]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/rmap.c
mm/memory_hotplug: use "unsigned long" for PFN in zone_for_pfn_range()
[mirror_ubuntu-focal-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
88f306b6
KS
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
f4b7e272 30 * pgdat->lru_lock (in mark_page_accessed, isolate_lru_page)
88f306b6
KS
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
b93b0163 35 * i_pages lock (widely used)
88f306b6
KS
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
b93b0163 39 * i_pages lock (widely used, in set_page_dirty,
88f306b6
KS
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 42 *
5a505085 43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 44 * ->tasklist_lock
6a46079c 45 * pte map lock
1da177e4
LT
46 */
47
48#include <linux/mm.h>
6e84f315 49#include <linux/sched/mm.h>
29930025 50#include <linux/sched/task.h>
1da177e4
LT
51#include <linux/pagemap.h>
52#include <linux/swap.h>
53#include <linux/swapops.h>
54#include <linux/slab.h>
55#include <linux/init.h>
5ad64688 56#include <linux/ksm.h>
1da177e4
LT
57#include <linux/rmap.h>
58#include <linux/rcupdate.h>
b95f1b31 59#include <linux/export.h>
8a9f3ccd 60#include <linux/memcontrol.h>
cddb8a5c 61#include <linux/mmu_notifier.h>
64cdd548 62#include <linux/migrate.h>
0fe6e20b 63#include <linux/hugetlb.h>
444f84fd 64#include <linux/huge_mm.h>
ef5d437f 65#include <linux/backing-dev.h>
33c3fc71 66#include <linux/page_idle.h>
a5430dda 67#include <linux/memremap.h>
bce73e48 68#include <linux/userfaultfd_k.h>
1da177e4
LT
69
70#include <asm/tlbflush.h>
71
72b252ae
MG
72#include <trace/events/tlb.h>
73
b291f000
NP
74#include "internal.h"
75
fdd2e5f8 76static struct kmem_cache *anon_vma_cachep;
5beb4930 77static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
78
79static inline struct anon_vma *anon_vma_alloc(void)
80{
01d8b20d
PZ
81 struct anon_vma *anon_vma;
82
83 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
84 if (anon_vma) {
85 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
86 anon_vma->degree = 1; /* Reference for first vma */
87 anon_vma->parent = anon_vma;
01d8b20d
PZ
88 /*
89 * Initialise the anon_vma root to point to itself. If called
90 * from fork, the root will be reset to the parents anon_vma.
91 */
92 anon_vma->root = anon_vma;
93 }
94
95 return anon_vma;
fdd2e5f8
AB
96}
97
01d8b20d 98static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 99{
01d8b20d 100 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
101
102 /*
4fc3f1d6 103 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
104 * we can safely hold the lock without the anon_vma getting
105 * freed.
106 *
107 * Relies on the full mb implied by the atomic_dec_and_test() from
108 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 109 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 110 *
4fc3f1d6
IM
111 * page_lock_anon_vma_read() VS put_anon_vma()
112 * down_read_trylock() atomic_dec_and_test()
88c22088 113 * LOCK MB
4fc3f1d6 114 * atomic_read() rwsem_is_locked()
88c22088
PZ
115 *
116 * LOCK should suffice since the actual taking of the lock must
117 * happen _before_ what follows.
118 */
7f39dda9 119 might_sleep();
5a505085 120 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 121 anon_vma_lock_write(anon_vma);
08b52706 122 anon_vma_unlock_write(anon_vma);
88c22088
PZ
123 }
124
fdd2e5f8
AB
125 kmem_cache_free(anon_vma_cachep, anon_vma);
126}
1da177e4 127
dd34739c 128static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 129{
dd34739c 130 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
131}
132
e574b5fd 133static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
134{
135 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
136}
137
6583a843
KC
138static void anon_vma_chain_link(struct vm_area_struct *vma,
139 struct anon_vma_chain *avc,
140 struct anon_vma *anon_vma)
141{
142 avc->vma = vma;
143 avc->anon_vma = anon_vma;
144 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 145 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
146}
147
d9d332e0 148/**
d5a187da 149 * __anon_vma_prepare - attach an anon_vma to a memory region
d9d332e0
LT
150 * @vma: the memory region in question
151 *
152 * This makes sure the memory mapping described by 'vma' has
153 * an 'anon_vma' attached to it, so that we can associate the
154 * anonymous pages mapped into it with that anon_vma.
155 *
d5a187da
VB
156 * The common case will be that we already have one, which
157 * is handled inline by anon_vma_prepare(). But if
23a0790a 158 * not we either need to find an adjacent mapping that we
d9d332e0
LT
159 * can re-use the anon_vma from (very common when the only
160 * reason for splitting a vma has been mprotect()), or we
161 * allocate a new one.
162 *
163 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 164 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
165 * and that may actually touch the spinlock even in the newly
166 * allocated vma (it depends on RCU to make sure that the
167 * anon_vma isn't actually destroyed).
168 *
169 * As a result, we need to do proper anon_vma locking even
170 * for the new allocation. At the same time, we do not want
171 * to do any locking for the common case of already having
172 * an anon_vma.
173 *
174 * This must be called with the mmap_sem held for reading.
175 */
d5a187da 176int __anon_vma_prepare(struct vm_area_struct *vma)
1da177e4 177{
d5a187da
VB
178 struct mm_struct *mm = vma->vm_mm;
179 struct anon_vma *anon_vma, *allocated;
5beb4930 180 struct anon_vma_chain *avc;
1da177e4
LT
181
182 might_sleep();
1da177e4 183
d5a187da
VB
184 avc = anon_vma_chain_alloc(GFP_KERNEL);
185 if (!avc)
186 goto out_enomem;
187
188 anon_vma = find_mergeable_anon_vma(vma);
189 allocated = NULL;
190 if (!anon_vma) {
191 anon_vma = anon_vma_alloc();
192 if (unlikely(!anon_vma))
193 goto out_enomem_free_avc;
194 allocated = anon_vma;
195 }
5beb4930 196
d5a187da
VB
197 anon_vma_lock_write(anon_vma);
198 /* page_table_lock to protect against threads */
199 spin_lock(&mm->page_table_lock);
200 if (likely(!vma->anon_vma)) {
201 vma->anon_vma = anon_vma;
202 anon_vma_chain_link(vma, avc, anon_vma);
203 /* vma reference or self-parent link for new root */
204 anon_vma->degree++;
d9d332e0 205 allocated = NULL;
d5a187da
VB
206 avc = NULL;
207 }
208 spin_unlock(&mm->page_table_lock);
209 anon_vma_unlock_write(anon_vma);
1da177e4 210
d5a187da
VB
211 if (unlikely(allocated))
212 put_anon_vma(allocated);
213 if (unlikely(avc))
214 anon_vma_chain_free(avc);
31f2b0eb 215
1da177e4 216 return 0;
5beb4930
RR
217
218 out_enomem_free_avc:
219 anon_vma_chain_free(avc);
220 out_enomem:
221 return -ENOMEM;
1da177e4
LT
222}
223
bb4aa396
LT
224/*
225 * This is a useful helper function for locking the anon_vma root as
226 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
227 * have the same vma.
228 *
229 * Such anon_vma's should have the same root, so you'd expect to see
230 * just a single mutex_lock for the whole traversal.
231 */
232static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
233{
234 struct anon_vma *new_root = anon_vma->root;
235 if (new_root != root) {
236 if (WARN_ON_ONCE(root))
5a505085 237 up_write(&root->rwsem);
bb4aa396 238 root = new_root;
5a505085 239 down_write(&root->rwsem);
bb4aa396
LT
240 }
241 return root;
242}
243
244static inline void unlock_anon_vma_root(struct anon_vma *root)
245{
246 if (root)
5a505085 247 up_write(&root->rwsem);
bb4aa396
LT
248}
249
5beb4930
RR
250/*
251 * Attach the anon_vmas from src to dst.
252 * Returns 0 on success, -ENOMEM on failure.
7a3ef208
KK
253 *
254 * If dst->anon_vma is NULL this function tries to find and reuse existing
255 * anon_vma which has no vmas and only one child anon_vma. This prevents
256 * degradation of anon_vma hierarchy to endless linear chain in case of
257 * constantly forking task. On the other hand, an anon_vma with more than one
258 * child isn't reused even if there was no alive vma, thus rmap walker has a
259 * good chance of avoiding scanning the whole hierarchy when it searches where
260 * page is mapped.
5beb4930
RR
261 */
262int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 263{
5beb4930 264 struct anon_vma_chain *avc, *pavc;
bb4aa396 265 struct anon_vma *root = NULL;
5beb4930 266
646d87b4 267 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
268 struct anon_vma *anon_vma;
269
dd34739c
LT
270 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
271 if (unlikely(!avc)) {
272 unlock_anon_vma_root(root);
273 root = NULL;
274 avc = anon_vma_chain_alloc(GFP_KERNEL);
275 if (!avc)
276 goto enomem_failure;
277 }
bb4aa396
LT
278 anon_vma = pavc->anon_vma;
279 root = lock_anon_vma_root(root, anon_vma);
280 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
281
282 /*
283 * Reuse existing anon_vma if its degree lower than two,
284 * that means it has no vma and only one anon_vma child.
285 *
286 * Do not chose parent anon_vma, otherwise first child
287 * will always reuse it. Root anon_vma is never reused:
288 * it has self-parent reference and at least one child.
289 */
290 if (!dst->anon_vma && anon_vma != src->anon_vma &&
291 anon_vma->degree < 2)
292 dst->anon_vma = anon_vma;
5beb4930 293 }
7a3ef208
KK
294 if (dst->anon_vma)
295 dst->anon_vma->degree++;
bb4aa396 296 unlock_anon_vma_root(root);
5beb4930 297 return 0;
1da177e4 298
5beb4930 299 enomem_failure:
3fe89b3e
LY
300 /*
301 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
302 * decremented in unlink_anon_vmas().
303 * We can safely do this because callers of anon_vma_clone() don't care
304 * about dst->anon_vma if anon_vma_clone() failed.
305 */
306 dst->anon_vma = NULL;
5beb4930
RR
307 unlink_anon_vmas(dst);
308 return -ENOMEM;
1da177e4
LT
309}
310
5beb4930
RR
311/*
312 * Attach vma to its own anon_vma, as well as to the anon_vmas that
313 * the corresponding VMA in the parent process is attached to.
314 * Returns 0 on success, non-zero on failure.
315 */
316int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 317{
5beb4930
RR
318 struct anon_vma_chain *avc;
319 struct anon_vma *anon_vma;
c4ea95d7 320 int error;
1da177e4 321
5beb4930
RR
322 /* Don't bother if the parent process has no anon_vma here. */
323 if (!pvma->anon_vma)
324 return 0;
325
7a3ef208
KK
326 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
327 vma->anon_vma = NULL;
328
5beb4930
RR
329 /*
330 * First, attach the new VMA to the parent VMA's anon_vmas,
331 * so rmap can find non-COWed pages in child processes.
332 */
c4ea95d7
DF
333 error = anon_vma_clone(vma, pvma);
334 if (error)
335 return error;
5beb4930 336
7a3ef208
KK
337 /* An existing anon_vma has been reused, all done then. */
338 if (vma->anon_vma)
339 return 0;
340
5beb4930
RR
341 /* Then add our own anon_vma. */
342 anon_vma = anon_vma_alloc();
343 if (!anon_vma)
344 goto out_error;
dd34739c 345 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
346 if (!avc)
347 goto out_error_free_anon_vma;
5c341ee1
RR
348
349 /*
350 * The root anon_vma's spinlock is the lock actually used when we
351 * lock any of the anon_vmas in this anon_vma tree.
352 */
353 anon_vma->root = pvma->anon_vma->root;
7a3ef208 354 anon_vma->parent = pvma->anon_vma;
76545066 355 /*
01d8b20d
PZ
356 * With refcounts, an anon_vma can stay around longer than the
357 * process it belongs to. The root anon_vma needs to be pinned until
358 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
359 */
360 get_anon_vma(anon_vma->root);
5beb4930
RR
361 /* Mark this anon_vma as the one where our new (COWed) pages go. */
362 vma->anon_vma = anon_vma;
4fc3f1d6 363 anon_vma_lock_write(anon_vma);
5c341ee1 364 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 365 anon_vma->parent->degree++;
08b52706 366 anon_vma_unlock_write(anon_vma);
5beb4930
RR
367
368 return 0;
369
370 out_error_free_anon_vma:
01d8b20d 371 put_anon_vma(anon_vma);
5beb4930 372 out_error:
4946d54c 373 unlink_anon_vmas(vma);
5beb4930 374 return -ENOMEM;
1da177e4
LT
375}
376
5beb4930
RR
377void unlink_anon_vmas(struct vm_area_struct *vma)
378{
379 struct anon_vma_chain *avc, *next;
eee2acba 380 struct anon_vma *root = NULL;
5beb4930 381
5c341ee1
RR
382 /*
383 * Unlink each anon_vma chained to the VMA. This list is ordered
384 * from newest to oldest, ensuring the root anon_vma gets freed last.
385 */
5beb4930 386 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
387 struct anon_vma *anon_vma = avc->anon_vma;
388
389 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 390 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
391
392 /*
393 * Leave empty anon_vmas on the list - we'll need
394 * to free them outside the lock.
395 */
f808c13f 396 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
7a3ef208 397 anon_vma->parent->degree--;
eee2acba 398 continue;
7a3ef208 399 }
eee2acba
PZ
400
401 list_del(&avc->same_vma);
402 anon_vma_chain_free(avc);
403 }
7a3ef208
KK
404 if (vma->anon_vma)
405 vma->anon_vma->degree--;
eee2acba
PZ
406 unlock_anon_vma_root(root);
407
408 /*
409 * Iterate the list once more, it now only contains empty and unlinked
410 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 411 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
412 */
413 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
414 struct anon_vma *anon_vma = avc->anon_vma;
415
e4c5800a 416 VM_WARN_ON(anon_vma->degree);
eee2acba
PZ
417 put_anon_vma(anon_vma);
418
5beb4930
RR
419 list_del(&avc->same_vma);
420 anon_vma_chain_free(avc);
421 }
422}
423
51cc5068 424static void anon_vma_ctor(void *data)
1da177e4 425{
a35afb83 426 struct anon_vma *anon_vma = data;
1da177e4 427
5a505085 428 init_rwsem(&anon_vma->rwsem);
83813267 429 atomic_set(&anon_vma->refcount, 0);
f808c13f 430 anon_vma->rb_root = RB_ROOT_CACHED;
1da177e4
LT
431}
432
433void __init anon_vma_init(void)
434{
435 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5f0d5a3a 436 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
5d097056
VD
437 anon_vma_ctor);
438 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
439 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
440}
441
442/*
6111e4ca
PZ
443 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
444 *
445 * Since there is no serialization what so ever against page_remove_rmap()
446 * the best this function can do is return a locked anon_vma that might
447 * have been relevant to this page.
448 *
449 * The page might have been remapped to a different anon_vma or the anon_vma
450 * returned may already be freed (and even reused).
451 *
bc658c96
PZ
452 * In case it was remapped to a different anon_vma, the new anon_vma will be a
453 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
454 * ensure that any anon_vma obtained from the page will still be valid for as
455 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
456 *
6111e4ca
PZ
457 * All users of this function must be very careful when walking the anon_vma
458 * chain and verify that the page in question is indeed mapped in it
459 * [ something equivalent to page_mapped_in_vma() ].
460 *
461 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
462 * that the anon_vma pointer from page->mapping is valid if there is a
463 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 464 */
746b18d4 465struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 466{
746b18d4 467 struct anon_vma *anon_vma = NULL;
1da177e4
LT
468 unsigned long anon_mapping;
469
470 rcu_read_lock();
4db0c3c2 471 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 472 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
473 goto out;
474 if (!page_mapped(page))
475 goto out;
476
477 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
478 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
479 anon_vma = NULL;
480 goto out;
481 }
f1819427
HD
482
483 /*
484 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
485 * freed. But if it has been unmapped, we have no security against the
486 * anon_vma structure being freed and reused (for another anon_vma:
5f0d5a3a 487 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
746b18d4 488 * above cannot corrupt).
f1819427 489 */
746b18d4 490 if (!page_mapped(page)) {
7f39dda9 491 rcu_read_unlock();
746b18d4 492 put_anon_vma(anon_vma);
7f39dda9 493 return NULL;
746b18d4 494 }
1da177e4
LT
495out:
496 rcu_read_unlock();
746b18d4
PZ
497
498 return anon_vma;
499}
500
88c22088
PZ
501/*
502 * Similar to page_get_anon_vma() except it locks the anon_vma.
503 *
504 * Its a little more complex as it tries to keep the fast path to a single
505 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
506 * reference like with page_get_anon_vma() and then block on the mutex.
507 */
4fc3f1d6 508struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 509{
88c22088 510 struct anon_vma *anon_vma = NULL;
eee0f252 511 struct anon_vma *root_anon_vma;
88c22088 512 unsigned long anon_mapping;
746b18d4 513
88c22088 514 rcu_read_lock();
4db0c3c2 515 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
88c22088
PZ
516 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
517 goto out;
518 if (!page_mapped(page))
519 goto out;
520
521 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 522 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 523 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 524 /*
eee0f252
HD
525 * If the page is still mapped, then this anon_vma is still
526 * its anon_vma, and holding the mutex ensures that it will
bc658c96 527 * not go away, see anon_vma_free().
88c22088 528 */
eee0f252 529 if (!page_mapped(page)) {
4fc3f1d6 530 up_read(&root_anon_vma->rwsem);
88c22088
PZ
531 anon_vma = NULL;
532 }
533 goto out;
534 }
746b18d4 535
88c22088
PZ
536 /* trylock failed, we got to sleep */
537 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
538 anon_vma = NULL;
539 goto out;
540 }
541
542 if (!page_mapped(page)) {
7f39dda9 543 rcu_read_unlock();
88c22088 544 put_anon_vma(anon_vma);
7f39dda9 545 return NULL;
88c22088
PZ
546 }
547
548 /* we pinned the anon_vma, its safe to sleep */
549 rcu_read_unlock();
4fc3f1d6 550 anon_vma_lock_read(anon_vma);
88c22088
PZ
551
552 if (atomic_dec_and_test(&anon_vma->refcount)) {
553 /*
554 * Oops, we held the last refcount, release the lock
555 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 556 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 557 */
4fc3f1d6 558 anon_vma_unlock_read(anon_vma);
88c22088
PZ
559 __put_anon_vma(anon_vma);
560 anon_vma = NULL;
561 }
562
563 return anon_vma;
564
565out:
566 rcu_read_unlock();
746b18d4 567 return anon_vma;
34bbd704
ON
568}
569
4fc3f1d6 570void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 571{
4fc3f1d6 572 anon_vma_unlock_read(anon_vma);
1da177e4
LT
573}
574
72b252ae 575#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
72b252ae
MG
576/*
577 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
578 * important if a PTE was dirty when it was unmapped that it's flushed
579 * before any IO is initiated on the page to prevent lost writes. Similarly,
580 * it must be flushed before freeing to prevent data leakage.
581 */
582void try_to_unmap_flush(void)
583{
584 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
72b252ae
MG
585
586 if (!tlb_ubc->flush_required)
587 return;
588
e73ad5ff 589 arch_tlbbatch_flush(&tlb_ubc->arch);
72b252ae 590 tlb_ubc->flush_required = false;
d950c947 591 tlb_ubc->writable = false;
72b252ae
MG
592}
593
d950c947
MG
594/* Flush iff there are potentially writable TLB entries that can race with IO */
595void try_to_unmap_flush_dirty(void)
596{
597 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
598
599 if (tlb_ubc->writable)
600 try_to_unmap_flush();
601}
602
c7ab0d2f 603static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
604{
605 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
606
e73ad5ff 607 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
72b252ae 608 tlb_ubc->flush_required = true;
d950c947 609
3ea27719
MG
610 /*
611 * Ensure compiler does not re-order the setting of tlb_flush_batched
612 * before the PTE is cleared.
613 */
614 barrier();
615 mm->tlb_flush_batched = true;
616
d950c947
MG
617 /*
618 * If the PTE was dirty then it's best to assume it's writable. The
619 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
620 * before the page is queued for IO.
621 */
622 if (writable)
623 tlb_ubc->writable = true;
72b252ae
MG
624}
625
626/*
627 * Returns true if the TLB flush should be deferred to the end of a batch of
628 * unmap operations to reduce IPIs.
629 */
630static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
631{
632 bool should_defer = false;
633
634 if (!(flags & TTU_BATCH_FLUSH))
635 return false;
636
637 /* If remote CPUs need to be flushed then defer batch the flush */
638 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
639 should_defer = true;
640 put_cpu();
641
642 return should_defer;
643}
3ea27719
MG
644
645/*
646 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
647 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
648 * operation such as mprotect or munmap to race between reclaim unmapping
649 * the page and flushing the page. If this race occurs, it potentially allows
650 * access to data via a stale TLB entry. Tracking all mm's that have TLB
651 * batching in flight would be expensive during reclaim so instead track
652 * whether TLB batching occurred in the past and if so then do a flush here
653 * if required. This will cost one additional flush per reclaim cycle paid
654 * by the first operation at risk such as mprotect and mumap.
655 *
656 * This must be called under the PTL so that an access to tlb_flush_batched
657 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
658 * via the PTL.
659 */
660void flush_tlb_batched_pending(struct mm_struct *mm)
661{
662 if (mm->tlb_flush_batched) {
663 flush_tlb_mm(mm);
664
665 /*
666 * Do not allow the compiler to re-order the clearing of
667 * tlb_flush_batched before the tlb is flushed.
668 */
669 barrier();
670 mm->tlb_flush_batched = false;
671 }
672}
72b252ae 673#else
c7ab0d2f 674static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
675{
676}
677
678static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
679{
680 return false;
681}
682#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
683
1da177e4 684/*
bf89c8c8 685 * At what user virtual address is page expected in vma?
ab941e0f 686 * Caller should check the page is actually part of the vma.
1da177e4
LT
687 */
688unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
689{
21d0d443 690 if (PageAnon(page)) {
4829b906
HD
691 struct anon_vma *page__anon_vma = page_anon_vma(page);
692 /*
693 * Note: swapoff's unuse_vma() is more efficient with this
694 * check, and needs it to match anon_vma when KSM is active.
695 */
696 if (!vma->anon_vma || !page__anon_vma ||
697 vma->anon_vma->root != page__anon_vma->root)
21d0d443 698 return -EFAULT;
5ab5ad93
JW
699 } else if (!vma->vm_file) {
700 return -EFAULT;
701 } else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
1da177e4 702 return -EFAULT;
5ab5ad93 703 }
5bbd1b12
HD
704
705 return vma_address(page, vma);
1da177e4
LT
706}
707
6219049a
BL
708pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
709{
710 pgd_t *pgd;
c2febafc 711 p4d_t *p4d;
6219049a
BL
712 pud_t *pud;
713 pmd_t *pmd = NULL;
f72e7dcd 714 pmd_t pmde;
6219049a
BL
715
716 pgd = pgd_offset(mm, address);
717 if (!pgd_present(*pgd))
718 goto out;
719
c2febafc
KS
720 p4d = p4d_offset(pgd, address);
721 if (!p4d_present(*p4d))
722 goto out;
723
724 pud = pud_offset(p4d, address);
6219049a
BL
725 if (!pud_present(*pud))
726 goto out;
727
728 pmd = pmd_offset(pud, address);
f72e7dcd 729 /*
8809aa2d 730 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
731 * without holding anon_vma lock for write. So when looking for a
732 * genuine pmde (in which to find pte), test present and !THP together.
733 */
e37c6982
CB
734 pmde = *pmd;
735 barrier();
f72e7dcd 736 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
737 pmd = NULL;
738out:
739 return pmd;
740}
741
8749cfea
VD
742struct page_referenced_arg {
743 int mapcount;
744 int referenced;
745 unsigned long vm_flags;
746 struct mem_cgroup *memcg;
747};
748/*
749 * arg: page_referenced_arg will be passed
750 */
e4b82222 751static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
8749cfea
VD
752 unsigned long address, void *arg)
753{
8749cfea 754 struct page_referenced_arg *pra = arg;
8eaedede
KS
755 struct page_vma_mapped_walk pvmw = {
756 .page = page,
757 .vma = vma,
758 .address = address,
759 };
8749cfea
VD
760 int referenced = 0;
761
8eaedede
KS
762 while (page_vma_mapped_walk(&pvmw)) {
763 address = pvmw.address;
b20ce5e0 764
8eaedede
KS
765 if (vma->vm_flags & VM_LOCKED) {
766 page_vma_mapped_walk_done(&pvmw);
767 pra->vm_flags |= VM_LOCKED;
e4b82222 768 return false; /* To break the loop */
8eaedede 769 }
71e3aac0 770
8eaedede
KS
771 if (pvmw.pte) {
772 if (ptep_clear_flush_young_notify(vma, address,
773 pvmw.pte)) {
774 /*
775 * Don't treat a reference through
776 * a sequentially read mapping as such.
777 * If the page has been used in another mapping,
778 * we will catch it; if this other mapping is
779 * already gone, the unmap path will have set
780 * PG_referenced or activated the page.
781 */
782 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
783 referenced++;
784 }
785 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
786 if (pmdp_clear_flush_young_notify(vma, address,
787 pvmw.pmd))
8749cfea 788 referenced++;
8eaedede
KS
789 } else {
790 /* unexpected pmd-mapped page? */
791 WARN_ON_ONCE(1);
8749cfea 792 }
8eaedede
KS
793
794 pra->mapcount--;
b20ce5e0 795 }
b20ce5e0 796
33c3fc71
VD
797 if (referenced)
798 clear_page_idle(page);
799 if (test_and_clear_page_young(page))
800 referenced++;
801
9f32624b
JK
802 if (referenced) {
803 pra->referenced++;
804 pra->vm_flags |= vma->vm_flags;
1da177e4 805 }
34bbd704 806
9f32624b 807 if (!pra->mapcount)
e4b82222 808 return false; /* To break the loop */
9f32624b 809
e4b82222 810 return true;
1da177e4
LT
811}
812
9f32624b 813static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 814{
9f32624b
JK
815 struct page_referenced_arg *pra = arg;
816 struct mem_cgroup *memcg = pra->memcg;
1da177e4 817
9f32624b
JK
818 if (!mm_match_cgroup(vma->vm_mm, memcg))
819 return true;
1da177e4 820
9f32624b 821 return false;
1da177e4
LT
822}
823
824/**
825 * page_referenced - test if the page was referenced
826 * @page: the page to test
827 * @is_locked: caller holds lock on the page
72835c86 828 * @memcg: target memory cgroup
6fe6b7e3 829 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
830 *
831 * Quick test_and_clear_referenced for all mappings to a page,
832 * returns the number of ptes which referenced the page.
833 */
6fe6b7e3
WF
834int page_referenced(struct page *page,
835 int is_locked,
72835c86 836 struct mem_cgroup *memcg,
6fe6b7e3 837 unsigned long *vm_flags)
1da177e4 838{
5ad64688 839 int we_locked = 0;
9f32624b 840 struct page_referenced_arg pra = {
b20ce5e0 841 .mapcount = total_mapcount(page),
9f32624b
JK
842 .memcg = memcg,
843 };
844 struct rmap_walk_control rwc = {
845 .rmap_one = page_referenced_one,
846 .arg = (void *)&pra,
847 .anon_lock = page_lock_anon_vma_read,
848 };
1da177e4 849
6fe6b7e3 850 *vm_flags = 0;
059d8442 851 if (!pra.mapcount)
9f32624b
JK
852 return 0;
853
854 if (!page_rmapping(page))
855 return 0;
856
857 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
858 we_locked = trylock_page(page);
859 if (!we_locked)
860 return 1;
1da177e4 861 }
9f32624b
JK
862
863 /*
864 * If we are reclaiming on behalf of a cgroup, skip
865 * counting on behalf of references from different
866 * cgroups
867 */
868 if (memcg) {
869 rwc.invalid_vma = invalid_page_referenced_vma;
870 }
871
c24f386c 872 rmap_walk(page, &rwc);
9f32624b
JK
873 *vm_flags = pra.vm_flags;
874
875 if (we_locked)
876 unlock_page(page);
877
878 return pra.referenced;
1da177e4
LT
879}
880
e4b82222 881static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 882 unsigned long address, void *arg)
d08b3851 883{
f27176cf
KS
884 struct page_vma_mapped_walk pvmw = {
885 .page = page,
886 .vma = vma,
887 .address = address,
888 .flags = PVMW_SYNC,
889 };
ac46d4f3 890 struct mmu_notifier_range range;
9853a407 891 int *cleaned = arg;
d08b3851 892
369ea824
JG
893 /*
894 * We have to assume the worse case ie pmd for invalidation. Note that
895 * the page can not be free from this function.
896 */
7269f999
JG
897 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
898 0, vma, vma->vm_mm, address,
5bbd1b12 899 vma_address_end(page, vma));
ac46d4f3 900 mmu_notifier_invalidate_range_start(&range);
369ea824 901
f27176cf
KS
902 while (page_vma_mapped_walk(&pvmw)) {
903 int ret = 0;
369ea824 904
1f18b296 905 address = pvmw.address;
f27176cf
KS
906 if (pvmw.pte) {
907 pte_t entry;
908 pte_t *pte = pvmw.pte;
909
910 if (!pte_dirty(*pte) && !pte_write(*pte))
911 continue;
912
785373b4
LT
913 flush_cache_page(vma, address, pte_pfn(*pte));
914 entry = ptep_clear_flush(vma, address, pte);
f27176cf
KS
915 entry = pte_wrprotect(entry);
916 entry = pte_mkclean(entry);
785373b4 917 set_pte_at(vma->vm_mm, address, pte, entry);
f27176cf
KS
918 ret = 1;
919 } else {
920#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
921 pmd_t *pmd = pvmw.pmd;
922 pmd_t entry;
923
924 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
925 continue;
926
785373b4 927 flush_cache_page(vma, address, page_to_pfn(page));
024eee0e 928 entry = pmdp_invalidate(vma, address, pmd);
f27176cf
KS
929 entry = pmd_wrprotect(entry);
930 entry = pmd_mkclean(entry);
785373b4 931 set_pmd_at(vma->vm_mm, address, pmd, entry);
f27176cf
KS
932 ret = 1;
933#else
934 /* unexpected pmd-mapped page? */
935 WARN_ON_ONCE(1);
936#endif
937 }
d08b3851 938
0f10851e
JG
939 /*
940 * No need to call mmu_notifier_invalidate_range() as we are
941 * downgrading page table protection not changing it to point
942 * to a new page.
943 *
ad56b738 944 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
945 */
946 if (ret)
f27176cf 947 (*cleaned)++;
c2fda5fe 948 }
d08b3851 949
ac46d4f3 950 mmu_notifier_invalidate_range_end(&range);
369ea824 951
e4b82222 952 return true;
d08b3851
PZ
953}
954
9853a407 955static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 956{
9853a407 957 if (vma->vm_flags & VM_SHARED)
871beb8c 958 return false;
d08b3851 959
871beb8c 960 return true;
d08b3851
PZ
961}
962
963int page_mkclean(struct page *page)
964{
9853a407
JK
965 int cleaned = 0;
966 struct address_space *mapping;
967 struct rmap_walk_control rwc = {
968 .arg = (void *)&cleaned,
969 .rmap_one = page_mkclean_one,
970 .invalid_vma = invalid_mkclean_vma,
971 };
d08b3851
PZ
972
973 BUG_ON(!PageLocked(page));
974
9853a407
JK
975 if (!page_mapped(page))
976 return 0;
977
978 mapping = page_mapping(page);
979 if (!mapping)
980 return 0;
981
982 rmap_walk(page, &rwc);
d08b3851 983
9853a407 984 return cleaned;
d08b3851 985}
60b59bea 986EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 987
c44b6743
RR
988/**
989 * page_move_anon_rmap - move a page to our anon_vma
990 * @page: the page to move to our anon_vma
991 * @vma: the vma the page belongs to
c44b6743
RR
992 *
993 * When a page belongs exclusively to one process after a COW event,
994 * that page can be moved into the anon_vma that belongs to just that
995 * process, so the rmap code will not search the parent or sibling
996 * processes.
997 */
5a49973d 998void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
c44b6743
RR
999{
1000 struct anon_vma *anon_vma = vma->anon_vma;
1001
5a49973d
HD
1002 page = compound_head(page);
1003
309381fe 1004 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 1005 VM_BUG_ON_VMA(!anon_vma, vma);
c44b6743
RR
1006
1007 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
1008 /*
1009 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1010 * simultaneously, so a concurrent reader (eg page_referenced()'s
1011 * PageAnon()) will not see one without the other.
1012 */
1013 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
1014}
1015
9617d95e 1016/**
4e1c1975 1017 * __page_set_anon_rmap - set up new anonymous rmap
451b9514 1018 * @page: Page or Hugepage to add to rmap
4e1c1975
AK
1019 * @vma: VM area to add page to.
1020 * @address: User virtual address of the mapping
e8a03feb 1021 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1022 */
1023static void __page_set_anon_rmap(struct page *page,
e8a03feb 1024 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1025{
e8a03feb 1026 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1027
e8a03feb 1028 BUG_ON(!anon_vma);
ea90002b 1029
4e1c1975
AK
1030 if (PageAnon(page))
1031 return;
1032
ea90002b 1033 /*
e8a03feb
RR
1034 * If the page isn't exclusively mapped into this vma,
1035 * we must use the _oldest_ possible anon_vma for the
1036 * page mapping!
ea90002b 1037 */
4e1c1975 1038 if (!exclusive)
288468c3 1039 anon_vma = anon_vma->root;
9617d95e 1040
9617d95e
NP
1041 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1042 page->mapping = (struct address_space *) anon_vma;
9617d95e 1043 page->index = linear_page_index(vma, address);
9617d95e
NP
1044}
1045
c97a9e10 1046/**
43d8eac4 1047 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1048 * @page: the page to add the mapping to
1049 * @vma: the vm area in which the mapping is added
1050 * @address: the user virtual address mapped
1051 */
1052static void __page_check_anon_rmap(struct page *page,
1053 struct vm_area_struct *vma, unsigned long address)
1054{
1055#ifdef CONFIG_DEBUG_VM
1056 /*
1057 * The page's anon-rmap details (mapping and index) are guaranteed to
1058 * be set up correctly at this point.
1059 *
1060 * We have exclusion against page_add_anon_rmap because the caller
1061 * always holds the page locked, except if called from page_dup_rmap,
1062 * in which case the page is already known to be setup.
1063 *
1064 * We have exclusion against page_add_new_anon_rmap because those pages
1065 * are initially only visible via the pagetables, and the pte is locked
1066 * over the call to page_add_new_anon_rmap.
1067 */
44ab57a0 1068 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
53f9263b 1069 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
c97a9e10
NP
1070#endif
1071}
1072
1da177e4
LT
1073/**
1074 * page_add_anon_rmap - add pte mapping to an anonymous page
1075 * @page: the page to add the mapping to
1076 * @vma: the vm area in which the mapping is added
1077 * @address: the user virtual address mapped
d281ee61 1078 * @compound: charge the page as compound or small page
1da177e4 1079 *
5ad64688 1080 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1081 * the anon_vma case: to serialize mapping,index checking after setting,
1082 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1083 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1084 */
1085void page_add_anon_rmap(struct page *page,
d281ee61 1086 struct vm_area_struct *vma, unsigned long address, bool compound)
ad8c2ee8 1087{
d281ee61 1088 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
ad8c2ee8
RR
1089}
1090
1091/*
1092 * Special version of the above for do_swap_page, which often runs
1093 * into pages that are exclusively owned by the current process.
1094 * Everybody else should continue to use page_add_anon_rmap above.
1095 */
1096void do_page_add_anon_rmap(struct page *page,
d281ee61 1097 struct vm_area_struct *vma, unsigned long address, int flags)
1da177e4 1098{
53f9263b
KS
1099 bool compound = flags & RMAP_COMPOUND;
1100 bool first;
1101
e9b61f19
KS
1102 if (compound) {
1103 atomic_t *mapcount;
53f9263b 1104 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
1105 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1106 mapcount = compound_mapcount_ptr(page);
1107 first = atomic_inc_and_test(mapcount);
53f9263b
KS
1108 } else {
1109 first = atomic_inc_and_test(&page->_mapcount);
1110 }
1111
79134171 1112 if (first) {
d281ee61 1113 int nr = compound ? hpage_nr_pages(page) : 1;
bea04b07
JZ
1114 /*
1115 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1116 * these counters are not modified in interrupt context, and
1117 * pte lock(a spinlock) is held, which implies preemption
1118 * disabled.
1119 */
65c45377 1120 if (compound)
11fb9989 1121 __inc_node_page_state(page, NR_ANON_THPS);
4b9d0fab 1122 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
79134171 1123 }
5ad64688
HD
1124 if (unlikely(PageKsm(page)))
1125 return;
1126
309381fe 1127 VM_BUG_ON_PAGE(!PageLocked(page), page);
53f9263b 1128
5dbe0af4 1129 /* address might be in next vma when migration races vma_adjust */
5ad64688 1130 if (first)
d281ee61
KS
1131 __page_set_anon_rmap(page, vma, address,
1132 flags & RMAP_EXCLUSIVE);
69029cd5 1133 else
c97a9e10 1134 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1135}
1136
43d8eac4 1137/**
9617d95e
NP
1138 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1139 * @page: the page to add the mapping to
1140 * @vma: the vm area in which the mapping is added
1141 * @address: the user virtual address mapped
d281ee61 1142 * @compound: charge the page as compound or small page
9617d95e
NP
1143 *
1144 * Same as page_add_anon_rmap but must only be called on *new* pages.
1145 * This means the inc-and-test can be bypassed.
c97a9e10 1146 * Page does not have to be locked.
9617d95e
NP
1147 */
1148void page_add_new_anon_rmap(struct page *page,
d281ee61 1149 struct vm_area_struct *vma, unsigned long address, bool compound)
9617d95e 1150{
d281ee61
KS
1151 int nr = compound ? hpage_nr_pages(page) : 1;
1152
81d1b09c 1153 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
fa9949da 1154 __SetPageSwapBacked(page);
d281ee61
KS
1155 if (compound) {
1156 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
53f9263b
KS
1157 /* increment count (starts at -1) */
1158 atomic_set(compound_mapcount_ptr(page), 0);
11fb9989 1159 __inc_node_page_state(page, NR_ANON_THPS);
53f9263b
KS
1160 } else {
1161 /* Anon THP always mapped first with PMD */
1162 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1163 /* increment count (starts at -1) */
1164 atomic_set(&page->_mapcount, 0);
d281ee61 1165 }
4b9d0fab 1166 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
e8a03feb 1167 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1168}
1169
1da177e4
LT
1170/**
1171 * page_add_file_rmap - add pte mapping to a file page
1172 * @page: the page to add the mapping to
e8b098fc 1173 * @compound: charge the page as compound or small page
1da177e4 1174 *
b8072f09 1175 * The caller needs to hold the pte lock.
1da177e4 1176 */
dd78fedd 1177void page_add_file_rmap(struct page *page, bool compound)
1da177e4 1178{
dd78fedd
KS
1179 int i, nr = 1;
1180
1181 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
62cccb8c 1182 lock_page_memcg(page);
dd78fedd
KS
1183 if (compound && PageTransHuge(page)) {
1184 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1185 if (atomic_inc_and_test(&page[i]._mapcount))
1186 nr++;
1187 }
1188 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1189 goto out;
99cb0dbd
SL
1190 if (PageSwapBacked(page))
1191 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1192 else
1193 __inc_node_page_state(page, NR_FILE_PMDMAPPED);
dd78fedd 1194 } else {
c8efc390
KS
1195 if (PageTransCompound(page) && page_mapping(page)) {
1196 VM_WARN_ON_ONCE(!PageLocked(page));
1197
9a73f61b
KS
1198 SetPageDoubleMap(compound_head(page));
1199 if (PageMlocked(page))
1200 clear_page_mlock(compound_head(page));
1201 }
dd78fedd
KS
1202 if (!atomic_inc_and_test(&page->_mapcount))
1203 goto out;
d69b042f 1204 }
00f3ca2c 1205 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
dd78fedd 1206out:
62cccb8c 1207 unlock_page_memcg(page);
1da177e4
LT
1208}
1209
dd78fedd 1210static void page_remove_file_rmap(struct page *page, bool compound)
8186eb6a 1211{
dd78fedd
KS
1212 int i, nr = 1;
1213
57dea93a 1214 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
62cccb8c 1215 lock_page_memcg(page);
8186eb6a 1216
53f9263b
KS
1217 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1218 if (unlikely(PageHuge(page))) {
1219 /* hugetlb pages are always mapped with pmds */
1220 atomic_dec(compound_mapcount_ptr(page));
8186eb6a 1221 goto out;
53f9263b 1222 }
8186eb6a 1223
53f9263b 1224 /* page still mapped by someone else? */
dd78fedd
KS
1225 if (compound && PageTransHuge(page)) {
1226 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1227 if (atomic_add_negative(-1, &page[i]._mapcount))
1228 nr++;
1229 }
1230 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1231 goto out;
99cb0dbd
SL
1232 if (PageSwapBacked(page))
1233 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1234 else
1235 __dec_node_page_state(page, NR_FILE_PMDMAPPED);
dd78fedd
KS
1236 } else {
1237 if (!atomic_add_negative(-1, &page->_mapcount))
1238 goto out;
1239 }
8186eb6a
JW
1240
1241 /*
00f3ca2c 1242 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
8186eb6a
JW
1243 * these counters are not modified in interrupt context, and
1244 * pte lock(a spinlock) is held, which implies preemption disabled.
1245 */
00f3ca2c 1246 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
8186eb6a
JW
1247
1248 if (unlikely(PageMlocked(page)))
1249 clear_page_mlock(page);
1250out:
62cccb8c 1251 unlock_page_memcg(page);
8186eb6a
JW
1252}
1253
53f9263b
KS
1254static void page_remove_anon_compound_rmap(struct page *page)
1255{
1256 int i, nr;
1257
1258 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1259 return;
1260
1261 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1262 if (unlikely(PageHuge(page)))
1263 return;
1264
1265 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1266 return;
1267
11fb9989 1268 __dec_node_page_state(page, NR_ANON_THPS);
53f9263b
KS
1269
1270 if (TestClearPageDoubleMap(page)) {
1271 /*
1272 * Subpages can be mapped with PTEs too. Check how many of
1273 * themi are still mapped.
1274 */
1275 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1276 if (atomic_add_negative(-1, &page[i]._mapcount))
1277 nr++;
1278 }
1279 } else {
1280 nr = HPAGE_PMD_NR;
1281 }
1282
e90309c9
KS
1283 if (unlikely(PageMlocked(page)))
1284 clear_page_mlock(page);
1285
9a982250 1286 if (nr) {
4b9d0fab 1287 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
9a982250
KS
1288 deferred_split_huge_page(page);
1289 }
53f9263b
KS
1290}
1291
1da177e4
LT
1292/**
1293 * page_remove_rmap - take down pte mapping from a page
d281ee61
KS
1294 * @page: page to remove mapping from
1295 * @compound: uncharge the page as compound or small page
1da177e4 1296 *
b8072f09 1297 * The caller needs to hold the pte lock.
1da177e4 1298 */
d281ee61 1299void page_remove_rmap(struct page *page, bool compound)
1da177e4 1300{
dd78fedd
KS
1301 if (!PageAnon(page))
1302 return page_remove_file_rmap(page, compound);
89c06bd5 1303
53f9263b
KS
1304 if (compound)
1305 return page_remove_anon_compound_rmap(page);
1306
b904dcfe
KM
1307 /* page still mapped by someone else? */
1308 if (!atomic_add_negative(-1, &page->_mapcount))
8186eb6a
JW
1309 return;
1310
0fe6e20b 1311 /*
bea04b07
JZ
1312 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1313 * these counters are not modified in interrupt context, and
bea04b07 1314 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1315 */
4b9d0fab 1316 __dec_node_page_state(page, NR_ANON_MAPPED);
8186eb6a 1317
e6c509f8
HD
1318 if (unlikely(PageMlocked(page)))
1319 clear_page_mlock(page);
8186eb6a 1320
9a982250
KS
1321 if (PageTransCompound(page))
1322 deferred_split_huge_page(compound_head(page));
1323
b904dcfe
KM
1324 /*
1325 * It would be tidy to reset the PageAnon mapping here,
1326 * but that might overwrite a racing page_add_anon_rmap
1327 * which increments mapcount after us but sets mapping
2d4894b5 1328 * before us: so leave the reset to free_unref_page,
b904dcfe
KM
1329 * and remember that it's only reliable while mapped.
1330 * Leaving it set also helps swapoff to reinstate ptes
1331 * faster for those pages still in swapcache.
1332 */
1da177e4
LT
1333}
1334
1335/*
52629506 1336 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1337 */
e4b82222 1338static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1339 unsigned long address, void *arg)
1da177e4
LT
1340{
1341 struct mm_struct *mm = vma->vm_mm;
c7ab0d2f
KS
1342 struct page_vma_mapped_walk pvmw = {
1343 .page = page,
1344 .vma = vma,
1345 .address = address,
1346 };
1da177e4 1347 pte_t pteval;
c7ab0d2f 1348 struct page *subpage;
785373b4 1349 bool ret = true;
ac46d4f3 1350 struct mmu_notifier_range range;
802a3a92 1351 enum ttu_flags flags = (enum ttu_flags)arg;
1da177e4 1352
10f78390
HD
1353 /*
1354 * When racing against e.g. zap_pte_range() on another cpu,
1355 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1356 * try_to_unmap() may return false when it is about to become true,
1357 * if page table locking is skipped: use TTU_SYNC to wait for that.
1358 */
1359 if (flags & TTU_SYNC)
1360 pvmw.flags = PVMW_SYNC;
1361
b87537d9
HD
1362 /* munlock has nothing to gain from examining un-locked vmas */
1363 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
e4b82222 1364 return true;
b87537d9 1365
a5430dda
JG
1366 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1367 is_zone_device_page(page) && !is_device_private_page(page))
1368 return true;
1369
fec89c10
KS
1370 if (flags & TTU_SPLIT_HUGE_PMD) {
1371 split_huge_pmd_address(vma, address,
b5ff8161 1372 flags & TTU_SPLIT_FREEZE, page);
fec89c10
KS
1373 }
1374
369ea824 1375 /*
017b1660
MK
1376 * For THP, we have to assume the worse case ie pmd for invalidation.
1377 * For hugetlb, it could be much worse if we need to do pud
1378 * invalidation in the case of pmd sharing.
1379 *
1380 * Note that the page can not be free in this function as call of
1381 * try_to_unmap() must hold a reference on the page.
369ea824 1382 */
5bbd1b12
HD
1383 range.end = PageKsm(page) ?
1384 address + PAGE_SIZE : vma_address_end(page, vma);
7269f999 1385 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
5bbd1b12 1386 address, range.end);
017b1660
MK
1387 if (PageHuge(page)) {
1388 /*
1389 * If sharing is possible, start and end will be adjusted
1390 * accordingly.
1391 */
ac46d4f3
JG
1392 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1393 &range.end);
017b1660 1394 }
ac46d4f3 1395 mmu_notifier_invalidate_range_start(&range);
369ea824 1396
c7ab0d2f 1397 while (page_vma_mapped_walk(&pvmw)) {
616b8371
ZY
1398#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1399 /* PMD-mapped THP migration entry */
1400 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1401 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1402
616b8371
ZY
1403 set_pmd_migration_entry(&pvmw, page);
1404 continue;
1405 }
1406#endif
1407
c7ab0d2f
KS
1408 /*
1409 * If the page is mlock()d, we cannot swap it out.
1410 * If it's recently referenced (perhaps page_referenced
1411 * skipped over this mm) then we should reactivate it.
1412 */
1413 if (!(flags & TTU_IGNORE_MLOCK)) {
1414 if (vma->vm_flags & VM_LOCKED) {
1415 /* PTE-mapped THP are never mlocked */
1416 if (!PageTransCompound(page)) {
1417 /*
1418 * Holding pte lock, we do *not* need
1419 * mmap_sem here
1420 */
1421 mlock_vma_page(page);
1422 }
e4b82222 1423 ret = false;
c7ab0d2f
KS
1424 page_vma_mapped_walk_done(&pvmw);
1425 break;
9a73f61b 1426 }
c7ab0d2f
KS
1427 if (flags & TTU_MUNLOCK)
1428 continue;
b87537d9 1429 }
c7ab0d2f 1430
8346242a
KS
1431 /* Unexpected PMD-mapped THP? */
1432 VM_BUG_ON_PAGE(!pvmw.pte, page);
1433
1434 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
785373b4
LT
1435 address = pvmw.address;
1436
017b1660
MK
1437 if (PageHuge(page)) {
1438 if (huge_pmd_unshare(mm, &address, pvmw.pte)) {
1439 /*
1440 * huge_pmd_unshare unmapped an entire PMD
1441 * page. There is no way of knowing exactly
1442 * which PMDs may be cached for this mm, so
1443 * we must flush them all. start/end were
1444 * already adjusted above to cover this range.
1445 */
ac46d4f3
JG
1446 flush_cache_range(vma, range.start, range.end);
1447 flush_tlb_range(vma, range.start, range.end);
1448 mmu_notifier_invalidate_range(mm, range.start,
1449 range.end);
017b1660
MK
1450
1451 /*
1452 * The ref count of the PMD page was dropped
1453 * which is part of the way map counting
1454 * is done for shared PMDs. Return 'true'
1455 * here. When there is no other sharing,
1456 * huge_pmd_unshare returns false and we will
1457 * unmap the actual page and drop map count
1458 * to zero.
1459 */
1460 page_vma_mapped_walk_done(&pvmw);
1461 break;
1462 }
1463 }
8346242a 1464
a5430dda
JG
1465 if (IS_ENABLED(CONFIG_MIGRATION) &&
1466 (flags & TTU_MIGRATION) &&
1467 is_zone_device_page(page)) {
1468 swp_entry_t entry;
1469 pte_t swp_pte;
1470
1471 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1472
1473 /*
1474 * Store the pfn of the page in a special migration
1475 * pte. do_swap_page() will wait until the migration
1476 * pte is removed and then restart fault handling.
1477 */
1478 entry = make_migration_entry(page, 0);
1479 swp_pte = swp_entry_to_pte(entry);
1480 if (pte_soft_dirty(pteval))
1481 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1482 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
0f10851e
JG
1483 /*
1484 * No need to invalidate here it will synchronize on
1485 * against the special swap migration pte.
1de13ee5
RC
1486 *
1487 * The assignment to subpage above was computed from a
1488 * swap PTE which results in an invalid pointer.
1489 * Since only PAGE_SIZE pages can currently be
1490 * migrated, just set it to page. This will need to be
1491 * changed when hugepage migrations to device private
1492 * memory are supported.
0f10851e 1493 */
1de13ee5 1494 subpage = page;
a5430dda
JG
1495 goto discard;
1496 }
1497
c7ab0d2f 1498 if (!(flags & TTU_IGNORE_ACCESS)) {
785373b4 1499 if (ptep_clear_flush_young_notify(vma, address,
c7ab0d2f 1500 pvmw.pte)) {
e4b82222 1501 ret = false;
c7ab0d2f
KS
1502 page_vma_mapped_walk_done(&pvmw);
1503 break;
1504 }
b291f000 1505 }
1da177e4 1506
c7ab0d2f 1507 /* Nuke the page table entry. */
785373b4 1508 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
c7ab0d2f
KS
1509 if (should_defer_flush(mm, flags)) {
1510 /*
1511 * We clear the PTE but do not flush so potentially
1512 * a remote CPU could still be writing to the page.
1513 * If the entry was previously clean then the
1514 * architecture must guarantee that a clear->dirty
1515 * transition on a cached TLB entry is written through
1516 * and traps if the PTE is unmapped.
1517 */
785373b4 1518 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
c7ab0d2f
KS
1519
1520 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1521 } else {
785373b4 1522 pteval = ptep_clear_flush(vma, address, pvmw.pte);
c7ab0d2f 1523 }
72b252ae 1524
c7ab0d2f
KS
1525 /* Move the dirty bit to the page. Now the pte is gone. */
1526 if (pte_dirty(pteval))
1527 set_page_dirty(page);
1da177e4 1528
c7ab0d2f
KS
1529 /* Update high watermark before we lower rss */
1530 update_hiwater_rss(mm);
1da177e4 1531
c7ab0d2f 1532 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5fd27b8e 1533 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
c7ab0d2f 1534 if (PageHuge(page)) {
d8c6546b 1535 hugetlb_count_sub(compound_nr(page), mm);
785373b4 1536 set_huge_swap_pte_at(mm, address,
5fd27b8e
PA
1537 pvmw.pte, pteval,
1538 vma_mmu_pagesize(vma));
c7ab0d2f
KS
1539 } else {
1540 dec_mm_counter(mm, mm_counter(page));
785373b4 1541 set_pte_at(mm, address, pvmw.pte, pteval);
c7ab0d2f 1542 }
365e9c87 1543
bce73e48 1544 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
c7ab0d2f
KS
1545 /*
1546 * The guest indicated that the page content is of no
1547 * interest anymore. Simply discard the pte, vmscan
1548 * will take care of the rest.
bce73e48
CB
1549 * A future reference will then fault in a new zero
1550 * page. When userfaultfd is active, we must not drop
1551 * this page though, as its main user (postcopy
1552 * migration) will not expect userfaults on already
1553 * copied pages.
c7ab0d2f 1554 */
eca56ff9 1555 dec_mm_counter(mm, mm_counter(page));
0f10851e
JG
1556 /* We have to invalidate as we cleared the pte */
1557 mmu_notifier_invalidate_range(mm, address,
1558 address + PAGE_SIZE);
c7ab0d2f 1559 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
b5ff8161 1560 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
c7ab0d2f
KS
1561 swp_entry_t entry;
1562 pte_t swp_pte;
ca827d55
KA
1563
1564 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1565 set_pte_at(mm, address, pvmw.pte, pteval);
1566 ret = false;
1567 page_vma_mapped_walk_done(&pvmw);
1568 break;
1569 }
1570
c7ab0d2f
KS
1571 /*
1572 * Store the pfn of the page in a special migration
1573 * pte. do_swap_page() will wait until the migration
1574 * pte is removed and then restart fault handling.
1575 */
1576 entry = make_migration_entry(subpage,
1577 pte_write(pteval));
1578 swp_pte = swp_entry_to_pte(entry);
1579 if (pte_soft_dirty(pteval))
1580 swp_pte = pte_swp_mksoft_dirty(swp_pte);
785373b4 1581 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1582 /*
1583 * No need to invalidate here it will synchronize on
1584 * against the special swap migration pte.
1585 */
c7ab0d2f
KS
1586 } else if (PageAnon(page)) {
1587 swp_entry_t entry = { .val = page_private(subpage) };
1588 pte_t swp_pte;
1589 /*
1590 * Store the swap location in the pte.
1591 * See handle_pte_fault() ...
1592 */
eb94a878
MK
1593 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1594 WARN_ON_ONCE(1);
83612a94 1595 ret = false;
369ea824 1596 /* We have to invalidate as we cleared the pte */
0f10851e
JG
1597 mmu_notifier_invalidate_range(mm, address,
1598 address + PAGE_SIZE);
eb94a878
MK
1599 page_vma_mapped_walk_done(&pvmw);
1600 break;
1601 }
c7ab0d2f 1602
802a3a92
SL
1603 /* MADV_FREE page check */
1604 if (!PageSwapBacked(page)) {
1605 if (!PageDirty(page)) {
0f10851e
JG
1606 /* Invalidate as we cleared the pte */
1607 mmu_notifier_invalidate_range(mm,
1608 address, address + PAGE_SIZE);
802a3a92
SL
1609 dec_mm_counter(mm, MM_ANONPAGES);
1610 goto discard;
1611 }
1612
1613 /*
1614 * If the page was redirtied, it cannot be
1615 * discarded. Remap the page to page table.
1616 */
785373b4 1617 set_pte_at(mm, address, pvmw.pte, pteval);
18863d3a 1618 SetPageSwapBacked(page);
e4b82222 1619 ret = false;
802a3a92
SL
1620 page_vma_mapped_walk_done(&pvmw);
1621 break;
c7ab0d2f 1622 }
854e9ed0 1623
c7ab0d2f 1624 if (swap_duplicate(entry) < 0) {
785373b4 1625 set_pte_at(mm, address, pvmw.pte, pteval);
e4b82222 1626 ret = false;
c7ab0d2f
KS
1627 page_vma_mapped_walk_done(&pvmw);
1628 break;
1629 }
ca827d55
KA
1630 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1631 set_pte_at(mm, address, pvmw.pte, pteval);
1632 ret = false;
1633 page_vma_mapped_walk_done(&pvmw);
1634 break;
1635 }
c7ab0d2f
KS
1636 if (list_empty(&mm->mmlist)) {
1637 spin_lock(&mmlist_lock);
1638 if (list_empty(&mm->mmlist))
1639 list_add(&mm->mmlist, &init_mm.mmlist);
1640 spin_unlock(&mmlist_lock);
1641 }
854e9ed0 1642 dec_mm_counter(mm, MM_ANONPAGES);
c7ab0d2f
KS
1643 inc_mm_counter(mm, MM_SWAPENTS);
1644 swp_pte = swp_entry_to_pte(entry);
1645 if (pte_soft_dirty(pteval))
1646 swp_pte = pte_swp_mksoft_dirty(swp_pte);
785373b4 1647 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1648 /* Invalidate as we cleared the pte */
1649 mmu_notifier_invalidate_range(mm, address,
1650 address + PAGE_SIZE);
1651 } else {
1652 /*
906f9cdf
HD
1653 * This is a locked file-backed page, thus it cannot
1654 * be removed from the page cache and replaced by a new
1655 * page before mmu_notifier_invalidate_range_end, so no
0f10851e
JG
1656 * concurrent thread might update its page table to
1657 * point at new page while a device still is using this
1658 * page.
1659 *
ad56b738 1660 * See Documentation/vm/mmu_notifier.rst
0f10851e 1661 */
c7ab0d2f 1662 dec_mm_counter(mm, mm_counter_file(page));
0f10851e 1663 }
854e9ed0 1664discard:
0f10851e
JG
1665 /*
1666 * No need to call mmu_notifier_invalidate_range() it has be
1667 * done above for all cases requiring it to happen under page
1668 * table lock before mmu_notifier_invalidate_range_end()
1669 *
ad56b738 1670 * See Documentation/vm/mmu_notifier.rst
0f10851e 1671 */
c7ab0d2f
KS
1672 page_remove_rmap(subpage, PageHuge(page));
1673 put_page(page);
c7ab0d2f 1674 }
369ea824 1675
ac46d4f3 1676 mmu_notifier_invalidate_range_end(&range);
369ea824 1677
caed0f48 1678 return ret;
1da177e4
LT
1679}
1680
71e3aac0 1681bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1682{
1683 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1684
1685 if (!maybe_stack)
1686 return false;
1687
1688 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1689 VM_STACK_INCOMPLETE_SETUP)
1690 return true;
1691
1692 return false;
1693}
1694
52629506
JK
1695static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1696{
1697 return is_vma_temporary_stack(vma);
1698}
1699
42c1bbdc 1700static int page_not_mapped(struct page *page)
52629506 1701{
42c1bbdc 1702 return !page_mapped(page);
2a52bcbc 1703}
52629506 1704
1da177e4
LT
1705/**
1706 * try_to_unmap - try to remove all page table mappings to a page
1707 * @page: the page to get unmapped
14fa31b8 1708 * @flags: action and flags
1da177e4
LT
1709 *
1710 * Tries to remove all the page table entries which are mapping this
1711 * page, used in the pageout path. Caller must hold the page lock.
1da177e4 1712 *
666e5a40 1713 * If unmap is successful, return true. Otherwise, false.
1da177e4 1714 */
666e5a40 1715bool try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4 1716{
52629506
JK
1717 struct rmap_walk_control rwc = {
1718 .rmap_one = try_to_unmap_one,
802a3a92 1719 .arg = (void *)flags,
42c1bbdc 1720 .done = page_not_mapped,
52629506
JK
1721 .anon_lock = page_lock_anon_vma_read,
1722 };
1da177e4 1723
52629506
JK
1724 /*
1725 * During exec, a temporary VMA is setup and later moved.
1726 * The VMA is moved under the anon_vma lock but not the
1727 * page tables leading to a race where migration cannot
1728 * find the migration ptes. Rather than increasing the
1729 * locking requirements of exec(), migration skips
1730 * temporary VMAs until after exec() completes.
1731 */
b5ff8161
NH
1732 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1733 && !PageKsm(page) && PageAnon(page))
52629506
JK
1734 rwc.invalid_vma = invalid_migration_vma;
1735
2a52bcbc 1736 if (flags & TTU_RMAP_LOCKED)
33fc80e2 1737 rmap_walk_locked(page, &rwc);
2a52bcbc 1738 else
33fc80e2 1739 rmap_walk(page, &rwc);
52629506 1740
10f78390
HD
1741 /*
1742 * When racing against e.g. zap_pte_range() on another cpu,
1743 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1744 * try_to_unmap() may return false when it is about to become true,
1745 * if page table locking is skipped: use TTU_SYNC to wait for that.
1746 */
1747 return !page_mapcount(page);
1da177e4 1748}
81b4082d 1749
b291f000
NP
1750/**
1751 * try_to_munlock - try to munlock a page
1752 * @page: the page to be munlocked
1753 *
1754 * Called from munlock code. Checks all of the VMAs mapping the page
1755 * to make sure nobody else has this page mlocked. The page will be
1756 * returned with PG_mlocked cleared if no other vmas have it mlocked.
b291f000 1757 */
854e9ed0 1758
192d7232
MK
1759void try_to_munlock(struct page *page)
1760{
e8351ac9
JK
1761 struct rmap_walk_control rwc = {
1762 .rmap_one = try_to_unmap_one,
802a3a92 1763 .arg = (void *)TTU_MUNLOCK,
e8351ac9 1764 .done = page_not_mapped,
e8351ac9
JK
1765 .anon_lock = page_lock_anon_vma_read,
1766
1767 };
1768
309381fe 1769 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
192d7232 1770 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
b291f000 1771
192d7232 1772 rmap_walk(page, &rwc);
b291f000 1773}
e9995ef9 1774
01d8b20d 1775void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1776{
01d8b20d 1777 struct anon_vma *root = anon_vma->root;
76545066 1778
624483f3 1779 anon_vma_free(anon_vma);
01d8b20d
PZ
1780 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1781 anon_vma_free(root);
76545066 1782}
76545066 1783
0dd1c7bb
JK
1784static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1785 struct rmap_walk_control *rwc)
faecd8dd
JK
1786{
1787 struct anon_vma *anon_vma;
1788
0dd1c7bb
JK
1789 if (rwc->anon_lock)
1790 return rwc->anon_lock(page);
1791
faecd8dd
JK
1792 /*
1793 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1794 * because that depends on page_mapped(); but not all its usages
1795 * are holding mmap_sem. Users without mmap_sem are required to
1796 * take a reference count to prevent the anon_vma disappearing
1797 */
1798 anon_vma = page_anon_vma(page);
1799 if (!anon_vma)
1800 return NULL;
1801
1802 anon_vma_lock_read(anon_vma);
1803 return anon_vma;
1804}
1805
e9995ef9 1806/*
e8351ac9
JK
1807 * rmap_walk_anon - do something to anonymous page using the object-based
1808 * rmap method
1809 * @page: the page to be handled
1810 * @rwc: control variable according to each walk type
1811 *
1812 * Find all the mappings of a page using the mapping pointer and the vma chains
1813 * contained in the anon_vma struct it points to.
1814 *
1815 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1816 * where the page was found will be held for write. So, we won't recheck
1817 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1818 * LOCKED.
e9995ef9 1819 */
1df631ae 1820static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
b9773199 1821 bool locked)
e9995ef9
HD
1822{
1823 struct anon_vma *anon_vma;
a8fa41ad 1824 pgoff_t pgoff_start, pgoff_end;
5beb4930 1825 struct anon_vma_chain *avc;
e9995ef9 1826
b9773199
KS
1827 if (locked) {
1828 anon_vma = page_anon_vma(page);
1829 /* anon_vma disappear under us? */
1830 VM_BUG_ON_PAGE(!anon_vma, page);
1831 } else {
1832 anon_vma = rmap_walk_anon_lock(page, rwc);
1833 }
e9995ef9 1834 if (!anon_vma)
1df631ae 1835 return;
faecd8dd 1836
a8fa41ad
KS
1837 pgoff_start = page_to_pgoff(page);
1838 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1839 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1840 pgoff_start, pgoff_end) {
5beb4930 1841 struct vm_area_struct *vma = avc->vma;
e9995ef9 1842 unsigned long address = vma_address(page, vma);
0dd1c7bb 1843
5bbd1b12 1844 VM_BUG_ON_VMA(address == -EFAULT, vma);
ad12695f
AA
1845 cond_resched();
1846
0dd1c7bb
JK
1847 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1848 continue;
1849
e4b82222 1850 if (!rwc->rmap_one(page, vma, address, rwc->arg))
e9995ef9 1851 break;
0dd1c7bb
JK
1852 if (rwc->done && rwc->done(page))
1853 break;
e9995ef9 1854 }
b9773199
KS
1855
1856 if (!locked)
1857 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1858}
1859
e8351ac9
JK
1860/*
1861 * rmap_walk_file - do something to file page using the object-based rmap method
1862 * @page: the page to be handled
1863 * @rwc: control variable according to each walk type
1864 *
1865 * Find all the mappings of a page using the mapping pointer and the vma chains
1866 * contained in the address_space struct it points to.
1867 *
1868 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1869 * where the page was found will be held for write. So, we won't recheck
1870 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1871 * LOCKED.
1872 */
1df631ae 1873static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
b9773199 1874 bool locked)
e9995ef9 1875{
b9773199 1876 struct address_space *mapping = page_mapping(page);
a8fa41ad 1877 pgoff_t pgoff_start, pgoff_end;
e9995ef9 1878 struct vm_area_struct *vma;
e9995ef9 1879
9f32624b
JK
1880 /*
1881 * The page lock not only makes sure that page->mapping cannot
1882 * suddenly be NULLified by truncation, it makes sure that the
1883 * structure at mapping cannot be freed and reused yet,
c8c06efa 1884 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 1885 */
81d1b09c 1886 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1887
e9995ef9 1888 if (!mapping)
1df631ae 1889 return;
3dec0ba0 1890
a8fa41ad
KS
1891 pgoff_start = page_to_pgoff(page);
1892 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
b9773199
KS
1893 if (!locked)
1894 i_mmap_lock_read(mapping);
a8fa41ad
KS
1895 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1896 pgoff_start, pgoff_end) {
e9995ef9 1897 unsigned long address = vma_address(page, vma);
0dd1c7bb 1898
5bbd1b12 1899 VM_BUG_ON_VMA(address == -EFAULT, vma);
ad12695f
AA
1900 cond_resched();
1901
0dd1c7bb
JK
1902 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1903 continue;
1904
e4b82222 1905 if (!rwc->rmap_one(page, vma, address, rwc->arg))
0dd1c7bb
JK
1906 goto done;
1907 if (rwc->done && rwc->done(page))
1908 goto done;
e9995ef9 1909 }
0dd1c7bb 1910
0dd1c7bb 1911done:
b9773199
KS
1912 if (!locked)
1913 i_mmap_unlock_read(mapping);
e9995ef9
HD
1914}
1915
1df631ae 1916void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1917{
e9995ef9 1918 if (unlikely(PageKsm(page)))
1df631ae 1919 rmap_walk_ksm(page, rwc);
e9995ef9 1920 else if (PageAnon(page))
1df631ae 1921 rmap_walk_anon(page, rwc, false);
b9773199 1922 else
1df631ae 1923 rmap_walk_file(page, rwc, false);
b9773199
KS
1924}
1925
1926/* Like rmap_walk, but caller holds relevant rmap lock */
1df631ae 1927void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
b9773199
KS
1928{
1929 /* no ksm support for now */
1930 VM_BUG_ON_PAGE(PageKsm(page), page);
1931 if (PageAnon(page))
1df631ae 1932 rmap_walk_anon(page, rwc, true);
e9995ef9 1933 else
1df631ae 1934 rmap_walk_file(page, rwc, true);
e9995ef9 1935}
0fe6e20b 1936
e3390f67 1937#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b 1938/*
451b9514 1939 * The following two functions are for anonymous (private mapped) hugepages.
0fe6e20b
NH
1940 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1941 * and no lru code, because we handle hugepages differently from common pages.
1942 */
0fe6e20b
NH
1943void hugepage_add_anon_rmap(struct page *page,
1944 struct vm_area_struct *vma, unsigned long address)
1945{
1946 struct anon_vma *anon_vma = vma->anon_vma;
1947 int first;
a850ea30
NH
1948
1949 BUG_ON(!PageLocked(page));
0fe6e20b 1950 BUG_ON(!anon_vma);
5dbe0af4 1951 /* address might be in next vma when migration races vma_adjust */
53f9263b 1952 first = atomic_inc_and_test(compound_mapcount_ptr(page));
0fe6e20b 1953 if (first)
451b9514 1954 __page_set_anon_rmap(page, vma, address, 0);
0fe6e20b
NH
1955}
1956
1957void hugepage_add_new_anon_rmap(struct page *page,
1958 struct vm_area_struct *vma, unsigned long address)
1959{
1960 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
53f9263b 1961 atomic_set(compound_mapcount_ptr(page), 0);
451b9514 1962 __page_set_anon_rmap(page, vma, address, 1);
0fe6e20b 1963}
e3390f67 1964#endif /* CONFIG_HUGETLB_PAGE */