;
2391 bool drained = false;
05b84301 2392 int ret = 0;
a636b327 2393
ce00a967
JW
2394 if (mem_cgroup_is_root(memcg))
2395 goto done;
6539cc05 2396retry:
b6b6cc72
MH
2397 if (consume_stock(memcg, nr_pages))
2398 goto done;
8a9f3ccd 2399
3fbe7244 2400 if (!do_swap_account ||
3e32cb2e
JW
2401 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2402 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2403 goto done_restock;
3fbe7244 2404 if (do_swap_account)
3e32cb2e
JW
2405 page_counter_uncharge(&memcg->memsw, batch);
2406 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2407 } else {
3e32cb2e 2408 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2409 may_swap = false;
3fbe7244 2410 }
7a81b88c 2411
6539cc05
JW
2412 if (batch > nr_pages) {
2413 batch = nr_pages;
2414 goto retry;
2415 }
6d61ef40 2416
06b078fc
JW
2417 /*
2418 * Unlike in global OOM situations, memcg is not in a physical
2419 * memory shortage. Allow dying and OOM-killed tasks to
2420 * bypass the last charges so that they can exit quickly and
2421 * free their memory.
2422 */
2423 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2424 fatal_signal_pending(current) ||
2425 current->flags & PF_EXITING))
2426 goto bypass;
2427
2428 if (unlikely(task_in_memcg_oom(current)))
2429 goto nomem;
2430
6539cc05
JW
2431 if (!(gfp_mask & __GFP_WAIT))
2432 goto nomem;
4b534334 2433
b70a2a21
JW
2434 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2435 gfp_mask, may_swap);
6539cc05 2436
61e02c74 2437 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2438 goto retry;
28c34c29 2439
b70a2a21 2440 if (!drained) {
6d3d6aa2 2441 drain_all_stock(mem_over_limit);
b70a2a21
JW
2442 drained = true;
2443 goto retry;
2444 }
2445
28c34c29
JW
2446 if (gfp_mask & __GFP_NORETRY)
2447 goto nomem;
6539cc05
JW
2448 /*
2449 * Even though the limit is exceeded at this point, reclaim
2450 * may have been able to free some pages. Retry the charge
2451 * before killing the task.
2452 *
2453 * Only for regular pages, though: huge pages are rather
2454 * unlikely to succeed so close to the limit, and we fall back
2455 * to regular pages anyway in case of failure.
2456 */
61e02c74 2457 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2458 goto retry;
2459 /*
2460 * At task move, charge accounts can be doubly counted. So, it's
2461 * better to wait until the end of task_move if something is going on.
2462 */
2463 if (mem_cgroup_wait_acct_move(mem_over_limit))
2464 goto retry;
2465
9b130619
JW
2466 if (nr_retries--)
2467 goto retry;
2468
06b078fc
JW
2469 if (gfp_mask & __GFP_NOFAIL)
2470 goto bypass;
2471
6539cc05
JW
2472 if (fatal_signal_pending(current))
2473 goto bypass;
2474
61e02c74 2475 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2476nomem:
6d1fdc48 2477 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2478 return -ENOMEM;
867578cb 2479bypass:
ce00a967 2480 return -EINTR;
6539cc05
JW
2481
2482done_restock:
e8ea14cc 2483 css_get_many(&memcg->css, batch);
6539cc05
JW
2484 if (batch > nr_pages)
2485 refill_stock(memcg, batch - nr_pages);
2486done:
05b84301 2487 return ret;
7a81b88c 2488}
8a9f3ccd 2489
00501b53 2490static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2491{
ce00a967
JW
2492 if (mem_cgroup_is_root(memcg))
2493 return;
2494
3e32cb2e 2495 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2496 if (do_swap_account)
3e32cb2e 2497 page_counter_uncharge(&memcg->memsw, nr_pages);
e8ea14cc
JW
2498
2499 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2500}
2501
a3b2d692
KH
2502/*
2503 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2504 * rcu_read_lock(). The caller is responsible for calling
2505 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2506 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2507 */
2508static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2509{
a3b2d692
KH
2510 /* ID 0 is unused ID */
2511 if (!id)
2512 return NULL;
34c00c31 2513 return mem_cgroup_from_id(id);
a3b2d692
KH
2514}
2515
0a31bc97
JW
2516/*
2517 * try_get_mem_cgroup_from_page - look up page's memcg association
2518 * @page: the page
2519 *
2520 * Look up, get a css reference, and return the memcg that owns @page.
2521 *
2522 * The page must be locked to prevent racing with swap-in and page
2523 * cache charges. If coming from an unlocked page table, the caller
2524 * must ensure the page is on the LRU or this can race with charging.
2525 */
e42d9d5d 2526struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2527{
c0ff4b85 2528 struct mem_cgroup *memcg = NULL;
3c776e64 2529 struct page_cgroup *pc;
a3b2d692 2530 unsigned short id;
b5a84319
KH
2531 swp_entry_t ent;
2532
309381fe 2533 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2534
3c776e64 2535 pc = lookup_page_cgroup(page);
a3b2d692 2536 if (PageCgroupUsed(pc)) {
c0ff4b85 2537 memcg = pc->mem_cgroup;
ec903c0c 2538 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2539 memcg = NULL;
e42d9d5d 2540 } else if (PageSwapCache(page)) {
3c776e64 2541 ent.val = page_private(page);
9fb4b7cc 2542 id = lookup_swap_cgroup_id(ent);
a3b2d692 2543 rcu_read_lock();
c0ff4b85 2544 memcg = mem_cgroup_lookup(id);
ec903c0c 2545 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2546 memcg = NULL;
a3b2d692 2547 rcu_read_unlock();
3c776e64 2548 }
c0ff4b85 2549 return memcg;
b5a84319
KH
2550}
2551
0a31bc97
JW
2552static void lock_page_lru(struct page *page, int *isolated)
2553{
2554 struct zone *zone = page_zone(page);
2555
2556 spin_lock_irq(&zone->lru_lock);
2557 if (PageLRU(page)) {
2558 struct lruvec *lruvec;
2559
2560 lruvec = mem_cgroup_page_lruvec(page, zone);
2561 ClearPageLRU(page);
2562 del_page_from_lru_list(page, lruvec, page_lru(page));
2563 *isolated = 1;
2564 } else
2565 *isolated = 0;
2566}
2567
2568static void unlock_page_lru(struct page *page, int isolated)
2569{
2570 struct zone *zone = page_zone(page);
2571
2572 if (isolated) {
2573 struct lruvec *lruvec;
2574
2575 lruvec = mem_cgroup_page_lruvec(page, zone);
2576 VM_BUG_ON_PAGE(PageLRU(page), page);
2577 SetPageLRU(page);
2578 add_page_to_lru_list(page, lruvec, page_lru(page));
2579 }
2580 spin_unlock_irq(&zone->lru_lock);
2581}
2582
00501b53 2583static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2584 bool lrucare)
7a81b88c 2585{
ce587e65 2586 struct page_cgroup *pc = lookup_page_cgroup(page);
0a31bc97 2587 int isolated;
9ce70c02 2588
309381fe 2589 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2590 /*
2591 * we don't need page_cgroup_lock about tail pages, becase they are not
2592 * accessed by any other context at this point.
2593 */
9ce70c02
HD
2594
2595 /*
2596 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2597 * may already be on some other mem_cgroup's LRU. Take care of it.
2598 */
0a31bc97
JW
2599 if (lrucare)
2600 lock_page_lru(page, &isolated);
9ce70c02 2601
0a31bc97
JW
2602 /*
2603 * Nobody should be changing or seriously looking at
2604 * pc->mem_cgroup and pc->flags at this point:
2605 *
2606 * - the page is uncharged
2607 *
2608 * - the page is off-LRU
2609 *
2610 * - an anonymous fault has exclusive page access, except for
2611 * a locked page table
2612 *
2613 * - a page cache insertion, a swapin fault, or a migration
2614 * have the page locked
2615 */
c0ff4b85 2616 pc->mem_cgroup = memcg;
0a31bc97 2617 pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
9ce70c02 2618
0a31bc97
JW
2619 if (lrucare)
2620 unlock_page_lru(page, isolated);
7a81b88c 2621}
66e1707b 2622
7ae1e1d0 2623#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2624/*
2625 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2626 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2627 */
2628static DEFINE_MUTEX(memcg_slab_mutex);
2629
1f458cbf
GC
2630/*
2631 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2632 * in the memcg_cache_params struct.
2633 */
2634static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2635{
2636 struct kmem_cache *cachep;
2637
2638 VM_BUG_ON(p->is_root_cache);
2639 cachep = p->root_cache;
7a67d7ab 2640 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2641}
2642
749c5415 2643#ifdef CONFIG_SLABINFO
2da8ca82 2644static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 2645{
2da8ca82 2646 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
2647 struct memcg_cache_params *params;
2648
cf2b8fbf 2649 if (!memcg_kmem_is_active(memcg))
749c5415
GC
2650 return -EIO;
2651
2652 print_slabinfo_header(m);
2653
bd673145 2654 mutex_lock(&memcg_slab_mutex);
749c5415
GC
2655 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2656 cache_show(memcg_params_to_cache(params), m);
bd673145 2657 mutex_unlock(&memcg_slab_mutex);
749c5415
GC
2658
2659 return 0;
2660}
2661#endif
2662
3e32cb2e
JW
2663static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2664 unsigned long nr_pages)
7ae1e1d0 2665{
3e32cb2e 2666 struct page_counter *counter;
7ae1e1d0 2667 int ret = 0;
7ae1e1d0 2668
3e32cb2e
JW
2669 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2670 if (ret < 0)
7ae1e1d0
GC
2671 return ret;
2672
3e32cb2e 2673 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2674 if (ret == -EINTR) {
2675 /*
00501b53
JW
2676 * try_charge() chose to bypass to root due to OOM kill or
2677 * fatal signal. Since our only options are to either fail
2678 * the allocation or charge it to this cgroup, do it as a
2679 * temporary condition. But we can't fail. From a kmem/slab
2680 * perspective, the cache has already been selected, by
2681 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2682 * our minds.
2683 *
2684 * This condition will only trigger if the task entered
00501b53
JW
2685 * memcg_charge_kmem in a sane state, but was OOM-killed
2686 * during try_charge() above. Tasks that were already dying
2687 * when the allocation triggers should have been already
7ae1e1d0
GC
2688 * directed to the root cgroup in memcontrol.h
2689 */
3e32cb2e 2690 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2691 if (do_swap_account)
3e32cb2e 2692 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2693 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2694 ret = 0;
2695 } else if (ret)
3e32cb2e 2696 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2697
2698 return ret;
2699}
2700
3e32cb2e
JW
2701static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2702 unsigned long nr_pages)
7ae1e1d0 2703{
3e32cb2e 2704 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2705 if (do_swap_account)
3e32cb2e 2706 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2707
64f21993 2708 page_counter_uncharge(&memcg->kmem, nr_pages);
e8ea14cc
JW
2709
2710 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2711}
2712
2633d7a0
GC
2713/*
2714 * helper for acessing a memcg's index. It will be used as an index in the
2715 * child cache array in kmem_cache, and also to derive its name. This function
2716 * will return -1 when this is not a kmem-limited memcg.
2717 */
2718int memcg_cache_id(struct mem_cgroup *memcg)
2719{
2720 return memcg ? memcg->kmemcg_id : -1;
2721}
2722
f3bb3043 2723static int memcg_alloc_cache_id(void)
55007d84 2724{
f3bb3043
VD
2725 int id, size;
2726 int err;
2727
2728 id = ida_simple_get(&kmem_limited_groups,
2729 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2730 if (id < 0)
2731 return id;
55007d84 2732
f3bb3043
VD
2733 if (id < memcg_limited_groups_array_size)
2734 return id;
2735
2736 /*
2737 * There's no space for the new id in memcg_caches arrays,
2738 * so we have to grow them.
2739 */
2740
2741 size = 2 * (id + 1);
55007d84
GC
2742 if (size < MEMCG_CACHES_MIN_SIZE)
2743 size = MEMCG_CACHES_MIN_SIZE;
2744 else if (size > MEMCG_CACHES_MAX_SIZE)
2745 size = MEMCG_CACHES_MAX_SIZE;
2746
f3bb3043
VD
2747 mutex_lock(&memcg_slab_mutex);
2748 err = memcg_update_all_caches(size);
2749 mutex_unlock(&memcg_slab_mutex);
2750
2751 if (err) {
2752 ida_simple_remove(&kmem_limited_groups, id);
2753 return err;
2754 }
2755 return id;
2756}
2757
2758static void memcg_free_cache_id(int id)
2759{
2760 ida_simple_remove(&kmem_limited_groups, id);
55007d84
GC
2761}
2762
2763/*
2764 * We should update the current array size iff all caches updates succeed. This
2765 * can only be done from the slab side. The slab mutex needs to be held when
2766 * calling this.
2767 */
2768void memcg_update_array_size(int num)
2769{
f3bb3043 2770 memcg_limited_groups_array_size = num;
55007d84
GC
2771}
2772
776ed0f0
VD
2773static void memcg_register_cache(struct mem_cgroup *memcg,
2774 struct kmem_cache *root_cache)
2633d7a0 2775{
93f39eea
VD
2776 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2777 memcg_slab_mutex */
bd673145 2778 struct kmem_cache *cachep;
d7f25f8a
GC
2779 int id;
2780
bd673145
VD
2781 lockdep_assert_held(&memcg_slab_mutex);
2782
2783 id = memcg_cache_id(memcg);
2784
2785 /*
2786 * Since per-memcg caches are created asynchronously on first
2787 * allocation (see memcg_kmem_get_cache()), several threads can try to
2788 * create the same cache, but only one of them may succeed.
2789 */
2790 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
2791 return;
2792
073ee1c6 2793 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
776ed0f0 2794 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2edefe11 2795 /*
bd673145
VD
2796 * If we could not create a memcg cache, do not complain, because
2797 * that's not critical at all as we can always proceed with the root
2798 * cache.
2edefe11 2799 */
bd673145
VD
2800 if (!cachep)
2801 return;
2edefe11 2802
33a690c4 2803 css_get(&memcg->css);
bd673145 2804 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 2805
d7f25f8a 2806 /*
959c8963
VD
2807 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2808 * barrier here to ensure nobody will see the kmem_cache partially
2809 * initialized.
d7f25f8a 2810 */
959c8963
VD
2811 smp_wmb();
2812
bd673145
VD
2813 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2814 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 2815}
d7f25f8a 2816
776ed0f0 2817static void memcg_unregister_cache(struct kmem_cache *cachep)
1aa13254 2818{
bd673145 2819 struct kmem_cache *root_cache;
1aa13254
VD
2820 struct mem_cgroup *memcg;
2821 int id;
2822
bd673145 2823 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 2824
bd673145 2825 BUG_ON(is_root_cache(cachep));
2edefe11 2826
bd673145
VD
2827 root_cache = cachep->memcg_params->root_cache;
2828 memcg = cachep->memcg_params->memcg;
96403da2 2829 id = memcg_cache_id(memcg);
d7f25f8a 2830
bd673145
VD
2831 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2832 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 2833
bd673145
VD
2834 list_del(&cachep->memcg_params->list);
2835
2836 kmem_cache_destroy(cachep);
33a690c4
VD
2837
2838 /* drop the reference taken in memcg_register_cache */
2839 css_put(&memcg->css);
2633d7a0
GC
2840}
2841
0e9d92f2
GC
2842/*
2843 * During the creation a new cache, we need to disable our accounting mechanism
2844 * altogether. This is true even if we are not creating, but rather just
2845 * enqueing new caches to be created.
2846 *
2847 * This is because that process will trigger allocations; some visible, like
2848 * explicit kmallocs to auxiliary data structures, name strings and internal
2849 * cache structures; some well concealed, like INIT_WORK() that can allocate
2850 * objects during debug.
2851 *
2852 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
2853 * to it. This may not be a bounded recursion: since the first cache creation
2854 * failed to complete (waiting on the allocation), we'll just try to create the
2855 * cache again, failing at the same point.
2856 *
2857 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
2858 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
2859 * inside the following two functions.
2860 */
2861static inline void memcg_stop_kmem_account(void)
2862{
2863 VM_BUG_ON(!current->mm);
2864 current->memcg_kmem_skip_account++;
2865}
2866
2867static inline void memcg_resume_kmem_account(void)
2868{
2869 VM_BUG_ON(!current->mm);
2870 current->memcg_kmem_skip_account--;
2871}
2872
776ed0f0 2873int __memcg_cleanup_cache_params(struct kmem_cache *s)
7cf27982
GC
2874{
2875 struct kmem_cache *c;
b8529907 2876 int i, failed = 0;
7cf27982 2877
bd673145 2878 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
2879 for_each_memcg_cache_index(i) {
2880 c = cache_from_memcg_idx(s, i);
7cf27982
GC
2881 if (!c)
2882 continue;
2883
776ed0f0 2884 memcg_unregister_cache(c);
b8529907
VD
2885
2886 if (cache_from_memcg_idx(s, i))
2887 failed++;
7cf27982 2888 }
bd673145 2889 mutex_unlock(&memcg_slab_mutex);
b8529907 2890 return failed;
7cf27982
GC
2891}
2892
776ed0f0 2893static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
2894{
2895 struct kmem_cache *cachep;
bd673145 2896 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
2897
2898 if (!memcg_kmem_is_active(memcg))
2899 return;
2900
bd673145
VD
2901 mutex_lock(&memcg_slab_mutex);
2902 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 2903 cachep = memcg_params_to_cache(params);
bd673145
VD
2904 kmem_cache_shrink(cachep);
2905 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
776ed0f0 2906 memcg_unregister_cache(cachep);
1f458cbf 2907 }
bd673145 2908 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
2909}
2910
776ed0f0 2911struct memcg_register_cache_work {
5722d094
VD
2912 struct mem_cgroup *memcg;
2913 struct kmem_cache *cachep;
2914 struct work_struct work;
2915};
2916
776ed0f0 2917static void memcg_register_cache_func(struct work_struct *w)
d7f25f8a 2918{
776ed0f0
VD
2919 struct memcg_register_cache_work *cw =
2920 container_of(w, struct memcg_register_cache_work, work);
5722d094
VD
2921 struct mem_cgroup *memcg = cw->memcg;
2922 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2923
bd673145 2924 mutex_lock(&memcg_slab_mutex);
776ed0f0 2925 memcg_register_cache(memcg, cachep);
bd673145
VD
2926 mutex_unlock(&memcg_slab_mutex);
2927
5722d094 2928 css_put(&memcg->css);
d7f25f8a
GC
2929 kfree(cw);
2930}
2931
2932/*
2933 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2934 */
776ed0f0
VD
2935static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
2936 struct kmem_cache *cachep)
d7f25f8a 2937{
776ed0f0 2938 struct memcg_register_cache_work *cw;
d7f25f8a 2939
776ed0f0 2940 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
ca0dde97
LZ
2941 if (cw == NULL) {
2942 css_put(&memcg->css);
d7f25f8a
GC
2943 return;
2944 }
2945
2946 cw->memcg = memcg;
2947 cw->cachep = cachep;
2948
776ed0f0 2949 INIT_WORK(&cw->work, memcg_register_cache_func);
d7f25f8a
GC
2950 schedule_work(&cw->work);
2951}
2952
776ed0f0
VD
2953static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
2954 struct kmem_cache *cachep)
0e9d92f2
GC
2955{
2956 /*
2957 * We need to stop accounting when we kmalloc, because if the
2958 * corresponding kmalloc cache is not yet created, the first allocation
776ed0f0 2959 * in __memcg_schedule_register_cache will recurse.
0e9d92f2
GC
2960 *
2961 * However, it is better to enclose the whole function. Depending on
2962 * the debugging options enabled, INIT_WORK(), for instance, can
2963 * trigger an allocation. This too, will make us recurse. Because at
2964 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2965 * the safest choice is to do it like this, wrapping the whole function.
2966 */
2967 memcg_stop_kmem_account();
776ed0f0 2968 __memcg_schedule_register_cache(memcg, cachep);
0e9d92f2
GC
2969 memcg_resume_kmem_account();
2970}
c67a8a68
VD
2971
2972int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
2973{
3e32cb2e 2974 unsigned int nr_pages = 1 << order;
c67a8a68
VD
2975 int res;
2976
3e32cb2e 2977 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
c67a8a68 2978 if (!res)
3e32cb2e 2979 atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
2980 return res;
2981}
2982
2983void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
2984{
3e32cb2e
JW
2985 unsigned int nr_pages = 1 << order;
2986
2987 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
2988 atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
2989}
2990
d7f25f8a
GC
2991/*
2992 * Return the kmem_cache we're supposed to use for a slab allocation.
2993 * We try to use the current memcg's version of the cache.
2994 *
2995 * If the cache does not exist yet, if we are the first user of it,
2996 * we either create it immediately, if possible, or create it asynchronously
2997 * in a workqueue.
2998 * In the latter case, we will let the current allocation go through with
2999 * the original cache.
3000 *
3001 * Can't be called in interrupt context or from kernel threads.
3002 * This function needs to be called with rcu_read_lock() held.
3003 */
3004struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3005 gfp_t gfp)
3006{
3007 struct mem_cgroup *memcg;
959c8963 3008 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3009
3010 VM_BUG_ON(!cachep->memcg_params);
3011 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3012
0e9d92f2
GC
3013 if (!current->mm || current->memcg_kmem_skip_account)
3014 return cachep;
3015
d7f25f8a
GC
3016 rcu_read_lock();
3017 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a 3018
cf2b8fbf 3019 if (!memcg_kmem_is_active(memcg))
ca0dde97 3020 goto out;
d7f25f8a 3021
959c8963
VD
3022 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3023 if (likely(memcg_cachep)) {
3024 cachep = memcg_cachep;
ca0dde97 3025 goto out;
d7f25f8a
GC
3026 }
3027
ca0dde97 3028 /* The corresponding put will be done in the workqueue. */
ec903c0c 3029 if (!css_tryget_online(&memcg->css))
ca0dde97
LZ
3030 goto out;
3031 rcu_read_unlock();
3032
3033 /*
3034 * If we are in a safe context (can wait, and not in interrupt
3035 * context), we could be be predictable and return right away.
3036 * This would guarantee that the allocation being performed
3037 * already belongs in the new cache.
3038 *
3039 * However, there are some clashes that can arrive from locking.
3040 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
3041 * memcg_create_kmem_cache, this means no further allocation
3042 * could happen with the slab_mutex held. So it's better to
3043 * defer everything.
ca0dde97 3044 */
776ed0f0 3045 memcg_schedule_register_cache(memcg, cachep);
ca0dde97
LZ
3046 return cachep;
3047out:
3048 rcu_read_unlock();
3049 return cachep;
d7f25f8a 3050}
d7f25f8a 3051
7ae1e1d0
GC
3052/*
3053 * We need to verify if the allocation against current->mm->owner's memcg is
3054 * possible for the given order. But the page is not allocated yet, so we'll
3055 * need a further commit step to do the final arrangements.
3056 *
3057 * It is possible for the task to switch cgroups in this mean time, so at
3058 * commit time, we can't rely on task conversion any longer. We'll then use
3059 * the handle argument to return to the caller which cgroup we should commit
3060 * against. We could also return the memcg directly and avoid the pointer
3061 * passing, but a boolean return value gives better semantics considering
3062 * the compiled-out case as well.
3063 *
3064 * Returning true means the allocation is possible.
3065 */
3066bool
3067__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3068{
3069 struct mem_cgroup *memcg;
3070 int ret;
3071
3072 *_memcg = NULL;
6d42c232
GC
3073
3074 /*
3075 * Disabling accounting is only relevant for some specific memcg
3076 * internal allocations. Therefore we would initially not have such
52383431
VD
3077 * check here, since direct calls to the page allocator that are
3078 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3079 * outside memcg core. We are mostly concerned with cache allocations,
3080 * and by having this test at memcg_kmem_get_cache, we are already able
3081 * to relay the allocation to the root cache and bypass the memcg cache
3082 * altogether.
6d42c232
GC
3083 *
3084 * There is one exception, though: the SLUB allocator does not create
3085 * large order caches, but rather service large kmallocs directly from
3086 * the page allocator. Therefore, the following sequence when backed by
3087 * the SLUB allocator:
3088 *
f894ffa8
AM
3089 * memcg_stop_kmem_account();
3090 * kmalloc(<large_number>)
3091 * memcg_resume_kmem_account();
6d42c232
GC
3092 *
3093 * would effectively ignore the fact that we should skip accounting,
3094 * since it will drive us directly to this function without passing
3095 * through the cache selector memcg_kmem_get_cache. Such large
3096 * allocations are extremely rare but can happen, for instance, for the
3097 * cache arrays. We bring this test here.
3098 */
3099 if (!current->mm || current->memcg_kmem_skip_account)
3100 return true;
3101
df381975 3102 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 3103
cf2b8fbf 3104 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
3105 css_put(&memcg->css);
3106 return true;
3107 }
3108
3e32cb2e 3109 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
3110 if (!ret)
3111 *_memcg = memcg;
7ae1e1d0
GC
3112
3113 css_put(&memcg->css);
3114 return (ret == 0);
3115}
3116
3117void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3118 int order)
3119{
3120 struct page_cgroup *pc;
3121
3122 VM_BUG_ON(mem_cgroup_is_root(memcg));
3123
3124 /* The page allocation failed. Revert */
3125 if (!page) {
3e32cb2e 3126 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
3127 return;
3128 }
a840cda6
JW
3129 /*
3130 * The page is freshly allocated and not visible to any
3131 * outside callers yet. Set up pc non-atomically.
3132 */
7ae1e1d0 3133 pc = lookup_page_cgroup(page);
7ae1e1d0 3134 pc->mem_cgroup = memcg;
a840cda6 3135 pc->flags = PCG_USED;
7ae1e1d0
GC
3136}
3137
3138void __memcg_kmem_uncharge_pages(struct page *page, int order)
3139{
3140 struct mem_cgroup *memcg = NULL;
3141 struct page_cgroup *pc;
3142
3143
3144 pc = lookup_page_cgroup(page);
7ae1e1d0
GC
3145 if (!PageCgroupUsed(pc))
3146 return;
3147
a840cda6
JW
3148 memcg = pc->mem_cgroup;
3149 pc->flags = 0;
7ae1e1d0
GC
3150
3151 /*
3152 * We trust that only if there is a memcg associated with the page, it
3153 * is a valid allocation
3154 */
3155 if (!memcg)
3156 return;
3157
309381fe 3158 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3e32cb2e 3159 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0 3160}
1f458cbf 3161#else
776ed0f0 3162static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3163{
3164}
7ae1e1d0
GC
3165#endif /* CONFIG_MEMCG_KMEM */
3166
ca3e0214
KH
3167#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3168
ca3e0214
KH
3169/*
3170 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3171 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3172 * charge/uncharge will be never happen and move_account() is done under
3173 * compound_lock(), so we don't have to take care of races.
ca3e0214 3174 */
e94c8a9c 3175void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3176{
3177 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3178 struct page_cgroup *pc;
b070e65c 3179 struct mem_cgroup *memcg;
e94c8a9c 3180 int i;
ca3e0214 3181
3d37c4a9
KH
3182 if (mem_cgroup_disabled())
3183 return;
b070e65c
DR
3184
3185 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3186 for (i = 1; i < HPAGE_PMD_NR; i++) {
3187 pc = head_pc + i;
b070e65c 3188 pc->mem_cgroup = memcg;
0a31bc97 3189 pc->flags = head_pc->flags;
e94c8a9c 3190 }
b070e65c
DR
3191 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3192 HPAGE_PMD_NR);
ca3e0214 3193}
12d27107 3194#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3195
f817ed48 3196/**
de3638d9 3197 * mem_cgroup_move_account - move account of the page
5564e88b 3198 * @page: the page
7ec99d62 3199 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3200 * @pc: page_cgroup of the page.
3201 * @from: mem_cgroup which the page is moved from.
3202 * @to: mem_cgroup which the page is moved to. @from != @to.
3203 *
3204 * The caller must confirm following.
08e552c6 3205 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3206 * - compound_lock is held when nr_pages > 1
f817ed48 3207 *
2f3479b1
KH
3208 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3209 * from old cgroup.
f817ed48 3210 */
7ec99d62
JW
3211static int mem_cgroup_move_account(struct page *page,
3212 unsigned int nr_pages,
3213 struct page_cgroup *pc,
3214 struct mem_cgroup *from,
2f3479b1 3215 struct mem_cgroup *to)
f817ed48 3216{
de3638d9
JW
3217 unsigned long flags;
3218 int ret;
987eba66 3219
f817ed48 3220 VM_BUG_ON(from == to);
309381fe 3221 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3222 /*
3223 * The page is isolated from LRU. So, collapse function
3224 * will not handle this page. But page splitting can happen.
3225 * Do this check under compound_page_lock(). The caller should
3226 * hold it.
3227 */
3228 ret = -EBUSY;
7ec99d62 3229 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3230 goto out;
3231
0a31bc97
JW
3232 /*
3233 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3234 * of its source page while we change it: page migration takes
3235 * both pages off the LRU, but page cache replacement doesn't.
3236 */
3237 if (!trylock_page(page))
3238 goto out;
de3638d9
JW
3239
3240 ret = -EINVAL;
3241 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
0a31bc97 3242 goto out_unlock;
de3638d9 3243
312734c0 3244 move_lock_mem_cgroup(from, &flags);
f817ed48 3245
0a31bc97 3246 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
3247 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3248 nr_pages);
3249 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3250 nr_pages);
3251 }
3ea67d06 3252
59d1d256
JW
3253 if (PageWriteback(page)) {
3254 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3255 nr_pages);
3256 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3257 nr_pages);
3258 }
3ea67d06 3259
0a31bc97
JW
3260 /*
3261 * It is safe to change pc->mem_cgroup here because the page
3262 * is referenced, charged, and isolated - we can't race with
3263 * uncharging, charging, migration, or LRU putback.
3264 */
d69b042f 3265
854ffa8d 3266 /* caller should have done css_get */
08e552c6 3267 pc->mem_cgroup = to;
312734c0 3268 move_unlock_mem_cgroup(from, &flags);
de3638d9 3269 ret = 0;
0a31bc97
JW
3270
3271 local_irq_disable();
3272 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 3273 memcg_check_events(to, page);
0a31bc97 3274 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 3275 memcg_check_events(from, page);
0a31bc97
JW
3276 local_irq_enable();
3277out_unlock:
3278 unlock_page(page);
de3638d9 3279out:
f817ed48
KH
3280 return ret;
3281}
3282
c255a458 3283#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
3284static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3285 bool charge)
d13d1443 3286{
0a31bc97
JW
3287 int val = (charge) ? 1 : -1;
3288 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 3289}
02491447
DN
3290
3291/**
3292 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3293 * @entry: swap entry to be moved
3294 * @from: mem_cgroup which the entry is moved from
3295 * @to: mem_cgroup which the entry is moved to
3296 *
3297 * It succeeds only when the swap_cgroup's record for this entry is the same
3298 * as the mem_cgroup's id of @from.
3299 *
3300 * Returns 0 on success, -EINVAL on failure.
3301 *
3e32cb2e 3302 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3303 * both res and memsw, and called css_get().
3304 */
3305static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3306 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3307{
3308 unsigned short old_id, new_id;
3309
34c00c31
LZ
3310 old_id = mem_cgroup_id(from);
3311 new_id = mem_cgroup_id(to);
02491447
DN
3312
3313 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3314 mem_cgroup_swap_statistics(from, false);
483c30b5 3315 mem_cgroup_swap_statistics(to, true);
02491447 3316 /*
483c30b5 3317 * This function is only called from task migration context now.
3e32cb2e 3318 * It postpones page_counter and refcount handling till the end
483c30b5 3319 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
3320 * improvement. But we cannot postpone css_get(to) because if
3321 * the process that has been moved to @to does swap-in, the
3322 * refcount of @to might be decreased to 0.
3323 *
3324 * We are in attach() phase, so the cgroup is guaranteed to be
3325 * alive, so we can just call css_get().
02491447 3326 */
4050377b 3327 css_get(&to->css);
02491447
DN
3328 return 0;
3329 }
3330 return -EINVAL;
3331}
3332#else
3333static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3334 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3335{
3336 return -EINVAL;
3337}
8c7c6e34 3338#endif
d13d1443 3339
f212ad7c
DN
3340#ifdef CONFIG_DEBUG_VM
3341static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3342{
3343 struct page_cgroup *pc;
3344
3345 pc = lookup_page_cgroup(page);
cfa44946
JW
3346 /*
3347 * Can be NULL while feeding pages into the page allocator for
3348 * the first time, i.e. during boot or memory hotplug;
3349 * or when mem_cgroup_disabled().
3350 */
f212ad7c
DN
3351 if (likely(pc) && PageCgroupUsed(pc))
3352 return pc;
3353 return NULL;
3354}
3355
3356bool mem_cgroup_bad_page_check(struct page *page)
3357{
3358 if (mem_cgroup_disabled())
3359 return false;
3360
3361 return lookup_page_cgroup_used(page) != NULL;
3362}
3363
3364void mem_cgroup_print_bad_page(struct page *page)
3365{
3366 struct page_cgroup *pc;
3367
3368 pc = lookup_page_cgroup_used(page);
3369 if (pc) {
d045197f
AM
3370 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3371 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3372 }
3373}
3374#endif
3375
3e32cb2e
JW
3376static DEFINE_MUTEX(memcg_limit_mutex);
3377
d38d2a75 3378static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 3379 unsigned long limit)
628f4235 3380{
3e32cb2e
JW
3381 unsigned long curusage;
3382 unsigned long oldusage;
3383 bool enlarge = false;
81d39c20 3384 int retry_count;
3e32cb2e 3385 int ret;
81d39c20
KH
3386
3387 /*
3388 * For keeping hierarchical_reclaim simple, how long we should retry
3389 * is depends on callers. We set our retry-count to be function
3390 * of # of children which we should visit in this loop.
3391 */
3e32cb2e
JW
3392 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3393 mem_cgroup_count_children(memcg);
81d39c20 3394
3e32cb2e 3395 oldusage = page_counter_read(&memcg->memory);
628f4235 3396
3e32cb2e 3397 do {
628f4235
KH
3398 if (signal_pending(current)) {
3399 ret = -EINTR;
3400 break;
3401 }
3e32cb2e
JW
3402
3403 mutex_lock(&memcg_limit_mutex);
3404 if (limit > memcg->memsw.limit) {
3405 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3406 ret = -EINVAL;
628f4235
KH
3407 break;
3408 }
3e32cb2e
JW
3409 if (limit > memcg->memory.limit)
3410 enlarge = true;
3411 ret = page_counter_limit(&memcg->memory, limit);
3412 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3413
3414 if (!ret)
3415 break;
3416
b70a2a21
JW
3417 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3418
3e32cb2e 3419 curusage = page_counter_read(&memcg->memory);
81d39c20 3420 /* Usage is reduced ? */
f894ffa8 3421 if (curusage >= oldusage)
81d39c20
KH
3422 retry_count--;
3423 else
3424 oldusage = curusage;
3e32cb2e
JW
3425 } while (retry_count);
3426
3c11ecf4
KH
3427 if (!ret && enlarge)
3428 memcg_oom_recover(memcg);
14797e23 3429
8c7c6e34
KH
3430 return ret;
3431}
3432
338c8431 3433static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 3434 unsigned long limit)
8c7c6e34 3435{
3e32cb2e
JW
3436 unsigned long curusage;
3437 unsigned long oldusage;
3438 bool enlarge = false;
81d39c20 3439 int retry_count;
3e32cb2e 3440 int ret;
8c7c6e34 3441
81d39c20 3442 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
3443 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3444 mem_cgroup_count_children(memcg);
3445
3446 oldusage = page_counter_read(&memcg->memsw);
3447
3448 do {
8c7c6e34
KH
3449 if (signal_pending(current)) {
3450 ret = -EINTR;
3451 break;
3452 }
3e32cb2e
JW
3453
3454 mutex_lock(&memcg_limit_mutex);
3455 if (limit < memcg->memory.limit) {
3456 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3457 ret = -EINVAL;
8c7c6e34
KH
3458 break;
3459 }
3e32cb2e
JW
3460 if (limit > memcg->memsw.limit)
3461 enlarge = true;
3462 ret = page_counter_limit(&memcg->memsw, limit);
3463 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3464
3465 if (!ret)
3466 break;
3467
b70a2a21
JW
3468 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3469
3e32cb2e 3470 curusage = page_counter_read(&memcg->memsw);
81d39c20 3471 /* Usage is reduced ? */
8c7c6e34 3472 if (curusage >= oldusage)
628f4235 3473 retry_count--;
81d39c20
KH
3474 else
3475 oldusage = curusage;
3e32cb2e
JW
3476 } while (retry_count);
3477
3c11ecf4
KH
3478 if (!ret && enlarge)
3479 memcg_oom_recover(memcg);
3e32cb2e 3480
628f4235
KH
3481 return ret;
3482}
3483
0608f43d
AM
3484unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3485 gfp_t gfp_mask,
3486 unsigned long *total_scanned)
3487{
3488 unsigned long nr_reclaimed = 0;
3489 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3490 unsigned long reclaimed;
3491 int loop = 0;
3492 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 3493 unsigned long excess;
0608f43d
AM
3494 unsigned long nr_scanned;
3495
3496 if (order > 0)
3497 return 0;
3498
3499 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3500 /*
3501 * This loop can run a while, specially if mem_cgroup's continuously
3502 * keep exceeding their soft limit and putting the system under
3503 * pressure
3504 */
3505 do {
3506 if (next_mz)
3507 mz = next_mz;
3508 else
3509 mz = mem_cgroup_largest_soft_limit_node(mctz);
3510 if (!mz)
3511 break;
3512
3513 nr_scanned = 0;
3514 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3515 gfp_mask, &nr_scanned);
3516 nr_reclaimed += reclaimed;
3517 *total_scanned += nr_scanned;
0a31bc97 3518 spin_lock_irq(&mctz->lock);
bc2f2e7f 3519 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3520
3521 /*
3522 * If we failed to reclaim anything from this memory cgroup
3523 * it is time to move on to the next cgroup
3524 */
3525 next_mz = NULL;
bc2f2e7f
VD
3526 if (!reclaimed)
3527 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3528
3e32cb2e 3529 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3530 /*
3531 * One school of thought says that we should not add
3532 * back the node to the tree if reclaim returns 0.
3533 * But our reclaim could return 0, simply because due
3534 * to priority we are exposing a smaller subset of
3535 * memory to reclaim from. Consider this as a longer
3536 * term TODO.
3537 */
3538 /* If excess == 0, no tree ops */
cf2c8127 3539 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3540 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3541 css_put(&mz->memcg->css);
3542 loop++;
3543 /*
3544 * Could not reclaim anything and there are no more
3545 * mem cgroups to try or we seem to be looping without
3546 * reclaiming anything.
3547 */
3548 if (!nr_reclaimed &&
3549 (next_mz == NULL ||
3550 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3551 break;
3552 } while (!nr_reclaimed);
3553 if (next_mz)
3554 css_put(&next_mz->memcg->css);
3555 return nr_reclaimed;
3556}
3557
ea280e7b
TH
3558/*
3559 * Test whether @memcg has children, dead or alive. Note that this
3560 * function doesn't care whether @memcg has use_hierarchy enabled and
3561 * returns %true if there are child csses according to the cgroup
3562 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3563 */
b5f99b53
GC
3564static inline bool memcg_has_children(struct mem_cgroup *memcg)
3565{
ea280e7b
TH
3566 bool ret;
3567
696ac172 3568 /*
ea280e7b
TH
3569 * The lock does not prevent addition or deletion of children, but
3570 * it prevents a new child from being initialized based on this
3571 * parent in css_online(), so it's enough to decide whether
3572 * hierarchically inherited attributes can still be changed or not.
696ac172 3573 */
ea280e7b
TH
3574 lockdep_assert_held(&memcg_create_mutex);
3575
3576 rcu_read_lock();
3577 ret = css_next_child(NULL, &memcg->css);
3578 rcu_read_unlock();
3579 return ret;
b5f99b53
GC
3580}
3581
c26251f9
MH
3582/*
3583 * Reclaims as many pages from the given memcg as possible and moves
3584 * the rest to the parent.
3585 *
3586 * Caller is responsible for holding css reference for memcg.
3587 */
3588static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3589{
3590 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3591
c1e862c1
KH
3592 /* we call try-to-free pages for make this cgroup empty */
3593 lru_add_drain_all();
f817ed48 3594 /* try to free all pages in this cgroup */
3e32cb2e 3595 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3596 int progress;
c1e862c1 3597
c26251f9
MH
3598 if (signal_pending(current))
3599 return -EINTR;
3600
b70a2a21
JW
3601 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3602 GFP_KERNEL, true);
c1e862c1 3603 if (!progress) {
f817ed48 3604 nr_retries--;
c1e862c1 3605 /* maybe some writeback is necessary */
8aa7e847 3606 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3607 }
f817ed48
KH
3608
3609 }
ab5196c2
MH
3610
3611 return 0;
cc847582
KH
3612}
3613
6770c64e
TH
3614static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3615 char *buf, size_t nbytes,
3616 loff_t off)
c1e862c1 3617{
6770c64e 3618 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3619
d8423011
MH
3620 if (mem_cgroup_is_root(memcg))
3621 return -EINVAL;
6770c64e 3622 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3623}
3624
182446d0
TH
3625static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3626 struct cftype *cft)
18f59ea7 3627{
182446d0 3628 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3629}
3630
182446d0
TH
3631static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3632 struct cftype *cft, u64 val)
18f59ea7
BS
3633{
3634 int retval = 0;
182446d0 3635 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3636 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3637
0999821b 3638 mutex_lock(&memcg_create_mutex);
567fb435
GC
3639
3640 if (memcg->use_hierarchy == val)
3641 goto out;
3642
18f59ea7 3643 /*
af901ca1 3644 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3645 * in the child subtrees. If it is unset, then the change can
3646 * occur, provided the current cgroup has no children.
3647 *
3648 * For the root cgroup, parent_mem is NULL, we allow value to be
3649 * set if there are no children.
3650 */
c0ff4b85 3651 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3652 (val == 1 || val == 0)) {
ea280e7b 3653 if (!memcg_has_children(memcg))
c0ff4b85 3654 memcg->use_hierarchy = val;
18f59ea7
BS
3655 else
3656 retval = -EBUSY;
3657 } else
3658 retval = -EINVAL;
567fb435
GC
3659
3660out:
0999821b 3661 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3662
3663 return retval;
3664}
3665
3e32cb2e
JW
3666static unsigned long tree_stat(struct mem_cgroup *memcg,
3667 enum mem_cgroup_stat_index idx)
ce00a967
JW
3668{
3669 struct mem_cgroup *iter;
3670 long val = 0;
3671
3672 /* Per-cpu values can be negative, use a signed accumulator */
3673 for_each_mem_cgroup_tree(iter, memcg)
3674 val += mem_cgroup_read_stat(iter, idx);
3675
3676 if (val < 0) /* race ? */
3677 val = 0;
3678 return val;
3679}
3680
3681static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3682{
3683 u64 val;
3684
3e32cb2e
JW
3685 if (mem_cgroup_is_root(memcg)) {
3686 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3687 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3688 if (swap)
3689 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3690 } else {
ce00a967 3691 if (!swap)
3e32cb2e 3692 val = page_counter_read(&memcg->memory);
ce00a967 3693 else
3e32cb2e 3694 val = page_counter_read(&memcg->memsw);
ce00a967 3695 }
ce00a967
JW
3696 return val << PAGE_SHIFT;
3697}
3698
3e32cb2e
JW
3699enum {
3700 RES_USAGE,
3701 RES_LIMIT,
3702 RES_MAX_USAGE,
3703 RES_FAILCNT,
3704 RES_SOFT_LIMIT,
3705};
ce00a967 3706
791badbd 3707static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3708 struct cftype *cft)
8cdea7c0 3709{
182446d0 3710 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3711 struct page_counter *counter;
af36f906 3712
3e32cb2e 3713 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3714 case _MEM:
3e32cb2e
JW
3715 counter = &memcg->memory;
3716 break;
8c7c6e34 3717 case _MEMSWAP:
3e32cb2e
JW
3718 counter = &memcg->memsw;
3719 break;
510fc4e1 3720 case _KMEM:
3e32cb2e 3721 counter = &memcg->kmem;
510fc4e1 3722 break;
8c7c6e34
KH
3723 default:
3724 BUG();
8c7c6e34 3725 }
3e32cb2e
JW
3726
3727 switch (MEMFILE_ATTR(cft->private)) {
3728 case RES_USAGE:
3729 if (counter == &memcg->memory)
3730 return mem_cgroup_usage(memcg, false);
3731 if (counter == &memcg->memsw)
3732 return mem_cgroup_usage(memcg, true);
3733 return (u64)page_counter_read(counter) * PAGE_SIZE;
3734 case RES_LIMIT:
3735 return (u64)counter->limit * PAGE_SIZE;
3736 case RES_MAX_USAGE:
3737 return (u64)counter->watermark * PAGE_SIZE;
3738 case RES_FAILCNT:
3739 return counter->failcnt;
3740 case RES_SOFT_LIMIT:
3741 return (u64)memcg->soft_limit * PAGE_SIZE;
3742 default:
3743 BUG();
3744 }
8cdea7c0 3745}
510fc4e1 3746
510fc4e1 3747#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3748static int memcg_activate_kmem(struct mem_cgroup *memcg,
3749 unsigned long nr_pages)
d6441637
VD
3750{
3751 int err = 0;
3752 int memcg_id;
3753
3754 if (memcg_kmem_is_active(memcg))
3755 return 0;
3756
3757 /*
3758 * We are going to allocate memory for data shared by all memory
3759 * cgroups so let's stop accounting here.
3760 */
3761 memcg_stop_kmem_account();
3762
510fc4e1
GC
3763 /*
3764 * For simplicity, we won't allow this to be disabled. It also can't
3765 * be changed if the cgroup has children already, or if tasks had
3766 * already joined.
3767 *
3768 * If tasks join before we set the limit, a person looking at
3769 * kmem.usage_in_bytes will have no way to determine when it took
3770 * place, which makes the value quite meaningless.
3771 *
3772 * After it first became limited, changes in the value of the limit are
3773 * of course permitted.
510fc4e1 3774 */
0999821b 3775 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3776 if (cgroup_has_tasks(memcg->css.cgroup) ||
3777 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3778 err = -EBUSY;
3779 mutex_unlock(&memcg_create_mutex);
3780 if (err)
3781 goto out;
510fc4e1 3782
f3bb3043 3783 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3784 if (memcg_id < 0) {
3785 err = memcg_id;
3786 goto out;
3787 }
3788
d6441637
VD
3789 memcg->kmemcg_id = memcg_id;
3790 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
d6441637
VD
3791
3792 /*
3793 * We couldn't have accounted to this cgroup, because it hasn't got the
3794 * active bit set yet, so this should succeed.
3795 */
3e32cb2e 3796 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3797 VM_BUG_ON(err);
3798
3799 static_key_slow_inc(&memcg_kmem_enabled_key);
3800 /*
3801 * Setting the active bit after enabling static branching will
3802 * guarantee no one starts accounting before all call sites are
3803 * patched.
3804 */
3805 memcg_kmem_set_active(memcg);
510fc4e1 3806out:
d6441637
VD
3807 memcg_resume_kmem_account();
3808 return err;
d6441637
VD
3809}
3810
d6441637 3811static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3812 unsigned long limit)
d6441637
VD
3813{
3814 int ret;
3815
3e32cb2e 3816 mutex_lock(&memcg_limit_mutex);
d6441637 3817 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3818 ret = memcg_activate_kmem(memcg, limit);
d6441637 3819 else
3e32cb2e
JW
3820 ret = page_counter_limit(&memcg->kmem, limit);
3821 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3822 return ret;
3823}
3824
55007d84 3825static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3826{
55007d84 3827 int ret = 0;
510fc4e1 3828 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3829
d6441637
VD
3830 if (!parent)
3831 return 0;
55007d84 3832
8c0145b6 3833 mutex_lock(&memcg_limit_mutex);
55007d84 3834 /*
d6441637
VD
3835 * If the parent cgroup is not kmem-active now, it cannot be activated
3836 * after this point, because it has at least one child already.
55007d84 3837 */
d6441637 3838 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3839 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3840 mutex_unlock(&memcg_limit_mutex);
55007d84 3841 return ret;
510fc4e1 3842}
d6441637
VD
3843#else
3844static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3845 unsigned long limit)
d6441637
VD
3846{
3847 return -EINVAL;
3848}
6d043990 3849#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3850
628f4235
KH
3851/*
3852 * The user of this function is...
3853 * RES_LIMIT.
3854 */
451af504
TH
3855static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3856 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3857{
451af504 3858 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3859 unsigned long nr_pages;
628f4235
KH
3860 int ret;
3861
451af504 3862 buf = strstrip(buf);
3e32cb2e
JW
3863 ret = page_counter_memparse(buf, &nr_pages);
3864 if (ret)
3865 return ret;
af36f906 3866
3e32cb2e 3867 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3868 case RES_LIMIT:
4b3bde4c
BS
3869 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3870 ret = -EINVAL;
3871 break;
3872 }
3e32cb2e
JW
3873 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3874 case _MEM:
3875 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3876 break;
3e32cb2e
JW
3877 case _MEMSWAP:
3878 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3879 break;
3e32cb2e
JW
3880 case _KMEM:
3881 ret = memcg_update_kmem_limit(memcg, nr_pages);
3882 break;
3883 }
296c81d8 3884 break;
3e32cb2e
JW
3885 case RES_SOFT_LIMIT:
3886 memcg->soft_limit = nr_pages;
3887 ret = 0;
628f4235
KH
3888 break;
3889 }
451af504 3890 return ret ?: nbytes;
8cdea7c0
BS
3891}
3892
6770c64e
TH
3893static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3894 size_t nbytes, loff_t off)
c84872e1 3895{
6770c64e 3896 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3897 struct page_counter *counter;
c84872e1 3898
3e32cb2e
JW
3899 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3900 case _MEM:
3901 counter = &memcg->memory;
3902 break;
3903 case _MEMSWAP:
3904 counter = &memcg->memsw;
3905 break;
3906 case _KMEM:
3907 counter = &memcg->kmem;
3908 break;
3909 default:
3910 BUG();
3911 }
af36f906 3912
3e32cb2e 3913 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3914 case RES_MAX_USAGE:
3e32cb2e 3915 page_counter_reset_watermark(counter);
29f2a4da
PE
3916 break;
3917 case RES_FAILCNT:
3e32cb2e 3918 counter->failcnt = 0;
29f2a4da 3919 break;
3e32cb2e
JW
3920 default:
3921 BUG();
29f2a4da 3922 }
f64c3f54 3923
6770c64e 3924 return nbytes;
c84872e1
PE
3925}
3926
182446d0 3927static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3928 struct cftype *cft)
3929{
182446d0 3930 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3931}
3932
02491447 3933#ifdef CONFIG_MMU
182446d0 3934static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3935 struct cftype *cft, u64 val)
3936{
182446d0 3937 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
3938
3939 if (val >= (1 << NR_MOVE_TYPE))
3940 return -EINVAL;
ee5e8472 3941
7dc74be0 3942 /*
ee5e8472
GC
3943 * No kind of locking is needed in here, because ->can_attach() will
3944 * check this value once in the beginning of the process, and then carry
3945 * on with stale data. This means that changes to this value will only
3946 * affect task migrations starting after the change.
7dc74be0 3947 */
c0ff4b85 3948 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3949 return 0;
3950}
02491447 3951#else
182446d0 3952static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3953 struct cftype *cft, u64 val)
3954{
3955 return -ENOSYS;
3956}
3957#endif
7dc74be0 3958
406eb0c9 3959#ifdef CONFIG_NUMA
2da8ca82 3960static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3961{
25485de6
GT
3962 struct numa_stat {
3963 const char *name;
3964 unsigned int lru_mask;
3965 };
3966
3967 static const struct numa_stat stats[] = {
3968 { "total", LRU_ALL },
3969 { "file", LRU_ALL_FILE },
3970 { "anon", LRU_ALL_ANON },
3971 { "unevictable", BIT(LRU_UNEVICTABLE) },
3972 };
3973 const struct numa_stat *stat;
406eb0c9 3974 int nid;
25485de6 3975 unsigned long nr;
2da8ca82 3976 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3977
25485de6
GT
3978 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3979 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3980 seq_printf(m, "%s=%lu", stat->name, nr);
3981 for_each_node_state(nid, N_MEMORY) {
3982 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3983 stat->lru_mask);
3984 seq_printf(m, " N%d=%lu", nid, nr);
3985 }
3986 seq_putc(m, '\n');
406eb0c9 3987 }
406eb0c9 3988
071aee13
YH
3989 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3990 struct mem_cgroup *iter;
3991
3992 nr = 0;
3993 for_each_mem_cgroup_tree(iter, memcg)
3994 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3995 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3996 for_each_node_state(nid, N_MEMORY) {
3997 nr = 0;
3998 for_each_mem_cgroup_tree(iter, memcg)
3999 nr += mem_cgroup_node_nr_lru_pages(
4000 iter, nid, stat->lru_mask);
4001 seq_printf(m, " N%d=%lu", nid, nr);
4002 }
4003 seq_putc(m, '\n');
406eb0c9 4004 }
406eb0c9 4005
406eb0c9
YH
4006 return 0;
4007}
4008#endif /* CONFIG_NUMA */
4009
af7c4b0e
JW
4010static inline void mem_cgroup_lru_names_not_uptodate(void)
4011{
4012 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4013}
4014
2da8ca82 4015static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4016{
2da8ca82 4017 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 4018 unsigned long memory, memsw;
af7c4b0e
JW
4019 struct mem_cgroup *mi;
4020 unsigned int i;
406eb0c9 4021
af7c4b0e 4022 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4023 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4024 continue;
af7c4b0e
JW
4025 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4026 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4027 }
7b854121 4028
af7c4b0e
JW
4029 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4030 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4031 mem_cgroup_read_events(memcg, i));
4032
4033 for (i = 0; i < NR_LRU_LISTS; i++)
4034 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4035 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4036
14067bb3 4037 /* Hierarchical information */
3e32cb2e
JW
4038 memory = memsw = PAGE_COUNTER_MAX;
4039 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4040 memory = min(memory, mi->memory.limit);
4041 memsw = min(memsw, mi->memsw.limit);
fee7b548 4042 }
3e32cb2e
JW
4043 seq_printf(m, "hierarchical_memory_limit %llu\n",
4044 (u64)memory * PAGE_SIZE);
4045 if (do_swap_account)
4046 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4047 (u64)memsw * PAGE_SIZE);
7f016ee8 4048
af7c4b0e
JW
4049 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4050 long long val = 0;
4051
bff6bb83 4052 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4053 continue;
af7c4b0e
JW
4054 for_each_mem_cgroup_tree(mi, memcg)
4055 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4056 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4057 }
4058
4059 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4060 unsigned long long val = 0;
4061
4062 for_each_mem_cgroup_tree(mi, memcg)
4063 val += mem_cgroup_read_events(mi, i);
4064 seq_printf(m, "total_%s %llu\n",
4065 mem_cgroup_events_names[i], val);
4066 }
4067
4068 for (i = 0; i < NR_LRU_LISTS; i++) {
4069 unsigned long long val = 0;
4070
4071 for_each_mem_cgroup_tree(mi, memcg)
4072 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4073 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4074 }
14067bb3 4075
7f016ee8 4076#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4077 {
4078 int nid, zid;
4079 struct mem_cgroup_per_zone *mz;
89abfab1 4080 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4081 unsigned long recent_rotated[2] = {0, 0};
4082 unsigned long recent_scanned[2] = {0, 0};
4083
4084 for_each_online_node(nid)
4085 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 4086 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 4087 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4088
89abfab1
HD
4089 recent_rotated[0] += rstat->recent_rotated[0];
4090 recent_rotated[1] += rstat->recent_rotated[1];
4091 recent_scanned[0] += rstat->recent_scanned[0];
4092 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4093 }
78ccf5b5
JW
4094 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4095 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4096 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4097 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4098 }
4099#endif
4100
d2ceb9b7
KH
4101 return 0;
4102}
4103
182446d0
TH
4104static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4105 struct cftype *cft)
a7885eb8 4106{
182446d0 4107 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4108
1f4c025b 4109 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4110}
4111
182446d0
TH
4112static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4113 struct cftype *cft, u64 val)
a7885eb8 4114{
182446d0 4115 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4116
3dae7fec 4117 if (val > 100)
a7885eb8
KM
4118 return -EINVAL;
4119
14208b0e 4120 if (css->parent)
3dae7fec
JW
4121 memcg->swappiness = val;
4122 else
4123 vm_swappiness = val;
068b38c1 4124
a7885eb8
KM
4125 return 0;
4126}
4127
2e72b634
KS
4128static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4129{
4130 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4131 unsigned long usage;
2e72b634
KS
4132 int i;
4133
4134 rcu_read_lock();
4135 if (!swap)
2c488db2 4136 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4137 else
2c488db2 4138 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4139
4140 if (!t)
4141 goto unlock;
4142
ce00a967 4143 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4144
4145 /*
748dad36 4146 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4147 * If it's not true, a threshold was crossed after last
4148 * call of __mem_cgroup_threshold().
4149 */
5407a562 4150 i = t->current_threshold;
2e72b634
KS
4151
4152 /*
4153 * Iterate backward over array of thresholds starting from
4154 * current_threshold and check if a threshold is crossed.
4155 * If none of thresholds below usage is crossed, we read
4156 * only one element of the array here.
4157 */
4158 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4159 eventfd_signal(t->entries[i].eventfd, 1);
4160
4161 /* i = current_threshold + 1 */
4162 i++;
4163
4164 /*
4165 * Iterate forward over array of thresholds starting from
4166 * current_threshold+1 and check if a threshold is crossed.
4167 * If none of thresholds above usage is crossed, we read
4168 * only one element of the array here.
4169 */
4170 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4171 eventfd_signal(t->entries[i].eventfd, 1);
4172
4173 /* Update current_threshold */
5407a562 4174 t->current_threshold = i - 1;
2e72b634
KS
4175unlock:
4176 rcu_read_unlock();
4177}
4178
4179static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4180{
ad4ca5f4
KS
4181 while (memcg) {
4182 __mem_cgroup_threshold(memcg, false);
4183 if (do_swap_account)
4184 __mem_cgroup_threshold(memcg, true);
4185
4186 memcg = parent_mem_cgroup(memcg);
4187 }
2e72b634
KS
4188}
4189
4190static int compare_thresholds(const void *a, const void *b)
4191{
4192 const struct mem_cgroup_threshold *_a = a;
4193 const struct mem_cgroup_threshold *_b = b;
4194
2bff24a3
GT
4195 if (_a->threshold > _b->threshold)
4196 return 1;
4197
4198 if (_a->threshold < _b->threshold)
4199 return -1;
4200
4201 return 0;
2e72b634
KS
4202}
4203
c0ff4b85 4204static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4205{
4206 struct mem_cgroup_eventfd_list *ev;
4207
2bcf2e92
MH
4208 spin_lock(&memcg_oom_lock);
4209
c0ff4b85 4210 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4211 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4212
4213 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4214 return 0;
4215}
4216
c0ff4b85 4217static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4218{
7d74b06f
KH
4219 struct mem_cgroup *iter;
4220
c0ff4b85 4221 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4222 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4223}
4224
59b6f873 4225static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4226 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4227{
2c488db2
KS
4228 struct mem_cgroup_thresholds *thresholds;
4229 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4230 unsigned long threshold;
4231 unsigned long usage;
2c488db2 4232 int i, size, ret;
2e72b634 4233
3e32cb2e 4234 ret = page_counter_memparse(args, &threshold);
2e72b634
KS
4235 if (ret)
4236 return ret;
4237
4238 mutex_lock(&memcg->thresholds_lock);
2c488db2 4239
05b84301 4240 if (type == _MEM) {
2c488db2 4241 thresholds = &memcg->thresholds;
ce00a967 4242 usage = mem_cgroup_usage(memcg, false);
05b84301 4243 } else if (type == _MEMSWAP) {
2c488db2 4244 thresholds = &memcg->memsw_thresholds;
ce00a967 4245 usage = mem_cgroup_usage(memcg, true);
05b84301 4246 } else
2e72b634
KS
4247 BUG();
4248
2e72b634 4249 /* Check if a threshold crossed before adding a new one */
2c488db2 4250 if (thresholds->primary)
2e72b634
KS
4251 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4252
2c488db2 4253 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4254
4255 /* Allocate memory for new array of thresholds */
2c488db2 4256 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4257 GFP_KERNEL);
2c488db2 4258 if (!new) {
2e72b634
KS
4259 ret = -ENOMEM;
4260 goto unlock;
4261 }
2c488db2 4262 new->size = size;
2e72b634
KS
4263
4264 /* Copy thresholds (if any) to new array */
2c488db2
KS
4265 if (thresholds->primary) {
4266 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4267 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4268 }
4269
2e72b634 4270 /* Add new threshold */
2c488db2
KS
4271 new->entries[size - 1].eventfd = eventfd;
4272 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4273
4274 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4275 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4276 compare_thresholds, NULL);
4277
4278 /* Find current threshold */
2c488db2 4279 new->current_threshold = -1;
2e72b634 4280 for (i = 0; i < size; i++) {
748dad36 4281 if (new->entries[i].threshold <= usage) {
2e72b634 4282 /*
2c488db2
KS
4283 * new->current_threshold will not be used until
4284 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4285 * it here.
4286 */
2c488db2 4287 ++new->current_threshold;
748dad36
SZ
4288 } else
4289 break;
2e72b634
KS
4290 }
4291
2c488db2
KS
4292 /* Free old spare buffer and save old primary buffer as spare */
4293 kfree(thresholds->spare);
4294 thresholds->spare = thresholds->primary;
4295
4296 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4297
907860ed 4298 /* To be sure that nobody uses thresholds */
2e72b634
KS
4299 synchronize_rcu();
4300
2e72b634
KS
4301unlock:
4302 mutex_unlock(&memcg->thresholds_lock);
4303
4304 return ret;
4305}
4306
59b6f873 4307static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4308 struct eventfd_ctx *eventfd, const char *args)
4309{
59b6f873 4310 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4311}
4312
59b6f873 4313static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4314 struct eventfd_ctx *eventfd, const char *args)
4315{
59b6f873 4316 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4317}
4318
59b6f873 4319static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4320 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4321{
2c488db2
KS
4322 struct mem_cgroup_thresholds *thresholds;
4323 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4324 unsigned long usage;
2c488db2 4325 int i, j, size;
2e72b634
KS
4326
4327 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4328
4329 if (type == _MEM) {
2c488db2 4330 thresholds = &memcg->thresholds;
ce00a967 4331 usage = mem_cgroup_usage(memcg, false);
05b84301 4332 } else if (type == _MEMSWAP) {
2c488db2 4333 thresholds = &memcg->memsw_thresholds;
ce00a967 4334 usage = mem_cgroup_usage(memcg, true);
05b84301 4335 } else
2e72b634
KS
4336 BUG();
4337
371528ca
AV
4338 if (!thresholds->primary)
4339 goto unlock;
4340
2e72b634
KS
4341 /* Check if a threshold crossed before removing */
4342 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4343
4344 /* Calculate new number of threshold */
2c488db2
KS
4345 size = 0;
4346 for (i = 0; i < thresholds->primary->size; i++) {
4347 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4348 size++;
4349 }
4350
2c488db2 4351 new = thresholds->spare;
907860ed 4352
2e72b634
KS
4353 /* Set thresholds array to NULL if we don't have thresholds */
4354 if (!size) {
2c488db2
KS
4355 kfree(new);
4356 new = NULL;
907860ed 4357 goto swap_buffers;
2e72b634
KS
4358 }
4359
2c488db2 4360 new->size = size;
2e72b634
KS
4361
4362 /* Copy thresholds and find current threshold */
2c488db2
KS
4363 new->current_threshold = -1;
4364 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4365 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4366 continue;
4367
2c488db2 4368 new->entries[j] = thresholds->primary->entries[i];
748dad36 4369 if (new->entries[j].threshold <= usage) {
2e72b634 4370 /*
2c488db2 4371 * new->current_threshold will not be used
2e72b634
KS
4372 * until rcu_assign_pointer(), so it's safe to increment
4373 * it here.
4374 */
2c488db2 4375 ++new->current_threshold;
2e72b634
KS
4376 }
4377 j++;
4378 }
4379
907860ed 4380swap_buffers:
2c488db2
KS
4381 /* Swap primary and spare array */
4382 thresholds->spare = thresholds->primary;
8c757763
SZ
4383 /* If all events are unregistered, free the spare array */
4384 if (!new) {
4385 kfree(thresholds->spare);
4386 thresholds->spare = NULL;
4387 }
4388
2c488db2 4389 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4390
907860ed 4391 /* To be sure that nobody uses thresholds */
2e72b634 4392 synchronize_rcu();
371528ca 4393unlock:
2e72b634 4394 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4395}
c1e862c1 4396
59b6f873 4397static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4398 struct eventfd_ctx *eventfd)
4399{
59b6f873 4400 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4401}
4402
59b6f873 4403static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4404 struct eventfd_ctx *eventfd)
4405{
59b6f873 4406 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4407}
4408
59b6f873 4409static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4410 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4411{
9490ff27 4412 struct mem_cgroup_eventfd_list *event;
9490ff27 4413
9490ff27
KH
4414 event = kmalloc(sizeof(*event), GFP_KERNEL);
4415 if (!event)
4416 return -ENOMEM;
4417
1af8efe9 4418 spin_lock(&memcg_oom_lock);
9490ff27
KH
4419
4420 event->eventfd = eventfd;
4421 list_add(&event->list, &memcg->oom_notify);
4422
4423 /* already in OOM ? */
79dfdacc 4424 if (atomic_read(&memcg->under_oom))
9490ff27 4425 eventfd_signal(eventfd, 1);
1af8efe9 4426 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4427
4428 return 0;
4429}
4430
59b6f873 4431static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4432 struct eventfd_ctx *eventfd)
9490ff27 4433{
9490ff27 4434 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4435
1af8efe9 4436 spin_lock(&memcg_oom_lock);
9490ff27 4437
c0ff4b85 4438 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4439 if (ev->eventfd == eventfd) {
4440 list_del(&ev->list);
4441 kfree(ev);
4442 }
4443 }
4444
1af8efe9 4445 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4446}
4447
2da8ca82 4448static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4449{
2da8ca82 4450 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 4451
791badbd
TH
4452 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4453 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
4454 return 0;
4455}
4456
182446d0 4457static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4458 struct cftype *cft, u64 val)
4459{
182446d0 4460 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4461
4462 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4463 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4464 return -EINVAL;
4465
c0ff4b85 4466 memcg->oom_kill_disable = val;
4d845ebf 4467 if (!val)
c0ff4b85 4468 memcg_oom_recover(memcg);
3dae7fec 4469
3c11ecf4
KH
4470 return 0;
4471}
4472
c255a458 4473#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4474static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4475{
55007d84
GC
4476 int ret;
4477
2633d7a0 4478 memcg->kmemcg_id = -1;
55007d84
GC
4479 ret = memcg_propagate_kmem(memcg);
4480 if (ret)
4481 return ret;
2633d7a0 4482
1d62e436 4483 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4484}
e5671dfa 4485
10d5ebf4 4486static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4487{
1d62e436 4488 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 4489}
e5671dfa 4490#else
cbe128e3 4491static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4492{
4493 return 0;
4494}
d1a4c0b3 4495
10d5ebf4
LZ
4496static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4497{
4498}
e5671dfa
GC
4499#endif
4500
3bc942f3
TH
4501/*
4502 * DO NOT USE IN NEW FILES.
4503 *
4504 * "cgroup.event_control" implementation.
4505 *
4506 * This is way over-engineered. It tries to support fully configurable
4507 * events for each user. Such level of flexibility is completely
4508 * unnecessary especially in the light of the planned unified hierarchy.
4509 *
4510 * Please deprecate this and replace with something simpler if at all
4511 * possible.
4512 */
4513
79bd9814
TH
4514/*
4515 * Unregister event and free resources.
4516 *
4517 * Gets called from workqueue.
4518 */
3bc942f3 4519static void memcg_event_remove(struct work_struct *work)
79bd9814 4520{
3bc942f3
TH
4521 struct mem_cgroup_event *event =
4522 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4523 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4524
4525 remove_wait_queue(event->wqh, &event->wait);
4526
59b6f873 4527 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4528
4529 /* Notify userspace the event is going away. */
4530 eventfd_signal(event->eventfd, 1);
4531
4532 eventfd_ctx_put(event->eventfd);
4533 kfree(event);
59b6f873 4534 css_put(&memcg->css);
79bd9814
TH
4535}
4536
4537/*
4538 * Gets called on POLLHUP on eventfd when user closes it.
4539 *
4540 * Called with wqh->lock held and interrupts disabled.
4541 */
3bc942f3
TH
4542static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4543 int sync, void *key)
79bd9814 4544{
3bc942f3
TH
4545 struct mem_cgroup_event *event =
4546 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4547 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4548 unsigned long flags = (unsigned long)key;
4549
4550 if (flags & POLLHUP) {
4551 /*
4552 * If the event has been detached at cgroup removal, we
4553 * can simply return knowing the other side will cleanup
4554 * for us.
4555 *
4556 * We can't race against event freeing since the other
4557 * side will require wqh->lock via remove_wait_queue(),
4558 * which we hold.
4559 */
fba94807 4560 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4561 if (!list_empty(&event->list)) {
4562 list_del_init(&event->list);
4563 /*
4564 * We are in atomic context, but cgroup_event_remove()
4565 * may sleep, so we have to call it in workqueue.
4566 */
4567 schedule_work(&event->remove);
4568 }
fba94807 4569 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4570 }
4571
4572 return 0;
4573}
4574
3bc942f3 4575static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4576 wait_queue_head_t *wqh, poll_table *pt)
4577{
3bc942f3
TH
4578 struct mem_cgroup_event *event =
4579 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4580
4581 event->wqh = wqh;
4582 add_wait_queue(wqh, &event->wait);
4583}
4584
4585/*
3bc942f3
TH
4586 * DO NOT USE IN NEW FILES.
4587 *
79bd9814
TH
4588 * Parse input and register new cgroup event handler.
4589 *
4590 * Input must be in format '<event_fd> <control_fd> <args>'.
4591 * Interpretation of args is defined by control file implementation.
4592 */
451af504
TH
4593static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4594 char *buf, size_t nbytes, loff_t off)
79bd9814 4595{
451af504 4596 struct cgroup_subsys_state *css = of_css(of);
fba94807 4597 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4598 struct mem_cgroup_event *event;
79bd9814
TH
4599 struct cgroup_subsys_state *cfile_css;
4600 unsigned int efd, cfd;
4601 struct fd efile;
4602 struct fd cfile;
fba94807 4603 const char *name;
79bd9814
TH
4604 char *endp;
4605 int ret;
4606
451af504
TH
4607 buf = strstrip(buf);
4608
4609 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4610 if (*endp != ' ')
4611 return -EINVAL;
451af504 4612 buf = endp + 1;
79bd9814 4613
451af504 4614 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4615 if ((*endp != ' ') && (*endp != '\0'))
4616 return -EINVAL;
451af504 4617 buf = endp + 1;
79bd9814
TH
4618
4619 event = kzalloc(sizeof(*event), GFP_KERNEL);
4620 if (!event)
4621 return -ENOMEM;
4622
59b6f873 4623 event->memcg = memcg;
79bd9814 4624 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4625 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4626 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4627 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4628
4629 efile = fdget(efd);
4630 if (!efile.file) {
4631 ret = -EBADF;
4632 goto out_kfree;
4633 }
4634
4635 event->eventfd = eventfd_ctx_fileget(efile.file);
4636 if (IS_ERR(event->eventfd)) {
4637 ret = PTR_ERR(event->eventfd);
4638 goto out_put_efile;
4639 }
4640
4641 cfile = fdget(cfd);
4642 if (!cfile.file) {
4643 ret = -EBADF;
4644 goto out_put_eventfd;
4645 }
4646
4647 /* the process need read permission on control file */
4648 /* AV: shouldn't we check that it's been opened for read instead? */
4649 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4650 if (ret < 0)
4651 goto out_put_cfile;
4652
fba94807
TH
4653 /*
4654 * Determine the event callbacks and set them in @event. This used
4655 * to be done via struct cftype but cgroup core no longer knows
4656 * about these events. The following is crude but the whole thing
4657 * is for compatibility anyway.
3bc942f3
TH
4658 *
4659 * DO NOT ADD NEW FILES.
fba94807
TH
4660 */
4661 name = cfile.file->f_dentry->d_name.name;
4662
4663 if (!strcmp(name, "memory.usage_in_bytes")) {
4664 event->register_event = mem_cgroup_usage_register_event;
4665 event->unregister_event = mem_cgroup_usage_unregister_event;
4666 } else if (!strcmp(name, "memory.oom_control")) {
4667 event->register_event = mem_cgroup_oom_register_event;
4668 event->unregister_event = mem_cgroup_oom_unregister_event;
4669 } else if (!strcmp(name, "memory.pressure_level")) {
4670 event->register_event = vmpressure_register_event;
4671 event->unregister_event = vmpressure_unregister_event;
4672 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4673 event->register_event = memsw_cgroup_usage_register_event;
4674 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4675 } else {
4676 ret = -EINVAL;
4677 goto out_put_cfile;
4678 }
4679
79bd9814 4680 /*
b5557c4c
TH
4681 * Verify @cfile should belong to @css. Also, remaining events are
4682 * automatically removed on cgroup destruction but the removal is
4683 * asynchronous, so take an extra ref on @css.
79bd9814 4684 */
ec903c0c
TH
4685 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
4686 &memory_cgrp_subsys);
79bd9814 4687 ret = -EINVAL;
5a17f543 4688 if (IS_ERR(cfile_css))
79bd9814 4689 goto out_put_cfile;
5a17f543
TH
4690 if (cfile_css != css) {
4691 css_put(cfile_css);
79bd9814 4692 goto out_put_cfile;
5a17f543 4693 }
79bd9814 4694
451af504 4695 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4696 if (ret)
4697 goto out_put_css;
4698
4699 efile.file->f_op->poll(efile.file, &event->pt);
4700
fba94807
TH
4701 spin_lock(&memcg->event_list_lock);
4702 list_add(&event->list, &memcg->event_list);
4703 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4704
4705 fdput(cfile);
4706 fdput(efile);
4707
451af504 4708 return nbytes;
79bd9814
TH
4709
4710out_put_css:
b5557c4c 4711 css_put(css);
79bd9814
TH
4712out_put_cfile:
4713 fdput(cfile);
4714out_put_eventfd:
4715 eventfd_ctx_put(event->eventfd);
4716out_put_efile:
4717 fdput(efile);
4718out_kfree:
4719 kfree(event);
4720
4721 return ret;
4722}
4723
8cdea7c0
BS
4724static struct cftype mem_cgroup_files[] = {
4725 {
0eea1030 4726 .name = "usage_in_bytes",
8c7c6e34 4727 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4728 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4729 },
c84872e1
PE
4730 {
4731 .name = "max_usage_in_bytes",
8c7c6e34 4732 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4733 .write = mem_cgroup_reset,
791badbd 4734 .read_u64 = mem_cgroup_read_u64,
c84872e1 4735 },
8cdea7c0 4736 {
0eea1030 4737 .name = "limit_in_bytes",
8c7c6e34 4738 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4739 .write = mem_cgroup_write,
791badbd 4740 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4741 },
296c81d8
BS
4742 {
4743 .name = "soft_limit_in_bytes",
4744 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4745 .write = mem_cgroup_write,
791badbd 4746 .read_u64 = mem_cgroup_read_u64,
296c81d8 4747 },
8cdea7c0
BS
4748 {
4749 .name = "failcnt",
8c7c6e34 4750 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4751 .write = mem_cgroup_reset,
791badbd 4752 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4753 },
d2ceb9b7
KH
4754 {
4755 .name = "stat",
2da8ca82 4756 .seq_show = memcg_stat_show,
d2ceb9b7 4757 },
c1e862c1
KH
4758 {
4759 .name = "force_empty",
6770c64e 4760 .write = mem_cgroup_force_empty_write,
c1e862c1 4761 },
18f59ea7
BS
4762 {
4763 .name = "use_hierarchy",
4764 .write_u64 = mem_cgroup_hierarchy_write,
4765 .read_u64 = mem_cgroup_hierarchy_read,
4766 },
79bd9814 4767 {
3bc942f3 4768 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4769 .write = memcg_write_event_control,
79bd9814
TH
4770 .flags = CFTYPE_NO_PREFIX,
4771 .mode = S_IWUGO,
4772 },
a7885eb8
KM
4773 {
4774 .name = "swappiness",
4775 .read_u64 = mem_cgroup_swappiness_read,
4776 .write_u64 = mem_cgroup_swappiness_write,
4777 },
7dc74be0
DN
4778 {
4779 .name = "move_charge_at_immigrate",
4780 .read_u64 = mem_cgroup_move_charge_read,
4781 .write_u64 = mem_cgroup_move_charge_write,
4782 },
9490ff27
KH
4783 {
4784 .name = "oom_control",
2da8ca82 4785 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4786 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4787 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4788 },
70ddf637
AV
4789 {
4790 .name = "pressure_level",
70ddf637 4791 },
406eb0c9
YH
4792#ifdef CONFIG_NUMA
4793 {
4794 .name = "numa_stat",
2da8ca82 4795 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4796 },
4797#endif
510fc4e1
GC
4798#ifdef CONFIG_MEMCG_KMEM
4799 {
4800 .name = "kmem.limit_in_bytes",
4801 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4802 .write = mem_cgroup_write,
791badbd 4803 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4804 },
4805 {
4806 .name = "kmem.usage_in_bytes",
4807 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4808 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4809 },
4810 {
4811 .name = "kmem.failcnt",
4812 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4813 .write = mem_cgroup_reset,
791badbd 4814 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4815 },
4816 {
4817 .name = "kmem.max_usage_in_bytes",
4818 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4819 .write = mem_cgroup_reset,
791badbd 4820 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4821 },
749c5415
GC
4822#ifdef CONFIG_SLABINFO
4823 {
4824 .name = "kmem.slabinfo",
2da8ca82 4825 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
4826 },
4827#endif
8c7c6e34 4828#endif
6bc10349 4829 { }, /* terminate */
af36f906 4830};
8c7c6e34 4831
2d11085e
MH
4832#ifdef CONFIG_MEMCG_SWAP
4833static struct cftype memsw_cgroup_files[] = {
4834 {
4835 .name = "memsw.usage_in_bytes",
4836 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 4837 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4838 },
4839 {
4840 .name = "memsw.max_usage_in_bytes",
4841 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 4842 .write = mem_cgroup_reset,
791badbd 4843 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4844 },
4845 {
4846 .name = "memsw.limit_in_bytes",
4847 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 4848 .write = mem_cgroup_write,
791badbd 4849 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4850 },
4851 {
4852 .name = "memsw.failcnt",
4853 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 4854 .write = mem_cgroup_reset,
791badbd 4855 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4856 },
4857 { }, /* terminate */
4858};
4859#endif
c0ff4b85 4860static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4861{
4862 struct mem_cgroup_per_node *pn;
1ecaab2b 4863 struct mem_cgroup_per_zone *mz;
41e3355d 4864 int zone, tmp = node;
1ecaab2b
KH
4865 /*
4866 * This routine is called against possible nodes.
4867 * But it's BUG to call kmalloc() against offline node.
4868 *
4869 * TODO: this routine can waste much memory for nodes which will
4870 * never be onlined. It's better to use memory hotplug callback
4871 * function.
4872 */
41e3355d
KH
4873 if (!node_state(node, N_NORMAL_MEMORY))
4874 tmp = -1;
17295c88 4875 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4876 if (!pn)
4877 return 1;
1ecaab2b 4878
1ecaab2b
KH
4879 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4880 mz = &pn->zoneinfo[zone];
bea8c150 4881 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4882 mz->usage_in_excess = 0;
4883 mz->on_tree = false;
d79154bb 4884 mz->memcg = memcg;
1ecaab2b 4885 }
54f72fe0 4886 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4887 return 0;
4888}
4889
c0ff4b85 4890static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4891{
54f72fe0 4892 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4893}
4894
33327948
KH
4895static struct mem_cgroup *mem_cgroup_alloc(void)
4896{
d79154bb 4897 struct mem_cgroup *memcg;
8ff69e2c 4898 size_t size;
33327948 4899
8ff69e2c
VD
4900 size = sizeof(struct mem_cgroup);
4901 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4902
8ff69e2c 4903 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4904 if (!memcg)
e7bbcdf3
DC
4905 return NULL;
4906
d79154bb
HD
4907 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4908 if (!memcg->stat)
d2e61b8d 4909 goto out_free;
d79154bb
HD
4910 spin_lock_init(&memcg->pcp_counter_lock);
4911 return memcg;
d2e61b8d
DC
4912
4913out_free:
8ff69e2c 4914 kfree(memcg);
d2e61b8d 4915 return NULL;
33327948
KH
4916}
4917
59927fb9 4918/*
c8b2a36f
GC
4919 * At destroying mem_cgroup, references from swap_cgroup can remain.
4920 * (scanning all at force_empty is too costly...)
4921 *
4922 * Instead of clearing all references at force_empty, we remember
4923 * the number of reference from swap_cgroup and free mem_cgroup when
4924 * it goes down to 0.
4925 *
4926 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4927 */
c8b2a36f
GC
4928
4929static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4930{
c8b2a36f 4931 int node;
59927fb9 4932
bb4cc1a8 4933 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4934
4935 for_each_node(node)
4936 free_mem_cgroup_per_zone_info(memcg, node);
4937
4938 free_percpu(memcg->stat);
4939
3f134619
GC
4940 /*
4941 * We need to make sure that (at least for now), the jump label
4942 * destruction code runs outside of the cgroup lock. This is because
4943 * get_online_cpus(), which is called from the static_branch update,
4944 * can't be called inside the cgroup_lock. cpusets are the ones
4945 * enforcing this dependency, so if they ever change, we might as well.
4946 *
4947 * schedule_work() will guarantee this happens. Be careful if you need
4948 * to move this code around, and make sure it is outside
4949 * the cgroup_lock.
4950 */
a8964b9b 4951 disarm_static_keys(memcg);
8ff69e2c 4952 kfree(memcg);
59927fb9 4953}
3afe36b1 4954
7bcc1bb1
DN
4955/*
4956 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4957 */
e1aab161 4958struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4959{
3e32cb2e 4960 if (!memcg->memory.parent)
7bcc1bb1 4961 return NULL;
3e32cb2e 4962 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4963}
e1aab161 4964EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4965
bb4cc1a8
AM
4966static void __init mem_cgroup_soft_limit_tree_init(void)
4967{
4968 struct mem_cgroup_tree_per_node *rtpn;
4969 struct mem_cgroup_tree_per_zone *rtpz;
4970 int tmp, node, zone;
4971
4972 for_each_node(node) {
4973 tmp = node;
4974 if (!node_state(node, N_NORMAL_MEMORY))
4975 tmp = -1;
4976 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4977 BUG_ON(!rtpn);
4978
4979 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4980
4981 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4982 rtpz = &rtpn->rb_tree_per_zone[zone];
4983 rtpz->rb_root = RB_ROOT;
4984 spin_lock_init(&rtpz->lock);
4985 }
4986 }
4987}
4988
0eb253e2 4989static struct cgroup_subsys_state * __ref
eb95419b 4990mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4991{
d142e3e6 4992 struct mem_cgroup *memcg;
04046e1a 4993 long error = -ENOMEM;
6d12e2d8 4994 int node;
8cdea7c0 4995
c0ff4b85
R
4996 memcg = mem_cgroup_alloc();
4997 if (!memcg)
04046e1a 4998 return ERR_PTR(error);
78fb7466 4999
3ed28fa1 5000 for_each_node(node)
c0ff4b85 5001 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 5002 goto free_out;
f64c3f54 5003
c077719b 5004 /* root ? */
eb95419b 5005 if (parent_css == NULL) {
a41c58a6 5006 root_mem_cgroup = memcg;
3e32cb2e
JW
5007 page_counter_init(&memcg->memory, NULL);
5008 page_counter_init(&memcg->memsw, NULL);
5009 page_counter_init(&memcg->kmem, NULL);
18f59ea7 5010 }
28dbc4b6 5011
d142e3e6
GC
5012 memcg->last_scanned_node = MAX_NUMNODES;
5013 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5014 memcg->move_charge_at_immigrate = 0;
5015 mutex_init(&memcg->thresholds_lock);
5016 spin_lock_init(&memcg->move_lock);
70ddf637 5017 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5018 INIT_LIST_HEAD(&memcg->event_list);
5019 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
5020
5021 return &memcg->css;
5022
5023free_out:
5024 __mem_cgroup_free(memcg);
5025 return ERR_PTR(error);
5026}
5027
5028static int
eb95419b 5029mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 5030{
eb95419b 5031 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 5032 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 5033 int ret;
d142e3e6 5034
15a4c835 5035 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
5036 return -ENOSPC;
5037
63876986 5038 if (!parent)
d142e3e6
GC
5039 return 0;
5040
0999821b 5041 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
5042
5043 memcg->use_hierarchy = parent->use_hierarchy;
5044 memcg->oom_kill_disable = parent->oom_kill_disable;
5045 memcg->swappiness = mem_cgroup_swappiness(parent);
5046
5047 if (parent->use_hierarchy) {
3e32cb2e
JW
5048 page_counter_init(&memcg->memory, &parent->memory);
5049 page_counter_init(&memcg->memsw, &parent->memsw);
5050 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 5051
7bcc1bb1 5052 /*
8d76a979
LZ
5053 * No need to take a reference to the parent because cgroup
5054 * core guarantees its existence.
7bcc1bb1 5055 */
18f59ea7 5056 } else {
3e32cb2e
JW
5057 page_counter_init(&memcg->memory, NULL);
5058 page_counter_init(&memcg->memsw, NULL);
5059 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
5060 /*
5061 * Deeper hierachy with use_hierarchy == false doesn't make
5062 * much sense so let cgroup subsystem know about this
5063 * unfortunate state in our controller.
5064 */
d142e3e6 5065 if (parent != root_mem_cgroup)
073219e9 5066 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5067 }
0999821b 5068 mutex_unlock(&memcg_create_mutex);
d6441637 5069
2f7dd7a4
JW
5070 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
5071 if (ret)
5072 return ret;
5073
5074 /*
5075 * Make sure the memcg is initialized: mem_cgroup_iter()
5076 * orders reading memcg->initialized against its callers
5077 * reading the memcg members.
5078 */
5079 smp_store_release(&memcg->initialized, 1);
5080
5081 return 0;
8cdea7c0
BS
5082}
5083
eb95419b 5084static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5085{
eb95419b 5086 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5087 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5088
5089 /*
5090 * Unregister events and notify userspace.
5091 * Notify userspace about cgroup removing only after rmdir of cgroup
5092 * directory to avoid race between userspace and kernelspace.
5093 */
fba94807
TH
5094 spin_lock(&memcg->event_list_lock);
5095 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5096 list_del_init(&event->list);
5097 schedule_work(&event->remove);
5098 }
fba94807 5099 spin_unlock(&memcg->event_list_lock);
ec64f515 5100
776ed0f0 5101 memcg_unregister_all_caches(memcg);
33cb876e 5102 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
5103}
5104
eb95419b 5105static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5106{
eb95419b 5107 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 5108
10d5ebf4 5109 memcg_destroy_kmem(memcg);
465939a1 5110 __mem_cgroup_free(memcg);
8cdea7c0
BS
5111}
5112
1ced953b
TH
5113/**
5114 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5115 * @css: the target css
5116 *
5117 * Reset the states of the mem_cgroup associated with @css. This is
5118 * invoked when the userland requests disabling on the default hierarchy
5119 * but the memcg is pinned through dependency. The memcg should stop
5120 * applying policies and should revert to the vanilla state as it may be
5121 * made visible again.
5122 *
5123 * The current implementation only resets the essential configurations.
5124 * This needs to be expanded to cover all the visible parts.
5125 */
5126static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5127{
5128 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5129
3e32cb2e
JW
5130 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
5131 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
5132 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
5133 memcg->soft_limit = 0;
1ced953b
TH
5134}
5135
02491447 5136#ifdef CONFIG_MMU
7dc74be0 5137/* Handlers for move charge at task migration. */
854ffa8d 5138static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5139{
05b84301 5140 int ret;
9476db97
JW
5141
5142 /* Try a single bulk charge without reclaim first */
00501b53 5143 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 5144 if (!ret) {
854ffa8d 5145 mc.precharge += count;
854ffa8d
DN
5146 return ret;
5147 }
692e7c45 5148 if (ret == -EINTR) {
00501b53 5149 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
5150 return ret;
5151 }
9476db97
JW
5152
5153 /* Try charges one by one with reclaim */
854ffa8d 5154 while (count--) {
00501b53 5155 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
5156 /*
5157 * In case of failure, any residual charges against
5158 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
5159 * later on. However, cancel any charges that are
5160 * bypassed to root right away or they'll be lost.
9476db97 5161 */
692e7c45 5162 if (ret == -EINTR)
00501b53 5163 cancel_charge(root_mem_cgroup, 1);
38c5d72f 5164 if (ret)
38c5d72f 5165 return ret;
854ffa8d 5166 mc.precharge++;
9476db97 5167 cond_resched();
854ffa8d 5168 }
9476db97 5169 return 0;
4ffef5fe
DN
5170}
5171
5172/**
8d32ff84 5173 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5174 * @vma: the vma the pte to be checked belongs
5175 * @addr: the address corresponding to the pte to be checked
5176 * @ptent: the pte to be checked
02491447 5177 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5178 *
5179 * Returns
5180 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5181 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5182 * move charge. if @target is not NULL, the page is stored in target->page
5183 * with extra refcnt got(Callers should handle it).
02491447
DN
5184 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5185 * target for charge migration. if @target is not NULL, the entry is stored
5186 * in target->ent.
4ffef5fe
DN
5187 *
5188 * Called with pte lock held.
5189 */
4ffef5fe
DN
5190union mc_target {
5191 struct page *page;
02491447 5192 swp_entry_t ent;
4ffef5fe
DN
5193};
5194
4ffef5fe 5195enum mc_target_type {
8d32ff84 5196 MC_TARGET_NONE = 0,
4ffef5fe 5197 MC_TARGET_PAGE,
02491447 5198 MC_TARGET_SWAP,
4ffef5fe
DN
5199};
5200
90254a65
DN
5201static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5202 unsigned long addr, pte_t ptent)
4ffef5fe 5203{
90254a65 5204 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5205
90254a65
DN
5206 if (!page || !page_mapped(page))
5207 return NULL;
5208 if (PageAnon(page)) {
5209 /* we don't move shared anon */
4b91355e 5210 if (!move_anon())
90254a65 5211 return NULL;
87946a72
DN
5212 } else if (!move_file())
5213 /* we ignore mapcount for file pages */
90254a65
DN
5214 return NULL;
5215 if (!get_page_unless_zero(page))
5216 return NULL;
5217
5218 return page;
5219}
5220
4b91355e 5221#ifdef CONFIG_SWAP
90254a65
DN
5222static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5223 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5224{
90254a65
DN
5225 struct page *page = NULL;
5226 swp_entry_t ent = pte_to_swp_entry(ptent);
5227
5228 if (!move_anon() || non_swap_entry(ent))
5229 return NULL;
4b91355e
KH
5230 /*
5231 * Because lookup_swap_cache() updates some statistics counter,
5232 * we call find_get_page() with swapper_space directly.
5233 */
33806f06 5234 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
5235 if (do_swap_account)
5236 entry->val = ent.val;
5237
5238 return page;
5239}
4b91355e
KH
5240#else
5241static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5242 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5243{
5244 return NULL;
5245}
5246#endif
90254a65 5247
87946a72
DN
5248static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5249 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5250{
5251 struct page *page = NULL;
87946a72
DN
5252 struct address_space *mapping;
5253 pgoff_t pgoff;
5254
5255 if (!vma->vm_file) /* anonymous vma */
5256 return NULL;
5257 if (!move_file())
5258 return NULL;
5259
87946a72
DN
5260 mapping = vma->vm_file->f_mapping;
5261 if (pte_none(ptent))
5262 pgoff = linear_page_index(vma, addr);
5263 else /* pte_file(ptent) is true */
5264 pgoff = pte_to_pgoff(ptent);
5265
5266 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5267#ifdef CONFIG_SWAP
5268 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5269 if (shmem_mapping(mapping)) {
5270 page = find_get_entry(mapping, pgoff);
5271 if (radix_tree_exceptional_entry(page)) {
5272 swp_entry_t swp = radix_to_swp_entry(page);
5273 if (do_swap_account)
5274 *entry = swp;
5275 page = find_get_page(swap_address_space(swp), swp.val);
5276 }
5277 } else
5278 page = find_get_page(mapping, pgoff);
5279#else
5280 page = find_get_page(mapping, pgoff);
aa3b1895 5281#endif
87946a72
DN
5282 return page;
5283}
5284
8d32ff84 5285static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5286 unsigned long addr, pte_t ptent, union mc_target *target)
5287{
5288 struct page *page = NULL;
5289 struct page_cgroup *pc;
8d32ff84 5290 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5291 swp_entry_t ent = { .val = 0 };
5292
5293 if (pte_present(ptent))
5294 page = mc_handle_present_pte(vma, addr, ptent);
5295 else if (is_swap_pte(ptent))
5296 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5297 else if (pte_none(ptent) || pte_file(ptent))
5298 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5299
5300 if (!page && !ent.val)
8d32ff84 5301 return ret;
02491447
DN
5302 if (page) {
5303 pc = lookup_page_cgroup(page);
5304 /*
0a31bc97
JW
5305 * Do only loose check w/o serialization.
5306 * mem_cgroup_move_account() checks the pc is valid or
5307 * not under LRU exclusion.
02491447
DN
5308 */
5309 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5310 ret = MC_TARGET_PAGE;
5311 if (target)
5312 target->page = page;
5313 }
5314 if (!ret || !target)
5315 put_page(page);
5316 }
90254a65
DN
5317 /* There is a swap entry and a page doesn't exist or isn't charged */
5318 if (ent.val && !ret &&
34c00c31 5319 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5320 ret = MC_TARGET_SWAP;
5321 if (target)
5322 target->ent = ent;
4ffef5fe 5323 }
4ffef5fe
DN
5324 return ret;
5325}
5326
12724850
NH
5327#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5328/*
5329 * We don't consider swapping or file mapped pages because THP does not
5330 * support them for now.
5331 * Caller should make sure that pmd_trans_huge(pmd) is true.
5332 */
5333static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5334 unsigned long addr, pmd_t pmd, union mc_target *target)
5335{
5336 struct page *page = NULL;
5337 struct page_cgroup *pc;
5338 enum mc_target_type ret = MC_TARGET_NONE;
5339
5340 page = pmd_page(pmd);
309381fe 5341 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
5342 if (!move_anon())
5343 return ret;
5344 pc = lookup_page_cgroup(page);
5345 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5346 ret = MC_TARGET_PAGE;
5347 if (target) {
5348 get_page(page);
5349 target->page = page;
5350 }
5351 }
5352 return ret;
5353}
5354#else
5355static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5356 unsigned long addr, pmd_t pmd, union mc_target *target)
5357{
5358 return MC_TARGET_NONE;
5359}
5360#endif
5361
4ffef5fe
DN
5362static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5363 unsigned long addr, unsigned long end,
5364 struct mm_walk *walk)
5365{
5366 struct vm_area_struct *vma = walk->private;
5367 pte_t *pte;
5368 spinlock_t *ptl;
5369
bf929152 5370 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
5371 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5372 mc.precharge += HPAGE_PMD_NR;
bf929152 5373 spin_unlock(ptl);
1a5a9906 5374 return 0;
12724850 5375 }
03319327 5376
45f83cef
AA
5377 if (pmd_trans_unstable(pmd))
5378 return 0;
4ffef5fe
DN
5379 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5380 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5381 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5382 mc.precharge++; /* increment precharge temporarily */
5383 pte_unmap_unlock(pte - 1, ptl);
5384 cond_resched();
5385
7dc74be0
DN
5386 return 0;
5387}
5388
4ffef5fe
DN
5389static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5390{
5391 unsigned long precharge;
5392 struct vm_area_struct *vma;
5393
dfe076b0 5394 down_read(&mm->mmap_sem);
4ffef5fe
DN
5395 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5396 struct mm_walk mem_cgroup_count_precharge_walk = {
5397 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5398 .mm = mm,
5399 .private = vma,
5400 };
5401 if (is_vm_hugetlb_page(vma))
5402 continue;
4ffef5fe
DN
5403 walk_page_range(vma->vm_start, vma->vm_end,
5404 &mem_cgroup_count_precharge_walk);
5405 }
dfe076b0 5406 up_read(&mm->mmap_sem);
4ffef5fe
DN
5407
5408 precharge = mc.precharge;
5409 mc.precharge = 0;
5410
5411 return precharge;
5412}
5413
4ffef5fe
DN
5414static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5415{
dfe076b0
DN
5416 unsigned long precharge = mem_cgroup_count_precharge(mm);
5417
5418 VM_BUG_ON(mc.moving_task);
5419 mc.moving_task = current;
5420 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5421}
5422
dfe076b0
DN
5423/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5424static void __mem_cgroup_clear_mc(void)
4ffef5fe 5425{
2bd9bb20
KH
5426 struct mem_cgroup *from = mc.from;
5427 struct mem_cgroup *to = mc.to;
5428
4ffef5fe 5429 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5430 if (mc.precharge) {
00501b53 5431 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5432 mc.precharge = 0;
5433 }
5434 /*
5435 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5436 * we must uncharge here.
5437 */
5438 if (mc.moved_charge) {
00501b53 5439 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5440 mc.moved_charge = 0;
4ffef5fe 5441 }
483c30b5
DN
5442 /* we must fixup refcnts and charges */
5443 if (mc.moved_swap) {
483c30b5 5444 /* uncharge swap account from the old cgroup */
ce00a967 5445 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5446 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5447
05b84301 5448 /*
3e32cb2e
JW
5449 * we charged both to->memory and to->memsw, so we
5450 * should uncharge to->memory.
05b84301 5451 */
ce00a967 5452 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5453 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5454
e8ea14cc 5455 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 5456
4050377b 5457 /* we've already done css_get(mc.to) */
483c30b5
DN
5458 mc.moved_swap = 0;
5459 }
dfe076b0
DN
5460 memcg_oom_recover(from);
5461 memcg_oom_recover(to);
5462 wake_up_all(&mc.waitq);
5463}
5464
5465static void mem_cgroup_clear_mc(void)
5466{
5467 struct mem_cgroup *from = mc.from;
5468
5469 /*
5470 * we must clear moving_task before waking up waiters at the end of
5471 * task migration.
5472 */
5473 mc.moving_task = NULL;
5474 __mem_cgroup_clear_mc();
2bd9bb20 5475 spin_lock(&mc.lock);
4ffef5fe
DN
5476 mc.from = NULL;
5477 mc.to = NULL;
2bd9bb20 5478 spin_unlock(&mc.lock);
32047e2a 5479 mem_cgroup_end_move(from);
4ffef5fe
DN
5480}
5481
eb95419b 5482static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5483 struct cgroup_taskset *tset)
7dc74be0 5484{
2f7ee569 5485 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5486 int ret = 0;
eb95419b 5487 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 5488 unsigned long move_charge_at_immigrate;
7dc74be0 5489
ee5e8472
GC
5490 /*
5491 * We are now commited to this value whatever it is. Changes in this
5492 * tunable will only affect upcoming migrations, not the current one.
5493 * So we need to save it, and keep it going.
5494 */
5495 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5496 if (move_charge_at_immigrate) {
7dc74be0
DN
5497 struct mm_struct *mm;
5498 struct mem_cgroup *from = mem_cgroup_from_task(p);
5499
c0ff4b85 5500 VM_BUG_ON(from == memcg);
7dc74be0
DN
5501
5502 mm = get_task_mm(p);
5503 if (!mm)
5504 return 0;
7dc74be0 5505 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5506 if (mm->owner == p) {
5507 VM_BUG_ON(mc.from);
5508 VM_BUG_ON(mc.to);
5509 VM_BUG_ON(mc.precharge);
854ffa8d 5510 VM_BUG_ON(mc.moved_charge);
483c30b5 5511 VM_BUG_ON(mc.moved_swap);
32047e2a 5512 mem_cgroup_start_move(from);
2bd9bb20 5513 spin_lock(&mc.lock);
4ffef5fe 5514 mc.from = from;
c0ff4b85 5515 mc.to = memcg;
ee5e8472 5516 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 5517 spin_unlock(&mc.lock);
dfe076b0 5518 /* We set mc.moving_task later */
4ffef5fe
DN
5519
5520 ret = mem_cgroup_precharge_mc(mm);
5521 if (ret)
5522 mem_cgroup_clear_mc();
dfe076b0
DN
5523 }
5524 mmput(mm);
7dc74be0
DN
5525 }
5526 return ret;
5527}
5528
eb95419b 5529static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5530 struct cgroup_taskset *tset)
7dc74be0 5531{
4ffef5fe 5532 mem_cgroup_clear_mc();
7dc74be0
DN
5533}
5534
4ffef5fe
DN
5535static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5536 unsigned long addr, unsigned long end,
5537 struct mm_walk *walk)
7dc74be0 5538{
4ffef5fe
DN
5539 int ret = 0;
5540 struct vm_area_struct *vma = walk->private;
5541 pte_t *pte;
5542 spinlock_t *ptl;
12724850
NH
5543 enum mc_target_type target_type;
5544 union mc_target target;
5545 struct page *page;
5546 struct page_cgroup *pc;
4ffef5fe 5547
12724850
NH
5548 /*
5549 * We don't take compound_lock() here but no race with splitting thp
5550 * happens because:
5551 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5552 * under splitting, which means there's no concurrent thp split,
5553 * - if another thread runs into split_huge_page() just after we
5554 * entered this if-block, the thread must wait for page table lock
5555 * to be unlocked in __split_huge_page_splitting(), where the main
5556 * part of thp split is not executed yet.
5557 */
bf929152 5558 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5559 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5560 spin_unlock(ptl);
12724850
NH
5561 return 0;
5562 }
5563 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5564 if (target_type == MC_TARGET_PAGE) {
5565 page = target.page;
5566 if (!isolate_lru_page(page)) {
5567 pc = lookup_page_cgroup(page);
5568 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5569 pc, mc.from, mc.to)) {
12724850
NH
5570 mc.precharge -= HPAGE_PMD_NR;
5571 mc.moved_charge += HPAGE_PMD_NR;
5572 }
5573 putback_lru_page(page);
5574 }
5575 put_page(page);
5576 }
bf929152 5577 spin_unlock(ptl);
1a5a9906 5578 return 0;
12724850
NH
5579 }
5580
45f83cef
AA
5581 if (pmd_trans_unstable(pmd))
5582 return 0;
4ffef5fe
DN
5583retry:
5584 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5585 for (; addr != end; addr += PAGE_SIZE) {
5586 pte_t ptent = *(pte++);
02491447 5587 swp_entry_t ent;
4ffef5fe
DN
5588
5589 if (!mc.precharge)
5590 break;
5591
8d32ff84 5592 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5593 case MC_TARGET_PAGE:
5594 page = target.page;
5595 if (isolate_lru_page(page))
5596 goto put;
5597 pc = lookup_page_cgroup(page);
7ec99d62 5598 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5599 mc.from, mc.to)) {
4ffef5fe 5600 mc.precharge--;
854ffa8d
DN
5601 /* we uncharge from mc.from later. */
5602 mc.moved_charge++;
4ffef5fe
DN
5603 }
5604 putback_lru_page(page);
8d32ff84 5605put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5606 put_page(page);
5607 break;
02491447
DN
5608 case MC_TARGET_SWAP:
5609 ent = target.ent;
e91cbb42 5610 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5611 mc.precharge--;
483c30b5
DN
5612 /* we fixup refcnts and charges later. */
5613 mc.moved_swap++;
5614 }
02491447 5615 break;
4ffef5fe
DN
5616 default:
5617 break;
5618 }
5619 }
5620 pte_unmap_unlock(pte - 1, ptl);
5621 cond_resched();
5622
5623 if (addr != end) {
5624 /*
5625 * We have consumed all precharges we got in can_attach().
5626 * We try charge one by one, but don't do any additional
5627 * charges to mc.to if we have failed in charge once in attach()
5628 * phase.
5629 */
854ffa8d 5630 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5631 if (!ret)
5632 goto retry;
5633 }
5634
5635 return ret;
5636}
5637
5638static void mem_cgroup_move_charge(struct mm_struct *mm)
5639{
5640 struct vm_area_struct *vma;
5641
5642 lru_add_drain_all();
dfe076b0
DN
5643retry:
5644 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5645 /*
5646 * Someone who are holding the mmap_sem might be waiting in
5647 * waitq. So we cancel all extra charges, wake up all waiters,
5648 * and retry. Because we cancel precharges, we might not be able
5649 * to move enough charges, but moving charge is a best-effort
5650 * feature anyway, so it wouldn't be a big problem.
5651 */
5652 __mem_cgroup_clear_mc();
5653 cond_resched();
5654 goto retry;
5655 }
4ffef5fe
DN
5656 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5657 int ret;
5658 struct mm_walk mem_cgroup_move_charge_walk = {
5659 .pmd_entry = mem_cgroup_move_charge_pte_range,
5660 .mm = mm,
5661 .private = vma,
5662 };
5663 if (is_vm_hugetlb_page(vma))
5664 continue;
4ffef5fe
DN
5665 ret = walk_page_range(vma->vm_start, vma->vm_end,
5666 &mem_cgroup_move_charge_walk);
5667 if (ret)
5668 /*
5669 * means we have consumed all precharges and failed in
5670 * doing additional charge. Just abandon here.
5671 */
5672 break;
5673 }
dfe076b0 5674 up_read(&mm->mmap_sem);
7dc74be0
DN
5675}
5676
eb95419b 5677static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5678 struct cgroup_taskset *tset)
67e465a7 5679{
2f7ee569 5680 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5681 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5682
dfe076b0 5683 if (mm) {
a433658c
KM
5684 if (mc.to)
5685 mem_cgroup_move_charge(mm);
dfe076b0
DN
5686 mmput(mm);
5687 }
a433658c
KM
5688 if (mc.to)
5689 mem_cgroup_clear_mc();
67e465a7 5690}
5cfb80a7 5691#else /* !CONFIG_MMU */
eb95419b 5692static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5693 struct cgroup_taskset *tset)
5cfb80a7
DN
5694{
5695 return 0;
5696}
eb95419b 5697static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5698 struct cgroup_taskset *tset)
5cfb80a7
DN
5699{
5700}
eb95419b 5701static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5702 struct cgroup_taskset *tset)
5cfb80a7
DN
5703{
5704}
5705#endif
67e465a7 5706
f00baae7
TH
5707/*
5708 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5709 * to verify whether we're attached to the default hierarchy on each mount
5710 * attempt.
f00baae7 5711 */
eb95419b 5712static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5713{
5714 /*
aa6ec29b 5715 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5716 * guarantees that @root doesn't have any children, so turning it
5717 * on for the root memcg is enough.
5718 */
aa6ec29b 5719 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 5720 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
5721}
5722
073219e9 5723struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5724 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5725 .css_online = mem_cgroup_css_online,
92fb9748
TH
5726 .css_offline = mem_cgroup_css_offline,
5727 .css_free = mem_cgroup_css_free,
1ced953b 5728 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5729 .can_attach = mem_cgroup_can_attach,
5730 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5731 .attach = mem_cgroup_move_task,
f00baae7 5732 .bind = mem_cgroup_bind,
5577964e 5733 .legacy_cftypes = mem_cgroup_files,
6d12e2d8 5734 .early_init = 0,
8cdea7c0 5735};
c077719b 5736
c255a458 5737#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5738static int __init enable_swap_account(char *s)
5739{
a2c8990a 5740 if (!strcmp(s, "1"))
a42c390c 5741 really_do_swap_account = 1;
a2c8990a 5742 else if (!strcmp(s, "0"))
a42c390c
MH
5743 really_do_swap_account = 0;
5744 return 1;
5745}
a2c8990a 5746__setup("swapaccount=", enable_swap_account);
c077719b 5747
2d11085e
MH
5748static void __init memsw_file_init(void)
5749{
2cf669a5
TH
5750 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5751 memsw_cgroup_files));
6acc8b02
MH
5752}
5753
5754static void __init enable_swap_cgroup(void)
5755{
5756 if (!mem_cgroup_disabled() && really_do_swap_account) {
5757 do_swap_account = 1;
5758 memsw_file_init();
5759 }
2d11085e 5760}
6acc8b02 5761
2d11085e 5762#else
6acc8b02 5763static void __init enable_swap_cgroup(void)
2d11085e
MH
5764{
5765}
c077719b 5766#endif
2d11085e 5767
0a31bc97
JW
5768#ifdef CONFIG_MEMCG_SWAP
5769/**
5770 * mem_cgroup_swapout - transfer a memsw charge to swap
5771 * @page: page whose memsw charge to transfer
5772 * @entry: swap entry to move the charge to
5773 *
5774 * Transfer the memsw charge of @page to @entry.
5775 */
5776void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5777{
5778 struct page_cgroup *pc;
5779 unsigned short oldid;
5780
5781 VM_BUG_ON_PAGE(PageLRU(page), page);
5782 VM_BUG_ON_PAGE(page_count(page), page);
5783
5784 if (!do_swap_account)
5785 return;
5786
5787 pc = lookup_page_cgroup(page);
5788
5789 /* Readahead page, never charged */
5790 if (!PageCgroupUsed(pc))
5791 return;
5792
5793 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);
5794
5795 oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
5796 VM_BUG_ON_PAGE(oldid, page);
5797
5798 pc->flags &= ~PCG_MEMSW;
5799 css_get(&pc->mem_cgroup->css);
5800 mem_cgroup_swap_statistics(pc->mem_cgroup, true);
5801}
5802
5803/**
5804 * mem_cgroup_uncharge_swap - uncharge a swap entry
5805 * @entry: swap entry to uncharge
5806 *
5807 * Drop the memsw charge associated with @entry.
5808 */
5809void mem_cgroup_uncharge_swap(swp_entry_t entry)
5810{
5811 struct mem_cgroup *memcg;
5812 unsigned short id;
5813
5814 if (!do_swap_account)
5815 return;
5816
5817 id = swap_cgroup_record(entry, 0);
5818 rcu_read_lock();
5819 memcg = mem_cgroup_lookup(id);
5820 if (memcg) {
ce00a967 5821 if (!mem_cgroup_is_root(memcg))
3e32cb2e 5822 page_counter_uncharge(&memcg->memsw, 1);
0a31bc97
JW
5823 mem_cgroup_swap_statistics(memcg, false);
5824 css_put(&memcg->css);
5825 }
5826 rcu_read_unlock();
5827}
5828#endif
5829
00501b53
JW
5830/**
5831 * mem_cgroup_try_charge - try charging a page
5832 * @page: page to charge
5833 * @mm: mm context of the victim
5834 * @gfp_mask: reclaim mode
5835 * @memcgp: charged memcg return
5836 *
5837 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5838 * pages according to @gfp_mask if necessary.
5839 *
5840 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5841 * Otherwise, an error code is returned.
5842 *
5843 * After page->mapping has been set up, the caller must finalize the
5844 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5845 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5846 */
5847int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5848 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5849{
5850 struct mem_cgroup *memcg = NULL;
5851 unsigned int nr_pages = 1;
5852 int ret = 0;
5853
5854 if (mem_cgroup_disabled())
5855 goto out;
5856
5857 if (PageSwapCache(page)) {
5858 struct page_cgroup *pc = lookup_page_cgroup(page);
5859 /*
5860 * Every swap fault against a single page tries to charge the
5861 * page, bail as early as possible. shmem_unuse() encounters
5862 * already charged pages, too. The USED bit is protected by
5863 * the page lock, which serializes swap cache removal, which
5864 * in turn serializes uncharging.
5865 */
5866 if (PageCgroupUsed(pc))
5867 goto out;
5868 }
5869
5870 if (PageTransHuge(page)) {
5871 nr_pages <<= compound_order(page);
5872 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5873 }
5874
5875 if (do_swap_account && PageSwapCache(page))
5876 memcg = try_get_mem_cgroup_from_page(page);
5877 if (!memcg)
5878 memcg = get_mem_cgroup_from_mm(mm);
5879
5880 ret = try_charge(memcg, gfp_mask, nr_pages);
5881
5882 css_put(&memcg->css);
5883
5884 if (ret == -EINTR) {
5885 memcg = root_mem_cgroup;
5886 ret = 0;
5887 }
5888out:
5889 *memcgp = memcg;
5890 return ret;
5891}
5892
5893/**
5894 * mem_cgroup_commit_charge - commit a page charge
5895 * @page: page to charge
5896 * @memcg: memcg to charge the page to
5897 * @lrucare: page might be on LRU already
5898 *
5899 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5900 * after page->mapping has been set up. This must happen atomically
5901 * as part of the page instantiation, i.e. under the page table lock
5902 * for anonymous pages, under the page lock for page and swap cache.
5903 *
5904 * In addition, the page must not be on the LRU during the commit, to
5905 * prevent racing with task migration. If it might be, use @lrucare.
5906 *
5907 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5908 */
5909void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5910 bool lrucare)
5911{
5912 unsigned int nr_pages = 1;
5913
5914 VM_BUG_ON_PAGE(!page->mapping, page);
5915 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5916
5917 if (mem_cgroup_disabled())
5918 return;
5919 /*
5920 * Swap faults will attempt to charge the same page multiple
5921 * times. But reuse_swap_page() might have removed the page
5922 * from swapcache already, so we can't check PageSwapCache().
5923 */
5924 if (!memcg)
5925 return;
5926
6abb5a86
JW
5927 commit_charge(page, memcg, lrucare);
5928
00501b53
JW
5929 if (PageTransHuge(page)) {
5930 nr_pages <<= compound_order(page);
5931 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5932 }
5933
6abb5a86
JW
5934 local_irq_disable();
5935 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5936 memcg_check_events(memcg, page);
5937 local_irq_enable();
00501b53
JW
5938
5939 if (do_swap_account && PageSwapCache(page)) {
5940 swp_entry_t entry = { .val = page_private(page) };
5941 /*
5942 * The swap entry might not get freed for a long time,
5943 * let's not wait for it. The page already received a
5944 * memory+swap charge, drop the swap entry duplicate.
5945 */
5946 mem_cgroup_uncharge_swap(entry);
5947 }
5948}
5949
5950/**
5951 * mem_cgroup_cancel_charge - cancel a page charge
5952 * @page: page to charge
5953 * @memcg: memcg to charge the page to
5954 *
5955 * Cancel a charge transaction started by mem_cgroup_try_charge().
5956 */
5957void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5958{
5959 unsigned int nr_pages = 1;
5960
5961 if (mem_cgroup_disabled())
5962 return;
5963 /*
5964 * Swap faults will attempt to charge the same page multiple
5965 * times. But reuse_swap_page() might have removed the page
5966 * from swapcache already, so we can't check PageSwapCache().
5967 */
5968 if (!memcg)
5969 return;
5970
5971 if (PageTransHuge(page)) {
5972 nr_pages <<= compound_order(page);
5973 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5974 }
5975
5976 cancel_charge(memcg, nr_pages);
5977}
5978
747db954
JW
5979static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5980 unsigned long nr_mem, unsigned long nr_memsw,
5981 unsigned long nr_anon, unsigned long nr_file,
5982 unsigned long nr_huge, struct page *dummy_page)
5983{
5984 unsigned long flags;
5985
ce00a967
JW
5986 if (!mem_cgroup_is_root(memcg)) {
5987 if (nr_mem)
3e32cb2e 5988 page_counter_uncharge(&memcg->memory, nr_mem);
ce00a967 5989 if (nr_memsw)
3e32cb2e 5990 page_counter_uncharge(&memcg->memsw, nr_memsw);
ce00a967
JW
5991 memcg_oom_recover(memcg);
5992 }
747db954
JW
5993
5994 local_irq_save(flags);
5995 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5996 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5997 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5998 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5999 __this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
6000 memcg_check_events(memcg, dummy_page);
6001 local_irq_restore(flags);
e8ea14cc
JW
6002
6003 if (!mem_cgroup_is_root(memcg))
6004 css_put_many(&memcg->css, max(nr_mem, nr_memsw));
747db954
JW
6005}
6006
6007static void uncharge_list(struct list_head *page_list)
6008{
6009 struct mem_cgroup *memcg = NULL;
6010 unsigned long nr_memsw = 0;
6011 unsigned long nr_anon = 0;
6012 unsigned long nr_file = 0;
6013 unsigned long nr_huge = 0;
6014 unsigned long pgpgout = 0;
6015 unsigned long nr_mem = 0;
6016 struct list_head *next;
6017 struct page *page;
6018
6019 next = page_list->next;
6020 do {
6021 unsigned int nr_pages = 1;
6022 struct page_cgroup *pc;
6023
6024 page = list_entry(next, struct page, lru);
6025 next = page->lru.next;
6026
6027 VM_BUG_ON_PAGE(PageLRU(page), page);
6028 VM_BUG_ON_PAGE(page_count(page), page);
6029
6030 pc = lookup_page_cgroup(page);
6031 if (!PageCgroupUsed(pc))
6032 continue;
6033
6034 /*
6035 * Nobody should be changing or seriously looking at
6036 * pc->mem_cgroup and pc->flags at this point, we have
6037 * fully exclusive access to the page.
6038 */
6039
6040 if (memcg != pc->mem_cgroup) {
6041 if (memcg) {
6042 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6043 nr_anon, nr_file, nr_huge, page);
6044 pgpgout = nr_mem = nr_memsw = 0;
6045 nr_anon = nr_file = nr_huge = 0;
6046 }
6047 memcg = pc->mem_cgroup;
6048 }
6049
6050 if (PageTransHuge(page)) {
6051 nr_pages <<= compound_order(page);
6052 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6053 nr_huge += nr_pages;
6054 }
6055
6056 if (PageAnon(page))
6057 nr_anon += nr_pages;
6058 else
6059 nr_file += nr_pages;
6060
6061 if (pc->flags & PCG_MEM)
6062 nr_mem += nr_pages;
6063 if (pc->flags & PCG_MEMSW)
6064 nr_memsw += nr_pages;
6065 pc->flags = 0;
6066
6067 pgpgout++;
6068 } while (next != page_list);
6069
6070 if (memcg)
6071 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6072 nr_anon, nr_file, nr_huge, page);
6073}
6074
0a31bc97
JW
6075/**
6076 * mem_cgroup_uncharge - uncharge a page
6077 * @page: page to uncharge
6078 *
6079 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6080 * mem_cgroup_commit_charge().
6081 */
6082void mem_cgroup_uncharge(struct page *page)
6083{
0a31bc97 6084 struct page_cgroup *pc;
0a31bc97
JW
6085
6086 if (mem_cgroup_disabled())
6087 return;
6088
747db954 6089 /* Don't touch page->lru of any random page, pre-check: */
0a31bc97 6090 pc = lookup_page_cgroup(page);
0a31bc97
JW
6091 if (!PageCgroupUsed(pc))
6092 return;
6093
747db954
JW
6094 INIT_LIST_HEAD(&page->lru);
6095 uncharge_list(&page->lru);
6096}
0a31bc97 6097
747db954
JW
6098/**
6099 * mem_cgroup_uncharge_list - uncharge a list of page
6100 * @page_list: list of pages to uncharge
6101 *
6102 * Uncharge a list of pages previously charged with
6103 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6104 */
6105void mem_cgroup_uncharge_list(struct list_head *page_list)
6106{
6107 if (mem_cgroup_disabled())
6108 return;
0a31bc97 6109
747db954
JW
6110 if (!list_empty(page_list))
6111 uncharge_list(page_list);
0a31bc97
JW
6112}
6113
6114/**
6115 * mem_cgroup_migrate - migrate a charge to another page
6116 * @oldpage: currently charged page
6117 * @newpage: page to transfer the charge to
6118 * @lrucare: both pages might be on the LRU already
6119 *
6120 * Migrate the charge from @oldpage to @newpage.
6121 *
6122 * Both pages must be locked, @newpage->mapping must be set up.
6123 */
6124void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6125 bool lrucare)
6126{
0a31bc97
JW
6127 struct page_cgroup *pc;
6128 int isolated;
6129
6130 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6131 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6132 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6133 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6134 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6135 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6136 newpage);
0a31bc97
JW
6137
6138 if (mem_cgroup_disabled())
6139 return;
6140
6141 /* Page cache replacement: new page already charged? */
6142 pc = lookup_page_cgroup(newpage);
6143 if (PageCgroupUsed(pc))
6144 return;
6145
7d5e3245
JW
6146 /*
6147 * Swapcache readahead pages can get migrated before being
6148 * charged, and migration from compaction can happen to an
6149 * uncharged page when the PFN walker finds a page that
6150 * reclaim just put back on the LRU but has not released yet.
6151 */
0a31bc97
JW
6152 pc = lookup_page_cgroup(oldpage);
6153 if (!PageCgroupUsed(pc))
6154 return;
6155
6156 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
6157 VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);
6158
0a31bc97
JW
6159 if (lrucare)
6160 lock_page_lru(oldpage, &isolated);
6161
6162 pc->flags = 0;
6163
6164 if (lrucare)
6165 unlock_page_lru(oldpage, isolated);
6166
6abb5a86 6167 commit_charge(newpage, pc->mem_cgroup, lrucare);
0a31bc97
JW
6168}
6169
2d11085e 6170/*
1081312f
MH
6171 * subsys_initcall() for memory controller.
6172 *
6173 * Some parts like hotcpu_notifier() have to be initialized from this context
6174 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6175 * everything that doesn't depend on a specific mem_cgroup structure should
6176 * be initialized from here.
2d11085e
MH
6177 */
6178static int __init mem_cgroup_init(void)
6179{
6180 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6181 enable_swap_cgroup();
bb4cc1a8 6182 mem_cgroup_soft_limit_tree_init();
e4777496 6183 memcg_stock_init();
2d11085e
MH
6184 return 0;
6185}
6186subsys_initcall(mem_cgroup_init);