]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/memcontrol.c
memcg: unify sync and async per-cpu charge cache draining
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
072441e2 38#include <linux/shmem_fs.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
8cdea7c0 53
8697d331
BS
54#include <asm/uaccess.h>
55
cc8e970c
KM
56#include <trace/events/vmscan.h>
57
a181b0e8 58struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 59#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 60struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 61
c077719b 62#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 63/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 64int do_swap_account __read_mostly;
a42c390c
MH
65
66/* for remember boot option*/
67#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
68static int really_do_swap_account __initdata = 1;
69#else
70static int really_do_swap_account __initdata = 0;
71#endif
72
c077719b
KH
73#else
74#define do_swap_account (0)
75#endif
76
77
d52aa412
KH
78/*
79 * Statistics for memory cgroup.
80 */
81enum mem_cgroup_stat_index {
82 /*
83 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
84 */
85 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 86 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 87 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 88 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 89 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
32047e2a 90 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
91 MEM_CGROUP_STAT_NSTATS,
92};
93
e9f8974f
JW
94enum mem_cgroup_events_index {
95 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
96 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
97 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
98 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
99 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
100 MEM_CGROUP_EVENTS_NSTATS,
101};
7a159cc9
JW
102/*
103 * Per memcg event counter is incremented at every pagein/pageout. With THP,
104 * it will be incremated by the number of pages. This counter is used for
105 * for trigger some periodic events. This is straightforward and better
106 * than using jiffies etc. to handle periodic memcg event.
107 */
108enum mem_cgroup_events_target {
109 MEM_CGROUP_TARGET_THRESH,
110 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 111 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
112 MEM_CGROUP_NTARGETS,
113};
114#define THRESHOLDS_EVENTS_TARGET (128)
115#define SOFTLIMIT_EVENTS_TARGET (1024)
453a9bf3 116#define NUMAINFO_EVENTS_TARGET (1024)
e9f8974f 117
d52aa412 118struct mem_cgroup_stat_cpu {
7a159cc9 119 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 120 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 121 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
122};
123
6d12e2d8
KH
124/*
125 * per-zone information in memory controller.
126 */
6d12e2d8 127struct mem_cgroup_per_zone {
072c56c1
KH
128 /*
129 * spin_lock to protect the per cgroup LRU
130 */
b69408e8
CL
131 struct list_head lists[NR_LRU_LISTS];
132 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
133
134 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
135 struct rb_node tree_node; /* RB tree node */
136 unsigned long long usage_in_excess;/* Set to the value by which */
137 /* the soft limit is exceeded*/
138 bool on_tree;
4e416953
BS
139 struct mem_cgroup *mem; /* Back pointer, we cannot */
140 /* use container_of */
6d12e2d8
KH
141};
142/* Macro for accessing counter */
143#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
144
145struct mem_cgroup_per_node {
146 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
147};
148
149struct mem_cgroup_lru_info {
150 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
151};
152
f64c3f54
BS
153/*
154 * Cgroups above their limits are maintained in a RB-Tree, independent of
155 * their hierarchy representation
156 */
157
158struct mem_cgroup_tree_per_zone {
159 struct rb_root rb_root;
160 spinlock_t lock;
161};
162
163struct mem_cgroup_tree_per_node {
164 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
165};
166
167struct mem_cgroup_tree {
168 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
169};
170
171static struct mem_cgroup_tree soft_limit_tree __read_mostly;
172
2e72b634
KS
173struct mem_cgroup_threshold {
174 struct eventfd_ctx *eventfd;
175 u64 threshold;
176};
177
9490ff27 178/* For threshold */
2e72b634
KS
179struct mem_cgroup_threshold_ary {
180 /* An array index points to threshold just below usage. */
5407a562 181 int current_threshold;
2e72b634
KS
182 /* Size of entries[] */
183 unsigned int size;
184 /* Array of thresholds */
185 struct mem_cgroup_threshold entries[0];
186};
2c488db2
KS
187
188struct mem_cgroup_thresholds {
189 /* Primary thresholds array */
190 struct mem_cgroup_threshold_ary *primary;
191 /*
192 * Spare threshold array.
193 * This is needed to make mem_cgroup_unregister_event() "never fail".
194 * It must be able to store at least primary->size - 1 entries.
195 */
196 struct mem_cgroup_threshold_ary *spare;
197};
198
9490ff27
KH
199/* for OOM */
200struct mem_cgroup_eventfd_list {
201 struct list_head list;
202 struct eventfd_ctx *eventfd;
203};
2e72b634 204
2e72b634 205static void mem_cgroup_threshold(struct mem_cgroup *mem);
9490ff27 206static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
2e72b634 207
82f9d486
KH
208enum {
209 SCAN_BY_LIMIT,
210 SCAN_BY_SYSTEM,
211 NR_SCAN_CONTEXT,
212 SCAN_BY_SHRINK, /* not recorded now */
213};
214
215enum {
216 SCAN,
217 SCAN_ANON,
218 SCAN_FILE,
219 ROTATE,
220 ROTATE_ANON,
221 ROTATE_FILE,
222 FREED,
223 FREED_ANON,
224 FREED_FILE,
225 ELAPSED,
226 NR_SCANSTATS,
227};
228
229struct scanstat {
230 spinlock_t lock;
231 unsigned long stats[NR_SCAN_CONTEXT][NR_SCANSTATS];
232 unsigned long rootstats[NR_SCAN_CONTEXT][NR_SCANSTATS];
233};
234
235const char *scanstat_string[NR_SCANSTATS] = {
236 "scanned_pages",
237 "scanned_anon_pages",
238 "scanned_file_pages",
239 "rotated_pages",
240 "rotated_anon_pages",
241 "rotated_file_pages",
242 "freed_pages",
243 "freed_anon_pages",
244 "freed_file_pages",
245 "elapsed_ns",
246};
247#define SCANSTAT_WORD_LIMIT "_by_limit"
248#define SCANSTAT_WORD_SYSTEM "_by_system"
249#define SCANSTAT_WORD_HIERARCHY "_under_hierarchy"
250
251
8cdea7c0
BS
252/*
253 * The memory controller data structure. The memory controller controls both
254 * page cache and RSS per cgroup. We would eventually like to provide
255 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
256 * to help the administrator determine what knobs to tune.
257 *
258 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
259 * we hit the water mark. May be even add a low water mark, such that
260 * no reclaim occurs from a cgroup at it's low water mark, this is
261 * a feature that will be implemented much later in the future.
8cdea7c0
BS
262 */
263struct mem_cgroup {
264 struct cgroup_subsys_state css;
265 /*
266 * the counter to account for memory usage
267 */
268 struct res_counter res;
8c7c6e34
KH
269 /*
270 * the counter to account for mem+swap usage.
271 */
272 struct res_counter memsw;
78fb7466
PE
273 /*
274 * Per cgroup active and inactive list, similar to the
275 * per zone LRU lists.
78fb7466 276 */
6d12e2d8 277 struct mem_cgroup_lru_info info;
6d61ef40 278 /*
af901ca1 279 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 280 * reclaimed from.
6d61ef40 281 */
04046e1a 282 int last_scanned_child;
889976db
YH
283 int last_scanned_node;
284#if MAX_NUMNODES > 1
285 nodemask_t scan_nodes;
453a9bf3
KH
286 atomic_t numainfo_events;
287 atomic_t numainfo_updating;
889976db 288#endif
18f59ea7
BS
289 /*
290 * Should the accounting and control be hierarchical, per subtree?
291 */
292 bool use_hierarchy;
79dfdacc
MH
293
294 bool oom_lock;
295 atomic_t under_oom;
296
8c7c6e34 297 atomic_t refcnt;
14797e23 298
1f4c025b 299 int swappiness;
3c11ecf4
KH
300 /* OOM-Killer disable */
301 int oom_kill_disable;
a7885eb8 302
22a668d7
KH
303 /* set when res.limit == memsw.limit */
304 bool memsw_is_minimum;
305
2e72b634
KS
306 /* protect arrays of thresholds */
307 struct mutex thresholds_lock;
308
309 /* thresholds for memory usage. RCU-protected */
2c488db2 310 struct mem_cgroup_thresholds thresholds;
907860ed 311
2e72b634 312 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 313 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 314
9490ff27
KH
315 /* For oom notifier event fd */
316 struct list_head oom_notify;
82f9d486
KH
317 /* For recording LRU-scan statistics */
318 struct scanstat scanstat;
7dc74be0
DN
319 /*
320 * Should we move charges of a task when a task is moved into this
321 * mem_cgroup ? And what type of charges should we move ?
322 */
323 unsigned long move_charge_at_immigrate;
d52aa412 324 /*
c62b1a3b 325 * percpu counter.
d52aa412 326 */
c62b1a3b 327 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
328 /*
329 * used when a cpu is offlined or other synchronizations
330 * See mem_cgroup_read_stat().
331 */
332 struct mem_cgroup_stat_cpu nocpu_base;
333 spinlock_t pcp_counter_lock;
8cdea7c0
BS
334};
335
7dc74be0
DN
336/* Stuffs for move charges at task migration. */
337/*
338 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
339 * left-shifted bitmap of these types.
340 */
341enum move_type {
4ffef5fe 342 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 343 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
344 NR_MOVE_TYPE,
345};
346
4ffef5fe
DN
347/* "mc" and its members are protected by cgroup_mutex */
348static struct move_charge_struct {
b1dd693e 349 spinlock_t lock; /* for from, to */
4ffef5fe
DN
350 struct mem_cgroup *from;
351 struct mem_cgroup *to;
352 unsigned long precharge;
854ffa8d 353 unsigned long moved_charge;
483c30b5 354 unsigned long moved_swap;
8033b97c
DN
355 struct task_struct *moving_task; /* a task moving charges */
356 wait_queue_head_t waitq; /* a waitq for other context */
357} mc = {
2bd9bb20 358 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
359 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
360};
4ffef5fe 361
90254a65
DN
362static bool move_anon(void)
363{
364 return test_bit(MOVE_CHARGE_TYPE_ANON,
365 &mc.to->move_charge_at_immigrate);
366}
367
87946a72
DN
368static bool move_file(void)
369{
370 return test_bit(MOVE_CHARGE_TYPE_FILE,
371 &mc.to->move_charge_at_immigrate);
372}
373
4e416953
BS
374/*
375 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
376 * limit reclaim to prevent infinite loops, if they ever occur.
377 */
378#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
379#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
380
217bc319
KH
381enum charge_type {
382 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
383 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 384 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 385 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 386 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 387 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
388 NR_CHARGE_TYPE,
389};
390
8c7c6e34
KH
391/* for encoding cft->private value on file */
392#define _MEM (0)
393#define _MEMSWAP (1)
9490ff27 394#define _OOM_TYPE (2)
8c7c6e34
KH
395#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
396#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
397#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
398/* Used for OOM nofiier */
399#define OOM_CONTROL (0)
8c7c6e34 400
75822b44
BS
401/*
402 * Reclaim flags for mem_cgroup_hierarchical_reclaim
403 */
404#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
405#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
406#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
407#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
408#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
409#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 410
8c7c6e34
KH
411static void mem_cgroup_get(struct mem_cgroup *mem);
412static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 413static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
26fe6168 414static void drain_all_stock_async(struct mem_cgroup *mem);
8c7c6e34 415
f64c3f54
BS
416static struct mem_cgroup_per_zone *
417mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
418{
419 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
420}
421
d324236b
WF
422struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
423{
424 return &mem->css;
425}
426
f64c3f54 427static struct mem_cgroup_per_zone *
97a6c37b 428page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
f64c3f54 429{
97a6c37b
JW
430 int nid = page_to_nid(page);
431 int zid = page_zonenum(page);
f64c3f54 432
f64c3f54
BS
433 return mem_cgroup_zoneinfo(mem, nid, zid);
434}
435
436static struct mem_cgroup_tree_per_zone *
437soft_limit_tree_node_zone(int nid, int zid)
438{
439 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
440}
441
442static struct mem_cgroup_tree_per_zone *
443soft_limit_tree_from_page(struct page *page)
444{
445 int nid = page_to_nid(page);
446 int zid = page_zonenum(page);
447
448 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
449}
450
451static void
4e416953 452__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 453 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
454 struct mem_cgroup_tree_per_zone *mctz,
455 unsigned long long new_usage_in_excess)
f64c3f54
BS
456{
457 struct rb_node **p = &mctz->rb_root.rb_node;
458 struct rb_node *parent = NULL;
459 struct mem_cgroup_per_zone *mz_node;
460
461 if (mz->on_tree)
462 return;
463
ef8745c1
KH
464 mz->usage_in_excess = new_usage_in_excess;
465 if (!mz->usage_in_excess)
466 return;
f64c3f54
BS
467 while (*p) {
468 parent = *p;
469 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
470 tree_node);
471 if (mz->usage_in_excess < mz_node->usage_in_excess)
472 p = &(*p)->rb_left;
473 /*
474 * We can't avoid mem cgroups that are over their soft
475 * limit by the same amount
476 */
477 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
478 p = &(*p)->rb_right;
479 }
480 rb_link_node(&mz->tree_node, parent, p);
481 rb_insert_color(&mz->tree_node, &mctz->rb_root);
482 mz->on_tree = true;
4e416953
BS
483}
484
485static void
486__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
487 struct mem_cgroup_per_zone *mz,
488 struct mem_cgroup_tree_per_zone *mctz)
489{
490 if (!mz->on_tree)
491 return;
492 rb_erase(&mz->tree_node, &mctz->rb_root);
493 mz->on_tree = false;
494}
495
f64c3f54
BS
496static void
497mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
498 struct mem_cgroup_per_zone *mz,
499 struct mem_cgroup_tree_per_zone *mctz)
500{
501 spin_lock(&mctz->lock);
4e416953 502 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
503 spin_unlock(&mctz->lock);
504}
505
f64c3f54
BS
506
507static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
508{
ef8745c1 509 unsigned long long excess;
f64c3f54
BS
510 struct mem_cgroup_per_zone *mz;
511 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
512 int nid = page_to_nid(page);
513 int zid = page_zonenum(page);
f64c3f54
BS
514 mctz = soft_limit_tree_from_page(page);
515
516 /*
4e649152
KH
517 * Necessary to update all ancestors when hierarchy is used.
518 * because their event counter is not touched.
f64c3f54 519 */
4e649152
KH
520 for (; mem; mem = parent_mem_cgroup(mem)) {
521 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 522 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
523 /*
524 * We have to update the tree if mz is on RB-tree or
525 * mem is over its softlimit.
526 */
ef8745c1 527 if (excess || mz->on_tree) {
4e649152
KH
528 spin_lock(&mctz->lock);
529 /* if on-tree, remove it */
530 if (mz->on_tree)
531 __mem_cgroup_remove_exceeded(mem, mz, mctz);
532 /*
ef8745c1
KH
533 * Insert again. mz->usage_in_excess will be updated.
534 * If excess is 0, no tree ops.
4e649152 535 */
ef8745c1 536 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
537 spin_unlock(&mctz->lock);
538 }
f64c3f54
BS
539 }
540}
541
542static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
543{
544 int node, zone;
545 struct mem_cgroup_per_zone *mz;
546 struct mem_cgroup_tree_per_zone *mctz;
547
548 for_each_node_state(node, N_POSSIBLE) {
549 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
550 mz = mem_cgroup_zoneinfo(mem, node, zone);
551 mctz = soft_limit_tree_node_zone(node, zone);
552 mem_cgroup_remove_exceeded(mem, mz, mctz);
553 }
554 }
555}
556
4e416953
BS
557static struct mem_cgroup_per_zone *
558__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
559{
560 struct rb_node *rightmost = NULL;
26251eaf 561 struct mem_cgroup_per_zone *mz;
4e416953
BS
562
563retry:
26251eaf 564 mz = NULL;
4e416953
BS
565 rightmost = rb_last(&mctz->rb_root);
566 if (!rightmost)
567 goto done; /* Nothing to reclaim from */
568
569 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
570 /*
571 * Remove the node now but someone else can add it back,
572 * we will to add it back at the end of reclaim to its correct
573 * position in the tree.
574 */
575 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
576 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
577 !css_tryget(&mz->mem->css))
578 goto retry;
579done:
580 return mz;
581}
582
583static struct mem_cgroup_per_zone *
584mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
585{
586 struct mem_cgroup_per_zone *mz;
587
588 spin_lock(&mctz->lock);
589 mz = __mem_cgroup_largest_soft_limit_node(mctz);
590 spin_unlock(&mctz->lock);
591 return mz;
592}
593
711d3d2c
KH
594/*
595 * Implementation Note: reading percpu statistics for memcg.
596 *
597 * Both of vmstat[] and percpu_counter has threshold and do periodic
598 * synchronization to implement "quick" read. There are trade-off between
599 * reading cost and precision of value. Then, we may have a chance to implement
600 * a periodic synchronizion of counter in memcg's counter.
601 *
602 * But this _read() function is used for user interface now. The user accounts
603 * memory usage by memory cgroup and he _always_ requires exact value because
604 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
605 * have to visit all online cpus and make sum. So, for now, unnecessary
606 * synchronization is not implemented. (just implemented for cpu hotplug)
607 *
608 * If there are kernel internal actions which can make use of some not-exact
609 * value, and reading all cpu value can be performance bottleneck in some
610 * common workload, threashold and synchonization as vmstat[] should be
611 * implemented.
612 */
7a159cc9
JW
613static long mem_cgroup_read_stat(struct mem_cgroup *mem,
614 enum mem_cgroup_stat_index idx)
c62b1a3b 615{
7a159cc9 616 long val = 0;
c62b1a3b 617 int cpu;
c62b1a3b 618
711d3d2c
KH
619 get_online_cpus();
620 for_each_online_cpu(cpu)
c62b1a3b 621 val += per_cpu(mem->stat->count[idx], cpu);
711d3d2c
KH
622#ifdef CONFIG_HOTPLUG_CPU
623 spin_lock(&mem->pcp_counter_lock);
624 val += mem->nocpu_base.count[idx];
625 spin_unlock(&mem->pcp_counter_lock);
626#endif
627 put_online_cpus();
c62b1a3b
KH
628 return val;
629}
630
0c3e73e8
BS
631static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
632 bool charge)
633{
634 int val = (charge) ? 1 : -1;
c62b1a3b 635 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
636}
637
456f998e
YH
638void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
639{
640 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
641}
642
643void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
644{
645 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
646}
647
e9f8974f
JW
648static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
649 enum mem_cgroup_events_index idx)
650{
651 unsigned long val = 0;
652 int cpu;
653
654 for_each_online_cpu(cpu)
655 val += per_cpu(mem->stat->events[idx], cpu);
656#ifdef CONFIG_HOTPLUG_CPU
657 spin_lock(&mem->pcp_counter_lock);
658 val += mem->nocpu_base.events[idx];
659 spin_unlock(&mem->pcp_counter_lock);
660#endif
661 return val;
662}
663
c05555b5 664static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
e401f176 665 bool file, int nr_pages)
d52aa412 666{
c62b1a3b
KH
667 preempt_disable();
668
e401f176
KH
669 if (file)
670 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
d52aa412 671 else
e401f176 672 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
55e462b0 673
e401f176
KH
674 /* pagein of a big page is an event. So, ignore page size */
675 if (nr_pages > 0)
e9f8974f 676 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 677 else {
e9f8974f 678 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
679 nr_pages = -nr_pages; /* for event */
680 }
e401f176 681
e9f8974f 682 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 683
c62b1a3b 684 preempt_enable();
6d12e2d8
KH
685}
686
bb2a0de9
KH
687unsigned long
688mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
689 unsigned int lru_mask)
889976db
YH
690{
691 struct mem_cgroup_per_zone *mz;
bb2a0de9
KH
692 enum lru_list l;
693 unsigned long ret = 0;
694
695 mz = mem_cgroup_zoneinfo(mem, nid, zid);
696
697 for_each_lru(l) {
698 if (BIT(l) & lru_mask)
699 ret += MEM_CGROUP_ZSTAT(mz, l);
700 }
701 return ret;
702}
703
704static unsigned long
705mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
706 int nid, unsigned int lru_mask)
707{
889976db
YH
708 u64 total = 0;
709 int zid;
710
bb2a0de9
KH
711 for (zid = 0; zid < MAX_NR_ZONES; zid++)
712 total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
713
889976db
YH
714 return total;
715}
bb2a0de9
KH
716
717static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
718 unsigned int lru_mask)
6d12e2d8 719{
889976db 720 int nid;
6d12e2d8
KH
721 u64 total = 0;
722
bb2a0de9
KH
723 for_each_node_state(nid, N_HIGH_MEMORY)
724 total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
6d12e2d8 725 return total;
d52aa412
KH
726}
727
7a159cc9
JW
728static bool __memcg_event_check(struct mem_cgroup *mem, int target)
729{
730 unsigned long val, next;
731
732 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
733 next = this_cpu_read(mem->stat->targets[target]);
734 /* from time_after() in jiffies.h */
735 return ((long)next - (long)val < 0);
736}
737
738static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
d2265e6f 739{
7a159cc9 740 unsigned long val, next;
d2265e6f 741
e9f8974f 742 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
d2265e6f 743
7a159cc9
JW
744 switch (target) {
745 case MEM_CGROUP_TARGET_THRESH:
746 next = val + THRESHOLDS_EVENTS_TARGET;
747 break;
748 case MEM_CGROUP_TARGET_SOFTLIMIT:
749 next = val + SOFTLIMIT_EVENTS_TARGET;
750 break;
453a9bf3
KH
751 case MEM_CGROUP_TARGET_NUMAINFO:
752 next = val + NUMAINFO_EVENTS_TARGET;
753 break;
7a159cc9
JW
754 default:
755 return;
756 }
757
758 this_cpu_write(mem->stat->targets[target], next);
d2265e6f
KH
759}
760
761/*
762 * Check events in order.
763 *
764 */
765static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
766{
767 /* threshold event is triggered in finer grain than soft limit */
7a159cc9 768 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
d2265e6f 769 mem_cgroup_threshold(mem);
7a159cc9
JW
770 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
771 if (unlikely(__memcg_event_check(mem,
453a9bf3 772 MEM_CGROUP_TARGET_SOFTLIMIT))) {
d2265e6f 773 mem_cgroup_update_tree(mem, page);
7a159cc9 774 __mem_cgroup_target_update(mem,
453a9bf3
KH
775 MEM_CGROUP_TARGET_SOFTLIMIT);
776 }
777#if MAX_NUMNODES > 1
778 if (unlikely(__memcg_event_check(mem,
779 MEM_CGROUP_TARGET_NUMAINFO))) {
780 atomic_inc(&mem->numainfo_events);
781 __mem_cgroup_target_update(mem,
782 MEM_CGROUP_TARGET_NUMAINFO);
7a159cc9 783 }
453a9bf3 784#endif
d2265e6f
KH
785 }
786}
787
d5b69e38 788static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
789{
790 return container_of(cgroup_subsys_state(cont,
791 mem_cgroup_subsys_id), struct mem_cgroup,
792 css);
793}
794
cf475ad2 795struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 796{
31a78f23
BS
797 /*
798 * mm_update_next_owner() may clear mm->owner to NULL
799 * if it races with swapoff, page migration, etc.
800 * So this can be called with p == NULL.
801 */
802 if (unlikely(!p))
803 return NULL;
804
78fb7466
PE
805 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
806 struct mem_cgroup, css);
807}
808
a433658c 809struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2
KH
810{
811 struct mem_cgroup *mem = NULL;
0b7f569e
KH
812
813 if (!mm)
814 return NULL;
54595fe2
KH
815 /*
816 * Because we have no locks, mm->owner's may be being moved to other
817 * cgroup. We use css_tryget() here even if this looks
818 * pessimistic (rather than adding locks here).
819 */
820 rcu_read_lock();
821 do {
822 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
823 if (unlikely(!mem))
824 break;
825 } while (!css_tryget(&mem->css));
826 rcu_read_unlock();
827 return mem;
828}
829
7d74b06f
KH
830/* The caller has to guarantee "mem" exists before calling this */
831static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
14067bb3 832{
711d3d2c
KH
833 struct cgroup_subsys_state *css;
834 int found;
835
836 if (!mem) /* ROOT cgroup has the smallest ID */
837 return root_mem_cgroup; /*css_put/get against root is ignored*/
838 if (!mem->use_hierarchy) {
839 if (css_tryget(&mem->css))
840 return mem;
841 return NULL;
842 }
843 rcu_read_lock();
844 /*
845 * searching a memory cgroup which has the smallest ID under given
846 * ROOT cgroup. (ID >= 1)
847 */
848 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
849 if (css && css_tryget(css))
850 mem = container_of(css, struct mem_cgroup, css);
851 else
852 mem = NULL;
853 rcu_read_unlock();
854 return mem;
7d74b06f
KH
855}
856
857static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
858 struct mem_cgroup *root,
859 bool cond)
860{
861 int nextid = css_id(&iter->css) + 1;
862 int found;
863 int hierarchy_used;
14067bb3 864 struct cgroup_subsys_state *css;
14067bb3 865
7d74b06f 866 hierarchy_used = iter->use_hierarchy;
14067bb3 867
7d74b06f 868 css_put(&iter->css);
711d3d2c
KH
869 /* If no ROOT, walk all, ignore hierarchy */
870 if (!cond || (root && !hierarchy_used))
7d74b06f 871 return NULL;
14067bb3 872
711d3d2c
KH
873 if (!root)
874 root = root_mem_cgroup;
875
7d74b06f
KH
876 do {
877 iter = NULL;
14067bb3 878 rcu_read_lock();
7d74b06f
KH
879
880 css = css_get_next(&mem_cgroup_subsys, nextid,
881 &root->css, &found);
14067bb3 882 if (css && css_tryget(css))
7d74b06f 883 iter = container_of(css, struct mem_cgroup, css);
14067bb3 884 rcu_read_unlock();
7d74b06f 885 /* If css is NULL, no more cgroups will be found */
14067bb3 886 nextid = found + 1;
7d74b06f 887 } while (css && !iter);
14067bb3 888
7d74b06f 889 return iter;
14067bb3 890}
7d74b06f
KH
891/*
892 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
893 * be careful that "break" loop is not allowed. We have reference count.
894 * Instead of that modify "cond" to be false and "continue" to exit the loop.
895 */
896#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
897 for (iter = mem_cgroup_start_loop(root);\
898 iter != NULL;\
899 iter = mem_cgroup_get_next(iter, root, cond))
900
901#define for_each_mem_cgroup_tree(iter, root) \
902 for_each_mem_cgroup_tree_cond(iter, root, true)
903
711d3d2c
KH
904#define for_each_mem_cgroup_all(iter) \
905 for_each_mem_cgroup_tree_cond(iter, NULL, true)
906
14067bb3 907
4b3bde4c
BS
908static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
909{
910 return (mem == root_mem_cgroup);
911}
912
456f998e
YH
913void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
914{
915 struct mem_cgroup *mem;
916
917 if (!mm)
918 return;
919
920 rcu_read_lock();
921 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
922 if (unlikely(!mem))
923 goto out;
924
925 switch (idx) {
926 case PGMAJFAULT:
927 mem_cgroup_pgmajfault(mem, 1);
928 break;
929 case PGFAULT:
930 mem_cgroup_pgfault(mem, 1);
931 break;
932 default:
933 BUG();
934 }
935out:
936 rcu_read_unlock();
937}
938EXPORT_SYMBOL(mem_cgroup_count_vm_event);
939
08e552c6
KH
940/*
941 * Following LRU functions are allowed to be used without PCG_LOCK.
942 * Operations are called by routine of global LRU independently from memcg.
943 * What we have to take care of here is validness of pc->mem_cgroup.
944 *
945 * Changes to pc->mem_cgroup happens when
946 * 1. charge
947 * 2. moving account
948 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
949 * It is added to LRU before charge.
950 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
951 * When moving account, the page is not on LRU. It's isolated.
952 */
4f98a2fe 953
08e552c6
KH
954void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
955{
956 struct page_cgroup *pc;
08e552c6 957 struct mem_cgroup_per_zone *mz;
6d12e2d8 958
f8d66542 959 if (mem_cgroup_disabled())
08e552c6
KH
960 return;
961 pc = lookup_page_cgroup(page);
962 /* can happen while we handle swapcache. */
4b3bde4c 963 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 964 return;
4b3bde4c 965 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
966 /*
967 * We don't check PCG_USED bit. It's cleared when the "page" is finally
968 * removed from global LRU.
969 */
97a6c37b 970 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
971 /* huge page split is done under lru_lock. so, we have no races. */
972 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
4b3bde4c
BS
973 if (mem_cgroup_is_root(pc->mem_cgroup))
974 return;
975 VM_BUG_ON(list_empty(&pc->lru));
08e552c6 976 list_del_init(&pc->lru);
6d12e2d8
KH
977}
978
08e552c6 979void mem_cgroup_del_lru(struct page *page)
6d12e2d8 980{
08e552c6
KH
981 mem_cgroup_del_lru_list(page, page_lru(page));
982}
b69408e8 983
3f58a829
MK
984/*
985 * Writeback is about to end against a page which has been marked for immediate
986 * reclaim. If it still appears to be reclaimable, move it to the tail of the
987 * inactive list.
988 */
989void mem_cgroup_rotate_reclaimable_page(struct page *page)
990{
991 struct mem_cgroup_per_zone *mz;
992 struct page_cgroup *pc;
993 enum lru_list lru = page_lru(page);
994
995 if (mem_cgroup_disabled())
996 return;
997
998 pc = lookup_page_cgroup(page);
999 /* unused or root page is not rotated. */
1000 if (!PageCgroupUsed(pc))
1001 return;
1002 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1003 smp_rmb();
1004 if (mem_cgroup_is_root(pc->mem_cgroup))
1005 return;
97a6c37b 1006 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3f58a829
MK
1007 list_move_tail(&pc->lru, &mz->lists[lru]);
1008}
1009
08e552c6
KH
1010void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1011{
1012 struct mem_cgroup_per_zone *mz;
1013 struct page_cgroup *pc;
b69408e8 1014
f8d66542 1015 if (mem_cgroup_disabled())
08e552c6 1016 return;
6d12e2d8 1017
08e552c6 1018 pc = lookup_page_cgroup(page);
4b3bde4c 1019 /* unused or root page is not rotated. */
713735b4
JW
1020 if (!PageCgroupUsed(pc))
1021 return;
1022 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1023 smp_rmb();
1024 if (mem_cgroup_is_root(pc->mem_cgroup))
08e552c6 1025 return;
97a6c37b 1026 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
08e552c6 1027 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
1028}
1029
08e552c6 1030void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 1031{
08e552c6
KH
1032 struct page_cgroup *pc;
1033 struct mem_cgroup_per_zone *mz;
6d12e2d8 1034
f8d66542 1035 if (mem_cgroup_disabled())
08e552c6
KH
1036 return;
1037 pc = lookup_page_cgroup(page);
4b3bde4c 1038 VM_BUG_ON(PageCgroupAcctLRU(pc));
08e552c6 1039 if (!PageCgroupUsed(pc))
894bc310 1040 return;
713735b4
JW
1041 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1042 smp_rmb();
97a6c37b 1043 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
1044 /* huge page split is done under lru_lock. so, we have no races. */
1045 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
4b3bde4c
BS
1046 SetPageCgroupAcctLRU(pc);
1047 if (mem_cgroup_is_root(pc->mem_cgroup))
1048 return;
08e552c6
KH
1049 list_add(&pc->lru, &mz->lists[lru]);
1050}
544122e5 1051
08e552c6 1052/*
5a6475a4
KH
1053 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1054 * while it's linked to lru because the page may be reused after it's fully
1055 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1056 * It's done under lock_page and expected that zone->lru_lock isnever held.
08e552c6 1057 */
5a6475a4 1058static void mem_cgroup_lru_del_before_commit(struct page *page)
08e552c6 1059{
544122e5
KH
1060 unsigned long flags;
1061 struct zone *zone = page_zone(page);
1062 struct page_cgroup *pc = lookup_page_cgroup(page);
1063
5a6475a4
KH
1064 /*
1065 * Doing this check without taking ->lru_lock seems wrong but this
1066 * is safe. Because if page_cgroup's USED bit is unset, the page
1067 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1068 * set, the commit after this will fail, anyway.
1069 * This all charge/uncharge is done under some mutual execustion.
1070 * So, we don't need to taking care of changes in USED bit.
1071 */
1072 if (likely(!PageLRU(page)))
1073 return;
1074
544122e5
KH
1075 spin_lock_irqsave(&zone->lru_lock, flags);
1076 /*
1077 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1078 * is guarded by lock_page() because the page is SwapCache.
1079 */
1080 if (!PageCgroupUsed(pc))
1081 mem_cgroup_del_lru_list(page, page_lru(page));
1082 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
1083}
1084
5a6475a4 1085static void mem_cgroup_lru_add_after_commit(struct page *page)
544122e5
KH
1086{
1087 unsigned long flags;
1088 struct zone *zone = page_zone(page);
1089 struct page_cgroup *pc = lookup_page_cgroup(page);
1090
5a6475a4
KH
1091 /* taking care of that the page is added to LRU while we commit it */
1092 if (likely(!PageLRU(page)))
1093 return;
544122e5
KH
1094 spin_lock_irqsave(&zone->lru_lock, flags);
1095 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 1096 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
1097 mem_cgroup_add_lru_list(page, page_lru(page));
1098 spin_unlock_irqrestore(&zone->lru_lock, flags);
1099}
1100
1101
08e552c6
KH
1102void mem_cgroup_move_lists(struct page *page,
1103 enum lru_list from, enum lru_list to)
1104{
f8d66542 1105 if (mem_cgroup_disabled())
08e552c6
KH
1106 return;
1107 mem_cgroup_del_lru_list(page, from);
1108 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
1109}
1110
4c4a2214
DR
1111int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1112{
1113 int ret;
0b7f569e 1114 struct mem_cgroup *curr = NULL;
158e0a2d 1115 struct task_struct *p;
4c4a2214 1116
158e0a2d
KH
1117 p = find_lock_task_mm(task);
1118 if (!p)
1119 return 0;
1120 curr = try_get_mem_cgroup_from_mm(p->mm);
1121 task_unlock(p);
0b7f569e
KH
1122 if (!curr)
1123 return 0;
d31f56db
DN
1124 /*
1125 * We should check use_hierarchy of "mem" not "curr". Because checking
1126 * use_hierarchy of "curr" here make this function true if hierarchy is
1127 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1128 * hierarchy(even if use_hierarchy is disabled in "mem").
1129 */
1130 if (mem->use_hierarchy)
0b7f569e
KH
1131 ret = css_is_ancestor(&curr->css, &mem->css);
1132 else
1133 ret = (curr == mem);
1134 css_put(&curr->css);
4c4a2214
DR
1135 return ret;
1136}
1137
c772be93 1138static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
1139{
1140 unsigned long active;
1141 unsigned long inactive;
c772be93
KM
1142 unsigned long gb;
1143 unsigned long inactive_ratio;
14797e23 1144
bb2a0de9
KH
1145 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1146 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14797e23 1147
c772be93
KM
1148 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1149 if (gb)
1150 inactive_ratio = int_sqrt(10 * gb);
1151 else
1152 inactive_ratio = 1;
1153
1154 if (present_pages) {
1155 present_pages[0] = inactive;
1156 present_pages[1] = active;
1157 }
1158
1159 return inactive_ratio;
1160}
1161
1162int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1163{
1164 unsigned long active;
1165 unsigned long inactive;
1166 unsigned long present_pages[2];
1167 unsigned long inactive_ratio;
1168
1169 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1170
1171 inactive = present_pages[0];
1172 active = present_pages[1];
1173
1174 if (inactive * inactive_ratio < active)
14797e23
KM
1175 return 1;
1176
1177 return 0;
1178}
1179
56e49d21
RR
1180int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1181{
1182 unsigned long active;
1183 unsigned long inactive;
1184
bb2a0de9
KH
1185 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1186 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1187
1188 return (active > inactive);
1189}
1190
3e2f41f1
KM
1191struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1192 struct zone *zone)
1193{
13d7e3a2 1194 int nid = zone_to_nid(zone);
3e2f41f1
KM
1195 int zid = zone_idx(zone);
1196 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1197
1198 return &mz->reclaim_stat;
1199}
1200
1201struct zone_reclaim_stat *
1202mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1203{
1204 struct page_cgroup *pc;
1205 struct mem_cgroup_per_zone *mz;
1206
1207 if (mem_cgroup_disabled())
1208 return NULL;
1209
1210 pc = lookup_page_cgroup(page);
bd112db8
DN
1211 if (!PageCgroupUsed(pc))
1212 return NULL;
713735b4
JW
1213 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1214 smp_rmb();
97a6c37b 1215 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1216 return &mz->reclaim_stat;
1217}
1218
66e1707b
BS
1219unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1220 struct list_head *dst,
1221 unsigned long *scanned, int order,
1222 int mode, struct zone *z,
1223 struct mem_cgroup *mem_cont,
4f98a2fe 1224 int active, int file)
66e1707b
BS
1225{
1226 unsigned long nr_taken = 0;
1227 struct page *page;
1228 unsigned long scan;
1229 LIST_HEAD(pc_list);
1230 struct list_head *src;
ff7283fa 1231 struct page_cgroup *pc, *tmp;
13d7e3a2 1232 int nid = zone_to_nid(z);
1ecaab2b
KH
1233 int zid = zone_idx(z);
1234 struct mem_cgroup_per_zone *mz;
b7c46d15 1235 int lru = LRU_FILE * file + active;
2ffebca6 1236 int ret;
66e1707b 1237
cf475ad2 1238 BUG_ON(!mem_cont);
1ecaab2b 1239 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 1240 src = &mz->lists[lru];
66e1707b 1241
ff7283fa
KH
1242 scan = 0;
1243 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 1244 if (scan >= nr_to_scan)
ff7283fa 1245 break;
08e552c6 1246
52d4b9ac
KH
1247 if (unlikely(!PageCgroupUsed(pc)))
1248 continue;
5564e88b 1249
6b3ae58e 1250 page = lookup_cgroup_page(pc);
5564e88b 1251
436c6541 1252 if (unlikely(!PageLRU(page)))
ff7283fa 1253 continue;
ff7283fa 1254
436c6541 1255 scan++;
2ffebca6
KH
1256 ret = __isolate_lru_page(page, mode, file);
1257 switch (ret) {
1258 case 0:
66e1707b 1259 list_move(&page->lru, dst);
2ffebca6 1260 mem_cgroup_del_lru(page);
2c888cfb 1261 nr_taken += hpage_nr_pages(page);
2ffebca6
KH
1262 break;
1263 case -EBUSY:
1264 /* we don't affect global LRU but rotate in our LRU */
1265 mem_cgroup_rotate_lru_list(page, page_lru(page));
1266 break;
1267 default:
1268 break;
66e1707b
BS
1269 }
1270 }
1271
66e1707b 1272 *scanned = scan;
cc8e970c
KM
1273
1274 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1275 0, 0, 0, mode);
1276
66e1707b
BS
1277 return nr_taken;
1278}
1279
6d61ef40
BS
1280#define mem_cgroup_from_res_counter(counter, member) \
1281 container_of(counter, struct mem_cgroup, member)
1282
19942822 1283/**
9d11ea9f
JW
1284 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1285 * @mem: the memory cgroup
19942822 1286 *
9d11ea9f 1287 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1288 * pages.
19942822 1289 */
7ec99d62 1290static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
19942822 1291{
9d11ea9f
JW
1292 unsigned long long margin;
1293
1294 margin = res_counter_margin(&mem->res);
1295 if (do_swap_account)
1296 margin = min(margin, res_counter_margin(&mem->memsw));
7ec99d62 1297 return margin >> PAGE_SHIFT;
19942822
JW
1298}
1299
1f4c025b 1300int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1301{
1302 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1303
1304 /* root ? */
1305 if (cgrp->parent == NULL)
1306 return vm_swappiness;
1307
bf1ff263 1308 return memcg->swappiness;
a7885eb8
KM
1309}
1310
32047e2a
KH
1311static void mem_cgroup_start_move(struct mem_cgroup *mem)
1312{
1313 int cpu;
1489ebad
KH
1314
1315 get_online_cpus();
1316 spin_lock(&mem->pcp_counter_lock);
1317 for_each_online_cpu(cpu)
32047e2a 1318 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1489ebad
KH
1319 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1320 spin_unlock(&mem->pcp_counter_lock);
1321 put_online_cpus();
32047e2a
KH
1322
1323 synchronize_rcu();
1324}
1325
1326static void mem_cgroup_end_move(struct mem_cgroup *mem)
1327{
1328 int cpu;
1329
1330 if (!mem)
1331 return;
1489ebad
KH
1332 get_online_cpus();
1333 spin_lock(&mem->pcp_counter_lock);
1334 for_each_online_cpu(cpu)
32047e2a 1335 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1489ebad
KH
1336 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1337 spin_unlock(&mem->pcp_counter_lock);
1338 put_online_cpus();
32047e2a
KH
1339}
1340/*
1341 * 2 routines for checking "mem" is under move_account() or not.
1342 *
1343 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1344 * for avoiding race in accounting. If true,
1345 * pc->mem_cgroup may be overwritten.
1346 *
1347 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1348 * under hierarchy of moving cgroups. This is for
1349 * waiting at hith-memory prressure caused by "move".
1350 */
1351
1352static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1353{
1354 VM_BUG_ON(!rcu_read_lock_held());
1355 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1356}
4b534334
KH
1357
1358static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1359{
2bd9bb20
KH
1360 struct mem_cgroup *from;
1361 struct mem_cgroup *to;
4b534334 1362 bool ret = false;
2bd9bb20
KH
1363 /*
1364 * Unlike task_move routines, we access mc.to, mc.from not under
1365 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1366 */
1367 spin_lock(&mc.lock);
1368 from = mc.from;
1369 to = mc.to;
1370 if (!from)
1371 goto unlock;
1372 if (from == mem || to == mem
1373 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1374 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1375 ret = true;
1376unlock:
1377 spin_unlock(&mc.lock);
4b534334
KH
1378 return ret;
1379}
1380
1381static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1382{
1383 if (mc.moving_task && current != mc.moving_task) {
1384 if (mem_cgroup_under_move(mem)) {
1385 DEFINE_WAIT(wait);
1386 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1387 /* moving charge context might have finished. */
1388 if (mc.moving_task)
1389 schedule();
1390 finish_wait(&mc.waitq, &wait);
1391 return true;
1392 }
1393 }
1394 return false;
1395}
1396
e222432b 1397/**
6a6135b6 1398 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1399 * @memcg: The memory cgroup that went over limit
1400 * @p: Task that is going to be killed
1401 *
1402 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1403 * enabled
1404 */
1405void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1406{
1407 struct cgroup *task_cgrp;
1408 struct cgroup *mem_cgrp;
1409 /*
1410 * Need a buffer in BSS, can't rely on allocations. The code relies
1411 * on the assumption that OOM is serialized for memory controller.
1412 * If this assumption is broken, revisit this code.
1413 */
1414 static char memcg_name[PATH_MAX];
1415 int ret;
1416
d31f56db 1417 if (!memcg || !p)
e222432b
BS
1418 return;
1419
1420
1421 rcu_read_lock();
1422
1423 mem_cgrp = memcg->css.cgroup;
1424 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1425
1426 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1427 if (ret < 0) {
1428 /*
1429 * Unfortunately, we are unable to convert to a useful name
1430 * But we'll still print out the usage information
1431 */
1432 rcu_read_unlock();
1433 goto done;
1434 }
1435 rcu_read_unlock();
1436
1437 printk(KERN_INFO "Task in %s killed", memcg_name);
1438
1439 rcu_read_lock();
1440 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1441 if (ret < 0) {
1442 rcu_read_unlock();
1443 goto done;
1444 }
1445 rcu_read_unlock();
1446
1447 /*
1448 * Continues from above, so we don't need an KERN_ level
1449 */
1450 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1451done:
1452
1453 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1454 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1455 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1456 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1457 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1458 "failcnt %llu\n",
1459 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1460 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1461 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1462}
1463
81d39c20
KH
1464/*
1465 * This function returns the number of memcg under hierarchy tree. Returns
1466 * 1(self count) if no children.
1467 */
1468static int mem_cgroup_count_children(struct mem_cgroup *mem)
1469{
1470 int num = 0;
7d74b06f
KH
1471 struct mem_cgroup *iter;
1472
1473 for_each_mem_cgroup_tree(iter, mem)
1474 num++;
81d39c20
KH
1475 return num;
1476}
1477
a63d83f4
DR
1478/*
1479 * Return the memory (and swap, if configured) limit for a memcg.
1480 */
1481u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1482{
1483 u64 limit;
1484 u64 memsw;
1485
f3e8eb70
JW
1486 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1487 limit += total_swap_pages << PAGE_SHIFT;
1488
a63d83f4
DR
1489 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1490 /*
1491 * If memsw is finite and limits the amount of swap space available
1492 * to this memcg, return that limit.
1493 */
1494 return min(limit, memsw);
1495}
1496
6d61ef40 1497/*
04046e1a
KH
1498 * Visit the first child (need not be the first child as per the ordering
1499 * of the cgroup list, since we track last_scanned_child) of @mem and use
1500 * that to reclaim free pages from.
1501 */
1502static struct mem_cgroup *
1503mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1504{
1505 struct mem_cgroup *ret = NULL;
1506 struct cgroup_subsys_state *css;
1507 int nextid, found;
1508
1509 if (!root_mem->use_hierarchy) {
1510 css_get(&root_mem->css);
1511 ret = root_mem;
1512 }
1513
1514 while (!ret) {
1515 rcu_read_lock();
1516 nextid = root_mem->last_scanned_child + 1;
1517 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1518 &found);
1519 if (css && css_tryget(css))
1520 ret = container_of(css, struct mem_cgroup, css);
1521
1522 rcu_read_unlock();
1523 /* Updates scanning parameter */
04046e1a
KH
1524 if (!css) {
1525 /* this means start scan from ID:1 */
1526 root_mem->last_scanned_child = 0;
1527 } else
1528 root_mem->last_scanned_child = found;
04046e1a
KH
1529 }
1530
1531 return ret;
1532}
1533
4d0c066d
KH
1534/**
1535 * test_mem_cgroup_node_reclaimable
1536 * @mem: the target memcg
1537 * @nid: the node ID to be checked.
1538 * @noswap : specify true here if the user wants flle only information.
1539 *
1540 * This function returns whether the specified memcg contains any
1541 * reclaimable pages on a node. Returns true if there are any reclaimable
1542 * pages in the node.
1543 */
1544static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1545 int nid, bool noswap)
1546{
bb2a0de9 1547 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
4d0c066d
KH
1548 return true;
1549 if (noswap || !total_swap_pages)
1550 return false;
bb2a0de9 1551 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
4d0c066d
KH
1552 return true;
1553 return false;
1554
1555}
889976db
YH
1556#if MAX_NUMNODES > 1
1557
1558/*
1559 * Always updating the nodemask is not very good - even if we have an empty
1560 * list or the wrong list here, we can start from some node and traverse all
1561 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1562 *
1563 */
1564static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1565{
1566 int nid;
453a9bf3
KH
1567 /*
1568 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1569 * pagein/pageout changes since the last update.
1570 */
1571 if (!atomic_read(&mem->numainfo_events))
1572 return;
1573 if (atomic_inc_return(&mem->numainfo_updating) > 1)
889976db
YH
1574 return;
1575
889976db
YH
1576 /* make a nodemask where this memcg uses memory from */
1577 mem->scan_nodes = node_states[N_HIGH_MEMORY];
1578
1579 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1580
4d0c066d
KH
1581 if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1582 node_clear(nid, mem->scan_nodes);
889976db 1583 }
453a9bf3
KH
1584
1585 atomic_set(&mem->numainfo_events, 0);
1586 atomic_set(&mem->numainfo_updating, 0);
889976db
YH
1587}
1588
1589/*
1590 * Selecting a node where we start reclaim from. Because what we need is just
1591 * reducing usage counter, start from anywhere is O,K. Considering
1592 * memory reclaim from current node, there are pros. and cons.
1593 *
1594 * Freeing memory from current node means freeing memory from a node which
1595 * we'll use or we've used. So, it may make LRU bad. And if several threads
1596 * hit limits, it will see a contention on a node. But freeing from remote
1597 * node means more costs for memory reclaim because of memory latency.
1598 *
1599 * Now, we use round-robin. Better algorithm is welcomed.
1600 */
1601int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1602{
1603 int node;
1604
1605 mem_cgroup_may_update_nodemask(mem);
1606 node = mem->last_scanned_node;
1607
1608 node = next_node(node, mem->scan_nodes);
1609 if (node == MAX_NUMNODES)
1610 node = first_node(mem->scan_nodes);
1611 /*
1612 * We call this when we hit limit, not when pages are added to LRU.
1613 * No LRU may hold pages because all pages are UNEVICTABLE or
1614 * memcg is too small and all pages are not on LRU. In that case,
1615 * we use curret node.
1616 */
1617 if (unlikely(node == MAX_NUMNODES))
1618 node = numa_node_id();
1619
1620 mem->last_scanned_node = node;
1621 return node;
1622}
1623
4d0c066d
KH
1624/*
1625 * Check all nodes whether it contains reclaimable pages or not.
1626 * For quick scan, we make use of scan_nodes. This will allow us to skip
1627 * unused nodes. But scan_nodes is lazily updated and may not cotain
1628 * enough new information. We need to do double check.
1629 */
1630bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1631{
1632 int nid;
1633
1634 /*
1635 * quick check...making use of scan_node.
1636 * We can skip unused nodes.
1637 */
1638 if (!nodes_empty(mem->scan_nodes)) {
1639 for (nid = first_node(mem->scan_nodes);
1640 nid < MAX_NUMNODES;
1641 nid = next_node(nid, mem->scan_nodes)) {
1642
1643 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1644 return true;
1645 }
1646 }
1647 /*
1648 * Check rest of nodes.
1649 */
1650 for_each_node_state(nid, N_HIGH_MEMORY) {
1651 if (node_isset(nid, mem->scan_nodes))
1652 continue;
1653 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1654 return true;
1655 }
1656 return false;
1657}
1658
889976db
YH
1659#else
1660int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1661{
1662 return 0;
1663}
4d0c066d
KH
1664
1665bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1666{
1667 return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1668}
889976db
YH
1669#endif
1670
82f9d486
KH
1671static void __mem_cgroup_record_scanstat(unsigned long *stats,
1672 struct memcg_scanrecord *rec)
1673{
1674
1675 stats[SCAN] += rec->nr_scanned[0] + rec->nr_scanned[1];
1676 stats[SCAN_ANON] += rec->nr_scanned[0];
1677 stats[SCAN_FILE] += rec->nr_scanned[1];
1678
1679 stats[ROTATE] += rec->nr_rotated[0] + rec->nr_rotated[1];
1680 stats[ROTATE_ANON] += rec->nr_rotated[0];
1681 stats[ROTATE_FILE] += rec->nr_rotated[1];
1682
1683 stats[FREED] += rec->nr_freed[0] + rec->nr_freed[1];
1684 stats[FREED_ANON] += rec->nr_freed[0];
1685 stats[FREED_FILE] += rec->nr_freed[1];
1686
1687 stats[ELAPSED] += rec->elapsed;
1688}
1689
1690static void mem_cgroup_record_scanstat(struct memcg_scanrecord *rec)
1691{
1692 struct mem_cgroup *mem;
1693 int context = rec->context;
1694
1695 if (context >= NR_SCAN_CONTEXT)
1696 return;
1697
1698 mem = rec->mem;
1699 spin_lock(&mem->scanstat.lock);
1700 __mem_cgroup_record_scanstat(mem->scanstat.stats[context], rec);
1701 spin_unlock(&mem->scanstat.lock);
1702
1703 mem = rec->root;
1704 spin_lock(&mem->scanstat.lock);
1705 __mem_cgroup_record_scanstat(mem->scanstat.rootstats[context], rec);
1706 spin_unlock(&mem->scanstat.lock);
1707}
1708
04046e1a
KH
1709/*
1710 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1711 * we reclaimed from, so that we don't end up penalizing one child extensively
1712 * based on its position in the children list.
6d61ef40
BS
1713 *
1714 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1715 *
1716 * We give up and return to the caller when we visit root_mem twice.
1717 * (other groups can be removed while we're walking....)
81d39c20
KH
1718 *
1719 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1720 */
1721static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1722 struct zone *zone,
75822b44 1723 gfp_t gfp_mask,
0ae5e89c
YH
1724 unsigned long reclaim_options,
1725 unsigned long *total_scanned)
6d61ef40 1726{
04046e1a
KH
1727 struct mem_cgroup *victim;
1728 int ret, total = 0;
1729 int loop = 0;
75822b44
BS
1730 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1731 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953 1732 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
82f9d486 1733 struct memcg_scanrecord rec;
9d11ea9f 1734 unsigned long excess;
82f9d486 1735 unsigned long scanned;
9d11ea9f
JW
1736
1737 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
04046e1a 1738
22a668d7 1739 /* If memsw_is_minimum==1, swap-out is of-no-use. */
108b6a78 1740 if (!check_soft && !shrink && root_mem->memsw_is_minimum)
22a668d7
KH
1741 noswap = true;
1742
82f9d486
KH
1743 if (shrink)
1744 rec.context = SCAN_BY_SHRINK;
1745 else if (check_soft)
1746 rec.context = SCAN_BY_SYSTEM;
1747 else
1748 rec.context = SCAN_BY_LIMIT;
1749
1750 rec.root = root_mem;
1751
4e416953 1752 while (1) {
04046e1a 1753 victim = mem_cgroup_select_victim(root_mem);
4e416953 1754 if (victim == root_mem) {
04046e1a 1755 loop++;
fbc29a25
KH
1756 /*
1757 * We are not draining per cpu cached charges during
1758 * soft limit reclaim because global reclaim doesn't
1759 * care about charges. It tries to free some memory and
1760 * charges will not give any.
1761 */
1762 if (!check_soft && loop >= 1)
26fe6168 1763 drain_all_stock_async(root_mem);
4e416953
BS
1764 if (loop >= 2) {
1765 /*
1766 * If we have not been able to reclaim
1767 * anything, it might because there are
1768 * no reclaimable pages under this hierarchy
1769 */
1770 if (!check_soft || !total) {
1771 css_put(&victim->css);
1772 break;
1773 }
1774 /*
25985edc 1775 * We want to do more targeted reclaim.
4e416953
BS
1776 * excess >> 2 is not to excessive so as to
1777 * reclaim too much, nor too less that we keep
1778 * coming back to reclaim from this cgroup
1779 */
1780 if (total >= (excess >> 2) ||
1781 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1782 css_put(&victim->css);
1783 break;
1784 }
1785 }
1786 }
4d0c066d 1787 if (!mem_cgroup_reclaimable(victim, noswap)) {
04046e1a
KH
1788 /* this cgroup's local usage == 0 */
1789 css_put(&victim->css);
6d61ef40
BS
1790 continue;
1791 }
82f9d486
KH
1792 rec.mem = victim;
1793 rec.nr_scanned[0] = 0;
1794 rec.nr_scanned[1] = 0;
1795 rec.nr_rotated[0] = 0;
1796 rec.nr_rotated[1] = 0;
1797 rec.nr_freed[0] = 0;
1798 rec.nr_freed[1] = 0;
1799 rec.elapsed = 0;
04046e1a 1800 /* we use swappiness of local cgroup */
0ae5e89c 1801 if (check_soft) {
4e416953 1802 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
82f9d486
KH
1803 noswap, zone, &rec, &scanned);
1804 *total_scanned += scanned;
0ae5e89c 1805 } else
4e416953 1806 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
82f9d486
KH
1807 noswap, &rec);
1808 mem_cgroup_record_scanstat(&rec);
04046e1a 1809 css_put(&victim->css);
81d39c20
KH
1810 /*
1811 * At shrinking usage, we can't check we should stop here or
1812 * reclaim more. It's depends on callers. last_scanned_child
1813 * will work enough for keeping fairness under tree.
1814 */
1815 if (shrink)
1816 return ret;
04046e1a 1817 total += ret;
4e416953 1818 if (check_soft) {
9d11ea9f 1819 if (!res_counter_soft_limit_excess(&root_mem->res))
4e416953 1820 return total;
9d11ea9f 1821 } else if (mem_cgroup_margin(root_mem))
4fd14ebf 1822 return total;
6d61ef40 1823 }
04046e1a 1824 return total;
6d61ef40
BS
1825}
1826
867578cb
KH
1827/*
1828 * Check OOM-Killer is already running under our hierarchy.
1829 * If someone is running, return false.
1af8efe9 1830 * Has to be called with memcg_oom_lock
867578cb
KH
1831 */
1832static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1833{
79dfdacc
MH
1834 int lock_count = -1;
1835 struct mem_cgroup *iter, *failed = NULL;
1836 bool cond = true;
a636b327 1837
79dfdacc
MH
1838 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1839 bool locked = iter->oom_lock;
1840
1841 iter->oom_lock = true;
1842 if (lock_count == -1)
1843 lock_count = iter->oom_lock;
1844 else if (lock_count != locked) {
1845 /*
1846 * this subtree of our hierarchy is already locked
1847 * so we cannot give a lock.
1848 */
1849 lock_count = 0;
1850 failed = iter;
1851 cond = false;
1852 }
7d74b06f 1853 }
867578cb 1854
79dfdacc
MH
1855 if (!failed)
1856 goto done;
1857
1858 /*
1859 * OK, we failed to lock the whole subtree so we have to clean up
1860 * what we set up to the failing subtree
1861 */
1862 cond = true;
1863 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1864 if (iter == failed) {
1865 cond = false;
1866 continue;
1867 }
1868 iter->oom_lock = false;
1869 }
1870done:
1871 return lock_count;
a636b327 1872}
0b7f569e 1873
79dfdacc 1874/*
1af8efe9 1875 * Has to be called with memcg_oom_lock
79dfdacc 1876 */
7d74b06f 1877static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
0b7f569e 1878{
7d74b06f
KH
1879 struct mem_cgroup *iter;
1880
79dfdacc
MH
1881 for_each_mem_cgroup_tree(iter, mem)
1882 iter->oom_lock = false;
1883 return 0;
1884}
1885
1886static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
1887{
1888 struct mem_cgroup *iter;
1889
1890 for_each_mem_cgroup_tree(iter, mem)
1891 atomic_inc(&iter->under_oom);
1892}
1893
1894static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
1895{
1896 struct mem_cgroup *iter;
1897
867578cb
KH
1898 /*
1899 * When a new child is created while the hierarchy is under oom,
1900 * mem_cgroup_oom_lock() may not be called. We have to use
1901 * atomic_add_unless() here.
1902 */
7d74b06f 1903 for_each_mem_cgroup_tree(iter, mem)
79dfdacc 1904 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1905}
1906
1af8efe9 1907static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1908static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1909
dc98df5a
KH
1910struct oom_wait_info {
1911 struct mem_cgroup *mem;
1912 wait_queue_t wait;
1913};
1914
1915static int memcg_oom_wake_function(wait_queue_t *wait,
1916 unsigned mode, int sync, void *arg)
1917{
1918 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1919 struct oom_wait_info *oom_wait_info;
1920
1921 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1922
1923 if (oom_wait_info->mem == wake_mem)
1924 goto wakeup;
1925 /* if no hierarchy, no match */
1926 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1927 return 0;
1928 /*
1929 * Both of oom_wait_info->mem and wake_mem are stable under us.
1930 * Then we can use css_is_ancestor without taking care of RCU.
1931 */
1932 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1933 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1934 return 0;
1935
1936wakeup:
1937 return autoremove_wake_function(wait, mode, sync, arg);
1938}
1939
1940static void memcg_wakeup_oom(struct mem_cgroup *mem)
1941{
1942 /* for filtering, pass "mem" as argument. */
1943 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1944}
1945
3c11ecf4
KH
1946static void memcg_oom_recover(struct mem_cgroup *mem)
1947{
79dfdacc 1948 if (mem && atomic_read(&mem->under_oom))
3c11ecf4
KH
1949 memcg_wakeup_oom(mem);
1950}
1951
867578cb
KH
1952/*
1953 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1954 */
1955bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
0b7f569e 1956{
dc98df5a 1957 struct oom_wait_info owait;
3c11ecf4 1958 bool locked, need_to_kill;
867578cb 1959
dc98df5a
KH
1960 owait.mem = mem;
1961 owait.wait.flags = 0;
1962 owait.wait.func = memcg_oom_wake_function;
1963 owait.wait.private = current;
1964 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1965 need_to_kill = true;
79dfdacc
MH
1966 mem_cgroup_mark_under_oom(mem);
1967
867578cb 1968 /* At first, try to OOM lock hierarchy under mem.*/
1af8efe9 1969 spin_lock(&memcg_oom_lock);
867578cb
KH
1970 locked = mem_cgroup_oom_lock(mem);
1971 /*
1972 * Even if signal_pending(), we can't quit charge() loop without
1973 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1974 * under OOM is always welcomed, use TASK_KILLABLE here.
1975 */
3c11ecf4
KH
1976 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1977 if (!locked || mem->oom_kill_disable)
1978 need_to_kill = false;
1979 if (locked)
9490ff27 1980 mem_cgroup_oom_notify(mem);
1af8efe9 1981 spin_unlock(&memcg_oom_lock);
867578cb 1982
3c11ecf4
KH
1983 if (need_to_kill) {
1984 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1985 mem_cgroup_out_of_memory(mem, mask);
3c11ecf4 1986 } else {
867578cb 1987 schedule();
dc98df5a 1988 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1989 }
1af8efe9 1990 spin_lock(&memcg_oom_lock);
79dfdacc
MH
1991 if (locked)
1992 mem_cgroup_oom_unlock(mem);
dc98df5a 1993 memcg_wakeup_oom(mem);
1af8efe9 1994 spin_unlock(&memcg_oom_lock);
867578cb 1995
79dfdacc
MH
1996 mem_cgroup_unmark_under_oom(mem);
1997
867578cb
KH
1998 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1999 return false;
2000 /* Give chance to dying process */
2001 schedule_timeout(1);
2002 return true;
0b7f569e
KH
2003}
2004
d69b042f
BS
2005/*
2006 * Currently used to update mapped file statistics, but the routine can be
2007 * generalized to update other statistics as well.
32047e2a
KH
2008 *
2009 * Notes: Race condition
2010 *
2011 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2012 * it tends to be costly. But considering some conditions, we doesn't need
2013 * to do so _always_.
2014 *
2015 * Considering "charge", lock_page_cgroup() is not required because all
2016 * file-stat operations happen after a page is attached to radix-tree. There
2017 * are no race with "charge".
2018 *
2019 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2020 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2021 * if there are race with "uncharge". Statistics itself is properly handled
2022 * by flags.
2023 *
2024 * Considering "move", this is an only case we see a race. To make the race
2025 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
2026 * possibility of race condition. If there is, we take a lock.
d69b042f 2027 */
26174efd 2028
2a7106f2
GT
2029void mem_cgroup_update_page_stat(struct page *page,
2030 enum mem_cgroup_page_stat_item idx, int val)
d69b042f
BS
2031{
2032 struct mem_cgroup *mem;
32047e2a
KH
2033 struct page_cgroup *pc = lookup_page_cgroup(page);
2034 bool need_unlock = false;
dbd4ea78 2035 unsigned long uninitialized_var(flags);
d69b042f 2036
d69b042f
BS
2037 if (unlikely(!pc))
2038 return;
2039
32047e2a 2040 rcu_read_lock();
d69b042f 2041 mem = pc->mem_cgroup;
32047e2a
KH
2042 if (unlikely(!mem || !PageCgroupUsed(pc)))
2043 goto out;
2044 /* pc->mem_cgroup is unstable ? */
ca3e0214 2045 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
32047e2a 2046 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 2047 move_lock_page_cgroup(pc, &flags);
32047e2a
KH
2048 need_unlock = true;
2049 mem = pc->mem_cgroup;
2050 if (!mem || !PageCgroupUsed(pc))
2051 goto out;
2052 }
26174efd 2053
26174efd 2054 switch (idx) {
2a7106f2 2055 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
2056 if (val > 0)
2057 SetPageCgroupFileMapped(pc);
2058 else if (!page_mapped(page))
0c270f8f 2059 ClearPageCgroupFileMapped(pc);
2a7106f2 2060 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2061 break;
2062 default:
2063 BUG();
8725d541 2064 }
d69b042f 2065
2a7106f2
GT
2066 this_cpu_add(mem->stat->count[idx], val);
2067
32047e2a
KH
2068out:
2069 if (unlikely(need_unlock))
dbd4ea78 2070 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
2071 rcu_read_unlock();
2072 return;
d69b042f 2073}
2a7106f2 2074EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 2075
cdec2e42
KH
2076/*
2077 * size of first charge trial. "32" comes from vmscan.c's magic value.
2078 * TODO: maybe necessary to use big numbers in big irons.
2079 */
7ec99d62 2080#define CHARGE_BATCH 32U
cdec2e42
KH
2081struct memcg_stock_pcp {
2082 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2083 unsigned int nr_pages;
cdec2e42 2084 struct work_struct work;
26fe6168
KH
2085 unsigned long flags;
2086#define FLUSHING_CACHED_CHARGE (0)
cdec2e42
KH
2087};
2088static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
26fe6168 2089static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
2090
2091/*
11c9ea4e 2092 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
2093 * from local stock and true is returned. If the stock is 0 or charges from a
2094 * cgroup which is not current target, returns false. This stock will be
2095 * refilled.
2096 */
2097static bool consume_stock(struct mem_cgroup *mem)
2098{
2099 struct memcg_stock_pcp *stock;
2100 bool ret = true;
2101
2102 stock = &get_cpu_var(memcg_stock);
11c9ea4e
JW
2103 if (mem == stock->cached && stock->nr_pages)
2104 stock->nr_pages--;
cdec2e42
KH
2105 else /* need to call res_counter_charge */
2106 ret = false;
2107 put_cpu_var(memcg_stock);
2108 return ret;
2109}
2110
2111/*
2112 * Returns stocks cached in percpu to res_counter and reset cached information.
2113 */
2114static void drain_stock(struct memcg_stock_pcp *stock)
2115{
2116 struct mem_cgroup *old = stock->cached;
2117
11c9ea4e
JW
2118 if (stock->nr_pages) {
2119 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2120
2121 res_counter_uncharge(&old->res, bytes);
cdec2e42 2122 if (do_swap_account)
11c9ea4e
JW
2123 res_counter_uncharge(&old->memsw, bytes);
2124 stock->nr_pages = 0;
cdec2e42
KH
2125 }
2126 stock->cached = NULL;
cdec2e42
KH
2127}
2128
2129/*
2130 * This must be called under preempt disabled or must be called by
2131 * a thread which is pinned to local cpu.
2132 */
2133static void drain_local_stock(struct work_struct *dummy)
2134{
2135 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2136 drain_stock(stock);
26fe6168 2137 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2138}
2139
2140/*
2141 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2142 * This will be consumed by consume_stock() function, later.
cdec2e42 2143 */
11c9ea4e 2144static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
cdec2e42
KH
2145{
2146 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2147
2148 if (stock->cached != mem) { /* reset if necessary */
2149 drain_stock(stock);
2150 stock->cached = mem;
2151 }
11c9ea4e 2152 stock->nr_pages += nr_pages;
cdec2e42
KH
2153 put_cpu_var(memcg_stock);
2154}
2155
2156/*
d38144b7
MH
2157 * Drains all per-CPU charge caches for given root_mem resp. subtree
2158 * of the hierarchy under it. sync flag says whether we should block
2159 * until the work is done.
cdec2e42 2160 */
d38144b7 2161static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
cdec2e42 2162{
26fe6168 2163 int cpu, curcpu;
d38144b7 2164
cdec2e42 2165 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2166 get_online_cpus();
26fe6168
KH
2167 /*
2168 * Get a hint for avoiding draining charges on the current cpu,
2169 * which must be exhausted by our charging. It is not required that
2170 * this be a precise check, so we use raw_smp_processor_id() instead of
2171 * getcpu()/putcpu().
2172 */
2173 curcpu = raw_smp_processor_id();
cdec2e42
KH
2174 for_each_online_cpu(cpu) {
2175 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
26fe6168
KH
2176 struct mem_cgroup *mem;
2177
26fe6168 2178 mem = stock->cached;
d1a05b69 2179 if (!mem || !stock->nr_pages)
26fe6168
KH
2180 continue;
2181 if (mem != root_mem) {
2182 if (!root_mem->use_hierarchy)
2183 continue;
2184 /* check whether "mem" is under tree of "root_mem" */
2185 if (!css_is_ancestor(&mem->css, &root_mem->css))
2186 continue;
2187 }
d1a05b69
MH
2188 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2189 if (cpu == curcpu)
2190 drain_local_stock(&stock->work);
2191 else
2192 schedule_work_on(cpu, &stock->work);
2193 }
cdec2e42 2194 }
d38144b7
MH
2195
2196 if (!sync)
2197 goto out;
2198
2199 for_each_online_cpu(cpu) {
2200 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2201 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2202 flush_work(&stock->work);
2203 }
2204out:
cdec2e42 2205 put_online_cpus();
d38144b7
MH
2206}
2207
2208/*
2209 * Tries to drain stocked charges in other cpus. This function is asynchronous
2210 * and just put a work per cpu for draining localy on each cpu. Caller can
2211 * expects some charges will be back to res_counter later but cannot wait for
2212 * it.
2213 */
2214static void drain_all_stock_async(struct mem_cgroup *root_mem)
2215{
2216 /*
2217 * If someone calls draining, avoid adding more kworker runs.
2218 */
2219 if (!mutex_trylock(&percpu_charge_mutex))
2220 return;
2221 drain_all_stock(root_mem, false);
26fe6168 2222 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2223}
2224
2225/* This is a synchronous drain interface. */
d38144b7 2226static void drain_all_stock_sync(struct mem_cgroup *root_mem)
cdec2e42
KH
2227{
2228 /* called when force_empty is called */
26fe6168 2229 mutex_lock(&percpu_charge_mutex);
d38144b7 2230 drain_all_stock(root_mem, true);
26fe6168 2231 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2232}
2233
711d3d2c
KH
2234/*
2235 * This function drains percpu counter value from DEAD cpu and
2236 * move it to local cpu. Note that this function can be preempted.
2237 */
2238static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2239{
2240 int i;
2241
2242 spin_lock(&mem->pcp_counter_lock);
2243 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
7a159cc9 2244 long x = per_cpu(mem->stat->count[i], cpu);
711d3d2c
KH
2245
2246 per_cpu(mem->stat->count[i], cpu) = 0;
2247 mem->nocpu_base.count[i] += x;
2248 }
e9f8974f
JW
2249 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2250 unsigned long x = per_cpu(mem->stat->events[i], cpu);
2251
2252 per_cpu(mem->stat->events[i], cpu) = 0;
2253 mem->nocpu_base.events[i] += x;
2254 }
1489ebad
KH
2255 /* need to clear ON_MOVE value, works as a kind of lock. */
2256 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2257 spin_unlock(&mem->pcp_counter_lock);
2258}
2259
2260static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2261{
2262 int idx = MEM_CGROUP_ON_MOVE;
2263
2264 spin_lock(&mem->pcp_counter_lock);
2265 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
711d3d2c
KH
2266 spin_unlock(&mem->pcp_counter_lock);
2267}
2268
2269static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2270 unsigned long action,
2271 void *hcpu)
2272{
2273 int cpu = (unsigned long)hcpu;
2274 struct memcg_stock_pcp *stock;
711d3d2c 2275 struct mem_cgroup *iter;
cdec2e42 2276
1489ebad
KH
2277 if ((action == CPU_ONLINE)) {
2278 for_each_mem_cgroup_all(iter)
2279 synchronize_mem_cgroup_on_move(iter, cpu);
2280 return NOTIFY_OK;
2281 }
2282
711d3d2c 2283 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 2284 return NOTIFY_OK;
711d3d2c
KH
2285
2286 for_each_mem_cgroup_all(iter)
2287 mem_cgroup_drain_pcp_counter(iter, cpu);
2288
cdec2e42
KH
2289 stock = &per_cpu(memcg_stock, cpu);
2290 drain_stock(stock);
2291 return NOTIFY_OK;
2292}
2293
4b534334
KH
2294
2295/* See __mem_cgroup_try_charge() for details */
2296enum {
2297 CHARGE_OK, /* success */
2298 CHARGE_RETRY, /* need to retry but retry is not bad */
2299 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2300 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2301 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2302};
2303
7ec99d62
JW
2304static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2305 unsigned int nr_pages, bool oom_check)
4b534334 2306{
7ec99d62 2307 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2308 struct mem_cgroup *mem_over_limit;
2309 struct res_counter *fail_res;
2310 unsigned long flags = 0;
2311 int ret;
2312
2313 ret = res_counter_charge(&mem->res, csize, &fail_res);
2314
2315 if (likely(!ret)) {
2316 if (!do_swap_account)
2317 return CHARGE_OK;
2318 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2319 if (likely(!ret))
2320 return CHARGE_OK;
2321
01c88e2d 2322 res_counter_uncharge(&mem->res, csize);
4b534334
KH
2323 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2324 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2325 } else
2326 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2327 /*
7ec99d62
JW
2328 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2329 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2330 *
2331 * Never reclaim on behalf of optional batching, retry with a
2332 * single page instead.
2333 */
7ec99d62 2334 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2335 return CHARGE_RETRY;
2336
2337 if (!(gfp_mask & __GFP_WAIT))
2338 return CHARGE_WOULDBLOCK;
2339
2340 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
0ae5e89c 2341 gfp_mask, flags, NULL);
7ec99d62 2342 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2343 return CHARGE_RETRY;
4b534334 2344 /*
19942822
JW
2345 * Even though the limit is exceeded at this point, reclaim
2346 * may have been able to free some pages. Retry the charge
2347 * before killing the task.
2348 *
2349 * Only for regular pages, though: huge pages are rather
2350 * unlikely to succeed so close to the limit, and we fall back
2351 * to regular pages anyway in case of failure.
4b534334 2352 */
7ec99d62 2353 if (nr_pages == 1 && ret)
4b534334
KH
2354 return CHARGE_RETRY;
2355
2356 /*
2357 * At task move, charge accounts can be doubly counted. So, it's
2358 * better to wait until the end of task_move if something is going on.
2359 */
2360 if (mem_cgroup_wait_acct_move(mem_over_limit))
2361 return CHARGE_RETRY;
2362
2363 /* If we don't need to call oom-killer at el, return immediately */
2364 if (!oom_check)
2365 return CHARGE_NOMEM;
2366 /* check OOM */
2367 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2368 return CHARGE_OOM_DIE;
2369
2370 return CHARGE_RETRY;
2371}
2372
f817ed48
KH
2373/*
2374 * Unlike exported interface, "oom" parameter is added. if oom==true,
2375 * oom-killer can be invoked.
8a9f3ccd 2376 */
f817ed48 2377static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2378 gfp_t gfp_mask,
7ec99d62
JW
2379 unsigned int nr_pages,
2380 struct mem_cgroup **memcg,
2381 bool oom)
8a9f3ccd 2382{
7ec99d62 2383 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334
KH
2384 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2385 struct mem_cgroup *mem = NULL;
2386 int ret;
a636b327 2387
867578cb
KH
2388 /*
2389 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2390 * in system level. So, allow to go ahead dying process in addition to
2391 * MEMDIE process.
2392 */
2393 if (unlikely(test_thread_flag(TIF_MEMDIE)
2394 || fatal_signal_pending(current)))
2395 goto bypass;
a636b327 2396
8a9f3ccd 2397 /*
3be91277
HD
2398 * We always charge the cgroup the mm_struct belongs to.
2399 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2400 * thread group leader migrates. It's possible that mm is not
2401 * set, if so charge the init_mm (happens for pagecache usage).
2402 */
f75ca962
KH
2403 if (!*memcg && !mm)
2404 goto bypass;
2405again:
2406 if (*memcg) { /* css should be a valid one */
4b534334 2407 mem = *memcg;
f75ca962
KH
2408 VM_BUG_ON(css_is_removed(&mem->css));
2409 if (mem_cgroup_is_root(mem))
2410 goto done;
7ec99d62 2411 if (nr_pages == 1 && consume_stock(mem))
f75ca962 2412 goto done;
4b534334
KH
2413 css_get(&mem->css);
2414 } else {
f75ca962 2415 struct task_struct *p;
54595fe2 2416
f75ca962
KH
2417 rcu_read_lock();
2418 p = rcu_dereference(mm->owner);
f75ca962 2419 /*
ebb76ce1
KH
2420 * Because we don't have task_lock(), "p" can exit.
2421 * In that case, "mem" can point to root or p can be NULL with
2422 * race with swapoff. Then, we have small risk of mis-accouning.
2423 * But such kind of mis-account by race always happens because
2424 * we don't have cgroup_mutex(). It's overkill and we allo that
2425 * small race, here.
2426 * (*) swapoff at el will charge against mm-struct not against
2427 * task-struct. So, mm->owner can be NULL.
f75ca962
KH
2428 */
2429 mem = mem_cgroup_from_task(p);
ebb76ce1 2430 if (!mem || mem_cgroup_is_root(mem)) {
f75ca962
KH
2431 rcu_read_unlock();
2432 goto done;
2433 }
7ec99d62 2434 if (nr_pages == 1 && consume_stock(mem)) {
f75ca962
KH
2435 /*
2436 * It seems dagerous to access memcg without css_get().
2437 * But considering how consume_stok works, it's not
2438 * necessary. If consume_stock success, some charges
2439 * from this memcg are cached on this cpu. So, we
2440 * don't need to call css_get()/css_tryget() before
2441 * calling consume_stock().
2442 */
2443 rcu_read_unlock();
2444 goto done;
2445 }
2446 /* after here, we may be blocked. we need to get refcnt */
2447 if (!css_tryget(&mem->css)) {
2448 rcu_read_unlock();
2449 goto again;
2450 }
2451 rcu_read_unlock();
2452 }
8a9f3ccd 2453
4b534334
KH
2454 do {
2455 bool oom_check;
7a81b88c 2456
4b534334 2457 /* If killed, bypass charge */
f75ca962
KH
2458 if (fatal_signal_pending(current)) {
2459 css_put(&mem->css);
4b534334 2460 goto bypass;
f75ca962 2461 }
6d61ef40 2462
4b534334
KH
2463 oom_check = false;
2464 if (oom && !nr_oom_retries) {
2465 oom_check = true;
2466 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2467 }
66e1707b 2468
7ec99d62 2469 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
4b534334
KH
2470 switch (ret) {
2471 case CHARGE_OK:
2472 break;
2473 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2474 batch = nr_pages;
f75ca962
KH
2475 css_put(&mem->css);
2476 mem = NULL;
2477 goto again;
4b534334 2478 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
f75ca962 2479 css_put(&mem->css);
4b534334
KH
2480 goto nomem;
2481 case CHARGE_NOMEM: /* OOM routine works */
f75ca962
KH
2482 if (!oom) {
2483 css_put(&mem->css);
867578cb 2484 goto nomem;
f75ca962 2485 }
4b534334
KH
2486 /* If oom, we never return -ENOMEM */
2487 nr_oom_retries--;
2488 break;
2489 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
f75ca962 2490 css_put(&mem->css);
867578cb 2491 goto bypass;
66e1707b 2492 }
4b534334
KH
2493 } while (ret != CHARGE_OK);
2494
7ec99d62
JW
2495 if (batch > nr_pages)
2496 refill_stock(mem, batch - nr_pages);
f75ca962 2497 css_put(&mem->css);
0c3e73e8 2498done:
f75ca962 2499 *memcg = mem;
7a81b88c
KH
2500 return 0;
2501nomem:
f75ca962 2502 *memcg = NULL;
7a81b88c 2503 return -ENOMEM;
867578cb
KH
2504bypass:
2505 *memcg = NULL;
2506 return 0;
7a81b88c 2507}
8a9f3ccd 2508
a3032a2c
DN
2509/*
2510 * Somemtimes we have to undo a charge we got by try_charge().
2511 * This function is for that and do uncharge, put css's refcnt.
2512 * gotten by try_charge().
2513 */
854ffa8d 2514static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
e7018b8d 2515 unsigned int nr_pages)
a3032a2c
DN
2516{
2517 if (!mem_cgroup_is_root(mem)) {
e7018b8d
JW
2518 unsigned long bytes = nr_pages * PAGE_SIZE;
2519
2520 res_counter_uncharge(&mem->res, bytes);
a3032a2c 2521 if (do_swap_account)
e7018b8d 2522 res_counter_uncharge(&mem->memsw, bytes);
a3032a2c 2523 }
854ffa8d
DN
2524}
2525
a3b2d692
KH
2526/*
2527 * A helper function to get mem_cgroup from ID. must be called under
2528 * rcu_read_lock(). The caller must check css_is_removed() or some if
2529 * it's concern. (dropping refcnt from swap can be called against removed
2530 * memcg.)
2531 */
2532static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2533{
2534 struct cgroup_subsys_state *css;
2535
2536 /* ID 0 is unused ID */
2537 if (!id)
2538 return NULL;
2539 css = css_lookup(&mem_cgroup_subsys, id);
2540 if (!css)
2541 return NULL;
2542 return container_of(css, struct mem_cgroup, css);
2543}
2544
e42d9d5d 2545struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2546{
e42d9d5d 2547 struct mem_cgroup *mem = NULL;
3c776e64 2548 struct page_cgroup *pc;
a3b2d692 2549 unsigned short id;
b5a84319
KH
2550 swp_entry_t ent;
2551
3c776e64
DN
2552 VM_BUG_ON(!PageLocked(page));
2553
3c776e64 2554 pc = lookup_page_cgroup(page);
c0bd3f63 2555 lock_page_cgroup(pc);
a3b2d692 2556 if (PageCgroupUsed(pc)) {
3c776e64 2557 mem = pc->mem_cgroup;
a3b2d692
KH
2558 if (mem && !css_tryget(&mem->css))
2559 mem = NULL;
e42d9d5d 2560 } else if (PageSwapCache(page)) {
3c776e64 2561 ent.val = page_private(page);
a3b2d692
KH
2562 id = lookup_swap_cgroup(ent);
2563 rcu_read_lock();
2564 mem = mem_cgroup_lookup(id);
2565 if (mem && !css_tryget(&mem->css))
2566 mem = NULL;
2567 rcu_read_unlock();
3c776e64 2568 }
c0bd3f63 2569 unlock_page_cgroup(pc);
b5a84319
KH
2570 return mem;
2571}
2572
ca3e0214 2573static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
5564e88b 2574 struct page *page,
7ec99d62 2575 unsigned int nr_pages,
ca3e0214 2576 struct page_cgroup *pc,
7ec99d62 2577 enum charge_type ctype)
7a81b88c 2578{
ca3e0214
KH
2579 lock_page_cgroup(pc);
2580 if (unlikely(PageCgroupUsed(pc))) {
2581 unlock_page_cgroup(pc);
e7018b8d 2582 __mem_cgroup_cancel_charge(mem, nr_pages);
ca3e0214
KH
2583 return;
2584 }
2585 /*
2586 * we don't need page_cgroup_lock about tail pages, becase they are not
2587 * accessed by any other context at this point.
2588 */
8a9f3ccd 2589 pc->mem_cgroup = mem;
261fb61a
KH
2590 /*
2591 * We access a page_cgroup asynchronously without lock_page_cgroup().
2592 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2593 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2594 * before USED bit, we need memory barrier here.
2595 * See mem_cgroup_add_lru_list(), etc.
2596 */
08e552c6 2597 smp_wmb();
4b3bde4c
BS
2598 switch (ctype) {
2599 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2600 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2601 SetPageCgroupCache(pc);
2602 SetPageCgroupUsed(pc);
2603 break;
2604 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2605 ClearPageCgroupCache(pc);
2606 SetPageCgroupUsed(pc);
2607 break;
2608 default:
2609 break;
2610 }
3be91277 2611
ca3e0214 2612 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
52d4b9ac 2613 unlock_page_cgroup(pc);
430e4863
KH
2614 /*
2615 * "charge_statistics" updated event counter. Then, check it.
2616 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2617 * if they exceeds softlimit.
2618 */
5564e88b 2619 memcg_check_events(mem, page);
7a81b88c 2620}
66e1707b 2621
ca3e0214
KH
2622#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2623
2624#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2625 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2626/*
2627 * Because tail pages are not marked as "used", set it. We're under
2628 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2629 */
2630void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2631{
2632 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2633 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2634 unsigned long flags;
2635
3d37c4a9
KH
2636 if (mem_cgroup_disabled())
2637 return;
ca3e0214 2638 /*
ece35ca8 2639 * We have no races with charge/uncharge but will have races with
ca3e0214
KH
2640 * page state accounting.
2641 */
2642 move_lock_page_cgroup(head_pc, &flags);
2643
2644 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2645 smp_wmb(); /* see __commit_charge() */
ece35ca8
KH
2646 if (PageCgroupAcctLRU(head_pc)) {
2647 enum lru_list lru;
2648 struct mem_cgroup_per_zone *mz;
2649
2650 /*
2651 * LRU flags cannot be copied because we need to add tail
2652 *.page to LRU by generic call and our hook will be called.
2653 * We hold lru_lock, then, reduce counter directly.
2654 */
2655 lru = page_lru(head);
97a6c37b 2656 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
ece35ca8
KH
2657 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2658 }
ca3e0214
KH
2659 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2660 move_unlock_page_cgroup(head_pc, &flags);
2661}
2662#endif
2663
f817ed48 2664/**
de3638d9 2665 * mem_cgroup_move_account - move account of the page
5564e88b 2666 * @page: the page
7ec99d62 2667 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2668 * @pc: page_cgroup of the page.
2669 * @from: mem_cgroup which the page is moved from.
2670 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2671 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2672 *
2673 * The caller must confirm following.
08e552c6 2674 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2675 * - compound_lock is held when nr_pages > 1
f817ed48 2676 *
854ffa8d 2677 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2678 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2679 * true, this function does "uncharge" from old cgroup, but it doesn't if
2680 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2681 */
7ec99d62
JW
2682static int mem_cgroup_move_account(struct page *page,
2683 unsigned int nr_pages,
2684 struct page_cgroup *pc,
2685 struct mem_cgroup *from,
2686 struct mem_cgroup *to,
2687 bool uncharge)
f817ed48 2688{
de3638d9
JW
2689 unsigned long flags;
2690 int ret;
987eba66 2691
f817ed48 2692 VM_BUG_ON(from == to);
5564e88b 2693 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2694 /*
2695 * The page is isolated from LRU. So, collapse function
2696 * will not handle this page. But page splitting can happen.
2697 * Do this check under compound_page_lock(). The caller should
2698 * hold it.
2699 */
2700 ret = -EBUSY;
7ec99d62 2701 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2702 goto out;
2703
2704 lock_page_cgroup(pc);
2705
2706 ret = -EINVAL;
2707 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2708 goto unlock;
2709
2710 move_lock_page_cgroup(pc, &flags);
f817ed48 2711
8725d541 2712 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2713 /* Update mapped_file data for mem_cgroup */
2714 preempt_disable();
2715 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2716 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2717 preempt_enable();
d69b042f 2718 }
987eba66 2719 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2720 if (uncharge)
2721 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2722 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2723
854ffa8d 2724 /* caller should have done css_get */
08e552c6 2725 pc->mem_cgroup = to;
987eba66 2726 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2727 /*
2728 * We charges against "to" which may not have any tasks. Then, "to"
2729 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2730 * this function is just force_empty() and move charge, so it's
25985edc 2731 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2732 * status here.
88703267 2733 */
de3638d9
JW
2734 move_unlock_page_cgroup(pc, &flags);
2735 ret = 0;
2736unlock:
57f9fd7d 2737 unlock_page_cgroup(pc);
d2265e6f
KH
2738 /*
2739 * check events
2740 */
5564e88b
JW
2741 memcg_check_events(to, page);
2742 memcg_check_events(from, page);
de3638d9 2743out:
f817ed48
KH
2744 return ret;
2745}
2746
2747/*
2748 * move charges to its parent.
2749 */
2750
5564e88b
JW
2751static int mem_cgroup_move_parent(struct page *page,
2752 struct page_cgroup *pc,
f817ed48
KH
2753 struct mem_cgroup *child,
2754 gfp_t gfp_mask)
2755{
2756 struct cgroup *cg = child->css.cgroup;
2757 struct cgroup *pcg = cg->parent;
2758 struct mem_cgroup *parent;
7ec99d62 2759 unsigned int nr_pages;
4be4489f 2760 unsigned long uninitialized_var(flags);
f817ed48
KH
2761 int ret;
2762
2763 /* Is ROOT ? */
2764 if (!pcg)
2765 return -EINVAL;
2766
57f9fd7d
DN
2767 ret = -EBUSY;
2768 if (!get_page_unless_zero(page))
2769 goto out;
2770 if (isolate_lru_page(page))
2771 goto put;
52dbb905 2772
7ec99d62 2773 nr_pages = hpage_nr_pages(page);
08e552c6 2774
f817ed48 2775 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2776 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
a636b327 2777 if (ret || !parent)
57f9fd7d 2778 goto put_back;
f817ed48 2779
7ec99d62 2780 if (nr_pages > 1)
987eba66
KH
2781 flags = compound_lock_irqsave(page);
2782
7ec99d62 2783 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2784 if (ret)
7ec99d62 2785 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2786
7ec99d62 2787 if (nr_pages > 1)
987eba66 2788 compound_unlock_irqrestore(page, flags);
8dba474f 2789put_back:
08e552c6 2790 putback_lru_page(page);
57f9fd7d 2791put:
40d58138 2792 put_page(page);
57f9fd7d 2793out:
f817ed48
KH
2794 return ret;
2795}
2796
7a81b88c
KH
2797/*
2798 * Charge the memory controller for page usage.
2799 * Return
2800 * 0 if the charge was successful
2801 * < 0 if the cgroup is over its limit
2802 */
2803static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2804 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2805{
73045c47 2806 struct mem_cgroup *mem = NULL;
7ec99d62 2807 unsigned int nr_pages = 1;
7a81b88c 2808 struct page_cgroup *pc;
8493ae43 2809 bool oom = true;
7a81b88c 2810 int ret;
ec168510 2811
37c2ac78 2812 if (PageTransHuge(page)) {
7ec99d62 2813 nr_pages <<= compound_order(page);
37c2ac78 2814 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2815 /*
2816 * Never OOM-kill a process for a huge page. The
2817 * fault handler will fall back to regular pages.
2818 */
2819 oom = false;
37c2ac78 2820 }
7a81b88c
KH
2821
2822 pc = lookup_page_cgroup(page);
af4a6621 2823 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
7a81b88c 2824
7ec99d62 2825 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
a636b327 2826 if (ret || !mem)
7a81b88c
KH
2827 return ret;
2828
7ec99d62 2829 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
8a9f3ccd 2830 return 0;
8a9f3ccd
BS
2831}
2832
7a81b88c
KH
2833int mem_cgroup_newpage_charge(struct page *page,
2834 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2835{
f8d66542 2836 if (mem_cgroup_disabled())
cede86ac 2837 return 0;
69029cd5
KH
2838 /*
2839 * If already mapped, we don't have to account.
2840 * If page cache, page->mapping has address_space.
2841 * But page->mapping may have out-of-use anon_vma pointer,
2842 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2843 * is NULL.
2844 */
2845 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2846 return 0;
2847 if (unlikely(!mm))
2848 mm = &init_mm;
217bc319 2849 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2850 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2851}
2852
83aae4c7
DN
2853static void
2854__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2855 enum charge_type ctype);
2856
5a6475a4
KH
2857static void
2858__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2859 enum charge_type ctype)
2860{
2861 struct page_cgroup *pc = lookup_page_cgroup(page);
2862 /*
2863 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2864 * is already on LRU. It means the page may on some other page_cgroup's
2865 * LRU. Take care of it.
2866 */
2867 mem_cgroup_lru_del_before_commit(page);
2868 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2869 mem_cgroup_lru_add_after_commit(page);
2870 return;
2871}
2872
e1a1cd59
BS
2873int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2874 gfp_t gfp_mask)
8697d331 2875{
5a6475a4 2876 struct mem_cgroup *mem = NULL;
b5a84319
KH
2877 int ret;
2878
f8d66542 2879 if (mem_cgroup_disabled())
cede86ac 2880 return 0;
52d4b9ac
KH
2881 if (PageCompound(page))
2882 return 0;
accf163e
KH
2883 /*
2884 * Corner case handling. This is called from add_to_page_cache()
2885 * in usual. But some FS (shmem) precharges this page before calling it
2886 * and call add_to_page_cache() with GFP_NOWAIT.
2887 *
2888 * For GFP_NOWAIT case, the page may be pre-charged before calling
2889 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2890 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
2891 * And when the page is SwapCache, it should take swap information
2892 * into account. This is under lock_page() now.
accf163e
KH
2893 */
2894 if (!(gfp_mask & __GFP_WAIT)) {
2895 struct page_cgroup *pc;
2896
52d4b9ac
KH
2897 pc = lookup_page_cgroup(page);
2898 if (!pc)
2899 return 0;
2900 lock_page_cgroup(pc);
2901 if (PageCgroupUsed(pc)) {
2902 unlock_page_cgroup(pc);
accf163e
KH
2903 return 0;
2904 }
52d4b9ac 2905 unlock_page_cgroup(pc);
accf163e
KH
2906 }
2907
73045c47 2908 if (unlikely(!mm))
8697d331 2909 mm = &init_mm;
accf163e 2910
5a6475a4
KH
2911 if (page_is_file_cache(page)) {
2912 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2913 if (ret || !mem)
2914 return ret;
b5a84319 2915
5a6475a4
KH
2916 /*
2917 * FUSE reuses pages without going through the final
2918 * put that would remove them from the LRU list, make
2919 * sure that they get relinked properly.
2920 */
2921 __mem_cgroup_commit_charge_lrucare(page, mem,
2922 MEM_CGROUP_CHARGE_TYPE_CACHE);
2923 return ret;
2924 }
83aae4c7
DN
2925 /* shmem */
2926 if (PageSwapCache(page)) {
2927 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2928 if (!ret)
2929 __mem_cgroup_commit_charge_swapin(page, mem,
2930 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2931 } else
2932 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2933 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2934
b5a84319 2935 return ret;
e8589cc1
KH
2936}
2937
54595fe2
KH
2938/*
2939 * While swap-in, try_charge -> commit or cancel, the page is locked.
2940 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2941 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2942 * "commit()" or removed by "cancel()"
2943 */
8c7c6e34
KH
2944int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2945 struct page *page,
2946 gfp_t mask, struct mem_cgroup **ptr)
2947{
2948 struct mem_cgroup *mem;
54595fe2 2949 int ret;
8c7c6e34 2950
56039efa
KH
2951 *ptr = NULL;
2952
f8d66542 2953 if (mem_cgroup_disabled())
8c7c6e34
KH
2954 return 0;
2955
2956 if (!do_swap_account)
2957 goto charge_cur_mm;
8c7c6e34
KH
2958 /*
2959 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2960 * the pte, and even removed page from swap cache: in those cases
2961 * do_swap_page()'s pte_same() test will fail; but there's also a
2962 * KSM case which does need to charge the page.
8c7c6e34
KH
2963 */
2964 if (!PageSwapCache(page))
407f9c8b 2965 goto charge_cur_mm;
e42d9d5d 2966 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
2967 if (!mem)
2968 goto charge_cur_mm;
8c7c6e34 2969 *ptr = mem;
7ec99d62 2970 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
54595fe2
KH
2971 css_put(&mem->css);
2972 return ret;
8c7c6e34
KH
2973charge_cur_mm:
2974 if (unlikely(!mm))
2975 mm = &init_mm;
7ec99d62 2976 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
8c7c6e34
KH
2977}
2978
83aae4c7
DN
2979static void
2980__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2981 enum charge_type ctype)
7a81b88c 2982{
f8d66542 2983 if (mem_cgroup_disabled())
7a81b88c
KH
2984 return;
2985 if (!ptr)
2986 return;
88703267 2987 cgroup_exclude_rmdir(&ptr->css);
5a6475a4
KH
2988
2989 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
8c7c6e34
KH
2990 /*
2991 * Now swap is on-memory. This means this page may be
2992 * counted both as mem and swap....double count.
03f3c433
KH
2993 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2994 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2995 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2996 */
03f3c433 2997 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2998 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2999 unsigned short id;
8c7c6e34 3000 struct mem_cgroup *memcg;
a3b2d692
KH
3001
3002 id = swap_cgroup_record(ent, 0);
3003 rcu_read_lock();
3004 memcg = mem_cgroup_lookup(id);
8c7c6e34 3005 if (memcg) {
a3b2d692
KH
3006 /*
3007 * This recorded memcg can be obsolete one. So, avoid
3008 * calling css_tryget
3009 */
0c3e73e8 3010 if (!mem_cgroup_is_root(memcg))
4e649152 3011 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3012 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3013 mem_cgroup_put(memcg);
3014 }
a3b2d692 3015 rcu_read_unlock();
8c7c6e34 3016 }
88703267
KH
3017 /*
3018 * At swapin, we may charge account against cgroup which has no tasks.
3019 * So, rmdir()->pre_destroy() can be called while we do this charge.
3020 * In that case, we need to call pre_destroy() again. check it here.
3021 */
3022 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
3023}
3024
83aae4c7
DN
3025void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
3026{
3027 __mem_cgroup_commit_charge_swapin(page, ptr,
3028 MEM_CGROUP_CHARGE_TYPE_MAPPED);
3029}
3030
7a81b88c
KH
3031void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
3032{
f8d66542 3033 if (mem_cgroup_disabled())
7a81b88c
KH
3034 return;
3035 if (!mem)
3036 return;
e7018b8d 3037 __mem_cgroup_cancel_charge(mem, 1);
7a81b88c
KH
3038}
3039
7ec99d62
JW
3040static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
3041 unsigned int nr_pages,
3042 const enum charge_type ctype)
569b846d
KH
3043{
3044 struct memcg_batch_info *batch = NULL;
3045 bool uncharge_memsw = true;
7ec99d62 3046
569b846d
KH
3047 /* If swapout, usage of swap doesn't decrease */
3048 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3049 uncharge_memsw = false;
569b846d
KH
3050
3051 batch = &current->memcg_batch;
3052 /*
3053 * In usual, we do css_get() when we remember memcg pointer.
3054 * But in this case, we keep res->usage until end of a series of
3055 * uncharges. Then, it's ok to ignore memcg's refcnt.
3056 */
3057 if (!batch->memcg)
3058 batch->memcg = mem;
3c11ecf4
KH
3059 /*
3060 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 3061 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
3062 * the same cgroup and we have chance to coalesce uncharges.
3063 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3064 * because we want to do uncharge as soon as possible.
3065 */
3066
3067 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3068 goto direct_uncharge;
3069
7ec99d62 3070 if (nr_pages > 1)
ec168510
AA
3071 goto direct_uncharge;
3072
569b846d
KH
3073 /*
3074 * In typical case, batch->memcg == mem. This means we can
3075 * merge a series of uncharges to an uncharge of res_counter.
3076 * If not, we uncharge res_counter ony by one.
3077 */
3078 if (batch->memcg != mem)
3079 goto direct_uncharge;
3080 /* remember freed charge and uncharge it later */
7ffd4ca7 3081 batch->nr_pages++;
569b846d 3082 if (uncharge_memsw)
7ffd4ca7 3083 batch->memsw_nr_pages++;
569b846d
KH
3084 return;
3085direct_uncharge:
7ec99d62 3086 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
569b846d 3087 if (uncharge_memsw)
7ec99d62 3088 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
3c11ecf4
KH
3089 if (unlikely(batch->memcg != mem))
3090 memcg_oom_recover(mem);
569b846d
KH
3091 return;
3092}
7a81b88c 3093
8a9f3ccd 3094/*
69029cd5 3095 * uncharge if !page_mapped(page)
8a9f3ccd 3096 */
8c7c6e34 3097static struct mem_cgroup *
69029cd5 3098__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 3099{
8c7c6e34 3100 struct mem_cgroup *mem = NULL;
7ec99d62
JW
3101 unsigned int nr_pages = 1;
3102 struct page_cgroup *pc;
8a9f3ccd 3103
f8d66542 3104 if (mem_cgroup_disabled())
8c7c6e34 3105 return NULL;
4077960e 3106
d13d1443 3107 if (PageSwapCache(page))
8c7c6e34 3108 return NULL;
d13d1443 3109
37c2ac78 3110 if (PageTransHuge(page)) {
7ec99d62 3111 nr_pages <<= compound_order(page);
37c2ac78
AA
3112 VM_BUG_ON(!PageTransHuge(page));
3113 }
8697d331 3114 /*
3c541e14 3115 * Check if our page_cgroup is valid
8697d331 3116 */
52d4b9ac
KH
3117 pc = lookup_page_cgroup(page);
3118 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 3119 return NULL;
b9c565d5 3120
52d4b9ac 3121 lock_page_cgroup(pc);
d13d1443 3122
8c7c6e34
KH
3123 mem = pc->mem_cgroup;
3124
d13d1443
KH
3125 if (!PageCgroupUsed(pc))
3126 goto unlock_out;
3127
3128 switch (ctype) {
3129 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 3130 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c
AM
3131 /* See mem_cgroup_prepare_migration() */
3132 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
3133 goto unlock_out;
3134 break;
3135 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3136 if (!PageAnon(page)) { /* Shared memory */
3137 if (page->mapping && !page_is_file_cache(page))
3138 goto unlock_out;
3139 } else if (page_mapped(page)) /* Anon */
3140 goto unlock_out;
3141 break;
3142 default:
3143 break;
52d4b9ac 3144 }
d13d1443 3145
7ec99d62 3146 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
04046e1a 3147
52d4b9ac 3148 ClearPageCgroupUsed(pc);
544122e5
KH
3149 /*
3150 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3151 * freed from LRU. This is safe because uncharged page is expected not
3152 * to be reused (freed soon). Exception is SwapCache, it's handled by
3153 * special functions.
3154 */
b9c565d5 3155
52d4b9ac 3156 unlock_page_cgroup(pc);
f75ca962
KH
3157 /*
3158 * even after unlock, we have mem->res.usage here and this memcg
3159 * will never be freed.
3160 */
d2265e6f 3161 memcg_check_events(mem, page);
f75ca962
KH
3162 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3163 mem_cgroup_swap_statistics(mem, true);
3164 mem_cgroup_get(mem);
3165 }
3166 if (!mem_cgroup_is_root(mem))
7ec99d62 3167 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
6d12e2d8 3168
8c7c6e34 3169 return mem;
d13d1443
KH
3170
3171unlock_out:
3172 unlock_page_cgroup(pc);
8c7c6e34 3173 return NULL;
3c541e14
BS
3174}
3175
69029cd5
KH
3176void mem_cgroup_uncharge_page(struct page *page)
3177{
52d4b9ac
KH
3178 /* early check. */
3179 if (page_mapped(page))
3180 return;
3181 if (page->mapping && !PageAnon(page))
3182 return;
69029cd5
KH
3183 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3184}
3185
3186void mem_cgroup_uncharge_cache_page(struct page *page)
3187{
3188 VM_BUG_ON(page_mapped(page));
b7abea96 3189 VM_BUG_ON(page->mapping);
69029cd5
KH
3190 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3191}
3192
569b846d
KH
3193/*
3194 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3195 * In that cases, pages are freed continuously and we can expect pages
3196 * are in the same memcg. All these calls itself limits the number of
3197 * pages freed at once, then uncharge_start/end() is called properly.
3198 * This may be called prural(2) times in a context,
3199 */
3200
3201void mem_cgroup_uncharge_start(void)
3202{
3203 current->memcg_batch.do_batch++;
3204 /* We can do nest. */
3205 if (current->memcg_batch.do_batch == 1) {
3206 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3207 current->memcg_batch.nr_pages = 0;
3208 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3209 }
3210}
3211
3212void mem_cgroup_uncharge_end(void)
3213{
3214 struct memcg_batch_info *batch = &current->memcg_batch;
3215
3216 if (!batch->do_batch)
3217 return;
3218
3219 batch->do_batch--;
3220 if (batch->do_batch) /* If stacked, do nothing. */
3221 return;
3222
3223 if (!batch->memcg)
3224 return;
3225 /*
3226 * This "batch->memcg" is valid without any css_get/put etc...
3227 * bacause we hide charges behind us.
3228 */
7ffd4ca7
JW
3229 if (batch->nr_pages)
3230 res_counter_uncharge(&batch->memcg->res,
3231 batch->nr_pages * PAGE_SIZE);
3232 if (batch->memsw_nr_pages)
3233 res_counter_uncharge(&batch->memcg->memsw,
3234 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3235 memcg_oom_recover(batch->memcg);
569b846d
KH
3236 /* forget this pointer (for sanity check) */
3237 batch->memcg = NULL;
3238}
3239
e767e056 3240#ifdef CONFIG_SWAP
8c7c6e34 3241/*
e767e056 3242 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3243 * memcg information is recorded to swap_cgroup of "ent"
3244 */
8a9478ca
KH
3245void
3246mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3247{
3248 struct mem_cgroup *memcg;
8a9478ca
KH
3249 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3250
3251 if (!swapout) /* this was a swap cache but the swap is unused ! */
3252 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3253
3254 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3255
f75ca962
KH
3256 /*
3257 * record memcg information, if swapout && memcg != NULL,
3258 * mem_cgroup_get() was called in uncharge().
3259 */
3260 if (do_swap_account && swapout && memcg)
a3b2d692 3261 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3262}
e767e056 3263#endif
8c7c6e34
KH
3264
3265#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3266/*
3267 * called from swap_entry_free(). remove record in swap_cgroup and
3268 * uncharge "memsw" account.
3269 */
3270void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3271{
8c7c6e34 3272 struct mem_cgroup *memcg;
a3b2d692 3273 unsigned short id;
8c7c6e34
KH
3274
3275 if (!do_swap_account)
3276 return;
3277
a3b2d692
KH
3278 id = swap_cgroup_record(ent, 0);
3279 rcu_read_lock();
3280 memcg = mem_cgroup_lookup(id);
8c7c6e34 3281 if (memcg) {
a3b2d692
KH
3282 /*
3283 * We uncharge this because swap is freed.
3284 * This memcg can be obsolete one. We avoid calling css_tryget
3285 */
0c3e73e8 3286 if (!mem_cgroup_is_root(memcg))
4e649152 3287 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3288 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3289 mem_cgroup_put(memcg);
3290 }
a3b2d692 3291 rcu_read_unlock();
d13d1443 3292}
02491447
DN
3293
3294/**
3295 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3296 * @entry: swap entry to be moved
3297 * @from: mem_cgroup which the entry is moved from
3298 * @to: mem_cgroup which the entry is moved to
483c30b5 3299 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
3300 *
3301 * It succeeds only when the swap_cgroup's record for this entry is the same
3302 * as the mem_cgroup's id of @from.
3303 *
3304 * Returns 0 on success, -EINVAL on failure.
3305 *
3306 * The caller must have charged to @to, IOW, called res_counter_charge() about
3307 * both res and memsw, and called css_get().
3308 */
3309static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3310 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3311{
3312 unsigned short old_id, new_id;
3313
3314 old_id = css_id(&from->css);
3315 new_id = css_id(&to->css);
3316
3317 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3318 mem_cgroup_swap_statistics(from, false);
483c30b5 3319 mem_cgroup_swap_statistics(to, true);
02491447 3320 /*
483c30b5
DN
3321 * This function is only called from task migration context now.
3322 * It postpones res_counter and refcount handling till the end
3323 * of task migration(mem_cgroup_clear_mc()) for performance
3324 * improvement. But we cannot postpone mem_cgroup_get(to)
3325 * because if the process that has been moved to @to does
3326 * swap-in, the refcount of @to might be decreased to 0.
02491447 3327 */
02491447 3328 mem_cgroup_get(to);
483c30b5
DN
3329 if (need_fixup) {
3330 if (!mem_cgroup_is_root(from))
3331 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3332 mem_cgroup_put(from);
3333 /*
3334 * we charged both to->res and to->memsw, so we should
3335 * uncharge to->res.
3336 */
3337 if (!mem_cgroup_is_root(to))
3338 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 3339 }
02491447
DN
3340 return 0;
3341 }
3342 return -EINVAL;
3343}
3344#else
3345static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3346 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3347{
3348 return -EINVAL;
3349}
8c7c6e34 3350#endif
d13d1443 3351
ae41be37 3352/*
01b1ae63
KH
3353 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3354 * page belongs to.
ae41be37 3355 */
ac39cf8c 3356int mem_cgroup_prepare_migration(struct page *page,
ef6a3c63 3357 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
ae41be37 3358{
e8589cc1 3359 struct mem_cgroup *mem = NULL;
7ec99d62 3360 struct page_cgroup *pc;
ac39cf8c 3361 enum charge_type ctype;
e8589cc1 3362 int ret = 0;
8869b8f6 3363
56039efa
KH
3364 *ptr = NULL;
3365
ec168510 3366 VM_BUG_ON(PageTransHuge(page));
f8d66542 3367 if (mem_cgroup_disabled())
4077960e
BS
3368 return 0;
3369
52d4b9ac
KH
3370 pc = lookup_page_cgroup(page);
3371 lock_page_cgroup(pc);
3372 if (PageCgroupUsed(pc)) {
e8589cc1
KH
3373 mem = pc->mem_cgroup;
3374 css_get(&mem->css);
ac39cf8c
AM
3375 /*
3376 * At migrating an anonymous page, its mapcount goes down
3377 * to 0 and uncharge() will be called. But, even if it's fully
3378 * unmapped, migration may fail and this page has to be
3379 * charged again. We set MIGRATION flag here and delay uncharge
3380 * until end_migration() is called
3381 *
3382 * Corner Case Thinking
3383 * A)
3384 * When the old page was mapped as Anon and it's unmap-and-freed
3385 * while migration was ongoing.
3386 * If unmap finds the old page, uncharge() of it will be delayed
3387 * until end_migration(). If unmap finds a new page, it's
3388 * uncharged when it make mapcount to be 1->0. If unmap code
3389 * finds swap_migration_entry, the new page will not be mapped
3390 * and end_migration() will find it(mapcount==0).
3391 *
3392 * B)
3393 * When the old page was mapped but migraion fails, the kernel
3394 * remaps it. A charge for it is kept by MIGRATION flag even
3395 * if mapcount goes down to 0. We can do remap successfully
3396 * without charging it again.
3397 *
3398 * C)
3399 * The "old" page is under lock_page() until the end of
3400 * migration, so, the old page itself will not be swapped-out.
3401 * If the new page is swapped out before end_migraton, our
3402 * hook to usual swap-out path will catch the event.
3403 */
3404 if (PageAnon(page))
3405 SetPageCgroupMigration(pc);
e8589cc1 3406 }
52d4b9ac 3407 unlock_page_cgroup(pc);
ac39cf8c
AM
3408 /*
3409 * If the page is not charged at this point,
3410 * we return here.
3411 */
3412 if (!mem)
3413 return 0;
01b1ae63 3414
93d5c9be 3415 *ptr = mem;
7ec99d62 3416 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
ac39cf8c
AM
3417 css_put(&mem->css);/* drop extra refcnt */
3418 if (ret || *ptr == NULL) {
3419 if (PageAnon(page)) {
3420 lock_page_cgroup(pc);
3421 ClearPageCgroupMigration(pc);
3422 unlock_page_cgroup(pc);
3423 /*
3424 * The old page may be fully unmapped while we kept it.
3425 */
3426 mem_cgroup_uncharge_page(page);
3427 }
3428 return -ENOMEM;
e8589cc1 3429 }
ac39cf8c
AM
3430 /*
3431 * We charge new page before it's used/mapped. So, even if unlock_page()
3432 * is called before end_migration, we can catch all events on this new
3433 * page. In the case new page is migrated but not remapped, new page's
3434 * mapcount will be finally 0 and we call uncharge in end_migration().
3435 */
3436 pc = lookup_page_cgroup(newpage);
3437 if (PageAnon(page))
3438 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3439 else if (page_is_file_cache(page))
3440 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3441 else
3442 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
7ec99d62 3443 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
e8589cc1 3444 return ret;
ae41be37 3445}
8869b8f6 3446
69029cd5 3447/* remove redundant charge if migration failed*/
01b1ae63 3448void mem_cgroup_end_migration(struct mem_cgroup *mem,
50de1dd9 3449 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3450{
ac39cf8c 3451 struct page *used, *unused;
01b1ae63 3452 struct page_cgroup *pc;
01b1ae63
KH
3453
3454 if (!mem)
3455 return;
ac39cf8c 3456 /* blocks rmdir() */
88703267 3457 cgroup_exclude_rmdir(&mem->css);
50de1dd9 3458 if (!migration_ok) {
ac39cf8c
AM
3459 used = oldpage;
3460 unused = newpage;
01b1ae63 3461 } else {
ac39cf8c 3462 used = newpage;
01b1ae63
KH
3463 unused = oldpage;
3464 }
69029cd5 3465 /*
ac39cf8c
AM
3466 * We disallowed uncharge of pages under migration because mapcount
3467 * of the page goes down to zero, temporarly.
3468 * Clear the flag and check the page should be charged.
01b1ae63 3469 */
ac39cf8c
AM
3470 pc = lookup_page_cgroup(oldpage);
3471 lock_page_cgroup(pc);
3472 ClearPageCgroupMigration(pc);
3473 unlock_page_cgroup(pc);
01b1ae63 3474
ac39cf8c
AM
3475 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3476
01b1ae63 3477 /*
ac39cf8c
AM
3478 * If a page is a file cache, radix-tree replacement is very atomic
3479 * and we can skip this check. When it was an Anon page, its mapcount
3480 * goes down to 0. But because we added MIGRATION flage, it's not
3481 * uncharged yet. There are several case but page->mapcount check
3482 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3483 * check. (see prepare_charge() also)
69029cd5 3484 */
ac39cf8c
AM
3485 if (PageAnon(used))
3486 mem_cgroup_uncharge_page(used);
88703267 3487 /*
ac39cf8c
AM
3488 * At migration, we may charge account against cgroup which has no
3489 * tasks.
88703267
KH
3490 * So, rmdir()->pre_destroy() can be called while we do this charge.
3491 * In that case, we need to call pre_destroy() again. check it here.
3492 */
3493 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 3494}
78fb7466 3495
c9b0ed51 3496/*
ae3abae6
DN
3497 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3498 * Calling hierarchical_reclaim is not enough because we should update
3499 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3500 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3501 * not from the memcg which this page would be charged to.
3502 * try_charge_swapin does all of these works properly.
c9b0ed51 3503 */
ae3abae6 3504int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
3505 struct mm_struct *mm,
3506 gfp_t gfp_mask)
c9b0ed51 3507{
56039efa 3508 struct mem_cgroup *mem;
ae3abae6 3509 int ret;
c9b0ed51 3510
f8d66542 3511 if (mem_cgroup_disabled())
cede86ac 3512 return 0;
c9b0ed51 3513
ae3abae6
DN
3514 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3515 if (!ret)
3516 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 3517
ae3abae6 3518 return ret;
c9b0ed51
KH
3519}
3520
f212ad7c
DN
3521#ifdef CONFIG_DEBUG_VM
3522static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3523{
3524 struct page_cgroup *pc;
3525
3526 pc = lookup_page_cgroup(page);
3527 if (likely(pc) && PageCgroupUsed(pc))
3528 return pc;
3529 return NULL;
3530}
3531
3532bool mem_cgroup_bad_page_check(struct page *page)
3533{
3534 if (mem_cgroup_disabled())
3535 return false;
3536
3537 return lookup_page_cgroup_used(page) != NULL;
3538}
3539
3540void mem_cgroup_print_bad_page(struct page *page)
3541{
3542 struct page_cgroup *pc;
3543
3544 pc = lookup_page_cgroup_used(page);
3545 if (pc) {
3546 int ret = -1;
3547 char *path;
3548
3549 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3550 pc, pc->flags, pc->mem_cgroup);
3551
3552 path = kmalloc(PATH_MAX, GFP_KERNEL);
3553 if (path) {
3554 rcu_read_lock();
3555 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3556 path, PATH_MAX);
3557 rcu_read_unlock();
3558 }
3559
3560 printk(KERN_CONT "(%s)\n",
3561 (ret < 0) ? "cannot get the path" : path);
3562 kfree(path);
3563 }
3564}
3565#endif
3566
8c7c6e34
KH
3567static DEFINE_MUTEX(set_limit_mutex);
3568
d38d2a75 3569static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3570 unsigned long long val)
628f4235 3571{
81d39c20 3572 int retry_count;
3c11ecf4 3573 u64 memswlimit, memlimit;
628f4235 3574 int ret = 0;
81d39c20
KH
3575 int children = mem_cgroup_count_children(memcg);
3576 u64 curusage, oldusage;
3c11ecf4 3577 int enlarge;
81d39c20
KH
3578
3579 /*
3580 * For keeping hierarchical_reclaim simple, how long we should retry
3581 * is depends on callers. We set our retry-count to be function
3582 * of # of children which we should visit in this loop.
3583 */
3584 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3585
3586 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3587
3c11ecf4 3588 enlarge = 0;
8c7c6e34 3589 while (retry_count) {
628f4235
KH
3590 if (signal_pending(current)) {
3591 ret = -EINTR;
3592 break;
3593 }
8c7c6e34
KH
3594 /*
3595 * Rather than hide all in some function, I do this in
3596 * open coded manner. You see what this really does.
3597 * We have to guarantee mem->res.limit < mem->memsw.limit.
3598 */
3599 mutex_lock(&set_limit_mutex);
3600 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3601 if (memswlimit < val) {
3602 ret = -EINVAL;
3603 mutex_unlock(&set_limit_mutex);
628f4235
KH
3604 break;
3605 }
3c11ecf4
KH
3606
3607 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3608 if (memlimit < val)
3609 enlarge = 1;
3610
8c7c6e34 3611 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3612 if (!ret) {
3613 if (memswlimit == val)
3614 memcg->memsw_is_minimum = true;
3615 else
3616 memcg->memsw_is_minimum = false;
3617 }
8c7c6e34
KH
3618 mutex_unlock(&set_limit_mutex);
3619
3620 if (!ret)
3621 break;
3622
aa20d489 3623 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
0ae5e89c
YH
3624 MEM_CGROUP_RECLAIM_SHRINK,
3625 NULL);
81d39c20
KH
3626 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3627 /* Usage is reduced ? */
3628 if (curusage >= oldusage)
3629 retry_count--;
3630 else
3631 oldusage = curusage;
8c7c6e34 3632 }
3c11ecf4
KH
3633 if (!ret && enlarge)
3634 memcg_oom_recover(memcg);
14797e23 3635
8c7c6e34
KH
3636 return ret;
3637}
3638
338c8431
LZ
3639static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3640 unsigned long long val)
8c7c6e34 3641{
81d39c20 3642 int retry_count;
3c11ecf4 3643 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3644 int children = mem_cgroup_count_children(memcg);
3645 int ret = -EBUSY;
3c11ecf4 3646 int enlarge = 0;
8c7c6e34 3647
81d39c20
KH
3648 /* see mem_cgroup_resize_res_limit */
3649 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3650 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3651 while (retry_count) {
3652 if (signal_pending(current)) {
3653 ret = -EINTR;
3654 break;
3655 }
3656 /*
3657 * Rather than hide all in some function, I do this in
3658 * open coded manner. You see what this really does.
3659 * We have to guarantee mem->res.limit < mem->memsw.limit.
3660 */
3661 mutex_lock(&set_limit_mutex);
3662 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3663 if (memlimit > val) {
3664 ret = -EINVAL;
3665 mutex_unlock(&set_limit_mutex);
3666 break;
3667 }
3c11ecf4
KH
3668 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3669 if (memswlimit < val)
3670 enlarge = 1;
8c7c6e34 3671 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3672 if (!ret) {
3673 if (memlimit == val)
3674 memcg->memsw_is_minimum = true;
3675 else
3676 memcg->memsw_is_minimum = false;
3677 }
8c7c6e34
KH
3678 mutex_unlock(&set_limit_mutex);
3679
3680 if (!ret)
3681 break;
3682
4e416953 3683 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44 3684 MEM_CGROUP_RECLAIM_NOSWAP |
0ae5e89c
YH
3685 MEM_CGROUP_RECLAIM_SHRINK,
3686 NULL);
8c7c6e34 3687 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3688 /* Usage is reduced ? */
8c7c6e34 3689 if (curusage >= oldusage)
628f4235 3690 retry_count--;
81d39c20
KH
3691 else
3692 oldusage = curusage;
628f4235 3693 }
3c11ecf4
KH
3694 if (!ret && enlarge)
3695 memcg_oom_recover(memcg);
628f4235
KH
3696 return ret;
3697}
3698
4e416953 3699unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3700 gfp_t gfp_mask,
3701 unsigned long *total_scanned)
4e416953
BS
3702{
3703 unsigned long nr_reclaimed = 0;
3704 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3705 unsigned long reclaimed;
3706 int loop = 0;
3707 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3708 unsigned long long excess;
0ae5e89c 3709 unsigned long nr_scanned;
4e416953
BS
3710
3711 if (order > 0)
3712 return 0;
3713
00918b6a 3714 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3715 /*
3716 * This loop can run a while, specially if mem_cgroup's continuously
3717 * keep exceeding their soft limit and putting the system under
3718 * pressure
3719 */
3720 do {
3721 if (next_mz)
3722 mz = next_mz;
3723 else
3724 mz = mem_cgroup_largest_soft_limit_node(mctz);
3725 if (!mz)
3726 break;
3727
0ae5e89c 3728 nr_scanned = 0;
4e416953
BS
3729 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3730 gfp_mask,
0ae5e89c
YH
3731 MEM_CGROUP_RECLAIM_SOFT,
3732 &nr_scanned);
4e416953 3733 nr_reclaimed += reclaimed;
0ae5e89c 3734 *total_scanned += nr_scanned;
4e416953
BS
3735 spin_lock(&mctz->lock);
3736
3737 /*
3738 * If we failed to reclaim anything from this memory cgroup
3739 * it is time to move on to the next cgroup
3740 */
3741 next_mz = NULL;
3742 if (!reclaimed) {
3743 do {
3744 /*
3745 * Loop until we find yet another one.
3746 *
3747 * By the time we get the soft_limit lock
3748 * again, someone might have aded the
3749 * group back on the RB tree. Iterate to
3750 * make sure we get a different mem.
3751 * mem_cgroup_largest_soft_limit_node returns
3752 * NULL if no other cgroup is present on
3753 * the tree
3754 */
3755 next_mz =
3756 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3757 if (next_mz == mz)
4e416953 3758 css_put(&next_mz->mem->css);
39cc98f1 3759 else /* next_mz == NULL or other memcg */
4e416953
BS
3760 break;
3761 } while (1);
3762 }
4e416953 3763 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3764 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3765 /*
3766 * One school of thought says that we should not add
3767 * back the node to the tree if reclaim returns 0.
3768 * But our reclaim could return 0, simply because due
3769 * to priority we are exposing a smaller subset of
3770 * memory to reclaim from. Consider this as a longer
3771 * term TODO.
3772 */
ef8745c1
KH
3773 /* If excess == 0, no tree ops */
3774 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3775 spin_unlock(&mctz->lock);
3776 css_put(&mz->mem->css);
3777 loop++;
3778 /*
3779 * Could not reclaim anything and there are no more
3780 * mem cgroups to try or we seem to be looping without
3781 * reclaiming anything.
3782 */
3783 if (!nr_reclaimed &&
3784 (next_mz == NULL ||
3785 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3786 break;
3787 } while (!nr_reclaimed);
3788 if (next_mz)
3789 css_put(&next_mz->mem->css);
3790 return nr_reclaimed;
3791}
3792
cc847582
KH
3793/*
3794 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3795 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3796 */
f817ed48 3797static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 3798 int node, int zid, enum lru_list lru)
cc847582 3799{
08e552c6
KH
3800 struct zone *zone;
3801 struct mem_cgroup_per_zone *mz;
f817ed48 3802 struct page_cgroup *pc, *busy;
08e552c6 3803 unsigned long flags, loop;
072c56c1 3804 struct list_head *list;
f817ed48 3805 int ret = 0;
072c56c1 3806
08e552c6
KH
3807 zone = &NODE_DATA(node)->node_zones[zid];
3808 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 3809 list = &mz->lists[lru];
cc847582 3810
f817ed48
KH
3811 loop = MEM_CGROUP_ZSTAT(mz, lru);
3812 /* give some margin against EBUSY etc...*/
3813 loop += 256;
3814 busy = NULL;
3815 while (loop--) {
5564e88b
JW
3816 struct page *page;
3817
f817ed48 3818 ret = 0;
08e552c6 3819 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3820 if (list_empty(list)) {
08e552c6 3821 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3822 break;
f817ed48
KH
3823 }
3824 pc = list_entry(list->prev, struct page_cgroup, lru);
3825 if (busy == pc) {
3826 list_move(&pc->lru, list);
648bcc77 3827 busy = NULL;
08e552c6 3828 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3829 continue;
3830 }
08e552c6 3831 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3832
6b3ae58e 3833 page = lookup_cgroup_page(pc);
5564e88b
JW
3834
3835 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
f817ed48 3836 if (ret == -ENOMEM)
52d4b9ac 3837 break;
f817ed48
KH
3838
3839 if (ret == -EBUSY || ret == -EINVAL) {
3840 /* found lock contention or "pc" is obsolete. */
3841 busy = pc;
3842 cond_resched();
3843 } else
3844 busy = NULL;
cc847582 3845 }
08e552c6 3846
f817ed48
KH
3847 if (!ret && !list_empty(list))
3848 return -EBUSY;
3849 return ret;
cc847582
KH
3850}
3851
3852/*
3853 * make mem_cgroup's charge to be 0 if there is no task.
3854 * This enables deleting this mem_cgroup.
3855 */
c1e862c1 3856static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 3857{
f817ed48
KH
3858 int ret;
3859 int node, zid, shrink;
3860 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 3861 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 3862
cc847582 3863 css_get(&mem->css);
f817ed48
KH
3864
3865 shrink = 0;
c1e862c1
KH
3866 /* should free all ? */
3867 if (free_all)
3868 goto try_to_free;
f817ed48 3869move_account:
fce66477 3870 do {
f817ed48 3871 ret = -EBUSY;
c1e862c1
KH
3872 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3873 goto out;
3874 ret = -EINTR;
3875 if (signal_pending(current))
cc847582 3876 goto out;
52d4b9ac
KH
3877 /* This is for making all *used* pages to be on LRU. */
3878 lru_add_drain_all();
d38144b7 3879 drain_all_stock_sync(mem);
f817ed48 3880 ret = 0;
32047e2a 3881 mem_cgroup_start_move(mem);
299b4eaa 3882 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3883 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3884 enum lru_list l;
f817ed48
KH
3885 for_each_lru(l) {
3886 ret = mem_cgroup_force_empty_list(mem,
08e552c6 3887 node, zid, l);
f817ed48
KH
3888 if (ret)
3889 break;
3890 }
1ecaab2b 3891 }
f817ed48
KH
3892 if (ret)
3893 break;
3894 }
32047e2a 3895 mem_cgroup_end_move(mem);
3c11ecf4 3896 memcg_oom_recover(mem);
f817ed48
KH
3897 /* it seems parent cgroup doesn't have enough mem */
3898 if (ret == -ENOMEM)
3899 goto try_to_free;
52d4b9ac 3900 cond_resched();
fce66477
DN
3901 /* "ret" should also be checked to ensure all lists are empty. */
3902 } while (mem->res.usage > 0 || ret);
cc847582
KH
3903out:
3904 css_put(&mem->css);
3905 return ret;
f817ed48
KH
3906
3907try_to_free:
c1e862c1
KH
3908 /* returns EBUSY if there is a task or if we come here twice. */
3909 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3910 ret = -EBUSY;
3911 goto out;
3912 }
c1e862c1
KH
3913 /* we call try-to-free pages for make this cgroup empty */
3914 lru_add_drain_all();
f817ed48
KH
3915 /* try to free all pages in this cgroup */
3916 shrink = 1;
3917 while (nr_retries && mem->res.usage > 0) {
82f9d486 3918 struct memcg_scanrecord rec;
f817ed48 3919 int progress;
c1e862c1
KH
3920
3921 if (signal_pending(current)) {
3922 ret = -EINTR;
3923 goto out;
3924 }
82f9d486
KH
3925 rec.context = SCAN_BY_SHRINK;
3926 rec.mem = mem;
3927 rec.root = mem;
a7885eb8 3928 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
82f9d486 3929 false, &rec);
c1e862c1 3930 if (!progress) {
f817ed48 3931 nr_retries--;
c1e862c1 3932 /* maybe some writeback is necessary */
8aa7e847 3933 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3934 }
f817ed48
KH
3935
3936 }
08e552c6 3937 lru_add_drain();
f817ed48 3938 /* try move_account...there may be some *locked* pages. */
fce66477 3939 goto move_account;
cc847582
KH
3940}
3941
c1e862c1
KH
3942int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3943{
3944 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3945}
3946
3947
18f59ea7
BS
3948static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3949{
3950 return mem_cgroup_from_cont(cont)->use_hierarchy;
3951}
3952
3953static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3954 u64 val)
3955{
3956 int retval = 0;
3957 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3958 struct cgroup *parent = cont->parent;
3959 struct mem_cgroup *parent_mem = NULL;
3960
3961 if (parent)
3962 parent_mem = mem_cgroup_from_cont(parent);
3963
3964 cgroup_lock();
3965 /*
af901ca1 3966 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3967 * in the child subtrees. If it is unset, then the change can
3968 * occur, provided the current cgroup has no children.
3969 *
3970 * For the root cgroup, parent_mem is NULL, we allow value to be
3971 * set if there are no children.
3972 */
3973 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3974 (val == 1 || val == 0)) {
3975 if (list_empty(&cont->children))
3976 mem->use_hierarchy = val;
3977 else
3978 retval = -EBUSY;
3979 } else
3980 retval = -EINVAL;
3981 cgroup_unlock();
3982
3983 return retval;
3984}
3985
0c3e73e8 3986
7a159cc9
JW
3987static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3988 enum mem_cgroup_stat_index idx)
0c3e73e8 3989{
7d74b06f 3990 struct mem_cgroup *iter;
7a159cc9 3991 long val = 0;
0c3e73e8 3992
7a159cc9 3993 /* Per-cpu values can be negative, use a signed accumulator */
7d74b06f
KH
3994 for_each_mem_cgroup_tree(iter, mem)
3995 val += mem_cgroup_read_stat(iter, idx);
3996
3997 if (val < 0) /* race ? */
3998 val = 0;
3999 return val;
0c3e73e8
BS
4000}
4001
104f3928
KS
4002static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
4003{
7d74b06f 4004 u64 val;
104f3928
KS
4005
4006 if (!mem_cgroup_is_root(mem)) {
4007 if (!swap)
4008 return res_counter_read_u64(&mem->res, RES_USAGE);
4009 else
4010 return res_counter_read_u64(&mem->memsw, RES_USAGE);
4011 }
4012
7a159cc9
JW
4013 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
4014 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
104f3928 4015
7d74b06f 4016 if (swap)
7a159cc9 4017 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
4018
4019 return val << PAGE_SHIFT;
4020}
4021
2c3daa72 4022static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 4023{
8c7c6e34 4024 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 4025 u64 val;
8c7c6e34
KH
4026 int type, name;
4027
4028 type = MEMFILE_TYPE(cft->private);
4029 name = MEMFILE_ATTR(cft->private);
4030 switch (type) {
4031 case _MEM:
104f3928
KS
4032 if (name == RES_USAGE)
4033 val = mem_cgroup_usage(mem, false);
4034 else
0c3e73e8 4035 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
4036 break;
4037 case _MEMSWAP:
104f3928
KS
4038 if (name == RES_USAGE)
4039 val = mem_cgroup_usage(mem, true);
4040 else
0c3e73e8 4041 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
4042 break;
4043 default:
4044 BUG();
4045 break;
4046 }
4047 return val;
8cdea7c0 4048}
628f4235
KH
4049/*
4050 * The user of this function is...
4051 * RES_LIMIT.
4052 */
856c13aa
PM
4053static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
4054 const char *buffer)
8cdea7c0 4055{
628f4235 4056 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 4057 int type, name;
628f4235
KH
4058 unsigned long long val;
4059 int ret;
4060
8c7c6e34
KH
4061 type = MEMFILE_TYPE(cft->private);
4062 name = MEMFILE_ATTR(cft->private);
4063 switch (name) {
628f4235 4064 case RES_LIMIT:
4b3bde4c
BS
4065 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4066 ret = -EINVAL;
4067 break;
4068 }
628f4235
KH
4069 /* This function does all necessary parse...reuse it */
4070 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
4071 if (ret)
4072 break;
4073 if (type == _MEM)
628f4235 4074 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
4075 else
4076 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 4077 break;
296c81d8
BS
4078 case RES_SOFT_LIMIT:
4079 ret = res_counter_memparse_write_strategy(buffer, &val);
4080 if (ret)
4081 break;
4082 /*
4083 * For memsw, soft limits are hard to implement in terms
4084 * of semantics, for now, we support soft limits for
4085 * control without swap
4086 */
4087 if (type == _MEM)
4088 ret = res_counter_set_soft_limit(&memcg->res, val);
4089 else
4090 ret = -EINVAL;
4091 break;
628f4235
KH
4092 default:
4093 ret = -EINVAL; /* should be BUG() ? */
4094 break;
4095 }
4096 return ret;
8cdea7c0
BS
4097}
4098
fee7b548
KH
4099static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4100 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4101{
4102 struct cgroup *cgroup;
4103 unsigned long long min_limit, min_memsw_limit, tmp;
4104
4105 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4106 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4107 cgroup = memcg->css.cgroup;
4108 if (!memcg->use_hierarchy)
4109 goto out;
4110
4111 while (cgroup->parent) {
4112 cgroup = cgroup->parent;
4113 memcg = mem_cgroup_from_cont(cgroup);
4114 if (!memcg->use_hierarchy)
4115 break;
4116 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4117 min_limit = min(min_limit, tmp);
4118 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4119 min_memsw_limit = min(min_memsw_limit, tmp);
4120 }
4121out:
4122 *mem_limit = min_limit;
4123 *memsw_limit = min_memsw_limit;
4124 return;
4125}
4126
29f2a4da 4127static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
4128{
4129 struct mem_cgroup *mem;
8c7c6e34 4130 int type, name;
c84872e1
PE
4131
4132 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
4133 type = MEMFILE_TYPE(event);
4134 name = MEMFILE_ATTR(event);
4135 switch (name) {
29f2a4da 4136 case RES_MAX_USAGE:
8c7c6e34
KH
4137 if (type == _MEM)
4138 res_counter_reset_max(&mem->res);
4139 else
4140 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
4141 break;
4142 case RES_FAILCNT:
8c7c6e34
KH
4143 if (type == _MEM)
4144 res_counter_reset_failcnt(&mem->res);
4145 else
4146 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
4147 break;
4148 }
f64c3f54 4149
85cc59db 4150 return 0;
c84872e1
PE
4151}
4152
7dc74be0
DN
4153static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4154 struct cftype *cft)
4155{
4156 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4157}
4158
02491447 4159#ifdef CONFIG_MMU
7dc74be0
DN
4160static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4161 struct cftype *cft, u64 val)
4162{
4163 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4164
4165 if (val >= (1 << NR_MOVE_TYPE))
4166 return -EINVAL;
4167 /*
4168 * We check this value several times in both in can_attach() and
4169 * attach(), so we need cgroup lock to prevent this value from being
4170 * inconsistent.
4171 */
4172 cgroup_lock();
4173 mem->move_charge_at_immigrate = val;
4174 cgroup_unlock();
4175
4176 return 0;
4177}
02491447
DN
4178#else
4179static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4180 struct cftype *cft, u64 val)
4181{
4182 return -ENOSYS;
4183}
4184#endif
7dc74be0 4185
14067bb3
KH
4186
4187/* For read statistics */
4188enum {
4189 MCS_CACHE,
4190 MCS_RSS,
d8046582 4191 MCS_FILE_MAPPED,
14067bb3
KH
4192 MCS_PGPGIN,
4193 MCS_PGPGOUT,
1dd3a273 4194 MCS_SWAP,
456f998e
YH
4195 MCS_PGFAULT,
4196 MCS_PGMAJFAULT,
14067bb3
KH
4197 MCS_INACTIVE_ANON,
4198 MCS_ACTIVE_ANON,
4199 MCS_INACTIVE_FILE,
4200 MCS_ACTIVE_FILE,
4201 MCS_UNEVICTABLE,
4202 NR_MCS_STAT,
4203};
4204
4205struct mcs_total_stat {
4206 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4207};
4208
14067bb3
KH
4209struct {
4210 char *local_name;
4211 char *total_name;
4212} memcg_stat_strings[NR_MCS_STAT] = {
4213 {"cache", "total_cache"},
4214 {"rss", "total_rss"},
d69b042f 4215 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4216 {"pgpgin", "total_pgpgin"},
4217 {"pgpgout", "total_pgpgout"},
1dd3a273 4218 {"swap", "total_swap"},
456f998e
YH
4219 {"pgfault", "total_pgfault"},
4220 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4221 {"inactive_anon", "total_inactive_anon"},
4222 {"active_anon", "total_active_anon"},
4223 {"inactive_file", "total_inactive_file"},
4224 {"active_file", "total_active_file"},
4225 {"unevictable", "total_unevictable"}
4226};
4227
4228
7d74b06f
KH
4229static void
4230mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
14067bb3 4231{
14067bb3
KH
4232 s64 val;
4233
4234 /* per cpu stat */
c62b1a3b 4235 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 4236 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 4237 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 4238 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 4239 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4240 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
e9f8974f 4241 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4242 s->stat[MCS_PGPGIN] += val;
e9f8974f 4243 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4244 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4245 if (do_swap_account) {
c62b1a3b 4246 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4247 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4248 }
456f998e
YH
4249 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4250 s->stat[MCS_PGFAULT] += val;
4251 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4252 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4253
4254 /* per zone stat */
bb2a0de9 4255 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
14067bb3 4256 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
bb2a0de9 4257 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
14067bb3 4258 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
bb2a0de9 4259 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
14067bb3 4260 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
bb2a0de9 4261 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
14067bb3 4262 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
bb2a0de9 4263 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
14067bb3 4264 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4265}
4266
4267static void
4268mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4269{
7d74b06f
KH
4270 struct mem_cgroup *iter;
4271
4272 for_each_mem_cgroup_tree(iter, mem)
4273 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4274}
4275
406eb0c9
YH
4276#ifdef CONFIG_NUMA
4277static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4278{
4279 int nid;
4280 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4281 unsigned long node_nr;
4282 struct cgroup *cont = m->private;
4283 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4284
bb2a0de9 4285 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
406eb0c9
YH
4286 seq_printf(m, "total=%lu", total_nr);
4287 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9 4288 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
406eb0c9
YH
4289 seq_printf(m, " N%d=%lu", nid, node_nr);
4290 }
4291 seq_putc(m, '\n');
4292
bb2a0de9 4293 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
406eb0c9
YH
4294 seq_printf(m, "file=%lu", file_nr);
4295 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4296 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4297 LRU_ALL_FILE);
406eb0c9
YH
4298 seq_printf(m, " N%d=%lu", nid, node_nr);
4299 }
4300 seq_putc(m, '\n');
4301
bb2a0de9 4302 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
406eb0c9
YH
4303 seq_printf(m, "anon=%lu", anon_nr);
4304 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4305 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4306 LRU_ALL_ANON);
406eb0c9
YH
4307 seq_printf(m, " N%d=%lu", nid, node_nr);
4308 }
4309 seq_putc(m, '\n');
4310
bb2a0de9 4311 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4312 seq_printf(m, "unevictable=%lu", unevictable_nr);
4313 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4314 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4315 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4316 seq_printf(m, " N%d=%lu", nid, node_nr);
4317 }
4318 seq_putc(m, '\n');
4319 return 0;
4320}
4321#endif /* CONFIG_NUMA */
4322
c64745cf
PM
4323static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4324 struct cgroup_map_cb *cb)
d2ceb9b7 4325{
d2ceb9b7 4326 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 4327 struct mcs_total_stat mystat;
d2ceb9b7
KH
4328 int i;
4329
14067bb3
KH
4330 memset(&mystat, 0, sizeof(mystat));
4331 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 4332
406eb0c9 4333
1dd3a273
DN
4334 for (i = 0; i < NR_MCS_STAT; i++) {
4335 if (i == MCS_SWAP && !do_swap_account)
4336 continue;
14067bb3 4337 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4338 }
7b854121 4339
14067bb3 4340 /* Hierarchical information */
fee7b548
KH
4341 {
4342 unsigned long long limit, memsw_limit;
4343 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4344 cb->fill(cb, "hierarchical_memory_limit", limit);
4345 if (do_swap_account)
4346 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4347 }
7f016ee8 4348
14067bb3
KH
4349 memset(&mystat, 0, sizeof(mystat));
4350 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
4351 for (i = 0; i < NR_MCS_STAT; i++) {
4352 if (i == MCS_SWAP && !do_swap_account)
4353 continue;
14067bb3 4354 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4355 }
14067bb3 4356
7f016ee8 4357#ifdef CONFIG_DEBUG_VM
c772be93 4358 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
4359
4360 {
4361 int nid, zid;
4362 struct mem_cgroup_per_zone *mz;
4363 unsigned long recent_rotated[2] = {0, 0};
4364 unsigned long recent_scanned[2] = {0, 0};
4365
4366 for_each_online_node(nid)
4367 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4368 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4369
4370 recent_rotated[0] +=
4371 mz->reclaim_stat.recent_rotated[0];
4372 recent_rotated[1] +=
4373 mz->reclaim_stat.recent_rotated[1];
4374 recent_scanned[0] +=
4375 mz->reclaim_stat.recent_scanned[0];
4376 recent_scanned[1] +=
4377 mz->reclaim_stat.recent_scanned[1];
4378 }
4379 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4380 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4381 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4382 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4383 }
4384#endif
4385
d2ceb9b7
KH
4386 return 0;
4387}
4388
a7885eb8
KM
4389static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4390{
4391 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4392
1f4c025b 4393 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4394}
4395
4396static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4397 u64 val)
4398{
4399 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4400 struct mem_cgroup *parent;
068b38c1 4401
a7885eb8
KM
4402 if (val > 100)
4403 return -EINVAL;
4404
4405 if (cgrp->parent == NULL)
4406 return -EINVAL;
4407
4408 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4409
4410 cgroup_lock();
4411
a7885eb8
KM
4412 /* If under hierarchy, only empty-root can set this value */
4413 if ((parent->use_hierarchy) ||
068b38c1
LZ
4414 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4415 cgroup_unlock();
a7885eb8 4416 return -EINVAL;
068b38c1 4417 }
a7885eb8 4418
a7885eb8 4419 memcg->swappiness = val;
a7885eb8 4420
068b38c1
LZ
4421 cgroup_unlock();
4422
a7885eb8
KM
4423 return 0;
4424}
4425
2e72b634
KS
4426static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4427{
4428 struct mem_cgroup_threshold_ary *t;
4429 u64 usage;
4430 int i;
4431
4432 rcu_read_lock();
4433 if (!swap)
2c488db2 4434 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4435 else
2c488db2 4436 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4437
4438 if (!t)
4439 goto unlock;
4440
4441 usage = mem_cgroup_usage(memcg, swap);
4442
4443 /*
4444 * current_threshold points to threshold just below usage.
4445 * If it's not true, a threshold was crossed after last
4446 * call of __mem_cgroup_threshold().
4447 */
5407a562 4448 i = t->current_threshold;
2e72b634
KS
4449
4450 /*
4451 * Iterate backward over array of thresholds starting from
4452 * current_threshold and check if a threshold is crossed.
4453 * If none of thresholds below usage is crossed, we read
4454 * only one element of the array here.
4455 */
4456 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4457 eventfd_signal(t->entries[i].eventfd, 1);
4458
4459 /* i = current_threshold + 1 */
4460 i++;
4461
4462 /*
4463 * Iterate forward over array of thresholds starting from
4464 * current_threshold+1 and check if a threshold is crossed.
4465 * If none of thresholds above usage is crossed, we read
4466 * only one element of the array here.
4467 */
4468 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4469 eventfd_signal(t->entries[i].eventfd, 1);
4470
4471 /* Update current_threshold */
5407a562 4472 t->current_threshold = i - 1;
2e72b634
KS
4473unlock:
4474 rcu_read_unlock();
4475}
4476
4477static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4478{
ad4ca5f4
KS
4479 while (memcg) {
4480 __mem_cgroup_threshold(memcg, false);
4481 if (do_swap_account)
4482 __mem_cgroup_threshold(memcg, true);
4483
4484 memcg = parent_mem_cgroup(memcg);
4485 }
2e72b634
KS
4486}
4487
4488static int compare_thresholds(const void *a, const void *b)
4489{
4490 const struct mem_cgroup_threshold *_a = a;
4491 const struct mem_cgroup_threshold *_b = b;
4492
4493 return _a->threshold - _b->threshold;
4494}
4495
7d74b06f 4496static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
9490ff27
KH
4497{
4498 struct mem_cgroup_eventfd_list *ev;
4499
4500 list_for_each_entry(ev, &mem->oom_notify, list)
4501 eventfd_signal(ev->eventfd, 1);
4502 return 0;
4503}
4504
4505static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4506{
7d74b06f
KH
4507 struct mem_cgroup *iter;
4508
4509 for_each_mem_cgroup_tree(iter, mem)
4510 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4511}
4512
4513static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4514 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4515{
4516 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4517 struct mem_cgroup_thresholds *thresholds;
4518 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4519 int type = MEMFILE_TYPE(cft->private);
4520 u64 threshold, usage;
2c488db2 4521 int i, size, ret;
2e72b634
KS
4522
4523 ret = res_counter_memparse_write_strategy(args, &threshold);
4524 if (ret)
4525 return ret;
4526
4527 mutex_lock(&memcg->thresholds_lock);
2c488db2 4528
2e72b634 4529 if (type == _MEM)
2c488db2 4530 thresholds = &memcg->thresholds;
2e72b634 4531 else if (type == _MEMSWAP)
2c488db2 4532 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4533 else
4534 BUG();
4535
4536 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4537
4538 /* Check if a threshold crossed before adding a new one */
2c488db2 4539 if (thresholds->primary)
2e72b634
KS
4540 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4541
2c488db2 4542 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4543
4544 /* Allocate memory for new array of thresholds */
2c488db2 4545 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4546 GFP_KERNEL);
2c488db2 4547 if (!new) {
2e72b634
KS
4548 ret = -ENOMEM;
4549 goto unlock;
4550 }
2c488db2 4551 new->size = size;
2e72b634
KS
4552
4553 /* Copy thresholds (if any) to new array */
2c488db2
KS
4554 if (thresholds->primary) {
4555 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4556 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4557 }
4558
2e72b634 4559 /* Add new threshold */
2c488db2
KS
4560 new->entries[size - 1].eventfd = eventfd;
4561 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4562
4563 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4564 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4565 compare_thresholds, NULL);
4566
4567 /* Find current threshold */
2c488db2 4568 new->current_threshold = -1;
2e72b634 4569 for (i = 0; i < size; i++) {
2c488db2 4570 if (new->entries[i].threshold < usage) {
2e72b634 4571 /*
2c488db2
KS
4572 * new->current_threshold will not be used until
4573 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4574 * it here.
4575 */
2c488db2 4576 ++new->current_threshold;
2e72b634
KS
4577 }
4578 }
4579
2c488db2
KS
4580 /* Free old spare buffer and save old primary buffer as spare */
4581 kfree(thresholds->spare);
4582 thresholds->spare = thresholds->primary;
4583
4584 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4585
907860ed 4586 /* To be sure that nobody uses thresholds */
2e72b634
KS
4587 synchronize_rcu();
4588
2e72b634
KS
4589unlock:
4590 mutex_unlock(&memcg->thresholds_lock);
4591
4592 return ret;
4593}
4594
907860ed 4595static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4596 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4597{
4598 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4599 struct mem_cgroup_thresholds *thresholds;
4600 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4601 int type = MEMFILE_TYPE(cft->private);
4602 u64 usage;
2c488db2 4603 int i, j, size;
2e72b634
KS
4604
4605 mutex_lock(&memcg->thresholds_lock);
4606 if (type == _MEM)
2c488db2 4607 thresholds = &memcg->thresholds;
2e72b634 4608 else if (type == _MEMSWAP)
2c488db2 4609 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4610 else
4611 BUG();
4612
4613 /*
4614 * Something went wrong if we trying to unregister a threshold
4615 * if we don't have thresholds
4616 */
4617 BUG_ON(!thresholds);
4618
4619 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4620
4621 /* Check if a threshold crossed before removing */
4622 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4623
4624 /* Calculate new number of threshold */
2c488db2
KS
4625 size = 0;
4626 for (i = 0; i < thresholds->primary->size; i++) {
4627 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4628 size++;
4629 }
4630
2c488db2 4631 new = thresholds->spare;
907860ed 4632
2e72b634
KS
4633 /* Set thresholds array to NULL if we don't have thresholds */
4634 if (!size) {
2c488db2
KS
4635 kfree(new);
4636 new = NULL;
907860ed 4637 goto swap_buffers;
2e72b634
KS
4638 }
4639
2c488db2 4640 new->size = size;
2e72b634
KS
4641
4642 /* Copy thresholds and find current threshold */
2c488db2
KS
4643 new->current_threshold = -1;
4644 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4645 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4646 continue;
4647
2c488db2
KS
4648 new->entries[j] = thresholds->primary->entries[i];
4649 if (new->entries[j].threshold < usage) {
2e72b634 4650 /*
2c488db2 4651 * new->current_threshold will not be used
2e72b634
KS
4652 * until rcu_assign_pointer(), so it's safe to increment
4653 * it here.
4654 */
2c488db2 4655 ++new->current_threshold;
2e72b634
KS
4656 }
4657 j++;
4658 }
4659
907860ed 4660swap_buffers:
2c488db2
KS
4661 /* Swap primary and spare array */
4662 thresholds->spare = thresholds->primary;
4663 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4664
907860ed 4665 /* To be sure that nobody uses thresholds */
2e72b634
KS
4666 synchronize_rcu();
4667
2e72b634 4668 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4669}
c1e862c1 4670
9490ff27
KH
4671static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4672 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4673{
4674 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4675 struct mem_cgroup_eventfd_list *event;
4676 int type = MEMFILE_TYPE(cft->private);
4677
4678 BUG_ON(type != _OOM_TYPE);
4679 event = kmalloc(sizeof(*event), GFP_KERNEL);
4680 if (!event)
4681 return -ENOMEM;
4682
1af8efe9 4683 spin_lock(&memcg_oom_lock);
9490ff27
KH
4684
4685 event->eventfd = eventfd;
4686 list_add(&event->list, &memcg->oom_notify);
4687
4688 /* already in OOM ? */
79dfdacc 4689 if (atomic_read(&memcg->under_oom))
9490ff27 4690 eventfd_signal(eventfd, 1);
1af8efe9 4691 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4692
4693 return 0;
4694}
4695
907860ed 4696static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4697 struct cftype *cft, struct eventfd_ctx *eventfd)
4698{
4699 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4700 struct mem_cgroup_eventfd_list *ev, *tmp;
4701 int type = MEMFILE_TYPE(cft->private);
4702
4703 BUG_ON(type != _OOM_TYPE);
4704
1af8efe9 4705 spin_lock(&memcg_oom_lock);
9490ff27
KH
4706
4707 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4708 if (ev->eventfd == eventfd) {
4709 list_del(&ev->list);
4710 kfree(ev);
4711 }
4712 }
4713
1af8efe9 4714 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4715}
4716
3c11ecf4
KH
4717static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4718 struct cftype *cft, struct cgroup_map_cb *cb)
4719{
4720 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4721
4722 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4723
79dfdacc 4724 if (atomic_read(&mem->under_oom))
3c11ecf4
KH
4725 cb->fill(cb, "under_oom", 1);
4726 else
4727 cb->fill(cb, "under_oom", 0);
4728 return 0;
4729}
4730
3c11ecf4
KH
4731static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4732 struct cftype *cft, u64 val)
4733{
4734 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4735 struct mem_cgroup *parent;
4736
4737 /* cannot set to root cgroup and only 0 and 1 are allowed */
4738 if (!cgrp->parent || !((val == 0) || (val == 1)))
4739 return -EINVAL;
4740
4741 parent = mem_cgroup_from_cont(cgrp->parent);
4742
4743 cgroup_lock();
4744 /* oom-kill-disable is a flag for subhierarchy. */
4745 if ((parent->use_hierarchy) ||
4746 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4747 cgroup_unlock();
4748 return -EINVAL;
4749 }
4750 mem->oom_kill_disable = val;
4d845ebf
KH
4751 if (!val)
4752 memcg_oom_recover(mem);
3c11ecf4
KH
4753 cgroup_unlock();
4754 return 0;
4755}
4756
406eb0c9
YH
4757#ifdef CONFIG_NUMA
4758static const struct file_operations mem_control_numa_stat_file_operations = {
4759 .read = seq_read,
4760 .llseek = seq_lseek,
4761 .release = single_release,
4762};
4763
4764static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4765{
4766 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4767
4768 file->f_op = &mem_control_numa_stat_file_operations;
4769 return single_open(file, mem_control_numa_stat_show, cont);
4770}
4771#endif /* CONFIG_NUMA */
4772
82f9d486
KH
4773static int mem_cgroup_vmscan_stat_read(struct cgroup *cgrp,
4774 struct cftype *cft,
4775 struct cgroup_map_cb *cb)
4776{
4777 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4778 char string[64];
4779 int i;
4780
4781 for (i = 0; i < NR_SCANSTATS; i++) {
4782 strcpy(string, scanstat_string[i]);
4783 strcat(string, SCANSTAT_WORD_LIMIT);
4784 cb->fill(cb, string, mem->scanstat.stats[SCAN_BY_LIMIT][i]);
4785 }
4786
4787 for (i = 0; i < NR_SCANSTATS; i++) {
4788 strcpy(string, scanstat_string[i]);
4789 strcat(string, SCANSTAT_WORD_SYSTEM);
4790 cb->fill(cb, string, mem->scanstat.stats[SCAN_BY_SYSTEM][i]);
4791 }
4792
4793 for (i = 0; i < NR_SCANSTATS; i++) {
4794 strcpy(string, scanstat_string[i]);
4795 strcat(string, SCANSTAT_WORD_LIMIT);
4796 strcat(string, SCANSTAT_WORD_HIERARCHY);
4797 cb->fill(cb, string, mem->scanstat.rootstats[SCAN_BY_LIMIT][i]);
4798 }
4799 for (i = 0; i < NR_SCANSTATS; i++) {
4800 strcpy(string, scanstat_string[i]);
4801 strcat(string, SCANSTAT_WORD_SYSTEM);
4802 strcat(string, SCANSTAT_WORD_HIERARCHY);
4803 cb->fill(cb, string, mem->scanstat.rootstats[SCAN_BY_SYSTEM][i]);
4804 }
4805 return 0;
4806}
4807
4808static int mem_cgroup_reset_vmscan_stat(struct cgroup *cgrp,
4809 unsigned int event)
4810{
4811 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4812
4813 spin_lock(&mem->scanstat.lock);
4814 memset(&mem->scanstat.stats, 0, sizeof(mem->scanstat.stats));
4815 memset(&mem->scanstat.rootstats, 0, sizeof(mem->scanstat.rootstats));
4816 spin_unlock(&mem->scanstat.lock);
4817 return 0;
4818}
4819
4820
8cdea7c0
BS
4821static struct cftype mem_cgroup_files[] = {
4822 {
0eea1030 4823 .name = "usage_in_bytes",
8c7c6e34 4824 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4825 .read_u64 = mem_cgroup_read,
9490ff27
KH
4826 .register_event = mem_cgroup_usage_register_event,
4827 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4828 },
c84872e1
PE
4829 {
4830 .name = "max_usage_in_bytes",
8c7c6e34 4831 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4832 .trigger = mem_cgroup_reset,
c84872e1
PE
4833 .read_u64 = mem_cgroup_read,
4834 },
8cdea7c0 4835 {
0eea1030 4836 .name = "limit_in_bytes",
8c7c6e34 4837 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4838 .write_string = mem_cgroup_write,
2c3daa72 4839 .read_u64 = mem_cgroup_read,
8cdea7c0 4840 },
296c81d8
BS
4841 {
4842 .name = "soft_limit_in_bytes",
4843 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4844 .write_string = mem_cgroup_write,
4845 .read_u64 = mem_cgroup_read,
4846 },
8cdea7c0
BS
4847 {
4848 .name = "failcnt",
8c7c6e34 4849 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4850 .trigger = mem_cgroup_reset,
2c3daa72 4851 .read_u64 = mem_cgroup_read,
8cdea7c0 4852 },
d2ceb9b7
KH
4853 {
4854 .name = "stat",
c64745cf 4855 .read_map = mem_control_stat_show,
d2ceb9b7 4856 },
c1e862c1
KH
4857 {
4858 .name = "force_empty",
4859 .trigger = mem_cgroup_force_empty_write,
4860 },
18f59ea7
BS
4861 {
4862 .name = "use_hierarchy",
4863 .write_u64 = mem_cgroup_hierarchy_write,
4864 .read_u64 = mem_cgroup_hierarchy_read,
4865 },
a7885eb8
KM
4866 {
4867 .name = "swappiness",
4868 .read_u64 = mem_cgroup_swappiness_read,
4869 .write_u64 = mem_cgroup_swappiness_write,
4870 },
7dc74be0
DN
4871 {
4872 .name = "move_charge_at_immigrate",
4873 .read_u64 = mem_cgroup_move_charge_read,
4874 .write_u64 = mem_cgroup_move_charge_write,
4875 },
9490ff27
KH
4876 {
4877 .name = "oom_control",
3c11ecf4
KH
4878 .read_map = mem_cgroup_oom_control_read,
4879 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4880 .register_event = mem_cgroup_oom_register_event,
4881 .unregister_event = mem_cgroup_oom_unregister_event,
4882 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4883 },
406eb0c9
YH
4884#ifdef CONFIG_NUMA
4885 {
4886 .name = "numa_stat",
4887 .open = mem_control_numa_stat_open,
89577127 4888 .mode = S_IRUGO,
406eb0c9
YH
4889 },
4890#endif
82f9d486
KH
4891 {
4892 .name = "vmscan_stat",
4893 .read_map = mem_cgroup_vmscan_stat_read,
4894 .trigger = mem_cgroup_reset_vmscan_stat,
4895 },
8cdea7c0
BS
4896};
4897
8c7c6e34
KH
4898#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4899static struct cftype memsw_cgroup_files[] = {
4900 {
4901 .name = "memsw.usage_in_bytes",
4902 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4903 .read_u64 = mem_cgroup_read,
9490ff27
KH
4904 .register_event = mem_cgroup_usage_register_event,
4905 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4906 },
4907 {
4908 .name = "memsw.max_usage_in_bytes",
4909 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4910 .trigger = mem_cgroup_reset,
4911 .read_u64 = mem_cgroup_read,
4912 },
4913 {
4914 .name = "memsw.limit_in_bytes",
4915 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4916 .write_string = mem_cgroup_write,
4917 .read_u64 = mem_cgroup_read,
4918 },
4919 {
4920 .name = "memsw.failcnt",
4921 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4922 .trigger = mem_cgroup_reset,
4923 .read_u64 = mem_cgroup_read,
4924 },
4925};
4926
4927static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4928{
4929 if (!do_swap_account)
4930 return 0;
4931 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4932 ARRAY_SIZE(memsw_cgroup_files));
4933};
4934#else
4935static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4936{
4937 return 0;
4938}
4939#endif
4940
6d12e2d8
KH
4941static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4942{
4943 struct mem_cgroup_per_node *pn;
1ecaab2b 4944 struct mem_cgroup_per_zone *mz;
b69408e8 4945 enum lru_list l;
41e3355d 4946 int zone, tmp = node;
1ecaab2b
KH
4947 /*
4948 * This routine is called against possible nodes.
4949 * But it's BUG to call kmalloc() against offline node.
4950 *
4951 * TODO: this routine can waste much memory for nodes which will
4952 * never be onlined. It's better to use memory hotplug callback
4953 * function.
4954 */
41e3355d
KH
4955 if (!node_state(node, N_NORMAL_MEMORY))
4956 tmp = -1;
17295c88 4957 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4958 if (!pn)
4959 return 1;
1ecaab2b 4960
6d12e2d8 4961 mem->info.nodeinfo[node] = pn;
1ecaab2b
KH
4962 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4963 mz = &pn->zoneinfo[zone];
b69408e8
CL
4964 for_each_lru(l)
4965 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4966 mz->usage_in_excess = 0;
4e416953
BS
4967 mz->on_tree = false;
4968 mz->mem = mem;
1ecaab2b 4969 }
6d12e2d8
KH
4970 return 0;
4971}
4972
1ecaab2b
KH
4973static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4974{
4975 kfree(mem->info.nodeinfo[node]);
4976}
4977
33327948
KH
4978static struct mem_cgroup *mem_cgroup_alloc(void)
4979{
4980 struct mem_cgroup *mem;
c62b1a3b 4981 int size = sizeof(struct mem_cgroup);
33327948 4982
c62b1a3b 4983 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4984 if (size < PAGE_SIZE)
17295c88 4985 mem = kzalloc(size, GFP_KERNEL);
33327948 4986 else
17295c88 4987 mem = vzalloc(size);
33327948 4988
e7bbcdf3
DC
4989 if (!mem)
4990 return NULL;
4991
c62b1a3b 4992 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4993 if (!mem->stat)
4994 goto out_free;
711d3d2c 4995 spin_lock_init(&mem->pcp_counter_lock);
33327948 4996 return mem;
d2e61b8d
DC
4997
4998out_free:
4999 if (size < PAGE_SIZE)
5000 kfree(mem);
5001 else
5002 vfree(mem);
5003 return NULL;
33327948
KH
5004}
5005
8c7c6e34
KH
5006/*
5007 * At destroying mem_cgroup, references from swap_cgroup can remain.
5008 * (scanning all at force_empty is too costly...)
5009 *
5010 * Instead of clearing all references at force_empty, we remember
5011 * the number of reference from swap_cgroup and free mem_cgroup when
5012 * it goes down to 0.
5013 *
8c7c6e34
KH
5014 * Removal of cgroup itself succeeds regardless of refs from swap.
5015 */
5016
a7ba0eef 5017static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 5018{
08e552c6
KH
5019 int node;
5020
f64c3f54 5021 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
5022 free_css_id(&mem_cgroup_subsys, &mem->css);
5023
08e552c6
KH
5024 for_each_node_state(node, N_POSSIBLE)
5025 free_mem_cgroup_per_zone_info(mem, node);
5026
c62b1a3b
KH
5027 free_percpu(mem->stat);
5028 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
5029 kfree(mem);
5030 else
5031 vfree(mem);
5032}
5033
8c7c6e34
KH
5034static void mem_cgroup_get(struct mem_cgroup *mem)
5035{
5036 atomic_inc(&mem->refcnt);
5037}
5038
483c30b5 5039static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 5040{
483c30b5 5041 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 5042 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 5043 __mem_cgroup_free(mem);
7bcc1bb1
DN
5044 if (parent)
5045 mem_cgroup_put(parent);
5046 }
8c7c6e34
KH
5047}
5048
483c30b5
DN
5049static void mem_cgroup_put(struct mem_cgroup *mem)
5050{
5051 __mem_cgroup_put(mem, 1);
5052}
5053
7bcc1bb1
DN
5054/*
5055 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5056 */
5057static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
5058{
5059 if (!mem->res.parent)
5060 return NULL;
5061 return mem_cgroup_from_res_counter(mem->res.parent, res);
5062}
33327948 5063
c077719b
KH
5064#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5065static void __init enable_swap_cgroup(void)
5066{
f8d66542 5067 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
5068 do_swap_account = 1;
5069}
5070#else
5071static void __init enable_swap_cgroup(void)
5072{
5073}
5074#endif
5075
f64c3f54
BS
5076static int mem_cgroup_soft_limit_tree_init(void)
5077{
5078 struct mem_cgroup_tree_per_node *rtpn;
5079 struct mem_cgroup_tree_per_zone *rtpz;
5080 int tmp, node, zone;
5081
5082 for_each_node_state(node, N_POSSIBLE) {
5083 tmp = node;
5084 if (!node_state(node, N_NORMAL_MEMORY))
5085 tmp = -1;
5086 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5087 if (!rtpn)
5088 return 1;
5089
5090 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5091
5092 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5093 rtpz = &rtpn->rb_tree_per_zone[zone];
5094 rtpz->rb_root = RB_ROOT;
5095 spin_lock_init(&rtpz->lock);
5096 }
5097 }
5098 return 0;
5099}
5100
0eb253e2 5101static struct cgroup_subsys_state * __ref
8cdea7c0
BS
5102mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
5103{
28dbc4b6 5104 struct mem_cgroup *mem, *parent;
04046e1a 5105 long error = -ENOMEM;
6d12e2d8 5106 int node;
8cdea7c0 5107
c8dad2bb
JB
5108 mem = mem_cgroup_alloc();
5109 if (!mem)
04046e1a 5110 return ERR_PTR(error);
78fb7466 5111
6d12e2d8
KH
5112 for_each_node_state(node, N_POSSIBLE)
5113 if (alloc_mem_cgroup_per_zone_info(mem, node))
5114 goto free_out;
f64c3f54 5115
c077719b 5116 /* root ? */
28dbc4b6 5117 if (cont->parent == NULL) {
cdec2e42 5118 int cpu;
c077719b 5119 enable_swap_cgroup();
28dbc4b6 5120 parent = NULL;
4b3bde4c 5121 root_mem_cgroup = mem;
f64c3f54
BS
5122 if (mem_cgroup_soft_limit_tree_init())
5123 goto free_out;
cdec2e42
KH
5124 for_each_possible_cpu(cpu) {
5125 struct memcg_stock_pcp *stock =
5126 &per_cpu(memcg_stock, cpu);
5127 INIT_WORK(&stock->work, drain_local_stock);
5128 }
711d3d2c 5129 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 5130 } else {
28dbc4b6 5131 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7 5132 mem->use_hierarchy = parent->use_hierarchy;
3c11ecf4 5133 mem->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 5134 }
28dbc4b6 5135
18f59ea7
BS
5136 if (parent && parent->use_hierarchy) {
5137 res_counter_init(&mem->res, &parent->res);
5138 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
5139 /*
5140 * We increment refcnt of the parent to ensure that we can
5141 * safely access it on res_counter_charge/uncharge.
5142 * This refcnt will be decremented when freeing this
5143 * mem_cgroup(see mem_cgroup_put).
5144 */
5145 mem_cgroup_get(parent);
18f59ea7
BS
5146 } else {
5147 res_counter_init(&mem->res, NULL);
5148 res_counter_init(&mem->memsw, NULL);
5149 }
04046e1a 5150 mem->last_scanned_child = 0;
889976db 5151 mem->last_scanned_node = MAX_NUMNODES;
9490ff27 5152 INIT_LIST_HEAD(&mem->oom_notify);
6d61ef40 5153
a7885eb8 5154 if (parent)
1f4c025b 5155 mem->swappiness = mem_cgroup_swappiness(parent);
a7ba0eef 5156 atomic_set(&mem->refcnt, 1);
7dc74be0 5157 mem->move_charge_at_immigrate = 0;
2e72b634 5158 mutex_init(&mem->thresholds_lock);
82f9d486 5159 spin_lock_init(&mem->scanstat.lock);
8cdea7c0 5160 return &mem->css;
6d12e2d8 5161free_out:
a7ba0eef 5162 __mem_cgroup_free(mem);
4b3bde4c 5163 root_mem_cgroup = NULL;
04046e1a 5164 return ERR_PTR(error);
8cdea7c0
BS
5165}
5166
ec64f515 5167static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
5168 struct cgroup *cont)
5169{
5170 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
5171
5172 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
5173}
5174
8cdea7c0
BS
5175static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5176 struct cgroup *cont)
5177{
c268e994 5178 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 5179
c268e994 5180 mem_cgroup_put(mem);
8cdea7c0
BS
5181}
5182
5183static int mem_cgroup_populate(struct cgroup_subsys *ss,
5184 struct cgroup *cont)
5185{
8c7c6e34
KH
5186 int ret;
5187
5188 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5189 ARRAY_SIZE(mem_cgroup_files));
5190
5191 if (!ret)
5192 ret = register_memsw_files(cont, ss);
5193 return ret;
8cdea7c0
BS
5194}
5195
02491447 5196#ifdef CONFIG_MMU
7dc74be0 5197/* Handlers for move charge at task migration. */
854ffa8d
DN
5198#define PRECHARGE_COUNT_AT_ONCE 256
5199static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5200{
854ffa8d
DN
5201 int ret = 0;
5202 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
5203 struct mem_cgroup *mem = mc.to;
5204
854ffa8d
DN
5205 if (mem_cgroup_is_root(mem)) {
5206 mc.precharge += count;
5207 /* we don't need css_get for root */
5208 return ret;
5209 }
5210 /* try to charge at once */
5211 if (count > 1) {
5212 struct res_counter *dummy;
5213 /*
5214 * "mem" cannot be under rmdir() because we've already checked
5215 * by cgroup_lock_live_cgroup() that it is not removed and we
5216 * are still under the same cgroup_mutex. So we can postpone
5217 * css_get().
5218 */
5219 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
5220 goto one_by_one;
5221 if (do_swap_account && res_counter_charge(&mem->memsw,
5222 PAGE_SIZE * count, &dummy)) {
5223 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5224 goto one_by_one;
5225 }
5226 mc.precharge += count;
854ffa8d
DN
5227 return ret;
5228 }
5229one_by_one:
5230 /* fall back to one by one charge */
5231 while (count--) {
5232 if (signal_pending(current)) {
5233 ret = -EINTR;
5234 break;
5235 }
5236 if (!batch_count--) {
5237 batch_count = PRECHARGE_COUNT_AT_ONCE;
5238 cond_resched();
5239 }
7ec99d62 5240 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
854ffa8d
DN
5241 if (ret || !mem)
5242 /* mem_cgroup_clear_mc() will do uncharge later */
5243 return -ENOMEM;
5244 mc.precharge++;
5245 }
4ffef5fe
DN
5246 return ret;
5247}
5248
5249/**
5250 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5251 * @vma: the vma the pte to be checked belongs
5252 * @addr: the address corresponding to the pte to be checked
5253 * @ptent: the pte to be checked
02491447 5254 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5255 *
5256 * Returns
5257 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5258 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5259 * move charge. if @target is not NULL, the page is stored in target->page
5260 * with extra refcnt got(Callers should handle it).
02491447
DN
5261 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5262 * target for charge migration. if @target is not NULL, the entry is stored
5263 * in target->ent.
4ffef5fe
DN
5264 *
5265 * Called with pte lock held.
5266 */
4ffef5fe
DN
5267union mc_target {
5268 struct page *page;
02491447 5269 swp_entry_t ent;
4ffef5fe
DN
5270};
5271
4ffef5fe
DN
5272enum mc_target_type {
5273 MC_TARGET_NONE, /* not used */
5274 MC_TARGET_PAGE,
02491447 5275 MC_TARGET_SWAP,
4ffef5fe
DN
5276};
5277
90254a65
DN
5278static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5279 unsigned long addr, pte_t ptent)
4ffef5fe 5280{
90254a65 5281 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5282
90254a65
DN
5283 if (!page || !page_mapped(page))
5284 return NULL;
5285 if (PageAnon(page)) {
5286 /* we don't move shared anon */
5287 if (!move_anon() || page_mapcount(page) > 2)
5288 return NULL;
87946a72
DN
5289 } else if (!move_file())
5290 /* we ignore mapcount for file pages */
90254a65
DN
5291 return NULL;
5292 if (!get_page_unless_zero(page))
5293 return NULL;
5294
5295 return page;
5296}
5297
5298static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5299 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5300{
5301 int usage_count;
5302 struct page *page = NULL;
5303 swp_entry_t ent = pte_to_swp_entry(ptent);
5304
5305 if (!move_anon() || non_swap_entry(ent))
5306 return NULL;
5307 usage_count = mem_cgroup_count_swap_user(ent, &page);
5308 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
5309 if (page)
5310 put_page(page);
90254a65 5311 return NULL;
02491447 5312 }
90254a65
DN
5313 if (do_swap_account)
5314 entry->val = ent.val;
5315
5316 return page;
5317}
5318
87946a72
DN
5319static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5320 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5321{
5322 struct page *page = NULL;
5323 struct inode *inode;
5324 struct address_space *mapping;
5325 pgoff_t pgoff;
5326
5327 if (!vma->vm_file) /* anonymous vma */
5328 return NULL;
5329 if (!move_file())
5330 return NULL;
5331
5332 inode = vma->vm_file->f_path.dentry->d_inode;
5333 mapping = vma->vm_file->f_mapping;
5334 if (pte_none(ptent))
5335 pgoff = linear_page_index(vma, addr);
5336 else /* pte_file(ptent) is true */
5337 pgoff = pte_to_pgoff(ptent);
5338
5339 /* page is moved even if it's not RSS of this task(page-faulted). */
5340 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
5341 page = find_get_page(mapping, pgoff);
5342 } else { /* shmem/tmpfs file. we should take account of swap too. */
5343 swp_entry_t ent;
5344 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
5345 if (do_swap_account)
5346 entry->val = ent.val;
5347 }
5348
5349 return page;
5350}
5351
90254a65
DN
5352static int is_target_pte_for_mc(struct vm_area_struct *vma,
5353 unsigned long addr, pte_t ptent, union mc_target *target)
5354{
5355 struct page *page = NULL;
5356 struct page_cgroup *pc;
5357 int ret = 0;
5358 swp_entry_t ent = { .val = 0 };
5359
5360 if (pte_present(ptent))
5361 page = mc_handle_present_pte(vma, addr, ptent);
5362 else if (is_swap_pte(ptent))
5363 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5364 else if (pte_none(ptent) || pte_file(ptent))
5365 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5366
5367 if (!page && !ent.val)
5368 return 0;
02491447
DN
5369 if (page) {
5370 pc = lookup_page_cgroup(page);
5371 /*
5372 * Do only loose check w/o page_cgroup lock.
5373 * mem_cgroup_move_account() checks the pc is valid or not under
5374 * the lock.
5375 */
5376 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5377 ret = MC_TARGET_PAGE;
5378 if (target)
5379 target->page = page;
5380 }
5381 if (!ret || !target)
5382 put_page(page);
5383 }
90254a65
DN
5384 /* There is a swap entry and a page doesn't exist or isn't charged */
5385 if (ent.val && !ret &&
7f0f1546
KH
5386 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5387 ret = MC_TARGET_SWAP;
5388 if (target)
5389 target->ent = ent;
4ffef5fe 5390 }
4ffef5fe
DN
5391 return ret;
5392}
5393
5394static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5395 unsigned long addr, unsigned long end,
5396 struct mm_walk *walk)
5397{
5398 struct vm_area_struct *vma = walk->private;
5399 pte_t *pte;
5400 spinlock_t *ptl;
5401
03319327
DH
5402 split_huge_page_pmd(walk->mm, pmd);
5403
4ffef5fe
DN
5404 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5405 for (; addr != end; pte++, addr += PAGE_SIZE)
5406 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5407 mc.precharge++; /* increment precharge temporarily */
5408 pte_unmap_unlock(pte - 1, ptl);
5409 cond_resched();
5410
7dc74be0
DN
5411 return 0;
5412}
5413
4ffef5fe
DN
5414static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5415{
5416 unsigned long precharge;
5417 struct vm_area_struct *vma;
5418
dfe076b0 5419 down_read(&mm->mmap_sem);
4ffef5fe
DN
5420 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5421 struct mm_walk mem_cgroup_count_precharge_walk = {
5422 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5423 .mm = mm,
5424 .private = vma,
5425 };
5426 if (is_vm_hugetlb_page(vma))
5427 continue;
4ffef5fe
DN
5428 walk_page_range(vma->vm_start, vma->vm_end,
5429 &mem_cgroup_count_precharge_walk);
5430 }
dfe076b0 5431 up_read(&mm->mmap_sem);
4ffef5fe
DN
5432
5433 precharge = mc.precharge;
5434 mc.precharge = 0;
5435
5436 return precharge;
5437}
5438
4ffef5fe
DN
5439static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5440{
dfe076b0
DN
5441 unsigned long precharge = mem_cgroup_count_precharge(mm);
5442
5443 VM_BUG_ON(mc.moving_task);
5444 mc.moving_task = current;
5445 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5446}
5447
dfe076b0
DN
5448/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5449static void __mem_cgroup_clear_mc(void)
4ffef5fe 5450{
2bd9bb20
KH
5451 struct mem_cgroup *from = mc.from;
5452 struct mem_cgroup *to = mc.to;
5453
4ffef5fe 5454 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5455 if (mc.precharge) {
5456 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5457 mc.precharge = 0;
5458 }
5459 /*
5460 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5461 * we must uncharge here.
5462 */
5463 if (mc.moved_charge) {
5464 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5465 mc.moved_charge = 0;
4ffef5fe 5466 }
483c30b5
DN
5467 /* we must fixup refcnts and charges */
5468 if (mc.moved_swap) {
483c30b5
DN
5469 /* uncharge swap account from the old cgroup */
5470 if (!mem_cgroup_is_root(mc.from))
5471 res_counter_uncharge(&mc.from->memsw,
5472 PAGE_SIZE * mc.moved_swap);
5473 __mem_cgroup_put(mc.from, mc.moved_swap);
5474
5475 if (!mem_cgroup_is_root(mc.to)) {
5476 /*
5477 * we charged both to->res and to->memsw, so we should
5478 * uncharge to->res.
5479 */
5480 res_counter_uncharge(&mc.to->res,
5481 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5482 }
5483 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5484 mc.moved_swap = 0;
5485 }
dfe076b0
DN
5486 memcg_oom_recover(from);
5487 memcg_oom_recover(to);
5488 wake_up_all(&mc.waitq);
5489}
5490
5491static void mem_cgroup_clear_mc(void)
5492{
5493 struct mem_cgroup *from = mc.from;
5494
5495 /*
5496 * we must clear moving_task before waking up waiters at the end of
5497 * task migration.
5498 */
5499 mc.moving_task = NULL;
5500 __mem_cgroup_clear_mc();
2bd9bb20 5501 spin_lock(&mc.lock);
4ffef5fe
DN
5502 mc.from = NULL;
5503 mc.to = NULL;
2bd9bb20 5504 spin_unlock(&mc.lock);
32047e2a 5505 mem_cgroup_end_move(from);
4ffef5fe
DN
5506}
5507
7dc74be0
DN
5508static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5509 struct cgroup *cgroup,
f780bdb7 5510 struct task_struct *p)
7dc74be0
DN
5511{
5512 int ret = 0;
5513 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5514
5515 if (mem->move_charge_at_immigrate) {
5516 struct mm_struct *mm;
5517 struct mem_cgroup *from = mem_cgroup_from_task(p);
5518
5519 VM_BUG_ON(from == mem);
5520
5521 mm = get_task_mm(p);
5522 if (!mm)
5523 return 0;
7dc74be0 5524 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5525 if (mm->owner == p) {
5526 VM_BUG_ON(mc.from);
5527 VM_BUG_ON(mc.to);
5528 VM_BUG_ON(mc.precharge);
854ffa8d 5529 VM_BUG_ON(mc.moved_charge);
483c30b5 5530 VM_BUG_ON(mc.moved_swap);
32047e2a 5531 mem_cgroup_start_move(from);
2bd9bb20 5532 spin_lock(&mc.lock);
4ffef5fe
DN
5533 mc.from = from;
5534 mc.to = mem;
2bd9bb20 5535 spin_unlock(&mc.lock);
dfe076b0 5536 /* We set mc.moving_task later */
4ffef5fe
DN
5537
5538 ret = mem_cgroup_precharge_mc(mm);
5539 if (ret)
5540 mem_cgroup_clear_mc();
dfe076b0
DN
5541 }
5542 mmput(mm);
7dc74be0
DN
5543 }
5544 return ret;
5545}
5546
5547static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5548 struct cgroup *cgroup,
f780bdb7 5549 struct task_struct *p)
7dc74be0 5550{
4ffef5fe 5551 mem_cgroup_clear_mc();
7dc74be0
DN
5552}
5553
4ffef5fe
DN
5554static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5555 unsigned long addr, unsigned long end,
5556 struct mm_walk *walk)
7dc74be0 5557{
4ffef5fe
DN
5558 int ret = 0;
5559 struct vm_area_struct *vma = walk->private;
5560 pte_t *pte;
5561 spinlock_t *ptl;
5562
03319327 5563 split_huge_page_pmd(walk->mm, pmd);
4ffef5fe
DN
5564retry:
5565 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5566 for (; addr != end; addr += PAGE_SIZE) {
5567 pte_t ptent = *(pte++);
5568 union mc_target target;
5569 int type;
5570 struct page *page;
5571 struct page_cgroup *pc;
02491447 5572 swp_entry_t ent;
4ffef5fe
DN
5573
5574 if (!mc.precharge)
5575 break;
5576
5577 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5578 switch (type) {
5579 case MC_TARGET_PAGE:
5580 page = target.page;
5581 if (isolate_lru_page(page))
5582 goto put;
5583 pc = lookup_page_cgroup(page);
7ec99d62
JW
5584 if (!mem_cgroup_move_account(page, 1, pc,
5585 mc.from, mc.to, false)) {
4ffef5fe 5586 mc.precharge--;
854ffa8d
DN
5587 /* we uncharge from mc.from later. */
5588 mc.moved_charge++;
4ffef5fe
DN
5589 }
5590 putback_lru_page(page);
5591put: /* is_target_pte_for_mc() gets the page */
5592 put_page(page);
5593 break;
02491447
DN
5594 case MC_TARGET_SWAP:
5595 ent = target.ent;
483c30b5
DN
5596 if (!mem_cgroup_move_swap_account(ent,
5597 mc.from, mc.to, false)) {
02491447 5598 mc.precharge--;
483c30b5
DN
5599 /* we fixup refcnts and charges later. */
5600 mc.moved_swap++;
5601 }
02491447 5602 break;
4ffef5fe
DN
5603 default:
5604 break;
5605 }
5606 }
5607 pte_unmap_unlock(pte - 1, ptl);
5608 cond_resched();
5609
5610 if (addr != end) {
5611 /*
5612 * We have consumed all precharges we got in can_attach().
5613 * We try charge one by one, but don't do any additional
5614 * charges to mc.to if we have failed in charge once in attach()
5615 * phase.
5616 */
854ffa8d 5617 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5618 if (!ret)
5619 goto retry;
5620 }
5621
5622 return ret;
5623}
5624
5625static void mem_cgroup_move_charge(struct mm_struct *mm)
5626{
5627 struct vm_area_struct *vma;
5628
5629 lru_add_drain_all();
dfe076b0
DN
5630retry:
5631 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5632 /*
5633 * Someone who are holding the mmap_sem might be waiting in
5634 * waitq. So we cancel all extra charges, wake up all waiters,
5635 * and retry. Because we cancel precharges, we might not be able
5636 * to move enough charges, but moving charge is a best-effort
5637 * feature anyway, so it wouldn't be a big problem.
5638 */
5639 __mem_cgroup_clear_mc();
5640 cond_resched();
5641 goto retry;
5642 }
4ffef5fe
DN
5643 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5644 int ret;
5645 struct mm_walk mem_cgroup_move_charge_walk = {
5646 .pmd_entry = mem_cgroup_move_charge_pte_range,
5647 .mm = mm,
5648 .private = vma,
5649 };
5650 if (is_vm_hugetlb_page(vma))
5651 continue;
4ffef5fe
DN
5652 ret = walk_page_range(vma->vm_start, vma->vm_end,
5653 &mem_cgroup_move_charge_walk);
5654 if (ret)
5655 /*
5656 * means we have consumed all precharges and failed in
5657 * doing additional charge. Just abandon here.
5658 */
5659 break;
5660 }
dfe076b0 5661 up_read(&mm->mmap_sem);
7dc74be0
DN
5662}
5663
67e465a7
BS
5664static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5665 struct cgroup *cont,
5666 struct cgroup *old_cont,
f780bdb7 5667 struct task_struct *p)
67e465a7 5668{
a433658c 5669 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5670
dfe076b0 5671 if (mm) {
a433658c
KM
5672 if (mc.to)
5673 mem_cgroup_move_charge(mm);
5674 put_swap_token(mm);
dfe076b0
DN
5675 mmput(mm);
5676 }
a433658c
KM
5677 if (mc.to)
5678 mem_cgroup_clear_mc();
67e465a7 5679}
5cfb80a7
DN
5680#else /* !CONFIG_MMU */
5681static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5682 struct cgroup *cgroup,
f780bdb7 5683 struct task_struct *p)
5cfb80a7
DN
5684{
5685 return 0;
5686}
5687static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5688 struct cgroup *cgroup,
f780bdb7 5689 struct task_struct *p)
5cfb80a7
DN
5690{
5691}
5692static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5693 struct cgroup *cont,
5694 struct cgroup *old_cont,
f780bdb7 5695 struct task_struct *p)
5cfb80a7
DN
5696{
5697}
5698#endif
67e465a7 5699
8cdea7c0
BS
5700struct cgroup_subsys mem_cgroup_subsys = {
5701 .name = "memory",
5702 .subsys_id = mem_cgroup_subsys_id,
5703 .create = mem_cgroup_create,
df878fb0 5704 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5705 .destroy = mem_cgroup_destroy,
5706 .populate = mem_cgroup_populate,
7dc74be0
DN
5707 .can_attach = mem_cgroup_can_attach,
5708 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5709 .attach = mem_cgroup_move_task,
6d12e2d8 5710 .early_init = 0,
04046e1a 5711 .use_id = 1,
8cdea7c0 5712};
c077719b
KH
5713
5714#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5715static int __init enable_swap_account(char *s)
5716{
5717 /* consider enabled if no parameter or 1 is given */
a2c8990a 5718 if (!strcmp(s, "1"))
a42c390c 5719 really_do_swap_account = 1;
a2c8990a 5720 else if (!strcmp(s, "0"))
a42c390c
MH
5721 really_do_swap_account = 0;
5722 return 1;
5723}
a2c8990a 5724__setup("swapaccount=", enable_swap_account);
c077719b 5725
c077719b 5726#endif