]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/memory-failure.c
mm/memory_failure: Remove unused trapno from memory_failure
[mirror_ubuntu-focal-kernel.git] / mm / memory-failure.c
CommitLineData
6a46079c
AK
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
1c80b990 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 11 * failure.
1c80b990
AK
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
15 *
16 * Handles page cache pages in various states. The tricky part
1c80b990
AK
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
e0de78df
AK
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
1c80b990
AK
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
6a46079c 38 */
6a46079c
AK
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
478c5ffc 42#include <linux/kernel-page-flags.h>
3f07c014 43#include <linux/sched/signal.h>
29930025 44#include <linux/sched/task.h>
01e00f88 45#include <linux/ksm.h>
6a46079c 46#include <linux/rmap.h>
b9e15baf 47#include <linux/export.h>
6a46079c
AK
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/backing-dev.h>
facb6011 51#include <linux/migrate.h>
facb6011 52#include <linux/suspend.h>
5a0e3ad6 53#include <linux/slab.h>
bf998156 54#include <linux/swapops.h>
7af446a8 55#include <linux/hugetlb.h>
20d6c96b 56#include <linux/memory_hotplug.h>
5db8a73a 57#include <linux/mm_inline.h>
ea8f5fb8 58#include <linux/kfifo.h>
a5f65109 59#include <linux/ratelimit.h>
6a46079c 60#include "internal.h"
97f0b134 61#include "ras/ras_event.h"
6a46079c
AK
62
63int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65int sysctl_memory_failure_recovery __read_mostly = 1;
66
293c07e3 67atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 68
27df5068
AK
69#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70
1bfe5feb 71u32 hwpoison_filter_enable = 0;
7c116f2b
WF
72u32 hwpoison_filter_dev_major = ~0U;
73u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
74u64 hwpoison_filter_flags_mask;
75u64 hwpoison_filter_flags_value;
1bfe5feb 76EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
81
82static int hwpoison_filter_dev(struct page *p)
83{
84 struct address_space *mapping;
85 dev_t dev;
86
87 if (hwpoison_filter_dev_major == ~0U &&
88 hwpoison_filter_dev_minor == ~0U)
89 return 0;
90
91 /*
1c80b990 92 * page_mapping() does not accept slab pages.
7c116f2b
WF
93 */
94 if (PageSlab(p))
95 return -EINVAL;
96
97 mapping = page_mapping(p);
98 if (mapping == NULL || mapping->host == NULL)
99 return -EINVAL;
100
101 dev = mapping->host->i_sb->s_dev;
102 if (hwpoison_filter_dev_major != ~0U &&
103 hwpoison_filter_dev_major != MAJOR(dev))
104 return -EINVAL;
105 if (hwpoison_filter_dev_minor != ~0U &&
106 hwpoison_filter_dev_minor != MINOR(dev))
107 return -EINVAL;
108
109 return 0;
110}
111
478c5ffc
WF
112static int hwpoison_filter_flags(struct page *p)
113{
114 if (!hwpoison_filter_flags_mask)
115 return 0;
116
117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 hwpoison_filter_flags_value)
119 return 0;
120 else
121 return -EINVAL;
122}
123
4fd466eb
AK
124/*
125 * This allows stress tests to limit test scope to a collection of tasks
126 * by putting them under some memcg. This prevents killing unrelated/important
127 * processes such as /sbin/init. Note that the target task may share clean
128 * pages with init (eg. libc text), which is harmless. If the target task
129 * share _dirty_ pages with another task B, the test scheme must make sure B
130 * is also included in the memcg. At last, due to race conditions this filter
131 * can only guarantee that the page either belongs to the memcg tasks, or is
132 * a freed page.
133 */
94a59fb3 134#ifdef CONFIG_MEMCG
4fd466eb
AK
135u64 hwpoison_filter_memcg;
136EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
137static int hwpoison_filter_task(struct page *p)
138{
4fd466eb
AK
139 if (!hwpoison_filter_memcg)
140 return 0;
141
94a59fb3 142 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
143 return -EINVAL;
144
145 return 0;
146}
147#else
148static int hwpoison_filter_task(struct page *p) { return 0; }
149#endif
150
7c116f2b
WF
151int hwpoison_filter(struct page *p)
152{
1bfe5feb
HL
153 if (!hwpoison_filter_enable)
154 return 0;
155
7c116f2b
WF
156 if (hwpoison_filter_dev(p))
157 return -EINVAL;
158
478c5ffc
WF
159 if (hwpoison_filter_flags(p))
160 return -EINVAL;
161
4fd466eb
AK
162 if (hwpoison_filter_task(p))
163 return -EINVAL;
164
7c116f2b
WF
165 return 0;
166}
27df5068
AK
167#else
168int hwpoison_filter(struct page *p)
169{
170 return 0;
171}
172#endif
173
7c116f2b
WF
174EXPORT_SYMBOL_GPL(hwpoison_filter);
175
6a46079c 176/*
7329bbeb
TL
177 * Send all the processes who have the page mapped a signal.
178 * ``action optional'' if they are not immediately affected by the error
179 * ``action required'' if error happened in current execution context
6a46079c 180 */
83b57531 181static int kill_proc(struct task_struct *t, unsigned long addr,
7329bbeb 182 unsigned long pfn, struct page *page, int flags)
6a46079c
AK
183{
184 struct siginfo si;
185 int ret;
186
495367c0
CY
187 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
188 pfn, t->comm, t->pid);
6a46079c
AK
189 si.si_signo = SIGBUS;
190 si.si_errno = 0;
6a46079c 191 si.si_addr = (void *)addr;
f9121153 192 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
7329bbeb 193
a70ffcac 194 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
7329bbeb 195 si.si_code = BUS_MCEERR_AR;
a70ffcac 196 ret = force_sig_info(SIGBUS, &si, current);
7329bbeb
TL
197 } else {
198 /*
199 * Don't use force here, it's convenient if the signal
200 * can be temporarily blocked.
201 * This could cause a loop when the user sets SIGBUS
202 * to SIG_IGN, but hopefully no one will do that?
203 */
204 si.si_code = BUS_MCEERR_AO;
205 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
206 }
6a46079c 207 if (ret < 0)
495367c0 208 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
1170532b 209 t->comm, t->pid, ret);
6a46079c
AK
210 return ret;
211}
212
588f9ce6
AK
213/*
214 * When a unknown page type is encountered drain as many buffers as possible
215 * in the hope to turn the page into a LRU or free page, which we can handle.
216 */
facb6011 217void shake_page(struct page *p, int access)
588f9ce6 218{
8bcb74de
NH
219 if (PageHuge(p))
220 return;
221
588f9ce6
AK
222 if (!PageSlab(p)) {
223 lru_add_drain_all();
224 if (PageLRU(p))
225 return;
c0554329 226 drain_all_pages(page_zone(p));
588f9ce6
AK
227 if (PageLRU(p) || is_free_buddy_page(p))
228 return;
229 }
facb6011 230
588f9ce6 231 /*
6b4f7799
JW
232 * Only call shrink_node_slabs here (which would also shrink
233 * other caches) if access is not potentially fatal.
588f9ce6 234 */
cb731d6c
VD
235 if (access)
236 drop_slab_node(page_to_nid(p));
588f9ce6
AK
237}
238EXPORT_SYMBOL_GPL(shake_page);
239
6a46079c
AK
240/*
241 * Kill all processes that have a poisoned page mapped and then isolate
242 * the page.
243 *
244 * General strategy:
245 * Find all processes having the page mapped and kill them.
246 * But we keep a page reference around so that the page is not
247 * actually freed yet.
248 * Then stash the page away
249 *
250 * There's no convenient way to get back to mapped processes
251 * from the VMAs. So do a brute-force search over all
252 * running processes.
253 *
254 * Remember that machine checks are not common (or rather
255 * if they are common you have other problems), so this shouldn't
256 * be a performance issue.
257 *
258 * Also there are some races possible while we get from the
259 * error detection to actually handle it.
260 */
261
262struct to_kill {
263 struct list_head nd;
264 struct task_struct *tsk;
265 unsigned long addr;
9033ae16 266 char addr_valid;
6a46079c
AK
267};
268
269/*
270 * Failure handling: if we can't find or can't kill a process there's
271 * not much we can do. We just print a message and ignore otherwise.
272 */
273
274/*
275 * Schedule a process for later kill.
276 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
277 * TBD would GFP_NOIO be enough?
278 */
279static void add_to_kill(struct task_struct *tsk, struct page *p,
280 struct vm_area_struct *vma,
281 struct list_head *to_kill,
282 struct to_kill **tkc)
283{
284 struct to_kill *tk;
285
286 if (*tkc) {
287 tk = *tkc;
288 *tkc = NULL;
289 } else {
290 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
291 if (!tk) {
495367c0 292 pr_err("Memory failure: Out of memory while machine check handling\n");
6a46079c
AK
293 return;
294 }
295 }
296 tk->addr = page_address_in_vma(p, vma);
297 tk->addr_valid = 1;
298
299 /*
300 * In theory we don't have to kill when the page was
301 * munmaped. But it could be also a mremap. Since that's
302 * likely very rare kill anyways just out of paranoia, but use
303 * a SIGKILL because the error is not contained anymore.
304 */
305 if (tk->addr == -EFAULT) {
495367c0 306 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
6a46079c
AK
307 page_to_pfn(p), tsk->comm);
308 tk->addr_valid = 0;
309 }
310 get_task_struct(tsk);
311 tk->tsk = tsk;
312 list_add_tail(&tk->nd, to_kill);
313}
314
315/*
316 * Kill the processes that have been collected earlier.
317 *
318 * Only do anything when DOIT is set, otherwise just free the list
319 * (this is used for clean pages which do not need killing)
320 * Also when FAIL is set do a force kill because something went
321 * wrong earlier.
322 */
83b57531 323static void kill_procs(struct list_head *to_kill, int forcekill,
666e5a40 324 bool fail, struct page *page, unsigned long pfn,
7329bbeb 325 int flags)
6a46079c
AK
326{
327 struct to_kill *tk, *next;
328
329 list_for_each_entry_safe (tk, next, to_kill, nd) {
6751ed65 330 if (forcekill) {
6a46079c 331 /*
af901ca1 332 * In case something went wrong with munmapping
6a46079c
AK
333 * make sure the process doesn't catch the
334 * signal and then access the memory. Just kill it.
6a46079c
AK
335 */
336 if (fail || tk->addr_valid == 0) {
495367c0 337 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
1170532b 338 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c
AK
339 force_sig(SIGKILL, tk->tsk);
340 }
341
342 /*
343 * In theory the process could have mapped
344 * something else on the address in-between. We could
345 * check for that, but we need to tell the
346 * process anyways.
347 */
83b57531 348 else if (kill_proc(tk->tsk, tk->addr,
7329bbeb 349 pfn, page, flags) < 0)
495367c0 350 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
1170532b 351 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c
AK
352 }
353 put_task_struct(tk->tsk);
354 kfree(tk);
355 }
356}
357
3ba08129
NH
358/*
359 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
360 * on behalf of the thread group. Return task_struct of the (first found)
361 * dedicated thread if found, and return NULL otherwise.
362 *
363 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
364 * have to call rcu_read_lock/unlock() in this function.
365 */
366static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 367{
3ba08129
NH
368 struct task_struct *t;
369
370 for_each_thread(tsk, t)
371 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
372 return t;
373 return NULL;
374}
375
376/*
377 * Determine whether a given process is "early kill" process which expects
378 * to be signaled when some page under the process is hwpoisoned.
379 * Return task_struct of the dedicated thread (main thread unless explicitly
380 * specified) if the process is "early kill," and otherwise returns NULL.
381 */
382static struct task_struct *task_early_kill(struct task_struct *tsk,
383 int force_early)
384{
385 struct task_struct *t;
6a46079c 386 if (!tsk->mm)
3ba08129 387 return NULL;
74614de1 388 if (force_early)
3ba08129
NH
389 return tsk;
390 t = find_early_kill_thread(tsk);
391 if (t)
392 return t;
393 if (sysctl_memory_failure_early_kill)
394 return tsk;
395 return NULL;
6a46079c
AK
396}
397
398/*
399 * Collect processes when the error hit an anonymous page.
400 */
401static void collect_procs_anon(struct page *page, struct list_head *to_kill,
74614de1 402 struct to_kill **tkc, int force_early)
6a46079c
AK
403{
404 struct vm_area_struct *vma;
405 struct task_struct *tsk;
406 struct anon_vma *av;
bf181b9f 407 pgoff_t pgoff;
6a46079c 408
4fc3f1d6 409 av = page_lock_anon_vma_read(page);
6a46079c 410 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
411 return;
412
a0f7a756 413 pgoff = page_to_pgoff(page);
9b679320 414 read_lock(&tasklist_lock);
6a46079c 415 for_each_process (tsk) {
5beb4930 416 struct anon_vma_chain *vmac;
3ba08129 417 struct task_struct *t = task_early_kill(tsk, force_early);
5beb4930 418
3ba08129 419 if (!t)
6a46079c 420 continue;
bf181b9f
ML
421 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
422 pgoff, pgoff) {
5beb4930 423 vma = vmac->vma;
6a46079c
AK
424 if (!page_mapped_in_vma(page, vma))
425 continue;
3ba08129
NH
426 if (vma->vm_mm == t->mm)
427 add_to_kill(t, page, vma, to_kill, tkc);
6a46079c
AK
428 }
429 }
6a46079c 430 read_unlock(&tasklist_lock);
4fc3f1d6 431 page_unlock_anon_vma_read(av);
6a46079c
AK
432}
433
434/*
435 * Collect processes when the error hit a file mapped page.
436 */
437static void collect_procs_file(struct page *page, struct list_head *to_kill,
74614de1 438 struct to_kill **tkc, int force_early)
6a46079c
AK
439{
440 struct vm_area_struct *vma;
441 struct task_struct *tsk;
6a46079c
AK
442 struct address_space *mapping = page->mapping;
443
d28eb9c8 444 i_mmap_lock_read(mapping);
9b679320 445 read_lock(&tasklist_lock);
6a46079c 446 for_each_process(tsk) {
a0f7a756 447 pgoff_t pgoff = page_to_pgoff(page);
3ba08129 448 struct task_struct *t = task_early_kill(tsk, force_early);
6a46079c 449
3ba08129 450 if (!t)
6a46079c 451 continue;
6b2dbba8 452 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
453 pgoff) {
454 /*
455 * Send early kill signal to tasks where a vma covers
456 * the page but the corrupted page is not necessarily
457 * mapped it in its pte.
458 * Assume applications who requested early kill want
459 * to be informed of all such data corruptions.
460 */
3ba08129
NH
461 if (vma->vm_mm == t->mm)
462 add_to_kill(t, page, vma, to_kill, tkc);
6a46079c
AK
463 }
464 }
6a46079c 465 read_unlock(&tasklist_lock);
d28eb9c8 466 i_mmap_unlock_read(mapping);
6a46079c
AK
467}
468
469/*
470 * Collect the processes who have the corrupted page mapped to kill.
471 * This is done in two steps for locking reasons.
472 * First preallocate one tokill structure outside the spin locks,
473 * so that we can kill at least one process reasonably reliable.
474 */
74614de1
TL
475static void collect_procs(struct page *page, struct list_head *tokill,
476 int force_early)
6a46079c
AK
477{
478 struct to_kill *tk;
479
480 if (!page->mapping)
481 return;
482
483 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
484 if (!tk)
485 return;
486 if (PageAnon(page))
74614de1 487 collect_procs_anon(page, tokill, &tk, force_early);
6a46079c 488 else
74614de1 489 collect_procs_file(page, tokill, &tk, force_early);
6a46079c
AK
490 kfree(tk);
491}
492
6a46079c 493static const char *action_name[] = {
cc637b17
XX
494 [MF_IGNORED] = "Ignored",
495 [MF_FAILED] = "Failed",
496 [MF_DELAYED] = "Delayed",
497 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
498};
499
500static const char * const action_page_types[] = {
cc637b17
XX
501 [MF_MSG_KERNEL] = "reserved kernel page",
502 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
503 [MF_MSG_SLAB] = "kernel slab page",
504 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
505 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
506 [MF_MSG_HUGE] = "huge page",
507 [MF_MSG_FREE_HUGE] = "free huge page",
508 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
509 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
510 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
511 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
512 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
513 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
514 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
515 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
516 [MF_MSG_CLEAN_LRU] = "clean LRU page",
517 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
518 [MF_MSG_BUDDY] = "free buddy page",
519 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
520 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
521};
522
dc2a1cbf
WF
523/*
524 * XXX: It is possible that a page is isolated from LRU cache,
525 * and then kept in swap cache or failed to remove from page cache.
526 * The page count will stop it from being freed by unpoison.
527 * Stress tests should be aware of this memory leak problem.
528 */
529static int delete_from_lru_cache(struct page *p)
530{
531 if (!isolate_lru_page(p)) {
532 /*
533 * Clear sensible page flags, so that the buddy system won't
534 * complain when the page is unpoison-and-freed.
535 */
536 ClearPageActive(p);
537 ClearPageUnevictable(p);
18365225
MH
538
539 /*
540 * Poisoned page might never drop its ref count to 0 so we have
541 * to uncharge it manually from its memcg.
542 */
543 mem_cgroup_uncharge(p);
544
dc2a1cbf
WF
545 /*
546 * drop the page count elevated by isolate_lru_page()
547 */
09cbfeaf 548 put_page(p);
dc2a1cbf
WF
549 return 0;
550 }
551 return -EIO;
552}
553
78bb9203
NH
554static int truncate_error_page(struct page *p, unsigned long pfn,
555 struct address_space *mapping)
556{
557 int ret = MF_FAILED;
558
559 if (mapping->a_ops->error_remove_page) {
560 int err = mapping->a_ops->error_remove_page(mapping, p);
561
562 if (err != 0) {
563 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
564 pfn, err);
565 } else if (page_has_private(p) &&
566 !try_to_release_page(p, GFP_NOIO)) {
567 pr_info("Memory failure: %#lx: failed to release buffers\n",
568 pfn);
569 } else {
570 ret = MF_RECOVERED;
571 }
572 } else {
573 /*
574 * If the file system doesn't support it just invalidate
575 * This fails on dirty or anything with private pages
576 */
577 if (invalidate_inode_page(p))
578 ret = MF_RECOVERED;
579 else
580 pr_info("Memory failure: %#lx: Failed to invalidate\n",
581 pfn);
582 }
583
584 return ret;
585}
586
6a46079c
AK
587/*
588 * Error hit kernel page.
589 * Do nothing, try to be lucky and not touch this instead. For a few cases we
590 * could be more sophisticated.
591 */
592static int me_kernel(struct page *p, unsigned long pfn)
6a46079c 593{
cc637b17 594 return MF_IGNORED;
6a46079c
AK
595}
596
597/*
598 * Page in unknown state. Do nothing.
599 */
600static int me_unknown(struct page *p, unsigned long pfn)
601{
495367c0 602 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
cc637b17 603 return MF_FAILED;
6a46079c
AK
604}
605
6a46079c
AK
606/*
607 * Clean (or cleaned) page cache page.
608 */
609static int me_pagecache_clean(struct page *p, unsigned long pfn)
610{
6a46079c
AK
611 struct address_space *mapping;
612
dc2a1cbf
WF
613 delete_from_lru_cache(p);
614
6a46079c
AK
615 /*
616 * For anonymous pages we're done the only reference left
617 * should be the one m_f() holds.
618 */
619 if (PageAnon(p))
cc637b17 620 return MF_RECOVERED;
6a46079c
AK
621
622 /*
623 * Now truncate the page in the page cache. This is really
624 * more like a "temporary hole punch"
625 * Don't do this for block devices when someone else
626 * has a reference, because it could be file system metadata
627 * and that's not safe to truncate.
628 */
629 mapping = page_mapping(p);
630 if (!mapping) {
631 /*
632 * Page has been teared down in the meanwhile
633 */
cc637b17 634 return MF_FAILED;
6a46079c
AK
635 }
636
637 /*
638 * Truncation is a bit tricky. Enable it per file system for now.
639 *
640 * Open: to take i_mutex or not for this? Right now we don't.
641 */
78bb9203 642 return truncate_error_page(p, pfn, mapping);
6a46079c
AK
643}
644
645/*
549543df 646 * Dirty pagecache page
6a46079c
AK
647 * Issues: when the error hit a hole page the error is not properly
648 * propagated.
649 */
650static int me_pagecache_dirty(struct page *p, unsigned long pfn)
651{
652 struct address_space *mapping = page_mapping(p);
653
654 SetPageError(p);
655 /* TBD: print more information about the file. */
656 if (mapping) {
657 /*
658 * IO error will be reported by write(), fsync(), etc.
659 * who check the mapping.
660 * This way the application knows that something went
661 * wrong with its dirty file data.
662 *
663 * There's one open issue:
664 *
665 * The EIO will be only reported on the next IO
666 * operation and then cleared through the IO map.
667 * Normally Linux has two mechanisms to pass IO error
668 * first through the AS_EIO flag in the address space
669 * and then through the PageError flag in the page.
670 * Since we drop pages on memory failure handling the
671 * only mechanism open to use is through AS_AIO.
672 *
673 * This has the disadvantage that it gets cleared on
674 * the first operation that returns an error, while
675 * the PageError bit is more sticky and only cleared
676 * when the page is reread or dropped. If an
677 * application assumes it will always get error on
678 * fsync, but does other operations on the fd before
25985edc 679 * and the page is dropped between then the error
6a46079c
AK
680 * will not be properly reported.
681 *
682 * This can already happen even without hwpoisoned
683 * pages: first on metadata IO errors (which only
684 * report through AS_EIO) or when the page is dropped
685 * at the wrong time.
686 *
687 * So right now we assume that the application DTRT on
688 * the first EIO, but we're not worse than other parts
689 * of the kernel.
690 */
af21bfaf 691 mapping_set_error(mapping, -EIO);
6a46079c
AK
692 }
693
694 return me_pagecache_clean(p, pfn);
695}
696
697/*
698 * Clean and dirty swap cache.
699 *
700 * Dirty swap cache page is tricky to handle. The page could live both in page
701 * cache and swap cache(ie. page is freshly swapped in). So it could be
702 * referenced concurrently by 2 types of PTEs:
703 * normal PTEs and swap PTEs. We try to handle them consistently by calling
704 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
705 * and then
706 * - clear dirty bit to prevent IO
707 * - remove from LRU
708 * - but keep in the swap cache, so that when we return to it on
709 * a later page fault, we know the application is accessing
710 * corrupted data and shall be killed (we installed simple
711 * interception code in do_swap_page to catch it).
712 *
713 * Clean swap cache pages can be directly isolated. A later page fault will
714 * bring in the known good data from disk.
715 */
716static int me_swapcache_dirty(struct page *p, unsigned long pfn)
717{
6a46079c
AK
718 ClearPageDirty(p);
719 /* Trigger EIO in shmem: */
720 ClearPageUptodate(p);
721
dc2a1cbf 722 if (!delete_from_lru_cache(p))
cc637b17 723 return MF_DELAYED;
dc2a1cbf 724 else
cc637b17 725 return MF_FAILED;
6a46079c
AK
726}
727
728static int me_swapcache_clean(struct page *p, unsigned long pfn)
729{
6a46079c 730 delete_from_swap_cache(p);
e43c3afb 731
dc2a1cbf 732 if (!delete_from_lru_cache(p))
cc637b17 733 return MF_RECOVERED;
dc2a1cbf 734 else
cc637b17 735 return MF_FAILED;
6a46079c
AK
736}
737
738/*
739 * Huge pages. Needs work.
740 * Issues:
93f70f90
NH
741 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
742 * To narrow down kill region to one page, we need to break up pmd.
6a46079c
AK
743 */
744static int me_huge_page(struct page *p, unsigned long pfn)
745{
6de2b1aa 746 int res = 0;
93f70f90 747 struct page *hpage = compound_head(p);
78bb9203 748 struct address_space *mapping;
2491ffee
NH
749
750 if (!PageHuge(hpage))
751 return MF_DELAYED;
752
78bb9203
NH
753 mapping = page_mapping(hpage);
754 if (mapping) {
755 res = truncate_error_page(hpage, pfn, mapping);
756 } else {
757 unlock_page(hpage);
758 /*
759 * migration entry prevents later access on error anonymous
760 * hugepage, so we can free and dissolve it into buddy to
761 * save healthy subpages.
762 */
763 if (PageAnon(hpage))
764 put_page(hpage);
765 dissolve_free_huge_page(p);
766 res = MF_RECOVERED;
767 lock_page(hpage);
93f70f90 768 }
78bb9203
NH
769
770 return res;
6a46079c
AK
771}
772
773/*
774 * Various page states we can handle.
775 *
776 * A page state is defined by its current page->flags bits.
777 * The table matches them in order and calls the right handler.
778 *
779 * This is quite tricky because we can access page at any time
25985edc 780 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
781 *
782 * This is not complete. More states could be added.
783 * For any missing state don't attempt recovery.
784 */
785
786#define dirty (1UL << PG_dirty)
6326fec1 787#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
6a46079c
AK
788#define unevict (1UL << PG_unevictable)
789#define mlock (1UL << PG_mlocked)
790#define writeback (1UL << PG_writeback)
791#define lru (1UL << PG_lru)
6a46079c 792#define head (1UL << PG_head)
6a46079c 793#define slab (1UL << PG_slab)
6a46079c
AK
794#define reserved (1UL << PG_reserved)
795
796static struct page_state {
797 unsigned long mask;
798 unsigned long res;
cc637b17 799 enum mf_action_page_type type;
6a46079c
AK
800 int (*action)(struct page *p, unsigned long pfn);
801} error_states[] = {
cc637b17 802 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
803 /*
804 * free pages are specially detected outside this table:
805 * PG_buddy pages only make a small fraction of all free pages.
806 */
6a46079c
AK
807
808 /*
809 * Could in theory check if slab page is free or if we can drop
810 * currently unused objects without touching them. But just
811 * treat it as standard kernel for now.
812 */
cc637b17 813 { slab, slab, MF_MSG_SLAB, me_kernel },
6a46079c 814
cc637b17 815 { head, head, MF_MSG_HUGE, me_huge_page },
6a46079c 816
cc637b17
XX
817 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
818 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 819
cc637b17
XX
820 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
821 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 822
cc637b17
XX
823 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
824 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 825
cc637b17
XX
826 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
827 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
828
829 /*
830 * Catchall entry: must be at end.
831 */
cc637b17 832 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
833};
834
2326c467
AK
835#undef dirty
836#undef sc
837#undef unevict
838#undef mlock
839#undef writeback
840#undef lru
2326c467 841#undef head
2326c467
AK
842#undef slab
843#undef reserved
844
ff604cf6
NH
845/*
846 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
847 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
848 */
cc3e2af4
XX
849static void action_result(unsigned long pfn, enum mf_action_page_type type,
850 enum mf_result result)
6a46079c 851{
97f0b134
XX
852 trace_memory_failure_event(pfn, type, result);
853
495367c0 854 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
64d37a2b 855 pfn, action_page_types[type], action_name[result]);
6a46079c
AK
856}
857
858static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 859 unsigned long pfn)
6a46079c
AK
860{
861 int result;
7456b040 862 int count;
6a46079c
AK
863
864 result = ps->action(p, pfn);
7456b040 865
bd1ce5f9 866 count = page_count(p) - 1;
cc637b17 867 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
138ce286 868 count--;
78bb9203 869 if (count > 0) {
495367c0 870 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
64d37a2b 871 pfn, action_page_types[ps->type], count);
cc637b17 872 result = MF_FAILED;
138ce286 873 }
64d37a2b 874 action_result(pfn, ps->type, result);
6a46079c
AK
875
876 /* Could do more checks here if page looks ok */
877 /*
878 * Could adjust zone counters here to correct for the missing page.
879 */
880
cc637b17 881 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
882}
883
ead07f6a
NH
884/**
885 * get_hwpoison_page() - Get refcount for memory error handling:
886 * @page: raw error page (hit by memory error)
887 *
888 * Return: return 0 if failed to grab the refcount, otherwise true (some
889 * non-zero value.)
890 */
891int get_hwpoison_page(struct page *page)
892{
893 struct page *head = compound_head(page);
894
4e41a30c 895 if (!PageHuge(head) && PageTransHuge(head)) {
98ed2b00
NH
896 /*
897 * Non anonymous thp exists only in allocation/free time. We
898 * can't handle such a case correctly, so let's give it up.
899 * This should be better than triggering BUG_ON when kernel
900 * tries to touch the "partially handled" page.
901 */
902 if (!PageAnon(head)) {
495367c0 903 pr_err("Memory failure: %#lx: non anonymous thp\n",
98ed2b00
NH
904 page_to_pfn(page));
905 return 0;
906 }
ead07f6a
NH
907 }
908
c2e7e00b
KK
909 if (get_page_unless_zero(head)) {
910 if (head == compound_head(page))
911 return 1;
912
495367c0
CY
913 pr_info("Memory failure: %#lx cannot catch tail\n",
914 page_to_pfn(page));
c2e7e00b
KK
915 put_page(head);
916 }
917
918 return 0;
ead07f6a
NH
919}
920EXPORT_SYMBOL_GPL(get_hwpoison_page);
921
6a46079c
AK
922/*
923 * Do all that is necessary to remove user space mappings. Unmap
924 * the pages and send SIGBUS to the processes if the data was dirty.
925 */
666e5a40 926static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
83b57531 927 int flags, struct page **hpagep)
6a46079c 928{
a128ca71 929 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
6a46079c
AK
930 struct address_space *mapping;
931 LIST_HEAD(tokill);
666e5a40 932 bool unmap_success;
6751ed65 933 int kill = 1, forcekill;
54b9dd14 934 struct page *hpage = *hpagep;
286c469a 935 bool mlocked = PageMlocked(hpage);
6a46079c 936
93a9eb39
NH
937 /*
938 * Here we are interested only in user-mapped pages, so skip any
939 * other types of pages.
940 */
941 if (PageReserved(p) || PageSlab(p))
666e5a40 942 return true;
93a9eb39 943 if (!(PageLRU(hpage) || PageHuge(p)))
666e5a40 944 return true;
6a46079c 945
6a46079c
AK
946 /*
947 * This check implies we don't kill processes if their pages
948 * are in the swap cache early. Those are always late kills.
949 */
7af446a8 950 if (!page_mapped(hpage))
666e5a40 951 return true;
1668bfd5 952
52089b14 953 if (PageKsm(p)) {
495367c0 954 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
666e5a40 955 return false;
52089b14 956 }
6a46079c
AK
957
958 if (PageSwapCache(p)) {
495367c0
CY
959 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
960 pfn);
6a46079c
AK
961 ttu |= TTU_IGNORE_HWPOISON;
962 }
963
964 /*
965 * Propagate the dirty bit from PTEs to struct page first, because we
966 * need this to decide if we should kill or just drop the page.
db0480b3
WF
967 * XXX: the dirty test could be racy: set_page_dirty() may not always
968 * be called inside page lock (it's recommended but not enforced).
6a46079c 969 */
7af446a8 970 mapping = page_mapping(hpage);
6751ed65 971 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
7af446a8
NH
972 mapping_cap_writeback_dirty(mapping)) {
973 if (page_mkclean(hpage)) {
974 SetPageDirty(hpage);
6a46079c
AK
975 } else {
976 kill = 0;
977 ttu |= TTU_IGNORE_HWPOISON;
495367c0 978 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
6a46079c
AK
979 pfn);
980 }
981 }
982
983 /*
984 * First collect all the processes that have the page
985 * mapped in dirty form. This has to be done before try_to_unmap,
986 * because ttu takes the rmap data structures down.
987 *
988 * Error handling: We ignore errors here because
989 * there's nothing that can be done.
990 */
991 if (kill)
415c64c1 992 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 993
666e5a40
MK
994 unmap_success = try_to_unmap(hpage, ttu);
995 if (!unmap_success)
495367c0 996 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1170532b 997 pfn, page_mapcount(hpage));
a6d30ddd 998
286c469a
NH
999 /*
1000 * try_to_unmap() might put mlocked page in lru cache, so call
1001 * shake_page() again to ensure that it's flushed.
1002 */
1003 if (mlocked)
1004 shake_page(hpage, 0);
1005
6a46079c
AK
1006 /*
1007 * Now that the dirty bit has been propagated to the
1008 * struct page and all unmaps done we can decide if
1009 * killing is needed or not. Only kill when the page
6751ed65
TL
1010 * was dirty or the process is not restartable,
1011 * otherwise the tokill list is merely
6a46079c
AK
1012 * freed. When there was a problem unmapping earlier
1013 * use a more force-full uncatchable kill to prevent
1014 * any accesses to the poisoned memory.
1015 */
415c64c1 1016 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
83b57531 1017 kill_procs(&tokill, forcekill, !unmap_success, p, pfn, flags);
1668bfd5 1018
666e5a40 1019 return unmap_success;
6a46079c
AK
1020}
1021
0348d2eb
NH
1022static int identify_page_state(unsigned long pfn, struct page *p,
1023 unsigned long page_flags)
761ad8d7
NH
1024{
1025 struct page_state *ps;
0348d2eb
NH
1026
1027 /*
1028 * The first check uses the current page flags which may not have any
1029 * relevant information. The second check with the saved page flags is
1030 * carried out only if the first check can't determine the page status.
1031 */
1032 for (ps = error_states;; ps++)
1033 if ((p->flags & ps->mask) == ps->res)
1034 break;
1035
1036 page_flags |= (p->flags & (1UL << PG_dirty));
1037
1038 if (!ps->mask)
1039 for (ps = error_states;; ps++)
1040 if ((page_flags & ps->mask) == ps->res)
1041 break;
1042 return page_action(ps, p, pfn);
1043}
1044
83b57531 1045static int memory_failure_hugetlb(unsigned long pfn, int flags)
0348d2eb 1046{
761ad8d7
NH
1047 struct page *p = pfn_to_page(pfn);
1048 struct page *head = compound_head(p);
1049 int res;
1050 unsigned long page_flags;
1051
1052 if (TestSetPageHWPoison(head)) {
1053 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1054 pfn);
1055 return 0;
1056 }
1057
1058 num_poisoned_pages_inc();
1059
1060 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1061 /*
1062 * Check "filter hit" and "race with other subpage."
1063 */
1064 lock_page(head);
1065 if (PageHWPoison(head)) {
1066 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1067 || (p != head && TestSetPageHWPoison(head))) {
1068 num_poisoned_pages_dec();
1069 unlock_page(head);
1070 return 0;
1071 }
1072 }
1073 unlock_page(head);
1074 dissolve_free_huge_page(p);
1075 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1076 return 0;
1077 }
1078
1079 lock_page(head);
1080 page_flags = head->flags;
1081
1082 if (!PageHWPoison(head)) {
1083 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1084 num_poisoned_pages_dec();
1085 unlock_page(head);
1086 put_hwpoison_page(head);
1087 return 0;
1088 }
1089
83b57531 1090 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
761ad8d7
NH
1091 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1092 res = -EBUSY;
1093 goto out;
1094 }
1095
0348d2eb 1096 res = identify_page_state(pfn, p, page_flags);
761ad8d7
NH
1097out:
1098 unlock_page(head);
1099 return res;
1100}
1101
cd42f4a3
TL
1102/**
1103 * memory_failure - Handle memory failure of a page.
1104 * @pfn: Page Number of the corrupted page
cd42f4a3
TL
1105 * @flags: fine tune action taken
1106 *
1107 * This function is called by the low level machine check code
1108 * of an architecture when it detects hardware memory corruption
1109 * of a page. It tries its best to recover, which includes
1110 * dropping pages, killing processes etc.
1111 *
1112 * The function is primarily of use for corruptions that
1113 * happen outside the current execution context (e.g. when
1114 * detected by a background scrubber)
1115 *
1116 * Must run in process context (e.g. a work queue) with interrupts
1117 * enabled and no spinlocks hold.
1118 */
83b57531 1119int memory_failure(unsigned long pfn, int flags)
6a46079c 1120{
6a46079c 1121 struct page *p;
7af446a8 1122 struct page *hpage;
415c64c1 1123 struct page *orig_head;
6a46079c 1124 int res;
524fca1e 1125 unsigned long page_flags;
6a46079c
AK
1126
1127 if (!sysctl_memory_failure_recovery)
83b57531 1128 panic("Memory failure on page %lx", pfn);
6a46079c
AK
1129
1130 if (!pfn_valid(pfn)) {
495367c0
CY
1131 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1132 pfn);
a7560fc8 1133 return -ENXIO;
6a46079c
AK
1134 }
1135
1136 p = pfn_to_page(pfn);
761ad8d7 1137 if (PageHuge(p))
83b57531 1138 return memory_failure_hugetlb(pfn, flags);
6a46079c 1139 if (TestSetPageHWPoison(p)) {
495367c0
CY
1140 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1141 pfn);
6a46079c
AK
1142 return 0;
1143 }
1144
ce0fa3e5
TL
1145 arch_unmap_kpfn(pfn);
1146
761ad8d7 1147 orig_head = hpage = compound_head(p);
b37ff71c 1148 num_poisoned_pages_inc();
6a46079c
AK
1149
1150 /*
1151 * We need/can do nothing about count=0 pages.
1152 * 1) it's a free page, and therefore in safe hand:
1153 * prep_new_page() will be the gate keeper.
761ad8d7 1154 * 2) it's part of a non-compound high order page.
6a46079c
AK
1155 * Implies some kernel user: cannot stop them from
1156 * R/W the page; let's pray that the page has been
1157 * used and will be freed some time later.
1158 * In fact it's dangerous to directly bump up page count from 0,
1159 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1160 */
ead07f6a 1161 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
8d22ba1b 1162 if (is_free_buddy_page(p)) {
cc637b17 1163 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
8d22ba1b
WF
1164 return 0;
1165 } else {
cc637b17 1166 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
8d22ba1b
WF
1167 return -EBUSY;
1168 }
6a46079c
AK
1169 }
1170
761ad8d7 1171 if (PageTransHuge(hpage)) {
c3901e72
NH
1172 lock_page(p);
1173 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1174 unlock_page(p);
1175 if (!PageAnon(p))
495367c0
CY
1176 pr_err("Memory failure: %#lx: non anonymous thp\n",
1177 pfn);
7f6bf39b 1178 else
495367c0
CY
1179 pr_err("Memory failure: %#lx: thp split failed\n",
1180 pfn);
ead07f6a 1181 if (TestClearPageHWPoison(p))
b37ff71c 1182 num_poisoned_pages_dec();
665d9da7 1183 put_hwpoison_page(p);
415c64c1
NH
1184 return -EBUSY;
1185 }
c3901e72 1186 unlock_page(p);
415c64c1
NH
1187 VM_BUG_ON_PAGE(!page_count(p), p);
1188 hpage = compound_head(p);
1189 }
1190
e43c3afb
WF
1191 /*
1192 * We ignore non-LRU pages for good reasons.
1193 * - PG_locked is only well defined for LRU pages and a few others
48c935ad 1194 * - to avoid races with __SetPageLocked()
e43c3afb
WF
1195 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1196 * The check (unnecessarily) ignores LRU pages being isolated and
1197 * walked by the page reclaim code, however that's not a big loss.
1198 */
8bcb74de
NH
1199 shake_page(p, 0);
1200 /* shake_page could have turned it free. */
1201 if (!PageLRU(p) && is_free_buddy_page(p)) {
1202 if (flags & MF_COUNT_INCREASED)
1203 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1204 else
1205 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1206 return 0;
e43c3afb 1207 }
e43c3afb 1208
761ad8d7 1209 lock_page(p);
847ce401 1210
f37d4298
AK
1211 /*
1212 * The page could have changed compound pages during the locking.
1213 * If this happens just bail out.
1214 */
415c64c1 1215 if (PageCompound(p) && compound_head(p) != orig_head) {
cc637b17 1216 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
f37d4298
AK
1217 res = -EBUSY;
1218 goto out;
1219 }
1220
524fca1e
NH
1221 /*
1222 * We use page flags to determine what action should be taken, but
1223 * the flags can be modified by the error containment action. One
1224 * example is an mlocked page, where PG_mlocked is cleared by
1225 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1226 * correctly, we save a copy of the page flags at this time.
1227 */
7258ae5c
JM
1228 if (PageHuge(p))
1229 page_flags = hpage->flags;
1230 else
1231 page_flags = p->flags;
524fca1e 1232
847ce401
WF
1233 /*
1234 * unpoison always clear PG_hwpoison inside page lock
1235 */
1236 if (!PageHWPoison(p)) {
495367c0 1237 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
b37ff71c 1238 num_poisoned_pages_dec();
761ad8d7
NH
1239 unlock_page(p);
1240 put_hwpoison_page(p);
a09233f3 1241 return 0;
847ce401 1242 }
7c116f2b
WF
1243 if (hwpoison_filter(p)) {
1244 if (TestClearPageHWPoison(p))
b37ff71c 1245 num_poisoned_pages_dec();
761ad8d7
NH
1246 unlock_page(p);
1247 put_hwpoison_page(p);
7c116f2b
WF
1248 return 0;
1249 }
847ce401 1250
761ad8d7 1251 if (!PageTransTail(p) && !PageLRU(p))
0bc1f8b0
CY
1252 goto identify_page_state;
1253
6edd6cc6
NH
1254 /*
1255 * It's very difficult to mess with pages currently under IO
1256 * and in many cases impossible, so we just avoid it here.
1257 */
6a46079c
AK
1258 wait_on_page_writeback(p);
1259
1260 /*
1261 * Now take care of user space mappings.
e64a782f 1262 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
54b9dd14
NH
1263 *
1264 * When the raw error page is thp tail page, hpage points to the raw
1265 * page after thp split.
6a46079c 1266 */
83b57531 1267 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
cc637b17 1268 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1668bfd5
WF
1269 res = -EBUSY;
1270 goto out;
1271 }
6a46079c
AK
1272
1273 /*
1274 * Torn down by someone else?
1275 */
dc2a1cbf 1276 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
cc637b17 1277 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
d95ea51e 1278 res = -EBUSY;
6a46079c
AK
1279 goto out;
1280 }
1281
0bc1f8b0 1282identify_page_state:
0348d2eb 1283 res = identify_page_state(pfn, p, page_flags);
6a46079c 1284out:
761ad8d7 1285 unlock_page(p);
6a46079c
AK
1286 return res;
1287}
cd42f4a3 1288EXPORT_SYMBOL_GPL(memory_failure);
847ce401 1289
ea8f5fb8
HY
1290#define MEMORY_FAILURE_FIFO_ORDER 4
1291#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1292
1293struct memory_failure_entry {
1294 unsigned long pfn;
ea8f5fb8
HY
1295 int flags;
1296};
1297
1298struct memory_failure_cpu {
1299 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1300 MEMORY_FAILURE_FIFO_SIZE);
1301 spinlock_t lock;
1302 struct work_struct work;
1303};
1304
1305static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1306
1307/**
1308 * memory_failure_queue - Schedule handling memory failure of a page.
1309 * @pfn: Page Number of the corrupted page
ea8f5fb8
HY
1310 * @flags: Flags for memory failure handling
1311 *
1312 * This function is called by the low level hardware error handler
1313 * when it detects hardware memory corruption of a page. It schedules
1314 * the recovering of error page, including dropping pages, killing
1315 * processes etc.
1316 *
1317 * The function is primarily of use for corruptions that
1318 * happen outside the current execution context (e.g. when
1319 * detected by a background scrubber)
1320 *
1321 * Can run in IRQ context.
1322 */
83b57531 1323void memory_failure_queue(unsigned long pfn, int flags)
ea8f5fb8
HY
1324{
1325 struct memory_failure_cpu *mf_cpu;
1326 unsigned long proc_flags;
1327 struct memory_failure_entry entry = {
1328 .pfn = pfn,
ea8f5fb8
HY
1329 .flags = flags,
1330 };
1331
1332 mf_cpu = &get_cpu_var(memory_failure_cpu);
1333 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 1334 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
1335 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1336 else
8e33a52f 1337 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
1338 pfn);
1339 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1340 put_cpu_var(memory_failure_cpu);
1341}
1342EXPORT_SYMBOL_GPL(memory_failure_queue);
1343
1344static void memory_failure_work_func(struct work_struct *work)
1345{
1346 struct memory_failure_cpu *mf_cpu;
1347 struct memory_failure_entry entry = { 0, };
1348 unsigned long proc_flags;
1349 int gotten;
1350
7c8e0181 1351 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
ea8f5fb8
HY
1352 for (;;) {
1353 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1354 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1355 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1356 if (!gotten)
1357 break;
cf870c70
NR
1358 if (entry.flags & MF_SOFT_OFFLINE)
1359 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1360 else
83b57531 1361 memory_failure(entry.pfn, entry.flags);
ea8f5fb8
HY
1362 }
1363}
1364
1365static int __init memory_failure_init(void)
1366{
1367 struct memory_failure_cpu *mf_cpu;
1368 int cpu;
1369
1370 for_each_possible_cpu(cpu) {
1371 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1372 spin_lock_init(&mf_cpu->lock);
1373 INIT_KFIFO(mf_cpu->fifo);
1374 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1375 }
1376
1377 return 0;
1378}
1379core_initcall(memory_failure_init);
1380
a5f65109
NH
1381#define unpoison_pr_info(fmt, pfn, rs) \
1382({ \
1383 if (__ratelimit(rs)) \
1384 pr_info(fmt, pfn); \
1385})
1386
847ce401
WF
1387/**
1388 * unpoison_memory - Unpoison a previously poisoned page
1389 * @pfn: Page number of the to be unpoisoned page
1390 *
1391 * Software-unpoison a page that has been poisoned by
1392 * memory_failure() earlier.
1393 *
1394 * This is only done on the software-level, so it only works
1395 * for linux injected failures, not real hardware failures
1396 *
1397 * Returns 0 for success, otherwise -errno.
1398 */
1399int unpoison_memory(unsigned long pfn)
1400{
1401 struct page *page;
1402 struct page *p;
1403 int freeit = 0;
a5f65109
NH
1404 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1405 DEFAULT_RATELIMIT_BURST);
847ce401
WF
1406
1407 if (!pfn_valid(pfn))
1408 return -ENXIO;
1409
1410 p = pfn_to_page(pfn);
1411 page = compound_head(p);
1412
1413 if (!PageHWPoison(p)) {
495367c0 1414 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
a5f65109 1415 pfn, &unpoison_rs);
847ce401
WF
1416 return 0;
1417 }
1418
230ac719 1419 if (page_count(page) > 1) {
495367c0 1420 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
a5f65109 1421 pfn, &unpoison_rs);
230ac719
NH
1422 return 0;
1423 }
1424
1425 if (page_mapped(page)) {
495367c0 1426 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
a5f65109 1427 pfn, &unpoison_rs);
230ac719
NH
1428 return 0;
1429 }
1430
1431 if (page_mapping(page)) {
495367c0 1432 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
a5f65109 1433 pfn, &unpoison_rs);
230ac719
NH
1434 return 0;
1435 }
1436
0cea3fdc
WL
1437 /*
1438 * unpoison_memory() can encounter thp only when the thp is being
1439 * worked by memory_failure() and the page lock is not held yet.
1440 * In such case, we yield to memory_failure() and make unpoison fail.
1441 */
e76d30e2 1442 if (!PageHuge(page) && PageTransHuge(page)) {
495367c0 1443 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
a5f65109 1444 pfn, &unpoison_rs);
ead07f6a 1445 return 0;
0cea3fdc
WL
1446 }
1447
ead07f6a 1448 if (!get_hwpoison_page(p)) {
847ce401 1449 if (TestClearPageHWPoison(p))
8e30456b 1450 num_poisoned_pages_dec();
495367c0 1451 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
a5f65109 1452 pfn, &unpoison_rs);
847ce401
WF
1453 return 0;
1454 }
1455
7eaceacc 1456 lock_page(page);
847ce401
WF
1457 /*
1458 * This test is racy because PG_hwpoison is set outside of page lock.
1459 * That's acceptable because that won't trigger kernel panic. Instead,
1460 * the PG_hwpoison page will be caught and isolated on the entrance to
1461 * the free buddy page pool.
1462 */
c9fbdd5f 1463 if (TestClearPageHWPoison(page)) {
495367c0 1464 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
a5f65109 1465 pfn, &unpoison_rs);
b37ff71c 1466 num_poisoned_pages_dec();
847ce401
WF
1467 freeit = 1;
1468 }
1469 unlock_page(page);
1470
665d9da7 1471 put_hwpoison_page(page);
3ba5eebc 1472 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
665d9da7 1473 put_hwpoison_page(page);
847ce401
WF
1474
1475 return 0;
1476}
1477EXPORT_SYMBOL(unpoison_memory);
facb6011
AK
1478
1479static struct page *new_page(struct page *p, unsigned long private, int **x)
1480{
12686d15 1481 int nid = page_to_nid(p);
94310cbc 1482
ef77ba5c 1483 return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
facb6011
AK
1484}
1485
1486/*
1487 * Safely get reference count of an arbitrary page.
1488 * Returns 0 for a free page, -EIO for a zero refcount page
1489 * that is not free, and 1 for any other page type.
1490 * For 1 the page is returned with increased page count, otherwise not.
1491 */
af8fae7c 1492static int __get_any_page(struct page *p, unsigned long pfn, int flags)
facb6011
AK
1493{
1494 int ret;
1495
1496 if (flags & MF_COUNT_INCREASED)
1497 return 1;
1498
d950b958
NH
1499 /*
1500 * When the target page is a free hugepage, just remove it
1501 * from free hugepage list.
1502 */
ead07f6a 1503 if (!get_hwpoison_page(p)) {
d950b958 1504 if (PageHuge(p)) {
71dd0b8a 1505 pr_info("%s: %#lx free huge page\n", __func__, pfn);
af8fae7c 1506 ret = 0;
d950b958 1507 } else if (is_free_buddy_page(p)) {
71dd0b8a 1508 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
facb6011
AK
1509 ret = 0;
1510 } else {
71dd0b8a
BP
1511 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1512 __func__, pfn, p->flags);
facb6011
AK
1513 ret = -EIO;
1514 }
1515 } else {
1516 /* Not a free page */
1517 ret = 1;
1518 }
facb6011
AK
1519 return ret;
1520}
1521
af8fae7c
NH
1522static int get_any_page(struct page *page, unsigned long pfn, int flags)
1523{
1524 int ret = __get_any_page(page, pfn, flags);
1525
85fbe5d1
YX
1526 if (ret == 1 && !PageHuge(page) &&
1527 !PageLRU(page) && !__PageMovable(page)) {
af8fae7c
NH
1528 /*
1529 * Try to free it.
1530 */
665d9da7 1531 put_hwpoison_page(page);
af8fae7c
NH
1532 shake_page(page, 1);
1533
1534 /*
1535 * Did it turn free?
1536 */
1537 ret = __get_any_page(page, pfn, 0);
d96b339f 1538 if (ret == 1 && !PageLRU(page)) {
4f32be67 1539 /* Drop page reference which is from __get_any_page() */
665d9da7 1540 put_hwpoison_page(page);
82a2481e
AK
1541 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1542 pfn, page->flags, &page->flags);
af8fae7c
NH
1543 return -EIO;
1544 }
1545 }
1546 return ret;
1547}
1548
d950b958
NH
1549static int soft_offline_huge_page(struct page *page, int flags)
1550{
1551 int ret;
1552 unsigned long pfn = page_to_pfn(page);
1553 struct page *hpage = compound_head(page);
b8ec1cee 1554 LIST_HEAD(pagelist);
d950b958 1555
af8fae7c
NH
1556 /*
1557 * This double-check of PageHWPoison is to avoid the race with
1558 * memory_failure(). See also comment in __soft_offline_page().
1559 */
1560 lock_page(hpage);
0ebff32c 1561 if (PageHWPoison(hpage)) {
af8fae7c 1562 unlock_page(hpage);
665d9da7 1563 put_hwpoison_page(hpage);
0ebff32c 1564 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
af8fae7c 1565 return -EBUSY;
0ebff32c 1566 }
af8fae7c 1567 unlock_page(hpage);
d950b958 1568
bcc54222 1569 ret = isolate_huge_page(hpage, &pagelist);
03613808
WL
1570 /*
1571 * get_any_page() and isolate_huge_page() takes a refcount each,
1572 * so need to drop one here.
1573 */
665d9da7 1574 put_hwpoison_page(hpage);
03613808 1575 if (!ret) {
bcc54222
NH
1576 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1577 return -EBUSY;
1578 }
1579
68711a74 1580 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
b8ec1cee 1581 MIGRATE_SYNC, MR_MEMORY_FAILURE);
d950b958 1582 if (ret) {
b6b18aa8 1583 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
82a2481e 1584 pfn, ret, page->flags, &page->flags);
30809f55
PA
1585 if (!list_empty(&pagelist))
1586 putback_movable_pages(&pagelist);
b8ec1cee
NH
1587 if (ret > 0)
1588 ret = -EIO;
af8fae7c 1589 } else {
b37ff71c 1590 if (PageHuge(page))
c3114a84 1591 dissolve_free_huge_page(page);
d950b958 1592 }
d950b958
NH
1593 return ret;
1594}
1595
af8fae7c
NH
1596static int __soft_offline_page(struct page *page, int flags)
1597{
1598 int ret;
1599 unsigned long pfn = page_to_pfn(page);
facb6011 1600
facb6011 1601 /*
af8fae7c
NH
1602 * Check PageHWPoison again inside page lock because PageHWPoison
1603 * is set by memory_failure() outside page lock. Note that
1604 * memory_failure() also double-checks PageHWPoison inside page lock,
1605 * so there's no race between soft_offline_page() and memory_failure().
facb6011 1606 */
0ebff32c
XQ
1607 lock_page(page);
1608 wait_on_page_writeback(page);
af8fae7c
NH
1609 if (PageHWPoison(page)) {
1610 unlock_page(page);
665d9da7 1611 put_hwpoison_page(page);
af8fae7c
NH
1612 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1613 return -EBUSY;
1614 }
facb6011
AK
1615 /*
1616 * Try to invalidate first. This should work for
1617 * non dirty unmapped page cache pages.
1618 */
1619 ret = invalidate_inode_page(page);
1620 unlock_page(page);
facb6011 1621 /*
facb6011
AK
1622 * RED-PEN would be better to keep it isolated here, but we
1623 * would need to fix isolation locking first.
1624 */
facb6011 1625 if (ret == 1) {
665d9da7 1626 put_hwpoison_page(page);
fb46e735 1627 pr_info("soft_offline: %#lx: invalidated\n", pfn);
af8fae7c 1628 SetPageHWPoison(page);
8e30456b 1629 num_poisoned_pages_inc();
af8fae7c 1630 return 0;
facb6011
AK
1631 }
1632
1633 /*
1634 * Simple invalidation didn't work.
1635 * Try to migrate to a new page instead. migrate.c
1636 * handles a large number of cases for us.
1637 */
85fbe5d1
YX
1638 if (PageLRU(page))
1639 ret = isolate_lru_page(page);
1640 else
1641 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
bd486285
KK
1642 /*
1643 * Drop page reference which is came from get_any_page()
1644 * successful isolate_lru_page() already took another one.
1645 */
665d9da7 1646 put_hwpoison_page(page);
facb6011
AK
1647 if (!ret) {
1648 LIST_HEAD(pagelist);
85fbe5d1
YX
1649 /*
1650 * After isolated lru page, the PageLRU will be cleared,
1651 * so use !__PageMovable instead for LRU page's mapping
1652 * cannot have PAGE_MAPPING_MOVABLE.
1653 */
1654 if (!__PageMovable(page))
1655 inc_node_page_state(page, NR_ISOLATED_ANON +
1656 page_is_file_cache(page));
facb6011 1657 list_add(&page->lru, &pagelist);
68711a74 1658 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
9c620e2b 1659 MIGRATE_SYNC, MR_MEMORY_FAILURE);
facb6011 1660 if (ret) {
85fbe5d1
YX
1661 if (!list_empty(&pagelist))
1662 putback_movable_pages(&pagelist);
59c82b70 1663
82a2481e
AK
1664 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1665 pfn, ret, page->flags, &page->flags);
facb6011
AK
1666 if (ret > 0)
1667 ret = -EIO;
1668 }
1669 } else {
82a2481e
AK
1670 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1671 pfn, ret, page_count(page), page->flags, &page->flags);
facb6011 1672 }
facb6011
AK
1673 return ret;
1674}
86e05773 1675
acc14dc4
NH
1676static int soft_offline_in_use_page(struct page *page, int flags)
1677{
1678 int ret;
1679 struct page *hpage = compound_head(page);
1680
1681 if (!PageHuge(page) && PageTransHuge(hpage)) {
1682 lock_page(hpage);
98fd1ef4
NH
1683 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1684 unlock_page(hpage);
1685 if (!PageAnon(hpage))
1686 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1687 else
1688 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1689 put_hwpoison_page(hpage);
acc14dc4
NH
1690 return -EBUSY;
1691 }
98fd1ef4 1692 unlock_page(hpage);
acc14dc4
NH
1693 get_hwpoison_page(page);
1694 put_hwpoison_page(hpage);
1695 }
1696
1697 if (PageHuge(page))
1698 ret = soft_offline_huge_page(page, flags);
1699 else
1700 ret = __soft_offline_page(page, flags);
1701
1702 return ret;
1703}
1704
1705static void soft_offline_free_page(struct page *page)
1706{
b37ff71c 1707 struct page *head = compound_head(page);
acc14dc4 1708
b37ff71c
NH
1709 if (!TestSetPageHWPoison(head)) {
1710 num_poisoned_pages_inc();
1711 if (PageHuge(head))
d4a3a60b 1712 dissolve_free_huge_page(page);
acc14dc4
NH
1713 }
1714}
1715
86e05773
WL
1716/**
1717 * soft_offline_page - Soft offline a page.
1718 * @page: page to offline
1719 * @flags: flags. Same as memory_failure().
1720 *
1721 * Returns 0 on success, otherwise negated errno.
1722 *
1723 * Soft offline a page, by migration or invalidation,
1724 * without killing anything. This is for the case when
1725 * a page is not corrupted yet (so it's still valid to access),
1726 * but has had a number of corrected errors and is better taken
1727 * out.
1728 *
1729 * The actual policy on when to do that is maintained by
1730 * user space.
1731 *
1732 * This should never impact any application or cause data loss,
1733 * however it might take some time.
1734 *
1735 * This is not a 100% solution for all memory, but tries to be
1736 * ``good enough'' for the majority of memory.
1737 */
1738int soft_offline_page(struct page *page, int flags)
1739{
1740 int ret;
1741 unsigned long pfn = page_to_pfn(page);
86e05773
WL
1742
1743 if (PageHWPoison(page)) {
1744 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1e0e635b 1745 if (flags & MF_COUNT_INCREASED)
665d9da7 1746 put_hwpoison_page(page);
86e05773
WL
1747 return -EBUSY;
1748 }
86e05773 1749
bfc8c901 1750 get_online_mems();
86e05773 1751 ret = get_any_page(page, pfn, flags);
bfc8c901 1752 put_online_mems();
4e41a30c 1753
acc14dc4
NH
1754 if (ret > 0)
1755 ret = soft_offline_in_use_page(page, flags);
1756 else if (ret == 0)
1757 soft_offline_free_page(page);
4e41a30c 1758
86e05773
WL
1759 return ret;
1760}