]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/page_alloc.c
fs: only send IPI to invalidate LRU BH when needed
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
925cc71e 54#include <linux/memory.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
718a3821 57#include <linux/ftrace_event.h>
f212ad7c 58#include <linux/memcontrol.h>
268bb0ce 59#include <linux/prefetch.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
ac924c60 63#include <asm/div64.h>
1da177e4
LT
64#include "internal.h"
65
72812019
LS
66#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67DEFINE_PER_CPU(int, numa_node);
68EXPORT_PER_CPU_SYMBOL(numa_node);
69#endif
70
7aac7898
LS
71#ifdef CONFIG_HAVE_MEMORYLESS_NODES
72/*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80#endif
81
1da177e4 82/*
13808910 83 * Array of node states.
1da177e4 84 */
13808910
CL
85nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88#ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90#ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92#endif
93 [N_CPU] = { { [0] = 1UL } },
94#endif /* NUMA */
95};
96EXPORT_SYMBOL(node_states);
97
6c231b7b 98unsigned long totalram_pages __read_mostly;
cb45b0e9 99unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
100/*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106unsigned long dirty_balance_reserve __read_mostly;
107
8ad4b1fb 108int percpu_pagelist_fraction;
dcce284a 109gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 110
452aa699
RW
111#ifdef CONFIG_PM_SLEEP
112/*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
c9e664f1
RW
120
121static gfp_t saved_gfp_mask;
122
123void pm_restore_gfp_mask(void)
452aa699
RW
124{
125 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
452aa699
RW
130}
131
c9e664f1 132void pm_restrict_gfp_mask(void)
452aa699 133{
452aa699 134 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 138}
f90ac398
MG
139
140bool pm_suspended_storage(void)
141{
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145}
452aa699
RW
146#endif /* CONFIG_PM_SLEEP */
147
d9c23400
MG
148#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149int pageblock_order __read_mostly;
150#endif
151
d98c7a09 152static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 153
1da177e4
LT
154/*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
1da177e4 164 */
2f1b6248 165int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 166#ifdef CONFIG_ZONE_DMA
2f1b6248 167 256,
4b51d669 168#endif
fb0e7942 169#ifdef CONFIG_ZONE_DMA32
2f1b6248 170 256,
fb0e7942 171#endif
e53ef38d 172#ifdef CONFIG_HIGHMEM
2a1e274a 173 32,
e53ef38d 174#endif
2a1e274a 175 32,
2f1b6248 176};
1da177e4
LT
177
178EXPORT_SYMBOL(totalram_pages);
1da177e4 179
15ad7cdc 180static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 181#ifdef CONFIG_ZONE_DMA
2f1b6248 182 "DMA",
4b51d669 183#endif
fb0e7942 184#ifdef CONFIG_ZONE_DMA32
2f1b6248 185 "DMA32",
fb0e7942 186#endif
2f1b6248 187 "Normal",
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 "HighMem",
e53ef38d 190#endif
2a1e274a 191 "Movable",
2f1b6248
CL
192};
193
1da177e4
LT
194int min_free_kbytes = 1024;
195
2c85f51d
JB
196static unsigned long __meminitdata nr_kernel_pages;
197static unsigned long __meminitdata nr_all_pages;
a3142c8e 198static unsigned long __meminitdata dma_reserve;
1da177e4 199
0ee332c1
TH
200#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203static unsigned long __initdata required_kernelcore;
204static unsigned long __initdata required_movablecore;
205static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208int movable_zone;
209EXPORT_SYMBOL(movable_zone);
210#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 211
418508c1
MS
212#if MAX_NUMNODES > 1
213int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 214int nr_online_nodes __read_mostly = 1;
418508c1 215EXPORT_SYMBOL(nr_node_ids);
62bc62a8 216EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
217#endif
218
9ef9acb0
MG
219int page_group_by_mobility_disabled __read_mostly;
220
b2a0ac88
MG
221static void set_pageblock_migratetype(struct page *page, int migratetype)
222{
49255c61
MG
223
224 if (unlikely(page_group_by_mobility_disabled))
225 migratetype = MIGRATE_UNMOVABLE;
226
b2a0ac88
MG
227 set_pageblock_flags_group(page, (unsigned long)migratetype,
228 PB_migrate, PB_migrate_end);
229}
230
7f33d49a
RW
231bool oom_killer_disabled __read_mostly;
232
13e7444b 233#ifdef CONFIG_DEBUG_VM
c6a57e19 234static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 235{
bdc8cb98
DH
236 int ret = 0;
237 unsigned seq;
238 unsigned long pfn = page_to_pfn(page);
c6a57e19 239
bdc8cb98
DH
240 do {
241 seq = zone_span_seqbegin(zone);
242 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
243 ret = 1;
244 else if (pfn < zone->zone_start_pfn)
245 ret = 1;
246 } while (zone_span_seqretry(zone, seq));
247
248 return ret;
c6a57e19
DH
249}
250
251static int page_is_consistent(struct zone *zone, struct page *page)
252{
14e07298 253 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 254 return 0;
1da177e4 255 if (zone != page_zone(page))
c6a57e19
DH
256 return 0;
257
258 return 1;
259}
260/*
261 * Temporary debugging check for pages not lying within a given zone.
262 */
263static int bad_range(struct zone *zone, struct page *page)
264{
265 if (page_outside_zone_boundaries(zone, page))
1da177e4 266 return 1;
c6a57e19
DH
267 if (!page_is_consistent(zone, page))
268 return 1;
269
1da177e4
LT
270 return 0;
271}
13e7444b
NP
272#else
273static inline int bad_range(struct zone *zone, struct page *page)
274{
275 return 0;
276}
277#endif
278
224abf92 279static void bad_page(struct page *page)
1da177e4 280{
d936cf9b
HD
281 static unsigned long resume;
282 static unsigned long nr_shown;
283 static unsigned long nr_unshown;
284
2a7684a2
WF
285 /* Don't complain about poisoned pages */
286 if (PageHWPoison(page)) {
ef2b4b95 287 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
288 return;
289 }
290
d936cf9b
HD
291 /*
292 * Allow a burst of 60 reports, then keep quiet for that minute;
293 * or allow a steady drip of one report per second.
294 */
295 if (nr_shown == 60) {
296 if (time_before(jiffies, resume)) {
297 nr_unshown++;
298 goto out;
299 }
300 if (nr_unshown) {
1e9e6365
HD
301 printk(KERN_ALERT
302 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
303 nr_unshown);
304 nr_unshown = 0;
305 }
306 nr_shown = 0;
307 }
308 if (nr_shown++ == 0)
309 resume = jiffies + 60 * HZ;
310
1e9e6365 311 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 312 current->comm, page_to_pfn(page));
718a3821 313 dump_page(page);
3dc14741 314
4f31888c 315 print_modules();
1da177e4 316 dump_stack();
d936cf9b 317out:
8cc3b392 318 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 319 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 320 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
321}
322
1da177e4
LT
323/*
324 * Higher-order pages are called "compound pages". They are structured thusly:
325 *
326 * The first PAGE_SIZE page is called the "head page".
327 *
328 * The remaining PAGE_SIZE pages are called "tail pages".
329 *
6416b9fa
WSH
330 * All pages have PG_compound set. All tail pages have their ->first_page
331 * pointing at the head page.
1da177e4 332 *
41d78ba5
HD
333 * The first tail page's ->lru.next holds the address of the compound page's
334 * put_page() function. Its ->lru.prev holds the order of allocation.
335 * This usage means that zero-order pages may not be compound.
1da177e4 336 */
d98c7a09
HD
337
338static void free_compound_page(struct page *page)
339{
d85f3385 340 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
341}
342
01ad1c08 343void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
344{
345 int i;
346 int nr_pages = 1 << order;
347
348 set_compound_page_dtor(page, free_compound_page);
349 set_compound_order(page, order);
350 __SetPageHead(page);
351 for (i = 1; i < nr_pages; i++) {
352 struct page *p = page + i;
18229df5 353 __SetPageTail(p);
58a84aa9 354 set_page_count(p, 0);
18229df5
AW
355 p->first_page = page;
356 }
357}
358
59ff4216 359/* update __split_huge_page_refcount if you change this function */
8cc3b392 360static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
361{
362 int i;
363 int nr_pages = 1 << order;
8cc3b392 364 int bad = 0;
1da177e4 365
8cc3b392
HD
366 if (unlikely(compound_order(page) != order) ||
367 unlikely(!PageHead(page))) {
224abf92 368 bad_page(page);
8cc3b392
HD
369 bad++;
370 }
1da177e4 371
6d777953 372 __ClearPageHead(page);
8cc3b392 373
18229df5
AW
374 for (i = 1; i < nr_pages; i++) {
375 struct page *p = page + i;
1da177e4 376
e713a21d 377 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 378 bad_page(page);
8cc3b392
HD
379 bad++;
380 }
d85f3385 381 __ClearPageTail(p);
1da177e4 382 }
8cc3b392
HD
383
384 return bad;
1da177e4 385}
1da177e4 386
17cf4406
NP
387static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
388{
389 int i;
390
6626c5d5
AM
391 /*
392 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
393 * and __GFP_HIGHMEM from hard or soft interrupt context.
394 */
725d704e 395 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
396 for (i = 0; i < (1 << order); i++)
397 clear_highpage(page + i);
398}
399
c0a32fc5
SG
400#ifdef CONFIG_DEBUG_PAGEALLOC
401unsigned int _debug_guardpage_minorder;
402
403static int __init debug_guardpage_minorder_setup(char *buf)
404{
405 unsigned long res;
406
407 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
408 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
409 return 0;
410 }
411 _debug_guardpage_minorder = res;
412 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
413 return 0;
414}
415__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
416
417static inline void set_page_guard_flag(struct page *page)
418{
419 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
420}
421
422static inline void clear_page_guard_flag(struct page *page)
423{
424 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425}
426#else
427static inline void set_page_guard_flag(struct page *page) { }
428static inline void clear_page_guard_flag(struct page *page) { }
429#endif
430
6aa3001b
AM
431static inline void set_page_order(struct page *page, int order)
432{
4c21e2f2 433 set_page_private(page, order);
676165a8 434 __SetPageBuddy(page);
1da177e4
LT
435}
436
437static inline void rmv_page_order(struct page *page)
438{
676165a8 439 __ClearPageBuddy(page);
4c21e2f2 440 set_page_private(page, 0);
1da177e4
LT
441}
442
443/*
444 * Locate the struct page for both the matching buddy in our
445 * pair (buddy1) and the combined O(n+1) page they form (page).
446 *
447 * 1) Any buddy B1 will have an order O twin B2 which satisfies
448 * the following equation:
449 * B2 = B1 ^ (1 << O)
450 * For example, if the starting buddy (buddy2) is #8 its order
451 * 1 buddy is #10:
452 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
453 *
454 * 2) Any buddy B will have an order O+1 parent P which
455 * satisfies the following equation:
456 * P = B & ~(1 << O)
457 *
d6e05edc 458 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 459 */
1da177e4 460static inline unsigned long
43506fad 461__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 462{
43506fad 463 return page_idx ^ (1 << order);
1da177e4
LT
464}
465
466/*
467 * This function checks whether a page is free && is the buddy
468 * we can do coalesce a page and its buddy if
13e7444b 469 * (a) the buddy is not in a hole &&
676165a8 470 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
471 * (c) a page and its buddy have the same order &&
472 * (d) a page and its buddy are in the same zone.
676165a8 473 *
5f24ce5f
AA
474 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
475 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 476 *
676165a8 477 * For recording page's order, we use page_private(page).
1da177e4 478 */
cb2b95e1
AW
479static inline int page_is_buddy(struct page *page, struct page *buddy,
480 int order)
1da177e4 481{
14e07298 482 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 483 return 0;
13e7444b 484
cb2b95e1
AW
485 if (page_zone_id(page) != page_zone_id(buddy))
486 return 0;
487
c0a32fc5
SG
488 if (page_is_guard(buddy) && page_order(buddy) == order) {
489 VM_BUG_ON(page_count(buddy) != 0);
490 return 1;
491 }
492
cb2b95e1 493 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 494 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 495 return 1;
676165a8 496 }
6aa3001b 497 return 0;
1da177e4
LT
498}
499
500/*
501 * Freeing function for a buddy system allocator.
502 *
503 * The concept of a buddy system is to maintain direct-mapped table
504 * (containing bit values) for memory blocks of various "orders".
505 * The bottom level table contains the map for the smallest allocatable
506 * units of memory (here, pages), and each level above it describes
507 * pairs of units from the levels below, hence, "buddies".
508 * At a high level, all that happens here is marking the table entry
509 * at the bottom level available, and propagating the changes upward
510 * as necessary, plus some accounting needed to play nicely with other
511 * parts of the VM system.
512 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 513 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 514 * order is recorded in page_private(page) field.
1da177e4
LT
515 * So when we are allocating or freeing one, we can derive the state of the
516 * other. That is, if we allocate a small block, and both were
517 * free, the remainder of the region must be split into blocks.
518 * If a block is freed, and its buddy is also free, then this
519 * triggers coalescing into a block of larger size.
520 *
521 * -- wli
522 */
523
48db57f8 524static inline void __free_one_page(struct page *page,
ed0ae21d
MG
525 struct zone *zone, unsigned int order,
526 int migratetype)
1da177e4
LT
527{
528 unsigned long page_idx;
6dda9d55 529 unsigned long combined_idx;
43506fad 530 unsigned long uninitialized_var(buddy_idx);
6dda9d55 531 struct page *buddy;
1da177e4 532
224abf92 533 if (unlikely(PageCompound(page)))
8cc3b392
HD
534 if (unlikely(destroy_compound_page(page, order)))
535 return;
1da177e4 536
ed0ae21d
MG
537 VM_BUG_ON(migratetype == -1);
538
1da177e4
LT
539 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
540
f2260e6b 541 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 542 VM_BUG_ON(bad_range(zone, page));
1da177e4 543
1da177e4 544 while (order < MAX_ORDER-1) {
43506fad
KC
545 buddy_idx = __find_buddy_index(page_idx, order);
546 buddy = page + (buddy_idx - page_idx);
cb2b95e1 547 if (!page_is_buddy(page, buddy, order))
3c82d0ce 548 break;
c0a32fc5
SG
549 /*
550 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
551 * merge with it and move up one order.
552 */
553 if (page_is_guard(buddy)) {
554 clear_page_guard_flag(buddy);
555 set_page_private(page, 0);
556 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
557 } else {
558 list_del(&buddy->lru);
559 zone->free_area[order].nr_free--;
560 rmv_page_order(buddy);
561 }
43506fad 562 combined_idx = buddy_idx & page_idx;
1da177e4
LT
563 page = page + (combined_idx - page_idx);
564 page_idx = combined_idx;
565 order++;
566 }
567 set_page_order(page, order);
6dda9d55
CZ
568
569 /*
570 * If this is not the largest possible page, check if the buddy
571 * of the next-highest order is free. If it is, it's possible
572 * that pages are being freed that will coalesce soon. In case,
573 * that is happening, add the free page to the tail of the list
574 * so it's less likely to be used soon and more likely to be merged
575 * as a higher order page
576 */
b7f50cfa 577 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 578 struct page *higher_page, *higher_buddy;
43506fad
KC
579 combined_idx = buddy_idx & page_idx;
580 higher_page = page + (combined_idx - page_idx);
581 buddy_idx = __find_buddy_index(combined_idx, order + 1);
582 higher_buddy = page + (buddy_idx - combined_idx);
6dda9d55
CZ
583 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
584 list_add_tail(&page->lru,
585 &zone->free_area[order].free_list[migratetype]);
586 goto out;
587 }
588 }
589
590 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
591out:
1da177e4
LT
592 zone->free_area[order].nr_free++;
593}
594
092cead6
KM
595/*
596 * free_page_mlock() -- clean up attempts to free and mlocked() page.
597 * Page should not be on lru, so no need to fix that up.
598 * free_pages_check() will verify...
599 */
600static inline void free_page_mlock(struct page *page)
601{
092cead6
KM
602 __dec_zone_page_state(page, NR_MLOCK);
603 __count_vm_event(UNEVICTABLE_MLOCKFREED);
604}
092cead6 605
224abf92 606static inline int free_pages_check(struct page *page)
1da177e4 607{
92be2e33
NP
608 if (unlikely(page_mapcount(page) |
609 (page->mapping != NULL) |
a3af9c38 610 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
611 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
612 (mem_cgroup_bad_page_check(page)))) {
224abf92 613 bad_page(page);
79f4b7bf 614 return 1;
8cc3b392 615 }
79f4b7bf
HD
616 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
617 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
618 return 0;
1da177e4
LT
619}
620
621/*
5f8dcc21 622 * Frees a number of pages from the PCP lists
1da177e4 623 * Assumes all pages on list are in same zone, and of same order.
207f36ee 624 * count is the number of pages to free.
1da177e4
LT
625 *
626 * If the zone was previously in an "all pages pinned" state then look to
627 * see if this freeing clears that state.
628 *
629 * And clear the zone's pages_scanned counter, to hold off the "all pages are
630 * pinned" detection logic.
631 */
5f8dcc21
MG
632static void free_pcppages_bulk(struct zone *zone, int count,
633 struct per_cpu_pages *pcp)
1da177e4 634{
5f8dcc21 635 int migratetype = 0;
a6f9edd6 636 int batch_free = 0;
72853e29 637 int to_free = count;
5f8dcc21 638
c54ad30c 639 spin_lock(&zone->lock);
93e4a89a 640 zone->all_unreclaimable = 0;
1da177e4 641 zone->pages_scanned = 0;
f2260e6b 642
72853e29 643 while (to_free) {
48db57f8 644 struct page *page;
5f8dcc21
MG
645 struct list_head *list;
646
647 /*
a6f9edd6
MG
648 * Remove pages from lists in a round-robin fashion. A
649 * batch_free count is maintained that is incremented when an
650 * empty list is encountered. This is so more pages are freed
651 * off fuller lists instead of spinning excessively around empty
652 * lists
5f8dcc21
MG
653 */
654 do {
a6f9edd6 655 batch_free++;
5f8dcc21
MG
656 if (++migratetype == MIGRATE_PCPTYPES)
657 migratetype = 0;
658 list = &pcp->lists[migratetype];
659 } while (list_empty(list));
48db57f8 660
1d16871d
NK
661 /* This is the only non-empty list. Free them all. */
662 if (batch_free == MIGRATE_PCPTYPES)
663 batch_free = to_free;
664
a6f9edd6
MG
665 do {
666 page = list_entry(list->prev, struct page, lru);
667 /* must delete as __free_one_page list manipulates */
668 list_del(&page->lru);
a7016235
HD
669 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
670 __free_one_page(page, zone, 0, page_private(page));
671 trace_mm_page_pcpu_drain(page, 0, page_private(page));
72853e29 672 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 673 }
72853e29 674 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 675 spin_unlock(&zone->lock);
1da177e4
LT
676}
677
ed0ae21d
MG
678static void free_one_page(struct zone *zone, struct page *page, int order,
679 int migratetype)
1da177e4 680{
006d22d9 681 spin_lock(&zone->lock);
93e4a89a 682 zone->all_unreclaimable = 0;
006d22d9 683 zone->pages_scanned = 0;
f2260e6b 684
ed0ae21d 685 __free_one_page(page, zone, order, migratetype);
72853e29 686 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
006d22d9 687 spin_unlock(&zone->lock);
48db57f8
NP
688}
689
ec95f53a 690static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 691{
1da177e4 692 int i;
8cc3b392 693 int bad = 0;
1da177e4 694
b413d48a 695 trace_mm_page_free(page, order);
b1eeab67
VN
696 kmemcheck_free_shadow(page, order);
697
8dd60a3a
AA
698 if (PageAnon(page))
699 page->mapping = NULL;
700 for (i = 0; i < (1 << order); i++)
701 bad += free_pages_check(page + i);
8cc3b392 702 if (bad)
ec95f53a 703 return false;
689bcebf 704
3ac7fe5a 705 if (!PageHighMem(page)) {
9858db50 706 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
707 debug_check_no_obj_freed(page_address(page),
708 PAGE_SIZE << order);
709 }
dafb1367 710 arch_free_page(page, order);
48db57f8 711 kernel_map_pages(page, 1 << order, 0);
dafb1367 712
ec95f53a
KM
713 return true;
714}
715
716static void __free_pages_ok(struct page *page, unsigned int order)
717{
718 unsigned long flags;
719 int wasMlocked = __TestClearPageMlocked(page);
720
721 if (!free_pages_prepare(page, order))
722 return;
723
c54ad30c 724 local_irq_save(flags);
c277331d 725 if (unlikely(wasMlocked))
da456f14 726 free_page_mlock(page);
f8891e5e 727 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
728 free_one_page(page_zone(page), page, order,
729 get_pageblock_migratetype(page));
c54ad30c 730 local_irq_restore(flags);
1da177e4
LT
731}
732
af370fb8 733void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 734{
c3993076
JW
735 unsigned int nr_pages = 1 << order;
736 unsigned int loop;
a226f6c8 737
c3993076
JW
738 prefetchw(page);
739 for (loop = 0; loop < nr_pages; loop++) {
740 struct page *p = &page[loop];
741
742 if (loop + 1 < nr_pages)
743 prefetchw(p + 1);
744 __ClearPageReserved(p);
745 set_page_count(p, 0);
a226f6c8 746 }
c3993076
JW
747
748 set_page_refcounted(page);
749 __free_pages(page, order);
a226f6c8
DH
750}
751
1da177e4
LT
752
753/*
754 * The order of subdivision here is critical for the IO subsystem.
755 * Please do not alter this order without good reasons and regression
756 * testing. Specifically, as large blocks of memory are subdivided,
757 * the order in which smaller blocks are delivered depends on the order
758 * they're subdivided in this function. This is the primary factor
759 * influencing the order in which pages are delivered to the IO
760 * subsystem according to empirical testing, and this is also justified
761 * by considering the behavior of a buddy system containing a single
762 * large block of memory acted on by a series of small allocations.
763 * This behavior is a critical factor in sglist merging's success.
764 *
765 * -- wli
766 */
085cc7d5 767static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
768 int low, int high, struct free_area *area,
769 int migratetype)
1da177e4
LT
770{
771 unsigned long size = 1 << high;
772
773 while (high > low) {
774 area--;
775 high--;
776 size >>= 1;
725d704e 777 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
778
779#ifdef CONFIG_DEBUG_PAGEALLOC
780 if (high < debug_guardpage_minorder()) {
781 /*
782 * Mark as guard pages (or page), that will allow to
783 * merge back to allocator when buddy will be freed.
784 * Corresponding page table entries will not be touched,
785 * pages will stay not present in virtual address space
786 */
787 INIT_LIST_HEAD(&page[size].lru);
788 set_page_guard_flag(&page[size]);
789 set_page_private(&page[size], high);
790 /* Guard pages are not available for any usage */
791 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
792 continue;
793 }
794#endif
b2a0ac88 795 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
796 area->nr_free++;
797 set_page_order(&page[size], high);
798 }
1da177e4
LT
799}
800
1da177e4
LT
801/*
802 * This page is about to be returned from the page allocator
803 */
2a7684a2 804static inline int check_new_page(struct page *page)
1da177e4 805{
92be2e33
NP
806 if (unlikely(page_mapcount(page) |
807 (page->mapping != NULL) |
a3af9c38 808 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
809 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
810 (mem_cgroup_bad_page_check(page)))) {
224abf92 811 bad_page(page);
689bcebf 812 return 1;
8cc3b392 813 }
2a7684a2
WF
814 return 0;
815}
816
817static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
818{
819 int i;
820
821 for (i = 0; i < (1 << order); i++) {
822 struct page *p = page + i;
823 if (unlikely(check_new_page(p)))
824 return 1;
825 }
689bcebf 826
4c21e2f2 827 set_page_private(page, 0);
7835e98b 828 set_page_refcounted(page);
cc102509
NP
829
830 arch_alloc_page(page, order);
1da177e4 831 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
832
833 if (gfp_flags & __GFP_ZERO)
834 prep_zero_page(page, order, gfp_flags);
835
836 if (order && (gfp_flags & __GFP_COMP))
837 prep_compound_page(page, order);
838
689bcebf 839 return 0;
1da177e4
LT
840}
841
56fd56b8
MG
842/*
843 * Go through the free lists for the given migratetype and remove
844 * the smallest available page from the freelists
845 */
728ec980
MG
846static inline
847struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
848 int migratetype)
849{
850 unsigned int current_order;
851 struct free_area * area;
852 struct page *page;
853
854 /* Find a page of the appropriate size in the preferred list */
855 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
856 area = &(zone->free_area[current_order]);
857 if (list_empty(&area->free_list[migratetype]))
858 continue;
859
860 page = list_entry(area->free_list[migratetype].next,
861 struct page, lru);
862 list_del(&page->lru);
863 rmv_page_order(page);
864 area->nr_free--;
56fd56b8
MG
865 expand(zone, page, order, current_order, area, migratetype);
866 return page;
867 }
868
869 return NULL;
870}
871
872
b2a0ac88
MG
873/*
874 * This array describes the order lists are fallen back to when
875 * the free lists for the desirable migrate type are depleted
876 */
877static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
878 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
879 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
880 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
881 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
882};
883
c361be55
MG
884/*
885 * Move the free pages in a range to the free lists of the requested type.
d9c23400 886 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
887 * boundary. If alignment is required, use move_freepages_block()
888 */
b69a7288
AB
889static int move_freepages(struct zone *zone,
890 struct page *start_page, struct page *end_page,
891 int migratetype)
c361be55
MG
892{
893 struct page *page;
894 unsigned long order;
d100313f 895 int pages_moved = 0;
c361be55
MG
896
897#ifndef CONFIG_HOLES_IN_ZONE
898 /*
899 * page_zone is not safe to call in this context when
900 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
901 * anyway as we check zone boundaries in move_freepages_block().
902 * Remove at a later date when no bug reports exist related to
ac0e5b7a 903 * grouping pages by mobility
c361be55
MG
904 */
905 BUG_ON(page_zone(start_page) != page_zone(end_page));
906#endif
907
908 for (page = start_page; page <= end_page;) {
344c790e
AL
909 /* Make sure we are not inadvertently changing nodes */
910 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
911
c361be55
MG
912 if (!pfn_valid_within(page_to_pfn(page))) {
913 page++;
914 continue;
915 }
916
917 if (!PageBuddy(page)) {
918 page++;
919 continue;
920 }
921
922 order = page_order(page);
84be48d8
KS
923 list_move(&page->lru,
924 &zone->free_area[order].free_list[migratetype]);
c361be55 925 page += 1 << order;
d100313f 926 pages_moved += 1 << order;
c361be55
MG
927 }
928
d100313f 929 return pages_moved;
c361be55
MG
930}
931
b69a7288
AB
932static int move_freepages_block(struct zone *zone, struct page *page,
933 int migratetype)
c361be55
MG
934{
935 unsigned long start_pfn, end_pfn;
936 struct page *start_page, *end_page;
937
938 start_pfn = page_to_pfn(page);
d9c23400 939 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 940 start_page = pfn_to_page(start_pfn);
d9c23400
MG
941 end_page = start_page + pageblock_nr_pages - 1;
942 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
943
944 /* Do not cross zone boundaries */
945 if (start_pfn < zone->zone_start_pfn)
946 start_page = page;
947 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
948 return 0;
949
950 return move_freepages(zone, start_page, end_page, migratetype);
951}
952
2f66a68f
MG
953static void change_pageblock_range(struct page *pageblock_page,
954 int start_order, int migratetype)
955{
956 int nr_pageblocks = 1 << (start_order - pageblock_order);
957
958 while (nr_pageblocks--) {
959 set_pageblock_migratetype(pageblock_page, migratetype);
960 pageblock_page += pageblock_nr_pages;
961 }
962}
963
b2a0ac88 964/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
965static inline struct page *
966__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
967{
968 struct free_area * area;
969 int current_order;
970 struct page *page;
971 int migratetype, i;
972
973 /* Find the largest possible block of pages in the other list */
974 for (current_order = MAX_ORDER-1; current_order >= order;
975 --current_order) {
976 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
977 migratetype = fallbacks[start_migratetype][i];
978
56fd56b8
MG
979 /* MIGRATE_RESERVE handled later if necessary */
980 if (migratetype == MIGRATE_RESERVE)
981 continue;
e010487d 982
b2a0ac88
MG
983 area = &(zone->free_area[current_order]);
984 if (list_empty(&area->free_list[migratetype]))
985 continue;
986
987 page = list_entry(area->free_list[migratetype].next,
988 struct page, lru);
989 area->nr_free--;
990
991 /*
c361be55 992 * If breaking a large block of pages, move all free
46dafbca
MG
993 * pages to the preferred allocation list. If falling
994 * back for a reclaimable kernel allocation, be more
25985edc 995 * aggressive about taking ownership of free pages
b2a0ac88 996 */
d9c23400 997 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
998 start_migratetype == MIGRATE_RECLAIMABLE ||
999 page_group_by_mobility_disabled) {
46dafbca
MG
1000 unsigned long pages;
1001 pages = move_freepages_block(zone, page,
1002 start_migratetype);
1003
1004 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1005 if (pages >= (1 << (pageblock_order-1)) ||
1006 page_group_by_mobility_disabled)
46dafbca
MG
1007 set_pageblock_migratetype(page,
1008 start_migratetype);
1009
b2a0ac88 1010 migratetype = start_migratetype;
c361be55 1011 }
b2a0ac88
MG
1012
1013 /* Remove the page from the freelists */
1014 list_del(&page->lru);
1015 rmv_page_order(page);
b2a0ac88 1016
2f66a68f
MG
1017 /* Take ownership for orders >= pageblock_order */
1018 if (current_order >= pageblock_order)
1019 change_pageblock_range(page, current_order,
b2a0ac88
MG
1020 start_migratetype);
1021
1022 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
1023
1024 trace_mm_page_alloc_extfrag(page, order, current_order,
1025 start_migratetype, migratetype);
1026
b2a0ac88
MG
1027 return page;
1028 }
1029 }
1030
728ec980 1031 return NULL;
b2a0ac88
MG
1032}
1033
56fd56b8 1034/*
1da177e4
LT
1035 * Do the hard work of removing an element from the buddy allocator.
1036 * Call me with the zone->lock already held.
1037 */
b2a0ac88
MG
1038static struct page *__rmqueue(struct zone *zone, unsigned int order,
1039 int migratetype)
1da177e4 1040{
1da177e4
LT
1041 struct page *page;
1042
728ec980 1043retry_reserve:
56fd56b8 1044 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1045
728ec980 1046 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1047 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1048
728ec980
MG
1049 /*
1050 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1051 * is used because __rmqueue_smallest is an inline function
1052 * and we want just one call site
1053 */
1054 if (!page) {
1055 migratetype = MIGRATE_RESERVE;
1056 goto retry_reserve;
1057 }
1058 }
1059
0d3d062a 1060 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1061 return page;
1da177e4
LT
1062}
1063
1064/*
1065 * Obtain a specified number of elements from the buddy allocator, all under
1066 * a single hold of the lock, for efficiency. Add them to the supplied list.
1067 * Returns the number of new pages which were placed at *list.
1068 */
1069static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1070 unsigned long count, struct list_head *list,
e084b2d9 1071 int migratetype, int cold)
1da177e4 1072{
1da177e4 1073 int i;
1da177e4 1074
c54ad30c 1075 spin_lock(&zone->lock);
1da177e4 1076 for (i = 0; i < count; ++i) {
b2a0ac88 1077 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1078 if (unlikely(page == NULL))
1da177e4 1079 break;
81eabcbe
MG
1080
1081 /*
1082 * Split buddy pages returned by expand() are received here
1083 * in physical page order. The page is added to the callers and
1084 * list and the list head then moves forward. From the callers
1085 * perspective, the linked list is ordered by page number in
1086 * some conditions. This is useful for IO devices that can
1087 * merge IO requests if the physical pages are ordered
1088 * properly.
1089 */
e084b2d9
MG
1090 if (likely(cold == 0))
1091 list_add(&page->lru, list);
1092 else
1093 list_add_tail(&page->lru, list);
535131e6 1094 set_page_private(page, migratetype);
81eabcbe 1095 list = &page->lru;
1da177e4 1096 }
f2260e6b 1097 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1098 spin_unlock(&zone->lock);
085cc7d5 1099 return i;
1da177e4
LT
1100}
1101
4ae7c039 1102#ifdef CONFIG_NUMA
8fce4d8e 1103/*
4037d452
CL
1104 * Called from the vmstat counter updater to drain pagesets of this
1105 * currently executing processor on remote nodes after they have
1106 * expired.
1107 *
879336c3
CL
1108 * Note that this function must be called with the thread pinned to
1109 * a single processor.
8fce4d8e 1110 */
4037d452 1111void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1112{
4ae7c039 1113 unsigned long flags;
4037d452 1114 int to_drain;
4ae7c039 1115
4037d452
CL
1116 local_irq_save(flags);
1117 if (pcp->count >= pcp->batch)
1118 to_drain = pcp->batch;
1119 else
1120 to_drain = pcp->count;
5f8dcc21 1121 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1122 pcp->count -= to_drain;
1123 local_irq_restore(flags);
4ae7c039
CL
1124}
1125#endif
1126
9f8f2172
CL
1127/*
1128 * Drain pages of the indicated processor.
1129 *
1130 * The processor must either be the current processor and the
1131 * thread pinned to the current processor or a processor that
1132 * is not online.
1133 */
1134static void drain_pages(unsigned int cpu)
1da177e4 1135{
c54ad30c 1136 unsigned long flags;
1da177e4 1137 struct zone *zone;
1da177e4 1138
ee99c71c 1139 for_each_populated_zone(zone) {
1da177e4 1140 struct per_cpu_pageset *pset;
3dfa5721 1141 struct per_cpu_pages *pcp;
1da177e4 1142
99dcc3e5
CL
1143 local_irq_save(flags);
1144 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1145
1146 pcp = &pset->pcp;
2ff754fa
DR
1147 if (pcp->count) {
1148 free_pcppages_bulk(zone, pcp->count, pcp);
1149 pcp->count = 0;
1150 }
3dfa5721 1151 local_irq_restore(flags);
1da177e4
LT
1152 }
1153}
1da177e4 1154
9f8f2172
CL
1155/*
1156 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1157 */
1158void drain_local_pages(void *arg)
1159{
1160 drain_pages(smp_processor_id());
1161}
1162
1163/*
1164 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1165 */
1166void drain_all_pages(void)
1167{
15c8b6c1 1168 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1169}
1170
296699de 1171#ifdef CONFIG_HIBERNATION
1da177e4
LT
1172
1173void mark_free_pages(struct zone *zone)
1174{
f623f0db
RW
1175 unsigned long pfn, max_zone_pfn;
1176 unsigned long flags;
b2a0ac88 1177 int order, t;
1da177e4
LT
1178 struct list_head *curr;
1179
1180 if (!zone->spanned_pages)
1181 return;
1182
1183 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1184
1185 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1186 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1187 if (pfn_valid(pfn)) {
1188 struct page *page = pfn_to_page(pfn);
1189
7be98234
RW
1190 if (!swsusp_page_is_forbidden(page))
1191 swsusp_unset_page_free(page);
f623f0db 1192 }
1da177e4 1193
b2a0ac88
MG
1194 for_each_migratetype_order(order, t) {
1195 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1196 unsigned long i;
1da177e4 1197
f623f0db
RW
1198 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1199 for (i = 0; i < (1UL << order); i++)
7be98234 1200 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1201 }
b2a0ac88 1202 }
1da177e4
LT
1203 spin_unlock_irqrestore(&zone->lock, flags);
1204}
e2c55dc8 1205#endif /* CONFIG_PM */
1da177e4 1206
1da177e4
LT
1207/*
1208 * Free a 0-order page
fc91668e 1209 * cold == 1 ? free a cold page : free a hot page
1da177e4 1210 */
fc91668e 1211void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1212{
1213 struct zone *zone = page_zone(page);
1214 struct per_cpu_pages *pcp;
1215 unsigned long flags;
5f8dcc21 1216 int migratetype;
451ea25d 1217 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1218
ec95f53a 1219 if (!free_pages_prepare(page, 0))
689bcebf
HD
1220 return;
1221
5f8dcc21
MG
1222 migratetype = get_pageblock_migratetype(page);
1223 set_page_private(page, migratetype);
1da177e4 1224 local_irq_save(flags);
c277331d 1225 if (unlikely(wasMlocked))
da456f14 1226 free_page_mlock(page);
f8891e5e 1227 __count_vm_event(PGFREE);
da456f14 1228
5f8dcc21
MG
1229 /*
1230 * We only track unmovable, reclaimable and movable on pcp lists.
1231 * Free ISOLATE pages back to the allocator because they are being
1232 * offlined but treat RESERVE as movable pages so we can get those
1233 * areas back if necessary. Otherwise, we may have to free
1234 * excessively into the page allocator
1235 */
1236 if (migratetype >= MIGRATE_PCPTYPES) {
1237 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1238 free_one_page(zone, page, 0, migratetype);
1239 goto out;
1240 }
1241 migratetype = MIGRATE_MOVABLE;
1242 }
1243
99dcc3e5 1244 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1245 if (cold)
5f8dcc21 1246 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1247 else
5f8dcc21 1248 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1249 pcp->count++;
48db57f8 1250 if (pcp->count >= pcp->high) {
5f8dcc21 1251 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1252 pcp->count -= pcp->batch;
1253 }
5f8dcc21
MG
1254
1255out:
1da177e4 1256 local_irq_restore(flags);
1da177e4
LT
1257}
1258
cc59850e
KK
1259/*
1260 * Free a list of 0-order pages
1261 */
1262void free_hot_cold_page_list(struct list_head *list, int cold)
1263{
1264 struct page *page, *next;
1265
1266 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1267 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1268 free_hot_cold_page(page, cold);
1269 }
1270}
1271
8dfcc9ba
NP
1272/*
1273 * split_page takes a non-compound higher-order page, and splits it into
1274 * n (1<<order) sub-pages: page[0..n]
1275 * Each sub-page must be freed individually.
1276 *
1277 * Note: this is probably too low level an operation for use in drivers.
1278 * Please consult with lkml before using this in your driver.
1279 */
1280void split_page(struct page *page, unsigned int order)
1281{
1282 int i;
1283
725d704e
NP
1284 VM_BUG_ON(PageCompound(page));
1285 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1286
1287#ifdef CONFIG_KMEMCHECK
1288 /*
1289 * Split shadow pages too, because free(page[0]) would
1290 * otherwise free the whole shadow.
1291 */
1292 if (kmemcheck_page_is_tracked(page))
1293 split_page(virt_to_page(page[0].shadow), order);
1294#endif
1295
7835e98b
NP
1296 for (i = 1; i < (1 << order); i++)
1297 set_page_refcounted(page + i);
8dfcc9ba 1298}
8dfcc9ba 1299
748446bb
MG
1300/*
1301 * Similar to split_page except the page is already free. As this is only
1302 * being used for migration, the migratetype of the block also changes.
1303 * As this is called with interrupts disabled, the caller is responsible
1304 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1305 * are enabled.
1306 *
1307 * Note: this is probably too low level an operation for use in drivers.
1308 * Please consult with lkml before using this in your driver.
1309 */
1310int split_free_page(struct page *page)
1311{
1312 unsigned int order;
1313 unsigned long watermark;
1314 struct zone *zone;
1315
1316 BUG_ON(!PageBuddy(page));
1317
1318 zone = page_zone(page);
1319 order = page_order(page);
1320
1321 /* Obey watermarks as if the page was being allocated */
1322 watermark = low_wmark_pages(zone) + (1 << order);
1323 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1324 return 0;
1325
1326 /* Remove page from free list */
1327 list_del(&page->lru);
1328 zone->free_area[order].nr_free--;
1329 rmv_page_order(page);
1330 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1331
1332 /* Split into individual pages */
1333 set_page_refcounted(page);
1334 split_page(page, order);
1335
1336 if (order >= pageblock_order - 1) {
1337 struct page *endpage = page + (1 << order) - 1;
1338 for (; page < endpage; page += pageblock_nr_pages)
1339 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1340 }
1341
1342 return 1 << order;
1343}
1344
1da177e4
LT
1345/*
1346 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1347 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1348 * or two.
1349 */
0a15c3e9
MG
1350static inline
1351struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1352 struct zone *zone, int order, gfp_t gfp_flags,
1353 int migratetype)
1da177e4
LT
1354{
1355 unsigned long flags;
689bcebf 1356 struct page *page;
1da177e4
LT
1357 int cold = !!(gfp_flags & __GFP_COLD);
1358
689bcebf 1359again:
48db57f8 1360 if (likely(order == 0)) {
1da177e4 1361 struct per_cpu_pages *pcp;
5f8dcc21 1362 struct list_head *list;
1da177e4 1363
1da177e4 1364 local_irq_save(flags);
99dcc3e5
CL
1365 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1366 list = &pcp->lists[migratetype];
5f8dcc21 1367 if (list_empty(list)) {
535131e6 1368 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1369 pcp->batch, list,
e084b2d9 1370 migratetype, cold);
5f8dcc21 1371 if (unlikely(list_empty(list)))
6fb332fa 1372 goto failed;
535131e6 1373 }
b92a6edd 1374
5f8dcc21
MG
1375 if (cold)
1376 page = list_entry(list->prev, struct page, lru);
1377 else
1378 page = list_entry(list->next, struct page, lru);
1379
b92a6edd
MG
1380 list_del(&page->lru);
1381 pcp->count--;
7fb1d9fc 1382 } else {
dab48dab
AM
1383 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1384 /*
1385 * __GFP_NOFAIL is not to be used in new code.
1386 *
1387 * All __GFP_NOFAIL callers should be fixed so that they
1388 * properly detect and handle allocation failures.
1389 *
1390 * We most definitely don't want callers attempting to
4923abf9 1391 * allocate greater than order-1 page units with
dab48dab
AM
1392 * __GFP_NOFAIL.
1393 */
4923abf9 1394 WARN_ON_ONCE(order > 1);
dab48dab 1395 }
1da177e4 1396 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1397 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1398 spin_unlock(&zone->lock);
1399 if (!page)
1400 goto failed;
6ccf80eb 1401 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1402 }
1403
f8891e5e 1404 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1405 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1406 local_irq_restore(flags);
1da177e4 1407
725d704e 1408 VM_BUG_ON(bad_range(zone, page));
17cf4406 1409 if (prep_new_page(page, order, gfp_flags))
a74609fa 1410 goto again;
1da177e4 1411 return page;
a74609fa
NP
1412
1413failed:
1414 local_irq_restore(flags);
a74609fa 1415 return NULL;
1da177e4
LT
1416}
1417
41858966
MG
1418/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1419#define ALLOC_WMARK_MIN WMARK_MIN
1420#define ALLOC_WMARK_LOW WMARK_LOW
1421#define ALLOC_WMARK_HIGH WMARK_HIGH
1422#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1423
1424/* Mask to get the watermark bits */
1425#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1426
3148890b
NP
1427#define ALLOC_HARDER 0x10 /* try to alloc harder */
1428#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1429#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1430
933e312e
AM
1431#ifdef CONFIG_FAIL_PAGE_ALLOC
1432
b2588c4b 1433static struct {
933e312e
AM
1434 struct fault_attr attr;
1435
1436 u32 ignore_gfp_highmem;
1437 u32 ignore_gfp_wait;
54114994 1438 u32 min_order;
933e312e
AM
1439} fail_page_alloc = {
1440 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1441 .ignore_gfp_wait = 1,
1442 .ignore_gfp_highmem = 1,
54114994 1443 .min_order = 1,
933e312e
AM
1444};
1445
1446static int __init setup_fail_page_alloc(char *str)
1447{
1448 return setup_fault_attr(&fail_page_alloc.attr, str);
1449}
1450__setup("fail_page_alloc=", setup_fail_page_alloc);
1451
1452static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1453{
54114994
AM
1454 if (order < fail_page_alloc.min_order)
1455 return 0;
933e312e
AM
1456 if (gfp_mask & __GFP_NOFAIL)
1457 return 0;
1458 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1459 return 0;
1460 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1461 return 0;
1462
1463 return should_fail(&fail_page_alloc.attr, 1 << order);
1464}
1465
1466#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1467
1468static int __init fail_page_alloc_debugfs(void)
1469{
f4ae40a6 1470 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1471 struct dentry *dir;
933e312e 1472
dd48c085
AM
1473 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1474 &fail_page_alloc.attr);
1475 if (IS_ERR(dir))
1476 return PTR_ERR(dir);
933e312e 1477
b2588c4b
AM
1478 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1479 &fail_page_alloc.ignore_gfp_wait))
1480 goto fail;
1481 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1482 &fail_page_alloc.ignore_gfp_highmem))
1483 goto fail;
1484 if (!debugfs_create_u32("min-order", mode, dir,
1485 &fail_page_alloc.min_order))
1486 goto fail;
1487
1488 return 0;
1489fail:
dd48c085 1490 debugfs_remove_recursive(dir);
933e312e 1491
b2588c4b 1492 return -ENOMEM;
933e312e
AM
1493}
1494
1495late_initcall(fail_page_alloc_debugfs);
1496
1497#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1498
1499#else /* CONFIG_FAIL_PAGE_ALLOC */
1500
1501static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1502{
1503 return 0;
1504}
1505
1506#endif /* CONFIG_FAIL_PAGE_ALLOC */
1507
1da177e4 1508/*
88f5acf8 1509 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1510 * of the allocation.
1511 */
88f5acf8
MG
1512static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1513 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1514{
1515 /* free_pages my go negative - that's OK */
d23ad423 1516 long min = mark;
1da177e4
LT
1517 int o;
1518
df0a6daa 1519 free_pages -= (1 << order) - 1;
7fb1d9fc 1520 if (alloc_flags & ALLOC_HIGH)
1da177e4 1521 min -= min / 2;
7fb1d9fc 1522 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1523 min -= min / 4;
1524
1525 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1526 return false;
1da177e4
LT
1527 for (o = 0; o < order; o++) {
1528 /* At the next order, this order's pages become unavailable */
1529 free_pages -= z->free_area[o].nr_free << o;
1530
1531 /* Require fewer higher order pages to be free */
1532 min >>= 1;
1533
1534 if (free_pages <= min)
88f5acf8 1535 return false;
1da177e4 1536 }
88f5acf8
MG
1537 return true;
1538}
1539
1540bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1541 int classzone_idx, int alloc_flags)
1542{
1543 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1544 zone_page_state(z, NR_FREE_PAGES));
1545}
1546
1547bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1548 int classzone_idx, int alloc_flags)
1549{
1550 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1551
1552 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1553 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1554
1555 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1556 free_pages);
1da177e4
LT
1557}
1558
9276b1bc
PJ
1559#ifdef CONFIG_NUMA
1560/*
1561 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1562 * skip over zones that are not allowed by the cpuset, or that have
1563 * been recently (in last second) found to be nearly full. See further
1564 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1565 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1566 *
1567 * If the zonelist cache is present in the passed in zonelist, then
1568 * returns a pointer to the allowed node mask (either the current
37b07e41 1569 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1570 *
1571 * If the zonelist cache is not available for this zonelist, does
1572 * nothing and returns NULL.
1573 *
1574 * If the fullzones BITMAP in the zonelist cache is stale (more than
1575 * a second since last zap'd) then we zap it out (clear its bits.)
1576 *
1577 * We hold off even calling zlc_setup, until after we've checked the
1578 * first zone in the zonelist, on the theory that most allocations will
1579 * be satisfied from that first zone, so best to examine that zone as
1580 * quickly as we can.
1581 */
1582static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1583{
1584 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1585 nodemask_t *allowednodes; /* zonelist_cache approximation */
1586
1587 zlc = zonelist->zlcache_ptr;
1588 if (!zlc)
1589 return NULL;
1590
f05111f5 1591 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1592 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1593 zlc->last_full_zap = jiffies;
1594 }
1595
1596 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1597 &cpuset_current_mems_allowed :
37b07e41 1598 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1599 return allowednodes;
1600}
1601
1602/*
1603 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1604 * if it is worth looking at further for free memory:
1605 * 1) Check that the zone isn't thought to be full (doesn't have its
1606 * bit set in the zonelist_cache fullzones BITMAP).
1607 * 2) Check that the zones node (obtained from the zonelist_cache
1608 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1609 * Return true (non-zero) if zone is worth looking at further, or
1610 * else return false (zero) if it is not.
1611 *
1612 * This check -ignores- the distinction between various watermarks,
1613 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1614 * found to be full for any variation of these watermarks, it will
1615 * be considered full for up to one second by all requests, unless
1616 * we are so low on memory on all allowed nodes that we are forced
1617 * into the second scan of the zonelist.
1618 *
1619 * In the second scan we ignore this zonelist cache and exactly
1620 * apply the watermarks to all zones, even it is slower to do so.
1621 * We are low on memory in the second scan, and should leave no stone
1622 * unturned looking for a free page.
1623 */
dd1a239f 1624static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1625 nodemask_t *allowednodes)
1626{
1627 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1628 int i; /* index of *z in zonelist zones */
1629 int n; /* node that zone *z is on */
1630
1631 zlc = zonelist->zlcache_ptr;
1632 if (!zlc)
1633 return 1;
1634
dd1a239f 1635 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1636 n = zlc->z_to_n[i];
1637
1638 /* This zone is worth trying if it is allowed but not full */
1639 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1640}
1641
1642/*
1643 * Given 'z' scanning a zonelist, set the corresponding bit in
1644 * zlc->fullzones, so that subsequent attempts to allocate a page
1645 * from that zone don't waste time re-examining it.
1646 */
dd1a239f 1647static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1648{
1649 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1650 int i; /* index of *z in zonelist zones */
1651
1652 zlc = zonelist->zlcache_ptr;
1653 if (!zlc)
1654 return;
1655
dd1a239f 1656 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1657
1658 set_bit(i, zlc->fullzones);
1659}
1660
76d3fbf8
MG
1661/*
1662 * clear all zones full, called after direct reclaim makes progress so that
1663 * a zone that was recently full is not skipped over for up to a second
1664 */
1665static void zlc_clear_zones_full(struct zonelist *zonelist)
1666{
1667 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1668
1669 zlc = zonelist->zlcache_ptr;
1670 if (!zlc)
1671 return;
1672
1673 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1674}
1675
9276b1bc
PJ
1676#else /* CONFIG_NUMA */
1677
1678static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1679{
1680 return NULL;
1681}
1682
dd1a239f 1683static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1684 nodemask_t *allowednodes)
1685{
1686 return 1;
1687}
1688
dd1a239f 1689static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1690{
1691}
76d3fbf8
MG
1692
1693static void zlc_clear_zones_full(struct zonelist *zonelist)
1694{
1695}
9276b1bc
PJ
1696#endif /* CONFIG_NUMA */
1697
7fb1d9fc 1698/*
0798e519 1699 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1700 * a page.
1701 */
1702static struct page *
19770b32 1703get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1704 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1705 struct zone *preferred_zone, int migratetype)
753ee728 1706{
dd1a239f 1707 struct zoneref *z;
7fb1d9fc 1708 struct page *page = NULL;
54a6eb5c 1709 int classzone_idx;
5117f45d 1710 struct zone *zone;
9276b1bc
PJ
1711 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1712 int zlc_active = 0; /* set if using zonelist_cache */
1713 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1714
19770b32 1715 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1716zonelist_scan:
7fb1d9fc 1717 /*
9276b1bc 1718 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1719 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1720 */
19770b32
MG
1721 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1722 high_zoneidx, nodemask) {
9276b1bc
PJ
1723 if (NUMA_BUILD && zlc_active &&
1724 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1725 continue;
7fb1d9fc 1726 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1727 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1728 continue;
a756cf59
JW
1729 /*
1730 * When allocating a page cache page for writing, we
1731 * want to get it from a zone that is within its dirty
1732 * limit, such that no single zone holds more than its
1733 * proportional share of globally allowed dirty pages.
1734 * The dirty limits take into account the zone's
1735 * lowmem reserves and high watermark so that kswapd
1736 * should be able to balance it without having to
1737 * write pages from its LRU list.
1738 *
1739 * This may look like it could increase pressure on
1740 * lower zones by failing allocations in higher zones
1741 * before they are full. But the pages that do spill
1742 * over are limited as the lower zones are protected
1743 * by this very same mechanism. It should not become
1744 * a practical burden to them.
1745 *
1746 * XXX: For now, allow allocations to potentially
1747 * exceed the per-zone dirty limit in the slowpath
1748 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1749 * which is important when on a NUMA setup the allowed
1750 * zones are together not big enough to reach the
1751 * global limit. The proper fix for these situations
1752 * will require awareness of zones in the
1753 * dirty-throttling and the flusher threads.
1754 */
1755 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1756 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1757 goto this_zone_full;
7fb1d9fc 1758
41858966 1759 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1760 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1761 unsigned long mark;
fa5e084e
MG
1762 int ret;
1763
41858966 1764 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1765 if (zone_watermark_ok(zone, order, mark,
1766 classzone_idx, alloc_flags))
1767 goto try_this_zone;
1768
cd38b115
MG
1769 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1770 /*
1771 * we do zlc_setup if there are multiple nodes
1772 * and before considering the first zone allowed
1773 * by the cpuset.
1774 */
1775 allowednodes = zlc_setup(zonelist, alloc_flags);
1776 zlc_active = 1;
1777 did_zlc_setup = 1;
1778 }
1779
fa5e084e
MG
1780 if (zone_reclaim_mode == 0)
1781 goto this_zone_full;
1782
cd38b115
MG
1783 /*
1784 * As we may have just activated ZLC, check if the first
1785 * eligible zone has failed zone_reclaim recently.
1786 */
1787 if (NUMA_BUILD && zlc_active &&
1788 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1789 continue;
1790
fa5e084e
MG
1791 ret = zone_reclaim(zone, gfp_mask, order);
1792 switch (ret) {
1793 case ZONE_RECLAIM_NOSCAN:
1794 /* did not scan */
cd38b115 1795 continue;
fa5e084e
MG
1796 case ZONE_RECLAIM_FULL:
1797 /* scanned but unreclaimable */
cd38b115 1798 continue;
fa5e084e
MG
1799 default:
1800 /* did we reclaim enough */
1801 if (!zone_watermark_ok(zone, order, mark,
1802 classzone_idx, alloc_flags))
9276b1bc 1803 goto this_zone_full;
0798e519 1804 }
7fb1d9fc
RS
1805 }
1806
fa5e084e 1807try_this_zone:
3dd28266
MG
1808 page = buffered_rmqueue(preferred_zone, zone, order,
1809 gfp_mask, migratetype);
0798e519 1810 if (page)
7fb1d9fc 1811 break;
9276b1bc
PJ
1812this_zone_full:
1813 if (NUMA_BUILD)
1814 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1815 }
9276b1bc
PJ
1816
1817 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1818 /* Disable zlc cache for second zonelist scan */
1819 zlc_active = 0;
1820 goto zonelist_scan;
1821 }
7fb1d9fc 1822 return page;
753ee728
MH
1823}
1824
29423e77
DR
1825/*
1826 * Large machines with many possible nodes should not always dump per-node
1827 * meminfo in irq context.
1828 */
1829static inline bool should_suppress_show_mem(void)
1830{
1831 bool ret = false;
1832
1833#if NODES_SHIFT > 8
1834 ret = in_interrupt();
1835#endif
1836 return ret;
1837}
1838
a238ab5b
DH
1839static DEFINE_RATELIMIT_STATE(nopage_rs,
1840 DEFAULT_RATELIMIT_INTERVAL,
1841 DEFAULT_RATELIMIT_BURST);
1842
1843void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1844{
a238ab5b
DH
1845 unsigned int filter = SHOW_MEM_FILTER_NODES;
1846
c0a32fc5
SG
1847 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1848 debug_guardpage_minorder() > 0)
a238ab5b
DH
1849 return;
1850
1851 /*
1852 * This documents exceptions given to allocations in certain
1853 * contexts that are allowed to allocate outside current's set
1854 * of allowed nodes.
1855 */
1856 if (!(gfp_mask & __GFP_NOMEMALLOC))
1857 if (test_thread_flag(TIF_MEMDIE) ||
1858 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1859 filter &= ~SHOW_MEM_FILTER_NODES;
1860 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1861 filter &= ~SHOW_MEM_FILTER_NODES;
1862
1863 if (fmt) {
3ee9a4f0
JP
1864 struct va_format vaf;
1865 va_list args;
1866
a238ab5b 1867 va_start(args, fmt);
3ee9a4f0
JP
1868
1869 vaf.fmt = fmt;
1870 vaf.va = &args;
1871
1872 pr_warn("%pV", &vaf);
1873
a238ab5b
DH
1874 va_end(args);
1875 }
1876
3ee9a4f0
JP
1877 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1878 current->comm, order, gfp_mask);
a238ab5b
DH
1879
1880 dump_stack();
1881 if (!should_suppress_show_mem())
1882 show_mem(filter);
1883}
1884
11e33f6a
MG
1885static inline int
1886should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 1887 unsigned long did_some_progress,
11e33f6a 1888 unsigned long pages_reclaimed)
1da177e4 1889{
11e33f6a
MG
1890 /* Do not loop if specifically requested */
1891 if (gfp_mask & __GFP_NORETRY)
1892 return 0;
1da177e4 1893
f90ac398
MG
1894 /* Always retry if specifically requested */
1895 if (gfp_mask & __GFP_NOFAIL)
1896 return 1;
1897
1898 /*
1899 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
1900 * making forward progress without invoking OOM. Suspend also disables
1901 * storage devices so kswapd will not help. Bail if we are suspending.
1902 */
1903 if (!did_some_progress && pm_suspended_storage())
1904 return 0;
1905
11e33f6a
MG
1906 /*
1907 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1908 * means __GFP_NOFAIL, but that may not be true in other
1909 * implementations.
1910 */
1911 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1912 return 1;
1913
1914 /*
1915 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1916 * specified, then we retry until we no longer reclaim any pages
1917 * (above), or we've reclaimed an order of pages at least as
1918 * large as the allocation's order. In both cases, if the
1919 * allocation still fails, we stop retrying.
1920 */
1921 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1922 return 1;
cf40bd16 1923
11e33f6a
MG
1924 return 0;
1925}
933e312e 1926
11e33f6a
MG
1927static inline struct page *
1928__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1929 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1930 nodemask_t *nodemask, struct zone *preferred_zone,
1931 int migratetype)
11e33f6a
MG
1932{
1933 struct page *page;
1934
1935 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 1936 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 1937 schedule_timeout_uninterruptible(1);
1da177e4
LT
1938 return NULL;
1939 }
6b1de916 1940
11e33f6a
MG
1941 /*
1942 * Go through the zonelist yet one more time, keep very high watermark
1943 * here, this is only to catch a parallel oom killing, we must fail if
1944 * we're still under heavy pressure.
1945 */
1946 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1947 order, zonelist, high_zoneidx,
5117f45d 1948 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1949 preferred_zone, migratetype);
7fb1d9fc 1950 if (page)
11e33f6a
MG
1951 goto out;
1952
4365a567
KH
1953 if (!(gfp_mask & __GFP_NOFAIL)) {
1954 /* The OOM killer will not help higher order allocs */
1955 if (order > PAGE_ALLOC_COSTLY_ORDER)
1956 goto out;
03668b3c
DR
1957 /* The OOM killer does not needlessly kill tasks for lowmem */
1958 if (high_zoneidx < ZONE_NORMAL)
1959 goto out;
4365a567
KH
1960 /*
1961 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1962 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1963 * The caller should handle page allocation failure by itself if
1964 * it specifies __GFP_THISNODE.
1965 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1966 */
1967 if (gfp_mask & __GFP_THISNODE)
1968 goto out;
1969 }
11e33f6a 1970 /* Exhausted what can be done so it's blamo time */
08ab9b10 1971 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
1972
1973out:
1974 clear_zonelist_oom(zonelist, gfp_mask);
1975 return page;
1976}
1977
56de7263
MG
1978#ifdef CONFIG_COMPACTION
1979/* Try memory compaction for high-order allocations before reclaim */
1980static struct page *
1981__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1982 struct zonelist *zonelist, enum zone_type high_zoneidx,
1983 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712
MG
1984 int migratetype, bool sync_migration,
1985 bool *deferred_compaction,
1986 unsigned long *did_some_progress)
56de7263
MG
1987{
1988 struct page *page;
1989
66199712 1990 if (!order)
56de7263
MG
1991 return NULL;
1992
aff62249 1993 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
1994 *deferred_compaction = true;
1995 return NULL;
1996 }
1997
c06b1fca 1998 current->flags |= PF_MEMALLOC;
56de7263 1999 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
77f1fe6b 2000 nodemask, sync_migration);
c06b1fca 2001 current->flags &= ~PF_MEMALLOC;
56de7263
MG
2002 if (*did_some_progress != COMPACT_SKIPPED) {
2003
2004 /* Page migration frees to the PCP lists but we want merging */
2005 drain_pages(get_cpu());
2006 put_cpu();
2007
2008 page = get_page_from_freelist(gfp_mask, nodemask,
2009 order, zonelist, high_zoneidx,
2010 alloc_flags, preferred_zone,
2011 migratetype);
2012 if (page) {
4f92e258
MG
2013 preferred_zone->compact_considered = 0;
2014 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2015 if (order >= preferred_zone->compact_order_failed)
2016 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2017 count_vm_event(COMPACTSUCCESS);
2018 return page;
2019 }
2020
2021 /*
2022 * It's bad if compaction run occurs and fails.
2023 * The most likely reason is that pages exist,
2024 * but not enough to satisfy watermarks.
2025 */
2026 count_vm_event(COMPACTFAIL);
66199712
MG
2027
2028 /*
2029 * As async compaction considers a subset of pageblocks, only
2030 * defer if the failure was a sync compaction failure.
2031 */
2032 if (sync_migration)
aff62249 2033 defer_compaction(preferred_zone, order);
56de7263
MG
2034
2035 cond_resched();
2036 }
2037
2038 return NULL;
2039}
2040#else
2041static inline struct page *
2042__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2043 struct zonelist *zonelist, enum zone_type high_zoneidx,
2044 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712
MG
2045 int migratetype, bool sync_migration,
2046 bool *deferred_compaction,
2047 unsigned long *did_some_progress)
56de7263
MG
2048{
2049 return NULL;
2050}
2051#endif /* CONFIG_COMPACTION */
2052
11e33f6a
MG
2053/* The really slow allocator path where we enter direct reclaim */
2054static inline struct page *
2055__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2056 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 2057 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 2058 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
2059{
2060 struct page *page = NULL;
2061 struct reclaim_state reclaim_state;
9ee493ce 2062 bool drained = false;
11e33f6a
MG
2063
2064 cond_resched();
2065
2066 /* We now go into synchronous reclaim */
2067 cpuset_memory_pressure_bump();
c06b1fca 2068 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2069 lockdep_set_current_reclaim_state(gfp_mask);
2070 reclaim_state.reclaimed_slab = 0;
c06b1fca 2071 current->reclaim_state = &reclaim_state;
11e33f6a
MG
2072
2073 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2074
c06b1fca 2075 current->reclaim_state = NULL;
11e33f6a 2076 lockdep_clear_current_reclaim_state();
c06b1fca 2077 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2078
2079 cond_resched();
2080
9ee493ce
MG
2081 if (unlikely(!(*did_some_progress)))
2082 return NULL;
11e33f6a 2083
76d3fbf8
MG
2084 /* After successful reclaim, reconsider all zones for allocation */
2085 if (NUMA_BUILD)
2086 zlc_clear_zones_full(zonelist);
2087
9ee493ce
MG
2088retry:
2089 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2090 zonelist, high_zoneidx,
3dd28266
MG
2091 alloc_flags, preferred_zone,
2092 migratetype);
9ee493ce
MG
2093
2094 /*
2095 * If an allocation failed after direct reclaim, it could be because
2096 * pages are pinned on the per-cpu lists. Drain them and try again
2097 */
2098 if (!page && !drained) {
2099 drain_all_pages();
2100 drained = true;
2101 goto retry;
2102 }
2103
11e33f6a
MG
2104 return page;
2105}
2106
1da177e4 2107/*
11e33f6a
MG
2108 * This is called in the allocator slow-path if the allocation request is of
2109 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2110 */
11e33f6a
MG
2111static inline struct page *
2112__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2113 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2114 nodemask_t *nodemask, struct zone *preferred_zone,
2115 int migratetype)
11e33f6a
MG
2116{
2117 struct page *page;
2118
2119 do {
2120 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2121 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2122 preferred_zone, migratetype);
11e33f6a
MG
2123
2124 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2125 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2126 } while (!page && (gfp_mask & __GFP_NOFAIL));
2127
2128 return page;
2129}
2130
2131static inline
2132void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2133 enum zone_type high_zoneidx,
2134 enum zone_type classzone_idx)
1da177e4 2135{
dd1a239f
MG
2136 struct zoneref *z;
2137 struct zone *zone;
1da177e4 2138
11e33f6a 2139 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2140 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2141}
cf40bd16 2142
341ce06f
PZ
2143static inline int
2144gfp_to_alloc_flags(gfp_t gfp_mask)
2145{
341ce06f
PZ
2146 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2147 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2148
a56f57ff 2149 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2150 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2151
341ce06f
PZ
2152 /*
2153 * The caller may dip into page reserves a bit more if the caller
2154 * cannot run direct reclaim, or if the caller has realtime scheduling
2155 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2156 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2157 */
e6223a3b 2158 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2159
341ce06f 2160 if (!wait) {
5c3240d9
AA
2161 /*
2162 * Not worth trying to allocate harder for
2163 * __GFP_NOMEMALLOC even if it can't schedule.
2164 */
2165 if (!(gfp_mask & __GFP_NOMEMALLOC))
2166 alloc_flags |= ALLOC_HARDER;
523b9458 2167 /*
341ce06f
PZ
2168 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2169 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2170 */
341ce06f 2171 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2172 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2173 alloc_flags |= ALLOC_HARDER;
2174
2175 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2176 if (!in_interrupt() &&
c06b1fca 2177 ((current->flags & PF_MEMALLOC) ||
341ce06f
PZ
2178 unlikely(test_thread_flag(TIF_MEMDIE))))
2179 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2180 }
6b1de916 2181
341ce06f
PZ
2182 return alloc_flags;
2183}
2184
11e33f6a
MG
2185static inline struct page *
2186__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2187 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2188 nodemask_t *nodemask, struct zone *preferred_zone,
2189 int migratetype)
11e33f6a
MG
2190{
2191 const gfp_t wait = gfp_mask & __GFP_WAIT;
2192 struct page *page = NULL;
2193 int alloc_flags;
2194 unsigned long pages_reclaimed = 0;
2195 unsigned long did_some_progress;
77f1fe6b 2196 bool sync_migration = false;
66199712 2197 bool deferred_compaction = false;
1da177e4 2198
72807a74
MG
2199 /*
2200 * In the slowpath, we sanity check order to avoid ever trying to
2201 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2202 * be using allocators in order of preference for an area that is
2203 * too large.
2204 */
1fc28b70
MG
2205 if (order >= MAX_ORDER) {
2206 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2207 return NULL;
1fc28b70 2208 }
1da177e4 2209
952f3b51
CL
2210 /*
2211 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2212 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2213 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2214 * using a larger set of nodes after it has established that the
2215 * allowed per node queues are empty and that nodes are
2216 * over allocated.
2217 */
2218 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2219 goto nopage;
2220
cc4a6851 2221restart:
32dba98e
AA
2222 if (!(gfp_mask & __GFP_NO_KSWAPD))
2223 wake_all_kswapd(order, zonelist, high_zoneidx,
99504748 2224 zone_idx(preferred_zone));
1da177e4 2225
9bf2229f 2226 /*
7fb1d9fc
RS
2227 * OK, we're below the kswapd watermark and have kicked background
2228 * reclaim. Now things get more complex, so set up alloc_flags according
2229 * to how we want to proceed.
9bf2229f 2230 */
341ce06f 2231 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2232
f33261d7
DR
2233 /*
2234 * Find the true preferred zone if the allocation is unconstrained by
2235 * cpusets.
2236 */
2237 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2238 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2239 &preferred_zone);
2240
cfa54a0f 2241rebalance:
341ce06f 2242 /* This is the last chance, in general, before the goto nopage. */
19770b32 2243 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2244 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2245 preferred_zone, migratetype);
7fb1d9fc
RS
2246 if (page)
2247 goto got_pg;
1da177e4 2248
11e33f6a 2249 /* Allocate without watermarks if the context allows */
341ce06f
PZ
2250 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2251 page = __alloc_pages_high_priority(gfp_mask, order,
2252 zonelist, high_zoneidx, nodemask,
2253 preferred_zone, migratetype);
2254 if (page)
2255 goto got_pg;
1da177e4
LT
2256 }
2257
2258 /* Atomic allocations - we can't balance anything */
2259 if (!wait)
2260 goto nopage;
2261
341ce06f 2262 /* Avoid recursion of direct reclaim */
c06b1fca 2263 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2264 goto nopage;
2265
6583bb64
DR
2266 /* Avoid allocations with no watermarks from looping endlessly */
2267 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2268 goto nopage;
2269
77f1fe6b
MG
2270 /*
2271 * Try direct compaction. The first pass is asynchronous. Subsequent
2272 * attempts after direct reclaim are synchronous
2273 */
56de7263
MG
2274 page = __alloc_pages_direct_compact(gfp_mask, order,
2275 zonelist, high_zoneidx,
2276 nodemask,
2277 alloc_flags, preferred_zone,
66199712
MG
2278 migratetype, sync_migration,
2279 &deferred_compaction,
2280 &did_some_progress);
56de7263
MG
2281 if (page)
2282 goto got_pg;
c6a140bf 2283 sync_migration = true;
56de7263 2284
66199712
MG
2285 /*
2286 * If compaction is deferred for high-order allocations, it is because
2287 * sync compaction recently failed. In this is the case and the caller
2288 * has requested the system not be heavily disrupted, fail the
2289 * allocation now instead of entering direct reclaim
2290 */
2291 if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
2292 goto nopage;
2293
11e33f6a
MG
2294 /* Try direct reclaim and then allocating */
2295 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2296 zonelist, high_zoneidx,
2297 nodemask,
5117f45d 2298 alloc_flags, preferred_zone,
3dd28266 2299 migratetype, &did_some_progress);
11e33f6a
MG
2300 if (page)
2301 goto got_pg;
1da177e4 2302
e33c3b5e 2303 /*
11e33f6a
MG
2304 * If we failed to make any progress reclaiming, then we are
2305 * running out of options and have to consider going OOM
e33c3b5e 2306 */
11e33f6a
MG
2307 if (!did_some_progress) {
2308 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2309 if (oom_killer_disabled)
2310 goto nopage;
29fd66d2
DR
2311 /* Coredumps can quickly deplete all memory reserves */
2312 if ((current->flags & PF_DUMPCORE) &&
2313 !(gfp_mask & __GFP_NOFAIL))
2314 goto nopage;
11e33f6a
MG
2315 page = __alloc_pages_may_oom(gfp_mask, order,
2316 zonelist, high_zoneidx,
3dd28266
MG
2317 nodemask, preferred_zone,
2318 migratetype);
11e33f6a
MG
2319 if (page)
2320 goto got_pg;
1da177e4 2321
03668b3c
DR
2322 if (!(gfp_mask & __GFP_NOFAIL)) {
2323 /*
2324 * The oom killer is not called for high-order
2325 * allocations that may fail, so if no progress
2326 * is being made, there are no other options and
2327 * retrying is unlikely to help.
2328 */
2329 if (order > PAGE_ALLOC_COSTLY_ORDER)
2330 goto nopage;
2331 /*
2332 * The oom killer is not called for lowmem
2333 * allocations to prevent needlessly killing
2334 * innocent tasks.
2335 */
2336 if (high_zoneidx < ZONE_NORMAL)
2337 goto nopage;
2338 }
e2c55dc8 2339
ff0ceb9d
DR
2340 goto restart;
2341 }
1da177e4
LT
2342 }
2343
11e33f6a 2344 /* Check if we should retry the allocation */
a41f24ea 2345 pages_reclaimed += did_some_progress;
f90ac398
MG
2346 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2347 pages_reclaimed)) {
11e33f6a 2348 /* Wait for some write requests to complete then retry */
0e093d99 2349 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2350 goto rebalance;
3e7d3449
MG
2351 } else {
2352 /*
2353 * High-order allocations do not necessarily loop after
2354 * direct reclaim and reclaim/compaction depends on compaction
2355 * being called after reclaim so call directly if necessary
2356 */
2357 page = __alloc_pages_direct_compact(gfp_mask, order,
2358 zonelist, high_zoneidx,
2359 nodemask,
2360 alloc_flags, preferred_zone,
66199712
MG
2361 migratetype, sync_migration,
2362 &deferred_compaction,
2363 &did_some_progress);
3e7d3449
MG
2364 if (page)
2365 goto got_pg;
1da177e4
LT
2366 }
2367
2368nopage:
a238ab5b 2369 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2370 return page;
1da177e4 2371got_pg:
b1eeab67
VN
2372 if (kmemcheck_enabled)
2373 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2374 return page;
11e33f6a 2375
1da177e4 2376}
11e33f6a
MG
2377
2378/*
2379 * This is the 'heart' of the zoned buddy allocator.
2380 */
2381struct page *
2382__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2383 struct zonelist *zonelist, nodemask_t *nodemask)
2384{
2385 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2386 struct zone *preferred_zone;
cc9a6c87 2387 struct page *page = NULL;
3dd28266 2388 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2389 unsigned int cpuset_mems_cookie;
11e33f6a 2390
dcce284a
BH
2391 gfp_mask &= gfp_allowed_mask;
2392
11e33f6a
MG
2393 lockdep_trace_alloc(gfp_mask);
2394
2395 might_sleep_if(gfp_mask & __GFP_WAIT);
2396
2397 if (should_fail_alloc_page(gfp_mask, order))
2398 return NULL;
2399
2400 /*
2401 * Check the zones suitable for the gfp_mask contain at least one
2402 * valid zone. It's possible to have an empty zonelist as a result
2403 * of GFP_THISNODE and a memoryless node
2404 */
2405 if (unlikely(!zonelist->_zonerefs->zone))
2406 return NULL;
2407
cc9a6c87
MG
2408retry_cpuset:
2409 cpuset_mems_cookie = get_mems_allowed();
2410
5117f45d 2411 /* The preferred zone is used for statistics later */
f33261d7
DR
2412 first_zones_zonelist(zonelist, high_zoneidx,
2413 nodemask ? : &cpuset_current_mems_allowed,
2414 &preferred_zone);
cc9a6c87
MG
2415 if (!preferred_zone)
2416 goto out;
5117f45d
MG
2417
2418 /* First allocation attempt */
11e33f6a 2419 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2420 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2421 preferred_zone, migratetype);
11e33f6a
MG
2422 if (unlikely(!page))
2423 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2424 zonelist, high_zoneidx, nodemask,
3dd28266 2425 preferred_zone, migratetype);
11e33f6a 2426
4b4f278c 2427 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2428
2429out:
2430 /*
2431 * When updating a task's mems_allowed, it is possible to race with
2432 * parallel threads in such a way that an allocation can fail while
2433 * the mask is being updated. If a page allocation is about to fail,
2434 * check if the cpuset changed during allocation and if so, retry.
2435 */
2436 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2437 goto retry_cpuset;
2438
11e33f6a 2439 return page;
1da177e4 2440}
d239171e 2441EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2442
2443/*
2444 * Common helper functions.
2445 */
920c7a5d 2446unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2447{
945a1113
AM
2448 struct page *page;
2449
2450 /*
2451 * __get_free_pages() returns a 32-bit address, which cannot represent
2452 * a highmem page
2453 */
2454 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2455
1da177e4
LT
2456 page = alloc_pages(gfp_mask, order);
2457 if (!page)
2458 return 0;
2459 return (unsigned long) page_address(page);
2460}
1da177e4
LT
2461EXPORT_SYMBOL(__get_free_pages);
2462
920c7a5d 2463unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2464{
945a1113 2465 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2466}
1da177e4
LT
2467EXPORT_SYMBOL(get_zeroed_page);
2468
920c7a5d 2469void __free_pages(struct page *page, unsigned int order)
1da177e4 2470{
b5810039 2471 if (put_page_testzero(page)) {
1da177e4 2472 if (order == 0)
fc91668e 2473 free_hot_cold_page(page, 0);
1da177e4
LT
2474 else
2475 __free_pages_ok(page, order);
2476 }
2477}
2478
2479EXPORT_SYMBOL(__free_pages);
2480
920c7a5d 2481void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2482{
2483 if (addr != 0) {
725d704e 2484 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2485 __free_pages(virt_to_page((void *)addr), order);
2486 }
2487}
2488
2489EXPORT_SYMBOL(free_pages);
2490
ee85c2e1
AK
2491static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2492{
2493 if (addr) {
2494 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2495 unsigned long used = addr + PAGE_ALIGN(size);
2496
2497 split_page(virt_to_page((void *)addr), order);
2498 while (used < alloc_end) {
2499 free_page(used);
2500 used += PAGE_SIZE;
2501 }
2502 }
2503 return (void *)addr;
2504}
2505
2be0ffe2
TT
2506/**
2507 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2508 * @size: the number of bytes to allocate
2509 * @gfp_mask: GFP flags for the allocation
2510 *
2511 * This function is similar to alloc_pages(), except that it allocates the
2512 * minimum number of pages to satisfy the request. alloc_pages() can only
2513 * allocate memory in power-of-two pages.
2514 *
2515 * This function is also limited by MAX_ORDER.
2516 *
2517 * Memory allocated by this function must be released by free_pages_exact().
2518 */
2519void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2520{
2521 unsigned int order = get_order(size);
2522 unsigned long addr;
2523
2524 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2525 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2526}
2527EXPORT_SYMBOL(alloc_pages_exact);
2528
ee85c2e1
AK
2529/**
2530 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2531 * pages on a node.
b5e6ab58 2532 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2533 * @size: the number of bytes to allocate
2534 * @gfp_mask: GFP flags for the allocation
2535 *
2536 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2537 * back.
2538 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2539 * but is not exact.
2540 */
2541void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2542{
2543 unsigned order = get_order(size);
2544 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2545 if (!p)
2546 return NULL;
2547 return make_alloc_exact((unsigned long)page_address(p), order, size);
2548}
2549EXPORT_SYMBOL(alloc_pages_exact_nid);
2550
2be0ffe2
TT
2551/**
2552 * free_pages_exact - release memory allocated via alloc_pages_exact()
2553 * @virt: the value returned by alloc_pages_exact.
2554 * @size: size of allocation, same value as passed to alloc_pages_exact().
2555 *
2556 * Release the memory allocated by a previous call to alloc_pages_exact.
2557 */
2558void free_pages_exact(void *virt, size_t size)
2559{
2560 unsigned long addr = (unsigned long)virt;
2561 unsigned long end = addr + PAGE_ALIGN(size);
2562
2563 while (addr < end) {
2564 free_page(addr);
2565 addr += PAGE_SIZE;
2566 }
2567}
2568EXPORT_SYMBOL(free_pages_exact);
2569
1da177e4
LT
2570static unsigned int nr_free_zone_pages(int offset)
2571{
dd1a239f 2572 struct zoneref *z;
54a6eb5c
MG
2573 struct zone *zone;
2574
e310fd43 2575 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2576 unsigned int sum = 0;
2577
0e88460d 2578 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2579
54a6eb5c 2580 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2581 unsigned long size = zone->present_pages;
41858966 2582 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2583 if (size > high)
2584 sum += size - high;
1da177e4
LT
2585 }
2586
2587 return sum;
2588}
2589
2590/*
2591 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2592 */
2593unsigned int nr_free_buffer_pages(void)
2594{
af4ca457 2595 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2596}
c2f1a551 2597EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2598
2599/*
2600 * Amount of free RAM allocatable within all zones
2601 */
2602unsigned int nr_free_pagecache_pages(void)
2603{
2a1e274a 2604 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2605}
08e0f6a9
CL
2606
2607static inline void show_node(struct zone *zone)
1da177e4 2608{
08e0f6a9 2609 if (NUMA_BUILD)
25ba77c1 2610 printk("Node %d ", zone_to_nid(zone));
1da177e4 2611}
1da177e4 2612
1da177e4
LT
2613void si_meminfo(struct sysinfo *val)
2614{
2615 val->totalram = totalram_pages;
2616 val->sharedram = 0;
d23ad423 2617 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2618 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2619 val->totalhigh = totalhigh_pages;
2620 val->freehigh = nr_free_highpages();
1da177e4
LT
2621 val->mem_unit = PAGE_SIZE;
2622}
2623
2624EXPORT_SYMBOL(si_meminfo);
2625
2626#ifdef CONFIG_NUMA
2627void si_meminfo_node(struct sysinfo *val, int nid)
2628{
2629 pg_data_t *pgdat = NODE_DATA(nid);
2630
2631 val->totalram = pgdat->node_present_pages;
d23ad423 2632 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2633#ifdef CONFIG_HIGHMEM
1da177e4 2634 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2635 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2636 NR_FREE_PAGES);
98d2b0eb
CL
2637#else
2638 val->totalhigh = 0;
2639 val->freehigh = 0;
2640#endif
1da177e4
LT
2641 val->mem_unit = PAGE_SIZE;
2642}
2643#endif
2644
ddd588b5 2645/*
7bf02ea2
DR
2646 * Determine whether the node should be displayed or not, depending on whether
2647 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2648 */
7bf02ea2 2649bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2650{
2651 bool ret = false;
cc9a6c87 2652 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2653
2654 if (!(flags & SHOW_MEM_FILTER_NODES))
2655 goto out;
2656
cc9a6c87
MG
2657 do {
2658 cpuset_mems_cookie = get_mems_allowed();
2659 ret = !node_isset(nid, cpuset_current_mems_allowed);
2660 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2661out:
2662 return ret;
2663}
2664
1da177e4
LT
2665#define K(x) ((x) << (PAGE_SHIFT-10))
2666
2667/*
2668 * Show free area list (used inside shift_scroll-lock stuff)
2669 * We also calculate the percentage fragmentation. We do this by counting the
2670 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2671 * Suppresses nodes that are not allowed by current's cpuset if
2672 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2673 */
7bf02ea2 2674void show_free_areas(unsigned int filter)
1da177e4 2675{
c7241913 2676 int cpu;
1da177e4
LT
2677 struct zone *zone;
2678
ee99c71c 2679 for_each_populated_zone(zone) {
7bf02ea2 2680 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2681 continue;
c7241913
JS
2682 show_node(zone);
2683 printk("%s per-cpu:\n", zone->name);
1da177e4 2684
6b482c67 2685 for_each_online_cpu(cpu) {
1da177e4
LT
2686 struct per_cpu_pageset *pageset;
2687
99dcc3e5 2688 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2689
3dfa5721
CL
2690 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2691 cpu, pageset->pcp.high,
2692 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2693 }
2694 }
2695
a731286d
KM
2696 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2697 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2698 " unevictable:%lu"
b76146ed 2699 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2700 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2701 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2702 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2703 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2704 global_page_state(NR_ISOLATED_ANON),
2705 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2706 global_page_state(NR_INACTIVE_FILE),
a731286d 2707 global_page_state(NR_ISOLATED_FILE),
7b854121 2708 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2709 global_page_state(NR_FILE_DIRTY),
ce866b34 2710 global_page_state(NR_WRITEBACK),
fd39fc85 2711 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2712 global_page_state(NR_FREE_PAGES),
3701b033
KM
2713 global_page_state(NR_SLAB_RECLAIMABLE),
2714 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2715 global_page_state(NR_FILE_MAPPED),
4b02108a 2716 global_page_state(NR_SHMEM),
a25700a5
AM
2717 global_page_state(NR_PAGETABLE),
2718 global_page_state(NR_BOUNCE));
1da177e4 2719
ee99c71c 2720 for_each_populated_zone(zone) {
1da177e4
LT
2721 int i;
2722
7bf02ea2 2723 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2724 continue;
1da177e4
LT
2725 show_node(zone);
2726 printk("%s"
2727 " free:%lukB"
2728 " min:%lukB"
2729 " low:%lukB"
2730 " high:%lukB"
4f98a2fe
RR
2731 " active_anon:%lukB"
2732 " inactive_anon:%lukB"
2733 " active_file:%lukB"
2734 " inactive_file:%lukB"
7b854121 2735 " unevictable:%lukB"
a731286d
KM
2736 " isolated(anon):%lukB"
2737 " isolated(file):%lukB"
1da177e4 2738 " present:%lukB"
4a0aa73f
KM
2739 " mlocked:%lukB"
2740 " dirty:%lukB"
2741 " writeback:%lukB"
2742 " mapped:%lukB"
4b02108a 2743 " shmem:%lukB"
4a0aa73f
KM
2744 " slab_reclaimable:%lukB"
2745 " slab_unreclaimable:%lukB"
c6a7f572 2746 " kernel_stack:%lukB"
4a0aa73f
KM
2747 " pagetables:%lukB"
2748 " unstable:%lukB"
2749 " bounce:%lukB"
2750 " writeback_tmp:%lukB"
1da177e4
LT
2751 " pages_scanned:%lu"
2752 " all_unreclaimable? %s"
2753 "\n",
2754 zone->name,
88f5acf8 2755 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2756 K(min_wmark_pages(zone)),
2757 K(low_wmark_pages(zone)),
2758 K(high_wmark_pages(zone)),
4f98a2fe
RR
2759 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2760 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2761 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2762 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2763 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2764 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2765 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2766 K(zone->present_pages),
4a0aa73f
KM
2767 K(zone_page_state(zone, NR_MLOCK)),
2768 K(zone_page_state(zone, NR_FILE_DIRTY)),
2769 K(zone_page_state(zone, NR_WRITEBACK)),
2770 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2771 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2772 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2773 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2774 zone_page_state(zone, NR_KERNEL_STACK) *
2775 THREAD_SIZE / 1024,
4a0aa73f
KM
2776 K(zone_page_state(zone, NR_PAGETABLE)),
2777 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2778 K(zone_page_state(zone, NR_BOUNCE)),
2779 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2780 zone->pages_scanned,
93e4a89a 2781 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2782 );
2783 printk("lowmem_reserve[]:");
2784 for (i = 0; i < MAX_NR_ZONES; i++)
2785 printk(" %lu", zone->lowmem_reserve[i]);
2786 printk("\n");
2787 }
2788
ee99c71c 2789 for_each_populated_zone(zone) {
8f9de51a 2790 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 2791
7bf02ea2 2792 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2793 continue;
1da177e4
LT
2794 show_node(zone);
2795 printk("%s: ", zone->name);
1da177e4
LT
2796
2797 spin_lock_irqsave(&zone->lock, flags);
2798 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2799 nr[order] = zone->free_area[order].nr_free;
2800 total += nr[order] << order;
1da177e4
LT
2801 }
2802 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2803 for (order = 0; order < MAX_ORDER; order++)
2804 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2805 printk("= %lukB\n", K(total));
2806 }
2807
e6f3602d
LW
2808 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2809
1da177e4
LT
2810 show_swap_cache_info();
2811}
2812
19770b32
MG
2813static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2814{
2815 zoneref->zone = zone;
2816 zoneref->zone_idx = zone_idx(zone);
2817}
2818
1da177e4
LT
2819/*
2820 * Builds allocation fallback zone lists.
1a93205b
CL
2821 *
2822 * Add all populated zones of a node to the zonelist.
1da177e4 2823 */
f0c0b2b8
KH
2824static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2825 int nr_zones, enum zone_type zone_type)
1da177e4 2826{
1a93205b
CL
2827 struct zone *zone;
2828
98d2b0eb 2829 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2830 zone_type++;
02a68a5e
CL
2831
2832 do {
2f6726e5 2833 zone_type--;
070f8032 2834 zone = pgdat->node_zones + zone_type;
1a93205b 2835 if (populated_zone(zone)) {
dd1a239f
MG
2836 zoneref_set_zone(zone,
2837 &zonelist->_zonerefs[nr_zones++]);
070f8032 2838 check_highest_zone(zone_type);
1da177e4 2839 }
02a68a5e 2840
2f6726e5 2841 } while (zone_type);
070f8032 2842 return nr_zones;
1da177e4
LT
2843}
2844
f0c0b2b8
KH
2845
2846/*
2847 * zonelist_order:
2848 * 0 = automatic detection of better ordering.
2849 * 1 = order by ([node] distance, -zonetype)
2850 * 2 = order by (-zonetype, [node] distance)
2851 *
2852 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2853 * the same zonelist. So only NUMA can configure this param.
2854 */
2855#define ZONELIST_ORDER_DEFAULT 0
2856#define ZONELIST_ORDER_NODE 1
2857#define ZONELIST_ORDER_ZONE 2
2858
2859/* zonelist order in the kernel.
2860 * set_zonelist_order() will set this to NODE or ZONE.
2861 */
2862static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2863static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2864
2865
1da177e4 2866#ifdef CONFIG_NUMA
f0c0b2b8
KH
2867/* The value user specified ....changed by config */
2868static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2869/* string for sysctl */
2870#define NUMA_ZONELIST_ORDER_LEN 16
2871char numa_zonelist_order[16] = "default";
2872
2873/*
2874 * interface for configure zonelist ordering.
2875 * command line option "numa_zonelist_order"
2876 * = "[dD]efault - default, automatic configuration.
2877 * = "[nN]ode - order by node locality, then by zone within node
2878 * = "[zZ]one - order by zone, then by locality within zone
2879 */
2880
2881static int __parse_numa_zonelist_order(char *s)
2882{
2883 if (*s == 'd' || *s == 'D') {
2884 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2885 } else if (*s == 'n' || *s == 'N') {
2886 user_zonelist_order = ZONELIST_ORDER_NODE;
2887 } else if (*s == 'z' || *s == 'Z') {
2888 user_zonelist_order = ZONELIST_ORDER_ZONE;
2889 } else {
2890 printk(KERN_WARNING
2891 "Ignoring invalid numa_zonelist_order value: "
2892 "%s\n", s);
2893 return -EINVAL;
2894 }
2895 return 0;
2896}
2897
2898static __init int setup_numa_zonelist_order(char *s)
2899{
ecb256f8
VL
2900 int ret;
2901
2902 if (!s)
2903 return 0;
2904
2905 ret = __parse_numa_zonelist_order(s);
2906 if (ret == 0)
2907 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2908
2909 return ret;
f0c0b2b8
KH
2910}
2911early_param("numa_zonelist_order", setup_numa_zonelist_order);
2912
2913/*
2914 * sysctl handler for numa_zonelist_order
2915 */
2916int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2917 void __user *buffer, size_t *length,
f0c0b2b8
KH
2918 loff_t *ppos)
2919{
2920 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2921 int ret;
443c6f14 2922 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2923
443c6f14 2924 mutex_lock(&zl_order_mutex);
f0c0b2b8 2925 if (write)
443c6f14 2926 strcpy(saved_string, (char*)table->data);
8d65af78 2927 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2928 if (ret)
443c6f14 2929 goto out;
f0c0b2b8
KH
2930 if (write) {
2931 int oldval = user_zonelist_order;
2932 if (__parse_numa_zonelist_order((char*)table->data)) {
2933 /*
2934 * bogus value. restore saved string
2935 */
2936 strncpy((char*)table->data, saved_string,
2937 NUMA_ZONELIST_ORDER_LEN);
2938 user_zonelist_order = oldval;
4eaf3f64
HL
2939 } else if (oldval != user_zonelist_order) {
2940 mutex_lock(&zonelists_mutex);
1f522509 2941 build_all_zonelists(NULL);
4eaf3f64
HL
2942 mutex_unlock(&zonelists_mutex);
2943 }
f0c0b2b8 2944 }
443c6f14
AK
2945out:
2946 mutex_unlock(&zl_order_mutex);
2947 return ret;
f0c0b2b8
KH
2948}
2949
2950
62bc62a8 2951#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2952static int node_load[MAX_NUMNODES];
2953
1da177e4 2954/**
4dc3b16b 2955 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2956 * @node: node whose fallback list we're appending
2957 * @used_node_mask: nodemask_t of already used nodes
2958 *
2959 * We use a number of factors to determine which is the next node that should
2960 * appear on a given node's fallback list. The node should not have appeared
2961 * already in @node's fallback list, and it should be the next closest node
2962 * according to the distance array (which contains arbitrary distance values
2963 * from each node to each node in the system), and should also prefer nodes
2964 * with no CPUs, since presumably they'll have very little allocation pressure
2965 * on them otherwise.
2966 * It returns -1 if no node is found.
2967 */
f0c0b2b8 2968static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2969{
4cf808eb 2970 int n, val;
1da177e4
LT
2971 int min_val = INT_MAX;
2972 int best_node = -1;
a70f7302 2973 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2974
4cf808eb
LT
2975 /* Use the local node if we haven't already */
2976 if (!node_isset(node, *used_node_mask)) {
2977 node_set(node, *used_node_mask);
2978 return node;
2979 }
1da177e4 2980
37b07e41 2981 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2982
2983 /* Don't want a node to appear more than once */
2984 if (node_isset(n, *used_node_mask))
2985 continue;
2986
1da177e4
LT
2987 /* Use the distance array to find the distance */
2988 val = node_distance(node, n);
2989
4cf808eb
LT
2990 /* Penalize nodes under us ("prefer the next node") */
2991 val += (n < node);
2992
1da177e4 2993 /* Give preference to headless and unused nodes */
a70f7302
RR
2994 tmp = cpumask_of_node(n);
2995 if (!cpumask_empty(tmp))
1da177e4
LT
2996 val += PENALTY_FOR_NODE_WITH_CPUS;
2997
2998 /* Slight preference for less loaded node */
2999 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3000 val += node_load[n];
3001
3002 if (val < min_val) {
3003 min_val = val;
3004 best_node = n;
3005 }
3006 }
3007
3008 if (best_node >= 0)
3009 node_set(best_node, *used_node_mask);
3010
3011 return best_node;
3012}
3013
f0c0b2b8
KH
3014
3015/*
3016 * Build zonelists ordered by node and zones within node.
3017 * This results in maximum locality--normal zone overflows into local
3018 * DMA zone, if any--but risks exhausting DMA zone.
3019 */
3020static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3021{
f0c0b2b8 3022 int j;
1da177e4 3023 struct zonelist *zonelist;
f0c0b2b8 3024
54a6eb5c 3025 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3026 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3027 ;
3028 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3029 MAX_NR_ZONES - 1);
dd1a239f
MG
3030 zonelist->_zonerefs[j].zone = NULL;
3031 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3032}
3033
523b9458
CL
3034/*
3035 * Build gfp_thisnode zonelists
3036 */
3037static void build_thisnode_zonelists(pg_data_t *pgdat)
3038{
523b9458
CL
3039 int j;
3040 struct zonelist *zonelist;
3041
54a6eb5c
MG
3042 zonelist = &pgdat->node_zonelists[1];
3043 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3044 zonelist->_zonerefs[j].zone = NULL;
3045 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3046}
3047
f0c0b2b8
KH
3048/*
3049 * Build zonelists ordered by zone and nodes within zones.
3050 * This results in conserving DMA zone[s] until all Normal memory is
3051 * exhausted, but results in overflowing to remote node while memory
3052 * may still exist in local DMA zone.
3053 */
3054static int node_order[MAX_NUMNODES];
3055
3056static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3057{
f0c0b2b8
KH
3058 int pos, j, node;
3059 int zone_type; /* needs to be signed */
3060 struct zone *z;
3061 struct zonelist *zonelist;
3062
54a6eb5c
MG
3063 zonelist = &pgdat->node_zonelists[0];
3064 pos = 0;
3065 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3066 for (j = 0; j < nr_nodes; j++) {
3067 node = node_order[j];
3068 z = &NODE_DATA(node)->node_zones[zone_type];
3069 if (populated_zone(z)) {
dd1a239f
MG
3070 zoneref_set_zone(z,
3071 &zonelist->_zonerefs[pos++]);
54a6eb5c 3072 check_highest_zone(zone_type);
f0c0b2b8
KH
3073 }
3074 }
f0c0b2b8 3075 }
dd1a239f
MG
3076 zonelist->_zonerefs[pos].zone = NULL;
3077 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3078}
3079
3080static int default_zonelist_order(void)
3081{
3082 int nid, zone_type;
3083 unsigned long low_kmem_size,total_size;
3084 struct zone *z;
3085 int average_size;
3086 /*
88393161 3087 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3088 * If they are really small and used heavily, the system can fall
3089 * into OOM very easily.
e325c90f 3090 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3091 */
3092 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3093 low_kmem_size = 0;
3094 total_size = 0;
3095 for_each_online_node(nid) {
3096 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3097 z = &NODE_DATA(nid)->node_zones[zone_type];
3098 if (populated_zone(z)) {
3099 if (zone_type < ZONE_NORMAL)
3100 low_kmem_size += z->present_pages;
3101 total_size += z->present_pages;
e325c90f
DR
3102 } else if (zone_type == ZONE_NORMAL) {
3103 /*
3104 * If any node has only lowmem, then node order
3105 * is preferred to allow kernel allocations
3106 * locally; otherwise, they can easily infringe
3107 * on other nodes when there is an abundance of
3108 * lowmem available to allocate from.
3109 */
3110 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3111 }
3112 }
3113 }
3114 if (!low_kmem_size || /* there are no DMA area. */
3115 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3116 return ZONELIST_ORDER_NODE;
3117 /*
3118 * look into each node's config.
3119 * If there is a node whose DMA/DMA32 memory is very big area on
3120 * local memory, NODE_ORDER may be suitable.
3121 */
37b07e41
LS
3122 average_size = total_size /
3123 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
3124 for_each_online_node(nid) {
3125 low_kmem_size = 0;
3126 total_size = 0;
3127 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3128 z = &NODE_DATA(nid)->node_zones[zone_type];
3129 if (populated_zone(z)) {
3130 if (zone_type < ZONE_NORMAL)
3131 low_kmem_size += z->present_pages;
3132 total_size += z->present_pages;
3133 }
3134 }
3135 if (low_kmem_size &&
3136 total_size > average_size && /* ignore small node */
3137 low_kmem_size > total_size * 70/100)
3138 return ZONELIST_ORDER_NODE;
3139 }
3140 return ZONELIST_ORDER_ZONE;
3141}
3142
3143static void set_zonelist_order(void)
3144{
3145 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3146 current_zonelist_order = default_zonelist_order();
3147 else
3148 current_zonelist_order = user_zonelist_order;
3149}
3150
3151static void build_zonelists(pg_data_t *pgdat)
3152{
3153 int j, node, load;
3154 enum zone_type i;
1da177e4 3155 nodemask_t used_mask;
f0c0b2b8
KH
3156 int local_node, prev_node;
3157 struct zonelist *zonelist;
3158 int order = current_zonelist_order;
1da177e4
LT
3159
3160 /* initialize zonelists */
523b9458 3161 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3162 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3163 zonelist->_zonerefs[0].zone = NULL;
3164 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3165 }
3166
3167 /* NUMA-aware ordering of nodes */
3168 local_node = pgdat->node_id;
62bc62a8 3169 load = nr_online_nodes;
1da177e4
LT
3170 prev_node = local_node;
3171 nodes_clear(used_mask);
f0c0b2b8 3172
f0c0b2b8
KH
3173 memset(node_order, 0, sizeof(node_order));
3174 j = 0;
3175
1da177e4 3176 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
3177 int distance = node_distance(local_node, node);
3178
3179 /*
3180 * If another node is sufficiently far away then it is better
3181 * to reclaim pages in a zone before going off node.
3182 */
3183 if (distance > RECLAIM_DISTANCE)
3184 zone_reclaim_mode = 1;
3185
1da177e4
LT
3186 /*
3187 * We don't want to pressure a particular node.
3188 * So adding penalty to the first node in same
3189 * distance group to make it round-robin.
3190 */
9eeff239 3191 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
3192 node_load[node] = load;
3193
1da177e4
LT
3194 prev_node = node;
3195 load--;
f0c0b2b8
KH
3196 if (order == ZONELIST_ORDER_NODE)
3197 build_zonelists_in_node_order(pgdat, node);
3198 else
3199 node_order[j++] = node; /* remember order */
3200 }
1da177e4 3201
f0c0b2b8
KH
3202 if (order == ZONELIST_ORDER_ZONE) {
3203 /* calculate node order -- i.e., DMA last! */
3204 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3205 }
523b9458
CL
3206
3207 build_thisnode_zonelists(pgdat);
1da177e4
LT
3208}
3209
9276b1bc 3210/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3211static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3212{
54a6eb5c
MG
3213 struct zonelist *zonelist;
3214 struct zonelist_cache *zlc;
dd1a239f 3215 struct zoneref *z;
9276b1bc 3216
54a6eb5c
MG
3217 zonelist = &pgdat->node_zonelists[0];
3218 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3219 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3220 for (z = zonelist->_zonerefs; z->zone; z++)
3221 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3222}
3223
7aac7898
LS
3224#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3225/*
3226 * Return node id of node used for "local" allocations.
3227 * I.e., first node id of first zone in arg node's generic zonelist.
3228 * Used for initializing percpu 'numa_mem', which is used primarily
3229 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3230 */
3231int local_memory_node(int node)
3232{
3233 struct zone *zone;
3234
3235 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3236 gfp_zone(GFP_KERNEL),
3237 NULL,
3238 &zone);
3239 return zone->node;
3240}
3241#endif
f0c0b2b8 3242
1da177e4
LT
3243#else /* CONFIG_NUMA */
3244
f0c0b2b8
KH
3245static void set_zonelist_order(void)
3246{
3247 current_zonelist_order = ZONELIST_ORDER_ZONE;
3248}
3249
3250static void build_zonelists(pg_data_t *pgdat)
1da177e4 3251{
19655d34 3252 int node, local_node;
54a6eb5c
MG
3253 enum zone_type j;
3254 struct zonelist *zonelist;
1da177e4
LT
3255
3256 local_node = pgdat->node_id;
1da177e4 3257
54a6eb5c
MG
3258 zonelist = &pgdat->node_zonelists[0];
3259 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3260
54a6eb5c
MG
3261 /*
3262 * Now we build the zonelist so that it contains the zones
3263 * of all the other nodes.
3264 * We don't want to pressure a particular node, so when
3265 * building the zones for node N, we make sure that the
3266 * zones coming right after the local ones are those from
3267 * node N+1 (modulo N)
3268 */
3269 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3270 if (!node_online(node))
3271 continue;
3272 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3273 MAX_NR_ZONES - 1);
1da177e4 3274 }
54a6eb5c
MG
3275 for (node = 0; node < local_node; node++) {
3276 if (!node_online(node))
3277 continue;
3278 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3279 MAX_NR_ZONES - 1);
3280 }
3281
dd1a239f
MG
3282 zonelist->_zonerefs[j].zone = NULL;
3283 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3284}
3285
9276b1bc 3286/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3287static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3288{
54a6eb5c 3289 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3290}
3291
1da177e4
LT
3292#endif /* CONFIG_NUMA */
3293
99dcc3e5
CL
3294/*
3295 * Boot pageset table. One per cpu which is going to be used for all
3296 * zones and all nodes. The parameters will be set in such a way
3297 * that an item put on a list will immediately be handed over to
3298 * the buddy list. This is safe since pageset manipulation is done
3299 * with interrupts disabled.
3300 *
3301 * The boot_pagesets must be kept even after bootup is complete for
3302 * unused processors and/or zones. They do play a role for bootstrapping
3303 * hotplugged processors.
3304 *
3305 * zoneinfo_show() and maybe other functions do
3306 * not check if the processor is online before following the pageset pointer.
3307 * Other parts of the kernel may not check if the zone is available.
3308 */
3309static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3310static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3311static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3312
4eaf3f64
HL
3313/*
3314 * Global mutex to protect against size modification of zonelists
3315 * as well as to serialize pageset setup for the new populated zone.
3316 */
3317DEFINE_MUTEX(zonelists_mutex);
3318
9b1a4d38 3319/* return values int ....just for stop_machine() */
1f522509 3320static __init_refok int __build_all_zonelists(void *data)
1da177e4 3321{
6811378e 3322 int nid;
99dcc3e5 3323 int cpu;
9276b1bc 3324
7f9cfb31
BL
3325#ifdef CONFIG_NUMA
3326 memset(node_load, 0, sizeof(node_load));
3327#endif
9276b1bc 3328 for_each_online_node(nid) {
7ea1530a
CL
3329 pg_data_t *pgdat = NODE_DATA(nid);
3330
3331 build_zonelists(pgdat);
3332 build_zonelist_cache(pgdat);
9276b1bc 3333 }
99dcc3e5
CL
3334
3335 /*
3336 * Initialize the boot_pagesets that are going to be used
3337 * for bootstrapping processors. The real pagesets for
3338 * each zone will be allocated later when the per cpu
3339 * allocator is available.
3340 *
3341 * boot_pagesets are used also for bootstrapping offline
3342 * cpus if the system is already booted because the pagesets
3343 * are needed to initialize allocators on a specific cpu too.
3344 * F.e. the percpu allocator needs the page allocator which
3345 * needs the percpu allocator in order to allocate its pagesets
3346 * (a chicken-egg dilemma).
3347 */
7aac7898 3348 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3349 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3350
7aac7898
LS
3351#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3352 /*
3353 * We now know the "local memory node" for each node--
3354 * i.e., the node of the first zone in the generic zonelist.
3355 * Set up numa_mem percpu variable for on-line cpus. During
3356 * boot, only the boot cpu should be on-line; we'll init the
3357 * secondary cpus' numa_mem as they come on-line. During
3358 * node/memory hotplug, we'll fixup all on-line cpus.
3359 */
3360 if (cpu_online(cpu))
3361 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3362#endif
3363 }
3364
6811378e
YG
3365 return 0;
3366}
3367
4eaf3f64
HL
3368/*
3369 * Called with zonelists_mutex held always
3370 * unless system_state == SYSTEM_BOOTING.
3371 */
9f6ae448 3372void __ref build_all_zonelists(void *data)
6811378e 3373{
f0c0b2b8
KH
3374 set_zonelist_order();
3375
6811378e 3376 if (system_state == SYSTEM_BOOTING) {
423b41d7 3377 __build_all_zonelists(NULL);
68ad8df4 3378 mminit_verify_zonelist();
6811378e
YG
3379 cpuset_init_current_mems_allowed();
3380 } else {
183ff22b 3381 /* we have to stop all cpus to guarantee there is no user
6811378e 3382 of zonelist */
e9959f0f
KH
3383#ifdef CONFIG_MEMORY_HOTPLUG
3384 if (data)
3385 setup_zone_pageset((struct zone *)data);
3386#endif
3387 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
3388 /* cpuset refresh routine should be here */
3389 }
bd1e22b8 3390 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3391 /*
3392 * Disable grouping by mobility if the number of pages in the
3393 * system is too low to allow the mechanism to work. It would be
3394 * more accurate, but expensive to check per-zone. This check is
3395 * made on memory-hotadd so a system can start with mobility
3396 * disabled and enable it later
3397 */
d9c23400 3398 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3399 page_group_by_mobility_disabled = 1;
3400 else
3401 page_group_by_mobility_disabled = 0;
3402
3403 printk("Built %i zonelists in %s order, mobility grouping %s. "
3404 "Total pages: %ld\n",
62bc62a8 3405 nr_online_nodes,
f0c0b2b8 3406 zonelist_order_name[current_zonelist_order],
9ef9acb0 3407 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3408 vm_total_pages);
3409#ifdef CONFIG_NUMA
3410 printk("Policy zone: %s\n", zone_names[policy_zone]);
3411#endif
1da177e4
LT
3412}
3413
3414/*
3415 * Helper functions to size the waitqueue hash table.
3416 * Essentially these want to choose hash table sizes sufficiently
3417 * large so that collisions trying to wait on pages are rare.
3418 * But in fact, the number of active page waitqueues on typical
3419 * systems is ridiculously low, less than 200. So this is even
3420 * conservative, even though it seems large.
3421 *
3422 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3423 * waitqueues, i.e. the size of the waitq table given the number of pages.
3424 */
3425#define PAGES_PER_WAITQUEUE 256
3426
cca448fe 3427#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3428static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3429{
3430 unsigned long size = 1;
3431
3432 pages /= PAGES_PER_WAITQUEUE;
3433
3434 while (size < pages)
3435 size <<= 1;
3436
3437 /*
3438 * Once we have dozens or even hundreds of threads sleeping
3439 * on IO we've got bigger problems than wait queue collision.
3440 * Limit the size of the wait table to a reasonable size.
3441 */
3442 size = min(size, 4096UL);
3443
3444 return max(size, 4UL);
3445}
cca448fe
YG
3446#else
3447/*
3448 * A zone's size might be changed by hot-add, so it is not possible to determine
3449 * a suitable size for its wait_table. So we use the maximum size now.
3450 *
3451 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3452 *
3453 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3454 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3455 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3456 *
3457 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3458 * or more by the traditional way. (See above). It equals:
3459 *
3460 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3461 * ia64(16K page size) : = ( 8G + 4M)byte.
3462 * powerpc (64K page size) : = (32G +16M)byte.
3463 */
3464static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3465{
3466 return 4096UL;
3467}
3468#endif
1da177e4
LT
3469
3470/*
3471 * This is an integer logarithm so that shifts can be used later
3472 * to extract the more random high bits from the multiplicative
3473 * hash function before the remainder is taken.
3474 */
3475static inline unsigned long wait_table_bits(unsigned long size)
3476{
3477 return ffz(~size);
3478}
3479
3480#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3481
6d3163ce
AH
3482/*
3483 * Check if a pageblock contains reserved pages
3484 */
3485static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3486{
3487 unsigned long pfn;
3488
3489 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3490 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3491 return 1;
3492 }
3493 return 0;
3494}
3495
56fd56b8 3496/*
d9c23400 3497 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3498 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3499 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3500 * higher will lead to a bigger reserve which will get freed as contiguous
3501 * blocks as reclaim kicks in
3502 */
3503static void setup_zone_migrate_reserve(struct zone *zone)
3504{
6d3163ce 3505 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3506 struct page *page;
78986a67
MG
3507 unsigned long block_migratetype;
3508 int reserve;
56fd56b8 3509
d0215638
MH
3510 /*
3511 * Get the start pfn, end pfn and the number of blocks to reserve
3512 * We have to be careful to be aligned to pageblock_nr_pages to
3513 * make sure that we always check pfn_valid for the first page in
3514 * the block.
3515 */
56fd56b8
MG
3516 start_pfn = zone->zone_start_pfn;
3517 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3518 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3519 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3520 pageblock_order;
56fd56b8 3521
78986a67
MG
3522 /*
3523 * Reserve blocks are generally in place to help high-order atomic
3524 * allocations that are short-lived. A min_free_kbytes value that
3525 * would result in more than 2 reserve blocks for atomic allocations
3526 * is assumed to be in place to help anti-fragmentation for the
3527 * future allocation of hugepages at runtime.
3528 */
3529 reserve = min(2, reserve);
3530
d9c23400 3531 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3532 if (!pfn_valid(pfn))
3533 continue;
3534 page = pfn_to_page(pfn);
3535
344c790e
AL
3536 /* Watch out for overlapping nodes */
3537 if (page_to_nid(page) != zone_to_nid(zone))
3538 continue;
3539
56fd56b8
MG
3540 block_migratetype = get_pageblock_migratetype(page);
3541
938929f1
MG
3542 /* Only test what is necessary when the reserves are not met */
3543 if (reserve > 0) {
3544 /*
3545 * Blocks with reserved pages will never free, skip
3546 * them.
3547 */
3548 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3549 if (pageblock_is_reserved(pfn, block_end_pfn))
3550 continue;
56fd56b8 3551
938929f1
MG
3552 /* If this block is reserved, account for it */
3553 if (block_migratetype == MIGRATE_RESERVE) {
3554 reserve--;
3555 continue;
3556 }
3557
3558 /* Suitable for reserving if this block is movable */
3559 if (block_migratetype == MIGRATE_MOVABLE) {
3560 set_pageblock_migratetype(page,
3561 MIGRATE_RESERVE);
3562 move_freepages_block(zone, page,
3563 MIGRATE_RESERVE);
3564 reserve--;
3565 continue;
3566 }
56fd56b8
MG
3567 }
3568
3569 /*
3570 * If the reserve is met and this is a previous reserved block,
3571 * take it back
3572 */
3573 if (block_migratetype == MIGRATE_RESERVE) {
3574 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3575 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3576 }
3577 }
3578}
ac0e5b7a 3579
1da177e4
LT
3580/*
3581 * Initially all pages are reserved - free ones are freed
3582 * up by free_all_bootmem() once the early boot process is
3583 * done. Non-atomic initialization, single-pass.
3584 */
c09b4240 3585void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3586 unsigned long start_pfn, enum memmap_context context)
1da177e4 3587{
1da177e4 3588 struct page *page;
29751f69
AW
3589 unsigned long end_pfn = start_pfn + size;
3590 unsigned long pfn;
86051ca5 3591 struct zone *z;
1da177e4 3592
22b31eec
HD
3593 if (highest_memmap_pfn < end_pfn - 1)
3594 highest_memmap_pfn = end_pfn - 1;
3595
86051ca5 3596 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3597 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3598 /*
3599 * There can be holes in boot-time mem_map[]s
3600 * handed to this function. They do not
3601 * exist on hotplugged memory.
3602 */
3603 if (context == MEMMAP_EARLY) {
3604 if (!early_pfn_valid(pfn))
3605 continue;
3606 if (!early_pfn_in_nid(pfn, nid))
3607 continue;
3608 }
d41dee36
AW
3609 page = pfn_to_page(pfn);
3610 set_page_links(page, zone, nid, pfn);
708614e6 3611 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3612 init_page_count(page);
1da177e4
LT
3613 reset_page_mapcount(page);
3614 SetPageReserved(page);
b2a0ac88
MG
3615 /*
3616 * Mark the block movable so that blocks are reserved for
3617 * movable at startup. This will force kernel allocations
3618 * to reserve their blocks rather than leaking throughout
3619 * the address space during boot when many long-lived
56fd56b8
MG
3620 * kernel allocations are made. Later some blocks near
3621 * the start are marked MIGRATE_RESERVE by
3622 * setup_zone_migrate_reserve()
86051ca5
KH
3623 *
3624 * bitmap is created for zone's valid pfn range. but memmap
3625 * can be created for invalid pages (for alignment)
3626 * check here not to call set_pageblock_migratetype() against
3627 * pfn out of zone.
b2a0ac88 3628 */
86051ca5
KH
3629 if ((z->zone_start_pfn <= pfn)
3630 && (pfn < z->zone_start_pfn + z->spanned_pages)
3631 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3632 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3633
1da177e4
LT
3634 INIT_LIST_HEAD(&page->lru);
3635#ifdef WANT_PAGE_VIRTUAL
3636 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3637 if (!is_highmem_idx(zone))
3212c6be 3638 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3639#endif
1da177e4
LT
3640 }
3641}
3642
1e548deb 3643static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3644{
b2a0ac88
MG
3645 int order, t;
3646 for_each_migratetype_order(order, t) {
3647 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3648 zone->free_area[order].nr_free = 0;
3649 }
3650}
3651
3652#ifndef __HAVE_ARCH_MEMMAP_INIT
3653#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3654 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3655#endif
3656
1d6f4e60 3657static int zone_batchsize(struct zone *zone)
e7c8d5c9 3658{
3a6be87f 3659#ifdef CONFIG_MMU
e7c8d5c9
CL
3660 int batch;
3661
3662 /*
3663 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3664 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3665 *
3666 * OK, so we don't know how big the cache is. So guess.
3667 */
3668 batch = zone->present_pages / 1024;
ba56e91c
SR
3669 if (batch * PAGE_SIZE > 512 * 1024)
3670 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3671 batch /= 4; /* We effectively *= 4 below */
3672 if (batch < 1)
3673 batch = 1;
3674
3675 /*
0ceaacc9
NP
3676 * Clamp the batch to a 2^n - 1 value. Having a power
3677 * of 2 value was found to be more likely to have
3678 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3679 *
0ceaacc9
NP
3680 * For example if 2 tasks are alternately allocating
3681 * batches of pages, one task can end up with a lot
3682 * of pages of one half of the possible page colors
3683 * and the other with pages of the other colors.
e7c8d5c9 3684 */
9155203a 3685 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3686
e7c8d5c9 3687 return batch;
3a6be87f
DH
3688
3689#else
3690 /* The deferral and batching of frees should be suppressed under NOMMU
3691 * conditions.
3692 *
3693 * The problem is that NOMMU needs to be able to allocate large chunks
3694 * of contiguous memory as there's no hardware page translation to
3695 * assemble apparent contiguous memory from discontiguous pages.
3696 *
3697 * Queueing large contiguous runs of pages for batching, however,
3698 * causes the pages to actually be freed in smaller chunks. As there
3699 * can be a significant delay between the individual batches being
3700 * recycled, this leads to the once large chunks of space being
3701 * fragmented and becoming unavailable for high-order allocations.
3702 */
3703 return 0;
3704#endif
e7c8d5c9
CL
3705}
3706
b69a7288 3707static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3708{
3709 struct per_cpu_pages *pcp;
5f8dcc21 3710 int migratetype;
2caaad41 3711
1c6fe946
MD
3712 memset(p, 0, sizeof(*p));
3713
3dfa5721 3714 pcp = &p->pcp;
2caaad41 3715 pcp->count = 0;
2caaad41
CL
3716 pcp->high = 6 * batch;
3717 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3718 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3719 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3720}
3721
8ad4b1fb
RS
3722/*
3723 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3724 * to the value high for the pageset p.
3725 */
3726
3727static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3728 unsigned long high)
3729{
3730 struct per_cpu_pages *pcp;
3731
3dfa5721 3732 pcp = &p->pcp;
8ad4b1fb
RS
3733 pcp->high = high;
3734 pcp->batch = max(1UL, high/4);
3735 if ((high/4) > (PAGE_SHIFT * 8))
3736 pcp->batch = PAGE_SHIFT * 8;
3737}
3738
58c2ee40 3739static void setup_zone_pageset(struct zone *zone)
319774e2
WF
3740{
3741 int cpu;
3742
3743 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3744
3745 for_each_possible_cpu(cpu) {
3746 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3747
3748 setup_pageset(pcp, zone_batchsize(zone));
3749
3750 if (percpu_pagelist_fraction)
3751 setup_pagelist_highmark(pcp,
3752 (zone->present_pages /
3753 percpu_pagelist_fraction));
3754 }
3755}
3756
2caaad41 3757/*
99dcc3e5
CL
3758 * Allocate per cpu pagesets and initialize them.
3759 * Before this call only boot pagesets were available.
e7c8d5c9 3760 */
99dcc3e5 3761void __init setup_per_cpu_pageset(void)
e7c8d5c9 3762{
99dcc3e5 3763 struct zone *zone;
e7c8d5c9 3764
319774e2
WF
3765 for_each_populated_zone(zone)
3766 setup_zone_pageset(zone);
e7c8d5c9
CL
3767}
3768
577a32f6 3769static noinline __init_refok
cca448fe 3770int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3771{
3772 int i;
3773 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3774 size_t alloc_size;
ed8ece2e
DH
3775
3776 /*
3777 * The per-page waitqueue mechanism uses hashed waitqueues
3778 * per zone.
3779 */
02b694de
YG
3780 zone->wait_table_hash_nr_entries =
3781 wait_table_hash_nr_entries(zone_size_pages);
3782 zone->wait_table_bits =
3783 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3784 alloc_size = zone->wait_table_hash_nr_entries
3785 * sizeof(wait_queue_head_t);
3786
cd94b9db 3787 if (!slab_is_available()) {
cca448fe 3788 zone->wait_table = (wait_queue_head_t *)
8f389a99 3789 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
3790 } else {
3791 /*
3792 * This case means that a zone whose size was 0 gets new memory
3793 * via memory hot-add.
3794 * But it may be the case that a new node was hot-added. In
3795 * this case vmalloc() will not be able to use this new node's
3796 * memory - this wait_table must be initialized to use this new
3797 * node itself as well.
3798 * To use this new node's memory, further consideration will be
3799 * necessary.
3800 */
8691f3a7 3801 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3802 }
3803 if (!zone->wait_table)
3804 return -ENOMEM;
ed8ece2e 3805
02b694de 3806 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3807 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3808
3809 return 0;
ed8ece2e
DH
3810}
3811
112067f0
SL
3812static int __zone_pcp_update(void *data)
3813{
3814 struct zone *zone = data;
3815 int cpu;
3816 unsigned long batch = zone_batchsize(zone), flags;
3817
2d30a1f6 3818 for_each_possible_cpu(cpu) {
112067f0
SL
3819 struct per_cpu_pageset *pset;
3820 struct per_cpu_pages *pcp;
3821
99dcc3e5 3822 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3823 pcp = &pset->pcp;
3824
3825 local_irq_save(flags);
5f8dcc21 3826 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3827 setup_pageset(pset, batch);
3828 local_irq_restore(flags);
3829 }
3830 return 0;
3831}
3832
3833void zone_pcp_update(struct zone *zone)
3834{
3835 stop_machine(__zone_pcp_update, zone, NULL);
3836}
3837
c09b4240 3838static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3839{
99dcc3e5
CL
3840 /*
3841 * per cpu subsystem is not up at this point. The following code
3842 * relies on the ability of the linker to provide the
3843 * offset of a (static) per cpu variable into the per cpu area.
3844 */
3845 zone->pageset = &boot_pageset;
ed8ece2e 3846
f5335c0f 3847 if (zone->present_pages)
99dcc3e5
CL
3848 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3849 zone->name, zone->present_pages,
3850 zone_batchsize(zone));
ed8ece2e
DH
3851}
3852
718127cc
YG
3853__meminit int init_currently_empty_zone(struct zone *zone,
3854 unsigned long zone_start_pfn,
a2f3aa02
DH
3855 unsigned long size,
3856 enum memmap_context context)
ed8ece2e
DH
3857{
3858 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3859 int ret;
3860 ret = zone_wait_table_init(zone, size);
3861 if (ret)
3862 return ret;
ed8ece2e
DH
3863 pgdat->nr_zones = zone_idx(zone) + 1;
3864
ed8ece2e
DH
3865 zone->zone_start_pfn = zone_start_pfn;
3866
708614e6
MG
3867 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3868 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3869 pgdat->node_id,
3870 (unsigned long)zone_idx(zone),
3871 zone_start_pfn, (zone_start_pfn + size));
3872
1e548deb 3873 zone_init_free_lists(zone);
718127cc
YG
3874
3875 return 0;
ed8ece2e
DH
3876}
3877
0ee332c1 3878#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
3879#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3880/*
3881 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3882 * Architectures may implement their own version but if add_active_range()
3883 * was used and there are no special requirements, this is a convenient
3884 * alternative
3885 */
f2dbcfa7 3886int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 3887{
c13291a5
TH
3888 unsigned long start_pfn, end_pfn;
3889 int i, nid;
c713216d 3890
c13291a5 3891 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 3892 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 3893 return nid;
cc2559bc
KH
3894 /* This is a memory hole */
3895 return -1;
c713216d
MG
3896}
3897#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3898
f2dbcfa7
KH
3899int __meminit early_pfn_to_nid(unsigned long pfn)
3900{
cc2559bc
KH
3901 int nid;
3902
3903 nid = __early_pfn_to_nid(pfn);
3904 if (nid >= 0)
3905 return nid;
3906 /* just returns 0 */
3907 return 0;
f2dbcfa7
KH
3908}
3909
cc2559bc
KH
3910#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3911bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3912{
3913 int nid;
3914
3915 nid = __early_pfn_to_nid(pfn);
3916 if (nid >= 0 && nid != node)
3917 return false;
3918 return true;
3919}
3920#endif
f2dbcfa7 3921
c713216d
MG
3922/**
3923 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3924 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3925 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3926 *
3927 * If an architecture guarantees that all ranges registered with
3928 * add_active_ranges() contain no holes and may be freed, this
3929 * this function may be used instead of calling free_bootmem() manually.
3930 */
c13291a5 3931void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 3932{
c13291a5
TH
3933 unsigned long start_pfn, end_pfn;
3934 int i, this_nid;
edbe7d23 3935
c13291a5
TH
3936 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
3937 start_pfn = min(start_pfn, max_low_pfn);
3938 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 3939
c13291a5
TH
3940 if (start_pfn < end_pfn)
3941 free_bootmem_node(NODE_DATA(this_nid),
3942 PFN_PHYS(start_pfn),
3943 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 3944 }
edbe7d23 3945}
edbe7d23 3946
c713216d
MG
3947/**
3948 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3949 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3950 *
3951 * If an architecture guarantees that all ranges registered with
3952 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3953 * function may be used instead of calling memory_present() manually.
c713216d
MG
3954 */
3955void __init sparse_memory_present_with_active_regions(int nid)
3956{
c13291a5
TH
3957 unsigned long start_pfn, end_pfn;
3958 int i, this_nid;
c713216d 3959
c13291a5
TH
3960 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
3961 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
3962}
3963
3964/**
3965 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3966 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3967 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3968 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3969 *
3970 * It returns the start and end page frame of a node based on information
3971 * provided by an arch calling add_active_range(). If called for a node
3972 * with no available memory, a warning is printed and the start and end
88ca3b94 3973 * PFNs will be 0.
c713216d 3974 */
a3142c8e 3975void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3976 unsigned long *start_pfn, unsigned long *end_pfn)
3977{
c13291a5 3978 unsigned long this_start_pfn, this_end_pfn;
c713216d 3979 int i;
c13291a5 3980
c713216d
MG
3981 *start_pfn = -1UL;
3982 *end_pfn = 0;
3983
c13291a5
TH
3984 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
3985 *start_pfn = min(*start_pfn, this_start_pfn);
3986 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
3987 }
3988
633c0666 3989 if (*start_pfn == -1UL)
c713216d 3990 *start_pfn = 0;
c713216d
MG
3991}
3992
2a1e274a
MG
3993/*
3994 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3995 * assumption is made that zones within a node are ordered in monotonic
3996 * increasing memory addresses so that the "highest" populated zone is used
3997 */
b69a7288 3998static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3999{
4000 int zone_index;
4001 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4002 if (zone_index == ZONE_MOVABLE)
4003 continue;
4004
4005 if (arch_zone_highest_possible_pfn[zone_index] >
4006 arch_zone_lowest_possible_pfn[zone_index])
4007 break;
4008 }
4009
4010 VM_BUG_ON(zone_index == -1);
4011 movable_zone = zone_index;
4012}
4013
4014/*
4015 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4016 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4017 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4018 * in each node depending on the size of each node and how evenly kernelcore
4019 * is distributed. This helper function adjusts the zone ranges
4020 * provided by the architecture for a given node by using the end of the
4021 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4022 * zones within a node are in order of monotonic increases memory addresses
4023 */
b69a7288 4024static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4025 unsigned long zone_type,
4026 unsigned long node_start_pfn,
4027 unsigned long node_end_pfn,
4028 unsigned long *zone_start_pfn,
4029 unsigned long *zone_end_pfn)
4030{
4031 /* Only adjust if ZONE_MOVABLE is on this node */
4032 if (zone_movable_pfn[nid]) {
4033 /* Size ZONE_MOVABLE */
4034 if (zone_type == ZONE_MOVABLE) {
4035 *zone_start_pfn = zone_movable_pfn[nid];
4036 *zone_end_pfn = min(node_end_pfn,
4037 arch_zone_highest_possible_pfn[movable_zone]);
4038
4039 /* Adjust for ZONE_MOVABLE starting within this range */
4040 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4041 *zone_end_pfn > zone_movable_pfn[nid]) {
4042 *zone_end_pfn = zone_movable_pfn[nid];
4043
4044 /* Check if this whole range is within ZONE_MOVABLE */
4045 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4046 *zone_start_pfn = *zone_end_pfn;
4047 }
4048}
4049
c713216d
MG
4050/*
4051 * Return the number of pages a zone spans in a node, including holes
4052 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4053 */
6ea6e688 4054static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4055 unsigned long zone_type,
4056 unsigned long *ignored)
4057{
4058 unsigned long node_start_pfn, node_end_pfn;
4059 unsigned long zone_start_pfn, zone_end_pfn;
4060
4061 /* Get the start and end of the node and zone */
4062 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4063 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4064 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4065 adjust_zone_range_for_zone_movable(nid, zone_type,
4066 node_start_pfn, node_end_pfn,
4067 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4068
4069 /* Check that this node has pages within the zone's required range */
4070 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4071 return 0;
4072
4073 /* Move the zone boundaries inside the node if necessary */
4074 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4075 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4076
4077 /* Return the spanned pages */
4078 return zone_end_pfn - zone_start_pfn;
4079}
4080
4081/*
4082 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4083 * then all holes in the requested range will be accounted for.
c713216d 4084 */
32996250 4085unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4086 unsigned long range_start_pfn,
4087 unsigned long range_end_pfn)
4088{
96e907d1
TH
4089 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4090 unsigned long start_pfn, end_pfn;
4091 int i;
c713216d 4092
96e907d1
TH
4093 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4094 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4095 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4096 nr_absent -= end_pfn - start_pfn;
c713216d 4097 }
96e907d1 4098 return nr_absent;
c713216d
MG
4099}
4100
4101/**
4102 * absent_pages_in_range - Return number of page frames in holes within a range
4103 * @start_pfn: The start PFN to start searching for holes
4104 * @end_pfn: The end PFN to stop searching for holes
4105 *
88ca3b94 4106 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4107 */
4108unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4109 unsigned long end_pfn)
4110{
4111 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4112}
4113
4114/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4115static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4116 unsigned long zone_type,
4117 unsigned long *ignored)
4118{
96e907d1
TH
4119 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4120 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4121 unsigned long node_start_pfn, node_end_pfn;
4122 unsigned long zone_start_pfn, zone_end_pfn;
4123
4124 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4125 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4126 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4127
2a1e274a
MG
4128 adjust_zone_range_for_zone_movable(nid, zone_type,
4129 node_start_pfn, node_end_pfn,
4130 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4131 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4132}
0e0b864e 4133
0ee332c1 4134#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4135static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4136 unsigned long zone_type,
4137 unsigned long *zones_size)
4138{
4139 return zones_size[zone_type];
4140}
4141
6ea6e688 4142static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4143 unsigned long zone_type,
4144 unsigned long *zholes_size)
4145{
4146 if (!zholes_size)
4147 return 0;
4148
4149 return zholes_size[zone_type];
4150}
0e0b864e 4151
0ee332c1 4152#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4153
a3142c8e 4154static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4155 unsigned long *zones_size, unsigned long *zholes_size)
4156{
4157 unsigned long realtotalpages, totalpages = 0;
4158 enum zone_type i;
4159
4160 for (i = 0; i < MAX_NR_ZONES; i++)
4161 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4162 zones_size);
4163 pgdat->node_spanned_pages = totalpages;
4164
4165 realtotalpages = totalpages;
4166 for (i = 0; i < MAX_NR_ZONES; i++)
4167 realtotalpages -=
4168 zone_absent_pages_in_node(pgdat->node_id, i,
4169 zholes_size);
4170 pgdat->node_present_pages = realtotalpages;
4171 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4172 realtotalpages);
4173}
4174
835c134e
MG
4175#ifndef CONFIG_SPARSEMEM
4176/*
4177 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4178 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4179 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4180 * round what is now in bits to nearest long in bits, then return it in
4181 * bytes.
4182 */
4183static unsigned long __init usemap_size(unsigned long zonesize)
4184{
4185 unsigned long usemapsize;
4186
d9c23400
MG
4187 usemapsize = roundup(zonesize, pageblock_nr_pages);
4188 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4189 usemapsize *= NR_PAGEBLOCK_BITS;
4190 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4191
4192 return usemapsize / 8;
4193}
4194
4195static void __init setup_usemap(struct pglist_data *pgdat,
4196 struct zone *zone, unsigned long zonesize)
4197{
4198 unsigned long usemapsize = usemap_size(zonesize);
4199 zone->pageblock_flags = NULL;
58a01a45 4200 if (usemapsize)
8f389a99
YL
4201 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4202 usemapsize);
835c134e
MG
4203}
4204#else
fa9f90be 4205static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4206 struct zone *zone, unsigned long zonesize) {}
4207#endif /* CONFIG_SPARSEMEM */
4208
d9c23400 4209#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
4210
4211/* Return a sensible default order for the pageblock size. */
4212static inline int pageblock_default_order(void)
4213{
4214 if (HPAGE_SHIFT > PAGE_SHIFT)
4215 return HUGETLB_PAGE_ORDER;
4216
4217 return MAX_ORDER-1;
4218}
4219
d9c23400
MG
4220/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4221static inline void __init set_pageblock_order(unsigned int order)
4222{
4223 /* Check that pageblock_nr_pages has not already been setup */
4224 if (pageblock_order)
4225 return;
4226
4227 /*
4228 * Assume the largest contiguous order of interest is a huge page.
4229 * This value may be variable depending on boot parameters on IA64
4230 */
4231 pageblock_order = order;
4232}
4233#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4234
ba72cb8c
MG
4235/*
4236 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4237 * and pageblock_default_order() are unused as pageblock_order is set
4238 * at compile-time. See include/linux/pageblock-flags.h for the values of
4239 * pageblock_order based on the kernel config
4240 */
4241static inline int pageblock_default_order(unsigned int order)
4242{
4243 return MAX_ORDER-1;
4244}
d9c23400
MG
4245#define set_pageblock_order(x) do {} while (0)
4246
4247#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4248
1da177e4
LT
4249/*
4250 * Set up the zone data structures:
4251 * - mark all pages reserved
4252 * - mark all memory queues empty
4253 * - clear the memory bitmaps
4254 */
b5a0e011 4255static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4256 unsigned long *zones_size, unsigned long *zholes_size)
4257{
2f1b6248 4258 enum zone_type j;
ed8ece2e 4259 int nid = pgdat->node_id;
1da177e4 4260 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4261 int ret;
1da177e4 4262
208d54e5 4263 pgdat_resize_init(pgdat);
1da177e4
LT
4264 pgdat->nr_zones = 0;
4265 init_waitqueue_head(&pgdat->kswapd_wait);
4266 pgdat->kswapd_max_order = 0;
52d4b9ac 4267 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
4268
4269 for (j = 0; j < MAX_NR_ZONES; j++) {
4270 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4271 unsigned long size, realsize, memmap_pages;
4111304d 4272 enum lru_list lru;
1da177e4 4273
c713216d
MG
4274 size = zone_spanned_pages_in_node(nid, j, zones_size);
4275 realsize = size - zone_absent_pages_in_node(nid, j,
4276 zholes_size);
1da177e4 4277
0e0b864e
MG
4278 /*
4279 * Adjust realsize so that it accounts for how much memory
4280 * is used by this zone for memmap. This affects the watermark
4281 * and per-cpu initialisations
4282 */
f7232154
JW
4283 memmap_pages =
4284 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4285 if (realsize >= memmap_pages) {
4286 realsize -= memmap_pages;
5594c8c8
YL
4287 if (memmap_pages)
4288 printk(KERN_DEBUG
4289 " %s zone: %lu pages used for memmap\n",
4290 zone_names[j], memmap_pages);
0e0b864e
MG
4291 } else
4292 printk(KERN_WARNING
4293 " %s zone: %lu pages exceeds realsize %lu\n",
4294 zone_names[j], memmap_pages, realsize);
4295
6267276f
CL
4296 /* Account for reserved pages */
4297 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4298 realsize -= dma_reserve;
d903ef9f 4299 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4300 zone_names[0], dma_reserve);
0e0b864e
MG
4301 }
4302
98d2b0eb 4303 if (!is_highmem_idx(j))
1da177e4
LT
4304 nr_kernel_pages += realsize;
4305 nr_all_pages += realsize;
4306
4307 zone->spanned_pages = size;
4308 zone->present_pages = realsize;
9614634f 4309#ifdef CONFIG_NUMA
d5f541ed 4310 zone->node = nid;
8417bba4 4311 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4312 / 100;
0ff38490 4313 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4314#endif
1da177e4
LT
4315 zone->name = zone_names[j];
4316 spin_lock_init(&zone->lock);
4317 spin_lock_init(&zone->lru_lock);
bdc8cb98 4318 zone_seqlock_init(zone);
1da177e4 4319 zone->zone_pgdat = pgdat;
1da177e4 4320
ed8ece2e 4321 zone_pcp_init(zone);
4111304d
HD
4322 for_each_lru(lru)
4323 INIT_LIST_HEAD(&zone->lruvec.lists[lru]);
6e901571
KM
4324 zone->reclaim_stat.recent_rotated[0] = 0;
4325 zone->reclaim_stat.recent_rotated[1] = 0;
4326 zone->reclaim_stat.recent_scanned[0] = 0;
4327 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 4328 zap_zone_vm_stats(zone);
e815af95 4329 zone->flags = 0;
1da177e4
LT
4330 if (!size)
4331 continue;
4332
ba72cb8c 4333 set_pageblock_order(pageblock_default_order());
835c134e 4334 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4335 ret = init_currently_empty_zone(zone, zone_start_pfn,
4336 size, MEMMAP_EARLY);
718127cc 4337 BUG_ON(ret);
76cdd58e 4338 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4339 zone_start_pfn += size;
1da177e4
LT
4340 }
4341}
4342
577a32f6 4343static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4344{
1da177e4
LT
4345 /* Skip empty nodes */
4346 if (!pgdat->node_spanned_pages)
4347 return;
4348
d41dee36 4349#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4350 /* ia64 gets its own node_mem_map, before this, without bootmem */
4351 if (!pgdat->node_mem_map) {
e984bb43 4352 unsigned long size, start, end;
d41dee36
AW
4353 struct page *map;
4354
e984bb43
BP
4355 /*
4356 * The zone's endpoints aren't required to be MAX_ORDER
4357 * aligned but the node_mem_map endpoints must be in order
4358 * for the buddy allocator to function correctly.
4359 */
4360 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4361 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4362 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4363 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4364 map = alloc_remap(pgdat->node_id, size);
4365 if (!map)
8f389a99 4366 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4367 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4368 }
12d810c1 4369#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4370 /*
4371 * With no DISCONTIG, the global mem_map is just set as node 0's
4372 */
c713216d 4373 if (pgdat == NODE_DATA(0)) {
1da177e4 4374 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4375#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4376 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4377 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4378#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4379 }
1da177e4 4380#endif
d41dee36 4381#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4382}
4383
9109fb7b
JW
4384void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4385 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4386{
9109fb7b
JW
4387 pg_data_t *pgdat = NODE_DATA(nid);
4388
1da177e4
LT
4389 pgdat->node_id = nid;
4390 pgdat->node_start_pfn = node_start_pfn;
c713216d 4391 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4392
4393 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4394#ifdef CONFIG_FLAT_NODE_MEM_MAP
4395 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4396 nid, (unsigned long)pgdat,
4397 (unsigned long)pgdat->node_mem_map);
4398#endif
1da177e4
LT
4399
4400 free_area_init_core(pgdat, zones_size, zholes_size);
4401}
4402
0ee332c1 4403#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4404
4405#if MAX_NUMNODES > 1
4406/*
4407 * Figure out the number of possible node ids.
4408 */
4409static void __init setup_nr_node_ids(void)
4410{
4411 unsigned int node;
4412 unsigned int highest = 0;
4413
4414 for_each_node_mask(node, node_possible_map)
4415 highest = node;
4416 nr_node_ids = highest + 1;
4417}
4418#else
4419static inline void setup_nr_node_ids(void)
4420{
4421}
4422#endif
4423
1e01979c
TH
4424/**
4425 * node_map_pfn_alignment - determine the maximum internode alignment
4426 *
4427 * This function should be called after node map is populated and sorted.
4428 * It calculates the maximum power of two alignment which can distinguish
4429 * all the nodes.
4430 *
4431 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4432 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4433 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4434 * shifted, 1GiB is enough and this function will indicate so.
4435 *
4436 * This is used to test whether pfn -> nid mapping of the chosen memory
4437 * model has fine enough granularity to avoid incorrect mapping for the
4438 * populated node map.
4439 *
4440 * Returns the determined alignment in pfn's. 0 if there is no alignment
4441 * requirement (single node).
4442 */
4443unsigned long __init node_map_pfn_alignment(void)
4444{
4445 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4446 unsigned long start, end, mask;
1e01979c 4447 int last_nid = -1;
c13291a5 4448 int i, nid;
1e01979c 4449
c13291a5 4450 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4451 if (!start || last_nid < 0 || last_nid == nid) {
4452 last_nid = nid;
4453 last_end = end;
4454 continue;
4455 }
4456
4457 /*
4458 * Start with a mask granular enough to pin-point to the
4459 * start pfn and tick off bits one-by-one until it becomes
4460 * too coarse to separate the current node from the last.
4461 */
4462 mask = ~((1 << __ffs(start)) - 1);
4463 while (mask && last_end <= (start & (mask << 1)))
4464 mask <<= 1;
4465
4466 /* accumulate all internode masks */
4467 accl_mask |= mask;
4468 }
4469
4470 /* convert mask to number of pages */
4471 return ~accl_mask + 1;
4472}
4473
a6af2bc3 4474/* Find the lowest pfn for a node */
b69a7288 4475static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4476{
a6af2bc3 4477 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4478 unsigned long start_pfn;
4479 int i;
1abbfb41 4480
c13291a5
TH
4481 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4482 min_pfn = min(min_pfn, start_pfn);
c713216d 4483
a6af2bc3
MG
4484 if (min_pfn == ULONG_MAX) {
4485 printk(KERN_WARNING
2bc0d261 4486 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4487 return 0;
4488 }
4489
4490 return min_pfn;
c713216d
MG
4491}
4492
4493/**
4494 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4495 *
4496 * It returns the minimum PFN based on information provided via
88ca3b94 4497 * add_active_range().
c713216d
MG
4498 */
4499unsigned long __init find_min_pfn_with_active_regions(void)
4500{
4501 return find_min_pfn_for_node(MAX_NUMNODES);
4502}
4503
37b07e41
LS
4504/*
4505 * early_calculate_totalpages()
4506 * Sum pages in active regions for movable zone.
4507 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4508 */
484f51f8 4509static unsigned long __init early_calculate_totalpages(void)
7e63efef 4510{
7e63efef 4511 unsigned long totalpages = 0;
c13291a5
TH
4512 unsigned long start_pfn, end_pfn;
4513 int i, nid;
4514
4515 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4516 unsigned long pages = end_pfn - start_pfn;
7e63efef 4517
37b07e41
LS
4518 totalpages += pages;
4519 if (pages)
c13291a5 4520 node_set_state(nid, N_HIGH_MEMORY);
37b07e41
LS
4521 }
4522 return totalpages;
7e63efef
MG
4523}
4524
2a1e274a
MG
4525/*
4526 * Find the PFN the Movable zone begins in each node. Kernel memory
4527 * is spread evenly between nodes as long as the nodes have enough
4528 * memory. When they don't, some nodes will have more kernelcore than
4529 * others
4530 */
b224ef85 4531static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4532{
4533 int i, nid;
4534 unsigned long usable_startpfn;
4535 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4536 /* save the state before borrow the nodemask */
4537 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4538 unsigned long totalpages = early_calculate_totalpages();
4539 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4540
7e63efef
MG
4541 /*
4542 * If movablecore was specified, calculate what size of
4543 * kernelcore that corresponds so that memory usable for
4544 * any allocation type is evenly spread. If both kernelcore
4545 * and movablecore are specified, then the value of kernelcore
4546 * will be used for required_kernelcore if it's greater than
4547 * what movablecore would have allowed.
4548 */
4549 if (required_movablecore) {
7e63efef
MG
4550 unsigned long corepages;
4551
4552 /*
4553 * Round-up so that ZONE_MOVABLE is at least as large as what
4554 * was requested by the user
4555 */
4556 required_movablecore =
4557 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4558 corepages = totalpages - required_movablecore;
4559
4560 required_kernelcore = max(required_kernelcore, corepages);
4561 }
4562
2a1e274a
MG
4563 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4564 if (!required_kernelcore)
66918dcd 4565 goto out;
2a1e274a
MG
4566
4567 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4568 find_usable_zone_for_movable();
4569 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4570
4571restart:
4572 /* Spread kernelcore memory as evenly as possible throughout nodes */
4573 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4574 for_each_node_state(nid, N_HIGH_MEMORY) {
c13291a5
TH
4575 unsigned long start_pfn, end_pfn;
4576
2a1e274a
MG
4577 /*
4578 * Recalculate kernelcore_node if the division per node
4579 * now exceeds what is necessary to satisfy the requested
4580 * amount of memory for the kernel
4581 */
4582 if (required_kernelcore < kernelcore_node)
4583 kernelcore_node = required_kernelcore / usable_nodes;
4584
4585 /*
4586 * As the map is walked, we track how much memory is usable
4587 * by the kernel using kernelcore_remaining. When it is
4588 * 0, the rest of the node is usable by ZONE_MOVABLE
4589 */
4590 kernelcore_remaining = kernelcore_node;
4591
4592 /* Go through each range of PFNs within this node */
c13291a5 4593 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4594 unsigned long size_pages;
4595
c13291a5 4596 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4597 if (start_pfn >= end_pfn)
4598 continue;
4599
4600 /* Account for what is only usable for kernelcore */
4601 if (start_pfn < usable_startpfn) {
4602 unsigned long kernel_pages;
4603 kernel_pages = min(end_pfn, usable_startpfn)
4604 - start_pfn;
4605
4606 kernelcore_remaining -= min(kernel_pages,
4607 kernelcore_remaining);
4608 required_kernelcore -= min(kernel_pages,
4609 required_kernelcore);
4610
4611 /* Continue if range is now fully accounted */
4612 if (end_pfn <= usable_startpfn) {
4613
4614 /*
4615 * Push zone_movable_pfn to the end so
4616 * that if we have to rebalance
4617 * kernelcore across nodes, we will
4618 * not double account here
4619 */
4620 zone_movable_pfn[nid] = end_pfn;
4621 continue;
4622 }
4623 start_pfn = usable_startpfn;
4624 }
4625
4626 /*
4627 * The usable PFN range for ZONE_MOVABLE is from
4628 * start_pfn->end_pfn. Calculate size_pages as the
4629 * number of pages used as kernelcore
4630 */
4631 size_pages = end_pfn - start_pfn;
4632 if (size_pages > kernelcore_remaining)
4633 size_pages = kernelcore_remaining;
4634 zone_movable_pfn[nid] = start_pfn + size_pages;
4635
4636 /*
4637 * Some kernelcore has been met, update counts and
4638 * break if the kernelcore for this node has been
4639 * satisified
4640 */
4641 required_kernelcore -= min(required_kernelcore,
4642 size_pages);
4643 kernelcore_remaining -= size_pages;
4644 if (!kernelcore_remaining)
4645 break;
4646 }
4647 }
4648
4649 /*
4650 * If there is still required_kernelcore, we do another pass with one
4651 * less node in the count. This will push zone_movable_pfn[nid] further
4652 * along on the nodes that still have memory until kernelcore is
4653 * satisified
4654 */
4655 usable_nodes--;
4656 if (usable_nodes && required_kernelcore > usable_nodes)
4657 goto restart;
4658
4659 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4660 for (nid = 0; nid < MAX_NUMNODES; nid++)
4661 zone_movable_pfn[nid] =
4662 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4663
4664out:
4665 /* restore the node_state */
4666 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4667}
4668
37b07e41
LS
4669/* Any regular memory on that node ? */
4670static void check_for_regular_memory(pg_data_t *pgdat)
4671{
4672#ifdef CONFIG_HIGHMEM
4673 enum zone_type zone_type;
4674
4675 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4676 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 4677 if (zone->present_pages) {
37b07e41 4678 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
d0048b0e
BL
4679 break;
4680 }
37b07e41
LS
4681 }
4682#endif
4683}
4684
c713216d
MG
4685/**
4686 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4687 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4688 *
4689 * This will call free_area_init_node() for each active node in the system.
4690 * Using the page ranges provided by add_active_range(), the size of each
4691 * zone in each node and their holes is calculated. If the maximum PFN
4692 * between two adjacent zones match, it is assumed that the zone is empty.
4693 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4694 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4695 * starts where the previous one ended. For example, ZONE_DMA32 starts
4696 * at arch_max_dma_pfn.
4697 */
4698void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4699{
c13291a5
TH
4700 unsigned long start_pfn, end_pfn;
4701 int i, nid;
a6af2bc3 4702
c713216d
MG
4703 /* Record where the zone boundaries are */
4704 memset(arch_zone_lowest_possible_pfn, 0,
4705 sizeof(arch_zone_lowest_possible_pfn));
4706 memset(arch_zone_highest_possible_pfn, 0,
4707 sizeof(arch_zone_highest_possible_pfn));
4708 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4709 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4710 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4711 if (i == ZONE_MOVABLE)
4712 continue;
c713216d
MG
4713 arch_zone_lowest_possible_pfn[i] =
4714 arch_zone_highest_possible_pfn[i-1];
4715 arch_zone_highest_possible_pfn[i] =
4716 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4717 }
2a1e274a
MG
4718 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4719 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4720
4721 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4722 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 4723 find_zone_movable_pfns_for_nodes();
c713216d 4724
c713216d
MG
4725 /* Print out the zone ranges */
4726 printk("Zone PFN ranges:\n");
2a1e274a
MG
4727 for (i = 0; i < MAX_NR_ZONES; i++) {
4728 if (i == ZONE_MOVABLE)
4729 continue;
72f0ba02
DR
4730 printk(" %-8s ", zone_names[i]);
4731 if (arch_zone_lowest_possible_pfn[i] ==
4732 arch_zone_highest_possible_pfn[i])
4733 printk("empty\n");
4734 else
4735 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4736 arch_zone_lowest_possible_pfn[i],
4737 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4738 }
4739
4740 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4741 printk("Movable zone start PFN for each node\n");
4742 for (i = 0; i < MAX_NUMNODES; i++) {
4743 if (zone_movable_pfn[i])
4744 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4745 }
c713216d
MG
4746
4747 /* Print out the early_node_map[] */
c13291a5
TH
4748 printk("Early memory PFN ranges\n");
4749 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4750 printk(" %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn);
c713216d
MG
4751
4752 /* Initialise every node */
708614e6 4753 mminit_verify_pageflags_layout();
8ef82866 4754 setup_nr_node_ids();
c713216d
MG
4755 for_each_online_node(nid) {
4756 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4757 free_area_init_node(nid, NULL,
c713216d 4758 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4759
4760 /* Any memory on that node */
4761 if (pgdat->node_present_pages)
4762 node_set_state(nid, N_HIGH_MEMORY);
4763 check_for_regular_memory(pgdat);
c713216d
MG
4764 }
4765}
2a1e274a 4766
7e63efef 4767static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4768{
4769 unsigned long long coremem;
4770 if (!p)
4771 return -EINVAL;
4772
4773 coremem = memparse(p, &p);
7e63efef 4774 *core = coremem >> PAGE_SHIFT;
2a1e274a 4775
7e63efef 4776 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4777 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4778
4779 return 0;
4780}
ed7ed365 4781
7e63efef
MG
4782/*
4783 * kernelcore=size sets the amount of memory for use for allocations that
4784 * cannot be reclaimed or migrated.
4785 */
4786static int __init cmdline_parse_kernelcore(char *p)
4787{
4788 return cmdline_parse_core(p, &required_kernelcore);
4789}
4790
4791/*
4792 * movablecore=size sets the amount of memory for use for allocations that
4793 * can be reclaimed or migrated.
4794 */
4795static int __init cmdline_parse_movablecore(char *p)
4796{
4797 return cmdline_parse_core(p, &required_movablecore);
4798}
4799
ed7ed365 4800early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4801early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4802
0ee332c1 4803#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4804
0e0b864e 4805/**
88ca3b94
RD
4806 * set_dma_reserve - set the specified number of pages reserved in the first zone
4807 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4808 *
4809 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4810 * In the DMA zone, a significant percentage may be consumed by kernel image
4811 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4812 * function may optionally be used to account for unfreeable pages in the
4813 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4814 * smaller per-cpu batchsize.
0e0b864e
MG
4815 */
4816void __init set_dma_reserve(unsigned long new_dma_reserve)
4817{
4818 dma_reserve = new_dma_reserve;
4819}
4820
1da177e4
LT
4821void __init free_area_init(unsigned long *zones_size)
4822{
9109fb7b 4823 free_area_init_node(0, zones_size,
1da177e4
LT
4824 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4825}
1da177e4 4826
1da177e4
LT
4827static int page_alloc_cpu_notify(struct notifier_block *self,
4828 unsigned long action, void *hcpu)
4829{
4830 int cpu = (unsigned long)hcpu;
1da177e4 4831
8bb78442 4832 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 4833 lru_add_drain_cpu(cpu);
9f8f2172
CL
4834 drain_pages(cpu);
4835
4836 /*
4837 * Spill the event counters of the dead processor
4838 * into the current processors event counters.
4839 * This artificially elevates the count of the current
4840 * processor.
4841 */
f8891e5e 4842 vm_events_fold_cpu(cpu);
9f8f2172
CL
4843
4844 /*
4845 * Zero the differential counters of the dead processor
4846 * so that the vm statistics are consistent.
4847 *
4848 * This is only okay since the processor is dead and cannot
4849 * race with what we are doing.
4850 */
2244b95a 4851 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4852 }
4853 return NOTIFY_OK;
4854}
1da177e4
LT
4855
4856void __init page_alloc_init(void)
4857{
4858 hotcpu_notifier(page_alloc_cpu_notify, 0);
4859}
4860
cb45b0e9
HA
4861/*
4862 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4863 * or min_free_kbytes changes.
4864 */
4865static void calculate_totalreserve_pages(void)
4866{
4867 struct pglist_data *pgdat;
4868 unsigned long reserve_pages = 0;
2f6726e5 4869 enum zone_type i, j;
cb45b0e9
HA
4870
4871 for_each_online_pgdat(pgdat) {
4872 for (i = 0; i < MAX_NR_ZONES; i++) {
4873 struct zone *zone = pgdat->node_zones + i;
4874 unsigned long max = 0;
4875
4876 /* Find valid and maximum lowmem_reserve in the zone */
4877 for (j = i; j < MAX_NR_ZONES; j++) {
4878 if (zone->lowmem_reserve[j] > max)
4879 max = zone->lowmem_reserve[j];
4880 }
4881
41858966
MG
4882 /* we treat the high watermark as reserved pages. */
4883 max += high_wmark_pages(zone);
cb45b0e9
HA
4884
4885 if (max > zone->present_pages)
4886 max = zone->present_pages;
4887 reserve_pages += max;
ab8fabd4
JW
4888 /*
4889 * Lowmem reserves are not available to
4890 * GFP_HIGHUSER page cache allocations and
4891 * kswapd tries to balance zones to their high
4892 * watermark. As a result, neither should be
4893 * regarded as dirtyable memory, to prevent a
4894 * situation where reclaim has to clean pages
4895 * in order to balance the zones.
4896 */
4897 zone->dirty_balance_reserve = max;
cb45b0e9
HA
4898 }
4899 }
ab8fabd4 4900 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
4901 totalreserve_pages = reserve_pages;
4902}
4903
1da177e4
LT
4904/*
4905 * setup_per_zone_lowmem_reserve - called whenever
4906 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4907 * has a correct pages reserved value, so an adequate number of
4908 * pages are left in the zone after a successful __alloc_pages().
4909 */
4910static void setup_per_zone_lowmem_reserve(void)
4911{
4912 struct pglist_data *pgdat;
2f6726e5 4913 enum zone_type j, idx;
1da177e4 4914
ec936fc5 4915 for_each_online_pgdat(pgdat) {
1da177e4
LT
4916 for (j = 0; j < MAX_NR_ZONES; j++) {
4917 struct zone *zone = pgdat->node_zones + j;
4918 unsigned long present_pages = zone->present_pages;
4919
4920 zone->lowmem_reserve[j] = 0;
4921
2f6726e5
CL
4922 idx = j;
4923 while (idx) {
1da177e4
LT
4924 struct zone *lower_zone;
4925
2f6726e5
CL
4926 idx--;
4927
1da177e4
LT
4928 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4929 sysctl_lowmem_reserve_ratio[idx] = 1;
4930
4931 lower_zone = pgdat->node_zones + idx;
4932 lower_zone->lowmem_reserve[j] = present_pages /
4933 sysctl_lowmem_reserve_ratio[idx];
4934 present_pages += lower_zone->present_pages;
4935 }
4936 }
4937 }
cb45b0e9
HA
4938
4939 /* update totalreserve_pages */
4940 calculate_totalreserve_pages();
1da177e4
LT
4941}
4942
88ca3b94 4943/**
bc75d33f 4944 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4945 * or when memory is hot-{added|removed}
88ca3b94 4946 *
bc75d33f
MK
4947 * Ensures that the watermark[min,low,high] values for each zone are set
4948 * correctly with respect to min_free_kbytes.
1da177e4 4949 */
bc75d33f 4950void setup_per_zone_wmarks(void)
1da177e4
LT
4951{
4952 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4953 unsigned long lowmem_pages = 0;
4954 struct zone *zone;
4955 unsigned long flags;
4956
4957 /* Calculate total number of !ZONE_HIGHMEM pages */
4958 for_each_zone(zone) {
4959 if (!is_highmem(zone))
4960 lowmem_pages += zone->present_pages;
4961 }
4962
4963 for_each_zone(zone) {
ac924c60
AM
4964 u64 tmp;
4965
1125b4e3 4966 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4967 tmp = (u64)pages_min * zone->present_pages;
4968 do_div(tmp, lowmem_pages);
1da177e4
LT
4969 if (is_highmem(zone)) {
4970 /*
669ed175
NP
4971 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4972 * need highmem pages, so cap pages_min to a small
4973 * value here.
4974 *
41858966 4975 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4976 * deltas controls asynch page reclaim, and so should
4977 * not be capped for highmem.
1da177e4
LT
4978 */
4979 int min_pages;
4980
4981 min_pages = zone->present_pages / 1024;
4982 if (min_pages < SWAP_CLUSTER_MAX)
4983 min_pages = SWAP_CLUSTER_MAX;
4984 if (min_pages > 128)
4985 min_pages = 128;
41858966 4986 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4987 } else {
669ed175
NP
4988 /*
4989 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4990 * proportionate to the zone's size.
4991 */
41858966 4992 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4993 }
4994
41858966
MG
4995 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4996 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4997 setup_zone_migrate_reserve(zone);
1125b4e3 4998 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4999 }
cb45b0e9
HA
5000
5001 /* update totalreserve_pages */
5002 calculate_totalreserve_pages();
1da177e4
LT
5003}
5004
55a4462a 5005/*
556adecb
RR
5006 * The inactive anon list should be small enough that the VM never has to
5007 * do too much work, but large enough that each inactive page has a chance
5008 * to be referenced again before it is swapped out.
5009 *
5010 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5011 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5012 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5013 * the anonymous pages are kept on the inactive list.
5014 *
5015 * total target max
5016 * memory ratio inactive anon
5017 * -------------------------------------
5018 * 10MB 1 5MB
5019 * 100MB 1 50MB
5020 * 1GB 3 250MB
5021 * 10GB 10 0.9GB
5022 * 100GB 31 3GB
5023 * 1TB 101 10GB
5024 * 10TB 320 32GB
5025 */
1b79acc9 5026static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5027{
96cb4df5 5028 unsigned int gb, ratio;
556adecb 5029
96cb4df5
MK
5030 /* Zone size in gigabytes */
5031 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5032 if (gb)
556adecb 5033 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5034 else
5035 ratio = 1;
556adecb 5036
96cb4df5
MK
5037 zone->inactive_ratio = ratio;
5038}
556adecb 5039
839a4fcc 5040static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5041{
5042 struct zone *zone;
5043
5044 for_each_zone(zone)
5045 calculate_zone_inactive_ratio(zone);
556adecb
RR
5046}
5047
1da177e4
LT
5048/*
5049 * Initialise min_free_kbytes.
5050 *
5051 * For small machines we want it small (128k min). For large machines
5052 * we want it large (64MB max). But it is not linear, because network
5053 * bandwidth does not increase linearly with machine size. We use
5054 *
5055 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5056 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5057 *
5058 * which yields
5059 *
5060 * 16MB: 512k
5061 * 32MB: 724k
5062 * 64MB: 1024k
5063 * 128MB: 1448k
5064 * 256MB: 2048k
5065 * 512MB: 2896k
5066 * 1024MB: 4096k
5067 * 2048MB: 5792k
5068 * 4096MB: 8192k
5069 * 8192MB: 11584k
5070 * 16384MB: 16384k
5071 */
1b79acc9 5072int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5073{
5074 unsigned long lowmem_kbytes;
5075
5076 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5077
5078 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5079 if (min_free_kbytes < 128)
5080 min_free_kbytes = 128;
5081 if (min_free_kbytes > 65536)
5082 min_free_kbytes = 65536;
bc75d33f 5083 setup_per_zone_wmarks();
a6cccdc3 5084 refresh_zone_stat_thresholds();
1da177e4 5085 setup_per_zone_lowmem_reserve();
556adecb 5086 setup_per_zone_inactive_ratio();
1da177e4
LT
5087 return 0;
5088}
bc75d33f 5089module_init(init_per_zone_wmark_min)
1da177e4
LT
5090
5091/*
5092 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5093 * that we can call two helper functions whenever min_free_kbytes
5094 * changes.
5095 */
5096int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5097 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5098{
8d65af78 5099 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5100 if (write)
bc75d33f 5101 setup_per_zone_wmarks();
1da177e4
LT
5102 return 0;
5103}
5104
9614634f
CL
5105#ifdef CONFIG_NUMA
5106int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5107 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5108{
5109 struct zone *zone;
5110 int rc;
5111
8d65af78 5112 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5113 if (rc)
5114 return rc;
5115
5116 for_each_zone(zone)
8417bba4 5117 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5118 sysctl_min_unmapped_ratio) / 100;
5119 return 0;
5120}
0ff38490
CL
5121
5122int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5123 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5124{
5125 struct zone *zone;
5126 int rc;
5127
8d65af78 5128 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5129 if (rc)
5130 return rc;
5131
5132 for_each_zone(zone)
5133 zone->min_slab_pages = (zone->present_pages *
5134 sysctl_min_slab_ratio) / 100;
5135 return 0;
5136}
9614634f
CL
5137#endif
5138
1da177e4
LT
5139/*
5140 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5141 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5142 * whenever sysctl_lowmem_reserve_ratio changes.
5143 *
5144 * The reserve ratio obviously has absolutely no relation with the
41858966 5145 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5146 * if in function of the boot time zone sizes.
5147 */
5148int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5149 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5150{
8d65af78 5151 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5152 setup_per_zone_lowmem_reserve();
5153 return 0;
5154}
5155
8ad4b1fb
RS
5156/*
5157 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5158 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5159 * can have before it gets flushed back to buddy allocator.
5160 */
5161
5162int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5163 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5164{
5165 struct zone *zone;
5166 unsigned int cpu;
5167 int ret;
5168
8d65af78 5169 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
5170 if (!write || (ret == -EINVAL))
5171 return ret;
364df0eb 5172 for_each_populated_zone(zone) {
99dcc3e5 5173 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5174 unsigned long high;
5175 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5176 setup_pagelist_highmark(
5177 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5178 }
5179 }
5180 return 0;
5181}
5182
f034b5d4 5183int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5184
5185#ifdef CONFIG_NUMA
5186static int __init set_hashdist(char *str)
5187{
5188 if (!str)
5189 return 0;
5190 hashdist = simple_strtoul(str, &str, 0);
5191 return 1;
5192}
5193__setup("hashdist=", set_hashdist);
5194#endif
5195
5196/*
5197 * allocate a large system hash table from bootmem
5198 * - it is assumed that the hash table must contain an exact power-of-2
5199 * quantity of entries
5200 * - limit is the number of hash buckets, not the total allocation size
5201 */
5202void *__init alloc_large_system_hash(const char *tablename,
5203 unsigned long bucketsize,
5204 unsigned long numentries,
5205 int scale,
5206 int flags,
5207 unsigned int *_hash_shift,
5208 unsigned int *_hash_mask,
5209 unsigned long limit)
5210{
5211 unsigned long long max = limit;
5212 unsigned long log2qty, size;
5213 void *table = NULL;
5214
5215 /* allow the kernel cmdline to have a say */
5216 if (!numentries) {
5217 /* round applicable memory size up to nearest megabyte */
04903664 5218 numentries = nr_kernel_pages;
1da177e4
LT
5219 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5220 numentries >>= 20 - PAGE_SHIFT;
5221 numentries <<= 20 - PAGE_SHIFT;
5222
5223 /* limit to 1 bucket per 2^scale bytes of low memory */
5224 if (scale > PAGE_SHIFT)
5225 numentries >>= (scale - PAGE_SHIFT);
5226 else
5227 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5228
5229 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5230 if (unlikely(flags & HASH_SMALL)) {
5231 /* Makes no sense without HASH_EARLY */
5232 WARN_ON(!(flags & HASH_EARLY));
5233 if (!(numentries >> *_hash_shift)) {
5234 numentries = 1UL << *_hash_shift;
5235 BUG_ON(!numentries);
5236 }
5237 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5238 numentries = PAGE_SIZE / bucketsize;
1da177e4 5239 }
6e692ed3 5240 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5241
5242 /* limit allocation size to 1/16 total memory by default */
5243 if (max == 0) {
5244 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5245 do_div(max, bucketsize);
5246 }
074b8517 5247 max = min(max, 0x80000000ULL);
1da177e4
LT
5248
5249 if (numentries > max)
5250 numentries = max;
5251
f0d1b0b3 5252 log2qty = ilog2(numentries);
1da177e4
LT
5253
5254 do {
5255 size = bucketsize << log2qty;
5256 if (flags & HASH_EARLY)
74768ed8 5257 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5258 else if (hashdist)
5259 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5260 else {
1037b83b
ED
5261 /*
5262 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5263 * some pages at the end of hash table which
5264 * alloc_pages_exact() automatically does
1037b83b 5265 */
264ef8a9 5266 if (get_order(size) < MAX_ORDER) {
a1dd268c 5267 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5268 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5269 }
1da177e4
LT
5270 }
5271 } while (!table && size > PAGE_SIZE && --log2qty);
5272
5273 if (!table)
5274 panic("Failed to allocate %s hash table\n", tablename);
5275
f241e660 5276 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5277 tablename,
f241e660 5278 (1UL << log2qty),
f0d1b0b3 5279 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5280 size);
5281
5282 if (_hash_shift)
5283 *_hash_shift = log2qty;
5284 if (_hash_mask)
5285 *_hash_mask = (1 << log2qty) - 1;
5286
5287 return table;
5288}
a117e66e 5289
835c134e
MG
5290/* Return a pointer to the bitmap storing bits affecting a block of pages */
5291static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5292 unsigned long pfn)
5293{
5294#ifdef CONFIG_SPARSEMEM
5295 return __pfn_to_section(pfn)->pageblock_flags;
5296#else
5297 return zone->pageblock_flags;
5298#endif /* CONFIG_SPARSEMEM */
5299}
5300
5301static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5302{
5303#ifdef CONFIG_SPARSEMEM
5304 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5305 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5306#else
5307 pfn = pfn - zone->zone_start_pfn;
d9c23400 5308 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5309#endif /* CONFIG_SPARSEMEM */
5310}
5311
5312/**
d9c23400 5313 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5314 * @page: The page within the block of interest
5315 * @start_bitidx: The first bit of interest to retrieve
5316 * @end_bitidx: The last bit of interest
5317 * returns pageblock_bits flags
5318 */
5319unsigned long get_pageblock_flags_group(struct page *page,
5320 int start_bitidx, int end_bitidx)
5321{
5322 struct zone *zone;
5323 unsigned long *bitmap;
5324 unsigned long pfn, bitidx;
5325 unsigned long flags = 0;
5326 unsigned long value = 1;
5327
5328 zone = page_zone(page);
5329 pfn = page_to_pfn(page);
5330 bitmap = get_pageblock_bitmap(zone, pfn);
5331 bitidx = pfn_to_bitidx(zone, pfn);
5332
5333 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5334 if (test_bit(bitidx + start_bitidx, bitmap))
5335 flags |= value;
6220ec78 5336
835c134e
MG
5337 return flags;
5338}
5339
5340/**
d9c23400 5341 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5342 * @page: The page within the block of interest
5343 * @start_bitidx: The first bit of interest
5344 * @end_bitidx: The last bit of interest
5345 * @flags: The flags to set
5346 */
5347void set_pageblock_flags_group(struct page *page, unsigned long flags,
5348 int start_bitidx, int end_bitidx)
5349{
5350 struct zone *zone;
5351 unsigned long *bitmap;
5352 unsigned long pfn, bitidx;
5353 unsigned long value = 1;
5354
5355 zone = page_zone(page);
5356 pfn = page_to_pfn(page);
5357 bitmap = get_pageblock_bitmap(zone, pfn);
5358 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5359 VM_BUG_ON(pfn < zone->zone_start_pfn);
5360 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5361
5362 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5363 if (flags & value)
5364 __set_bit(bitidx + start_bitidx, bitmap);
5365 else
5366 __clear_bit(bitidx + start_bitidx, bitmap);
5367}
a5d76b54
KH
5368
5369/*
5370 * This is designed as sub function...plz see page_isolation.c also.
5371 * set/clear page block's type to be ISOLATE.
5372 * page allocater never alloc memory from ISOLATE block.
5373 */
5374
49ac8255
KH
5375static int
5376__count_immobile_pages(struct zone *zone, struct page *page, int count)
5377{
5378 unsigned long pfn, iter, found;
5379 /*
5380 * For avoiding noise data, lru_add_drain_all() should be called
5381 * If ZONE_MOVABLE, the zone never contains immobile pages
5382 */
5383 if (zone_idx(zone) == ZONE_MOVABLE)
5384 return true;
5385
5386 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5387 return true;
5388
5389 pfn = page_to_pfn(page);
5390 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5391 unsigned long check = pfn + iter;
5392
29723fcc 5393 if (!pfn_valid_within(check))
49ac8255 5394 continue;
29723fcc 5395
49ac8255
KH
5396 page = pfn_to_page(check);
5397 if (!page_count(page)) {
5398 if (PageBuddy(page))
5399 iter += (1 << page_order(page)) - 1;
5400 continue;
5401 }
5402 if (!PageLRU(page))
5403 found++;
5404 /*
5405 * If there are RECLAIMABLE pages, we need to check it.
5406 * But now, memory offline itself doesn't call shrink_slab()
5407 * and it still to be fixed.
5408 */
5409 /*
5410 * If the page is not RAM, page_count()should be 0.
5411 * we don't need more check. This is an _used_ not-movable page.
5412 *
5413 * The problematic thing here is PG_reserved pages. PG_reserved
5414 * is set to both of a memory hole page and a _used_ kernel
5415 * page at boot.
5416 */
5417 if (found > count)
5418 return false;
5419 }
5420 return true;
5421}
5422
5423bool is_pageblock_removable_nolock(struct page *page)
5424{
656a0706
MH
5425 struct zone *zone;
5426 unsigned long pfn;
687875fb
MH
5427
5428 /*
5429 * We have to be careful here because we are iterating over memory
5430 * sections which are not zone aware so we might end up outside of
5431 * the zone but still within the section.
656a0706
MH
5432 * We have to take care about the node as well. If the node is offline
5433 * its NODE_DATA will be NULL - see page_zone.
687875fb 5434 */
656a0706
MH
5435 if (!node_online(page_to_nid(page)))
5436 return false;
5437
5438 zone = page_zone(page);
5439 pfn = page_to_pfn(page);
5440 if (zone->zone_start_pfn > pfn ||
687875fb
MH
5441 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5442 return false;
5443
49ac8255
KH
5444 return __count_immobile_pages(zone, page, 0);
5445}
5446
a5d76b54
KH
5447int set_migratetype_isolate(struct page *page)
5448{
5449 struct zone *zone;
49ac8255 5450 unsigned long flags, pfn;
925cc71e
RJ
5451 struct memory_isolate_notify arg;
5452 int notifier_ret;
a5d76b54
KH
5453 int ret = -EBUSY;
5454
5455 zone = page_zone(page);
925cc71e 5456
a5d76b54 5457 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5458
5459 pfn = page_to_pfn(page);
5460 arg.start_pfn = pfn;
5461 arg.nr_pages = pageblock_nr_pages;
5462 arg.pages_found = 0;
5463
a5d76b54 5464 /*
925cc71e
RJ
5465 * It may be possible to isolate a pageblock even if the
5466 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5467 * notifier chain is used by balloon drivers to return the
5468 * number of pages in a range that are held by the balloon
5469 * driver to shrink memory. If all the pages are accounted for
5470 * by balloons, are free, or on the LRU, isolation can continue.
5471 * Later, for example, when memory hotplug notifier runs, these
5472 * pages reported as "can be isolated" should be isolated(freed)
5473 * by the balloon driver through the memory notifier chain.
a5d76b54 5474 */
925cc71e
RJ
5475 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5476 notifier_ret = notifier_to_errno(notifier_ret);
4b20477f 5477 if (notifier_ret)
a5d76b54 5478 goto out;
49ac8255
KH
5479 /*
5480 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5481 * We just check MOVABLE pages.
5482 */
5483 if (__count_immobile_pages(zone, page, arg.pages_found))
925cc71e
RJ
5484 ret = 0;
5485
49ac8255
KH
5486 /*
5487 * immobile means "not-on-lru" paes. If immobile is larger than
5488 * removable-by-driver pages reported by notifier, we'll fail.
5489 */
5490
a5d76b54 5491out:
925cc71e
RJ
5492 if (!ret) {
5493 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5494 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5495 }
5496
a5d76b54
KH
5497 spin_unlock_irqrestore(&zone->lock, flags);
5498 if (!ret)
9f8f2172 5499 drain_all_pages();
a5d76b54
KH
5500 return ret;
5501}
5502
5503void unset_migratetype_isolate(struct page *page)
5504{
5505 struct zone *zone;
5506 unsigned long flags;
5507 zone = page_zone(page);
5508 spin_lock_irqsave(&zone->lock, flags);
5509 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5510 goto out;
5511 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5512 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5513out:
5514 spin_unlock_irqrestore(&zone->lock, flags);
5515}
0c0e6195
KH
5516
5517#ifdef CONFIG_MEMORY_HOTREMOVE
5518/*
5519 * All pages in the range must be isolated before calling this.
5520 */
5521void
5522__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5523{
5524 struct page *page;
5525 struct zone *zone;
5526 int order, i;
5527 unsigned long pfn;
5528 unsigned long flags;
5529 /* find the first valid pfn */
5530 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5531 if (pfn_valid(pfn))
5532 break;
5533 if (pfn == end_pfn)
5534 return;
5535 zone = page_zone(pfn_to_page(pfn));
5536 spin_lock_irqsave(&zone->lock, flags);
5537 pfn = start_pfn;
5538 while (pfn < end_pfn) {
5539 if (!pfn_valid(pfn)) {
5540 pfn++;
5541 continue;
5542 }
5543 page = pfn_to_page(pfn);
5544 BUG_ON(page_count(page));
5545 BUG_ON(!PageBuddy(page));
5546 order = page_order(page);
5547#ifdef CONFIG_DEBUG_VM
5548 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5549 pfn, 1 << order, end_pfn);
5550#endif
5551 list_del(&page->lru);
5552 rmv_page_order(page);
5553 zone->free_area[order].nr_free--;
5554 __mod_zone_page_state(zone, NR_FREE_PAGES,
5555 - (1UL << order));
5556 for (i = 0; i < (1 << order); i++)
5557 SetPageReserved((page+i));
5558 pfn += (1 << order);
5559 }
5560 spin_unlock_irqrestore(&zone->lock, flags);
5561}
5562#endif
8d22ba1b
WF
5563
5564#ifdef CONFIG_MEMORY_FAILURE
5565bool is_free_buddy_page(struct page *page)
5566{
5567 struct zone *zone = page_zone(page);
5568 unsigned long pfn = page_to_pfn(page);
5569 unsigned long flags;
5570 int order;
5571
5572 spin_lock_irqsave(&zone->lock, flags);
5573 for (order = 0; order < MAX_ORDER; order++) {
5574 struct page *page_head = page - (pfn & ((1 << order) - 1));
5575
5576 if (PageBuddy(page_head) && page_order(page_head) >= order)
5577 break;
5578 }
5579 spin_unlock_irqrestore(&zone->lock, flags);
5580
5581 return order < MAX_ORDER;
5582}
5583#endif
718a3821
WF
5584
5585static struct trace_print_flags pageflag_names[] = {
5586 {1UL << PG_locked, "locked" },
5587 {1UL << PG_error, "error" },
5588 {1UL << PG_referenced, "referenced" },
5589 {1UL << PG_uptodate, "uptodate" },
5590 {1UL << PG_dirty, "dirty" },
5591 {1UL << PG_lru, "lru" },
5592 {1UL << PG_active, "active" },
5593 {1UL << PG_slab, "slab" },
5594 {1UL << PG_owner_priv_1, "owner_priv_1" },
5595 {1UL << PG_arch_1, "arch_1" },
5596 {1UL << PG_reserved, "reserved" },
5597 {1UL << PG_private, "private" },
5598 {1UL << PG_private_2, "private_2" },
5599 {1UL << PG_writeback, "writeback" },
5600#ifdef CONFIG_PAGEFLAGS_EXTENDED
5601 {1UL << PG_head, "head" },
5602 {1UL << PG_tail, "tail" },
5603#else
5604 {1UL << PG_compound, "compound" },
5605#endif
5606 {1UL << PG_swapcache, "swapcache" },
5607 {1UL << PG_mappedtodisk, "mappedtodisk" },
5608 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
5609 {1UL << PG_swapbacked, "swapbacked" },
5610 {1UL << PG_unevictable, "unevictable" },
5611#ifdef CONFIG_MMU
5612 {1UL << PG_mlocked, "mlocked" },
5613#endif
5614#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5615 {1UL << PG_uncached, "uncached" },
5616#endif
5617#ifdef CONFIG_MEMORY_FAILURE
5618 {1UL << PG_hwpoison, "hwpoison" },
5619#endif
5620 {-1UL, NULL },
5621};
5622
5623static void dump_page_flags(unsigned long flags)
5624{
5625 const char *delim = "";
5626 unsigned long mask;
5627 int i;
5628
5629 printk(KERN_ALERT "page flags: %#lx(", flags);
5630
5631 /* remove zone id */
5632 flags &= (1UL << NR_PAGEFLAGS) - 1;
5633
5634 for (i = 0; pageflag_names[i].name && flags; i++) {
5635
5636 mask = pageflag_names[i].mask;
5637 if ((flags & mask) != mask)
5638 continue;
5639
5640 flags &= ~mask;
5641 printk("%s%s", delim, pageflag_names[i].name);
5642 delim = "|";
5643 }
5644
5645 /* check for left over flags */
5646 if (flags)
5647 printk("%s%#lx", delim, flags);
5648
5649 printk(")\n");
5650}
5651
5652void dump_page(struct page *page)
5653{
5654 printk(KERN_ALERT
5655 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 5656 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
5657 page->mapping, page->index);
5658 dump_page_flags(page->flags);
f212ad7c 5659 mem_cgroup_print_bad_page(page);
718a3821 5660}