]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/slub.c
mm: Don't build mm_dump_obj() on CONFIG_PRINTK=n kernels
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b89fb5ef 30#include <linux/kfence.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
2482ddec 37#include <linux/random.h>
81819f0f 38
4a92379b
RK
39#include <trace/events/kmem.h>
40
072bb0aa
MG
41#include "internal.h"
42
81819f0f
CL
43/*
44 * Lock order:
18004c5d 45 * 1. slab_mutex (Global Mutex)
881db7fb
CL
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 48 *
18004c5d 49 * slab_mutex
881db7fb 50 *
18004c5d 51 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
52 * and to synchronize major metadata changes to slab cache structures.
53 *
54 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 55 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 56 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
57 * B. page->inuse -> Number of objects in use
58 * C. page->objects -> Number of objects in page
59 * D. page->frozen -> frozen state
881db7fb
CL
60 *
61 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
62 * on any list except per cpu partial list. The processor that froze the
63 * slab is the one who can perform list operations on the page. Other
64 * processors may put objects onto the freelist but the processor that
65 * froze the slab is the only one that can retrieve the objects from the
66 * page's freelist.
81819f0f
CL
67 *
68 * The list_lock protects the partial and full list on each node and
69 * the partial slab counter. If taken then no new slabs may be added or
70 * removed from the lists nor make the number of partial slabs be modified.
71 * (Note that the total number of slabs is an atomic value that may be
72 * modified without taking the list lock).
73 *
74 * The list_lock is a centralized lock and thus we avoid taking it as
75 * much as possible. As long as SLUB does not have to handle partial
76 * slabs, operations can continue without any centralized lock. F.e.
77 * allocating a long series of objects that fill up slabs does not require
78 * the list lock.
81819f0f
CL
79 * Interrupts are disabled during allocation and deallocation in order to
80 * make the slab allocator safe to use in the context of an irq. In addition
81 * interrupts are disabled to ensure that the processor does not change
82 * while handling per_cpu slabs, due to kernel preemption.
83 *
84 * SLUB assigns one slab for allocation to each processor.
85 * Allocations only occur from these slabs called cpu slabs.
86 *
672bba3a
CL
87 * Slabs with free elements are kept on a partial list and during regular
88 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 89 * freed then the slab will show up again on the partial lists.
672bba3a
CL
90 * We track full slabs for debugging purposes though because otherwise we
91 * cannot scan all objects.
81819f0f
CL
92 *
93 * Slabs are freed when they become empty. Teardown and setup is
94 * minimal so we rely on the page allocators per cpu caches for
95 * fast frees and allocs.
96 *
aed68148 97 * page->frozen The slab is frozen and exempt from list processing.
4b6f0750
CL
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f 112 *
aed68148 113 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
81819f0f 114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
ca0cab65
VB
118#ifdef CONFIG_SLUB_DEBUG
119#ifdef CONFIG_SLUB_DEBUG_ON
120DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
121#else
122DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
123#endif
124#endif
125
59052e89
VB
126static inline bool kmem_cache_debug(struct kmem_cache *s)
127{
128 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
af537b0a 129}
5577bd8a 130
117d54df 131void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be 132{
59052e89 133 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
d86bd1be
JK
134 p += s->red_left_pad;
135
136 return p;
137}
138
345c905d
JK
139static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
140{
141#ifdef CONFIG_SLUB_CPU_PARTIAL
142 return !kmem_cache_debug(s);
143#else
144 return false;
145#endif
146}
147
81819f0f
CL
148/*
149 * Issues still to be resolved:
150 *
81819f0f
CL
151 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
152 *
81819f0f
CL
153 * - Variable sizing of the per node arrays
154 */
155
156/* Enable to test recovery from slab corruption on boot */
157#undef SLUB_RESILIENCY_TEST
158
b789ef51
CL
159/* Enable to log cmpxchg failures */
160#undef SLUB_DEBUG_CMPXCHG
161
2086d26a
CL
162/*
163 * Mininum number of partial slabs. These will be left on the partial
164 * lists even if they are empty. kmem_cache_shrink may reclaim them.
165 */
76be8950 166#define MIN_PARTIAL 5
e95eed57 167
2086d26a
CL
168/*
169 * Maximum number of desirable partial slabs.
170 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 171 * sort the partial list by the number of objects in use.
2086d26a
CL
172 */
173#define MAX_PARTIAL 10
174
becfda68 175#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 176 SLAB_POISON | SLAB_STORE_USER)
672bba3a 177
149daaf3
LA
178/*
179 * These debug flags cannot use CMPXCHG because there might be consistency
180 * issues when checking or reading debug information
181 */
182#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 SLAB_TRACE)
184
185
fa5ec8a1 186/*
3de47213
DR
187 * Debugging flags that require metadata to be stored in the slab. These get
188 * disabled when slub_debug=O is used and a cache's min order increases with
189 * metadata.
fa5ec8a1 190 */
3de47213 191#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 192
210b5c06
CG
193#define OO_SHIFT 16
194#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 195#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 196
81819f0f 197/* Internal SLUB flags */
d50112ed 198/* Poison object */
4fd0b46e 199#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 200/* Use cmpxchg_double */
4fd0b46e 201#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 202
02cbc874
CL
203/*
204 * Tracking user of a slab.
205 */
d6543e39 206#define TRACK_ADDRS_COUNT 16
02cbc874 207struct track {
ce71e27c 208 unsigned long addr; /* Called from address */
d6543e39
BG
209#ifdef CONFIG_STACKTRACE
210 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
211#endif
02cbc874
CL
212 int cpu; /* Was running on cpu */
213 int pid; /* Pid context */
214 unsigned long when; /* When did the operation occur */
215};
216
217enum track_item { TRACK_ALLOC, TRACK_FREE };
218
ab4d5ed5 219#ifdef CONFIG_SYSFS
81819f0f
CL
220static int sysfs_slab_add(struct kmem_cache *);
221static int sysfs_slab_alias(struct kmem_cache *, const char *);
81819f0f 222#else
0c710013
CL
223static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 { return 0; }
81819f0f
CL
226#endif
227
4fdccdfb 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
229{
230#ifdef CONFIG_SLUB_STATS
88da03a6
CL
231 /*
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
234 */
235 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
236#endif
237}
238
7e1fa93d
VB
239/*
240 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
241 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
242 * differ during memory hotplug/hotremove operations.
243 * Protected by slab_mutex.
244 */
245static nodemask_t slab_nodes;
246
81819f0f
CL
247/********************************************************************
248 * Core slab cache functions
249 *******************************************************************/
250
2482ddec
KC
251/*
252 * Returns freelist pointer (ptr). With hardening, this is obfuscated
253 * with an XOR of the address where the pointer is held and a per-cache
254 * random number.
255 */
256static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
257 unsigned long ptr_addr)
258{
259#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9 260 /*
aa1ef4d7 261 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
d36a63a9
AK
262 * Normally, this doesn't cause any issues, as both set_freepointer()
263 * and get_freepointer() are called with a pointer with the same tag.
264 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
265 * example, when __free_slub() iterates over objects in a cache, it
266 * passes untagged pointers to check_object(). check_object() in turns
267 * calls get_freepointer() with an untagged pointer, which causes the
268 * freepointer to be restored incorrectly.
269 */
270 return (void *)((unsigned long)ptr ^ s->random ^
1ad53d9f 271 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
2482ddec
KC
272#else
273 return ptr;
274#endif
275}
276
277/* Returns the freelist pointer recorded at location ptr_addr. */
278static inline void *freelist_dereference(const struct kmem_cache *s,
279 void *ptr_addr)
280{
281 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
282 (unsigned long)ptr_addr);
283}
284
7656c72b
CL
285static inline void *get_freepointer(struct kmem_cache *s, void *object)
286{
aa1ef4d7 287 object = kasan_reset_tag(object);
2482ddec 288 return freelist_dereference(s, object + s->offset);
7656c72b
CL
289}
290
0ad9500e
ED
291static void prefetch_freepointer(const struct kmem_cache *s, void *object)
292{
0882ff91 293 prefetch(object + s->offset);
0ad9500e
ED
294}
295
1393d9a1
CL
296static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
297{
2482ddec 298 unsigned long freepointer_addr;
1393d9a1
CL
299 void *p;
300
8e57f8ac 301 if (!debug_pagealloc_enabled_static())
922d566c
JK
302 return get_freepointer(s, object);
303
2482ddec 304 freepointer_addr = (unsigned long)object + s->offset;
fe557319 305 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
2482ddec 306 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
307}
308
7656c72b
CL
309static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
310{
2482ddec
KC
311 unsigned long freeptr_addr = (unsigned long)object + s->offset;
312
ce6fa91b
AP
313#ifdef CONFIG_SLAB_FREELIST_HARDENED
314 BUG_ON(object == fp); /* naive detection of double free or corruption */
315#endif
316
aa1ef4d7 317 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
2482ddec 318 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
319}
320
321/* Loop over all objects in a slab */
224a88be 322#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
323 for (__p = fixup_red_left(__s, __addr); \
324 __p < (__addr) + (__objects) * (__s)->size; \
325 __p += (__s)->size)
7656c72b 326
9736d2a9 327static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 328{
9736d2a9 329 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
330}
331
19af27af 332static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 333 unsigned int size)
834f3d11
CL
334{
335 struct kmem_cache_order_objects x = {
9736d2a9 336 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
337 };
338
339 return x;
340}
341
19af27af 342static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 343{
210b5c06 344 return x.x >> OO_SHIFT;
834f3d11
CL
345}
346
19af27af 347static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 348{
210b5c06 349 return x.x & OO_MASK;
834f3d11
CL
350}
351
881db7fb
CL
352/*
353 * Per slab locking using the pagelock
354 */
355static __always_inline void slab_lock(struct page *page)
356{
48c935ad 357 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
358 bit_spin_lock(PG_locked, &page->flags);
359}
360
361static __always_inline void slab_unlock(struct page *page)
362{
48c935ad 363 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
364 __bit_spin_unlock(PG_locked, &page->flags);
365}
366
1d07171c
CL
367/* Interrupts must be disabled (for the fallback code to work right) */
368static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
369 void *freelist_old, unsigned long counters_old,
370 void *freelist_new, unsigned long counters_new,
371 const char *n)
372{
373 VM_BUG_ON(!irqs_disabled());
2565409f
HC
374#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
375 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 376 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 377 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
378 freelist_old, counters_old,
379 freelist_new, counters_new))
6f6528a1 380 return true;
1d07171c
CL
381 } else
382#endif
383 {
384 slab_lock(page);
d0e0ac97
CG
385 if (page->freelist == freelist_old &&
386 page->counters == counters_old) {
1d07171c 387 page->freelist = freelist_new;
7d27a04b 388 page->counters = counters_new;
1d07171c 389 slab_unlock(page);
6f6528a1 390 return true;
1d07171c
CL
391 }
392 slab_unlock(page);
393 }
394
395 cpu_relax();
396 stat(s, CMPXCHG_DOUBLE_FAIL);
397
398#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 399 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
400#endif
401
6f6528a1 402 return false;
1d07171c
CL
403}
404
b789ef51
CL
405static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
406 void *freelist_old, unsigned long counters_old,
407 void *freelist_new, unsigned long counters_new,
408 const char *n)
409{
2565409f
HC
410#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
411 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 412 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 413 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
414 freelist_old, counters_old,
415 freelist_new, counters_new))
6f6528a1 416 return true;
b789ef51
CL
417 } else
418#endif
419 {
1d07171c
CL
420 unsigned long flags;
421
422 local_irq_save(flags);
881db7fb 423 slab_lock(page);
d0e0ac97
CG
424 if (page->freelist == freelist_old &&
425 page->counters == counters_old) {
b789ef51 426 page->freelist = freelist_new;
7d27a04b 427 page->counters = counters_new;
881db7fb 428 slab_unlock(page);
1d07171c 429 local_irq_restore(flags);
6f6528a1 430 return true;
b789ef51 431 }
881db7fb 432 slab_unlock(page);
1d07171c 433 local_irq_restore(flags);
b789ef51
CL
434 }
435
436 cpu_relax();
437 stat(s, CMPXCHG_DOUBLE_FAIL);
438
439#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 440 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
441#endif
442
6f6528a1 443 return false;
b789ef51
CL
444}
445
41ecc55b 446#ifdef CONFIG_SLUB_DEBUG
90e9f6a6
YZ
447static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
448static DEFINE_SPINLOCK(object_map_lock);
449
5f80b13a
CL
450/*
451 * Determine a map of object in use on a page.
452 *
881db7fb 453 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
454 * not vanish from under us.
455 */
90e9f6a6 456static unsigned long *get_map(struct kmem_cache *s, struct page *page)
31364c2e 457 __acquires(&object_map_lock)
5f80b13a
CL
458{
459 void *p;
460 void *addr = page_address(page);
461
90e9f6a6
YZ
462 VM_BUG_ON(!irqs_disabled());
463
464 spin_lock(&object_map_lock);
465
466 bitmap_zero(object_map, page->objects);
467
5f80b13a 468 for (p = page->freelist; p; p = get_freepointer(s, p))
4138fdfc 469 set_bit(__obj_to_index(s, addr, p), object_map);
90e9f6a6
YZ
470
471 return object_map;
472}
473
81aba9e0 474static void put_map(unsigned long *map) __releases(&object_map_lock)
90e9f6a6
YZ
475{
476 VM_BUG_ON(map != object_map);
90e9f6a6 477 spin_unlock(&object_map_lock);
5f80b13a
CL
478}
479
870b1fbb 480static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
481{
482 if (s->flags & SLAB_RED_ZONE)
483 return s->size - s->red_left_pad;
484
485 return s->size;
486}
487
488static inline void *restore_red_left(struct kmem_cache *s, void *p)
489{
490 if (s->flags & SLAB_RED_ZONE)
491 p -= s->red_left_pad;
492
493 return p;
494}
495
41ecc55b
CL
496/*
497 * Debug settings:
498 */
89d3c87e 499#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 500static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 501#else
d50112ed 502static slab_flags_t slub_debug;
f0630fff 503#endif
41ecc55b 504
e17f1dfb 505static char *slub_debug_string;
fa5ec8a1 506static int disable_higher_order_debug;
41ecc55b 507
a79316c6
AR
508/*
509 * slub is about to manipulate internal object metadata. This memory lies
510 * outside the range of the allocated object, so accessing it would normally
511 * be reported by kasan as a bounds error. metadata_access_enable() is used
512 * to tell kasan that these accesses are OK.
513 */
514static inline void metadata_access_enable(void)
515{
516 kasan_disable_current();
517}
518
519static inline void metadata_access_disable(void)
520{
521 kasan_enable_current();
522}
523
81819f0f
CL
524/*
525 * Object debugging
526 */
d86bd1be
JK
527
528/* Verify that a pointer has an address that is valid within a slab page */
529static inline int check_valid_pointer(struct kmem_cache *s,
530 struct page *page, void *object)
531{
532 void *base;
533
534 if (!object)
535 return 1;
536
537 base = page_address(page);
338cfaad 538 object = kasan_reset_tag(object);
d86bd1be
JK
539 object = restore_red_left(s, object);
540 if (object < base || object >= base + page->objects * s->size ||
541 (object - base) % s->size) {
542 return 0;
543 }
544
545 return 1;
546}
547
aa2efd5e
DT
548static void print_section(char *level, char *text, u8 *addr,
549 unsigned int length)
81819f0f 550{
a79316c6 551 metadata_access_enable();
aa1ef4d7
AK
552 print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
553 16, 1, addr, length, 1);
a79316c6 554 metadata_access_disable();
81819f0f
CL
555}
556
cbfc35a4
WL
557/*
558 * See comment in calculate_sizes().
559 */
560static inline bool freeptr_outside_object(struct kmem_cache *s)
561{
562 return s->offset >= s->inuse;
563}
564
565/*
566 * Return offset of the end of info block which is inuse + free pointer if
567 * not overlapping with object.
568 */
569static inline unsigned int get_info_end(struct kmem_cache *s)
570{
571 if (freeptr_outside_object(s))
572 return s->inuse + sizeof(void *);
573 else
574 return s->inuse;
575}
576
81819f0f
CL
577static struct track *get_track(struct kmem_cache *s, void *object,
578 enum track_item alloc)
579{
580 struct track *p;
581
cbfc35a4 582 p = object + get_info_end(s);
81819f0f 583
aa1ef4d7 584 return kasan_reset_tag(p + alloc);
81819f0f
CL
585}
586
587static void set_track(struct kmem_cache *s, void *object,
ce71e27c 588 enum track_item alloc, unsigned long addr)
81819f0f 589{
1a00df4a 590 struct track *p = get_track(s, object, alloc);
81819f0f 591
81819f0f 592 if (addr) {
d6543e39 593#ifdef CONFIG_STACKTRACE
79716799 594 unsigned int nr_entries;
d6543e39 595
a79316c6 596 metadata_access_enable();
aa1ef4d7
AK
597 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
598 TRACK_ADDRS_COUNT, 3);
a79316c6 599 metadata_access_disable();
d6543e39 600
79716799
TG
601 if (nr_entries < TRACK_ADDRS_COUNT)
602 p->addrs[nr_entries] = 0;
d6543e39 603#endif
81819f0f
CL
604 p->addr = addr;
605 p->cpu = smp_processor_id();
88e4ccf2 606 p->pid = current->pid;
81819f0f 607 p->when = jiffies;
b8ca7ff7 608 } else {
81819f0f 609 memset(p, 0, sizeof(struct track));
b8ca7ff7 610 }
81819f0f
CL
611}
612
81819f0f
CL
613static void init_tracking(struct kmem_cache *s, void *object)
614{
24922684
CL
615 if (!(s->flags & SLAB_STORE_USER))
616 return;
617
ce71e27c
EGM
618 set_track(s, object, TRACK_FREE, 0UL);
619 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
620}
621
86609d33 622static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
623{
624 if (!t->addr)
625 return;
626
f9f58285 627 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 628 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
629#ifdef CONFIG_STACKTRACE
630 {
631 int i;
632 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
633 if (t->addrs[i])
f9f58285 634 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
635 else
636 break;
637 }
638#endif
24922684
CL
639}
640
e42f174e 641void print_tracking(struct kmem_cache *s, void *object)
24922684 642{
86609d33 643 unsigned long pr_time = jiffies;
24922684
CL
644 if (!(s->flags & SLAB_STORE_USER))
645 return;
646
86609d33
CP
647 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
648 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
649}
650
651static void print_page_info(struct page *page)
652{
f9f58285 653 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 654 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
655
656}
657
658static void slab_bug(struct kmem_cache *s, char *fmt, ...)
659{
ecc42fbe 660 struct va_format vaf;
24922684 661 va_list args;
24922684
CL
662
663 va_start(args, fmt);
ecc42fbe
FF
664 vaf.fmt = fmt;
665 vaf.va = &args;
f9f58285 666 pr_err("=============================================================================\n");
ecc42fbe 667 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 668 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 669
373d4d09 670 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 671 va_end(args);
81819f0f
CL
672}
673
24922684
CL
674static void slab_fix(struct kmem_cache *s, char *fmt, ...)
675{
ecc42fbe 676 struct va_format vaf;
24922684 677 va_list args;
24922684
CL
678
679 va_start(args, fmt);
ecc42fbe
FF
680 vaf.fmt = fmt;
681 vaf.va = &args;
682 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 683 va_end(args);
24922684
CL
684}
685
52f23478 686static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 687 void **freelist, void *nextfree)
52f23478
DZ
688{
689 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
dc07a728
ER
690 !check_valid_pointer(s, page, nextfree) && freelist) {
691 object_err(s, page, *freelist, "Freechain corrupt");
692 *freelist = NULL;
52f23478
DZ
693 slab_fix(s, "Isolate corrupted freechain");
694 return true;
695 }
696
697 return false;
698}
699
24922684 700static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
701{
702 unsigned int off; /* Offset of last byte */
a973e9dd 703 u8 *addr = page_address(page);
24922684
CL
704
705 print_tracking(s, p);
706
707 print_page_info(page);
708
f9f58285
FF
709 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
710 p, p - addr, get_freepointer(s, p));
24922684 711
d86bd1be 712 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
713 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
714 s->red_left_pad);
d86bd1be 715 else if (p > addr + 16)
aa2efd5e 716 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 717
aa2efd5e 718 print_section(KERN_ERR, "Object ", p,
1b473f29 719 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 720 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 721 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 722 s->inuse - s->object_size);
81819f0f 723
cbfc35a4 724 off = get_info_end(s);
81819f0f 725
24922684 726 if (s->flags & SLAB_STORE_USER)
81819f0f 727 off += 2 * sizeof(struct track);
81819f0f 728
80a9201a
AP
729 off += kasan_metadata_size(s);
730
d86bd1be 731 if (off != size_from_object(s))
81819f0f 732 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
733 print_section(KERN_ERR, "Padding ", p + off,
734 size_from_object(s) - off);
24922684
CL
735
736 dump_stack();
81819f0f
CL
737}
738
75c66def 739void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
740 u8 *object, char *reason)
741{
3dc50637 742 slab_bug(s, "%s", reason);
24922684 743 print_trailer(s, page, object);
81819f0f
CL
744}
745
a38965bf 746static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 747 const char *fmt, ...)
81819f0f
CL
748{
749 va_list args;
750 char buf[100];
751
24922684
CL
752 va_start(args, fmt);
753 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 754 va_end(args);
3dc50637 755 slab_bug(s, "%s", buf);
24922684 756 print_page_info(page);
81819f0f
CL
757 dump_stack();
758}
759
f7cb1933 760static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f 761{
aa1ef4d7 762 u8 *p = kasan_reset_tag(object);
81819f0f 763
d86bd1be
JK
764 if (s->flags & SLAB_RED_ZONE)
765 memset(p - s->red_left_pad, val, s->red_left_pad);
766
81819f0f 767 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
768 memset(p, POISON_FREE, s->object_size - 1);
769 p[s->object_size - 1] = POISON_END;
81819f0f
CL
770 }
771
772 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 773 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
774}
775
24922684
CL
776static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
777 void *from, void *to)
778{
779 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
780 memset(from, data, to - from);
781}
782
783static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
784 u8 *object, char *what,
06428780 785 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
786{
787 u8 *fault;
788 u8 *end;
e1b70dd1 789 u8 *addr = page_address(page);
24922684 790
a79316c6 791 metadata_access_enable();
aa1ef4d7 792 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
a79316c6 793 metadata_access_disable();
24922684
CL
794 if (!fault)
795 return 1;
796
797 end = start + bytes;
798 while (end > fault && end[-1] == value)
799 end--;
800
801 slab_bug(s, "%s overwritten", what);
e1b70dd1
MC
802 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
803 fault, end - 1, fault - addr,
804 fault[0], value);
24922684
CL
805 print_trailer(s, page, object);
806
807 restore_bytes(s, what, value, fault, end);
808 return 0;
81819f0f
CL
809}
810
81819f0f
CL
811/*
812 * Object layout:
813 *
814 * object address
815 * Bytes of the object to be managed.
816 * If the freepointer may overlay the object then the free
cbfc35a4 817 * pointer is at the middle of the object.
672bba3a 818 *
81819f0f
CL
819 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
820 * 0xa5 (POISON_END)
821 *
3b0efdfa 822 * object + s->object_size
81819f0f 823 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 824 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 825 * object_size == inuse.
672bba3a 826 *
81819f0f
CL
827 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
828 * 0xcc (RED_ACTIVE) for objects in use.
829 *
830 * object + s->inuse
672bba3a
CL
831 * Meta data starts here.
832 *
81819f0f
CL
833 * A. Free pointer (if we cannot overwrite object on free)
834 * B. Tracking data for SLAB_STORE_USER
672bba3a 835 * C. Padding to reach required alignment boundary or at mininum
6446faa2 836 * one word if debugging is on to be able to detect writes
672bba3a
CL
837 * before the word boundary.
838 *
839 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
840 *
841 * object + s->size
672bba3a 842 * Nothing is used beyond s->size.
81819f0f 843 *
3b0efdfa 844 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 845 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
846 * may be used with merged slabcaches.
847 */
848
81819f0f
CL
849static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
850{
cbfc35a4 851 unsigned long off = get_info_end(s); /* The end of info */
81819f0f
CL
852
853 if (s->flags & SLAB_STORE_USER)
854 /* We also have user information there */
855 off += 2 * sizeof(struct track);
856
80a9201a
AP
857 off += kasan_metadata_size(s);
858
d86bd1be 859 if (size_from_object(s) == off)
81819f0f
CL
860 return 1;
861
24922684 862 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 863 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
864}
865
39b26464 866/* Check the pad bytes at the end of a slab page */
81819f0f
CL
867static int slab_pad_check(struct kmem_cache *s, struct page *page)
868{
24922684
CL
869 u8 *start;
870 u8 *fault;
871 u8 *end;
5d682681 872 u8 *pad;
24922684
CL
873 int length;
874 int remainder;
81819f0f
CL
875
876 if (!(s->flags & SLAB_POISON))
877 return 1;
878
a973e9dd 879 start = page_address(page);
a50b854e 880 length = page_size(page);
39b26464
CL
881 end = start + length;
882 remainder = length % s->size;
81819f0f
CL
883 if (!remainder)
884 return 1;
885
5d682681 886 pad = end - remainder;
a79316c6 887 metadata_access_enable();
aa1ef4d7 888 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
a79316c6 889 metadata_access_disable();
24922684
CL
890 if (!fault)
891 return 1;
892 while (end > fault && end[-1] == POISON_INUSE)
893 end--;
894
e1b70dd1
MC
895 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
896 fault, end - 1, fault - start);
5d682681 897 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 898
5d682681 899 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 900 return 0;
81819f0f
CL
901}
902
903static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 904 void *object, u8 val)
81819f0f
CL
905{
906 u8 *p = object;
3b0efdfa 907 u8 *endobject = object + s->object_size;
81819f0f
CL
908
909 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
910 if (!check_bytes_and_report(s, page, object, "Redzone",
911 object - s->red_left_pad, val, s->red_left_pad))
912 return 0;
913
24922684 914 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 915 endobject, val, s->inuse - s->object_size))
81819f0f 916 return 0;
81819f0f 917 } else {
3b0efdfa 918 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 919 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
920 endobject, POISON_INUSE,
921 s->inuse - s->object_size);
3adbefee 922 }
81819f0f
CL
923 }
924
925 if (s->flags & SLAB_POISON) {
f7cb1933 926 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 927 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 928 POISON_FREE, s->object_size - 1) ||
24922684 929 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 930 p + s->object_size - 1, POISON_END, 1)))
81819f0f 931 return 0;
81819f0f
CL
932 /*
933 * check_pad_bytes cleans up on its own.
934 */
935 check_pad_bytes(s, page, p);
936 }
937
cbfc35a4 938 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
81819f0f
CL
939 /*
940 * Object and freepointer overlap. Cannot check
941 * freepointer while object is allocated.
942 */
943 return 1;
944
945 /* Check free pointer validity */
946 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
947 object_err(s, page, p, "Freepointer corrupt");
948 /*
9f6c708e 949 * No choice but to zap it and thus lose the remainder
81819f0f 950 * of the free objects in this slab. May cause
672bba3a 951 * another error because the object count is now wrong.
81819f0f 952 */
a973e9dd 953 set_freepointer(s, p, NULL);
81819f0f
CL
954 return 0;
955 }
956 return 1;
957}
958
959static int check_slab(struct kmem_cache *s, struct page *page)
960{
39b26464
CL
961 int maxobj;
962
81819f0f
CL
963 VM_BUG_ON(!irqs_disabled());
964
965 if (!PageSlab(page)) {
24922684 966 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
967 return 0;
968 }
39b26464 969
9736d2a9 970 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
971 if (page->objects > maxobj) {
972 slab_err(s, page, "objects %u > max %u",
f6edde9c 973 page->objects, maxobj);
39b26464
CL
974 return 0;
975 }
976 if (page->inuse > page->objects) {
24922684 977 slab_err(s, page, "inuse %u > max %u",
f6edde9c 978 page->inuse, page->objects);
81819f0f
CL
979 return 0;
980 }
981 /* Slab_pad_check fixes things up after itself */
982 slab_pad_check(s, page);
983 return 1;
984}
985
986/*
672bba3a
CL
987 * Determine if a certain object on a page is on the freelist. Must hold the
988 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
989 */
990static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
991{
992 int nr = 0;
881db7fb 993 void *fp;
81819f0f 994 void *object = NULL;
f6edde9c 995 int max_objects;
81819f0f 996
881db7fb 997 fp = page->freelist;
39b26464 998 while (fp && nr <= page->objects) {
81819f0f
CL
999 if (fp == search)
1000 return 1;
1001 if (!check_valid_pointer(s, page, fp)) {
1002 if (object) {
1003 object_err(s, page, object,
1004 "Freechain corrupt");
a973e9dd 1005 set_freepointer(s, object, NULL);
81819f0f 1006 } else {
24922684 1007 slab_err(s, page, "Freepointer corrupt");
a973e9dd 1008 page->freelist = NULL;
39b26464 1009 page->inuse = page->objects;
24922684 1010 slab_fix(s, "Freelist cleared");
81819f0f
CL
1011 return 0;
1012 }
1013 break;
1014 }
1015 object = fp;
1016 fp = get_freepointer(s, object);
1017 nr++;
1018 }
1019
9736d2a9 1020 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
1021 if (max_objects > MAX_OBJS_PER_PAGE)
1022 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
1023
1024 if (page->objects != max_objects) {
756a025f
JP
1025 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1026 page->objects, max_objects);
224a88be
CL
1027 page->objects = max_objects;
1028 slab_fix(s, "Number of objects adjusted.");
1029 }
39b26464 1030 if (page->inuse != page->objects - nr) {
756a025f
JP
1031 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1032 page->inuse, page->objects - nr);
39b26464 1033 page->inuse = page->objects - nr;
24922684 1034 slab_fix(s, "Object count adjusted.");
81819f0f
CL
1035 }
1036 return search == NULL;
1037}
1038
0121c619
CL
1039static void trace(struct kmem_cache *s, struct page *page, void *object,
1040 int alloc)
3ec09742
CL
1041{
1042 if (s->flags & SLAB_TRACE) {
f9f58285 1043 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
1044 s->name,
1045 alloc ? "alloc" : "free",
1046 object, page->inuse,
1047 page->freelist);
1048
1049 if (!alloc)
aa2efd5e 1050 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1051 s->object_size);
3ec09742
CL
1052
1053 dump_stack();
1054 }
1055}
1056
643b1138 1057/*
672bba3a 1058 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1059 */
5cc6eee8
CL
1060static void add_full(struct kmem_cache *s,
1061 struct kmem_cache_node *n, struct page *page)
643b1138 1062{
5cc6eee8
CL
1063 if (!(s->flags & SLAB_STORE_USER))
1064 return;
1065
255d0884 1066 lockdep_assert_held(&n->list_lock);
916ac052 1067 list_add(&page->slab_list, &n->full);
643b1138
CL
1068}
1069
c65c1877 1070static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1071{
643b1138
CL
1072 if (!(s->flags & SLAB_STORE_USER))
1073 return;
1074
255d0884 1075 lockdep_assert_held(&n->list_lock);
916ac052 1076 list_del(&page->slab_list);
643b1138
CL
1077}
1078
0f389ec6
CL
1079/* Tracking of the number of slabs for debugging purposes */
1080static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1081{
1082 struct kmem_cache_node *n = get_node(s, node);
1083
1084 return atomic_long_read(&n->nr_slabs);
1085}
1086
26c02cf0
AB
1087static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1088{
1089 return atomic_long_read(&n->nr_slabs);
1090}
1091
205ab99d 1092static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1093{
1094 struct kmem_cache_node *n = get_node(s, node);
1095
1096 /*
1097 * May be called early in order to allocate a slab for the
1098 * kmem_cache_node structure. Solve the chicken-egg
1099 * dilemma by deferring the increment of the count during
1100 * bootstrap (see early_kmem_cache_node_alloc).
1101 */
338b2642 1102 if (likely(n)) {
0f389ec6 1103 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1104 atomic_long_add(objects, &n->total_objects);
1105 }
0f389ec6 1106}
205ab99d 1107static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1108{
1109 struct kmem_cache_node *n = get_node(s, node);
1110
1111 atomic_long_dec(&n->nr_slabs);
205ab99d 1112 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1113}
1114
1115/* Object debug checks for alloc/free paths */
3ec09742
CL
1116static void setup_object_debug(struct kmem_cache *s, struct page *page,
1117 void *object)
1118{
8fc8d666 1119 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
3ec09742
CL
1120 return;
1121
f7cb1933 1122 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1123 init_tracking(s, object);
1124}
1125
a50b854e
MWO
1126static
1127void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224 1128{
8fc8d666 1129 if (!kmem_cache_debug_flags(s, SLAB_POISON))
a7101224
AK
1130 return;
1131
1132 metadata_access_enable();
aa1ef4d7 1133 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
a7101224
AK
1134 metadata_access_disable();
1135}
1136
becfda68 1137static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1138 struct page *page, void *object)
81819f0f
CL
1139{
1140 if (!check_slab(s, page))
becfda68 1141 return 0;
81819f0f 1142
81819f0f
CL
1143 if (!check_valid_pointer(s, page, object)) {
1144 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1145 return 0;
81819f0f
CL
1146 }
1147
f7cb1933 1148 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1149 return 0;
1150
1151 return 1;
1152}
1153
1154static noinline int alloc_debug_processing(struct kmem_cache *s,
1155 struct page *page,
1156 void *object, unsigned long addr)
1157{
1158 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1159 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1160 goto bad;
1161 }
81819f0f 1162
3ec09742
CL
1163 /* Success perform special debug activities for allocs */
1164 if (s->flags & SLAB_STORE_USER)
1165 set_track(s, object, TRACK_ALLOC, addr);
1166 trace(s, page, object, 1);
f7cb1933 1167 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1168 return 1;
3ec09742 1169
81819f0f
CL
1170bad:
1171 if (PageSlab(page)) {
1172 /*
1173 * If this is a slab page then lets do the best we can
1174 * to avoid issues in the future. Marking all objects
672bba3a 1175 * as used avoids touching the remaining objects.
81819f0f 1176 */
24922684 1177 slab_fix(s, "Marking all objects used");
39b26464 1178 page->inuse = page->objects;
a973e9dd 1179 page->freelist = NULL;
81819f0f
CL
1180 }
1181 return 0;
1182}
1183
becfda68
LA
1184static inline int free_consistency_checks(struct kmem_cache *s,
1185 struct page *page, void *object, unsigned long addr)
81819f0f 1186{
81819f0f 1187 if (!check_valid_pointer(s, page, object)) {
70d71228 1188 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1189 return 0;
81819f0f
CL
1190 }
1191
1192 if (on_freelist(s, page, object)) {
24922684 1193 object_err(s, page, object, "Object already free");
becfda68 1194 return 0;
81819f0f
CL
1195 }
1196
f7cb1933 1197 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1198 return 0;
81819f0f 1199
1b4f59e3 1200 if (unlikely(s != page->slab_cache)) {
3adbefee 1201 if (!PageSlab(page)) {
756a025f
JP
1202 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1203 object);
1b4f59e3 1204 } else if (!page->slab_cache) {
f9f58285
FF
1205 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1206 object);
70d71228 1207 dump_stack();
06428780 1208 } else
24922684
CL
1209 object_err(s, page, object,
1210 "page slab pointer corrupt.");
becfda68
LA
1211 return 0;
1212 }
1213 return 1;
1214}
1215
1216/* Supports checking bulk free of a constructed freelist */
1217static noinline int free_debug_processing(
1218 struct kmem_cache *s, struct page *page,
1219 void *head, void *tail, int bulk_cnt,
1220 unsigned long addr)
1221{
1222 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1223 void *object = head;
1224 int cnt = 0;
3f649ab7 1225 unsigned long flags;
becfda68
LA
1226 int ret = 0;
1227
1228 spin_lock_irqsave(&n->list_lock, flags);
1229 slab_lock(page);
1230
1231 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1232 if (!check_slab(s, page))
1233 goto out;
1234 }
1235
1236next_object:
1237 cnt++;
1238
1239 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1240 if (!free_consistency_checks(s, page, object, addr))
1241 goto out;
81819f0f 1242 }
3ec09742 1243
3ec09742
CL
1244 if (s->flags & SLAB_STORE_USER)
1245 set_track(s, object, TRACK_FREE, addr);
1246 trace(s, page, object, 0);
81084651 1247 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1248 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1249
1250 /* Reached end of constructed freelist yet? */
1251 if (object != tail) {
1252 object = get_freepointer(s, object);
1253 goto next_object;
1254 }
804aa132
LA
1255 ret = 1;
1256
5c2e4bbb 1257out:
81084651
JDB
1258 if (cnt != bulk_cnt)
1259 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1260 bulk_cnt, cnt);
1261
881db7fb 1262 slab_unlock(page);
282acb43 1263 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1264 if (!ret)
1265 slab_fix(s, "Object at 0x%p not freed", object);
1266 return ret;
81819f0f
CL
1267}
1268
e17f1dfb
VB
1269/*
1270 * Parse a block of slub_debug options. Blocks are delimited by ';'
1271 *
1272 * @str: start of block
1273 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1274 * @slabs: return start of list of slabs, or NULL when there's no list
1275 * @init: assume this is initial parsing and not per-kmem-create parsing
1276 *
1277 * returns the start of next block if there's any, or NULL
1278 */
1279static char *
1280parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
41ecc55b 1281{
e17f1dfb 1282 bool higher_order_disable = false;
f0630fff 1283
e17f1dfb
VB
1284 /* Skip any completely empty blocks */
1285 while (*str && *str == ';')
1286 str++;
1287
1288 if (*str == ',') {
f0630fff
CL
1289 /*
1290 * No options but restriction on slabs. This means full
1291 * debugging for slabs matching a pattern.
1292 */
e17f1dfb 1293 *flags = DEBUG_DEFAULT_FLAGS;
f0630fff 1294 goto check_slabs;
e17f1dfb
VB
1295 }
1296 *flags = 0;
f0630fff 1297
e17f1dfb
VB
1298 /* Determine which debug features should be switched on */
1299 for (; *str && *str != ',' && *str != ';'; str++) {
f0630fff 1300 switch (tolower(*str)) {
e17f1dfb
VB
1301 case '-':
1302 *flags = 0;
1303 break;
f0630fff 1304 case 'f':
e17f1dfb 1305 *flags |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1306 break;
1307 case 'z':
e17f1dfb 1308 *flags |= SLAB_RED_ZONE;
f0630fff
CL
1309 break;
1310 case 'p':
e17f1dfb 1311 *flags |= SLAB_POISON;
f0630fff
CL
1312 break;
1313 case 'u':
e17f1dfb 1314 *flags |= SLAB_STORE_USER;
f0630fff
CL
1315 break;
1316 case 't':
e17f1dfb 1317 *flags |= SLAB_TRACE;
f0630fff 1318 break;
4c13dd3b 1319 case 'a':
e17f1dfb 1320 *flags |= SLAB_FAILSLAB;
4c13dd3b 1321 break;
08303a73
CA
1322 case 'o':
1323 /*
1324 * Avoid enabling debugging on caches if its minimum
1325 * order would increase as a result.
1326 */
e17f1dfb 1327 higher_order_disable = true;
08303a73 1328 break;
f0630fff 1329 default:
e17f1dfb
VB
1330 if (init)
1331 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
f0630fff 1332 }
41ecc55b 1333 }
f0630fff 1334check_slabs:
41ecc55b 1335 if (*str == ',')
e17f1dfb
VB
1336 *slabs = ++str;
1337 else
1338 *slabs = NULL;
1339
1340 /* Skip over the slab list */
1341 while (*str && *str != ';')
1342 str++;
1343
1344 /* Skip any completely empty blocks */
1345 while (*str && *str == ';')
1346 str++;
1347
1348 if (init && higher_order_disable)
1349 disable_higher_order_debug = 1;
1350
1351 if (*str)
1352 return str;
1353 else
1354 return NULL;
1355}
1356
1357static int __init setup_slub_debug(char *str)
1358{
1359 slab_flags_t flags;
1360 char *saved_str;
1361 char *slab_list;
1362 bool global_slub_debug_changed = false;
1363 bool slab_list_specified = false;
1364
1365 slub_debug = DEBUG_DEFAULT_FLAGS;
1366 if (*str++ != '=' || !*str)
1367 /*
1368 * No options specified. Switch on full debugging.
1369 */
1370 goto out;
1371
1372 saved_str = str;
1373 while (str) {
1374 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1375
1376 if (!slab_list) {
1377 slub_debug = flags;
1378 global_slub_debug_changed = true;
1379 } else {
1380 slab_list_specified = true;
1381 }
1382 }
1383
1384 /*
1385 * For backwards compatibility, a single list of flags with list of
1386 * slabs means debugging is only enabled for those slabs, so the global
1387 * slub_debug should be 0. We can extended that to multiple lists as
1388 * long as there is no option specifying flags without a slab list.
1389 */
1390 if (slab_list_specified) {
1391 if (!global_slub_debug_changed)
1392 slub_debug = 0;
1393 slub_debug_string = saved_str;
1394 }
f0630fff 1395out:
ca0cab65
VB
1396 if (slub_debug != 0 || slub_debug_string)
1397 static_branch_enable(&slub_debug_enabled);
6471384a
AP
1398 if ((static_branch_unlikely(&init_on_alloc) ||
1399 static_branch_unlikely(&init_on_free)) &&
1400 (slub_debug & SLAB_POISON))
1401 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1402 return 1;
1403}
1404
1405__setup("slub_debug", setup_slub_debug);
1406
c5fd3ca0
AT
1407/*
1408 * kmem_cache_flags - apply debugging options to the cache
1409 * @object_size: the size of an object without meta data
1410 * @flags: flags to set
1411 * @name: name of the cache
c5fd3ca0
AT
1412 *
1413 * Debug option(s) are applied to @flags. In addition to the debug
1414 * option(s), if a slab name (or multiple) is specified i.e.
1415 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1416 * then only the select slabs will receive the debug option(s).
1417 */
0293d1fd 1418slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1419 slab_flags_t flags, const char *name)
41ecc55b 1420{
c5fd3ca0
AT
1421 char *iter;
1422 size_t len;
e17f1dfb
VB
1423 char *next_block;
1424 slab_flags_t block_flags;
ca220593
JB
1425 slab_flags_t slub_debug_local = slub_debug;
1426
1427 /*
1428 * If the slab cache is for debugging (e.g. kmemleak) then
1429 * don't store user (stack trace) information by default,
1430 * but let the user enable it via the command line below.
1431 */
1432 if (flags & SLAB_NOLEAKTRACE)
1433 slub_debug_local &= ~SLAB_STORE_USER;
c5fd3ca0 1434
c5fd3ca0 1435 len = strlen(name);
e17f1dfb
VB
1436 next_block = slub_debug_string;
1437 /* Go through all blocks of debug options, see if any matches our slab's name */
1438 while (next_block) {
1439 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1440 if (!iter)
1441 continue;
1442 /* Found a block that has a slab list, search it */
1443 while (*iter) {
1444 char *end, *glob;
1445 size_t cmplen;
1446
1447 end = strchrnul(iter, ',');
1448 if (next_block && next_block < end)
1449 end = next_block - 1;
1450
1451 glob = strnchr(iter, end - iter, '*');
1452 if (glob)
1453 cmplen = glob - iter;
1454 else
1455 cmplen = max_t(size_t, len, (end - iter));
c5fd3ca0 1456
e17f1dfb
VB
1457 if (!strncmp(name, iter, cmplen)) {
1458 flags |= block_flags;
1459 return flags;
1460 }
c5fd3ca0 1461
e17f1dfb
VB
1462 if (!*end || *end == ';')
1463 break;
1464 iter = end + 1;
c5fd3ca0 1465 }
c5fd3ca0 1466 }
ba0268a8 1467
ca220593 1468 return flags | slub_debug_local;
41ecc55b 1469}
b4a64718 1470#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1471static inline void setup_object_debug(struct kmem_cache *s,
1472 struct page *page, void *object) {}
a50b854e
MWO
1473static inline
1474void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1475
3ec09742 1476static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1477 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1478
282acb43 1479static inline int free_debug_processing(
81084651
JDB
1480 struct kmem_cache *s, struct page *page,
1481 void *head, void *tail, int bulk_cnt,
282acb43 1482 unsigned long addr) { return 0; }
41ecc55b 1483
41ecc55b
CL
1484static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1485 { return 1; }
1486static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1487 void *object, u8 val) { return 1; }
5cc6eee8
CL
1488static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1489 struct page *page) {}
c65c1877
PZ
1490static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1491 struct page *page) {}
0293d1fd 1492slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 1493 slab_flags_t flags, const char *name)
ba0268a8
CL
1494{
1495 return flags;
1496}
41ecc55b 1497#define slub_debug 0
0f389ec6 1498
fdaa45e9
IM
1499#define disable_higher_order_debug 0
1500
0f389ec6
CL
1501static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1502 { return 0; }
26c02cf0
AB
1503static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1504 { return 0; }
205ab99d
CL
1505static inline void inc_slabs_node(struct kmem_cache *s, int node,
1506 int objects) {}
1507static inline void dec_slabs_node(struct kmem_cache *s, int node,
1508 int objects) {}
7d550c56 1509
52f23478 1510static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
dc07a728 1511 void **freelist, void *nextfree)
52f23478
DZ
1512{
1513 return false;
1514}
02e72cc6
AR
1515#endif /* CONFIG_SLUB_DEBUG */
1516
1517/*
1518 * Hooks for other subsystems that check memory allocations. In a typical
1519 * production configuration these hooks all should produce no code at all.
1520 */
0116523c 1521static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1522{
53128245 1523 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1524 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1525 kmemleak_alloc(ptr, size, 1, flags);
53128245 1526 return ptr;
d56791b3
RB
1527}
1528
ee3ce779 1529static __always_inline void kfree_hook(void *x)
d56791b3
RB
1530{
1531 kmemleak_free(x);
027b37b5 1532 kasan_kfree_large(x);
d56791b3
RB
1533}
1534
c3895391 1535static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1536{
1537 kmemleak_free_recursive(x, s->flags);
7d550c56 1538
02e72cc6
AR
1539 /*
1540 * Trouble is that we may no longer disable interrupts in the fast path
1541 * So in order to make the debug calls that expect irqs to be
1542 * disabled we need to disable interrupts temporarily.
1543 */
4675ff05 1544#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1545 {
1546 unsigned long flags;
1547
1548 local_irq_save(flags);
02e72cc6
AR
1549 debug_check_no_locks_freed(x, s->object_size);
1550 local_irq_restore(flags);
1551 }
1552#endif
1553 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1554 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1555
cfbe1636
ME
1556 /* Use KCSAN to help debug racy use-after-free. */
1557 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1558 __kcsan_check_access(x, s->object_size,
1559 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1560
c3895391 1561 /* KASAN might put x into memory quarantine, delaying its reuse */
027b37b5 1562 return kasan_slab_free(s, x);
02e72cc6 1563}
205ab99d 1564
c3895391
AK
1565static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1566 void **head, void **tail)
81084651 1567{
6471384a
AP
1568
1569 void *object;
1570 void *next = *head;
1571 void *old_tail = *tail ? *tail : *head;
1572 int rsize;
1573
b89fb5ef
AP
1574 if (is_kfence_address(next)) {
1575 slab_free_hook(s, next);
1576 return true;
1577 }
1578
aea4df4c
LA
1579 /* Head and tail of the reconstructed freelist */
1580 *head = NULL;
1581 *tail = NULL;
1b7e816f 1582
aea4df4c
LA
1583 do {
1584 object = next;
1585 next = get_freepointer(s, object);
1586
1587 if (slab_want_init_on_free(s)) {
6471384a
AP
1588 /*
1589 * Clear the object and the metadata, but don't touch
1590 * the redzone.
1591 */
aa1ef4d7 1592 memset(kasan_reset_tag(object), 0, s->object_size);
6471384a
AP
1593 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1594 : 0;
aa1ef4d7 1595 memset((char *)kasan_reset_tag(object) + s->inuse, 0,
6471384a 1596 s->size - s->inuse - rsize);
81084651 1597
aea4df4c 1598 }
c3895391
AK
1599 /* If object's reuse doesn't have to be delayed */
1600 if (!slab_free_hook(s, object)) {
1601 /* Move object to the new freelist */
1602 set_freepointer(s, object, *head);
1603 *head = object;
1604 if (!*tail)
1605 *tail = object;
1606 }
1607 } while (object != old_tail);
1608
1609 if (*head == *tail)
1610 *tail = NULL;
1611
1612 return *head != NULL;
81084651
JDB
1613}
1614
4d176711 1615static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1616 void *object)
1617{
1618 setup_object_debug(s, page, object);
4d176711 1619 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1620 if (unlikely(s->ctor)) {
1621 kasan_unpoison_object_data(s, object);
1622 s->ctor(object);
1623 kasan_poison_object_data(s, object);
1624 }
4d176711 1625 return object;
588f8ba9
TG
1626}
1627
81819f0f
CL
1628/*
1629 * Slab allocation and freeing
1630 */
5dfb4175
VD
1631static inline struct page *alloc_slab_page(struct kmem_cache *s,
1632 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1633{
5dfb4175 1634 struct page *page;
19af27af 1635 unsigned int order = oo_order(oo);
65c3376a 1636
2154a336 1637 if (node == NUMA_NO_NODE)
5dfb4175 1638 page = alloc_pages(flags, order);
65c3376a 1639 else
96db800f 1640 page = __alloc_pages_node(node, flags, order);
5dfb4175 1641
5dfb4175 1642 return page;
65c3376a
CL
1643}
1644
210e7a43
TG
1645#ifdef CONFIG_SLAB_FREELIST_RANDOM
1646/* Pre-initialize the random sequence cache */
1647static int init_cache_random_seq(struct kmem_cache *s)
1648{
19af27af 1649 unsigned int count = oo_objects(s->oo);
210e7a43 1650 int err;
210e7a43 1651
a810007a
SR
1652 /* Bailout if already initialised */
1653 if (s->random_seq)
1654 return 0;
1655
210e7a43
TG
1656 err = cache_random_seq_create(s, count, GFP_KERNEL);
1657 if (err) {
1658 pr_err("SLUB: Unable to initialize free list for %s\n",
1659 s->name);
1660 return err;
1661 }
1662
1663 /* Transform to an offset on the set of pages */
1664 if (s->random_seq) {
19af27af
AD
1665 unsigned int i;
1666
210e7a43
TG
1667 for (i = 0; i < count; i++)
1668 s->random_seq[i] *= s->size;
1669 }
1670 return 0;
1671}
1672
1673/* Initialize each random sequence freelist per cache */
1674static void __init init_freelist_randomization(void)
1675{
1676 struct kmem_cache *s;
1677
1678 mutex_lock(&slab_mutex);
1679
1680 list_for_each_entry(s, &slab_caches, list)
1681 init_cache_random_seq(s);
1682
1683 mutex_unlock(&slab_mutex);
1684}
1685
1686/* Get the next entry on the pre-computed freelist randomized */
1687static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1688 unsigned long *pos, void *start,
1689 unsigned long page_limit,
1690 unsigned long freelist_count)
1691{
1692 unsigned int idx;
1693
1694 /*
1695 * If the target page allocation failed, the number of objects on the
1696 * page might be smaller than the usual size defined by the cache.
1697 */
1698 do {
1699 idx = s->random_seq[*pos];
1700 *pos += 1;
1701 if (*pos >= freelist_count)
1702 *pos = 0;
1703 } while (unlikely(idx >= page_limit));
1704
1705 return (char *)start + idx;
1706}
1707
1708/* Shuffle the single linked freelist based on a random pre-computed sequence */
1709static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1710{
1711 void *start;
1712 void *cur;
1713 void *next;
1714 unsigned long idx, pos, page_limit, freelist_count;
1715
1716 if (page->objects < 2 || !s->random_seq)
1717 return false;
1718
1719 freelist_count = oo_objects(s->oo);
1720 pos = get_random_int() % freelist_count;
1721
1722 page_limit = page->objects * s->size;
1723 start = fixup_red_left(s, page_address(page));
1724
1725 /* First entry is used as the base of the freelist */
1726 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1727 freelist_count);
4d176711 1728 cur = setup_object(s, page, cur);
210e7a43
TG
1729 page->freelist = cur;
1730
1731 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1732 next = next_freelist_entry(s, page, &pos, start, page_limit,
1733 freelist_count);
4d176711 1734 next = setup_object(s, page, next);
210e7a43
TG
1735 set_freepointer(s, cur, next);
1736 cur = next;
1737 }
210e7a43
TG
1738 set_freepointer(s, cur, NULL);
1739
1740 return true;
1741}
1742#else
1743static inline int init_cache_random_seq(struct kmem_cache *s)
1744{
1745 return 0;
1746}
1747static inline void init_freelist_randomization(void) { }
1748static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1749{
1750 return false;
1751}
1752#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1753
81819f0f
CL
1754static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1755{
06428780 1756 struct page *page;
834f3d11 1757 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1758 gfp_t alloc_gfp;
4d176711 1759 void *start, *p, *next;
a50b854e 1760 int idx;
210e7a43 1761 bool shuffle;
81819f0f 1762
7e0528da
CL
1763 flags &= gfp_allowed_mask;
1764
d0164adc 1765 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1766 local_irq_enable();
1767
b7a49f0d 1768 flags |= s->allocflags;
e12ba74d 1769
ba52270d
PE
1770 /*
1771 * Let the initial higher-order allocation fail under memory pressure
1772 * so we fall-back to the minimum order allocation.
1773 */
1774 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1775 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1776 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1777
5dfb4175 1778 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1779 if (unlikely(!page)) {
1780 oo = s->min;
80c3a998 1781 alloc_gfp = flags;
65c3376a
CL
1782 /*
1783 * Allocation may have failed due to fragmentation.
1784 * Try a lower order alloc if possible
1785 */
5dfb4175 1786 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1787 if (unlikely(!page))
1788 goto out;
1789 stat(s, ORDER_FALLBACK);
65c3376a 1790 }
5a896d9e 1791
834f3d11 1792 page->objects = oo_objects(oo);
81819f0f 1793
2e9bd483 1794 account_slab_page(page, oo_order(oo), s, flags);
1f3147b4 1795
1b4f59e3 1796 page->slab_cache = s;
c03f94cc 1797 __SetPageSlab(page);
2f064f34 1798 if (page_is_pfmemalloc(page))
072bb0aa 1799 SetPageSlabPfmemalloc(page);
81819f0f 1800
a7101224 1801 kasan_poison_slab(page);
81819f0f 1802
a7101224 1803 start = page_address(page);
81819f0f 1804
a50b854e 1805 setup_page_debug(s, page, start);
0316bec2 1806
210e7a43
TG
1807 shuffle = shuffle_freelist(s, page);
1808
1809 if (!shuffle) {
4d176711
AK
1810 start = fixup_red_left(s, start);
1811 start = setup_object(s, page, start);
1812 page->freelist = start;
18e50661
AK
1813 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1814 next = p + s->size;
1815 next = setup_object(s, page, next);
1816 set_freepointer(s, p, next);
1817 p = next;
1818 }
1819 set_freepointer(s, p, NULL);
81819f0f 1820 }
81819f0f 1821
e6e82ea1 1822 page->inuse = page->objects;
8cb0a506 1823 page->frozen = 1;
588f8ba9 1824
81819f0f 1825out:
d0164adc 1826 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1827 local_irq_disable();
1828 if (!page)
1829 return NULL;
1830
588f8ba9
TG
1831 inc_slabs_node(s, page_to_nid(page), page->objects);
1832
81819f0f
CL
1833 return page;
1834}
1835
588f8ba9
TG
1836static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1837{
44405099
LL
1838 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1839 flags = kmalloc_fix_flags(flags);
588f8ba9
TG
1840
1841 return allocate_slab(s,
1842 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1843}
1844
81819f0f
CL
1845static void __free_slab(struct kmem_cache *s, struct page *page)
1846{
834f3d11
CL
1847 int order = compound_order(page);
1848 int pages = 1 << order;
81819f0f 1849
8fc8d666 1850 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
81819f0f
CL
1851 void *p;
1852
1853 slab_pad_check(s, page);
224a88be
CL
1854 for_each_object(p, s, page_address(page),
1855 page->objects)
f7cb1933 1856 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1857 }
1858
072bb0aa 1859 __ClearPageSlabPfmemalloc(page);
49bd5221 1860 __ClearPageSlab(page);
0c06dd75
VB
1861 /* In union with page->mapping where page allocator expects NULL */
1862 page->slab_cache = NULL;
1eb5ac64
NP
1863 if (current->reclaim_state)
1864 current->reclaim_state->reclaimed_slab += pages;
74d555be 1865 unaccount_slab_page(page, order, s);
27ee57c9 1866 __free_pages(page, order);
81819f0f
CL
1867}
1868
1869static void rcu_free_slab(struct rcu_head *h)
1870{
bf68c214 1871 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1872
1b4f59e3 1873 __free_slab(page->slab_cache, page);
81819f0f
CL
1874}
1875
1876static void free_slab(struct kmem_cache *s, struct page *page)
1877{
5f0d5a3a 1878 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1879 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1880 } else
1881 __free_slab(s, page);
1882}
1883
1884static void discard_slab(struct kmem_cache *s, struct page *page)
1885{
205ab99d 1886 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1887 free_slab(s, page);
1888}
1889
1890/*
5cc6eee8 1891 * Management of partially allocated slabs.
81819f0f 1892 */
1e4dd946
SR
1893static inline void
1894__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1895{
e95eed57 1896 n->nr_partial++;
136333d1 1897 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1898 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1899 else
916ac052 1900 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1901}
1902
1e4dd946
SR
1903static inline void add_partial(struct kmem_cache_node *n,
1904 struct page *page, int tail)
62e346a8 1905{
c65c1877 1906 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1907 __add_partial(n, page, tail);
1908}
c65c1877 1909
1e4dd946
SR
1910static inline void remove_partial(struct kmem_cache_node *n,
1911 struct page *page)
1912{
1913 lockdep_assert_held(&n->list_lock);
916ac052 1914 list_del(&page->slab_list);
52b4b950 1915 n->nr_partial--;
1e4dd946
SR
1916}
1917
81819f0f 1918/*
7ced3719
CL
1919 * Remove slab from the partial list, freeze it and
1920 * return the pointer to the freelist.
81819f0f 1921 *
497b66f2 1922 * Returns a list of objects or NULL if it fails.
81819f0f 1923 */
497b66f2 1924static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1925 struct kmem_cache_node *n, struct page *page,
633b0764 1926 int mode, int *objects)
81819f0f 1927{
2cfb7455
CL
1928 void *freelist;
1929 unsigned long counters;
1930 struct page new;
1931
c65c1877
PZ
1932 lockdep_assert_held(&n->list_lock);
1933
2cfb7455
CL
1934 /*
1935 * Zap the freelist and set the frozen bit.
1936 * The old freelist is the list of objects for the
1937 * per cpu allocation list.
1938 */
7ced3719
CL
1939 freelist = page->freelist;
1940 counters = page->counters;
1941 new.counters = counters;
633b0764 1942 *objects = new.objects - new.inuse;
23910c50 1943 if (mode) {
7ced3719 1944 new.inuse = page->objects;
23910c50
PE
1945 new.freelist = NULL;
1946 } else {
1947 new.freelist = freelist;
1948 }
2cfb7455 1949
a0132ac0 1950 VM_BUG_ON(new.frozen);
7ced3719 1951 new.frozen = 1;
2cfb7455 1952
7ced3719 1953 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1954 freelist, counters,
02d7633f 1955 new.freelist, new.counters,
7ced3719 1956 "acquire_slab"))
7ced3719 1957 return NULL;
2cfb7455
CL
1958
1959 remove_partial(n, page);
7ced3719 1960 WARN_ON(!freelist);
49e22585 1961 return freelist;
81819f0f
CL
1962}
1963
633b0764 1964static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1965static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1966
81819f0f 1967/*
672bba3a 1968 * Try to allocate a partial slab from a specific node.
81819f0f 1969 */
8ba00bb6
JK
1970static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1971 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1972{
49e22585
CL
1973 struct page *page, *page2;
1974 void *object = NULL;
e5d9998f 1975 unsigned int available = 0;
633b0764 1976 int objects;
81819f0f
CL
1977
1978 /*
1979 * Racy check. If we mistakenly see no partial slabs then we
1980 * just allocate an empty slab. If we mistakenly try to get a
70b6d25e 1981 * partial slab and there is none available then get_partial()
672bba3a 1982 * will return NULL.
81819f0f
CL
1983 */
1984 if (!n || !n->nr_partial)
1985 return NULL;
1986
1987 spin_lock(&n->list_lock);
916ac052 1988 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1989 void *t;
49e22585 1990
8ba00bb6
JK
1991 if (!pfmemalloc_match(page, flags))
1992 continue;
1993
633b0764 1994 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585 1995 if (!t)
8ff60eb0 1996 continue; /* cmpxchg raced */
49e22585 1997
633b0764 1998 available += objects;
12d79634 1999 if (!object) {
49e22585 2000 c->page = page;
49e22585 2001 stat(s, ALLOC_FROM_PARTIAL);
49e22585 2002 object = t;
49e22585 2003 } else {
633b0764 2004 put_cpu_partial(s, page, 0);
8028dcea 2005 stat(s, CPU_PARTIAL_NODE);
49e22585 2006 }
345c905d 2007 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 2008 || available > slub_cpu_partial(s) / 2)
49e22585
CL
2009 break;
2010
497b66f2 2011 }
81819f0f 2012 spin_unlock(&n->list_lock);
497b66f2 2013 return object;
81819f0f
CL
2014}
2015
2016/*
672bba3a 2017 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 2018 */
de3ec035 2019static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 2020 struct kmem_cache_cpu *c)
81819f0f
CL
2021{
2022#ifdef CONFIG_NUMA
2023 struct zonelist *zonelist;
dd1a239f 2024 struct zoneref *z;
54a6eb5c 2025 struct zone *zone;
97a225e6 2026 enum zone_type highest_zoneidx = gfp_zone(flags);
497b66f2 2027 void *object;
cc9a6c87 2028 unsigned int cpuset_mems_cookie;
81819f0f
CL
2029
2030 /*
672bba3a
CL
2031 * The defrag ratio allows a configuration of the tradeoffs between
2032 * inter node defragmentation and node local allocations. A lower
2033 * defrag_ratio increases the tendency to do local allocations
2034 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 2035 *
672bba3a
CL
2036 * If the defrag_ratio is set to 0 then kmalloc() always
2037 * returns node local objects. If the ratio is higher then kmalloc()
2038 * may return off node objects because partial slabs are obtained
2039 * from other nodes and filled up.
81819f0f 2040 *
43efd3ea
LP
2041 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2042 * (which makes defrag_ratio = 1000) then every (well almost)
2043 * allocation will first attempt to defrag slab caches on other nodes.
2044 * This means scanning over all nodes to look for partial slabs which
2045 * may be expensive if we do it every time we are trying to find a slab
672bba3a 2046 * with available objects.
81819f0f 2047 */
9824601e
CL
2048 if (!s->remote_node_defrag_ratio ||
2049 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
2050 return NULL;
2051
cc9a6c87 2052 do {
d26914d1 2053 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 2054 zonelist = node_zonelist(mempolicy_slab_node(), flags);
97a225e6 2055 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
cc9a6c87
MG
2056 struct kmem_cache_node *n;
2057
2058 n = get_node(s, zone_to_nid(zone));
2059
dee2f8aa 2060 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 2061 n->nr_partial > s->min_partial) {
8ba00bb6 2062 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
2063 if (object) {
2064 /*
d26914d1
MG
2065 * Don't check read_mems_allowed_retry()
2066 * here - if mems_allowed was updated in
2067 * parallel, that was a harmless race
2068 * between allocation and the cpuset
2069 * update
cc9a6c87 2070 */
cc9a6c87
MG
2071 return object;
2072 }
c0ff7453 2073 }
81819f0f 2074 }
d26914d1 2075 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 2076#endif /* CONFIG_NUMA */
81819f0f
CL
2077 return NULL;
2078}
2079
2080/*
2081 * Get a partial page, lock it and return it.
2082 */
497b66f2 2083static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 2084 struct kmem_cache_cpu *c)
81819f0f 2085{
497b66f2 2086 void *object;
a561ce00
JK
2087 int searchnode = node;
2088
2089 if (node == NUMA_NO_NODE)
2090 searchnode = numa_mem_id();
81819f0f 2091
8ba00bb6 2092 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
2093 if (object || node != NUMA_NO_NODE)
2094 return object;
81819f0f 2095
acd19fd1 2096 return get_any_partial(s, flags, c);
81819f0f
CL
2097}
2098
923717cb 2099#ifdef CONFIG_PREEMPTION
8a5ec0ba 2100/*
0d645ed1 2101 * Calculate the next globally unique transaction for disambiguation
8a5ec0ba
CL
2102 * during cmpxchg. The transactions start with the cpu number and are then
2103 * incremented by CONFIG_NR_CPUS.
2104 */
2105#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2106#else
2107/*
2108 * No preemption supported therefore also no need to check for
2109 * different cpus.
2110 */
2111#define TID_STEP 1
2112#endif
2113
2114static inline unsigned long next_tid(unsigned long tid)
2115{
2116 return tid + TID_STEP;
2117}
2118
9d5f0be0 2119#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2120static inline unsigned int tid_to_cpu(unsigned long tid)
2121{
2122 return tid % TID_STEP;
2123}
2124
2125static inline unsigned long tid_to_event(unsigned long tid)
2126{
2127 return tid / TID_STEP;
2128}
9d5f0be0 2129#endif
8a5ec0ba
CL
2130
2131static inline unsigned int init_tid(int cpu)
2132{
2133 return cpu;
2134}
2135
2136static inline void note_cmpxchg_failure(const char *n,
2137 const struct kmem_cache *s, unsigned long tid)
2138{
2139#ifdef SLUB_DEBUG_CMPXCHG
2140 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2141
f9f58285 2142 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba 2143
923717cb 2144#ifdef CONFIG_PREEMPTION
8a5ec0ba 2145 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2146 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2147 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2148 else
2149#endif
2150 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2151 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2152 tid_to_event(tid), tid_to_event(actual_tid));
2153 else
f9f58285 2154 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2155 actual_tid, tid, next_tid(tid));
2156#endif
4fdccdfb 2157 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2158}
2159
788e1aad 2160static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2161{
8a5ec0ba
CL
2162 int cpu;
2163
2164 for_each_possible_cpu(cpu)
2165 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2166}
2cfb7455 2167
81819f0f
CL
2168/*
2169 * Remove the cpu slab
2170 */
d0e0ac97 2171static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2172 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2173{
2cfb7455 2174 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455 2175 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
d930ff03 2176 int lock = 0, free_delta = 0;
2cfb7455 2177 enum slab_modes l = M_NONE, m = M_NONE;
d930ff03 2178 void *nextfree, *freelist_iter, *freelist_tail;
136333d1 2179 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2180 struct page new;
2181 struct page old;
2182
2183 if (page->freelist) {
84e554e6 2184 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2185 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2186 }
2187
894b8788 2188 /*
d930ff03
VB
2189 * Stage one: Count the objects on cpu's freelist as free_delta and
2190 * remember the last object in freelist_tail for later splicing.
2cfb7455 2191 */
d930ff03
VB
2192 freelist_tail = NULL;
2193 freelist_iter = freelist;
2194 while (freelist_iter) {
2195 nextfree = get_freepointer(s, freelist_iter);
2cfb7455 2196
52f23478
DZ
2197 /*
2198 * If 'nextfree' is invalid, it is possible that the object at
d930ff03
VB
2199 * 'freelist_iter' is already corrupted. So isolate all objects
2200 * starting at 'freelist_iter' by skipping them.
52f23478 2201 */
d930ff03 2202 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
52f23478
DZ
2203 break;
2204
d930ff03
VB
2205 freelist_tail = freelist_iter;
2206 free_delta++;
2cfb7455 2207
d930ff03 2208 freelist_iter = nextfree;
2cfb7455
CL
2209 }
2210
894b8788 2211 /*
d930ff03
VB
2212 * Stage two: Unfreeze the page while splicing the per-cpu
2213 * freelist to the head of page's freelist.
2214 *
2215 * Ensure that the page is unfrozen while the list presence
2216 * reflects the actual number of objects during unfreeze.
2cfb7455
CL
2217 *
2218 * We setup the list membership and then perform a cmpxchg
2219 * with the count. If there is a mismatch then the page
2220 * is not unfrozen but the page is on the wrong list.
2221 *
2222 * Then we restart the process which may have to remove
2223 * the page from the list that we just put it on again
2224 * because the number of objects in the slab may have
2225 * changed.
894b8788 2226 */
2cfb7455 2227redo:
894b8788 2228
d930ff03
VB
2229 old.freelist = READ_ONCE(page->freelist);
2230 old.counters = READ_ONCE(page->counters);
a0132ac0 2231 VM_BUG_ON(!old.frozen);
7c2e132c 2232
2cfb7455
CL
2233 /* Determine target state of the slab */
2234 new.counters = old.counters;
d930ff03
VB
2235 if (freelist_tail) {
2236 new.inuse -= free_delta;
2237 set_freepointer(s, freelist_tail, old.freelist);
2cfb7455
CL
2238 new.freelist = freelist;
2239 } else
2240 new.freelist = old.freelist;
2241
2242 new.frozen = 0;
2243
8a5b20ae 2244 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2245 m = M_FREE;
2246 else if (new.freelist) {
2247 m = M_PARTIAL;
2248 if (!lock) {
2249 lock = 1;
2250 /*
8bb4e7a2 2251 * Taking the spinlock removes the possibility
2cfb7455
CL
2252 * that acquire_slab() will see a slab page that
2253 * is frozen
2254 */
2255 spin_lock(&n->list_lock);
2256 }
2257 } else {
2258 m = M_FULL;
965c4848 2259 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2cfb7455
CL
2260 lock = 1;
2261 /*
2262 * This also ensures that the scanning of full
2263 * slabs from diagnostic functions will not see
2264 * any frozen slabs.
2265 */
2266 spin_lock(&n->list_lock);
2267 }
2268 }
2269
2270 if (l != m) {
2cfb7455 2271 if (l == M_PARTIAL)
2cfb7455 2272 remove_partial(n, page);
2cfb7455 2273 else if (l == M_FULL)
c65c1877 2274 remove_full(s, n, page);
2cfb7455 2275
88349a28 2276 if (m == M_PARTIAL)
2cfb7455 2277 add_partial(n, page, tail);
88349a28 2278 else if (m == M_FULL)
2cfb7455 2279 add_full(s, n, page);
2cfb7455
CL
2280 }
2281
2282 l = m;
1d07171c 2283 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2284 old.freelist, old.counters,
2285 new.freelist, new.counters,
2286 "unfreezing slab"))
2287 goto redo;
2288
2cfb7455
CL
2289 if (lock)
2290 spin_unlock(&n->list_lock);
2291
88349a28
WY
2292 if (m == M_PARTIAL)
2293 stat(s, tail);
2294 else if (m == M_FULL)
2295 stat(s, DEACTIVATE_FULL);
2296 else if (m == M_FREE) {
2cfb7455
CL
2297 stat(s, DEACTIVATE_EMPTY);
2298 discard_slab(s, page);
2299 stat(s, FREE_SLAB);
894b8788 2300 }
d4ff6d35
WY
2301
2302 c->page = NULL;
2303 c->freelist = NULL;
81819f0f
CL
2304}
2305
d24ac77f
JK
2306/*
2307 * Unfreeze all the cpu partial slabs.
2308 *
59a09917
CL
2309 * This function must be called with interrupts disabled
2310 * for the cpu using c (or some other guarantee must be there
2311 * to guarantee no concurrent accesses).
d24ac77f 2312 */
59a09917
CL
2313static void unfreeze_partials(struct kmem_cache *s,
2314 struct kmem_cache_cpu *c)
49e22585 2315{
345c905d 2316#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2317 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2318 struct page *page, *discard_page = NULL;
49e22585 2319
4c7ba22e 2320 while ((page = slub_percpu_partial(c))) {
49e22585
CL
2321 struct page new;
2322 struct page old;
2323
4c7ba22e 2324 slub_set_percpu_partial(c, page);
43d77867
JK
2325
2326 n2 = get_node(s, page_to_nid(page));
2327 if (n != n2) {
2328 if (n)
2329 spin_unlock(&n->list_lock);
2330
2331 n = n2;
2332 spin_lock(&n->list_lock);
2333 }
49e22585
CL
2334
2335 do {
2336
2337 old.freelist = page->freelist;
2338 old.counters = page->counters;
a0132ac0 2339 VM_BUG_ON(!old.frozen);
49e22585
CL
2340
2341 new.counters = old.counters;
2342 new.freelist = old.freelist;
2343
2344 new.frozen = 0;
2345
d24ac77f 2346 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2347 old.freelist, old.counters,
2348 new.freelist, new.counters,
2349 "unfreezing slab"));
2350
8a5b20ae 2351 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2352 page->next = discard_page;
2353 discard_page = page;
43d77867
JK
2354 } else {
2355 add_partial(n, page, DEACTIVATE_TO_TAIL);
2356 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2357 }
2358 }
2359
2360 if (n)
2361 spin_unlock(&n->list_lock);
9ada1934
SL
2362
2363 while (discard_page) {
2364 page = discard_page;
2365 discard_page = discard_page->next;
2366
2367 stat(s, DEACTIVATE_EMPTY);
2368 discard_slab(s, page);
2369 stat(s, FREE_SLAB);
2370 }
6dfd1b65 2371#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2372}
2373
2374/*
9234bae9
WY
2375 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2376 * partial page slot if available.
49e22585
CL
2377 *
2378 * If we did not find a slot then simply move all the partials to the
2379 * per node partial list.
2380 */
633b0764 2381static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2382{
345c905d 2383#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2384 struct page *oldpage;
2385 int pages;
2386 int pobjects;
2387
d6e0b7fa 2388 preempt_disable();
49e22585
CL
2389 do {
2390 pages = 0;
2391 pobjects = 0;
2392 oldpage = this_cpu_read(s->cpu_slab->partial);
2393
2394 if (oldpage) {
2395 pobjects = oldpage->pobjects;
2396 pages = oldpage->pages;
bbd4e305 2397 if (drain && pobjects > slub_cpu_partial(s)) {
49e22585
CL
2398 unsigned long flags;
2399 /*
2400 * partial array is full. Move the existing
2401 * set to the per node partial list.
2402 */
2403 local_irq_save(flags);
59a09917 2404 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2405 local_irq_restore(flags);
e24fc410 2406 oldpage = NULL;
49e22585
CL
2407 pobjects = 0;
2408 pages = 0;
8028dcea 2409 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2410 }
2411 }
2412
2413 pages++;
2414 pobjects += page->objects - page->inuse;
2415
2416 page->pages = pages;
2417 page->pobjects = pobjects;
2418 page->next = oldpage;
2419
d0e0ac97
CG
2420 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2421 != oldpage);
bbd4e305 2422 if (unlikely(!slub_cpu_partial(s))) {
d6e0b7fa
VD
2423 unsigned long flags;
2424
2425 local_irq_save(flags);
2426 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2427 local_irq_restore(flags);
2428 }
2429 preempt_enable();
6dfd1b65 2430#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2431}
2432
dfb4f096 2433static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2434{
84e554e6 2435 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2436 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2437
2438 c->tid = next_tid(c->tid);
81819f0f
CL
2439}
2440
2441/*
2442 * Flush cpu slab.
6446faa2 2443 *
81819f0f
CL
2444 * Called from IPI handler with interrupts disabled.
2445 */
0c710013 2446static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2447{
9dfc6e68 2448 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2449
1265ef2d
WY
2450 if (c->page)
2451 flush_slab(s, c);
49e22585 2452
1265ef2d 2453 unfreeze_partials(s, c);
81819f0f
CL
2454}
2455
2456static void flush_cpu_slab(void *d)
2457{
2458 struct kmem_cache *s = d;
81819f0f 2459
dfb4f096 2460 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2461}
2462
a8364d55
GBY
2463static bool has_cpu_slab(int cpu, void *info)
2464{
2465 struct kmem_cache *s = info;
2466 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2467
a93cf07b 2468 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2469}
2470
81819f0f
CL
2471static void flush_all(struct kmem_cache *s)
2472{
cb923159 2473 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
81819f0f
CL
2474}
2475
a96a87bf
SAS
2476/*
2477 * Use the cpu notifier to insure that the cpu slabs are flushed when
2478 * necessary.
2479 */
2480static int slub_cpu_dead(unsigned int cpu)
2481{
2482 struct kmem_cache *s;
2483 unsigned long flags;
2484
2485 mutex_lock(&slab_mutex);
2486 list_for_each_entry(s, &slab_caches, list) {
2487 local_irq_save(flags);
2488 __flush_cpu_slab(s, cpu);
2489 local_irq_restore(flags);
2490 }
2491 mutex_unlock(&slab_mutex);
2492 return 0;
2493}
2494
dfb4f096
CL
2495/*
2496 * Check if the objects in a per cpu structure fit numa
2497 * locality expectations.
2498 */
57d437d2 2499static inline int node_match(struct page *page, int node)
dfb4f096
CL
2500{
2501#ifdef CONFIG_NUMA
6159d0f5 2502 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2503 return 0;
2504#endif
2505 return 1;
2506}
2507
9a02d699 2508#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2509static int count_free(struct page *page)
2510{
2511 return page->objects - page->inuse;
2512}
2513
9a02d699
DR
2514static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2515{
2516 return atomic_long_read(&n->total_objects);
2517}
2518#endif /* CONFIG_SLUB_DEBUG */
2519
2520#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2521static unsigned long count_partial(struct kmem_cache_node *n,
2522 int (*get_count)(struct page *))
2523{
2524 unsigned long flags;
2525 unsigned long x = 0;
2526 struct page *page;
2527
2528 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2529 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2530 x += get_count(page);
2531 spin_unlock_irqrestore(&n->list_lock, flags);
2532 return x;
2533}
9a02d699 2534#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2535
781b2ba6
PE
2536static noinline void
2537slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2538{
9a02d699
DR
2539#ifdef CONFIG_SLUB_DEBUG
2540 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2541 DEFAULT_RATELIMIT_BURST);
781b2ba6 2542 int node;
fa45dc25 2543 struct kmem_cache_node *n;
781b2ba6 2544
9a02d699
DR
2545 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2546 return;
2547
5b3810e5
VB
2548 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2549 nid, gfpflags, &gfpflags);
19af27af 2550 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2551 s->name, s->object_size, s->size, oo_order(s->oo),
2552 oo_order(s->min));
781b2ba6 2553
3b0efdfa 2554 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2555 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2556 s->name);
fa5ec8a1 2557
fa45dc25 2558 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2559 unsigned long nr_slabs;
2560 unsigned long nr_objs;
2561 unsigned long nr_free;
2562
26c02cf0
AB
2563 nr_free = count_partial(n, count_free);
2564 nr_slabs = node_nr_slabs(n);
2565 nr_objs = node_nr_objs(n);
781b2ba6 2566
f9f58285 2567 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2568 node, nr_slabs, nr_objs, nr_free);
2569 }
9a02d699 2570#endif
781b2ba6
PE
2571}
2572
497b66f2
CL
2573static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2574 int node, struct kmem_cache_cpu **pc)
2575{
6faa6833 2576 void *freelist;
188fd063
CL
2577 struct kmem_cache_cpu *c = *pc;
2578 struct page *page;
497b66f2 2579
128227e7
MW
2580 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2581
188fd063 2582 freelist = get_partial(s, flags, node, c);
497b66f2 2583
188fd063
CL
2584 if (freelist)
2585 return freelist;
2586
2587 page = new_slab(s, flags, node);
497b66f2 2588 if (page) {
7c8e0181 2589 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2590 if (c->page)
2591 flush_slab(s, c);
2592
2593 /*
2594 * No other reference to the page yet so we can
2595 * muck around with it freely without cmpxchg
2596 */
6faa6833 2597 freelist = page->freelist;
497b66f2
CL
2598 page->freelist = NULL;
2599
2600 stat(s, ALLOC_SLAB);
497b66f2
CL
2601 c->page = page;
2602 *pc = c;
edde82b6 2603 }
497b66f2 2604
6faa6833 2605 return freelist;
497b66f2
CL
2606}
2607
072bb0aa
MG
2608static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2609{
2610 if (unlikely(PageSlabPfmemalloc(page)))
2611 return gfp_pfmemalloc_allowed(gfpflags);
2612
2613 return true;
2614}
2615
213eeb9f 2616/*
d0e0ac97
CG
2617 * Check the page->freelist of a page and either transfer the freelist to the
2618 * per cpu freelist or deactivate the page.
213eeb9f
CL
2619 *
2620 * The page is still frozen if the return value is not NULL.
2621 *
2622 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2623 *
2624 * This function must be called with interrupt disabled.
213eeb9f
CL
2625 */
2626static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2627{
2628 struct page new;
2629 unsigned long counters;
2630 void *freelist;
2631
2632 do {
2633 freelist = page->freelist;
2634 counters = page->counters;
6faa6833 2635
213eeb9f 2636 new.counters = counters;
a0132ac0 2637 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2638
2639 new.inuse = page->objects;
2640 new.frozen = freelist != NULL;
2641
d24ac77f 2642 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2643 freelist, counters,
2644 NULL, new.counters,
2645 "get_freelist"));
2646
2647 return freelist;
2648}
2649
81819f0f 2650/*
894b8788
CL
2651 * Slow path. The lockless freelist is empty or we need to perform
2652 * debugging duties.
2653 *
894b8788
CL
2654 * Processing is still very fast if new objects have been freed to the
2655 * regular freelist. In that case we simply take over the regular freelist
2656 * as the lockless freelist and zap the regular freelist.
81819f0f 2657 *
894b8788
CL
2658 * If that is not working then we fall back to the partial lists. We take the
2659 * first element of the freelist as the object to allocate now and move the
2660 * rest of the freelist to the lockless freelist.
81819f0f 2661 *
894b8788 2662 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2663 * we need to allocate a new slab. This is the slowest path since it involves
2664 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2665 *
2666 * Version of __slab_alloc to use when we know that interrupts are
2667 * already disabled (which is the case for bulk allocation).
81819f0f 2668 */
a380a3c7 2669static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2670 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2671{
6faa6833 2672 void *freelist;
f6e7def7 2673 struct page *page;
81819f0f 2674
9f986d99
AW
2675 stat(s, ALLOC_SLOWPATH);
2676
f6e7def7 2677 page = c->page;
0715e6c5
VB
2678 if (!page) {
2679 /*
2680 * if the node is not online or has no normal memory, just
2681 * ignore the node constraint
2682 */
2683 if (unlikely(node != NUMA_NO_NODE &&
7e1fa93d 2684 !node_isset(node, slab_nodes)))
0715e6c5 2685 node = NUMA_NO_NODE;
81819f0f 2686 goto new_slab;
0715e6c5 2687 }
49e22585 2688redo:
6faa6833 2689
57d437d2 2690 if (unlikely(!node_match(page, node))) {
0715e6c5
VB
2691 /*
2692 * same as above but node_match() being false already
2693 * implies node != NUMA_NO_NODE
2694 */
7e1fa93d 2695 if (!node_isset(node, slab_nodes)) {
0715e6c5
VB
2696 node = NUMA_NO_NODE;
2697 goto redo;
2698 } else {
a561ce00 2699 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2700 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2701 goto new_slab;
2702 }
fc59c053 2703 }
6446faa2 2704
072bb0aa
MG
2705 /*
2706 * By rights, we should be searching for a slab page that was
2707 * PFMEMALLOC but right now, we are losing the pfmemalloc
2708 * information when the page leaves the per-cpu allocator
2709 */
2710 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2711 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2712 goto new_slab;
2713 }
2714
73736e03 2715 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2716 freelist = c->freelist;
2717 if (freelist)
73736e03 2718 goto load_freelist;
03e404af 2719
f6e7def7 2720 freelist = get_freelist(s, page);
6446faa2 2721
6faa6833 2722 if (!freelist) {
03e404af
CL
2723 c->page = NULL;
2724 stat(s, DEACTIVATE_BYPASS);
fc59c053 2725 goto new_slab;
03e404af 2726 }
6446faa2 2727
84e554e6 2728 stat(s, ALLOC_REFILL);
6446faa2 2729
894b8788 2730load_freelist:
507effea
CL
2731 /*
2732 * freelist is pointing to the list of objects to be used.
2733 * page is pointing to the page from which the objects are obtained.
2734 * That page must be frozen for per cpu allocations to work.
2735 */
a0132ac0 2736 VM_BUG_ON(!c->page->frozen);
6faa6833 2737 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2738 c->tid = next_tid(c->tid);
6faa6833 2739 return freelist;
81819f0f 2740
81819f0f 2741new_slab:
2cfb7455 2742
a93cf07b
WY
2743 if (slub_percpu_partial(c)) {
2744 page = c->page = slub_percpu_partial(c);
2745 slub_set_percpu_partial(c, page);
49e22585 2746 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2747 goto redo;
81819f0f
CL
2748 }
2749
188fd063 2750 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2751
f4697436 2752 if (unlikely(!freelist)) {
9a02d699 2753 slab_out_of_memory(s, gfpflags, node);
f4697436 2754 return NULL;
81819f0f 2755 }
2cfb7455 2756
f6e7def7 2757 page = c->page;
5091b74a 2758 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2759 goto load_freelist;
2cfb7455 2760
497b66f2 2761 /* Only entered in the debug case */
d0e0ac97
CG
2762 if (kmem_cache_debug(s) &&
2763 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2764 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2765
d4ff6d35 2766 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2767 return freelist;
894b8788
CL
2768}
2769
a380a3c7
CL
2770/*
2771 * Another one that disabled interrupt and compensates for possible
2772 * cpu changes by refetching the per cpu area pointer.
2773 */
2774static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2775 unsigned long addr, struct kmem_cache_cpu *c)
2776{
2777 void *p;
2778 unsigned long flags;
2779
2780 local_irq_save(flags);
923717cb 2781#ifdef CONFIG_PREEMPTION
a380a3c7
CL
2782 /*
2783 * We may have been preempted and rescheduled on a different
2784 * cpu before disabling interrupts. Need to reload cpu area
2785 * pointer.
2786 */
2787 c = this_cpu_ptr(s->cpu_slab);
2788#endif
2789
2790 p = ___slab_alloc(s, gfpflags, node, addr, c);
2791 local_irq_restore(flags);
2792 return p;
2793}
2794
0f181f9f
AP
2795/*
2796 * If the object has been wiped upon free, make sure it's fully initialized by
2797 * zeroing out freelist pointer.
2798 */
2799static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2800 void *obj)
2801{
2802 if (unlikely(slab_want_init_on_free(s)) && obj)
ce5716c6
AK
2803 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2804 0, sizeof(void *));
0f181f9f
AP
2805}
2806
894b8788
CL
2807/*
2808 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2809 * have the fastpath folded into their functions. So no function call
2810 * overhead for requests that can be satisfied on the fastpath.
2811 *
2812 * The fastpath works by first checking if the lockless freelist can be used.
2813 * If not then __slab_alloc is called for slow processing.
2814 *
2815 * Otherwise we can simply pick the next object from the lockless free list.
2816 */
2b847c3c 2817static __always_inline void *slab_alloc_node(struct kmem_cache *s,
b89fb5ef 2818 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
894b8788 2819{
03ec0ed5 2820 void *object;
dfb4f096 2821 struct kmem_cache_cpu *c;
57d437d2 2822 struct page *page;
8a5ec0ba 2823 unsigned long tid;
964d4bd3 2824 struct obj_cgroup *objcg = NULL;
1f84260c 2825
964d4bd3 2826 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
8135be5a 2827 if (!s)
773ff60e 2828 return NULL;
b89fb5ef
AP
2829
2830 object = kfence_alloc(s, orig_size, gfpflags);
2831 if (unlikely(object))
2832 goto out;
2833
8a5ec0ba 2834redo:
8a5ec0ba
CL
2835 /*
2836 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2837 * enabled. We may switch back and forth between cpus while
2838 * reading from one cpu area. That does not matter as long
2839 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2840 *
9aabf810 2841 * We should guarantee that tid and kmem_cache are retrieved on
923717cb 2842 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
9aabf810 2843 * to check if it is matched or not.
8a5ec0ba 2844 */
9aabf810
JK
2845 do {
2846 tid = this_cpu_read(s->cpu_slab->tid);
2847 c = raw_cpu_ptr(s->cpu_slab);
923717cb 2848 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 2849 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2850
2851 /*
2852 * Irqless object alloc/free algorithm used here depends on sequence
2853 * of fetching cpu_slab's data. tid should be fetched before anything
2854 * on c to guarantee that object and page associated with previous tid
2855 * won't be used with current tid. If we fetch tid first, object and
2856 * page could be one associated with next tid and our alloc/free
2857 * request will be failed. In this case, we will retry. So, no problem.
2858 */
2859 barrier();
8a5ec0ba 2860
8a5ec0ba
CL
2861 /*
2862 * The transaction ids are globally unique per cpu and per operation on
2863 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2864 * occurs on the right processor and that there was no operation on the
2865 * linked list in between.
2866 */
8a5ec0ba 2867
9dfc6e68 2868 object = c->freelist;
57d437d2 2869 page = c->page;
22e4663e 2870 if (unlikely(!object || !page || !node_match(page, node))) {
dfb4f096 2871 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492 2872 } else {
0ad9500e
ED
2873 void *next_object = get_freepointer_safe(s, object);
2874
8a5ec0ba 2875 /*
25985edc 2876 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2877 * operation and if we are on the right processor.
2878 *
d0e0ac97
CG
2879 * The cmpxchg does the following atomically (without lock
2880 * semantics!)
8a5ec0ba
CL
2881 * 1. Relocate first pointer to the current per cpu area.
2882 * 2. Verify that tid and freelist have not been changed
2883 * 3. If they were not changed replace tid and freelist
2884 *
d0e0ac97
CG
2885 * Since this is without lock semantics the protection is only
2886 * against code executing on this cpu *not* from access by
2887 * other cpus.
8a5ec0ba 2888 */
933393f5 2889 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2890 s->cpu_slab->freelist, s->cpu_slab->tid,
2891 object, tid,
0ad9500e 2892 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2893
2894 note_cmpxchg_failure("slab_alloc", s, tid);
2895 goto redo;
2896 }
0ad9500e 2897 prefetch_freepointer(s, next_object);
84e554e6 2898 stat(s, ALLOC_FASTPATH);
894b8788 2899 }
0f181f9f 2900
ce5716c6 2901 maybe_wipe_obj_freeptr(s, object);
8a5ec0ba 2902
6471384a 2903 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
aa1ef4d7 2904 memset(kasan_reset_tag(object), 0, s->object_size);
d07dbea4 2905
b89fb5ef 2906out:
964d4bd3 2907 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
5a896d9e 2908
894b8788 2909 return object;
81819f0f
CL
2910}
2911
2b847c3c 2912static __always_inline void *slab_alloc(struct kmem_cache *s,
b89fb5ef 2913 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2b847c3c 2914{
b89fb5ef 2915 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2b847c3c
EG
2916}
2917
81819f0f
CL
2918void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2919{
b89fb5ef 2920 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
5b882be4 2921
d0e0ac97
CG
2922 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2923 s->size, gfpflags);
5b882be4
EGM
2924
2925 return ret;
81819f0f
CL
2926}
2927EXPORT_SYMBOL(kmem_cache_alloc);
2928
0f24f128 2929#ifdef CONFIG_TRACING
4a92379b
RK
2930void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2931{
b89fb5ef 2932 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
4a92379b 2933 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2934 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2935 return ret;
2936}
2937EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2938#endif
2939
81819f0f
CL
2940#ifdef CONFIG_NUMA
2941void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2942{
b89fb5ef 2943 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
5b882be4 2944
ca2b84cb 2945 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2946 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2947
2948 return ret;
81819f0f
CL
2949}
2950EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2951
0f24f128 2952#ifdef CONFIG_TRACING
4a92379b 2953void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2954 gfp_t gfpflags,
4a92379b 2955 int node, size_t size)
5b882be4 2956{
b89fb5ef 2957 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
4a92379b
RK
2958
2959 trace_kmalloc_node(_RET_IP_, ret,
2960 size, s->size, gfpflags, node);
0316bec2 2961
0116523c 2962 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2963 return ret;
5b882be4 2964}
4a92379b 2965EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2966#endif
6dfd1b65 2967#endif /* CONFIG_NUMA */
5b882be4 2968
81819f0f 2969/*
94e4d712 2970 * Slow path handling. This may still be called frequently since objects
894b8788 2971 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2972 *
894b8788
CL
2973 * So we still attempt to reduce cache line usage. Just take the slab
2974 * lock and free the item. If there is no additional partial page
2975 * handling required then we can return immediately.
81819f0f 2976 */
894b8788 2977static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2978 void *head, void *tail, int cnt,
2979 unsigned long addr)
2980
81819f0f
CL
2981{
2982 void *prior;
2cfb7455 2983 int was_frozen;
2cfb7455
CL
2984 struct page new;
2985 unsigned long counters;
2986 struct kmem_cache_node *n = NULL;
3f649ab7 2987 unsigned long flags;
81819f0f 2988
8a5ec0ba 2989 stat(s, FREE_SLOWPATH);
81819f0f 2990
b89fb5ef
AP
2991 if (kfence_free(head))
2992 return;
2993
19c7ff9e 2994 if (kmem_cache_debug(s) &&
282acb43 2995 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2996 return;
6446faa2 2997
2cfb7455 2998 do {
837d678d
JK
2999 if (unlikely(n)) {
3000 spin_unlock_irqrestore(&n->list_lock, flags);
3001 n = NULL;
3002 }
2cfb7455
CL
3003 prior = page->freelist;
3004 counters = page->counters;
81084651 3005 set_freepointer(s, tail, prior);
2cfb7455
CL
3006 new.counters = counters;
3007 was_frozen = new.frozen;
81084651 3008 new.inuse -= cnt;
837d678d 3009 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 3010
c65c1877 3011 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
3012
3013 /*
d0e0ac97
CG
3014 * Slab was on no list before and will be
3015 * partially empty
3016 * We can defer the list move and instead
3017 * freeze it.
49e22585
CL
3018 */
3019 new.frozen = 1;
3020
c65c1877 3021 } else { /* Needs to be taken off a list */
49e22585 3022
b455def2 3023 n = get_node(s, page_to_nid(page));
49e22585
CL
3024 /*
3025 * Speculatively acquire the list_lock.
3026 * If the cmpxchg does not succeed then we may
3027 * drop the list_lock without any processing.
3028 *
3029 * Otherwise the list_lock will synchronize with
3030 * other processors updating the list of slabs.
3031 */
3032 spin_lock_irqsave(&n->list_lock, flags);
3033
3034 }
2cfb7455 3035 }
81819f0f 3036
2cfb7455
CL
3037 } while (!cmpxchg_double_slab(s, page,
3038 prior, counters,
81084651 3039 head, new.counters,
2cfb7455 3040 "__slab_free"));
81819f0f 3041
2cfb7455 3042 if (likely(!n)) {
49e22585 3043
c270cf30
AW
3044 if (likely(was_frozen)) {
3045 /*
3046 * The list lock was not taken therefore no list
3047 * activity can be necessary.
3048 */
3049 stat(s, FREE_FROZEN);
3050 } else if (new.frozen) {
3051 /*
3052 * If we just froze the page then put it onto the
3053 * per cpu partial list.
3054 */
49e22585 3055 put_cpu_partial(s, page, 1);
8028dcea
AS
3056 stat(s, CPU_PARTIAL_FREE);
3057 }
c270cf30 3058
b455def2
L
3059 return;
3060 }
81819f0f 3061
8a5b20ae 3062 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
3063 goto slab_empty;
3064
81819f0f 3065 /*
837d678d
JK
3066 * Objects left in the slab. If it was not on the partial list before
3067 * then add it.
81819f0f 3068 */
345c905d 3069 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 3070 remove_full(s, n, page);
837d678d
JK
3071 add_partial(n, page, DEACTIVATE_TO_TAIL);
3072 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 3073 }
80f08c19 3074 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
3075 return;
3076
3077slab_empty:
a973e9dd 3078 if (prior) {
81819f0f 3079 /*
6fbabb20 3080 * Slab on the partial list.
81819f0f 3081 */
5cc6eee8 3082 remove_partial(n, page);
84e554e6 3083 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 3084 } else {
6fbabb20 3085 /* Slab must be on the full list */
c65c1877
PZ
3086 remove_full(s, n, page);
3087 }
2cfb7455 3088
80f08c19 3089 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 3090 stat(s, FREE_SLAB);
81819f0f 3091 discard_slab(s, page);
81819f0f
CL
3092}
3093
894b8788
CL
3094/*
3095 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3096 * can perform fastpath freeing without additional function calls.
3097 *
3098 * The fastpath is only possible if we are freeing to the current cpu slab
3099 * of this processor. This typically the case if we have just allocated
3100 * the item before.
3101 *
3102 * If fastpath is not possible then fall back to __slab_free where we deal
3103 * with all sorts of special processing.
81084651
JDB
3104 *
3105 * Bulk free of a freelist with several objects (all pointing to the
3106 * same page) possible by specifying head and tail ptr, plus objects
3107 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 3108 */
80a9201a
AP
3109static __always_inline void do_slab_free(struct kmem_cache *s,
3110 struct page *page, void *head, void *tail,
3111 int cnt, unsigned long addr)
894b8788 3112{
81084651 3113 void *tail_obj = tail ? : head;
dfb4f096 3114 struct kmem_cache_cpu *c;
8a5ec0ba 3115 unsigned long tid;
964d4bd3 3116
d1b2cf6c 3117 memcg_slab_free_hook(s, &head, 1);
8a5ec0ba
CL
3118redo:
3119 /*
3120 * Determine the currently cpus per cpu slab.
3121 * The cpu may change afterward. However that does not matter since
3122 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 3123 * during the cmpxchg then the free will succeed.
8a5ec0ba 3124 */
9aabf810
JK
3125 do {
3126 tid = this_cpu_read(s->cpu_slab->tid);
3127 c = raw_cpu_ptr(s->cpu_slab);
923717cb 3128 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
859b7a0e 3129 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 3130
9aabf810
JK
3131 /* Same with comment on barrier() in slab_alloc_node() */
3132 barrier();
c016b0bd 3133
442b06bc 3134 if (likely(page == c->page)) {
5076190d
LT
3135 void **freelist = READ_ONCE(c->freelist);
3136
3137 set_freepointer(s, tail_obj, freelist);
8a5ec0ba 3138
933393f5 3139 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba 3140 s->cpu_slab->freelist, s->cpu_slab->tid,
5076190d 3141 freelist, tid,
81084651 3142 head, next_tid(tid)))) {
8a5ec0ba
CL
3143
3144 note_cmpxchg_failure("slab_free", s, tid);
3145 goto redo;
3146 }
84e554e6 3147 stat(s, FREE_FASTPATH);
894b8788 3148 } else
81084651 3149 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3150
894b8788
CL
3151}
3152
80a9201a
AP
3153static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3154 void *head, void *tail, int cnt,
3155 unsigned long addr)
3156{
80a9201a 3157 /*
c3895391
AK
3158 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3159 * to remove objects, whose reuse must be delayed.
80a9201a 3160 */
c3895391
AK
3161 if (slab_free_freelist_hook(s, &head, &tail))
3162 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3163}
3164
2bd926b4 3165#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3166void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3167{
3168 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3169}
3170#endif
3171
81819f0f
CL
3172void kmem_cache_free(struct kmem_cache *s, void *x)
3173{
b9ce5ef4
GC
3174 s = cache_from_obj(s, x);
3175 if (!s)
79576102 3176 return;
81084651 3177 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3544de8e 3178 trace_kmem_cache_free(_RET_IP_, x, s->name);
81819f0f
CL
3179}
3180EXPORT_SYMBOL(kmem_cache_free);
3181
d0ecd894 3182struct detached_freelist {
fbd02630 3183 struct page *page;
d0ecd894
JDB
3184 void *tail;
3185 void *freelist;
3186 int cnt;
376bf125 3187 struct kmem_cache *s;
d0ecd894 3188};
fbd02630 3189
d0ecd894
JDB
3190/*
3191 * This function progressively scans the array with free objects (with
3192 * a limited look ahead) and extract objects belonging to the same
3193 * page. It builds a detached freelist directly within the given
3194 * page/objects. This can happen without any need for
3195 * synchronization, because the objects are owned by running process.
3196 * The freelist is build up as a single linked list in the objects.
3197 * The idea is, that this detached freelist can then be bulk
3198 * transferred to the real freelist(s), but only requiring a single
3199 * synchronization primitive. Look ahead in the array is limited due
3200 * to performance reasons.
3201 */
376bf125
JDB
3202static inline
3203int build_detached_freelist(struct kmem_cache *s, size_t size,
3204 void **p, struct detached_freelist *df)
d0ecd894
JDB
3205{
3206 size_t first_skipped_index = 0;
3207 int lookahead = 3;
3208 void *object;
ca257195 3209 struct page *page;
fbd02630 3210
d0ecd894
JDB
3211 /* Always re-init detached_freelist */
3212 df->page = NULL;
fbd02630 3213
d0ecd894
JDB
3214 do {
3215 object = p[--size];
ca257195 3216 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3217 } while (!object && size);
3eed034d 3218
d0ecd894
JDB
3219 if (!object)
3220 return 0;
fbd02630 3221
ca257195
JDB
3222 page = virt_to_head_page(object);
3223 if (!s) {
3224 /* Handle kalloc'ed objects */
3225 if (unlikely(!PageSlab(page))) {
3226 BUG_ON(!PageCompound(page));
3227 kfree_hook(object);
4949148a 3228 __free_pages(page, compound_order(page));
ca257195
JDB
3229 p[size] = NULL; /* mark object processed */
3230 return size;
3231 }
3232 /* Derive kmem_cache from object */
3233 df->s = page->slab_cache;
3234 } else {
3235 df->s = cache_from_obj(s, object); /* Support for memcg */
3236 }
376bf125 3237
b89fb5ef
AP
3238 if (is_kfence_address(object)) {
3239 slab_free_hook(df->s, object);
3240 __kfence_free(object);
3241 p[size] = NULL; /* mark object processed */
3242 return size;
3243 }
3244
d0ecd894 3245 /* Start new detached freelist */
ca257195 3246 df->page = page;
376bf125 3247 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3248 df->tail = object;
3249 df->freelist = object;
3250 p[size] = NULL; /* mark object processed */
3251 df->cnt = 1;
3252
3253 while (size) {
3254 object = p[--size];
3255 if (!object)
3256 continue; /* Skip processed objects */
3257
3258 /* df->page is always set at this point */
3259 if (df->page == virt_to_head_page(object)) {
3260 /* Opportunity build freelist */
376bf125 3261 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3262 df->freelist = object;
3263 df->cnt++;
3264 p[size] = NULL; /* mark object processed */
3265
3266 continue;
fbd02630 3267 }
d0ecd894
JDB
3268
3269 /* Limit look ahead search */
3270 if (!--lookahead)
3271 break;
3272
3273 if (!first_skipped_index)
3274 first_skipped_index = size + 1;
fbd02630 3275 }
d0ecd894
JDB
3276
3277 return first_skipped_index;
3278}
3279
d0ecd894 3280/* Note that interrupts must be enabled when calling this function. */
376bf125 3281void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3282{
3283 if (WARN_ON(!size))
3284 return;
3285
d1b2cf6c 3286 memcg_slab_free_hook(s, p, size);
d0ecd894
JDB
3287 do {
3288 struct detached_freelist df;
3289
3290 size = build_detached_freelist(s, size, p, &df);
84582c8a 3291 if (!df.page)
d0ecd894
JDB
3292 continue;
3293
457c82c3 3294 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
d0ecd894 3295 } while (likely(size));
484748f0
CL
3296}
3297EXPORT_SYMBOL(kmem_cache_free_bulk);
3298
994eb764 3299/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3300int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3301 void **p)
484748f0 3302{
994eb764
JDB
3303 struct kmem_cache_cpu *c;
3304 int i;
964d4bd3 3305 struct obj_cgroup *objcg = NULL;
994eb764 3306
03ec0ed5 3307 /* memcg and kmem_cache debug support */
964d4bd3 3308 s = slab_pre_alloc_hook(s, &objcg, size, flags);
03ec0ed5
JDB
3309 if (unlikely(!s))
3310 return false;
994eb764
JDB
3311 /*
3312 * Drain objects in the per cpu slab, while disabling local
3313 * IRQs, which protects against PREEMPT and interrupts
3314 * handlers invoking normal fastpath.
3315 */
3316 local_irq_disable();
3317 c = this_cpu_ptr(s->cpu_slab);
3318
3319 for (i = 0; i < size; i++) {
b89fb5ef 3320 void *object = kfence_alloc(s, s->object_size, flags);
994eb764 3321
b89fb5ef
AP
3322 if (unlikely(object)) {
3323 p[i] = object;
3324 continue;
3325 }
3326
3327 object = c->freelist;
ebe909e0 3328 if (unlikely(!object)) {
fd4d9c7d
JH
3329 /*
3330 * We may have removed an object from c->freelist using
3331 * the fastpath in the previous iteration; in that case,
3332 * c->tid has not been bumped yet.
3333 * Since ___slab_alloc() may reenable interrupts while
3334 * allocating memory, we should bump c->tid now.
3335 */
3336 c->tid = next_tid(c->tid);
3337
ebe909e0
JDB
3338 /*
3339 * Invoking slow path likely have side-effect
3340 * of re-populating per CPU c->freelist
3341 */
87098373 3342 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3343 _RET_IP_, c);
87098373
CL
3344 if (unlikely(!p[i]))
3345 goto error;
3346
ebe909e0 3347 c = this_cpu_ptr(s->cpu_slab);
0f181f9f
AP
3348 maybe_wipe_obj_freeptr(s, p[i]);
3349
ebe909e0
JDB
3350 continue; /* goto for-loop */
3351 }
994eb764
JDB
3352 c->freelist = get_freepointer(s, object);
3353 p[i] = object;
0f181f9f 3354 maybe_wipe_obj_freeptr(s, p[i]);
994eb764
JDB
3355 }
3356 c->tid = next_tid(c->tid);
3357 local_irq_enable();
3358
3359 /* Clear memory outside IRQ disabled fastpath loop */
6471384a 3360 if (unlikely(slab_want_init_on_alloc(flags, s))) {
994eb764
JDB
3361 int j;
3362
3363 for (j = 0; j < i; j++)
ce5716c6 3364 memset(kasan_reset_tag(p[j]), 0, s->object_size);
994eb764
JDB
3365 }
3366
03ec0ed5 3367 /* memcg and kmem_cache debug support */
964d4bd3 3368 slab_post_alloc_hook(s, objcg, flags, size, p);
865762a8 3369 return i;
87098373 3370error:
87098373 3371 local_irq_enable();
964d4bd3 3372 slab_post_alloc_hook(s, objcg, flags, i, p);
03ec0ed5 3373 __kmem_cache_free_bulk(s, i, p);
865762a8 3374 return 0;
484748f0
CL
3375}
3376EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3377
3378
81819f0f 3379/*
672bba3a
CL
3380 * Object placement in a slab is made very easy because we always start at
3381 * offset 0. If we tune the size of the object to the alignment then we can
3382 * get the required alignment by putting one properly sized object after
3383 * another.
81819f0f
CL
3384 *
3385 * Notice that the allocation order determines the sizes of the per cpu
3386 * caches. Each processor has always one slab available for allocations.
3387 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3388 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3389 * locking overhead.
81819f0f
CL
3390 */
3391
3392/*
3393 * Mininum / Maximum order of slab pages. This influences locking overhead
3394 * and slab fragmentation. A higher order reduces the number of partial slabs
3395 * and increases the number of allocations possible without having to
3396 * take the list_lock.
3397 */
19af27af
AD
3398static unsigned int slub_min_order;
3399static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3400static unsigned int slub_min_objects;
81819f0f 3401
81819f0f
CL
3402/*
3403 * Calculate the order of allocation given an slab object size.
3404 *
672bba3a
CL
3405 * The order of allocation has significant impact on performance and other
3406 * system components. Generally order 0 allocations should be preferred since
3407 * order 0 does not cause fragmentation in the page allocator. Larger objects
3408 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3409 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3410 * would be wasted.
3411 *
3412 * In order to reach satisfactory performance we must ensure that a minimum
3413 * number of objects is in one slab. Otherwise we may generate too much
3414 * activity on the partial lists which requires taking the list_lock. This is
3415 * less a concern for large slabs though which are rarely used.
81819f0f 3416 *
672bba3a
CL
3417 * slub_max_order specifies the order where we begin to stop considering the
3418 * number of objects in a slab as critical. If we reach slub_max_order then
3419 * we try to keep the page order as low as possible. So we accept more waste
3420 * of space in favor of a small page order.
81819f0f 3421 *
672bba3a
CL
3422 * Higher order allocations also allow the placement of more objects in a
3423 * slab and thereby reduce object handling overhead. If the user has
3424 * requested a higher mininum order then we start with that one instead of
3425 * the smallest order which will fit the object.
81819f0f 3426 */
19af27af
AD
3427static inline unsigned int slab_order(unsigned int size,
3428 unsigned int min_objects, unsigned int max_order,
9736d2a9 3429 unsigned int fract_leftover)
81819f0f 3430{
19af27af
AD
3431 unsigned int min_order = slub_min_order;
3432 unsigned int order;
81819f0f 3433
9736d2a9 3434 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3435 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3436
9736d2a9 3437 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3438 order <= max_order; order++) {
81819f0f 3439
19af27af
AD
3440 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3441 unsigned int rem;
81819f0f 3442
9736d2a9 3443 rem = slab_size % size;
81819f0f 3444
5e6d444e 3445 if (rem <= slab_size / fract_leftover)
81819f0f 3446 break;
81819f0f 3447 }
672bba3a 3448
81819f0f
CL
3449 return order;
3450}
3451
9736d2a9 3452static inline int calculate_order(unsigned int size)
5e6d444e 3453{
19af27af
AD
3454 unsigned int order;
3455 unsigned int min_objects;
3456 unsigned int max_objects;
3286222f 3457 unsigned int nr_cpus;
5e6d444e
CL
3458
3459 /*
3460 * Attempt to find best configuration for a slab. This
3461 * works by first attempting to generate a layout with
3462 * the best configuration and backing off gradually.
3463 *
422ff4d7 3464 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3465 * we reduce the minimum objects required in a slab.
3466 */
3467 min_objects = slub_min_objects;
3286222f
VB
3468 if (!min_objects) {
3469 /*
3470 * Some architectures will only update present cpus when
3471 * onlining them, so don't trust the number if it's just 1. But
3472 * we also don't want to use nr_cpu_ids always, as on some other
3473 * architectures, there can be many possible cpus, but never
3474 * onlined. Here we compromise between trying to avoid too high
3475 * order on systems that appear larger than they are, and too
3476 * low order on systems that appear smaller than they are.
3477 */
3478 nr_cpus = num_present_cpus();
3479 if (nr_cpus <= 1)
3480 nr_cpus = nr_cpu_ids;
3481 min_objects = 4 * (fls(nr_cpus) + 1);
3482 }
9736d2a9 3483 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3484 min_objects = min(min_objects, max_objects);
3485
5e6d444e 3486 while (min_objects > 1) {
19af27af
AD
3487 unsigned int fraction;
3488
c124f5b5 3489 fraction = 16;
5e6d444e
CL
3490 while (fraction >= 4) {
3491 order = slab_order(size, min_objects,
9736d2a9 3492 slub_max_order, fraction);
5e6d444e
CL
3493 if (order <= slub_max_order)
3494 return order;
3495 fraction /= 2;
3496 }
5086c389 3497 min_objects--;
5e6d444e
CL
3498 }
3499
3500 /*
3501 * We were unable to place multiple objects in a slab. Now
3502 * lets see if we can place a single object there.
3503 */
9736d2a9 3504 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3505 if (order <= slub_max_order)
3506 return order;
3507
3508 /*
3509 * Doh this slab cannot be placed using slub_max_order.
3510 */
9736d2a9 3511 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3512 if (order < MAX_ORDER)
5e6d444e
CL
3513 return order;
3514 return -ENOSYS;
3515}
3516
5595cffc 3517static void
4053497d 3518init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3519{
3520 n->nr_partial = 0;
81819f0f
CL
3521 spin_lock_init(&n->list_lock);
3522 INIT_LIST_HEAD(&n->partial);
8ab1372f 3523#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3524 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3525 atomic_long_set(&n->total_objects, 0);
643b1138 3526 INIT_LIST_HEAD(&n->full);
8ab1372f 3527#endif
81819f0f
CL
3528}
3529
55136592 3530static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3531{
6c182dc0 3532 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3533 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3534
8a5ec0ba 3535 /*
d4d84fef
CM
3536 * Must align to double word boundary for the double cmpxchg
3537 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3538 */
d4d84fef
CM
3539 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3540 2 * sizeof(void *));
8a5ec0ba
CL
3541
3542 if (!s->cpu_slab)
3543 return 0;
3544
3545 init_kmem_cache_cpus(s);
4c93c355 3546
8a5ec0ba 3547 return 1;
4c93c355 3548}
4c93c355 3549
51df1142
CL
3550static struct kmem_cache *kmem_cache_node;
3551
81819f0f
CL
3552/*
3553 * No kmalloc_node yet so do it by hand. We know that this is the first
3554 * slab on the node for this slabcache. There are no concurrent accesses
3555 * possible.
3556 *
721ae22a
ZYW
3557 * Note that this function only works on the kmem_cache_node
3558 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3559 * memory on a fresh node that has no slab structures yet.
81819f0f 3560 */
55136592 3561static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3562{
3563 struct page *page;
3564 struct kmem_cache_node *n;
3565
51df1142 3566 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3567
51df1142 3568 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3569
3570 BUG_ON(!page);
a2f92ee7 3571 if (page_to_nid(page) != node) {
f9f58285
FF
3572 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3573 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3574 }
3575
81819f0f
CL
3576 n = page->freelist;
3577 BUG_ON(!n);
8ab1372f 3578#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3579 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3580 init_tracking(kmem_cache_node, n);
8ab1372f 3581#endif
e2db1a9a 3582 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL);
12b22386
AK
3583 page->freelist = get_freepointer(kmem_cache_node, n);
3584 page->inuse = 1;
3585 page->frozen = 0;
3586 kmem_cache_node->node[node] = n;
4053497d 3587 init_kmem_cache_node(n);
51df1142 3588 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3589
67b6c900 3590 /*
1e4dd946
SR
3591 * No locks need to be taken here as it has just been
3592 * initialized and there is no concurrent access.
67b6c900 3593 */
1e4dd946 3594 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3595}
3596
3597static void free_kmem_cache_nodes(struct kmem_cache *s)
3598{
3599 int node;
fa45dc25 3600 struct kmem_cache_node *n;
81819f0f 3601
fa45dc25 3602 for_each_kmem_cache_node(s, node, n) {
81819f0f 3603 s->node[node] = NULL;
ea37df54 3604 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3605 }
3606}
3607
52b4b950
DS
3608void __kmem_cache_release(struct kmem_cache *s)
3609{
210e7a43 3610 cache_random_seq_destroy(s);
52b4b950
DS
3611 free_percpu(s->cpu_slab);
3612 free_kmem_cache_nodes(s);
3613}
3614
55136592 3615static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3616{
3617 int node;
81819f0f 3618
7e1fa93d 3619 for_each_node_mask(node, slab_nodes) {
81819f0f
CL
3620 struct kmem_cache_node *n;
3621
73367bd8 3622 if (slab_state == DOWN) {
55136592 3623 early_kmem_cache_node_alloc(node);
73367bd8
AD
3624 continue;
3625 }
51df1142 3626 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3627 GFP_KERNEL, node);
81819f0f 3628
73367bd8
AD
3629 if (!n) {
3630 free_kmem_cache_nodes(s);
3631 return 0;
81819f0f 3632 }
73367bd8 3633
4053497d 3634 init_kmem_cache_node(n);
ea37df54 3635 s->node[node] = n;
81819f0f
CL
3636 }
3637 return 1;
3638}
81819f0f 3639
c0bdb232 3640static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3641{
3642 if (min < MIN_PARTIAL)
3643 min = MIN_PARTIAL;
3644 else if (min > MAX_PARTIAL)
3645 min = MAX_PARTIAL;
3646 s->min_partial = min;
3647}
3648
e6d0e1dc
WY
3649static void set_cpu_partial(struct kmem_cache *s)
3650{
3651#ifdef CONFIG_SLUB_CPU_PARTIAL
3652 /*
3653 * cpu_partial determined the maximum number of objects kept in the
3654 * per cpu partial lists of a processor.
3655 *
3656 * Per cpu partial lists mainly contain slabs that just have one
3657 * object freed. If they are used for allocation then they can be
3658 * filled up again with minimal effort. The slab will never hit the
3659 * per node partial lists and therefore no locking will be required.
3660 *
3661 * This setting also determines
3662 *
3663 * A) The number of objects from per cpu partial slabs dumped to the
3664 * per node list when we reach the limit.
3665 * B) The number of objects in cpu partial slabs to extract from the
3666 * per node list when we run out of per cpu objects. We only fetch
3667 * 50% to keep some capacity around for frees.
3668 */
3669 if (!kmem_cache_has_cpu_partial(s))
bbd4e305 3670 slub_set_cpu_partial(s, 0);
e6d0e1dc 3671 else if (s->size >= PAGE_SIZE)
bbd4e305 3672 slub_set_cpu_partial(s, 2);
e6d0e1dc 3673 else if (s->size >= 1024)
bbd4e305 3674 slub_set_cpu_partial(s, 6);
e6d0e1dc 3675 else if (s->size >= 256)
bbd4e305 3676 slub_set_cpu_partial(s, 13);
e6d0e1dc 3677 else
bbd4e305 3678 slub_set_cpu_partial(s, 30);
e6d0e1dc
WY
3679#endif
3680}
3681
81819f0f
CL
3682/*
3683 * calculate_sizes() determines the order and the distribution of data within
3684 * a slab object.
3685 */
06b285dc 3686static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3687{
d50112ed 3688 slab_flags_t flags = s->flags;
be4a7988 3689 unsigned int size = s->object_size;
89b83f28 3690 unsigned int freepointer_area;
19af27af 3691 unsigned int order;
81819f0f 3692
d8b42bf5
CL
3693 /*
3694 * Round up object size to the next word boundary. We can only
3695 * place the free pointer at word boundaries and this determines
3696 * the possible location of the free pointer.
3697 */
3698 size = ALIGN(size, sizeof(void *));
89b83f28
KC
3699 /*
3700 * This is the area of the object where a freepointer can be
3701 * safely written. If redzoning adds more to the inuse size, we
3702 * can't use that portion for writing the freepointer, so
3703 * s->offset must be limited within this for the general case.
3704 */
3705 freepointer_area = size;
d8b42bf5
CL
3706
3707#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3708 /*
3709 * Determine if we can poison the object itself. If the user of
3710 * the slab may touch the object after free or before allocation
3711 * then we should never poison the object itself.
3712 */
5f0d5a3a 3713 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3714 !s->ctor)
81819f0f
CL
3715 s->flags |= __OBJECT_POISON;
3716 else
3717 s->flags &= ~__OBJECT_POISON;
3718
81819f0f
CL
3719
3720 /*
672bba3a 3721 * If we are Redzoning then check if there is some space between the
81819f0f 3722 * end of the object and the free pointer. If not then add an
672bba3a 3723 * additional word to have some bytes to store Redzone information.
81819f0f 3724 */
3b0efdfa 3725 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3726 size += sizeof(void *);
41ecc55b 3727#endif
81819f0f
CL
3728
3729 /*
672bba3a
CL
3730 * With that we have determined the number of bytes in actual use
3731 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3732 */
3733 s->inuse = size;
3734
5f0d5a3a 3735 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3736 s->ctor)) {
81819f0f
CL
3737 /*
3738 * Relocate free pointer after the object if it is not
3739 * permitted to overwrite the first word of the object on
3740 * kmem_cache_free.
3741 *
3742 * This is the case if we do RCU, have a constructor or
3743 * destructor or are poisoning the objects.
cbfc35a4
WL
3744 *
3745 * The assumption that s->offset >= s->inuse means free
3746 * pointer is outside of the object is used in the
3747 * freeptr_outside_object() function. If that is no
3748 * longer true, the function needs to be modified.
81819f0f
CL
3749 */
3750 s->offset = size;
3751 size += sizeof(void *);
89b83f28 3752 } else if (freepointer_area > sizeof(void *)) {
3202fa62
KC
3753 /*
3754 * Store freelist pointer near middle of object to keep
3755 * it away from the edges of the object to avoid small
3756 * sized over/underflows from neighboring allocations.
3757 */
89b83f28 3758 s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
81819f0f
CL
3759 }
3760
c12b3c62 3761#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3762 if (flags & SLAB_STORE_USER)
3763 /*
3764 * Need to store information about allocs and frees after
3765 * the object.
3766 */
3767 size += 2 * sizeof(struct track);
80a9201a 3768#endif
81819f0f 3769
80a9201a
AP
3770 kasan_cache_create(s, &size, &s->flags);
3771#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3772 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3773 /*
3774 * Add some empty padding so that we can catch
3775 * overwrites from earlier objects rather than let
3776 * tracking information or the free pointer be
0211a9c8 3777 * corrupted if a user writes before the start
81819f0f
CL
3778 * of the object.
3779 */
3780 size += sizeof(void *);
d86bd1be
JK
3781
3782 s->red_left_pad = sizeof(void *);
3783 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3784 size += s->red_left_pad;
3785 }
41ecc55b 3786#endif
672bba3a 3787
81819f0f
CL
3788 /*
3789 * SLUB stores one object immediately after another beginning from
3790 * offset 0. In order to align the objects we have to simply size
3791 * each object to conform to the alignment.
3792 */
45906855 3793 size = ALIGN(size, s->align);
81819f0f 3794 s->size = size;
4138fdfc 3795 s->reciprocal_size = reciprocal_value(size);
06b285dc
CL
3796 if (forced_order >= 0)
3797 order = forced_order;
3798 else
9736d2a9 3799 order = calculate_order(size);
81819f0f 3800
19af27af 3801 if ((int)order < 0)
81819f0f
CL
3802 return 0;
3803
b7a49f0d 3804 s->allocflags = 0;
834f3d11 3805 if (order)
b7a49f0d
CL
3806 s->allocflags |= __GFP_COMP;
3807
3808 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3809 s->allocflags |= GFP_DMA;
b7a49f0d 3810
6d6ea1e9
NB
3811 if (s->flags & SLAB_CACHE_DMA32)
3812 s->allocflags |= GFP_DMA32;
3813
b7a49f0d
CL
3814 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3815 s->allocflags |= __GFP_RECLAIMABLE;
3816
81819f0f
CL
3817 /*
3818 * Determine the number of objects per slab
3819 */
9736d2a9
MW
3820 s->oo = oo_make(order, size);
3821 s->min = oo_make(get_order(size), size);
205ab99d
CL
3822 if (oo_objects(s->oo) > oo_objects(s->max))
3823 s->max = s->oo;
81819f0f 3824
834f3d11 3825 return !!oo_objects(s->oo);
81819f0f
CL
3826}
3827
d50112ed 3828static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3829{
37540008 3830 s->flags = kmem_cache_flags(s->size, flags, s->name);
2482ddec
KC
3831#ifdef CONFIG_SLAB_FREELIST_HARDENED
3832 s->random = get_random_long();
3833#endif
81819f0f 3834
06b285dc 3835 if (!calculate_sizes(s, -1))
81819f0f 3836 goto error;
3de47213
DR
3837 if (disable_higher_order_debug) {
3838 /*
3839 * Disable debugging flags that store metadata if the min slab
3840 * order increased.
3841 */
3b0efdfa 3842 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3843 s->flags &= ~DEBUG_METADATA_FLAGS;
3844 s->offset = 0;
3845 if (!calculate_sizes(s, -1))
3846 goto error;
3847 }
3848 }
81819f0f 3849
2565409f
HC
3850#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3851 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3852 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3853 /* Enable fast mode */
3854 s->flags |= __CMPXCHG_DOUBLE;
3855#endif
3856
3b89d7d8
DR
3857 /*
3858 * The larger the object size is, the more pages we want on the partial
3859 * list to avoid pounding the page allocator excessively.
3860 */
49e22585
CL
3861 set_min_partial(s, ilog2(s->size) / 2);
3862
e6d0e1dc 3863 set_cpu_partial(s);
49e22585 3864
81819f0f 3865#ifdef CONFIG_NUMA
e2cb96b7 3866 s->remote_node_defrag_ratio = 1000;
81819f0f 3867#endif
210e7a43
TG
3868
3869 /* Initialize the pre-computed randomized freelist if slab is up */
3870 if (slab_state >= UP) {
3871 if (init_cache_random_seq(s))
3872 goto error;
3873 }
3874
55136592 3875 if (!init_kmem_cache_nodes(s))
dfb4f096 3876 goto error;
81819f0f 3877
55136592 3878 if (alloc_kmem_cache_cpus(s))
278b1bb1 3879 return 0;
ff12059e 3880
4c93c355 3881 free_kmem_cache_nodes(s);
81819f0f 3882error:
278b1bb1 3883 return -EINVAL;
81819f0f 3884}
81819f0f 3885
33b12c38 3886static void list_slab_objects(struct kmem_cache *s, struct page *page,
55860d96 3887 const char *text)
33b12c38
CL
3888{
3889#ifdef CONFIG_SLUB_DEBUG
3890 void *addr = page_address(page);
55860d96 3891 unsigned long *map;
33b12c38 3892 void *p;
aa456c7a 3893
945cf2b6 3894 slab_err(s, page, text, s->name);
33b12c38 3895 slab_lock(page);
33b12c38 3896
90e9f6a6 3897 map = get_map(s, page);
33b12c38
CL
3898 for_each_object(p, s, addr, page->objects) {
3899
4138fdfc 3900 if (!test_bit(__obj_to_index(s, addr, p), map)) {
f9f58285 3901 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3902 print_tracking(s, p);
3903 }
3904 }
55860d96 3905 put_map(map);
33b12c38
CL
3906 slab_unlock(page);
3907#endif
3908}
3909
81819f0f 3910/*
599870b1 3911 * Attempt to free all partial slabs on a node.
52b4b950
DS
3912 * This is called from __kmem_cache_shutdown(). We must take list_lock
3913 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3914 */
599870b1 3915static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3916{
60398923 3917 LIST_HEAD(discard);
81819f0f
CL
3918 struct page *page, *h;
3919
52b4b950
DS
3920 BUG_ON(irqs_disabled());
3921 spin_lock_irq(&n->list_lock);
916ac052 3922 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3923 if (!page->inuse) {
52b4b950 3924 remove_partial(n, page);
916ac052 3925 list_add(&page->slab_list, &discard);
33b12c38
CL
3926 } else {
3927 list_slab_objects(s, page,
55860d96 3928 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3929 }
33b12c38 3930 }
52b4b950 3931 spin_unlock_irq(&n->list_lock);
60398923 3932
916ac052 3933 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3934 discard_slab(s, page);
81819f0f
CL
3935}
3936
f9e13c0a
SB
3937bool __kmem_cache_empty(struct kmem_cache *s)
3938{
3939 int node;
3940 struct kmem_cache_node *n;
3941
3942 for_each_kmem_cache_node(s, node, n)
3943 if (n->nr_partial || slabs_node(s, node))
3944 return false;
3945 return true;
3946}
3947
81819f0f 3948/*
672bba3a 3949 * Release all resources used by a slab cache.
81819f0f 3950 */
52b4b950 3951int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3952{
3953 int node;
fa45dc25 3954 struct kmem_cache_node *n;
81819f0f
CL
3955
3956 flush_all(s);
81819f0f 3957 /* Attempt to free all objects */
fa45dc25 3958 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3959 free_partial(s, n);
3960 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3961 return 1;
3962 }
81819f0f
CL
3963 return 0;
3964}
3965
5bb1bb35 3966#ifdef CONFIG_PRINTK
8e7f37f2
PM
3967void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
3968{
3969 void *base;
3970 int __maybe_unused i;
3971 unsigned int objnr;
3972 void *objp;
3973 void *objp0;
3974 struct kmem_cache *s = page->slab_cache;
3975 struct track __maybe_unused *trackp;
3976
3977 kpp->kp_ptr = object;
3978 kpp->kp_page = page;
3979 kpp->kp_slab_cache = s;
3980 base = page_address(page);
3981 objp0 = kasan_reset_tag(object);
3982#ifdef CONFIG_SLUB_DEBUG
3983 objp = restore_red_left(s, objp0);
3984#else
3985 objp = objp0;
3986#endif
3987 objnr = obj_to_index(s, page, objp);
3988 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
3989 objp = base + s->size * objnr;
3990 kpp->kp_objp = objp;
3991 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
3992 !(s->flags & SLAB_STORE_USER))
3993 return;
3994#ifdef CONFIG_SLUB_DEBUG
3995 trackp = get_track(s, objp, TRACK_ALLOC);
3996 kpp->kp_ret = (void *)trackp->addr;
3997#ifdef CONFIG_STACKTRACE
3998 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
3999 kpp->kp_stack[i] = (void *)trackp->addrs[i];
4000 if (!kpp->kp_stack[i])
4001 break;
4002 }
4003#endif
4004#endif
4005}
5bb1bb35 4006#endif
8e7f37f2 4007
81819f0f
CL
4008/********************************************************************
4009 * Kmalloc subsystem
4010 *******************************************************************/
4011
81819f0f
CL
4012static int __init setup_slub_min_order(char *str)
4013{
19af27af 4014 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
4015
4016 return 1;
4017}
4018
4019__setup("slub_min_order=", setup_slub_min_order);
4020
4021static int __init setup_slub_max_order(char *str)
4022{
19af27af
AD
4023 get_option(&str, (int *)&slub_max_order);
4024 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
4025
4026 return 1;
4027}
4028
4029__setup("slub_max_order=", setup_slub_max_order);
4030
4031static int __init setup_slub_min_objects(char *str)
4032{
19af27af 4033 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
4034
4035 return 1;
4036}
4037
4038__setup("slub_min_objects=", setup_slub_min_objects);
4039
81819f0f
CL
4040void *__kmalloc(size_t size, gfp_t flags)
4041{
aadb4bc4 4042 struct kmem_cache *s;
5b882be4 4043 void *ret;
81819f0f 4044
95a05b42 4045 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 4046 return kmalloc_large(size, flags);
aadb4bc4 4047
2c59dd65 4048 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4049
4050 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4051 return s;
4052
b89fb5ef 4053 ret = slab_alloc(s, flags, _RET_IP_, size);
5b882be4 4054
ca2b84cb 4055 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 4056
0116523c 4057 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4058
5b882be4 4059 return ret;
81819f0f
CL
4060}
4061EXPORT_SYMBOL(__kmalloc);
4062
5d1f57e4 4063#ifdef CONFIG_NUMA
f619cfe1
CL
4064static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4065{
b1eeab67 4066 struct page *page;
e4f7c0b4 4067 void *ptr = NULL;
6a486c0a 4068 unsigned int order = get_order(size);
f619cfe1 4069
75f296d9 4070 flags |= __GFP_COMP;
6a486c0a
VB
4071 page = alloc_pages_node(node, flags, order);
4072 if (page) {
e4f7c0b4 4073 ptr = page_address(page);
96403bfe
MS
4074 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4075 PAGE_SIZE << order);
6a486c0a 4076 }
e4f7c0b4 4077
0116523c 4078 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
4079}
4080
81819f0f
CL
4081void *__kmalloc_node(size_t size, gfp_t flags, int node)
4082{
aadb4bc4 4083 struct kmem_cache *s;
5b882be4 4084 void *ret;
81819f0f 4085
95a05b42 4086 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
4087 ret = kmalloc_large_node(size, flags, node);
4088
ca2b84cb
EGM
4089 trace_kmalloc_node(_RET_IP_, ret,
4090 size, PAGE_SIZE << get_order(size),
4091 flags, node);
5b882be4
EGM
4092
4093 return ret;
4094 }
aadb4bc4 4095
2c59dd65 4096 s = kmalloc_slab(size, flags);
aadb4bc4
CL
4097
4098 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
4099 return s;
4100
b89fb5ef 4101 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
5b882be4 4102
ca2b84cb 4103 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 4104
0116523c 4105 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 4106
5b882be4 4107 return ret;
81819f0f
CL
4108}
4109EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 4110#endif /* CONFIG_NUMA */
81819f0f 4111
ed18adc1
KC
4112#ifdef CONFIG_HARDENED_USERCOPY
4113/*
afcc90f8
KC
4114 * Rejects incorrectly sized objects and objects that are to be copied
4115 * to/from userspace but do not fall entirely within the containing slab
4116 * cache's usercopy region.
ed18adc1
KC
4117 *
4118 * Returns NULL if check passes, otherwise const char * to name of cache
4119 * to indicate an error.
4120 */
f4e6e289
KC
4121void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4122 bool to_user)
ed18adc1
KC
4123{
4124 struct kmem_cache *s;
44065b2e 4125 unsigned int offset;
ed18adc1 4126 size_t object_size;
b89fb5ef 4127 bool is_kfence = is_kfence_address(ptr);
ed18adc1 4128
96fedce2
AK
4129 ptr = kasan_reset_tag(ptr);
4130
ed18adc1
KC
4131 /* Find object and usable object size. */
4132 s = page->slab_cache;
ed18adc1
KC
4133
4134 /* Reject impossible pointers. */
4135 if (ptr < page_address(page))
f4e6e289
KC
4136 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4137 to_user, 0, n);
ed18adc1
KC
4138
4139 /* Find offset within object. */
b89fb5ef
AP
4140 if (is_kfence)
4141 offset = ptr - kfence_object_start(ptr);
4142 else
4143 offset = (ptr - page_address(page)) % s->size;
ed18adc1
KC
4144
4145 /* Adjust for redzone and reject if within the redzone. */
b89fb5ef 4146 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
ed18adc1 4147 if (offset < s->red_left_pad)
f4e6e289
KC
4148 usercopy_abort("SLUB object in left red zone",
4149 s->name, to_user, offset, n);
ed18adc1
KC
4150 offset -= s->red_left_pad;
4151 }
4152
afcc90f8
KC
4153 /* Allow address range falling entirely within usercopy region. */
4154 if (offset >= s->useroffset &&
4155 offset - s->useroffset <= s->usersize &&
4156 n <= s->useroffset - offset + s->usersize)
f4e6e289 4157 return;
ed18adc1 4158
afcc90f8
KC
4159 /*
4160 * If the copy is still within the allocated object, produce
4161 * a warning instead of rejecting the copy. This is intended
4162 * to be a temporary method to find any missing usercopy
4163 * whitelists.
4164 */
4165 object_size = slab_ksize(s);
2d891fbc
KC
4166 if (usercopy_fallback &&
4167 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
4168 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4169 return;
4170 }
ed18adc1 4171
f4e6e289 4172 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
4173}
4174#endif /* CONFIG_HARDENED_USERCOPY */
4175
10d1f8cb 4176size_t __ksize(const void *object)
81819f0f 4177{
272c1d21 4178 struct page *page;
81819f0f 4179
ef8b4520 4180 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
4181 return 0;
4182
294a80a8 4183 page = virt_to_head_page(object);
294a80a8 4184
76994412
PE
4185 if (unlikely(!PageSlab(page))) {
4186 WARN_ON(!PageCompound(page));
a50b854e 4187 return page_size(page);
76994412 4188 }
81819f0f 4189
1b4f59e3 4190 return slab_ksize(page->slab_cache);
81819f0f 4191}
10d1f8cb 4192EXPORT_SYMBOL(__ksize);
81819f0f
CL
4193
4194void kfree(const void *x)
4195{
81819f0f 4196 struct page *page;
5bb983b0 4197 void *object = (void *)x;
81819f0f 4198
2121db74
PE
4199 trace_kfree(_RET_IP_, x);
4200
2408c550 4201 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
4202 return;
4203
b49af68f 4204 page = virt_to_head_page(x);
aadb4bc4 4205 if (unlikely(!PageSlab(page))) {
6a486c0a
VB
4206 unsigned int order = compound_order(page);
4207
0937502a 4208 BUG_ON(!PageCompound(page));
47adccce 4209 kfree_hook(object);
96403bfe
MS
4210 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4211 -(PAGE_SIZE << order));
6a486c0a 4212 __free_pages(page, order);
aadb4bc4
CL
4213 return;
4214 }
81084651 4215 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
4216}
4217EXPORT_SYMBOL(kfree);
4218
832f37f5
VD
4219#define SHRINK_PROMOTE_MAX 32
4220
2086d26a 4221/*
832f37f5
VD
4222 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4223 * up most to the head of the partial lists. New allocations will then
4224 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
4225 *
4226 * The slabs with the least items are placed last. This results in them
4227 * being allocated from last increasing the chance that the last objects
4228 * are freed in them.
2086d26a 4229 */
c9fc5864 4230int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
4231{
4232 int node;
4233 int i;
4234 struct kmem_cache_node *n;
4235 struct page *page;
4236 struct page *t;
832f37f5
VD
4237 struct list_head discard;
4238 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 4239 unsigned long flags;
ce3712d7 4240 int ret = 0;
2086d26a 4241
2086d26a 4242 flush_all(s);
fa45dc25 4243 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
4244 INIT_LIST_HEAD(&discard);
4245 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4246 INIT_LIST_HEAD(promote + i);
2086d26a
CL
4247
4248 spin_lock_irqsave(&n->list_lock, flags);
4249
4250 /*
832f37f5 4251 * Build lists of slabs to discard or promote.
2086d26a 4252 *
672bba3a
CL
4253 * Note that concurrent frees may occur while we hold the
4254 * list_lock. page->inuse here is the upper limit.
2086d26a 4255 */
916ac052 4256 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4257 int free = page->objects - page->inuse;
4258
4259 /* Do not reread page->inuse */
4260 barrier();
4261
4262 /* We do not keep full slabs on the list */
4263 BUG_ON(free <= 0);
4264
4265 if (free == page->objects) {
916ac052 4266 list_move(&page->slab_list, &discard);
69cb8e6b 4267 n->nr_partial--;
832f37f5 4268 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4269 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4270 }
4271
2086d26a 4272 /*
832f37f5
VD
4273 * Promote the slabs filled up most to the head of the
4274 * partial list.
2086d26a 4275 */
832f37f5
VD
4276 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4277 list_splice(promote + i, &n->partial);
2086d26a 4278
2086d26a 4279 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4280
4281 /* Release empty slabs */
916ac052 4282 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4283 discard_slab(s, page);
ce3712d7
VD
4284
4285 if (slabs_node(s, node))
4286 ret = 1;
2086d26a
CL
4287 }
4288
ce3712d7 4289 return ret;
2086d26a 4290}
2086d26a 4291
b9049e23
YG
4292static int slab_mem_going_offline_callback(void *arg)
4293{
4294 struct kmem_cache *s;
4295
18004c5d 4296 mutex_lock(&slab_mutex);
b9049e23 4297 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4298 __kmem_cache_shrink(s);
18004c5d 4299 mutex_unlock(&slab_mutex);
b9049e23
YG
4300
4301 return 0;
4302}
4303
4304static void slab_mem_offline_callback(void *arg)
4305{
b9049e23
YG
4306 struct memory_notify *marg = arg;
4307 int offline_node;
4308
b9d5ab25 4309 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4310
4311 /*
4312 * If the node still has available memory. we need kmem_cache_node
4313 * for it yet.
4314 */
4315 if (offline_node < 0)
4316 return;
4317
18004c5d 4318 mutex_lock(&slab_mutex);
7e1fa93d 4319 node_clear(offline_node, slab_nodes);
666716fd
VB
4320 /*
4321 * We no longer free kmem_cache_node structures here, as it would be
4322 * racy with all get_node() users, and infeasible to protect them with
4323 * slab_mutex.
4324 */
18004c5d 4325 mutex_unlock(&slab_mutex);
b9049e23
YG
4326}
4327
4328static int slab_mem_going_online_callback(void *arg)
4329{
4330 struct kmem_cache_node *n;
4331 struct kmem_cache *s;
4332 struct memory_notify *marg = arg;
b9d5ab25 4333 int nid = marg->status_change_nid_normal;
b9049e23
YG
4334 int ret = 0;
4335
4336 /*
4337 * If the node's memory is already available, then kmem_cache_node is
4338 * already created. Nothing to do.
4339 */
4340 if (nid < 0)
4341 return 0;
4342
4343 /*
0121c619 4344 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4345 * allocate a kmem_cache_node structure in order to bring the node
4346 * online.
4347 */
18004c5d 4348 mutex_lock(&slab_mutex);
b9049e23 4349 list_for_each_entry(s, &slab_caches, list) {
666716fd
VB
4350 /*
4351 * The structure may already exist if the node was previously
4352 * onlined and offlined.
4353 */
4354 if (get_node(s, nid))
4355 continue;
b9049e23
YG
4356 /*
4357 * XXX: kmem_cache_alloc_node will fallback to other nodes
4358 * since memory is not yet available from the node that
4359 * is brought up.
4360 */
8de66a0c 4361 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4362 if (!n) {
4363 ret = -ENOMEM;
4364 goto out;
4365 }
4053497d 4366 init_kmem_cache_node(n);
b9049e23
YG
4367 s->node[nid] = n;
4368 }
7e1fa93d
VB
4369 /*
4370 * Any cache created after this point will also have kmem_cache_node
4371 * initialized for the new node.
4372 */
4373 node_set(nid, slab_nodes);
b9049e23 4374out:
18004c5d 4375 mutex_unlock(&slab_mutex);
b9049e23
YG
4376 return ret;
4377}
4378
4379static int slab_memory_callback(struct notifier_block *self,
4380 unsigned long action, void *arg)
4381{
4382 int ret = 0;
4383
4384 switch (action) {
4385 case MEM_GOING_ONLINE:
4386 ret = slab_mem_going_online_callback(arg);
4387 break;
4388 case MEM_GOING_OFFLINE:
4389 ret = slab_mem_going_offline_callback(arg);
4390 break;
4391 case MEM_OFFLINE:
4392 case MEM_CANCEL_ONLINE:
4393 slab_mem_offline_callback(arg);
4394 break;
4395 case MEM_ONLINE:
4396 case MEM_CANCEL_OFFLINE:
4397 break;
4398 }
dc19f9db
KH
4399 if (ret)
4400 ret = notifier_from_errno(ret);
4401 else
4402 ret = NOTIFY_OK;
b9049e23
YG
4403 return ret;
4404}
4405
3ac38faa
AM
4406static struct notifier_block slab_memory_callback_nb = {
4407 .notifier_call = slab_memory_callback,
4408 .priority = SLAB_CALLBACK_PRI,
4409};
b9049e23 4410
81819f0f
CL
4411/********************************************************************
4412 * Basic setup of slabs
4413 *******************************************************************/
4414
51df1142
CL
4415/*
4416 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4417 * the page allocator. Allocate them properly then fix up the pointers
4418 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4419 */
4420
dffb4d60 4421static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4422{
4423 int node;
dffb4d60 4424 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4425 struct kmem_cache_node *n;
51df1142 4426
dffb4d60 4427 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4428
7d557b3c
GC
4429 /*
4430 * This runs very early, and only the boot processor is supposed to be
4431 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4432 * IPIs around.
4433 */
4434 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4435 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4436 struct page *p;
4437
916ac052 4438 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4439 p->slab_cache = s;
51df1142 4440
607bf324 4441#ifdef CONFIG_SLUB_DEBUG
916ac052 4442 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4443 p->slab_cache = s;
51df1142 4444#endif
51df1142 4445 }
dffb4d60
CL
4446 list_add(&s->list, &slab_caches);
4447 return s;
51df1142
CL
4448}
4449
81819f0f
CL
4450void __init kmem_cache_init(void)
4451{
dffb4d60
CL
4452 static __initdata struct kmem_cache boot_kmem_cache,
4453 boot_kmem_cache_node;
7e1fa93d 4454 int node;
51df1142 4455
fc8d8620
SG
4456 if (debug_guardpage_minorder())
4457 slub_max_order = 0;
4458
dffb4d60
CL
4459 kmem_cache_node = &boot_kmem_cache_node;
4460 kmem_cache = &boot_kmem_cache;
51df1142 4461
7e1fa93d
VB
4462 /*
4463 * Initialize the nodemask for which we will allocate per node
4464 * structures. Here we don't need taking slab_mutex yet.
4465 */
4466 for_each_node_state(node, N_NORMAL_MEMORY)
4467 node_set(node, slab_nodes);
4468
dffb4d60 4469 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4470 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4471
3ac38faa 4472 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4473
4474 /* Able to allocate the per node structures */
4475 slab_state = PARTIAL;
4476
dffb4d60
CL
4477 create_boot_cache(kmem_cache, "kmem_cache",
4478 offsetof(struct kmem_cache, node) +
4479 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4480 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4481
dffb4d60 4482 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4483 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4484
4485 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4486 setup_kmalloc_cache_index_table();
f97d5f63 4487 create_kmalloc_caches(0);
81819f0f 4488
210e7a43
TG
4489 /* Setup random freelists for each cache */
4490 init_freelist_randomization();
4491
a96a87bf
SAS
4492 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4493 slub_cpu_dead);
81819f0f 4494
b9726c26 4495 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4496 cache_line_size(),
81819f0f
CL
4497 slub_min_order, slub_max_order, slub_min_objects,
4498 nr_cpu_ids, nr_node_ids);
4499}
4500
7e85ee0c
PE
4501void __init kmem_cache_init_late(void)
4502{
7e85ee0c
PE
4503}
4504
2633d7a0 4505struct kmem_cache *
f4957d5b 4506__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4507 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4508{
10befea9 4509 struct kmem_cache *s;
81819f0f 4510
a44cb944 4511 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4512 if (s) {
4513 s->refcount++;
84d0ddd6 4514
81819f0f
CL
4515 /*
4516 * Adjust the object sizes so that we clear
4517 * the complete object on kzalloc.
4518 */
1b473f29 4519 s->object_size = max(s->object_size, size);
52ee6d74 4520 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4521
7b8f3b66 4522 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4523 s->refcount--;
cbb79694 4524 s = NULL;
7b8f3b66 4525 }
a0e1d1be 4526 }
6446faa2 4527
cbb79694
CL
4528 return s;
4529}
84c1cf62 4530
d50112ed 4531int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4532{
aac3a166
PE
4533 int err;
4534
4535 err = kmem_cache_open(s, flags);
4536 if (err)
4537 return err;
20cea968 4538
45530c44
CL
4539 /* Mutex is not taken during early boot */
4540 if (slab_state <= UP)
4541 return 0;
4542
aac3a166 4543 err = sysfs_slab_add(s);
aac3a166 4544 if (err)
52b4b950 4545 __kmem_cache_release(s);
20cea968 4546
aac3a166 4547 return err;
81819f0f 4548}
81819f0f 4549
ce71e27c 4550void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4551{
aadb4bc4 4552 struct kmem_cache *s;
94b528d0 4553 void *ret;
aadb4bc4 4554
95a05b42 4555 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4556 return kmalloc_large(size, gfpflags);
4557
2c59dd65 4558 s = kmalloc_slab(size, gfpflags);
81819f0f 4559
2408c550 4560 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4561 return s;
81819f0f 4562
b89fb5ef 4563 ret = slab_alloc(s, gfpflags, caller, size);
94b528d0 4564
25985edc 4565 /* Honor the call site pointer we received. */
ca2b84cb 4566 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4567
4568 return ret;
81819f0f 4569}
fd7cb575 4570EXPORT_SYMBOL(__kmalloc_track_caller);
81819f0f 4571
5d1f57e4 4572#ifdef CONFIG_NUMA
81819f0f 4573void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4574 int node, unsigned long caller)
81819f0f 4575{
aadb4bc4 4576 struct kmem_cache *s;
94b528d0 4577 void *ret;
aadb4bc4 4578
95a05b42 4579 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4580 ret = kmalloc_large_node(size, gfpflags, node);
4581
4582 trace_kmalloc_node(caller, ret,
4583 size, PAGE_SIZE << get_order(size),
4584 gfpflags, node);
4585
4586 return ret;
4587 }
eada35ef 4588
2c59dd65 4589 s = kmalloc_slab(size, gfpflags);
81819f0f 4590
2408c550 4591 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4592 return s;
81819f0f 4593
b89fb5ef 4594 ret = slab_alloc_node(s, gfpflags, node, caller, size);
94b528d0 4595
25985edc 4596 /* Honor the call site pointer we received. */
ca2b84cb 4597 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4598
4599 return ret;
81819f0f 4600}
fd7cb575 4601EXPORT_SYMBOL(__kmalloc_node_track_caller);
5d1f57e4 4602#endif
81819f0f 4603
ab4d5ed5 4604#ifdef CONFIG_SYSFS
205ab99d
CL
4605static int count_inuse(struct page *page)
4606{
4607 return page->inuse;
4608}
4609
4610static int count_total(struct page *page)
4611{
4612 return page->objects;
4613}
ab4d5ed5 4614#endif
205ab99d 4615
ab4d5ed5 4616#ifdef CONFIG_SLUB_DEBUG
90e9f6a6 4617static void validate_slab(struct kmem_cache *s, struct page *page)
53e15af0
CL
4618{
4619 void *p;
a973e9dd 4620 void *addr = page_address(page);
90e9f6a6
YZ
4621 unsigned long *map;
4622
4623 slab_lock(page);
53e15af0 4624
dd98afd4 4625 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
90e9f6a6 4626 goto unlock;
53e15af0
CL
4627
4628 /* Now we know that a valid freelist exists */
90e9f6a6 4629 map = get_map(s, page);
5f80b13a 4630 for_each_object(p, s, addr, page->objects) {
4138fdfc 4631 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
dd98afd4 4632 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
53e15af0 4633
dd98afd4
YZ
4634 if (!check_object(s, page, p, val))
4635 break;
4636 }
90e9f6a6
YZ
4637 put_map(map);
4638unlock:
881db7fb 4639 slab_unlock(page);
53e15af0
CL
4640}
4641
434e245d 4642static int validate_slab_node(struct kmem_cache *s,
90e9f6a6 4643 struct kmem_cache_node *n)
53e15af0
CL
4644{
4645 unsigned long count = 0;
4646 struct page *page;
4647 unsigned long flags;
4648
4649 spin_lock_irqsave(&n->list_lock, flags);
4650
916ac052 4651 list_for_each_entry(page, &n->partial, slab_list) {
90e9f6a6 4652 validate_slab(s, page);
53e15af0
CL
4653 count++;
4654 }
4655 if (count != n->nr_partial)
f9f58285
FF
4656 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4657 s->name, count, n->nr_partial);
53e15af0
CL
4658
4659 if (!(s->flags & SLAB_STORE_USER))
4660 goto out;
4661
916ac052 4662 list_for_each_entry(page, &n->full, slab_list) {
90e9f6a6 4663 validate_slab(s, page);
53e15af0
CL
4664 count++;
4665 }
4666 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4667 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4668 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4669
4670out:
4671 spin_unlock_irqrestore(&n->list_lock, flags);
4672 return count;
4673}
4674
434e245d 4675static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4676{
4677 int node;
4678 unsigned long count = 0;
fa45dc25 4679 struct kmem_cache_node *n;
53e15af0
CL
4680
4681 flush_all(s);
fa45dc25 4682 for_each_kmem_cache_node(s, node, n)
90e9f6a6
YZ
4683 count += validate_slab_node(s, n);
4684
53e15af0
CL
4685 return count;
4686}
88a420e4 4687/*
672bba3a 4688 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4689 * and freed.
4690 */
4691
4692struct location {
4693 unsigned long count;
ce71e27c 4694 unsigned long addr;
45edfa58
CL
4695 long long sum_time;
4696 long min_time;
4697 long max_time;
4698 long min_pid;
4699 long max_pid;
174596a0 4700 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4701 nodemask_t nodes;
88a420e4
CL
4702};
4703
4704struct loc_track {
4705 unsigned long max;
4706 unsigned long count;
4707 struct location *loc;
4708};
4709
4710static void free_loc_track(struct loc_track *t)
4711{
4712 if (t->max)
4713 free_pages((unsigned long)t->loc,
4714 get_order(sizeof(struct location) * t->max));
4715}
4716
68dff6a9 4717static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4718{
4719 struct location *l;
4720 int order;
4721
88a420e4
CL
4722 order = get_order(sizeof(struct location) * max);
4723
68dff6a9 4724 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4725 if (!l)
4726 return 0;
4727
4728 if (t->count) {
4729 memcpy(l, t->loc, sizeof(struct location) * t->count);
4730 free_loc_track(t);
4731 }
4732 t->max = max;
4733 t->loc = l;
4734 return 1;
4735}
4736
4737static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4738 const struct track *track)
88a420e4
CL
4739{
4740 long start, end, pos;
4741 struct location *l;
ce71e27c 4742 unsigned long caddr;
45edfa58 4743 unsigned long age = jiffies - track->when;
88a420e4
CL
4744
4745 start = -1;
4746 end = t->count;
4747
4748 for ( ; ; ) {
4749 pos = start + (end - start + 1) / 2;
4750
4751 /*
4752 * There is nothing at "end". If we end up there
4753 * we need to add something to before end.
4754 */
4755 if (pos == end)
4756 break;
4757
4758 caddr = t->loc[pos].addr;
45edfa58
CL
4759 if (track->addr == caddr) {
4760
4761 l = &t->loc[pos];
4762 l->count++;
4763 if (track->when) {
4764 l->sum_time += age;
4765 if (age < l->min_time)
4766 l->min_time = age;
4767 if (age > l->max_time)
4768 l->max_time = age;
4769
4770 if (track->pid < l->min_pid)
4771 l->min_pid = track->pid;
4772 if (track->pid > l->max_pid)
4773 l->max_pid = track->pid;
4774
174596a0
RR
4775 cpumask_set_cpu(track->cpu,
4776 to_cpumask(l->cpus));
45edfa58
CL
4777 }
4778 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4779 return 1;
4780 }
4781
45edfa58 4782 if (track->addr < caddr)
88a420e4
CL
4783 end = pos;
4784 else
4785 start = pos;
4786 }
4787
4788 /*
672bba3a 4789 * Not found. Insert new tracking element.
88a420e4 4790 */
68dff6a9 4791 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4792 return 0;
4793
4794 l = t->loc + pos;
4795 if (pos < t->count)
4796 memmove(l + 1, l,
4797 (t->count - pos) * sizeof(struct location));
4798 t->count++;
4799 l->count = 1;
45edfa58
CL
4800 l->addr = track->addr;
4801 l->sum_time = age;
4802 l->min_time = age;
4803 l->max_time = age;
4804 l->min_pid = track->pid;
4805 l->max_pid = track->pid;
174596a0
RR
4806 cpumask_clear(to_cpumask(l->cpus));
4807 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4808 nodes_clear(l->nodes);
4809 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4810 return 1;
4811}
4812
4813static void process_slab(struct loc_track *t, struct kmem_cache *s,
90e9f6a6 4814 struct page *page, enum track_item alloc)
88a420e4 4815{
a973e9dd 4816 void *addr = page_address(page);
88a420e4 4817 void *p;
90e9f6a6 4818 unsigned long *map;
88a420e4 4819
90e9f6a6 4820 map = get_map(s, page);
224a88be 4821 for_each_object(p, s, addr, page->objects)
4138fdfc 4822 if (!test_bit(__obj_to_index(s, addr, p), map))
45edfa58 4823 add_location(t, s, get_track(s, p, alloc));
90e9f6a6 4824 put_map(map);
88a420e4
CL
4825}
4826
4827static int list_locations(struct kmem_cache *s, char *buf,
bf16d19a 4828 enum track_item alloc)
88a420e4 4829{
e374d483 4830 int len = 0;
88a420e4 4831 unsigned long i;
68dff6a9 4832 struct loc_track t = { 0, 0, NULL };
88a420e4 4833 int node;
fa45dc25 4834 struct kmem_cache_node *n;
88a420e4 4835
90e9f6a6
YZ
4836 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4837 GFP_KERNEL)) {
bf16d19a 4838 return sysfs_emit(buf, "Out of memory\n");
bbd7d57b 4839 }
88a420e4
CL
4840 /* Push back cpu slabs */
4841 flush_all(s);
4842
fa45dc25 4843 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4844 unsigned long flags;
4845 struct page *page;
4846
9e86943b 4847 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4848 continue;
4849
4850 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4851 list_for_each_entry(page, &n->partial, slab_list)
90e9f6a6 4852 process_slab(&t, s, page, alloc);
916ac052 4853 list_for_each_entry(page, &n->full, slab_list)
90e9f6a6 4854 process_slab(&t, s, page, alloc);
88a420e4
CL
4855 spin_unlock_irqrestore(&n->list_lock, flags);
4856 }
4857
4858 for (i = 0; i < t.count; i++) {
45edfa58 4859 struct location *l = &t.loc[i];
88a420e4 4860
bf16d19a 4861 len += sysfs_emit_at(buf, len, "%7ld ", l->count);
45edfa58
CL
4862
4863 if (l->addr)
bf16d19a 4864 len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr);
88a420e4 4865 else
bf16d19a
JP
4866 len += sysfs_emit_at(buf, len, "<not-available>");
4867
4868 if (l->sum_time != l->min_time)
4869 len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld",
4870 l->min_time,
4871 (long)div_u64(l->sum_time,
4872 l->count),
4873 l->max_time);
4874 else
4875 len += sysfs_emit_at(buf, len, " age=%ld", l->min_time);
45edfa58
CL
4876
4877 if (l->min_pid != l->max_pid)
bf16d19a
JP
4878 len += sysfs_emit_at(buf, len, " pid=%ld-%ld",
4879 l->min_pid, l->max_pid);
45edfa58 4880 else
bf16d19a
JP
4881 len += sysfs_emit_at(buf, len, " pid=%ld",
4882 l->min_pid);
45edfa58 4883
174596a0 4884 if (num_online_cpus() > 1 &&
bf16d19a
JP
4885 !cpumask_empty(to_cpumask(l->cpus)))
4886 len += sysfs_emit_at(buf, len, " cpus=%*pbl",
4887 cpumask_pr_args(to_cpumask(l->cpus)));
4888
4889 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
4890 len += sysfs_emit_at(buf, len, " nodes=%*pbl",
4891 nodemask_pr_args(&l->nodes));
4892
4893 len += sysfs_emit_at(buf, len, "\n");
88a420e4
CL
4894 }
4895
4896 free_loc_track(&t);
4897 if (!t.count)
bf16d19a
JP
4898 len += sysfs_emit_at(buf, len, "No data\n");
4899
e374d483 4900 return len;
88a420e4 4901}
6dfd1b65 4902#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4903
a5a84755 4904#ifdef SLUB_RESILIENCY_TEST
c07b8183 4905static void __init resiliency_test(void)
a5a84755
CL
4906{
4907 u8 *p;
cc252eae 4908 int type = KMALLOC_NORMAL;
a5a84755 4909
95a05b42 4910 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4911
f9f58285
FF
4912 pr_err("SLUB resiliency testing\n");
4913 pr_err("-----------------------\n");
4914 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4915
4916 p = kzalloc(16, GFP_KERNEL);
4917 p[16] = 0x12;
f9f58285
FF
4918 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4919 p + 16);
a5a84755 4920
cc252eae 4921 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4922
4923 /* Hmmm... The next two are dangerous */
4924 p = kzalloc(32, GFP_KERNEL);
4925 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4926 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4927 p);
4928 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4929
cc252eae 4930 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4931 p = kzalloc(64, GFP_KERNEL);
4932 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4933 *p = 0x56;
f9f58285
FF
4934 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4935 p);
4936 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4937 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4938
f9f58285 4939 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4940 p = kzalloc(128, GFP_KERNEL);
4941 kfree(p);
4942 *p = 0x78;
f9f58285 4943 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4944 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4945
4946 p = kzalloc(256, GFP_KERNEL);
4947 kfree(p);
4948 p[50] = 0x9a;
f9f58285 4949 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4950 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4951
4952 p = kzalloc(512, GFP_KERNEL);
4953 kfree(p);
4954 p[512] = 0xab;
f9f58285 4955 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4956 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4957}
4958#else
4959#ifdef CONFIG_SYSFS
4960static void resiliency_test(void) {};
4961#endif
6dfd1b65 4962#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4963
ab4d5ed5 4964#ifdef CONFIG_SYSFS
81819f0f 4965enum slab_stat_type {
205ab99d
CL
4966 SL_ALL, /* All slabs */
4967 SL_PARTIAL, /* Only partially allocated slabs */
4968 SL_CPU, /* Only slabs used for cpu caches */
4969 SL_OBJECTS, /* Determine allocated objects not slabs */
4970 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4971};
4972
205ab99d 4973#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4974#define SO_PARTIAL (1 << SL_PARTIAL)
4975#define SO_CPU (1 << SL_CPU)
4976#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4977#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4978
62e5c4b4 4979static ssize_t show_slab_objects(struct kmem_cache *s,
bf16d19a 4980 char *buf, unsigned long flags)
81819f0f
CL
4981{
4982 unsigned long total = 0;
81819f0f
CL
4983 int node;
4984 int x;
4985 unsigned long *nodes;
bf16d19a 4986 int len = 0;
81819f0f 4987
6396bb22 4988 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4989 if (!nodes)
4990 return -ENOMEM;
81819f0f 4991
205ab99d
CL
4992 if (flags & SO_CPU) {
4993 int cpu;
81819f0f 4994
205ab99d 4995 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4996 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4997 cpu);
ec3ab083 4998 int node;
49e22585 4999 struct page *page;
dfb4f096 5000
4db0c3c2 5001 page = READ_ONCE(c->page);
ec3ab083
CL
5002 if (!page)
5003 continue;
205ab99d 5004
ec3ab083
CL
5005 node = page_to_nid(page);
5006 if (flags & SO_TOTAL)
5007 x = page->objects;
5008 else if (flags & SO_OBJECTS)
5009 x = page->inuse;
5010 else
5011 x = 1;
49e22585 5012
ec3ab083
CL
5013 total += x;
5014 nodes[node] += x;
5015
a93cf07b 5016 page = slub_percpu_partial_read_once(c);
49e22585 5017 if (page) {
8afb1474
LZ
5018 node = page_to_nid(page);
5019 if (flags & SO_TOTAL)
5020 WARN_ON_ONCE(1);
5021 else if (flags & SO_OBJECTS)
5022 WARN_ON_ONCE(1);
5023 else
5024 x = page->pages;
bc6697d8
ED
5025 total += x;
5026 nodes[node] += x;
49e22585 5027 }
81819f0f
CL
5028 }
5029 }
5030
e4f8e513
QC
5031 /*
5032 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5033 * already held which will conflict with an existing lock order:
5034 *
5035 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5036 *
5037 * We don't really need mem_hotplug_lock (to hold off
5038 * slab_mem_going_offline_callback) here because slab's memory hot
5039 * unplug code doesn't destroy the kmem_cache->node[] data.
5040 */
5041
ab4d5ed5 5042#ifdef CONFIG_SLUB_DEBUG
205ab99d 5043 if (flags & SO_ALL) {
fa45dc25
CL
5044 struct kmem_cache_node *n;
5045
5046 for_each_kmem_cache_node(s, node, n) {
205ab99d 5047
d0e0ac97
CG
5048 if (flags & SO_TOTAL)
5049 x = atomic_long_read(&n->total_objects);
5050 else if (flags & SO_OBJECTS)
5051 x = atomic_long_read(&n->total_objects) -
5052 count_partial(n, count_free);
81819f0f 5053 else
205ab99d 5054 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
5055 total += x;
5056 nodes[node] += x;
5057 }
5058
ab4d5ed5
CL
5059 } else
5060#endif
5061 if (flags & SO_PARTIAL) {
fa45dc25 5062 struct kmem_cache_node *n;
81819f0f 5063
fa45dc25 5064 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
5065 if (flags & SO_TOTAL)
5066 x = count_partial(n, count_total);
5067 else if (flags & SO_OBJECTS)
5068 x = count_partial(n, count_inuse);
81819f0f 5069 else
205ab99d 5070 x = n->nr_partial;
81819f0f
CL
5071 total += x;
5072 nodes[node] += x;
5073 }
5074 }
bf16d19a
JP
5075
5076 len += sysfs_emit_at(buf, len, "%lu", total);
81819f0f 5077#ifdef CONFIG_NUMA
bf16d19a 5078 for (node = 0; node < nr_node_ids; node++) {
81819f0f 5079 if (nodes[node])
bf16d19a
JP
5080 len += sysfs_emit_at(buf, len, " N%d=%lu",
5081 node, nodes[node]);
5082 }
81819f0f 5083#endif
bf16d19a 5084 len += sysfs_emit_at(buf, len, "\n");
81819f0f 5085 kfree(nodes);
bf16d19a
JP
5086
5087 return len;
81819f0f
CL
5088}
5089
81819f0f 5090#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 5091#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
5092
5093struct slab_attribute {
5094 struct attribute attr;
5095 ssize_t (*show)(struct kmem_cache *s, char *buf);
5096 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5097};
5098
5099#define SLAB_ATTR_RO(_name) \
ab067e99
VK
5100 static struct slab_attribute _name##_attr = \
5101 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
5102
5103#define SLAB_ATTR(_name) \
5104 static struct slab_attribute _name##_attr = \
ab067e99 5105 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 5106
81819f0f
CL
5107static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5108{
bf16d19a 5109 return sysfs_emit(buf, "%u\n", s->size);
81819f0f
CL
5110}
5111SLAB_ATTR_RO(slab_size);
5112
5113static ssize_t align_show(struct kmem_cache *s, char *buf)
5114{
bf16d19a 5115 return sysfs_emit(buf, "%u\n", s->align);
81819f0f
CL
5116}
5117SLAB_ATTR_RO(align);
5118
5119static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5120{
bf16d19a 5121 return sysfs_emit(buf, "%u\n", s->object_size);
81819f0f
CL
5122}
5123SLAB_ATTR_RO(object_size);
5124
5125static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5126{
bf16d19a 5127 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
5128}
5129SLAB_ATTR_RO(objs_per_slab);
5130
5131static ssize_t order_show(struct kmem_cache *s, char *buf)
5132{
bf16d19a 5133 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
81819f0f 5134}
32a6f409 5135SLAB_ATTR_RO(order);
81819f0f 5136
73d342b1
DR
5137static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5138{
bf16d19a 5139 return sysfs_emit(buf, "%lu\n", s->min_partial);
73d342b1
DR
5140}
5141
5142static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5143 size_t length)
5144{
5145 unsigned long min;
5146 int err;
5147
3dbb95f7 5148 err = kstrtoul(buf, 10, &min);
73d342b1
DR
5149 if (err)
5150 return err;
5151
c0bdb232 5152 set_min_partial(s, min);
73d342b1
DR
5153 return length;
5154}
5155SLAB_ATTR(min_partial);
5156
49e22585
CL
5157static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5158{
bf16d19a 5159 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
5160}
5161
5162static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5163 size_t length)
5164{
e5d9998f 5165 unsigned int objects;
49e22585
CL
5166 int err;
5167
e5d9998f 5168 err = kstrtouint(buf, 10, &objects);
49e22585
CL
5169 if (err)
5170 return err;
345c905d 5171 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5172 return -EINVAL;
49e22585 5173
e6d0e1dc 5174 slub_set_cpu_partial(s, objects);
49e22585
CL
5175 flush_all(s);
5176 return length;
5177}
5178SLAB_ATTR(cpu_partial);
5179
81819f0f
CL
5180static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5181{
62c70bce
JP
5182 if (!s->ctor)
5183 return 0;
bf16d19a 5184 return sysfs_emit(buf, "%pS\n", s->ctor);
81819f0f
CL
5185}
5186SLAB_ATTR_RO(ctor);
5187
81819f0f
CL
5188static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5189{
bf16d19a 5190 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5191}
5192SLAB_ATTR_RO(aliases);
5193
81819f0f
CL
5194static ssize_t partial_show(struct kmem_cache *s, char *buf)
5195{
d9acf4b7 5196 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5197}
5198SLAB_ATTR_RO(partial);
5199
5200static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5201{
d9acf4b7 5202 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5203}
5204SLAB_ATTR_RO(cpu_slabs);
5205
5206static ssize_t objects_show(struct kmem_cache *s, char *buf)
5207{
205ab99d 5208 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5209}
5210SLAB_ATTR_RO(objects);
5211
205ab99d
CL
5212static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5213{
5214 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5215}
5216SLAB_ATTR_RO(objects_partial);
5217
49e22585
CL
5218static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5219{
5220 int objects = 0;
5221 int pages = 0;
5222 int cpu;
bf16d19a 5223 int len = 0;
49e22585
CL
5224
5225 for_each_online_cpu(cpu) {
a93cf07b
WY
5226 struct page *page;
5227
5228 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5229
5230 if (page) {
5231 pages += page->pages;
5232 objects += page->pobjects;
5233 }
5234 }
5235
bf16d19a 5236 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
49e22585
CL
5237
5238#ifdef CONFIG_SMP
5239 for_each_online_cpu(cpu) {
a93cf07b
WY
5240 struct page *page;
5241
5242 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
bf16d19a
JP
5243 if (page)
5244 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5245 cpu, page->pobjects, page->pages);
49e22585
CL
5246 }
5247#endif
bf16d19a
JP
5248 len += sysfs_emit_at(buf, len, "\n");
5249
5250 return len;
49e22585
CL
5251}
5252SLAB_ATTR_RO(slabs_cpu_partial);
5253
a5a84755
CL
5254static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5255{
bf16d19a 5256 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
a5a84755 5257}
8f58119a 5258SLAB_ATTR_RO(reclaim_account);
a5a84755
CL
5259
5260static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5261{
bf16d19a 5262 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
a5a84755
CL
5263}
5264SLAB_ATTR_RO(hwcache_align);
5265
5266#ifdef CONFIG_ZONE_DMA
5267static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5268{
bf16d19a 5269 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
a5a84755
CL
5270}
5271SLAB_ATTR_RO(cache_dma);
5272#endif
5273
8eb8284b
DW
5274static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5275{
bf16d19a 5276 return sysfs_emit(buf, "%u\n", s->usersize);
8eb8284b
DW
5277}
5278SLAB_ATTR_RO(usersize);
5279
a5a84755
CL
5280static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5281{
bf16d19a 5282 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5283}
5284SLAB_ATTR_RO(destroy_by_rcu);
5285
ab4d5ed5 5286#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5287static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5288{
5289 return show_slab_objects(s, buf, SO_ALL);
5290}
5291SLAB_ATTR_RO(slabs);
5292
205ab99d
CL
5293static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5294{
5295 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5296}
5297SLAB_ATTR_RO(total_objects);
5298
81819f0f
CL
5299static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5300{
bf16d19a 5301 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f 5302}
060807f8 5303SLAB_ATTR_RO(sanity_checks);
81819f0f
CL
5304
5305static ssize_t trace_show(struct kmem_cache *s, char *buf)
5306{
bf16d19a 5307 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
81819f0f 5308}
060807f8 5309SLAB_ATTR_RO(trace);
81819f0f 5310
81819f0f
CL
5311static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5312{
bf16d19a 5313 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
81819f0f
CL
5314}
5315
ad38b5b1 5316SLAB_ATTR_RO(red_zone);
81819f0f
CL
5317
5318static ssize_t poison_show(struct kmem_cache *s, char *buf)
5319{
bf16d19a 5320 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
81819f0f
CL
5321}
5322
ad38b5b1 5323SLAB_ATTR_RO(poison);
81819f0f
CL
5324
5325static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5326{
bf16d19a 5327 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
81819f0f
CL
5328}
5329
ad38b5b1 5330SLAB_ATTR_RO(store_user);
81819f0f 5331
53e15af0
CL
5332static ssize_t validate_show(struct kmem_cache *s, char *buf)
5333{
5334 return 0;
5335}
5336
5337static ssize_t validate_store(struct kmem_cache *s,
5338 const char *buf, size_t length)
5339{
434e245d
CL
5340 int ret = -EINVAL;
5341
5342 if (buf[0] == '1') {
5343 ret = validate_slab_cache(s);
5344 if (ret >= 0)
5345 ret = length;
5346 }
5347 return ret;
53e15af0
CL
5348}
5349SLAB_ATTR(validate);
a5a84755
CL
5350
5351static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5352{
5353 if (!(s->flags & SLAB_STORE_USER))
5354 return -ENOSYS;
5355 return list_locations(s, buf, TRACK_ALLOC);
5356}
5357SLAB_ATTR_RO(alloc_calls);
5358
5359static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5360{
5361 if (!(s->flags & SLAB_STORE_USER))
5362 return -ENOSYS;
5363 return list_locations(s, buf, TRACK_FREE);
5364}
5365SLAB_ATTR_RO(free_calls);
5366#endif /* CONFIG_SLUB_DEBUG */
5367
5368#ifdef CONFIG_FAILSLAB
5369static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5370{
bf16d19a 5371 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
a5a84755 5372}
060807f8 5373SLAB_ATTR_RO(failslab);
ab4d5ed5 5374#endif
53e15af0 5375
2086d26a
CL
5376static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5377{
5378 return 0;
5379}
5380
5381static ssize_t shrink_store(struct kmem_cache *s,
5382 const char *buf, size_t length)
5383{
832f37f5 5384 if (buf[0] == '1')
10befea9 5385 kmem_cache_shrink(s);
832f37f5 5386 else
2086d26a
CL
5387 return -EINVAL;
5388 return length;
5389}
5390SLAB_ATTR(shrink);
5391
81819f0f 5392#ifdef CONFIG_NUMA
9824601e 5393static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5394{
bf16d19a 5395 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5396}
5397
9824601e 5398static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5399 const char *buf, size_t length)
5400{
eb7235eb 5401 unsigned int ratio;
0121c619
CL
5402 int err;
5403
eb7235eb 5404 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5405 if (err)
5406 return err;
eb7235eb
AD
5407 if (ratio > 100)
5408 return -ERANGE;
0121c619 5409
eb7235eb 5410 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5411
81819f0f
CL
5412 return length;
5413}
9824601e 5414SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5415#endif
5416
8ff12cfc 5417#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5418static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5419{
5420 unsigned long sum = 0;
5421 int cpu;
bf16d19a 5422 int len = 0;
6da2ec56 5423 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5424
5425 if (!data)
5426 return -ENOMEM;
5427
5428 for_each_online_cpu(cpu) {
9dfc6e68 5429 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5430
5431 data[cpu] = x;
5432 sum += x;
5433 }
5434
bf16d19a 5435 len += sysfs_emit_at(buf, len, "%lu", sum);
8ff12cfc 5436
50ef37b9 5437#ifdef CONFIG_SMP
8ff12cfc 5438 for_each_online_cpu(cpu) {
bf16d19a
JP
5439 if (data[cpu])
5440 len += sysfs_emit_at(buf, len, " C%d=%u",
5441 cpu, data[cpu]);
8ff12cfc 5442 }
50ef37b9 5443#endif
8ff12cfc 5444 kfree(data);
bf16d19a
JP
5445 len += sysfs_emit_at(buf, len, "\n");
5446
5447 return len;
8ff12cfc
CL
5448}
5449
78eb00cc
DR
5450static void clear_stat(struct kmem_cache *s, enum stat_item si)
5451{
5452 int cpu;
5453
5454 for_each_online_cpu(cpu)
9dfc6e68 5455 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5456}
5457
8ff12cfc
CL
5458#define STAT_ATTR(si, text) \
5459static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5460{ \
5461 return show_stat(s, buf, si); \
5462} \
78eb00cc
DR
5463static ssize_t text##_store(struct kmem_cache *s, \
5464 const char *buf, size_t length) \
5465{ \
5466 if (buf[0] != '0') \
5467 return -EINVAL; \
5468 clear_stat(s, si); \
5469 return length; \
5470} \
5471SLAB_ATTR(text); \
8ff12cfc
CL
5472
5473STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5474STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5475STAT_ATTR(FREE_FASTPATH, free_fastpath);
5476STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5477STAT_ATTR(FREE_FROZEN, free_frozen);
5478STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5479STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5480STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5481STAT_ATTR(ALLOC_SLAB, alloc_slab);
5482STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5483STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5484STAT_ATTR(FREE_SLAB, free_slab);
5485STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5486STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5487STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5488STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5489STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5490STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5491STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5492STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5493STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5494STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5495STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5496STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5497STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5498STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5499#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5500
06428780 5501static struct attribute *slab_attrs[] = {
81819f0f
CL
5502 &slab_size_attr.attr,
5503 &object_size_attr.attr,
5504 &objs_per_slab_attr.attr,
5505 &order_attr.attr,
73d342b1 5506 &min_partial_attr.attr,
49e22585 5507 &cpu_partial_attr.attr,
81819f0f 5508 &objects_attr.attr,
205ab99d 5509 &objects_partial_attr.attr,
81819f0f
CL
5510 &partial_attr.attr,
5511 &cpu_slabs_attr.attr,
5512 &ctor_attr.attr,
81819f0f
CL
5513 &aliases_attr.attr,
5514 &align_attr.attr,
81819f0f
CL
5515 &hwcache_align_attr.attr,
5516 &reclaim_account_attr.attr,
5517 &destroy_by_rcu_attr.attr,
a5a84755 5518 &shrink_attr.attr,
49e22585 5519 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5520#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5521 &total_objects_attr.attr,
5522 &slabs_attr.attr,
5523 &sanity_checks_attr.attr,
5524 &trace_attr.attr,
81819f0f
CL
5525 &red_zone_attr.attr,
5526 &poison_attr.attr,
5527 &store_user_attr.attr,
53e15af0 5528 &validate_attr.attr,
88a420e4
CL
5529 &alloc_calls_attr.attr,
5530 &free_calls_attr.attr,
ab4d5ed5 5531#endif
81819f0f
CL
5532#ifdef CONFIG_ZONE_DMA
5533 &cache_dma_attr.attr,
5534#endif
5535#ifdef CONFIG_NUMA
9824601e 5536 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5537#endif
5538#ifdef CONFIG_SLUB_STATS
5539 &alloc_fastpath_attr.attr,
5540 &alloc_slowpath_attr.attr,
5541 &free_fastpath_attr.attr,
5542 &free_slowpath_attr.attr,
5543 &free_frozen_attr.attr,
5544 &free_add_partial_attr.attr,
5545 &free_remove_partial_attr.attr,
5546 &alloc_from_partial_attr.attr,
5547 &alloc_slab_attr.attr,
5548 &alloc_refill_attr.attr,
e36a2652 5549 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5550 &free_slab_attr.attr,
5551 &cpuslab_flush_attr.attr,
5552 &deactivate_full_attr.attr,
5553 &deactivate_empty_attr.attr,
5554 &deactivate_to_head_attr.attr,
5555 &deactivate_to_tail_attr.attr,
5556 &deactivate_remote_frees_attr.attr,
03e404af 5557 &deactivate_bypass_attr.attr,
65c3376a 5558 &order_fallback_attr.attr,
b789ef51
CL
5559 &cmpxchg_double_fail_attr.attr,
5560 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5561 &cpu_partial_alloc_attr.attr,
5562 &cpu_partial_free_attr.attr,
8028dcea
AS
5563 &cpu_partial_node_attr.attr,
5564 &cpu_partial_drain_attr.attr,
81819f0f 5565#endif
4c13dd3b
DM
5566#ifdef CONFIG_FAILSLAB
5567 &failslab_attr.attr,
5568#endif
8eb8284b 5569 &usersize_attr.attr,
4c13dd3b 5570
81819f0f
CL
5571 NULL
5572};
5573
1fdaaa23 5574static const struct attribute_group slab_attr_group = {
81819f0f
CL
5575 .attrs = slab_attrs,
5576};
5577
5578static ssize_t slab_attr_show(struct kobject *kobj,
5579 struct attribute *attr,
5580 char *buf)
5581{
5582 struct slab_attribute *attribute;
5583 struct kmem_cache *s;
5584 int err;
5585
5586 attribute = to_slab_attr(attr);
5587 s = to_slab(kobj);
5588
5589 if (!attribute->show)
5590 return -EIO;
5591
5592 err = attribute->show(s, buf);
5593
5594 return err;
5595}
5596
5597static ssize_t slab_attr_store(struct kobject *kobj,
5598 struct attribute *attr,
5599 const char *buf, size_t len)
5600{
5601 struct slab_attribute *attribute;
5602 struct kmem_cache *s;
5603 int err;
5604
5605 attribute = to_slab_attr(attr);
5606 s = to_slab(kobj);
5607
5608 if (!attribute->store)
5609 return -EIO;
5610
5611 err = attribute->store(s, buf, len);
81819f0f
CL
5612 return err;
5613}
5614
41a21285
CL
5615static void kmem_cache_release(struct kobject *k)
5616{
5617 slab_kmem_cache_release(to_slab(k));
5618}
5619
52cf25d0 5620static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5621 .show = slab_attr_show,
5622 .store = slab_attr_store,
5623};
5624
5625static struct kobj_type slab_ktype = {
5626 .sysfs_ops = &slab_sysfs_ops,
41a21285 5627 .release = kmem_cache_release,
81819f0f
CL
5628};
5629
27c3a314 5630static struct kset *slab_kset;
81819f0f 5631
9a41707b
VD
5632static inline struct kset *cache_kset(struct kmem_cache *s)
5633{
9a41707b
VD
5634 return slab_kset;
5635}
5636
81819f0f
CL
5637#define ID_STR_LENGTH 64
5638
5639/* Create a unique string id for a slab cache:
6446faa2
CL
5640 *
5641 * Format :[flags-]size
81819f0f
CL
5642 */
5643static char *create_unique_id(struct kmem_cache *s)
5644{
5645 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5646 char *p = name;
5647
5648 BUG_ON(!name);
5649
5650 *p++ = ':';
5651 /*
5652 * First flags affecting slabcache operations. We will only
5653 * get here for aliasable slabs so we do not need to support
5654 * too many flags. The flags here must cover all flags that
5655 * are matched during merging to guarantee that the id is
5656 * unique.
5657 */
5658 if (s->flags & SLAB_CACHE_DMA)
5659 *p++ = 'd';
6d6ea1e9
NB
5660 if (s->flags & SLAB_CACHE_DMA32)
5661 *p++ = 'D';
81819f0f
CL
5662 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5663 *p++ = 'a';
becfda68 5664 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5665 *p++ = 'F';
230e9fc2
VD
5666 if (s->flags & SLAB_ACCOUNT)
5667 *p++ = 'A';
81819f0f
CL
5668 if (p != name + 1)
5669 *p++ = '-';
44065b2e 5670 p += sprintf(p, "%07u", s->size);
2633d7a0 5671
81819f0f
CL
5672 BUG_ON(p > name + ID_STR_LENGTH - 1);
5673 return name;
5674}
5675
5676static int sysfs_slab_add(struct kmem_cache *s)
5677{
5678 int err;
5679 const char *name;
1663f26d 5680 struct kset *kset = cache_kset(s);
45530c44 5681 int unmergeable = slab_unmergeable(s);
81819f0f 5682
1663f26d
TH
5683 if (!kset) {
5684 kobject_init(&s->kobj, &slab_ktype);
5685 return 0;
5686 }
5687
11066386
MC
5688 if (!unmergeable && disable_higher_order_debug &&
5689 (slub_debug & DEBUG_METADATA_FLAGS))
5690 unmergeable = 1;
5691
81819f0f
CL
5692 if (unmergeable) {
5693 /*
5694 * Slabcache can never be merged so we can use the name proper.
5695 * This is typically the case for debug situations. In that
5696 * case we can catch duplicate names easily.
5697 */
27c3a314 5698 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5699 name = s->name;
5700 } else {
5701 /*
5702 * Create a unique name for the slab as a target
5703 * for the symlinks.
5704 */
5705 name = create_unique_id(s);
5706 }
5707
1663f26d 5708 s->kobj.kset = kset;
26e4f205 5709 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
757fed1d 5710 if (err)
80da026a 5711 goto out;
81819f0f
CL
5712
5713 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5714 if (err)
5715 goto out_del_kobj;
9a41707b 5716
81819f0f
CL
5717 if (!unmergeable) {
5718 /* Setup first alias */
5719 sysfs_slab_alias(s, s->name);
81819f0f 5720 }
54b6a731
DJ
5721out:
5722 if (!unmergeable)
5723 kfree(name);
5724 return err;
5725out_del_kobj:
5726 kobject_del(&s->kobj);
54b6a731 5727 goto out;
81819f0f
CL
5728}
5729
d50d82fa
MP
5730void sysfs_slab_unlink(struct kmem_cache *s)
5731{
5732 if (slab_state >= FULL)
5733 kobject_del(&s->kobj);
5734}
5735
bf5eb3de
TH
5736void sysfs_slab_release(struct kmem_cache *s)
5737{
5738 if (slab_state >= FULL)
5739 kobject_put(&s->kobj);
81819f0f
CL
5740}
5741
5742/*
5743 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5744 * available lest we lose that information.
81819f0f
CL
5745 */
5746struct saved_alias {
5747 struct kmem_cache *s;
5748 const char *name;
5749 struct saved_alias *next;
5750};
5751
5af328a5 5752static struct saved_alias *alias_list;
81819f0f
CL
5753
5754static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5755{
5756 struct saved_alias *al;
5757
97d06609 5758 if (slab_state == FULL) {
81819f0f
CL
5759 /*
5760 * If we have a leftover link then remove it.
5761 */
27c3a314
GKH
5762 sysfs_remove_link(&slab_kset->kobj, name);
5763 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5764 }
5765
5766 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5767 if (!al)
5768 return -ENOMEM;
5769
5770 al->s = s;
5771 al->name = name;
5772 al->next = alias_list;
5773 alias_list = al;
5774 return 0;
5775}
5776
5777static int __init slab_sysfs_init(void)
5778{
5b95a4ac 5779 struct kmem_cache *s;
81819f0f
CL
5780 int err;
5781
18004c5d 5782 mutex_lock(&slab_mutex);
2bce6485 5783
d7660ce5 5784 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
27c3a314 5785 if (!slab_kset) {
18004c5d 5786 mutex_unlock(&slab_mutex);
f9f58285 5787 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5788 return -ENOSYS;
5789 }
5790
97d06609 5791 slab_state = FULL;
26a7bd03 5792
5b95a4ac 5793 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5794 err = sysfs_slab_add(s);
5d540fb7 5795 if (err)
f9f58285
FF
5796 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5797 s->name);
26a7bd03 5798 }
81819f0f
CL
5799
5800 while (alias_list) {
5801 struct saved_alias *al = alias_list;
5802
5803 alias_list = alias_list->next;
5804 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5805 if (err)
f9f58285
FF
5806 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5807 al->name);
81819f0f
CL
5808 kfree(al);
5809 }
5810
18004c5d 5811 mutex_unlock(&slab_mutex);
81819f0f
CL
5812 resiliency_test();
5813 return 0;
5814}
5815
5816__initcall(slab_sysfs_init);
ab4d5ed5 5817#endif /* CONFIG_SYSFS */
57ed3eda
PE
5818
5819/*
5820 * The /proc/slabinfo ABI
5821 */
5b365771 5822#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5823void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5824{
57ed3eda 5825 unsigned long nr_slabs = 0;
205ab99d
CL
5826 unsigned long nr_objs = 0;
5827 unsigned long nr_free = 0;
57ed3eda 5828 int node;
fa45dc25 5829 struct kmem_cache_node *n;
57ed3eda 5830
fa45dc25 5831 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5832 nr_slabs += node_nr_slabs(n);
5833 nr_objs += node_nr_objs(n);
205ab99d 5834 nr_free += count_partial(n, count_free);
57ed3eda
PE
5835 }
5836
0d7561c6
GC
5837 sinfo->active_objs = nr_objs - nr_free;
5838 sinfo->num_objs = nr_objs;
5839 sinfo->active_slabs = nr_slabs;
5840 sinfo->num_slabs = nr_slabs;
5841 sinfo->objects_per_slab = oo_objects(s->oo);
5842 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5843}
5844
0d7561c6 5845void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5846{
7b3c3a50
AD
5847}
5848
b7454ad3
GC
5849ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5850 size_t count, loff_t *ppos)
7b3c3a50 5851{
b7454ad3 5852 return -EIO;
7b3c3a50 5853}
5b365771 5854#endif /* CONFIG_SLUB_DEBUG */