]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/memory-failure.c
mm/memory-failure.c: don't let collect_procs() skip over processes for MF_ACTION_REQUIRED
[mirror_ubuntu-focal-kernel.git] / mm / memory-failure.c
CommitLineData
6a46079c
AK
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
1c80b990 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 11 * failure.
1c80b990
AK
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
15 *
16 * Handles page cache pages in various states. The tricky part
1c80b990
AK
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
6a46079c
AK
30 */
31
32/*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
6a46079c
AK
38#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/page-flags.h>
478c5ffc 41#include <linux/kernel-page-flags.h>
6a46079c 42#include <linux/sched.h>
01e00f88 43#include <linux/ksm.h>
6a46079c 44#include <linux/rmap.h>
b9e15baf 45#include <linux/export.h>
6a46079c
AK
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/backing-dev.h>
facb6011
AK
49#include <linux/migrate.h>
50#include <linux/page-isolation.h>
51#include <linux/suspend.h>
5a0e3ad6 52#include <linux/slab.h>
bf998156 53#include <linux/swapops.h>
7af446a8 54#include <linux/hugetlb.h>
20d6c96b 55#include <linux/memory_hotplug.h>
5db8a73a 56#include <linux/mm_inline.h>
ea8f5fb8 57#include <linux/kfifo.h>
6a46079c
AK
58#include "internal.h"
59
60int sysctl_memory_failure_early_kill __read_mostly = 0;
61
62int sysctl_memory_failure_recovery __read_mostly = 1;
63
293c07e3 64atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 65
27df5068
AK
66#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67
1bfe5feb 68u32 hwpoison_filter_enable = 0;
7c116f2b
WF
69u32 hwpoison_filter_dev_major = ~0U;
70u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
71u64 hwpoison_filter_flags_mask;
72u64 hwpoison_filter_flags_value;
1bfe5feb 73EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
74EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
76EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
78
79static int hwpoison_filter_dev(struct page *p)
80{
81 struct address_space *mapping;
82 dev_t dev;
83
84 if (hwpoison_filter_dev_major == ~0U &&
85 hwpoison_filter_dev_minor == ~0U)
86 return 0;
87
88 /*
1c80b990 89 * page_mapping() does not accept slab pages.
7c116f2b
WF
90 */
91 if (PageSlab(p))
92 return -EINVAL;
93
94 mapping = page_mapping(p);
95 if (mapping == NULL || mapping->host == NULL)
96 return -EINVAL;
97
98 dev = mapping->host->i_sb->s_dev;
99 if (hwpoison_filter_dev_major != ~0U &&
100 hwpoison_filter_dev_major != MAJOR(dev))
101 return -EINVAL;
102 if (hwpoison_filter_dev_minor != ~0U &&
103 hwpoison_filter_dev_minor != MINOR(dev))
104 return -EINVAL;
105
106 return 0;
107}
108
478c5ffc
WF
109static int hwpoison_filter_flags(struct page *p)
110{
111 if (!hwpoison_filter_flags_mask)
112 return 0;
113
114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 hwpoison_filter_flags_value)
116 return 0;
117 else
118 return -EINVAL;
119}
120
4fd466eb
AK
121/*
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
129 * a freed page.
130 */
c255a458 131#ifdef CONFIG_MEMCG_SWAP
4fd466eb
AK
132u64 hwpoison_filter_memcg;
133EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134static int hwpoison_filter_task(struct page *p)
135{
136 struct mem_cgroup *mem;
137 struct cgroup_subsys_state *css;
138 unsigned long ino;
139
140 if (!hwpoison_filter_memcg)
141 return 0;
142
143 mem = try_get_mem_cgroup_from_page(p);
144 if (!mem)
145 return -EINVAL;
146
147 css = mem_cgroup_css(mem);
b1664924 148 ino = cgroup_ino(css->cgroup);
4fd466eb
AK
149 css_put(css);
150
b1664924 151 if (!ino || ino != hwpoison_filter_memcg)
4fd466eb
AK
152 return -EINVAL;
153
154 return 0;
155}
156#else
157static int hwpoison_filter_task(struct page *p) { return 0; }
158#endif
159
7c116f2b
WF
160int hwpoison_filter(struct page *p)
161{
1bfe5feb
HL
162 if (!hwpoison_filter_enable)
163 return 0;
164
7c116f2b
WF
165 if (hwpoison_filter_dev(p))
166 return -EINVAL;
167
478c5ffc
WF
168 if (hwpoison_filter_flags(p))
169 return -EINVAL;
170
4fd466eb
AK
171 if (hwpoison_filter_task(p))
172 return -EINVAL;
173
7c116f2b
WF
174 return 0;
175}
27df5068
AK
176#else
177int hwpoison_filter(struct page *p)
178{
179 return 0;
180}
181#endif
182
7c116f2b
WF
183EXPORT_SYMBOL_GPL(hwpoison_filter);
184
6a46079c 185/*
7329bbeb
TL
186 * Send all the processes who have the page mapped a signal.
187 * ``action optional'' if they are not immediately affected by the error
188 * ``action required'' if error happened in current execution context
6a46079c 189 */
7329bbeb
TL
190static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
191 unsigned long pfn, struct page *page, int flags)
6a46079c
AK
192{
193 struct siginfo si;
194 int ret;
195
196 printk(KERN_ERR
7329bbeb 197 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
6a46079c
AK
198 pfn, t->comm, t->pid);
199 si.si_signo = SIGBUS;
200 si.si_errno = 0;
6a46079c
AK
201 si.si_addr = (void *)addr;
202#ifdef __ARCH_SI_TRAPNO
203 si.si_trapno = trapno;
204#endif
f9121153 205 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
7329bbeb 206
a70ffcac 207 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
7329bbeb 208 si.si_code = BUS_MCEERR_AR;
a70ffcac 209 ret = force_sig_info(SIGBUS, &si, current);
7329bbeb
TL
210 } else {
211 /*
212 * Don't use force here, it's convenient if the signal
213 * can be temporarily blocked.
214 * This could cause a loop when the user sets SIGBUS
215 * to SIG_IGN, but hopefully no one will do that?
216 */
217 si.si_code = BUS_MCEERR_AO;
218 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
219 }
6a46079c
AK
220 if (ret < 0)
221 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
222 t->comm, t->pid, ret);
223 return ret;
224}
225
588f9ce6
AK
226/*
227 * When a unknown page type is encountered drain as many buffers as possible
228 * in the hope to turn the page into a LRU or free page, which we can handle.
229 */
facb6011 230void shake_page(struct page *p, int access)
588f9ce6
AK
231{
232 if (!PageSlab(p)) {
233 lru_add_drain_all();
234 if (PageLRU(p))
235 return;
236 drain_all_pages();
237 if (PageLRU(p) || is_free_buddy_page(p))
238 return;
239 }
facb6011 240
588f9ce6 241 /*
af241a08
JD
242 * Only call shrink_slab here (which would also shrink other caches) if
243 * access is not potentially fatal.
588f9ce6 244 */
facb6011
AK
245 if (access) {
246 int nr;
0ce3d744 247 int nid = page_to_nid(p);
facb6011 248 do {
a09ed5e0
YH
249 struct shrink_control shrink = {
250 .gfp_mask = GFP_KERNEL,
a09ed5e0 251 };
0ce3d744 252 node_set(nid, shrink.nodes_to_scan);
a09ed5e0 253
1495f230 254 nr = shrink_slab(&shrink, 1000, 1000);
47f43e7e 255 if (page_count(p) == 1)
facb6011
AK
256 break;
257 } while (nr > 10);
258 }
588f9ce6
AK
259}
260EXPORT_SYMBOL_GPL(shake_page);
261
6a46079c
AK
262/*
263 * Kill all processes that have a poisoned page mapped and then isolate
264 * the page.
265 *
266 * General strategy:
267 * Find all processes having the page mapped and kill them.
268 * But we keep a page reference around so that the page is not
269 * actually freed yet.
270 * Then stash the page away
271 *
272 * There's no convenient way to get back to mapped processes
273 * from the VMAs. So do a brute-force search over all
274 * running processes.
275 *
276 * Remember that machine checks are not common (or rather
277 * if they are common you have other problems), so this shouldn't
278 * be a performance issue.
279 *
280 * Also there are some races possible while we get from the
281 * error detection to actually handle it.
282 */
283
284struct to_kill {
285 struct list_head nd;
286 struct task_struct *tsk;
287 unsigned long addr;
9033ae16 288 char addr_valid;
6a46079c
AK
289};
290
291/*
292 * Failure handling: if we can't find or can't kill a process there's
293 * not much we can do. We just print a message and ignore otherwise.
294 */
295
296/*
297 * Schedule a process for later kill.
298 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
299 * TBD would GFP_NOIO be enough?
300 */
301static void add_to_kill(struct task_struct *tsk, struct page *p,
302 struct vm_area_struct *vma,
303 struct list_head *to_kill,
304 struct to_kill **tkc)
305{
306 struct to_kill *tk;
307
308 if (*tkc) {
309 tk = *tkc;
310 *tkc = NULL;
311 } else {
312 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
313 if (!tk) {
314 printk(KERN_ERR
315 "MCE: Out of memory while machine check handling\n");
316 return;
317 }
318 }
319 tk->addr = page_address_in_vma(p, vma);
320 tk->addr_valid = 1;
321
322 /*
323 * In theory we don't have to kill when the page was
324 * munmaped. But it could be also a mremap. Since that's
325 * likely very rare kill anyways just out of paranoia, but use
326 * a SIGKILL because the error is not contained anymore.
327 */
328 if (tk->addr == -EFAULT) {
fb46e735 329 pr_info("MCE: Unable to find user space address %lx in %s\n",
6a46079c
AK
330 page_to_pfn(p), tsk->comm);
331 tk->addr_valid = 0;
332 }
333 get_task_struct(tsk);
334 tk->tsk = tsk;
335 list_add_tail(&tk->nd, to_kill);
336}
337
338/*
339 * Kill the processes that have been collected earlier.
340 *
341 * Only do anything when DOIT is set, otherwise just free the list
342 * (this is used for clean pages which do not need killing)
343 * Also when FAIL is set do a force kill because something went
344 * wrong earlier.
345 */
6751ed65 346static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
7329bbeb
TL
347 int fail, struct page *page, unsigned long pfn,
348 int flags)
6a46079c
AK
349{
350 struct to_kill *tk, *next;
351
352 list_for_each_entry_safe (tk, next, to_kill, nd) {
6751ed65 353 if (forcekill) {
6a46079c 354 /*
af901ca1 355 * In case something went wrong with munmapping
6a46079c
AK
356 * make sure the process doesn't catch the
357 * signal and then access the memory. Just kill it.
6a46079c
AK
358 */
359 if (fail || tk->addr_valid == 0) {
360 printk(KERN_ERR
361 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
362 pfn, tk->tsk->comm, tk->tsk->pid);
363 force_sig(SIGKILL, tk->tsk);
364 }
365
366 /*
367 * In theory the process could have mapped
368 * something else on the address in-between. We could
369 * check for that, but we need to tell the
370 * process anyways.
371 */
7329bbeb
TL
372 else if (kill_proc(tk->tsk, tk->addr, trapno,
373 pfn, page, flags) < 0)
6a46079c
AK
374 printk(KERN_ERR
375 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
376 pfn, tk->tsk->comm, tk->tsk->pid);
377 }
378 put_task_struct(tk->tsk);
379 kfree(tk);
380 }
381}
382
74614de1 383static int task_early_kill(struct task_struct *tsk, int force_early)
6a46079c
AK
384{
385 if (!tsk->mm)
386 return 0;
74614de1
TL
387 if (force_early)
388 return 1;
6a46079c
AK
389 if (tsk->flags & PF_MCE_PROCESS)
390 return !!(tsk->flags & PF_MCE_EARLY);
391 return sysctl_memory_failure_early_kill;
392}
393
394/*
395 * Collect processes when the error hit an anonymous page.
396 */
397static void collect_procs_anon(struct page *page, struct list_head *to_kill,
74614de1 398 struct to_kill **tkc, int force_early)
6a46079c
AK
399{
400 struct vm_area_struct *vma;
401 struct task_struct *tsk;
402 struct anon_vma *av;
bf181b9f 403 pgoff_t pgoff;
6a46079c 404
4fc3f1d6 405 av = page_lock_anon_vma_read(page);
6a46079c 406 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
407 return;
408
bf181b9f 409 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
9b679320 410 read_lock(&tasklist_lock);
6a46079c 411 for_each_process (tsk) {
5beb4930
RR
412 struct anon_vma_chain *vmac;
413
74614de1 414 if (!task_early_kill(tsk, force_early))
6a46079c 415 continue;
bf181b9f
ML
416 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
417 pgoff, pgoff) {
5beb4930 418 vma = vmac->vma;
6a46079c
AK
419 if (!page_mapped_in_vma(page, vma))
420 continue;
421 if (vma->vm_mm == tsk->mm)
422 add_to_kill(tsk, page, vma, to_kill, tkc);
423 }
424 }
6a46079c 425 read_unlock(&tasklist_lock);
4fc3f1d6 426 page_unlock_anon_vma_read(av);
6a46079c
AK
427}
428
429/*
430 * Collect processes when the error hit a file mapped page.
431 */
432static void collect_procs_file(struct page *page, struct list_head *to_kill,
74614de1 433 struct to_kill **tkc, int force_early)
6a46079c
AK
434{
435 struct vm_area_struct *vma;
436 struct task_struct *tsk;
6a46079c
AK
437 struct address_space *mapping = page->mapping;
438
3d48ae45 439 mutex_lock(&mapping->i_mmap_mutex);
9b679320 440 read_lock(&tasklist_lock);
6a46079c
AK
441 for_each_process(tsk) {
442 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
443
74614de1 444 if (!task_early_kill(tsk, force_early))
6a46079c
AK
445 continue;
446
6b2dbba8 447 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
448 pgoff) {
449 /*
450 * Send early kill signal to tasks where a vma covers
451 * the page but the corrupted page is not necessarily
452 * mapped it in its pte.
453 * Assume applications who requested early kill want
454 * to be informed of all such data corruptions.
455 */
456 if (vma->vm_mm == tsk->mm)
457 add_to_kill(tsk, page, vma, to_kill, tkc);
458 }
459 }
6a46079c 460 read_unlock(&tasklist_lock);
9b679320 461 mutex_unlock(&mapping->i_mmap_mutex);
6a46079c
AK
462}
463
464/*
465 * Collect the processes who have the corrupted page mapped to kill.
466 * This is done in two steps for locking reasons.
467 * First preallocate one tokill structure outside the spin locks,
468 * so that we can kill at least one process reasonably reliable.
469 */
74614de1
TL
470static void collect_procs(struct page *page, struct list_head *tokill,
471 int force_early)
6a46079c
AK
472{
473 struct to_kill *tk;
474
475 if (!page->mapping)
476 return;
477
478 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
479 if (!tk)
480 return;
481 if (PageAnon(page))
74614de1 482 collect_procs_anon(page, tokill, &tk, force_early);
6a46079c 483 else
74614de1 484 collect_procs_file(page, tokill, &tk, force_early);
6a46079c
AK
485 kfree(tk);
486}
487
488/*
489 * Error handlers for various types of pages.
490 */
491
492enum outcome {
d95ea51e
WF
493 IGNORED, /* Error: cannot be handled */
494 FAILED, /* Error: handling failed */
6a46079c 495 DELAYED, /* Will be handled later */
6a46079c
AK
496 RECOVERED, /* Successfully recovered */
497};
498
499static const char *action_name[] = {
d95ea51e 500 [IGNORED] = "Ignored",
6a46079c
AK
501 [FAILED] = "Failed",
502 [DELAYED] = "Delayed",
6a46079c
AK
503 [RECOVERED] = "Recovered",
504};
505
dc2a1cbf
WF
506/*
507 * XXX: It is possible that a page is isolated from LRU cache,
508 * and then kept in swap cache or failed to remove from page cache.
509 * The page count will stop it from being freed by unpoison.
510 * Stress tests should be aware of this memory leak problem.
511 */
512static int delete_from_lru_cache(struct page *p)
513{
514 if (!isolate_lru_page(p)) {
515 /*
516 * Clear sensible page flags, so that the buddy system won't
517 * complain when the page is unpoison-and-freed.
518 */
519 ClearPageActive(p);
520 ClearPageUnevictable(p);
521 /*
522 * drop the page count elevated by isolate_lru_page()
523 */
524 page_cache_release(p);
525 return 0;
526 }
527 return -EIO;
528}
529
6a46079c
AK
530/*
531 * Error hit kernel page.
532 * Do nothing, try to be lucky and not touch this instead. For a few cases we
533 * could be more sophisticated.
534 */
535static int me_kernel(struct page *p, unsigned long pfn)
6a46079c
AK
536{
537 return IGNORED;
538}
539
540/*
541 * Page in unknown state. Do nothing.
542 */
543static int me_unknown(struct page *p, unsigned long pfn)
544{
545 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
546 return FAILED;
547}
548
6a46079c
AK
549/*
550 * Clean (or cleaned) page cache page.
551 */
552static int me_pagecache_clean(struct page *p, unsigned long pfn)
553{
554 int err;
555 int ret = FAILED;
556 struct address_space *mapping;
557
dc2a1cbf
WF
558 delete_from_lru_cache(p);
559
6a46079c
AK
560 /*
561 * For anonymous pages we're done the only reference left
562 * should be the one m_f() holds.
563 */
564 if (PageAnon(p))
565 return RECOVERED;
566
567 /*
568 * Now truncate the page in the page cache. This is really
569 * more like a "temporary hole punch"
570 * Don't do this for block devices when someone else
571 * has a reference, because it could be file system metadata
572 * and that's not safe to truncate.
573 */
574 mapping = page_mapping(p);
575 if (!mapping) {
576 /*
577 * Page has been teared down in the meanwhile
578 */
579 return FAILED;
580 }
581
582 /*
583 * Truncation is a bit tricky. Enable it per file system for now.
584 *
585 * Open: to take i_mutex or not for this? Right now we don't.
586 */
587 if (mapping->a_ops->error_remove_page) {
588 err = mapping->a_ops->error_remove_page(mapping, p);
589 if (err != 0) {
590 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
591 pfn, err);
592 } else if (page_has_private(p) &&
593 !try_to_release_page(p, GFP_NOIO)) {
fb46e735 594 pr_info("MCE %#lx: failed to release buffers\n", pfn);
6a46079c
AK
595 } else {
596 ret = RECOVERED;
597 }
598 } else {
599 /*
600 * If the file system doesn't support it just invalidate
601 * This fails on dirty or anything with private pages
602 */
603 if (invalidate_inode_page(p))
604 ret = RECOVERED;
605 else
606 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
607 pfn);
608 }
609 return ret;
610}
611
612/*
549543df 613 * Dirty pagecache page
6a46079c
AK
614 * Issues: when the error hit a hole page the error is not properly
615 * propagated.
616 */
617static int me_pagecache_dirty(struct page *p, unsigned long pfn)
618{
619 struct address_space *mapping = page_mapping(p);
620
621 SetPageError(p);
622 /* TBD: print more information about the file. */
623 if (mapping) {
624 /*
625 * IO error will be reported by write(), fsync(), etc.
626 * who check the mapping.
627 * This way the application knows that something went
628 * wrong with its dirty file data.
629 *
630 * There's one open issue:
631 *
632 * The EIO will be only reported on the next IO
633 * operation and then cleared through the IO map.
634 * Normally Linux has two mechanisms to pass IO error
635 * first through the AS_EIO flag in the address space
636 * and then through the PageError flag in the page.
637 * Since we drop pages on memory failure handling the
638 * only mechanism open to use is through AS_AIO.
639 *
640 * This has the disadvantage that it gets cleared on
641 * the first operation that returns an error, while
642 * the PageError bit is more sticky and only cleared
643 * when the page is reread or dropped. If an
644 * application assumes it will always get error on
645 * fsync, but does other operations on the fd before
25985edc 646 * and the page is dropped between then the error
6a46079c
AK
647 * will not be properly reported.
648 *
649 * This can already happen even without hwpoisoned
650 * pages: first on metadata IO errors (which only
651 * report through AS_EIO) or when the page is dropped
652 * at the wrong time.
653 *
654 * So right now we assume that the application DTRT on
655 * the first EIO, but we're not worse than other parts
656 * of the kernel.
657 */
658 mapping_set_error(mapping, EIO);
659 }
660
661 return me_pagecache_clean(p, pfn);
662}
663
664/*
665 * Clean and dirty swap cache.
666 *
667 * Dirty swap cache page is tricky to handle. The page could live both in page
668 * cache and swap cache(ie. page is freshly swapped in). So it could be
669 * referenced concurrently by 2 types of PTEs:
670 * normal PTEs and swap PTEs. We try to handle them consistently by calling
671 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
672 * and then
673 * - clear dirty bit to prevent IO
674 * - remove from LRU
675 * - but keep in the swap cache, so that when we return to it on
676 * a later page fault, we know the application is accessing
677 * corrupted data and shall be killed (we installed simple
678 * interception code in do_swap_page to catch it).
679 *
680 * Clean swap cache pages can be directly isolated. A later page fault will
681 * bring in the known good data from disk.
682 */
683static int me_swapcache_dirty(struct page *p, unsigned long pfn)
684{
6a46079c
AK
685 ClearPageDirty(p);
686 /* Trigger EIO in shmem: */
687 ClearPageUptodate(p);
688
dc2a1cbf
WF
689 if (!delete_from_lru_cache(p))
690 return DELAYED;
691 else
692 return FAILED;
6a46079c
AK
693}
694
695static int me_swapcache_clean(struct page *p, unsigned long pfn)
696{
6a46079c 697 delete_from_swap_cache(p);
e43c3afb 698
dc2a1cbf
WF
699 if (!delete_from_lru_cache(p))
700 return RECOVERED;
701 else
702 return FAILED;
6a46079c
AK
703}
704
705/*
706 * Huge pages. Needs work.
707 * Issues:
93f70f90
NH
708 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
709 * To narrow down kill region to one page, we need to break up pmd.
6a46079c
AK
710 */
711static int me_huge_page(struct page *p, unsigned long pfn)
712{
6de2b1aa 713 int res = 0;
93f70f90
NH
714 struct page *hpage = compound_head(p);
715 /*
716 * We can safely recover from error on free or reserved (i.e.
717 * not in-use) hugepage by dequeuing it from freelist.
718 * To check whether a hugepage is in-use or not, we can't use
719 * page->lru because it can be used in other hugepage operations,
720 * such as __unmap_hugepage_range() and gather_surplus_pages().
721 * So instead we use page_mapping() and PageAnon().
722 * We assume that this function is called with page lock held,
723 * so there is no race between isolation and mapping/unmapping.
724 */
725 if (!(page_mapping(hpage) || PageAnon(hpage))) {
6de2b1aa
NH
726 res = dequeue_hwpoisoned_huge_page(hpage);
727 if (!res)
728 return RECOVERED;
93f70f90
NH
729 }
730 return DELAYED;
6a46079c
AK
731}
732
733/*
734 * Various page states we can handle.
735 *
736 * A page state is defined by its current page->flags bits.
737 * The table matches them in order and calls the right handler.
738 *
739 * This is quite tricky because we can access page at any time
25985edc 740 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
741 *
742 * This is not complete. More states could be added.
743 * For any missing state don't attempt recovery.
744 */
745
746#define dirty (1UL << PG_dirty)
747#define sc (1UL << PG_swapcache)
748#define unevict (1UL << PG_unevictable)
749#define mlock (1UL << PG_mlocked)
750#define writeback (1UL << PG_writeback)
751#define lru (1UL << PG_lru)
752#define swapbacked (1UL << PG_swapbacked)
753#define head (1UL << PG_head)
754#define tail (1UL << PG_tail)
755#define compound (1UL << PG_compound)
756#define slab (1UL << PG_slab)
6a46079c
AK
757#define reserved (1UL << PG_reserved)
758
759static struct page_state {
760 unsigned long mask;
761 unsigned long res;
762 char *msg;
763 int (*action)(struct page *p, unsigned long pfn);
764} error_states[] = {
d95ea51e 765 { reserved, reserved, "reserved kernel", me_kernel },
95d01fc6
WF
766 /*
767 * free pages are specially detected outside this table:
768 * PG_buddy pages only make a small fraction of all free pages.
769 */
6a46079c
AK
770
771 /*
772 * Could in theory check if slab page is free or if we can drop
773 * currently unused objects without touching them. But just
774 * treat it as standard kernel for now.
775 */
776 { slab, slab, "kernel slab", me_kernel },
777
778#ifdef CONFIG_PAGEFLAGS_EXTENDED
779 { head, head, "huge", me_huge_page },
780 { tail, tail, "huge", me_huge_page },
781#else
782 { compound, compound, "huge", me_huge_page },
783#endif
784
ff604cf6
NH
785 { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty },
786 { sc|dirty, sc, "clean swapcache", me_swapcache_clean },
6a46079c 787
ff604cf6 788 { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty },
e3986295 789 { mlock|dirty, mlock, "clean mlocked LRU", me_pagecache_clean },
6a46079c 790
5f4b9fc5 791 { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty },
e3986295 792 { unevict|dirty, unevict, "clean unevictable LRU", me_pagecache_clean },
5f4b9fc5 793
ff604cf6 794 { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty },
6a46079c 795 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
6a46079c
AK
796
797 /*
798 * Catchall entry: must be at end.
799 */
800 { 0, 0, "unknown page state", me_unknown },
801};
802
2326c467
AK
803#undef dirty
804#undef sc
805#undef unevict
806#undef mlock
807#undef writeback
808#undef lru
809#undef swapbacked
810#undef head
811#undef tail
812#undef compound
813#undef slab
814#undef reserved
815
ff604cf6
NH
816/*
817 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
818 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
819 */
6a46079c
AK
820static void action_result(unsigned long pfn, char *msg, int result)
821{
ff604cf6
NH
822 pr_err("MCE %#lx: %s page recovery: %s\n",
823 pfn, msg, action_name[result]);
6a46079c
AK
824}
825
826static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 827 unsigned long pfn)
6a46079c
AK
828{
829 int result;
7456b040 830 int count;
6a46079c
AK
831
832 result = ps->action(p, pfn);
833 action_result(pfn, ps->msg, result);
7456b040 834
bd1ce5f9 835 count = page_count(p) - 1;
138ce286
WF
836 if (ps->action == me_swapcache_dirty && result == DELAYED)
837 count--;
838 if (count != 0) {
6a46079c
AK
839 printk(KERN_ERR
840 "MCE %#lx: %s page still referenced by %d users\n",
7456b040 841 pfn, ps->msg, count);
138ce286
WF
842 result = FAILED;
843 }
6a46079c
AK
844
845 /* Could do more checks here if page looks ok */
846 /*
847 * Could adjust zone counters here to correct for the missing page.
848 */
849
138ce286 850 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
6a46079c
AK
851}
852
6a46079c
AK
853/*
854 * Do all that is necessary to remove user space mappings. Unmap
855 * the pages and send SIGBUS to the processes if the data was dirty.
856 */
1668bfd5 857static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
54b9dd14 858 int trapno, int flags, struct page **hpagep)
6a46079c
AK
859{
860 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
861 struct address_space *mapping;
862 LIST_HEAD(tokill);
863 int ret;
6751ed65 864 int kill = 1, forcekill;
54b9dd14 865 struct page *hpage = *hpagep;
a6d30ddd 866 struct page *ppage;
6a46079c 867
1668bfd5
WF
868 if (PageReserved(p) || PageSlab(p))
869 return SWAP_SUCCESS;
6a46079c 870
6a46079c
AK
871 /*
872 * This check implies we don't kill processes if their pages
873 * are in the swap cache early. Those are always late kills.
874 */
7af446a8 875 if (!page_mapped(hpage))
1668bfd5
WF
876 return SWAP_SUCCESS;
877
7af446a8 878 if (PageKsm(p))
1668bfd5 879 return SWAP_FAIL;
6a46079c
AK
880
881 if (PageSwapCache(p)) {
882 printk(KERN_ERR
883 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
884 ttu |= TTU_IGNORE_HWPOISON;
885 }
886
887 /*
888 * Propagate the dirty bit from PTEs to struct page first, because we
889 * need this to decide if we should kill or just drop the page.
db0480b3
WF
890 * XXX: the dirty test could be racy: set_page_dirty() may not always
891 * be called inside page lock (it's recommended but not enforced).
6a46079c 892 */
7af446a8 893 mapping = page_mapping(hpage);
6751ed65 894 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
7af446a8
NH
895 mapping_cap_writeback_dirty(mapping)) {
896 if (page_mkclean(hpage)) {
897 SetPageDirty(hpage);
6a46079c
AK
898 } else {
899 kill = 0;
900 ttu |= TTU_IGNORE_HWPOISON;
901 printk(KERN_INFO
902 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
903 pfn);
904 }
905 }
906
a6d30ddd
JD
907 /*
908 * ppage: poisoned page
909 * if p is regular page(4k page)
910 * ppage == real poisoned page;
911 * else p is hugetlb or THP, ppage == head page.
912 */
913 ppage = hpage;
914
efeda7a4
JD
915 if (PageTransHuge(hpage)) {
916 /*
917 * Verify that this isn't a hugetlbfs head page, the check for
918 * PageAnon is just for avoid tripping a split_huge_page
919 * internal debug check, as split_huge_page refuses to deal with
920 * anything that isn't an anon page. PageAnon can't go away fro
921 * under us because we hold a refcount on the hpage, without a
922 * refcount on the hpage. split_huge_page can't be safely called
923 * in the first place, having a refcount on the tail isn't
924 * enough * to be safe.
925 */
926 if (!PageHuge(hpage) && PageAnon(hpage)) {
927 if (unlikely(split_huge_page(hpage))) {
928 /*
929 * FIXME: if splitting THP is failed, it is
930 * better to stop the following operation rather
931 * than causing panic by unmapping. System might
932 * survive if the page is freed later.
933 */
934 printk(KERN_INFO
935 "MCE %#lx: failed to split THP\n", pfn);
936
937 BUG_ON(!PageHWPoison(p));
938 return SWAP_FAIL;
939 }
a3e0f9e4
NH
940 /*
941 * We pinned the head page for hwpoison handling,
942 * now we split the thp and we are interested in
943 * the hwpoisoned raw page, so move the refcount
54b9dd14 944 * to it. Similarly, page lock is shifted.
a3e0f9e4
NH
945 */
946 if (hpage != p) {
8d547ff4
NH
947 if (!(flags & MF_COUNT_INCREASED)) {
948 put_page(hpage);
949 get_page(p);
950 }
54b9dd14
NH
951 lock_page(p);
952 unlock_page(hpage);
953 *hpagep = p;
a3e0f9e4 954 }
a6d30ddd
JD
955 /* THP is split, so ppage should be the real poisoned page. */
956 ppage = p;
efeda7a4
JD
957 }
958 }
959
6a46079c
AK
960 /*
961 * First collect all the processes that have the page
962 * mapped in dirty form. This has to be done before try_to_unmap,
963 * because ttu takes the rmap data structures down.
964 *
965 * Error handling: We ignore errors here because
966 * there's nothing that can be done.
967 */
968 if (kill)
74614de1 969 collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 970
a6d30ddd 971 ret = try_to_unmap(ppage, ttu);
6a46079c
AK
972 if (ret != SWAP_SUCCESS)
973 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
a6d30ddd
JD
974 pfn, page_mapcount(ppage));
975
6a46079c
AK
976 /*
977 * Now that the dirty bit has been propagated to the
978 * struct page and all unmaps done we can decide if
979 * killing is needed or not. Only kill when the page
6751ed65
TL
980 * was dirty or the process is not restartable,
981 * otherwise the tokill list is merely
6a46079c
AK
982 * freed. When there was a problem unmapping earlier
983 * use a more force-full uncatchable kill to prevent
984 * any accesses to the poisoned memory.
985 */
6751ed65
TL
986 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
987 kill_procs(&tokill, forcekill, trapno,
7329bbeb 988 ret != SWAP_SUCCESS, p, pfn, flags);
1668bfd5
WF
989
990 return ret;
6a46079c
AK
991}
992
7013febc
NH
993static void set_page_hwpoison_huge_page(struct page *hpage)
994{
995 int i;
f9121153 996 int nr_pages = 1 << compound_order(hpage);
7013febc
NH
997 for (i = 0; i < nr_pages; i++)
998 SetPageHWPoison(hpage + i);
999}
1000
1001static void clear_page_hwpoison_huge_page(struct page *hpage)
1002{
1003 int i;
f9121153 1004 int nr_pages = 1 << compound_order(hpage);
7013febc
NH
1005 for (i = 0; i < nr_pages; i++)
1006 ClearPageHWPoison(hpage + i);
1007}
1008
cd42f4a3
TL
1009/**
1010 * memory_failure - Handle memory failure of a page.
1011 * @pfn: Page Number of the corrupted page
1012 * @trapno: Trap number reported in the signal to user space.
1013 * @flags: fine tune action taken
1014 *
1015 * This function is called by the low level machine check code
1016 * of an architecture when it detects hardware memory corruption
1017 * of a page. It tries its best to recover, which includes
1018 * dropping pages, killing processes etc.
1019 *
1020 * The function is primarily of use for corruptions that
1021 * happen outside the current execution context (e.g. when
1022 * detected by a background scrubber)
1023 *
1024 * Must run in process context (e.g. a work queue) with interrupts
1025 * enabled and no spinlocks hold.
1026 */
1027int memory_failure(unsigned long pfn, int trapno, int flags)
6a46079c
AK
1028{
1029 struct page_state *ps;
1030 struct page *p;
7af446a8 1031 struct page *hpage;
6a46079c 1032 int res;
c9fbdd5f 1033 unsigned int nr_pages;
524fca1e 1034 unsigned long page_flags;
6a46079c
AK
1035
1036 if (!sysctl_memory_failure_recovery)
1037 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1038
1039 if (!pfn_valid(pfn)) {
a7560fc8
WF
1040 printk(KERN_ERR
1041 "MCE %#lx: memory outside kernel control\n",
1042 pfn);
1043 return -ENXIO;
6a46079c
AK
1044 }
1045
1046 p = pfn_to_page(pfn);
7af446a8 1047 hpage = compound_head(p);
6a46079c 1048 if (TestSetPageHWPoison(p)) {
d95ea51e 1049 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
6a46079c
AK
1050 return 0;
1051 }
1052
4db0e950
NH
1053 /*
1054 * Currently errors on hugetlbfs pages are measured in hugepage units,
1055 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1056 * transparent hugepages, they are supposed to be split and error
1057 * measurement is done in normal page units. So nr_pages should be one
1058 * in this case.
1059 */
1060 if (PageHuge(p))
1061 nr_pages = 1 << compound_order(hpage);
1062 else /* normal page or thp */
1063 nr_pages = 1;
293c07e3 1064 atomic_long_add(nr_pages, &num_poisoned_pages);
6a46079c
AK
1065
1066 /*
1067 * We need/can do nothing about count=0 pages.
1068 * 1) it's a free page, and therefore in safe hand:
1069 * prep_new_page() will be the gate keeper.
8c6c2ecb
NH
1070 * 2) it's a free hugepage, which is also safe:
1071 * an affected hugepage will be dequeued from hugepage freelist,
1072 * so there's no concern about reusing it ever after.
1073 * 3) it's part of a non-compound high order page.
6a46079c
AK
1074 * Implies some kernel user: cannot stop them from
1075 * R/W the page; let's pray that the page has been
1076 * used and will be freed some time later.
1077 * In fact it's dangerous to directly bump up page count from 0,
1078 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1079 */
82ba011b 1080 if (!(flags & MF_COUNT_INCREASED) &&
7af446a8 1081 !get_page_unless_zero(hpage)) {
8d22ba1b
WF
1082 if (is_free_buddy_page(p)) {
1083 action_result(pfn, "free buddy", DELAYED);
1084 return 0;
8c6c2ecb
NH
1085 } else if (PageHuge(hpage)) {
1086 /*
b985194c 1087 * Check "filter hit" and "race with other subpage."
8c6c2ecb 1088 */
7eaceacc 1089 lock_page(hpage);
b985194c
CY
1090 if (PageHWPoison(hpage)) {
1091 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1092 || (p != hpage && TestSetPageHWPoison(hpage))) {
1093 atomic_long_sub(nr_pages, &num_poisoned_pages);
1094 unlock_page(hpage);
1095 return 0;
1096 }
8c6c2ecb
NH
1097 }
1098 set_page_hwpoison_huge_page(hpage);
1099 res = dequeue_hwpoisoned_huge_page(hpage);
1100 action_result(pfn, "free huge",
1101 res ? IGNORED : DELAYED);
1102 unlock_page(hpage);
1103 return res;
8d22ba1b
WF
1104 } else {
1105 action_result(pfn, "high order kernel", IGNORED);
1106 return -EBUSY;
1107 }
6a46079c
AK
1108 }
1109
e43c3afb
WF
1110 /*
1111 * We ignore non-LRU pages for good reasons.
1112 * - PG_locked is only well defined for LRU pages and a few others
1113 * - to avoid races with __set_page_locked()
1114 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1115 * The check (unnecessarily) ignores LRU pages being isolated and
1116 * walked by the page reclaim code, however that's not a big loss.
1117 */
385de357 1118 if (!PageHuge(p) && !PageTransTail(p)) {
af241a08
JD
1119 if (!PageLRU(p))
1120 shake_page(p, 0);
1121 if (!PageLRU(p)) {
1122 /*
1123 * shake_page could have turned it free.
1124 */
1125 if (is_free_buddy_page(p)) {
2d421acd
WL
1126 if (flags & MF_COUNT_INCREASED)
1127 action_result(pfn, "free buddy", DELAYED);
1128 else
1129 action_result(pfn, "free buddy, 2nd try", DELAYED);
af241a08
JD
1130 return 0;
1131 }
1132 action_result(pfn, "non LRU", IGNORED);
1133 put_page(p);
1134 return -EBUSY;
0474a60e 1135 }
e43c3afb 1136 }
e43c3afb 1137
7eaceacc 1138 lock_page(hpage);
847ce401 1139
524fca1e
NH
1140 /*
1141 * We use page flags to determine what action should be taken, but
1142 * the flags can be modified by the error containment action. One
1143 * example is an mlocked page, where PG_mlocked is cleared by
1144 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1145 * correctly, we save a copy of the page flags at this time.
1146 */
1147 page_flags = p->flags;
1148
847ce401
WF
1149 /*
1150 * unpoison always clear PG_hwpoison inside page lock
1151 */
1152 if (!PageHWPoison(p)) {
d95ea51e 1153 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
3e030ecc
NH
1154 atomic_long_sub(nr_pages, &num_poisoned_pages);
1155 put_page(hpage);
847ce401
WF
1156 res = 0;
1157 goto out;
1158 }
7c116f2b
WF
1159 if (hwpoison_filter(p)) {
1160 if (TestClearPageHWPoison(p))
293c07e3 1161 atomic_long_sub(nr_pages, &num_poisoned_pages);
7af446a8
NH
1162 unlock_page(hpage);
1163 put_page(hpage);
7c116f2b
WF
1164 return 0;
1165 }
847ce401 1166
7013febc
NH
1167 /*
1168 * For error on the tail page, we should set PG_hwpoison
1169 * on the head page to show that the hugepage is hwpoisoned
1170 */
a6d30ddd 1171 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
7013febc
NH
1172 action_result(pfn, "hugepage already hardware poisoned",
1173 IGNORED);
1174 unlock_page(hpage);
1175 put_page(hpage);
1176 return 0;
1177 }
1178 /*
1179 * Set PG_hwpoison on all pages in an error hugepage,
1180 * because containment is done in hugepage unit for now.
1181 * Since we have done TestSetPageHWPoison() for the head page with
1182 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1183 */
1184 if (PageHuge(p))
1185 set_page_hwpoison_huge_page(hpage);
1186
6edd6cc6
NH
1187 /*
1188 * It's very difficult to mess with pages currently under IO
1189 * and in many cases impossible, so we just avoid it here.
1190 */
6a46079c
AK
1191 wait_on_page_writeback(p);
1192
1193 /*
1194 * Now take care of user space mappings.
e64a782f 1195 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
54b9dd14
NH
1196 *
1197 * When the raw error page is thp tail page, hpage points to the raw
1198 * page after thp split.
6a46079c 1199 */
54b9dd14
NH
1200 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1201 != SWAP_SUCCESS) {
1668bfd5
WF
1202 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1203 res = -EBUSY;
1204 goto out;
1205 }
6a46079c
AK
1206
1207 /*
1208 * Torn down by someone else?
1209 */
dc2a1cbf 1210 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
6a46079c 1211 action_result(pfn, "already truncated LRU", IGNORED);
d95ea51e 1212 res = -EBUSY;
6a46079c
AK
1213 goto out;
1214 }
1215
1216 res = -EBUSY;
524fca1e
NH
1217 /*
1218 * The first check uses the current page flags which may not have any
1219 * relevant information. The second check with the saved page flagss is
1220 * carried out only if the first check can't determine the page status.
1221 */
1222 for (ps = error_states;; ps++)
1223 if ((p->flags & ps->mask) == ps->res)
6a46079c 1224 break;
841fcc58
WL
1225
1226 page_flags |= (p->flags & (1UL << PG_dirty));
1227
524fca1e
NH
1228 if (!ps->mask)
1229 for (ps = error_states;; ps++)
1230 if ((page_flags & ps->mask) == ps->res)
1231 break;
1232 res = page_action(ps, p, pfn);
6a46079c 1233out:
7af446a8 1234 unlock_page(hpage);
6a46079c
AK
1235 return res;
1236}
cd42f4a3 1237EXPORT_SYMBOL_GPL(memory_failure);
847ce401 1238
ea8f5fb8
HY
1239#define MEMORY_FAILURE_FIFO_ORDER 4
1240#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1241
1242struct memory_failure_entry {
1243 unsigned long pfn;
1244 int trapno;
1245 int flags;
1246};
1247
1248struct memory_failure_cpu {
1249 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1250 MEMORY_FAILURE_FIFO_SIZE);
1251 spinlock_t lock;
1252 struct work_struct work;
1253};
1254
1255static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1256
1257/**
1258 * memory_failure_queue - Schedule handling memory failure of a page.
1259 * @pfn: Page Number of the corrupted page
1260 * @trapno: Trap number reported in the signal to user space.
1261 * @flags: Flags for memory failure handling
1262 *
1263 * This function is called by the low level hardware error handler
1264 * when it detects hardware memory corruption of a page. It schedules
1265 * the recovering of error page, including dropping pages, killing
1266 * processes etc.
1267 *
1268 * The function is primarily of use for corruptions that
1269 * happen outside the current execution context (e.g. when
1270 * detected by a background scrubber)
1271 *
1272 * Can run in IRQ context.
1273 */
1274void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1275{
1276 struct memory_failure_cpu *mf_cpu;
1277 unsigned long proc_flags;
1278 struct memory_failure_entry entry = {
1279 .pfn = pfn,
1280 .trapno = trapno,
1281 .flags = flags,
1282 };
1283
1284 mf_cpu = &get_cpu_var(memory_failure_cpu);
1285 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 1286 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
1287 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1288 else
8e33a52f 1289 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
1290 pfn);
1291 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1292 put_cpu_var(memory_failure_cpu);
1293}
1294EXPORT_SYMBOL_GPL(memory_failure_queue);
1295
1296static void memory_failure_work_func(struct work_struct *work)
1297{
1298 struct memory_failure_cpu *mf_cpu;
1299 struct memory_failure_entry entry = { 0, };
1300 unsigned long proc_flags;
1301 int gotten;
1302
7c8e0181 1303 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
ea8f5fb8
HY
1304 for (;;) {
1305 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1306 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1307 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1308 if (!gotten)
1309 break;
cf870c70
NR
1310 if (entry.flags & MF_SOFT_OFFLINE)
1311 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1312 else
1313 memory_failure(entry.pfn, entry.trapno, entry.flags);
ea8f5fb8
HY
1314 }
1315}
1316
1317static int __init memory_failure_init(void)
1318{
1319 struct memory_failure_cpu *mf_cpu;
1320 int cpu;
1321
1322 for_each_possible_cpu(cpu) {
1323 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1324 spin_lock_init(&mf_cpu->lock);
1325 INIT_KFIFO(mf_cpu->fifo);
1326 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1327 }
1328
1329 return 0;
1330}
1331core_initcall(memory_failure_init);
1332
847ce401
WF
1333/**
1334 * unpoison_memory - Unpoison a previously poisoned page
1335 * @pfn: Page number of the to be unpoisoned page
1336 *
1337 * Software-unpoison a page that has been poisoned by
1338 * memory_failure() earlier.
1339 *
1340 * This is only done on the software-level, so it only works
1341 * for linux injected failures, not real hardware failures
1342 *
1343 * Returns 0 for success, otherwise -errno.
1344 */
1345int unpoison_memory(unsigned long pfn)
1346{
1347 struct page *page;
1348 struct page *p;
1349 int freeit = 0;
c9fbdd5f 1350 unsigned int nr_pages;
847ce401
WF
1351
1352 if (!pfn_valid(pfn))
1353 return -ENXIO;
1354
1355 p = pfn_to_page(pfn);
1356 page = compound_head(p);
1357
1358 if (!PageHWPoison(p)) {
fb46e735 1359 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
847ce401
WF
1360 return 0;
1361 }
1362
0cea3fdc
WL
1363 /*
1364 * unpoison_memory() can encounter thp only when the thp is being
1365 * worked by memory_failure() and the page lock is not held yet.
1366 * In such case, we yield to memory_failure() and make unpoison fail.
1367 */
e76d30e2 1368 if (!PageHuge(page) && PageTransHuge(page)) {
0cea3fdc
WL
1369 pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1370 return 0;
1371 }
1372
f9121153 1373 nr_pages = 1 << compound_order(page);
c9fbdd5f 1374
847ce401 1375 if (!get_page_unless_zero(page)) {
8c6c2ecb
NH
1376 /*
1377 * Since HWPoisoned hugepage should have non-zero refcount,
1378 * race between memory failure and unpoison seems to happen.
1379 * In such case unpoison fails and memory failure runs
1380 * to the end.
1381 */
1382 if (PageHuge(page)) {
dd73e85f 1383 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
8c6c2ecb
NH
1384 return 0;
1385 }
847ce401 1386 if (TestClearPageHWPoison(p))
dd9538a5 1387 atomic_long_dec(&num_poisoned_pages);
fb46e735 1388 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
847ce401
WF
1389 return 0;
1390 }
1391
7eaceacc 1392 lock_page(page);
847ce401
WF
1393 /*
1394 * This test is racy because PG_hwpoison is set outside of page lock.
1395 * That's acceptable because that won't trigger kernel panic. Instead,
1396 * the PG_hwpoison page will be caught and isolated on the entrance to
1397 * the free buddy page pool.
1398 */
c9fbdd5f 1399 if (TestClearPageHWPoison(page)) {
fb46e735 1400 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
293c07e3 1401 atomic_long_sub(nr_pages, &num_poisoned_pages);
847ce401 1402 freeit = 1;
6a90181c
NH
1403 if (PageHuge(page))
1404 clear_page_hwpoison_huge_page(page);
847ce401
WF
1405 }
1406 unlock_page(page);
1407
1408 put_page(page);
3ba5eebc 1409 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
847ce401
WF
1410 put_page(page);
1411
1412 return 0;
1413}
1414EXPORT_SYMBOL(unpoison_memory);
facb6011
AK
1415
1416static struct page *new_page(struct page *p, unsigned long private, int **x)
1417{
12686d15 1418 int nid = page_to_nid(p);
d950b958
NH
1419 if (PageHuge(p))
1420 return alloc_huge_page_node(page_hstate(compound_head(p)),
1421 nid);
1422 else
1423 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
facb6011
AK
1424}
1425
1426/*
1427 * Safely get reference count of an arbitrary page.
1428 * Returns 0 for a free page, -EIO for a zero refcount page
1429 * that is not free, and 1 for any other page type.
1430 * For 1 the page is returned with increased page count, otherwise not.
1431 */
af8fae7c 1432static int __get_any_page(struct page *p, unsigned long pfn, int flags)
facb6011
AK
1433{
1434 int ret;
1435
1436 if (flags & MF_COUNT_INCREASED)
1437 return 1;
1438
d950b958
NH
1439 /*
1440 * When the target page is a free hugepage, just remove it
1441 * from free hugepage list.
1442 */
facb6011 1443 if (!get_page_unless_zero(compound_head(p))) {
d950b958 1444 if (PageHuge(p)) {
71dd0b8a 1445 pr_info("%s: %#lx free huge page\n", __func__, pfn);
af8fae7c 1446 ret = 0;
d950b958 1447 } else if (is_free_buddy_page(p)) {
71dd0b8a 1448 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
facb6011
AK
1449 ret = 0;
1450 } else {
71dd0b8a
BP
1451 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1452 __func__, pfn, p->flags);
facb6011
AK
1453 ret = -EIO;
1454 }
1455 } else {
1456 /* Not a free page */
1457 ret = 1;
1458 }
facb6011
AK
1459 return ret;
1460}
1461
af8fae7c
NH
1462static int get_any_page(struct page *page, unsigned long pfn, int flags)
1463{
1464 int ret = __get_any_page(page, pfn, flags);
1465
1466 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1467 /*
1468 * Try to free it.
1469 */
1470 put_page(page);
1471 shake_page(page, 1);
1472
1473 /*
1474 * Did it turn free?
1475 */
1476 ret = __get_any_page(page, pfn, 0);
1477 if (!PageLRU(page)) {
1478 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1479 pfn, page->flags);
1480 return -EIO;
1481 }
1482 }
1483 return ret;
1484}
1485
d950b958
NH
1486static int soft_offline_huge_page(struct page *page, int flags)
1487{
1488 int ret;
1489 unsigned long pfn = page_to_pfn(page);
1490 struct page *hpage = compound_head(page);
b8ec1cee 1491 LIST_HEAD(pagelist);
d950b958 1492
af8fae7c
NH
1493 /*
1494 * This double-check of PageHWPoison is to avoid the race with
1495 * memory_failure(). See also comment in __soft_offline_page().
1496 */
1497 lock_page(hpage);
0ebff32c 1498 if (PageHWPoison(hpage)) {
af8fae7c
NH
1499 unlock_page(hpage);
1500 put_page(hpage);
0ebff32c 1501 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
af8fae7c 1502 return -EBUSY;
0ebff32c 1503 }
af8fae7c 1504 unlock_page(hpage);
d950b958 1505
d950b958 1506 /* Keep page count to indicate a given hugepage is isolated. */
b8ec1cee 1507 list_move(&hpage->lru, &pagelist);
68711a74 1508 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
b8ec1cee 1509 MIGRATE_SYNC, MR_MEMORY_FAILURE);
d950b958 1510 if (ret) {
dd73e85f
DN
1511 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1512 pfn, ret, page->flags);
b8ec1cee
NH
1513 /*
1514 * We know that soft_offline_huge_page() tries to migrate
1515 * only one hugepage pointed to by hpage, so we need not
1516 * run through the pagelist here.
1517 */
1518 putback_active_hugepage(hpage);
1519 if (ret > 0)
1520 ret = -EIO;
af8fae7c 1521 } else {
a49ecbcd
JW
1522 /* overcommit hugetlb page will be freed to buddy */
1523 if (PageHuge(page)) {
1524 set_page_hwpoison_huge_page(hpage);
1525 dequeue_hwpoisoned_huge_page(hpage);
1526 atomic_long_add(1 << compound_order(hpage),
1527 &num_poisoned_pages);
1528 } else {
1529 SetPageHWPoison(page);
1530 atomic_long_inc(&num_poisoned_pages);
1531 }
d950b958 1532 }
d950b958
NH
1533 return ret;
1534}
1535
af8fae7c
NH
1536static int __soft_offline_page(struct page *page, int flags)
1537{
1538 int ret;
1539 unsigned long pfn = page_to_pfn(page);
facb6011 1540
facb6011 1541 /*
af8fae7c
NH
1542 * Check PageHWPoison again inside page lock because PageHWPoison
1543 * is set by memory_failure() outside page lock. Note that
1544 * memory_failure() also double-checks PageHWPoison inside page lock,
1545 * so there's no race between soft_offline_page() and memory_failure().
facb6011 1546 */
0ebff32c
XQ
1547 lock_page(page);
1548 wait_on_page_writeback(page);
af8fae7c
NH
1549 if (PageHWPoison(page)) {
1550 unlock_page(page);
1551 put_page(page);
1552 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1553 return -EBUSY;
1554 }
facb6011
AK
1555 /*
1556 * Try to invalidate first. This should work for
1557 * non dirty unmapped page cache pages.
1558 */
1559 ret = invalidate_inode_page(page);
1560 unlock_page(page);
facb6011 1561 /*
facb6011
AK
1562 * RED-PEN would be better to keep it isolated here, but we
1563 * would need to fix isolation locking first.
1564 */
facb6011 1565 if (ret == 1) {
bd486285 1566 put_page(page);
fb46e735 1567 pr_info("soft_offline: %#lx: invalidated\n", pfn);
af8fae7c
NH
1568 SetPageHWPoison(page);
1569 atomic_long_inc(&num_poisoned_pages);
1570 return 0;
facb6011
AK
1571 }
1572
1573 /*
1574 * Simple invalidation didn't work.
1575 * Try to migrate to a new page instead. migrate.c
1576 * handles a large number of cases for us.
1577 */
1578 ret = isolate_lru_page(page);
bd486285
KK
1579 /*
1580 * Drop page reference which is came from get_any_page()
1581 * successful isolate_lru_page() already took another one.
1582 */
1583 put_page(page);
facb6011
AK
1584 if (!ret) {
1585 LIST_HEAD(pagelist);
5db8a73a 1586 inc_zone_page_state(page, NR_ISOLATED_ANON +
9c620e2b 1587 page_is_file_cache(page));
facb6011 1588 list_add(&page->lru, &pagelist);
68711a74 1589 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
9c620e2b 1590 MIGRATE_SYNC, MR_MEMORY_FAILURE);
facb6011 1591 if (ret) {
59c82b70
JK
1592 if (!list_empty(&pagelist)) {
1593 list_del(&page->lru);
1594 dec_zone_page_state(page, NR_ISOLATED_ANON +
1595 page_is_file_cache(page));
1596 putback_lru_page(page);
1597 }
1598
fb46e735 1599 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
facb6011
AK
1600 pfn, ret, page->flags);
1601 if (ret > 0)
1602 ret = -EIO;
af8fae7c 1603 } else {
f15bdfa8
NH
1604 /*
1605 * After page migration succeeds, the source page can
1606 * be trapped in pagevec and actual freeing is delayed.
1607 * Freeing code works differently based on PG_hwpoison,
1608 * so there's a race. We need to make sure that the
1609 * source page should be freed back to buddy before
1610 * setting PG_hwpoison.
1611 */
1612 if (!is_free_buddy_page(page))
1613 lru_add_drain_all();
1614 if (!is_free_buddy_page(page))
1615 drain_all_pages();
af8fae7c 1616 SetPageHWPoison(page);
f15bdfa8
NH
1617 if (!is_free_buddy_page(page))
1618 pr_info("soft offline: %#lx: page leaked\n",
1619 pfn);
af8fae7c 1620 atomic_long_inc(&num_poisoned_pages);
facb6011
AK
1621 }
1622 } else {
fb46e735 1623 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
dd73e85f 1624 pfn, ret, page_count(page), page->flags);
facb6011 1625 }
facb6011
AK
1626 return ret;
1627}
86e05773
WL
1628
1629/**
1630 * soft_offline_page - Soft offline a page.
1631 * @page: page to offline
1632 * @flags: flags. Same as memory_failure().
1633 *
1634 * Returns 0 on success, otherwise negated errno.
1635 *
1636 * Soft offline a page, by migration or invalidation,
1637 * without killing anything. This is for the case when
1638 * a page is not corrupted yet (so it's still valid to access),
1639 * but has had a number of corrected errors and is better taken
1640 * out.
1641 *
1642 * The actual policy on when to do that is maintained by
1643 * user space.
1644 *
1645 * This should never impact any application or cause data loss,
1646 * however it might take some time.
1647 *
1648 * This is not a 100% solution for all memory, but tries to be
1649 * ``good enough'' for the majority of memory.
1650 */
1651int soft_offline_page(struct page *page, int flags)
1652{
1653 int ret;
1654 unsigned long pfn = page_to_pfn(page);
668f9abb 1655 struct page *hpage = compound_head(page);
86e05773
WL
1656
1657 if (PageHWPoison(page)) {
1658 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1659 return -EBUSY;
1660 }
1661 if (!PageHuge(page) && PageTransHuge(hpage)) {
1662 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1663 pr_info("soft offline: %#lx: failed to split THP\n",
1664 pfn);
1665 return -EBUSY;
1666 }
1667 }
1668
bfc8c901 1669 get_online_mems();
03b61ff3
NH
1670
1671 /*
1672 * Isolate the page, so that it doesn't get reallocated if it
1673 * was free. This flag should be kept set until the source page
1674 * is freed and PG_hwpoison on it is set.
1675 */
1676 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
1677 set_migratetype_isolate(page, true);
1678
86e05773 1679 ret = get_any_page(page, pfn, flags);
bfc8c901 1680 put_online_mems();
03b61ff3 1681 if (ret > 0) { /* for in-use pages */
86e05773
WL
1682 if (PageHuge(page))
1683 ret = soft_offline_huge_page(page, flags);
1684 else
1685 ret = __soft_offline_page(page, flags);
03b61ff3 1686 } else if (ret == 0) { /* for free pages */
86e05773
WL
1687 if (PageHuge(page)) {
1688 set_page_hwpoison_huge_page(hpage);
1689 dequeue_hwpoisoned_huge_page(hpage);
1690 atomic_long_add(1 << compound_order(hpage),
1691 &num_poisoned_pages);
1692 } else {
1693 SetPageHWPoison(page);
1694 atomic_long_inc(&num_poisoned_pages);
1695 }
1696 }
86e05773
WL
1697 unset_migratetype_isolate(page, MIGRATE_MOVABLE);
1698 return ret;
1699}