]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/slub.c
slub: Get rid of slab_free_hook_irq()
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
5a896d9e 20#include <linux/kmemcheck.h>
81819f0f
CL
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
3ac7fe5a 25#include <linux/debugobjects.h>
81819f0f 26#include <linux/kallsyms.h>
b9049e23 27#include <linux/memory.h>
f8bd2258 28#include <linux/math64.h>
773ff60e 29#include <linux/fault-inject.h>
81819f0f 30
4a92379b
RK
31#include <trace/events/kmem.h>
32
81819f0f
CL
33/*
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
37 *
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
44 *
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
50 *
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
56 *
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has noone operating on it and thus there is
68 * no danger of cacheline contention.
69 *
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
af537b0a
CL
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
5577bd8a 116#ifdef CONFIG_SLUB_DEBUG
af537b0a 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 118#else
af537b0a 119 return 0;
5577bd8a 120#endif
af537b0a 121}
5577bd8a 122
81819f0f
CL
123/*
124 * Issues still to be resolved:
125 *
81819f0f
CL
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
81819f0f
CL
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
2086d26a
CL
134/*
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
137 */
76be8950 138#define MIN_PARTIAL 5
e95eed57 139
2086d26a
CL
140/*
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
144 */
145#define MAX_PARTIAL 10
146
81819f0f
CL
147#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148 SLAB_POISON | SLAB_STORE_USER)
672bba3a 149
fa5ec8a1 150/*
3de47213
DR
151 * Debugging flags that require metadata to be stored in the slab. These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
153 * metadata.
fa5ec8a1 154 */
3de47213 155#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 156
81819f0f
CL
157/*
158 * Set of flags that will prevent slab merging
159 */
160#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
161 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
162 SLAB_FAILSLAB)
81819f0f
CL
163
164#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 165 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 166
210b5c06
CG
167#define OO_SHIFT 16
168#define OO_MASK ((1 << OO_SHIFT) - 1)
169#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
170
81819f0f 171/* Internal SLUB flags */
f90ec390 172#define __OBJECT_POISON 0x80000000UL /* Poison object */
81819f0f
CL
173
174static int kmem_size = sizeof(struct kmem_cache);
175
176#ifdef CONFIG_SMP
177static struct notifier_block slab_notifier;
178#endif
179
180static enum {
181 DOWN, /* No slab functionality available */
51df1142 182 PARTIAL, /* Kmem_cache_node works */
672bba3a 183 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
184 SYSFS /* Sysfs up */
185} slab_state = DOWN;
186
187/* A list of all slab caches on the system */
188static DECLARE_RWSEM(slub_lock);
5af328a5 189static LIST_HEAD(slab_caches);
81819f0f 190
02cbc874
CL
191/*
192 * Tracking user of a slab.
193 */
194struct track {
ce71e27c 195 unsigned long addr; /* Called from address */
02cbc874
CL
196 int cpu; /* Was running on cpu */
197 int pid; /* Pid context */
198 unsigned long when; /* When did the operation occur */
199};
200
201enum track_item { TRACK_ALLOC, TRACK_FREE };
202
ab4d5ed5 203#ifdef CONFIG_SYSFS
81819f0f
CL
204static int sysfs_slab_add(struct kmem_cache *);
205static int sysfs_slab_alias(struct kmem_cache *, const char *);
206static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 207
81819f0f 208#else
0c710013
CL
209static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211 { return 0; }
151c602f
CL
212static inline void sysfs_slab_remove(struct kmem_cache *s)
213{
84c1cf62 214 kfree(s->name);
151c602f
CL
215 kfree(s);
216}
8ff12cfc 217
81819f0f
CL
218#endif
219
84e554e6 220static inline void stat(struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
221{
222#ifdef CONFIG_SLUB_STATS
84e554e6 223 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
224#endif
225}
226
81819f0f
CL
227/********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
230
231int slab_is_available(void)
232{
233 return slab_state >= UP;
234}
235
236static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237{
81819f0f 238 return s->node[node];
81819f0f
CL
239}
240
6446faa2 241/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
242static inline int check_valid_pointer(struct kmem_cache *s,
243 struct page *page, const void *object)
244{
245 void *base;
246
a973e9dd 247 if (!object)
02cbc874
CL
248 return 1;
249
a973e9dd 250 base = page_address(page);
39b26464 251 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
252 (object - base) % s->size) {
253 return 0;
254 }
255
256 return 1;
257}
258
7656c72b
CL
259static inline void *get_freepointer(struct kmem_cache *s, void *object)
260{
261 return *(void **)(object + s->offset);
262}
263
264static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
265{
266 *(void **)(object + s->offset) = fp;
267}
268
269/* Loop over all objects in a slab */
224a88be
CL
270#define for_each_object(__p, __s, __addr, __objects) \
271 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
272 __p += (__s)->size)
273
274/* Scan freelist */
275#define for_each_free_object(__p, __s, __free) \
a973e9dd 276 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
277
278/* Determine object index from a given position */
279static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
280{
281 return (p - addr) / s->size;
282}
283
834f3d11
CL
284static inline struct kmem_cache_order_objects oo_make(int order,
285 unsigned long size)
286{
287 struct kmem_cache_order_objects x = {
210b5c06 288 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
289 };
290
291 return x;
292}
293
294static inline int oo_order(struct kmem_cache_order_objects x)
295{
210b5c06 296 return x.x >> OO_SHIFT;
834f3d11
CL
297}
298
299static inline int oo_objects(struct kmem_cache_order_objects x)
300{
210b5c06 301 return x.x & OO_MASK;
834f3d11
CL
302}
303
41ecc55b
CL
304#ifdef CONFIG_SLUB_DEBUG
305/*
306 * Debug settings:
307 */
f0630fff
CL
308#ifdef CONFIG_SLUB_DEBUG_ON
309static int slub_debug = DEBUG_DEFAULT_FLAGS;
310#else
41ecc55b 311static int slub_debug;
f0630fff 312#endif
41ecc55b
CL
313
314static char *slub_debug_slabs;
fa5ec8a1 315static int disable_higher_order_debug;
41ecc55b 316
81819f0f
CL
317/*
318 * Object debugging
319 */
320static void print_section(char *text, u8 *addr, unsigned int length)
321{
322 int i, offset;
323 int newline = 1;
324 char ascii[17];
325
326 ascii[16] = 0;
327
328 for (i = 0; i < length; i++) {
329 if (newline) {
24922684 330 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
331 newline = 0;
332 }
06428780 333 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
334 offset = i % 16;
335 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
336 if (offset == 15) {
06428780 337 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
338 newline = 1;
339 }
340 }
341 if (!newline) {
342 i %= 16;
343 while (i < 16) {
06428780 344 printk(KERN_CONT " ");
81819f0f
CL
345 ascii[i] = ' ';
346 i++;
347 }
06428780 348 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
349 }
350}
351
81819f0f
CL
352static struct track *get_track(struct kmem_cache *s, void *object,
353 enum track_item alloc)
354{
355 struct track *p;
356
357 if (s->offset)
358 p = object + s->offset + sizeof(void *);
359 else
360 p = object + s->inuse;
361
362 return p + alloc;
363}
364
365static void set_track(struct kmem_cache *s, void *object,
ce71e27c 366 enum track_item alloc, unsigned long addr)
81819f0f 367{
1a00df4a 368 struct track *p = get_track(s, object, alloc);
81819f0f 369
81819f0f
CL
370 if (addr) {
371 p->addr = addr;
372 p->cpu = smp_processor_id();
88e4ccf2 373 p->pid = current->pid;
81819f0f
CL
374 p->when = jiffies;
375 } else
376 memset(p, 0, sizeof(struct track));
377}
378
81819f0f
CL
379static void init_tracking(struct kmem_cache *s, void *object)
380{
24922684
CL
381 if (!(s->flags & SLAB_STORE_USER))
382 return;
383
ce71e27c
EGM
384 set_track(s, object, TRACK_FREE, 0UL);
385 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
386}
387
388static void print_track(const char *s, struct track *t)
389{
390 if (!t->addr)
391 return;
392
7daf705f 393 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 394 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
395}
396
397static void print_tracking(struct kmem_cache *s, void *object)
398{
399 if (!(s->flags & SLAB_STORE_USER))
400 return;
401
402 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
403 print_track("Freed", get_track(s, object, TRACK_FREE));
404}
405
406static void print_page_info(struct page *page)
407{
39b26464
CL
408 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
409 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
410
411}
412
413static void slab_bug(struct kmem_cache *s, char *fmt, ...)
414{
415 va_list args;
416 char buf[100];
417
418 va_start(args, fmt);
419 vsnprintf(buf, sizeof(buf), fmt, args);
420 va_end(args);
421 printk(KERN_ERR "========================================"
422 "=====================================\n");
423 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
424 printk(KERN_ERR "----------------------------------------"
425 "-------------------------------------\n\n");
81819f0f
CL
426}
427
24922684
CL
428static void slab_fix(struct kmem_cache *s, char *fmt, ...)
429{
430 va_list args;
431 char buf[100];
432
433 va_start(args, fmt);
434 vsnprintf(buf, sizeof(buf), fmt, args);
435 va_end(args);
436 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
437}
438
439static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
440{
441 unsigned int off; /* Offset of last byte */
a973e9dd 442 u8 *addr = page_address(page);
24922684
CL
443
444 print_tracking(s, p);
445
446 print_page_info(page);
447
448 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
449 p, p - addr, get_freepointer(s, p));
450
451 if (p > addr + 16)
452 print_section("Bytes b4", p - 16, 16);
453
0ebd652b 454 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
455
456 if (s->flags & SLAB_RED_ZONE)
457 print_section("Redzone", p + s->objsize,
458 s->inuse - s->objsize);
459
81819f0f
CL
460 if (s->offset)
461 off = s->offset + sizeof(void *);
462 else
463 off = s->inuse;
464
24922684 465 if (s->flags & SLAB_STORE_USER)
81819f0f 466 off += 2 * sizeof(struct track);
81819f0f
CL
467
468 if (off != s->size)
469 /* Beginning of the filler is the free pointer */
24922684
CL
470 print_section("Padding", p + off, s->size - off);
471
472 dump_stack();
81819f0f
CL
473}
474
475static void object_err(struct kmem_cache *s, struct page *page,
476 u8 *object, char *reason)
477{
3dc50637 478 slab_bug(s, "%s", reason);
24922684 479 print_trailer(s, page, object);
81819f0f
CL
480}
481
24922684 482static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
483{
484 va_list args;
485 char buf[100];
486
24922684
CL
487 va_start(args, fmt);
488 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 489 va_end(args);
3dc50637 490 slab_bug(s, "%s", buf);
24922684 491 print_page_info(page);
81819f0f
CL
492 dump_stack();
493}
494
f7cb1933 495static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
496{
497 u8 *p = object;
498
499 if (s->flags & __OBJECT_POISON) {
500 memset(p, POISON_FREE, s->objsize - 1);
06428780 501 p[s->objsize - 1] = POISON_END;
81819f0f
CL
502 }
503
504 if (s->flags & SLAB_RED_ZONE)
f7cb1933 505 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
506}
507
24922684 508static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
509{
510 while (bytes) {
511 if (*start != (u8)value)
24922684 512 return start;
81819f0f
CL
513 start++;
514 bytes--;
515 }
24922684
CL
516 return NULL;
517}
518
519static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
520 void *from, void *to)
521{
522 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
523 memset(from, data, to - from);
524}
525
526static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
527 u8 *object, char *what,
06428780 528 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
529{
530 u8 *fault;
531 u8 *end;
532
533 fault = check_bytes(start, value, bytes);
534 if (!fault)
535 return 1;
536
537 end = start + bytes;
538 while (end > fault && end[-1] == value)
539 end--;
540
541 slab_bug(s, "%s overwritten", what);
542 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
543 fault, end - 1, fault[0], value);
544 print_trailer(s, page, object);
545
546 restore_bytes(s, what, value, fault, end);
547 return 0;
81819f0f
CL
548}
549
81819f0f
CL
550/*
551 * Object layout:
552 *
553 * object address
554 * Bytes of the object to be managed.
555 * If the freepointer may overlay the object then the free
556 * pointer is the first word of the object.
672bba3a 557 *
81819f0f
CL
558 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
559 * 0xa5 (POISON_END)
560 *
561 * object + s->objsize
562 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
563 * Padding is extended by another word if Redzoning is enabled and
564 * objsize == inuse.
565 *
81819f0f
CL
566 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
567 * 0xcc (RED_ACTIVE) for objects in use.
568 *
569 * object + s->inuse
672bba3a
CL
570 * Meta data starts here.
571 *
81819f0f
CL
572 * A. Free pointer (if we cannot overwrite object on free)
573 * B. Tracking data for SLAB_STORE_USER
672bba3a 574 * C. Padding to reach required alignment boundary or at mininum
6446faa2 575 * one word if debugging is on to be able to detect writes
672bba3a
CL
576 * before the word boundary.
577 *
578 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
579 *
580 * object + s->size
672bba3a 581 * Nothing is used beyond s->size.
81819f0f 582 *
672bba3a
CL
583 * If slabcaches are merged then the objsize and inuse boundaries are mostly
584 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
585 * may be used with merged slabcaches.
586 */
587
81819f0f
CL
588static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
589{
590 unsigned long off = s->inuse; /* The end of info */
591
592 if (s->offset)
593 /* Freepointer is placed after the object. */
594 off += sizeof(void *);
595
596 if (s->flags & SLAB_STORE_USER)
597 /* We also have user information there */
598 off += 2 * sizeof(struct track);
599
600 if (s->size == off)
601 return 1;
602
24922684
CL
603 return check_bytes_and_report(s, page, p, "Object padding",
604 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
605}
606
39b26464 607/* Check the pad bytes at the end of a slab page */
81819f0f
CL
608static int slab_pad_check(struct kmem_cache *s, struct page *page)
609{
24922684
CL
610 u8 *start;
611 u8 *fault;
612 u8 *end;
613 int length;
614 int remainder;
81819f0f
CL
615
616 if (!(s->flags & SLAB_POISON))
617 return 1;
618
a973e9dd 619 start = page_address(page);
834f3d11 620 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
621 end = start + length;
622 remainder = length % s->size;
81819f0f
CL
623 if (!remainder)
624 return 1;
625
39b26464 626 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
627 if (!fault)
628 return 1;
629 while (end > fault && end[-1] == POISON_INUSE)
630 end--;
631
632 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 633 print_section("Padding", end - remainder, remainder);
24922684 634
8a3d271d 635 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 636 return 0;
81819f0f
CL
637}
638
639static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 640 void *object, u8 val)
81819f0f
CL
641{
642 u8 *p = object;
643 u8 *endobject = object + s->objsize;
644
645 if (s->flags & SLAB_RED_ZONE) {
24922684 646 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 647 endobject, val, s->inuse - s->objsize))
81819f0f 648 return 0;
81819f0f 649 } else {
3adbefee
IM
650 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
651 check_bytes_and_report(s, page, p, "Alignment padding",
652 endobject, POISON_INUSE, s->inuse - s->objsize);
653 }
81819f0f
CL
654 }
655
656 if (s->flags & SLAB_POISON) {
f7cb1933 657 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
658 (!check_bytes_and_report(s, page, p, "Poison", p,
659 POISON_FREE, s->objsize - 1) ||
660 !check_bytes_and_report(s, page, p, "Poison",
06428780 661 p + s->objsize - 1, POISON_END, 1)))
81819f0f 662 return 0;
81819f0f
CL
663 /*
664 * check_pad_bytes cleans up on its own.
665 */
666 check_pad_bytes(s, page, p);
667 }
668
f7cb1933 669 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
670 /*
671 * Object and freepointer overlap. Cannot check
672 * freepointer while object is allocated.
673 */
674 return 1;
675
676 /* Check free pointer validity */
677 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
678 object_err(s, page, p, "Freepointer corrupt");
679 /*
9f6c708e 680 * No choice but to zap it and thus lose the remainder
81819f0f 681 * of the free objects in this slab. May cause
672bba3a 682 * another error because the object count is now wrong.
81819f0f 683 */
a973e9dd 684 set_freepointer(s, p, NULL);
81819f0f
CL
685 return 0;
686 }
687 return 1;
688}
689
690static int check_slab(struct kmem_cache *s, struct page *page)
691{
39b26464
CL
692 int maxobj;
693
81819f0f
CL
694 VM_BUG_ON(!irqs_disabled());
695
696 if (!PageSlab(page)) {
24922684 697 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
698 return 0;
699 }
39b26464
CL
700
701 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
702 if (page->objects > maxobj) {
703 slab_err(s, page, "objects %u > max %u",
704 s->name, page->objects, maxobj);
705 return 0;
706 }
707 if (page->inuse > page->objects) {
24922684 708 slab_err(s, page, "inuse %u > max %u",
39b26464 709 s->name, page->inuse, page->objects);
81819f0f
CL
710 return 0;
711 }
712 /* Slab_pad_check fixes things up after itself */
713 slab_pad_check(s, page);
714 return 1;
715}
716
717/*
672bba3a
CL
718 * Determine if a certain object on a page is on the freelist. Must hold the
719 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
720 */
721static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
722{
723 int nr = 0;
724 void *fp = page->freelist;
725 void *object = NULL;
224a88be 726 unsigned long max_objects;
81819f0f 727
39b26464 728 while (fp && nr <= page->objects) {
81819f0f
CL
729 if (fp == search)
730 return 1;
731 if (!check_valid_pointer(s, page, fp)) {
732 if (object) {
733 object_err(s, page, object,
734 "Freechain corrupt");
a973e9dd 735 set_freepointer(s, object, NULL);
81819f0f
CL
736 break;
737 } else {
24922684 738 slab_err(s, page, "Freepointer corrupt");
a973e9dd 739 page->freelist = NULL;
39b26464 740 page->inuse = page->objects;
24922684 741 slab_fix(s, "Freelist cleared");
81819f0f
CL
742 return 0;
743 }
744 break;
745 }
746 object = fp;
747 fp = get_freepointer(s, object);
748 nr++;
749 }
750
224a88be 751 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
752 if (max_objects > MAX_OBJS_PER_PAGE)
753 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
754
755 if (page->objects != max_objects) {
756 slab_err(s, page, "Wrong number of objects. Found %d but "
757 "should be %d", page->objects, max_objects);
758 page->objects = max_objects;
759 slab_fix(s, "Number of objects adjusted.");
760 }
39b26464 761 if (page->inuse != page->objects - nr) {
70d71228 762 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
763 "counted were %d", page->inuse, page->objects - nr);
764 page->inuse = page->objects - nr;
24922684 765 slab_fix(s, "Object count adjusted.");
81819f0f
CL
766 }
767 return search == NULL;
768}
769
0121c619
CL
770static void trace(struct kmem_cache *s, struct page *page, void *object,
771 int alloc)
3ec09742
CL
772{
773 if (s->flags & SLAB_TRACE) {
774 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
775 s->name,
776 alloc ? "alloc" : "free",
777 object, page->inuse,
778 page->freelist);
779
780 if (!alloc)
781 print_section("Object", (void *)object, s->objsize);
782
783 dump_stack();
784 }
785}
786
c016b0bd
CL
787/*
788 * Hooks for other subsystems that check memory allocations. In a typical
789 * production configuration these hooks all should produce no code at all.
790 */
791static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
792{
c1d50836 793 flags &= gfp_allowed_mask;
c016b0bd
CL
794 lockdep_trace_alloc(flags);
795 might_sleep_if(flags & __GFP_WAIT);
796
797 return should_failslab(s->objsize, flags, s->flags);
798}
799
800static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
801{
c1d50836 802 flags &= gfp_allowed_mask;
c016b0bd
CL
803 kmemcheck_slab_alloc(s, flags, object, s->objsize);
804 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
805}
806
807static inline void slab_free_hook(struct kmem_cache *s, void *x)
808{
809 kmemleak_free_recursive(x, s->flags);
c016b0bd 810
d3f661d6
CL
811 /*
812 * Trouble is that we may no longer disable interupts in the fast path
813 * So in order to make the debug calls that expect irqs to be
814 * disabled we need to disable interrupts temporarily.
815 */
816#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
817 {
818 unsigned long flags;
819
820 local_irq_save(flags);
821 kmemcheck_slab_free(s, x, s->objsize);
822 debug_check_no_locks_freed(x, s->objsize);
823 if (!(s->flags & SLAB_DEBUG_OBJECTS))
824 debug_check_no_obj_freed(x, s->objsize);
825 local_irq_restore(flags);
826 }
827#endif
c016b0bd
CL
828}
829
643b1138 830/*
672bba3a 831 * Tracking of fully allocated slabs for debugging purposes.
643b1138 832 */
e95eed57 833static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 834{
643b1138
CL
835 spin_lock(&n->list_lock);
836 list_add(&page->lru, &n->full);
837 spin_unlock(&n->list_lock);
838}
839
840static void remove_full(struct kmem_cache *s, struct page *page)
841{
842 struct kmem_cache_node *n;
843
844 if (!(s->flags & SLAB_STORE_USER))
845 return;
846
847 n = get_node(s, page_to_nid(page));
848
849 spin_lock(&n->list_lock);
850 list_del(&page->lru);
851 spin_unlock(&n->list_lock);
852}
853
0f389ec6
CL
854/* Tracking of the number of slabs for debugging purposes */
855static inline unsigned long slabs_node(struct kmem_cache *s, int node)
856{
857 struct kmem_cache_node *n = get_node(s, node);
858
859 return atomic_long_read(&n->nr_slabs);
860}
861
26c02cf0
AB
862static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
863{
864 return atomic_long_read(&n->nr_slabs);
865}
866
205ab99d 867static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
868{
869 struct kmem_cache_node *n = get_node(s, node);
870
871 /*
872 * May be called early in order to allocate a slab for the
873 * kmem_cache_node structure. Solve the chicken-egg
874 * dilemma by deferring the increment of the count during
875 * bootstrap (see early_kmem_cache_node_alloc).
876 */
7340cc84 877 if (n) {
0f389ec6 878 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
879 atomic_long_add(objects, &n->total_objects);
880 }
0f389ec6 881}
205ab99d 882static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
883{
884 struct kmem_cache_node *n = get_node(s, node);
885
886 atomic_long_dec(&n->nr_slabs);
205ab99d 887 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
888}
889
890/* Object debug checks for alloc/free paths */
3ec09742
CL
891static void setup_object_debug(struct kmem_cache *s, struct page *page,
892 void *object)
893{
894 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
895 return;
896
f7cb1933 897 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
898 init_tracking(s, object);
899}
900
1537066c 901static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 902 void *object, unsigned long addr)
81819f0f
CL
903{
904 if (!check_slab(s, page))
905 goto bad;
906
d692ef6d 907 if (!on_freelist(s, page, object)) {
24922684 908 object_err(s, page, object, "Object already allocated");
70d71228 909 goto bad;
81819f0f
CL
910 }
911
912 if (!check_valid_pointer(s, page, object)) {
913 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 914 goto bad;
81819f0f
CL
915 }
916
f7cb1933 917 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 918 goto bad;
81819f0f 919
3ec09742
CL
920 /* Success perform special debug activities for allocs */
921 if (s->flags & SLAB_STORE_USER)
922 set_track(s, object, TRACK_ALLOC, addr);
923 trace(s, page, object, 1);
f7cb1933 924 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 925 return 1;
3ec09742 926
81819f0f
CL
927bad:
928 if (PageSlab(page)) {
929 /*
930 * If this is a slab page then lets do the best we can
931 * to avoid issues in the future. Marking all objects
672bba3a 932 * as used avoids touching the remaining objects.
81819f0f 933 */
24922684 934 slab_fix(s, "Marking all objects used");
39b26464 935 page->inuse = page->objects;
a973e9dd 936 page->freelist = NULL;
81819f0f
CL
937 }
938 return 0;
939}
940
1537066c
CL
941static noinline int free_debug_processing(struct kmem_cache *s,
942 struct page *page, void *object, unsigned long addr)
81819f0f
CL
943{
944 if (!check_slab(s, page))
945 goto fail;
946
947 if (!check_valid_pointer(s, page, object)) {
70d71228 948 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
949 goto fail;
950 }
951
952 if (on_freelist(s, page, object)) {
24922684 953 object_err(s, page, object, "Object already free");
81819f0f
CL
954 goto fail;
955 }
956
f7cb1933 957 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
81819f0f
CL
958 return 0;
959
960 if (unlikely(s != page->slab)) {
3adbefee 961 if (!PageSlab(page)) {
70d71228
CL
962 slab_err(s, page, "Attempt to free object(0x%p) "
963 "outside of slab", object);
3adbefee 964 } else if (!page->slab) {
81819f0f 965 printk(KERN_ERR
70d71228 966 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 967 object);
70d71228 968 dump_stack();
06428780 969 } else
24922684
CL
970 object_err(s, page, object,
971 "page slab pointer corrupt.");
81819f0f
CL
972 goto fail;
973 }
3ec09742
CL
974
975 /* Special debug activities for freeing objects */
8a38082d 976 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
977 remove_full(s, page);
978 if (s->flags & SLAB_STORE_USER)
979 set_track(s, object, TRACK_FREE, addr);
980 trace(s, page, object, 0);
f7cb1933 981 init_object(s, object, SLUB_RED_INACTIVE);
81819f0f 982 return 1;
3ec09742 983
81819f0f 984fail:
24922684 985 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
986 return 0;
987}
988
41ecc55b
CL
989static int __init setup_slub_debug(char *str)
990{
f0630fff
CL
991 slub_debug = DEBUG_DEFAULT_FLAGS;
992 if (*str++ != '=' || !*str)
993 /*
994 * No options specified. Switch on full debugging.
995 */
996 goto out;
997
998 if (*str == ',')
999 /*
1000 * No options but restriction on slabs. This means full
1001 * debugging for slabs matching a pattern.
1002 */
1003 goto check_slabs;
1004
fa5ec8a1
DR
1005 if (tolower(*str) == 'o') {
1006 /*
1007 * Avoid enabling debugging on caches if its minimum order
1008 * would increase as a result.
1009 */
1010 disable_higher_order_debug = 1;
1011 goto out;
1012 }
1013
f0630fff
CL
1014 slub_debug = 0;
1015 if (*str == '-')
1016 /*
1017 * Switch off all debugging measures.
1018 */
1019 goto out;
1020
1021 /*
1022 * Determine which debug features should be switched on
1023 */
06428780 1024 for (; *str && *str != ','; str++) {
f0630fff
CL
1025 switch (tolower(*str)) {
1026 case 'f':
1027 slub_debug |= SLAB_DEBUG_FREE;
1028 break;
1029 case 'z':
1030 slub_debug |= SLAB_RED_ZONE;
1031 break;
1032 case 'p':
1033 slub_debug |= SLAB_POISON;
1034 break;
1035 case 'u':
1036 slub_debug |= SLAB_STORE_USER;
1037 break;
1038 case 't':
1039 slub_debug |= SLAB_TRACE;
1040 break;
4c13dd3b
DM
1041 case 'a':
1042 slub_debug |= SLAB_FAILSLAB;
1043 break;
f0630fff
CL
1044 default:
1045 printk(KERN_ERR "slub_debug option '%c' "
06428780 1046 "unknown. skipped\n", *str);
f0630fff 1047 }
41ecc55b
CL
1048 }
1049
f0630fff 1050check_slabs:
41ecc55b
CL
1051 if (*str == ',')
1052 slub_debug_slabs = str + 1;
f0630fff 1053out:
41ecc55b
CL
1054 return 1;
1055}
1056
1057__setup("slub_debug", setup_slub_debug);
1058
ba0268a8
CL
1059static unsigned long kmem_cache_flags(unsigned long objsize,
1060 unsigned long flags, const char *name,
51cc5068 1061 void (*ctor)(void *))
41ecc55b
CL
1062{
1063 /*
e153362a 1064 * Enable debugging if selected on the kernel commandline.
41ecc55b 1065 */
e153362a 1066 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1067 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1068 flags |= slub_debug;
ba0268a8
CL
1069
1070 return flags;
41ecc55b
CL
1071}
1072#else
3ec09742
CL
1073static inline void setup_object_debug(struct kmem_cache *s,
1074 struct page *page, void *object) {}
41ecc55b 1075
3ec09742 1076static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1077 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1078
3ec09742 1079static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1080 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1081
41ecc55b
CL
1082static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1083 { return 1; }
1084static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1085 void *object, u8 val) { return 1; }
3ec09742 1086static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1087static inline unsigned long kmem_cache_flags(unsigned long objsize,
1088 unsigned long flags, const char *name,
51cc5068 1089 void (*ctor)(void *))
ba0268a8
CL
1090{
1091 return flags;
1092}
41ecc55b 1093#define slub_debug 0
0f389ec6 1094
fdaa45e9
IM
1095#define disable_higher_order_debug 0
1096
0f389ec6
CL
1097static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1098 { return 0; }
26c02cf0
AB
1099static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1100 { return 0; }
205ab99d
CL
1101static inline void inc_slabs_node(struct kmem_cache *s, int node,
1102 int objects) {}
1103static inline void dec_slabs_node(struct kmem_cache *s, int node,
1104 int objects) {}
7d550c56
CL
1105
1106static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1107 { return 0; }
1108
1109static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1110 void *object) {}
1111
1112static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1113
ab4d5ed5 1114#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1115
81819f0f
CL
1116/*
1117 * Slab allocation and freeing
1118 */
65c3376a
CL
1119static inline struct page *alloc_slab_page(gfp_t flags, int node,
1120 struct kmem_cache_order_objects oo)
1121{
1122 int order = oo_order(oo);
1123
b1eeab67
VN
1124 flags |= __GFP_NOTRACK;
1125
2154a336 1126 if (node == NUMA_NO_NODE)
65c3376a
CL
1127 return alloc_pages(flags, order);
1128 else
6b65aaf3 1129 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1130}
1131
81819f0f
CL
1132static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1133{
06428780 1134 struct page *page;
834f3d11 1135 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1136 gfp_t alloc_gfp;
81819f0f 1137
b7a49f0d 1138 flags |= s->allocflags;
e12ba74d 1139
ba52270d
PE
1140 /*
1141 * Let the initial higher-order allocation fail under memory pressure
1142 * so we fall-back to the minimum order allocation.
1143 */
1144 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1145
1146 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1147 if (unlikely(!page)) {
1148 oo = s->min;
1149 /*
1150 * Allocation may have failed due to fragmentation.
1151 * Try a lower order alloc if possible
1152 */
1153 page = alloc_slab_page(flags, node, oo);
1154 if (!page)
1155 return NULL;
81819f0f 1156
84e554e6 1157 stat(s, ORDER_FALLBACK);
65c3376a 1158 }
5a896d9e
VN
1159
1160 if (kmemcheck_enabled
5086c389 1161 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1162 int pages = 1 << oo_order(oo);
1163
1164 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1165
1166 /*
1167 * Objects from caches that have a constructor don't get
1168 * cleared when they're allocated, so we need to do it here.
1169 */
1170 if (s->ctor)
1171 kmemcheck_mark_uninitialized_pages(page, pages);
1172 else
1173 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1174 }
1175
834f3d11 1176 page->objects = oo_objects(oo);
81819f0f
CL
1177 mod_zone_page_state(page_zone(page),
1178 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1179 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1180 1 << oo_order(oo));
81819f0f
CL
1181
1182 return page;
1183}
1184
1185static void setup_object(struct kmem_cache *s, struct page *page,
1186 void *object)
1187{
3ec09742 1188 setup_object_debug(s, page, object);
4f104934 1189 if (unlikely(s->ctor))
51cc5068 1190 s->ctor(object);
81819f0f
CL
1191}
1192
1193static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1194{
1195 struct page *page;
81819f0f 1196 void *start;
81819f0f
CL
1197 void *last;
1198 void *p;
1199
6cb06229 1200 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1201
6cb06229
CL
1202 page = allocate_slab(s,
1203 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1204 if (!page)
1205 goto out;
1206
205ab99d 1207 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1208 page->slab = s;
1209 page->flags |= 1 << PG_slab;
81819f0f
CL
1210
1211 start = page_address(page);
81819f0f
CL
1212
1213 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1214 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1215
1216 last = start;
224a88be 1217 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1218 setup_object(s, page, last);
1219 set_freepointer(s, last, p);
1220 last = p;
1221 }
1222 setup_object(s, page, last);
a973e9dd 1223 set_freepointer(s, last, NULL);
81819f0f
CL
1224
1225 page->freelist = start;
1226 page->inuse = 0;
1227out:
81819f0f
CL
1228 return page;
1229}
1230
1231static void __free_slab(struct kmem_cache *s, struct page *page)
1232{
834f3d11
CL
1233 int order = compound_order(page);
1234 int pages = 1 << order;
81819f0f 1235
af537b0a 1236 if (kmem_cache_debug(s)) {
81819f0f
CL
1237 void *p;
1238
1239 slab_pad_check(s, page);
224a88be
CL
1240 for_each_object(p, s, page_address(page),
1241 page->objects)
f7cb1933 1242 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1243 }
1244
b1eeab67 1245 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1246
81819f0f
CL
1247 mod_zone_page_state(page_zone(page),
1248 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1249 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1250 -pages);
81819f0f 1251
49bd5221
CL
1252 __ClearPageSlab(page);
1253 reset_page_mapcount(page);
1eb5ac64
NP
1254 if (current->reclaim_state)
1255 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1256 __free_pages(page, order);
81819f0f
CL
1257}
1258
1259static void rcu_free_slab(struct rcu_head *h)
1260{
1261 struct page *page;
1262
1263 page = container_of((struct list_head *)h, struct page, lru);
1264 __free_slab(page->slab, page);
1265}
1266
1267static void free_slab(struct kmem_cache *s, struct page *page)
1268{
1269 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1270 /*
1271 * RCU free overloads the RCU head over the LRU
1272 */
1273 struct rcu_head *head = (void *)&page->lru;
1274
1275 call_rcu(head, rcu_free_slab);
1276 } else
1277 __free_slab(s, page);
1278}
1279
1280static void discard_slab(struct kmem_cache *s, struct page *page)
1281{
205ab99d 1282 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1283 free_slab(s, page);
1284}
1285
1286/*
1287 * Per slab locking using the pagelock
1288 */
1289static __always_inline void slab_lock(struct page *page)
1290{
1291 bit_spin_lock(PG_locked, &page->flags);
1292}
1293
1294static __always_inline void slab_unlock(struct page *page)
1295{
a76d3546 1296 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1297}
1298
1299static __always_inline int slab_trylock(struct page *page)
1300{
1301 int rc = 1;
1302
1303 rc = bit_spin_trylock(PG_locked, &page->flags);
1304 return rc;
1305}
1306
1307/*
1308 * Management of partially allocated slabs
1309 */
7c2e132c
CL
1310static void add_partial(struct kmem_cache_node *n,
1311 struct page *page, int tail)
81819f0f 1312{
e95eed57
CL
1313 spin_lock(&n->list_lock);
1314 n->nr_partial++;
7c2e132c
CL
1315 if (tail)
1316 list_add_tail(&page->lru, &n->partial);
1317 else
1318 list_add(&page->lru, &n->partial);
81819f0f
CL
1319 spin_unlock(&n->list_lock);
1320}
1321
62e346a8
CL
1322static inline void __remove_partial(struct kmem_cache_node *n,
1323 struct page *page)
1324{
1325 list_del(&page->lru);
1326 n->nr_partial--;
1327}
1328
0121c619 1329static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1330{
1331 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1332
1333 spin_lock(&n->list_lock);
62e346a8 1334 __remove_partial(n, page);
81819f0f
CL
1335 spin_unlock(&n->list_lock);
1336}
1337
1338/*
672bba3a 1339 * Lock slab and remove from the partial list.
81819f0f 1340 *
672bba3a 1341 * Must hold list_lock.
81819f0f 1342 */
0121c619
CL
1343static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1344 struct page *page)
81819f0f
CL
1345{
1346 if (slab_trylock(page)) {
62e346a8 1347 __remove_partial(n, page);
8a38082d 1348 __SetPageSlubFrozen(page);
81819f0f
CL
1349 return 1;
1350 }
1351 return 0;
1352}
1353
1354/*
672bba3a 1355 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1356 */
1357static struct page *get_partial_node(struct kmem_cache_node *n)
1358{
1359 struct page *page;
1360
1361 /*
1362 * Racy check. If we mistakenly see no partial slabs then we
1363 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1364 * partial slab and there is none available then get_partials()
1365 * will return NULL.
81819f0f
CL
1366 */
1367 if (!n || !n->nr_partial)
1368 return NULL;
1369
1370 spin_lock(&n->list_lock);
1371 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1372 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1373 goto out;
1374 page = NULL;
1375out:
1376 spin_unlock(&n->list_lock);
1377 return page;
1378}
1379
1380/*
672bba3a 1381 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1382 */
1383static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1384{
1385#ifdef CONFIG_NUMA
1386 struct zonelist *zonelist;
dd1a239f 1387 struct zoneref *z;
54a6eb5c
MG
1388 struct zone *zone;
1389 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1390 struct page *page;
1391
1392 /*
672bba3a
CL
1393 * The defrag ratio allows a configuration of the tradeoffs between
1394 * inter node defragmentation and node local allocations. A lower
1395 * defrag_ratio increases the tendency to do local allocations
1396 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1397 *
672bba3a
CL
1398 * If the defrag_ratio is set to 0 then kmalloc() always
1399 * returns node local objects. If the ratio is higher then kmalloc()
1400 * may return off node objects because partial slabs are obtained
1401 * from other nodes and filled up.
81819f0f 1402 *
6446faa2 1403 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1404 * defrag_ratio = 1000) then every (well almost) allocation will
1405 * first attempt to defrag slab caches on other nodes. This means
1406 * scanning over all nodes to look for partial slabs which may be
1407 * expensive if we do it every time we are trying to find a slab
1408 * with available objects.
81819f0f 1409 */
9824601e
CL
1410 if (!s->remote_node_defrag_ratio ||
1411 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1412 return NULL;
1413
c0ff7453 1414 get_mems_allowed();
0e88460d 1415 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1416 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1417 struct kmem_cache_node *n;
1418
54a6eb5c 1419 n = get_node(s, zone_to_nid(zone));
81819f0f 1420
54a6eb5c 1421 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1422 n->nr_partial > s->min_partial) {
81819f0f 1423 page = get_partial_node(n);
c0ff7453
MX
1424 if (page) {
1425 put_mems_allowed();
81819f0f 1426 return page;
c0ff7453 1427 }
81819f0f
CL
1428 }
1429 }
c0ff7453 1430 put_mems_allowed();
81819f0f
CL
1431#endif
1432 return NULL;
1433}
1434
1435/*
1436 * Get a partial page, lock it and return it.
1437 */
1438static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1439{
1440 struct page *page;
2154a336 1441 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f
CL
1442
1443 page = get_partial_node(get_node(s, searchnode));
bc6488e9 1444 if (page || node != -1)
81819f0f
CL
1445 return page;
1446
1447 return get_any_partial(s, flags);
1448}
1449
1450/*
1451 * Move a page back to the lists.
1452 *
1453 * Must be called with the slab lock held.
1454 *
1455 * On exit the slab lock will have been dropped.
1456 */
7c2e132c 1457static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
3478973d 1458 __releases(bitlock)
81819f0f 1459{
e95eed57
CL
1460 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1461
8a38082d 1462 __ClearPageSlubFrozen(page);
81819f0f 1463 if (page->inuse) {
e95eed57 1464
a973e9dd 1465 if (page->freelist) {
7c2e132c 1466 add_partial(n, page, tail);
84e554e6 1467 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
8ff12cfc 1468 } else {
84e554e6 1469 stat(s, DEACTIVATE_FULL);
af537b0a 1470 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1471 add_full(n, page);
1472 }
81819f0f
CL
1473 slab_unlock(page);
1474 } else {
84e554e6 1475 stat(s, DEACTIVATE_EMPTY);
3b89d7d8 1476 if (n->nr_partial < s->min_partial) {
e95eed57 1477 /*
672bba3a
CL
1478 * Adding an empty slab to the partial slabs in order
1479 * to avoid page allocator overhead. This slab needs
1480 * to come after the other slabs with objects in
6446faa2
CL
1481 * so that the others get filled first. That way the
1482 * size of the partial list stays small.
1483 *
0121c619
CL
1484 * kmem_cache_shrink can reclaim any empty slabs from
1485 * the partial list.
e95eed57 1486 */
7c2e132c 1487 add_partial(n, page, 1);
e95eed57
CL
1488 slab_unlock(page);
1489 } else {
1490 slab_unlock(page);
84e554e6 1491 stat(s, FREE_SLAB);
e95eed57
CL
1492 discard_slab(s, page);
1493 }
81819f0f
CL
1494 }
1495}
1496
1497/*
1498 * Remove the cpu slab
1499 */
dfb4f096 1500static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3478973d 1501 __releases(bitlock)
81819f0f 1502{
dfb4f096 1503 struct page *page = c->page;
7c2e132c 1504 int tail = 1;
8ff12cfc 1505
b773ad73 1506 if (page->freelist)
84e554e6 1507 stat(s, DEACTIVATE_REMOTE_FREES);
894b8788 1508 /*
6446faa2 1509 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1510 * because both freelists are empty. So this is unlikely
1511 * to occur.
1512 */
a973e9dd 1513 while (unlikely(c->freelist)) {
894b8788
CL
1514 void **object;
1515
7c2e132c
CL
1516 tail = 0; /* Hot objects. Put the slab first */
1517
894b8788 1518 /* Retrieve object from cpu_freelist */
dfb4f096 1519 object = c->freelist;
ff12059e 1520 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1521
1522 /* And put onto the regular freelist */
ff12059e 1523 set_freepointer(s, object, page->freelist);
894b8788
CL
1524 page->freelist = object;
1525 page->inuse--;
1526 }
dfb4f096 1527 c->page = NULL;
7c2e132c 1528 unfreeze_slab(s, page, tail);
81819f0f
CL
1529}
1530
dfb4f096 1531static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1532{
84e554e6 1533 stat(s, CPUSLAB_FLUSH);
dfb4f096
CL
1534 slab_lock(c->page);
1535 deactivate_slab(s, c);
81819f0f
CL
1536}
1537
1538/*
1539 * Flush cpu slab.
6446faa2 1540 *
81819f0f
CL
1541 * Called from IPI handler with interrupts disabled.
1542 */
0c710013 1543static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1544{
9dfc6e68 1545 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1546
dfb4f096
CL
1547 if (likely(c && c->page))
1548 flush_slab(s, c);
81819f0f
CL
1549}
1550
1551static void flush_cpu_slab(void *d)
1552{
1553 struct kmem_cache *s = d;
81819f0f 1554
dfb4f096 1555 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1556}
1557
1558static void flush_all(struct kmem_cache *s)
1559{
15c8b6c1 1560 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1561}
1562
dfb4f096
CL
1563/*
1564 * Check if the objects in a per cpu structure fit numa
1565 * locality expectations.
1566 */
1567static inline int node_match(struct kmem_cache_cpu *c, int node)
1568{
1569#ifdef CONFIG_NUMA
2154a336 1570 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1571 return 0;
1572#endif
1573 return 1;
1574}
1575
781b2ba6
PE
1576static int count_free(struct page *page)
1577{
1578 return page->objects - page->inuse;
1579}
1580
1581static unsigned long count_partial(struct kmem_cache_node *n,
1582 int (*get_count)(struct page *))
1583{
1584 unsigned long flags;
1585 unsigned long x = 0;
1586 struct page *page;
1587
1588 spin_lock_irqsave(&n->list_lock, flags);
1589 list_for_each_entry(page, &n->partial, lru)
1590 x += get_count(page);
1591 spin_unlock_irqrestore(&n->list_lock, flags);
1592 return x;
1593}
1594
26c02cf0
AB
1595static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1596{
1597#ifdef CONFIG_SLUB_DEBUG
1598 return atomic_long_read(&n->total_objects);
1599#else
1600 return 0;
1601#endif
1602}
1603
781b2ba6
PE
1604static noinline void
1605slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1606{
1607 int node;
1608
1609 printk(KERN_WARNING
1610 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1611 nid, gfpflags);
1612 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1613 "default order: %d, min order: %d\n", s->name, s->objsize,
1614 s->size, oo_order(s->oo), oo_order(s->min));
1615
fa5ec8a1
DR
1616 if (oo_order(s->min) > get_order(s->objsize))
1617 printk(KERN_WARNING " %s debugging increased min order, use "
1618 "slub_debug=O to disable.\n", s->name);
1619
781b2ba6
PE
1620 for_each_online_node(node) {
1621 struct kmem_cache_node *n = get_node(s, node);
1622 unsigned long nr_slabs;
1623 unsigned long nr_objs;
1624 unsigned long nr_free;
1625
1626 if (!n)
1627 continue;
1628
26c02cf0
AB
1629 nr_free = count_partial(n, count_free);
1630 nr_slabs = node_nr_slabs(n);
1631 nr_objs = node_nr_objs(n);
781b2ba6
PE
1632
1633 printk(KERN_WARNING
1634 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1635 node, nr_slabs, nr_objs, nr_free);
1636 }
1637}
1638
81819f0f 1639/*
894b8788
CL
1640 * Slow path. The lockless freelist is empty or we need to perform
1641 * debugging duties.
1642 *
1643 * Interrupts are disabled.
81819f0f 1644 *
894b8788
CL
1645 * Processing is still very fast if new objects have been freed to the
1646 * regular freelist. In that case we simply take over the regular freelist
1647 * as the lockless freelist and zap the regular freelist.
81819f0f 1648 *
894b8788
CL
1649 * If that is not working then we fall back to the partial lists. We take the
1650 * first element of the freelist as the object to allocate now and move the
1651 * rest of the freelist to the lockless freelist.
81819f0f 1652 *
894b8788 1653 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1654 * we need to allocate a new slab. This is the slowest path since it involves
1655 * a call to the page allocator and the setup of a new slab.
81819f0f 1656 */
ce71e27c
EGM
1657static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1658 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1659{
81819f0f 1660 void **object;
dfb4f096 1661 struct page *new;
81819f0f 1662
e72e9c23
LT
1663 /* We handle __GFP_ZERO in the caller */
1664 gfpflags &= ~__GFP_ZERO;
1665
dfb4f096 1666 if (!c->page)
81819f0f
CL
1667 goto new_slab;
1668
dfb4f096
CL
1669 slab_lock(c->page);
1670 if (unlikely(!node_match(c, node)))
81819f0f 1671 goto another_slab;
6446faa2 1672
84e554e6 1673 stat(s, ALLOC_REFILL);
6446faa2 1674
894b8788 1675load_freelist:
dfb4f096 1676 object = c->page->freelist;
a973e9dd 1677 if (unlikely(!object))
81819f0f 1678 goto another_slab;
af537b0a 1679 if (kmem_cache_debug(s))
81819f0f
CL
1680 goto debug;
1681
ff12059e 1682 c->freelist = get_freepointer(s, object);
39b26464 1683 c->page->inuse = c->page->objects;
a973e9dd 1684 c->page->freelist = NULL;
dfb4f096 1685 c->node = page_to_nid(c->page);
1f84260c 1686unlock_out:
dfb4f096 1687 slab_unlock(c->page);
84e554e6 1688 stat(s, ALLOC_SLOWPATH);
81819f0f
CL
1689 return object;
1690
1691another_slab:
dfb4f096 1692 deactivate_slab(s, c);
81819f0f
CL
1693
1694new_slab:
dfb4f096
CL
1695 new = get_partial(s, gfpflags, node);
1696 if (new) {
1697 c->page = new;
84e554e6 1698 stat(s, ALLOC_FROM_PARTIAL);
894b8788 1699 goto load_freelist;
81819f0f
CL
1700 }
1701
c1d50836 1702 gfpflags &= gfp_allowed_mask;
b811c202
CL
1703 if (gfpflags & __GFP_WAIT)
1704 local_irq_enable();
1705
dfb4f096 1706 new = new_slab(s, gfpflags, node);
b811c202
CL
1707
1708 if (gfpflags & __GFP_WAIT)
1709 local_irq_disable();
1710
dfb4f096 1711 if (new) {
9dfc6e68 1712 c = __this_cpu_ptr(s->cpu_slab);
84e554e6 1713 stat(s, ALLOC_SLAB);
05aa3450 1714 if (c->page)
dfb4f096 1715 flush_slab(s, c);
dfb4f096 1716 slab_lock(new);
8a38082d 1717 __SetPageSlubFrozen(new);
dfb4f096 1718 c->page = new;
4b6f0750 1719 goto load_freelist;
81819f0f 1720 }
95f85989
PE
1721 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1722 slab_out_of_memory(s, gfpflags, node);
71c7a06f 1723 return NULL;
81819f0f 1724debug:
dfb4f096 1725 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1726 goto another_slab;
894b8788 1727
dfb4f096 1728 c->page->inuse++;
ff12059e 1729 c->page->freelist = get_freepointer(s, object);
15b7c514 1730 c->node = NUMA_NO_NODE;
1f84260c 1731 goto unlock_out;
894b8788
CL
1732}
1733
1734/*
1735 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1736 * have the fastpath folded into their functions. So no function call
1737 * overhead for requests that can be satisfied on the fastpath.
1738 *
1739 * The fastpath works by first checking if the lockless freelist can be used.
1740 * If not then __slab_alloc is called for slow processing.
1741 *
1742 * Otherwise we can simply pick the next object from the lockless free list.
1743 */
06428780 1744static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1745 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1746{
894b8788 1747 void **object;
dfb4f096 1748 struct kmem_cache_cpu *c;
1f84260c
CL
1749 unsigned long flags;
1750
c016b0bd 1751 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 1752 return NULL;
1f84260c 1753
894b8788 1754 local_irq_save(flags);
9dfc6e68
CL
1755 c = __this_cpu_ptr(s->cpu_slab);
1756 object = c->freelist;
9dfc6e68 1757 if (unlikely(!object || !node_match(c, node)))
894b8788 1758
dfb4f096 1759 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1760
1761 else {
ff12059e 1762 c->freelist = get_freepointer(s, object);
84e554e6 1763 stat(s, ALLOC_FASTPATH);
894b8788
CL
1764 }
1765 local_irq_restore(flags);
d07dbea4 1766
74e2134f 1767 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 1768 memset(object, 0, s->objsize);
d07dbea4 1769
c016b0bd 1770 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 1771
894b8788 1772 return object;
81819f0f
CL
1773}
1774
1775void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1776{
2154a336 1777 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 1778
ca2b84cb 1779 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1780
1781 return ret;
81819f0f
CL
1782}
1783EXPORT_SYMBOL(kmem_cache_alloc);
1784
0f24f128 1785#ifdef CONFIG_TRACING
4a92379b
RK
1786void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1787{
1788 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1789 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
1790 return ret;
1791}
1792EXPORT_SYMBOL(kmem_cache_alloc_trace);
1793
1794void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 1795{
4a92379b
RK
1796 void *ret = kmalloc_order(size, flags, order);
1797 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1798 return ret;
5b882be4 1799}
4a92379b 1800EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
1801#endif
1802
81819f0f
CL
1803#ifdef CONFIG_NUMA
1804void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1805{
5b882be4
EGM
1806 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1807
ca2b84cb
EGM
1808 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1809 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1810
1811 return ret;
81819f0f
CL
1812}
1813EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 1814
0f24f128 1815#ifdef CONFIG_TRACING
4a92379b 1816void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 1817 gfp_t gfpflags,
4a92379b 1818 int node, size_t size)
5b882be4 1819{
4a92379b
RK
1820 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1821
1822 trace_kmalloc_node(_RET_IP_, ret,
1823 size, s->size, gfpflags, node);
1824 return ret;
5b882be4 1825}
4a92379b 1826EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 1827#endif
5d1f57e4 1828#endif
5b882be4 1829
81819f0f 1830/*
894b8788
CL
1831 * Slow patch handling. This may still be called frequently since objects
1832 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1833 *
894b8788
CL
1834 * So we still attempt to reduce cache line usage. Just take the slab
1835 * lock and free the item. If there is no additional partial page
1836 * handling required then we can return immediately.
81819f0f 1837 */
894b8788 1838static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 1839 void *x, unsigned long addr)
81819f0f
CL
1840{
1841 void *prior;
1842 void **object = (void *)x;
81819f0f 1843
84e554e6 1844 stat(s, FREE_SLOWPATH);
81819f0f
CL
1845 slab_lock(page);
1846
af537b0a 1847 if (kmem_cache_debug(s))
81819f0f 1848 goto debug;
6446faa2 1849
81819f0f 1850checks_ok:
ff12059e
CL
1851 prior = page->freelist;
1852 set_freepointer(s, object, prior);
81819f0f
CL
1853 page->freelist = object;
1854 page->inuse--;
1855
8a38082d 1856 if (unlikely(PageSlubFrozen(page))) {
84e554e6 1857 stat(s, FREE_FROZEN);
81819f0f 1858 goto out_unlock;
8ff12cfc 1859 }
81819f0f
CL
1860
1861 if (unlikely(!page->inuse))
1862 goto slab_empty;
1863
1864 /*
6446faa2 1865 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1866 * then add it.
1867 */
a973e9dd 1868 if (unlikely(!prior)) {
7c2e132c 1869 add_partial(get_node(s, page_to_nid(page)), page, 1);
84e554e6 1870 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 1871 }
81819f0f
CL
1872
1873out_unlock:
1874 slab_unlock(page);
81819f0f
CL
1875 return;
1876
1877slab_empty:
a973e9dd 1878 if (prior) {
81819f0f 1879 /*
672bba3a 1880 * Slab still on the partial list.
81819f0f
CL
1881 */
1882 remove_partial(s, page);
84e554e6 1883 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 1884 }
81819f0f 1885 slab_unlock(page);
84e554e6 1886 stat(s, FREE_SLAB);
81819f0f 1887 discard_slab(s, page);
81819f0f
CL
1888 return;
1889
1890debug:
3ec09742 1891 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1892 goto out_unlock;
77c5e2d0 1893 goto checks_ok;
81819f0f
CL
1894}
1895
894b8788
CL
1896/*
1897 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1898 * can perform fastpath freeing without additional function calls.
1899 *
1900 * The fastpath is only possible if we are freeing to the current cpu slab
1901 * of this processor. This typically the case if we have just allocated
1902 * the item before.
1903 *
1904 * If fastpath is not possible then fall back to __slab_free where we deal
1905 * with all sorts of special processing.
1906 */
06428780 1907static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1908 struct page *page, void *x, unsigned long addr)
894b8788
CL
1909{
1910 void **object = (void *)x;
dfb4f096 1911 struct kmem_cache_cpu *c;
1f84260c
CL
1912 unsigned long flags;
1913
c016b0bd
CL
1914 slab_free_hook(s, x);
1915
894b8788 1916 local_irq_save(flags);
9dfc6e68 1917 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 1918
15b7c514 1919 if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
ff12059e 1920 set_freepointer(s, object, c->freelist);
dfb4f096 1921 c->freelist = object;
84e554e6 1922 stat(s, FREE_FASTPATH);
894b8788 1923 } else
ff12059e 1924 __slab_free(s, page, x, addr);
894b8788
CL
1925
1926 local_irq_restore(flags);
1927}
1928
81819f0f
CL
1929void kmem_cache_free(struct kmem_cache *s, void *x)
1930{
77c5e2d0 1931 struct page *page;
81819f0f 1932
b49af68f 1933 page = virt_to_head_page(x);
81819f0f 1934
ce71e27c 1935 slab_free(s, page, x, _RET_IP_);
5b882be4 1936
ca2b84cb 1937 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
1938}
1939EXPORT_SYMBOL(kmem_cache_free);
1940
81819f0f 1941/*
672bba3a
CL
1942 * Object placement in a slab is made very easy because we always start at
1943 * offset 0. If we tune the size of the object to the alignment then we can
1944 * get the required alignment by putting one properly sized object after
1945 * another.
81819f0f
CL
1946 *
1947 * Notice that the allocation order determines the sizes of the per cpu
1948 * caches. Each processor has always one slab available for allocations.
1949 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1950 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1951 * locking overhead.
81819f0f
CL
1952 */
1953
1954/*
1955 * Mininum / Maximum order of slab pages. This influences locking overhead
1956 * and slab fragmentation. A higher order reduces the number of partial slabs
1957 * and increases the number of allocations possible without having to
1958 * take the list_lock.
1959 */
1960static int slub_min_order;
114e9e89 1961static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1962static int slub_min_objects;
81819f0f
CL
1963
1964/*
1965 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1966 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1967 */
1968static int slub_nomerge;
1969
81819f0f
CL
1970/*
1971 * Calculate the order of allocation given an slab object size.
1972 *
672bba3a
CL
1973 * The order of allocation has significant impact on performance and other
1974 * system components. Generally order 0 allocations should be preferred since
1975 * order 0 does not cause fragmentation in the page allocator. Larger objects
1976 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1977 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1978 * would be wasted.
1979 *
1980 * In order to reach satisfactory performance we must ensure that a minimum
1981 * number of objects is in one slab. Otherwise we may generate too much
1982 * activity on the partial lists which requires taking the list_lock. This is
1983 * less a concern for large slabs though which are rarely used.
81819f0f 1984 *
672bba3a
CL
1985 * slub_max_order specifies the order where we begin to stop considering the
1986 * number of objects in a slab as critical. If we reach slub_max_order then
1987 * we try to keep the page order as low as possible. So we accept more waste
1988 * of space in favor of a small page order.
81819f0f 1989 *
672bba3a
CL
1990 * Higher order allocations also allow the placement of more objects in a
1991 * slab and thereby reduce object handling overhead. If the user has
1992 * requested a higher mininum order then we start with that one instead of
1993 * the smallest order which will fit the object.
81819f0f 1994 */
5e6d444e
CL
1995static inline int slab_order(int size, int min_objects,
1996 int max_order, int fract_leftover)
81819f0f
CL
1997{
1998 int order;
1999 int rem;
6300ea75 2000 int min_order = slub_min_order;
81819f0f 2001
210b5c06
CG
2002 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
2003 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2004
6300ea75 2005 for (order = max(min_order,
5e6d444e
CL
2006 fls(min_objects * size - 1) - PAGE_SHIFT);
2007 order <= max_order; order++) {
81819f0f 2008
5e6d444e 2009 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2010
5e6d444e 2011 if (slab_size < min_objects * size)
81819f0f
CL
2012 continue;
2013
2014 rem = slab_size % size;
2015
5e6d444e 2016 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2017 break;
2018
2019 }
672bba3a 2020
81819f0f
CL
2021 return order;
2022}
2023
5e6d444e
CL
2024static inline int calculate_order(int size)
2025{
2026 int order;
2027 int min_objects;
2028 int fraction;
e8120ff1 2029 int max_objects;
5e6d444e
CL
2030
2031 /*
2032 * Attempt to find best configuration for a slab. This
2033 * works by first attempting to generate a layout with
2034 * the best configuration and backing off gradually.
2035 *
2036 * First we reduce the acceptable waste in a slab. Then
2037 * we reduce the minimum objects required in a slab.
2038 */
2039 min_objects = slub_min_objects;
9b2cd506
CL
2040 if (!min_objects)
2041 min_objects = 4 * (fls(nr_cpu_ids) + 1);
e8120ff1
ZY
2042 max_objects = (PAGE_SIZE << slub_max_order)/size;
2043 min_objects = min(min_objects, max_objects);
2044
5e6d444e 2045 while (min_objects > 1) {
c124f5b5 2046 fraction = 16;
5e6d444e
CL
2047 while (fraction >= 4) {
2048 order = slab_order(size, min_objects,
2049 slub_max_order, fraction);
2050 if (order <= slub_max_order)
2051 return order;
2052 fraction /= 2;
2053 }
5086c389 2054 min_objects--;
5e6d444e
CL
2055 }
2056
2057 /*
2058 * We were unable to place multiple objects in a slab. Now
2059 * lets see if we can place a single object there.
2060 */
2061 order = slab_order(size, 1, slub_max_order, 1);
2062 if (order <= slub_max_order)
2063 return order;
2064
2065 /*
2066 * Doh this slab cannot be placed using slub_max_order.
2067 */
2068 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 2069 if (order < MAX_ORDER)
5e6d444e
CL
2070 return order;
2071 return -ENOSYS;
2072}
2073
81819f0f 2074/*
672bba3a 2075 * Figure out what the alignment of the objects will be.
81819f0f
CL
2076 */
2077static unsigned long calculate_alignment(unsigned long flags,
2078 unsigned long align, unsigned long size)
2079{
2080 /*
6446faa2
CL
2081 * If the user wants hardware cache aligned objects then follow that
2082 * suggestion if the object is sufficiently large.
81819f0f 2083 *
6446faa2
CL
2084 * The hardware cache alignment cannot override the specified
2085 * alignment though. If that is greater then use it.
81819f0f 2086 */
b6210386
NP
2087 if (flags & SLAB_HWCACHE_ALIGN) {
2088 unsigned long ralign = cache_line_size();
2089 while (size <= ralign / 2)
2090 ralign /= 2;
2091 align = max(align, ralign);
2092 }
81819f0f
CL
2093
2094 if (align < ARCH_SLAB_MINALIGN)
b6210386 2095 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2096
2097 return ALIGN(align, sizeof(void *));
2098}
2099
5595cffc
PE
2100static void
2101init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2102{
2103 n->nr_partial = 0;
81819f0f
CL
2104 spin_lock_init(&n->list_lock);
2105 INIT_LIST_HEAD(&n->partial);
8ab1372f 2106#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2107 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2108 atomic_long_set(&n->total_objects, 0);
643b1138 2109 INIT_LIST_HEAD(&n->full);
8ab1372f 2110#endif
81819f0f
CL
2111}
2112
55136592 2113static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2114{
6c182dc0
CL
2115 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2116 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2117
6c182dc0 2118 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
4c93c355 2119
6c182dc0 2120 return s->cpu_slab != NULL;
4c93c355 2121}
4c93c355 2122
51df1142
CL
2123static struct kmem_cache *kmem_cache_node;
2124
81819f0f
CL
2125/*
2126 * No kmalloc_node yet so do it by hand. We know that this is the first
2127 * slab on the node for this slabcache. There are no concurrent accesses
2128 * possible.
2129 *
2130 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2131 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2132 * memory on a fresh node that has no slab structures yet.
81819f0f 2133 */
55136592 2134static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2135{
2136 struct page *page;
2137 struct kmem_cache_node *n;
ba84c73c 2138 unsigned long flags;
81819f0f 2139
51df1142 2140 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2141
51df1142 2142 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2143
2144 BUG_ON(!page);
a2f92ee7
CL
2145 if (page_to_nid(page) != node) {
2146 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2147 "node %d\n", node);
2148 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2149 "in order to be able to continue\n");
2150 }
2151
81819f0f
CL
2152 n = page->freelist;
2153 BUG_ON(!n);
51df1142 2154 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2155 page->inuse++;
51df1142 2156 kmem_cache_node->node[node] = n;
8ab1372f 2157#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2158 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2159 init_tracking(kmem_cache_node, n);
8ab1372f 2160#endif
51df1142
CL
2161 init_kmem_cache_node(n, kmem_cache_node);
2162 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2163
ba84c73c 2164 /*
2165 * lockdep requires consistent irq usage for each lock
2166 * so even though there cannot be a race this early in
2167 * the boot sequence, we still disable irqs.
2168 */
2169 local_irq_save(flags);
7c2e132c 2170 add_partial(n, page, 0);
ba84c73c 2171 local_irq_restore(flags);
81819f0f
CL
2172}
2173
2174static void free_kmem_cache_nodes(struct kmem_cache *s)
2175{
2176 int node;
2177
f64dc58c 2178 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2179 struct kmem_cache_node *n = s->node[node];
51df1142 2180
73367bd8 2181 if (n)
51df1142
CL
2182 kmem_cache_free(kmem_cache_node, n);
2183
81819f0f
CL
2184 s->node[node] = NULL;
2185 }
2186}
2187
55136592 2188static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2189{
2190 int node;
81819f0f 2191
f64dc58c 2192 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2193 struct kmem_cache_node *n;
2194
73367bd8 2195 if (slab_state == DOWN) {
55136592 2196 early_kmem_cache_node_alloc(node);
73367bd8
AD
2197 continue;
2198 }
51df1142 2199 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2200 GFP_KERNEL, node);
81819f0f 2201
73367bd8
AD
2202 if (!n) {
2203 free_kmem_cache_nodes(s);
2204 return 0;
81819f0f 2205 }
73367bd8 2206
81819f0f 2207 s->node[node] = n;
5595cffc 2208 init_kmem_cache_node(n, s);
81819f0f
CL
2209 }
2210 return 1;
2211}
81819f0f 2212
c0bdb232 2213static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2214{
2215 if (min < MIN_PARTIAL)
2216 min = MIN_PARTIAL;
2217 else if (min > MAX_PARTIAL)
2218 min = MAX_PARTIAL;
2219 s->min_partial = min;
2220}
2221
81819f0f
CL
2222/*
2223 * calculate_sizes() determines the order and the distribution of data within
2224 * a slab object.
2225 */
06b285dc 2226static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2227{
2228 unsigned long flags = s->flags;
2229 unsigned long size = s->objsize;
2230 unsigned long align = s->align;
834f3d11 2231 int order;
81819f0f 2232
d8b42bf5
CL
2233 /*
2234 * Round up object size to the next word boundary. We can only
2235 * place the free pointer at word boundaries and this determines
2236 * the possible location of the free pointer.
2237 */
2238 size = ALIGN(size, sizeof(void *));
2239
2240#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2241 /*
2242 * Determine if we can poison the object itself. If the user of
2243 * the slab may touch the object after free or before allocation
2244 * then we should never poison the object itself.
2245 */
2246 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2247 !s->ctor)
81819f0f
CL
2248 s->flags |= __OBJECT_POISON;
2249 else
2250 s->flags &= ~__OBJECT_POISON;
2251
81819f0f
CL
2252
2253 /*
672bba3a 2254 * If we are Redzoning then check if there is some space between the
81819f0f 2255 * end of the object and the free pointer. If not then add an
672bba3a 2256 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2257 */
2258 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2259 size += sizeof(void *);
41ecc55b 2260#endif
81819f0f
CL
2261
2262 /*
672bba3a
CL
2263 * With that we have determined the number of bytes in actual use
2264 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2265 */
2266 s->inuse = size;
2267
2268 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2269 s->ctor)) {
81819f0f
CL
2270 /*
2271 * Relocate free pointer after the object if it is not
2272 * permitted to overwrite the first word of the object on
2273 * kmem_cache_free.
2274 *
2275 * This is the case if we do RCU, have a constructor or
2276 * destructor or are poisoning the objects.
2277 */
2278 s->offset = size;
2279 size += sizeof(void *);
2280 }
2281
c12b3c62 2282#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2283 if (flags & SLAB_STORE_USER)
2284 /*
2285 * Need to store information about allocs and frees after
2286 * the object.
2287 */
2288 size += 2 * sizeof(struct track);
2289
be7b3fbc 2290 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2291 /*
2292 * Add some empty padding so that we can catch
2293 * overwrites from earlier objects rather than let
2294 * tracking information or the free pointer be
0211a9c8 2295 * corrupted if a user writes before the start
81819f0f
CL
2296 * of the object.
2297 */
2298 size += sizeof(void *);
41ecc55b 2299#endif
672bba3a 2300
81819f0f
CL
2301 /*
2302 * Determine the alignment based on various parameters that the
65c02d4c
CL
2303 * user specified and the dynamic determination of cache line size
2304 * on bootup.
81819f0f
CL
2305 */
2306 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2307 s->align = align;
81819f0f
CL
2308
2309 /*
2310 * SLUB stores one object immediately after another beginning from
2311 * offset 0. In order to align the objects we have to simply size
2312 * each object to conform to the alignment.
2313 */
2314 size = ALIGN(size, align);
2315 s->size = size;
06b285dc
CL
2316 if (forced_order >= 0)
2317 order = forced_order;
2318 else
2319 order = calculate_order(size);
81819f0f 2320
834f3d11 2321 if (order < 0)
81819f0f
CL
2322 return 0;
2323
b7a49f0d 2324 s->allocflags = 0;
834f3d11 2325 if (order)
b7a49f0d
CL
2326 s->allocflags |= __GFP_COMP;
2327
2328 if (s->flags & SLAB_CACHE_DMA)
2329 s->allocflags |= SLUB_DMA;
2330
2331 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2332 s->allocflags |= __GFP_RECLAIMABLE;
2333
81819f0f
CL
2334 /*
2335 * Determine the number of objects per slab
2336 */
834f3d11 2337 s->oo = oo_make(order, size);
65c3376a 2338 s->min = oo_make(get_order(size), size);
205ab99d
CL
2339 if (oo_objects(s->oo) > oo_objects(s->max))
2340 s->max = s->oo;
81819f0f 2341
834f3d11 2342 return !!oo_objects(s->oo);
81819f0f
CL
2343
2344}
2345
55136592 2346static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2347 const char *name, size_t size,
2348 size_t align, unsigned long flags,
51cc5068 2349 void (*ctor)(void *))
81819f0f
CL
2350{
2351 memset(s, 0, kmem_size);
2352 s->name = name;
2353 s->ctor = ctor;
81819f0f 2354 s->objsize = size;
81819f0f 2355 s->align = align;
ba0268a8 2356 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2357
06b285dc 2358 if (!calculate_sizes(s, -1))
81819f0f 2359 goto error;
3de47213
DR
2360 if (disable_higher_order_debug) {
2361 /*
2362 * Disable debugging flags that store metadata if the min slab
2363 * order increased.
2364 */
2365 if (get_order(s->size) > get_order(s->objsize)) {
2366 s->flags &= ~DEBUG_METADATA_FLAGS;
2367 s->offset = 0;
2368 if (!calculate_sizes(s, -1))
2369 goto error;
2370 }
2371 }
81819f0f 2372
3b89d7d8
DR
2373 /*
2374 * The larger the object size is, the more pages we want on the partial
2375 * list to avoid pounding the page allocator excessively.
2376 */
c0bdb232 2377 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2378 s->refcount = 1;
2379#ifdef CONFIG_NUMA
e2cb96b7 2380 s->remote_node_defrag_ratio = 1000;
81819f0f 2381#endif
55136592 2382 if (!init_kmem_cache_nodes(s))
dfb4f096 2383 goto error;
81819f0f 2384
55136592 2385 if (alloc_kmem_cache_cpus(s))
81819f0f 2386 return 1;
ff12059e 2387
4c93c355 2388 free_kmem_cache_nodes(s);
81819f0f
CL
2389error:
2390 if (flags & SLAB_PANIC)
2391 panic("Cannot create slab %s size=%lu realsize=%u "
2392 "order=%u offset=%u flags=%lx\n",
834f3d11 2393 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2394 s->offset, flags);
2395 return 0;
2396}
81819f0f 2397
81819f0f
CL
2398/*
2399 * Determine the size of a slab object
2400 */
2401unsigned int kmem_cache_size(struct kmem_cache *s)
2402{
2403 return s->objsize;
2404}
2405EXPORT_SYMBOL(kmem_cache_size);
2406
2407const char *kmem_cache_name(struct kmem_cache *s)
2408{
2409 return s->name;
2410}
2411EXPORT_SYMBOL(kmem_cache_name);
2412
33b12c38
CL
2413static void list_slab_objects(struct kmem_cache *s, struct page *page,
2414 const char *text)
2415{
2416#ifdef CONFIG_SLUB_DEBUG
2417 void *addr = page_address(page);
2418 void *p;
a5dd5c11
NK
2419 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2420 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
2421 if (!map)
2422 return;
33b12c38
CL
2423 slab_err(s, page, "%s", text);
2424 slab_lock(page);
2425 for_each_free_object(p, s, page->freelist)
2426 set_bit(slab_index(p, s, addr), map);
2427
2428 for_each_object(p, s, addr, page->objects) {
2429
2430 if (!test_bit(slab_index(p, s, addr), map)) {
2431 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2432 p, p - addr);
2433 print_tracking(s, p);
2434 }
2435 }
2436 slab_unlock(page);
bbd7d57b 2437 kfree(map);
33b12c38
CL
2438#endif
2439}
2440
81819f0f 2441/*
599870b1 2442 * Attempt to free all partial slabs on a node.
81819f0f 2443 */
599870b1 2444static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2445{
81819f0f
CL
2446 unsigned long flags;
2447 struct page *page, *h;
2448
2449 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2450 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 2451 if (!page->inuse) {
62e346a8 2452 __remove_partial(n, page);
81819f0f 2453 discard_slab(s, page);
33b12c38
CL
2454 } else {
2455 list_slab_objects(s, page,
2456 "Objects remaining on kmem_cache_close()");
599870b1 2457 }
33b12c38 2458 }
81819f0f 2459 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2460}
2461
2462/*
672bba3a 2463 * Release all resources used by a slab cache.
81819f0f 2464 */
0c710013 2465static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2466{
2467 int node;
2468
2469 flush_all(s);
9dfc6e68 2470 free_percpu(s->cpu_slab);
81819f0f 2471 /* Attempt to free all objects */
f64dc58c 2472 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2473 struct kmem_cache_node *n = get_node(s, node);
2474
599870b1
CL
2475 free_partial(s, n);
2476 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2477 return 1;
2478 }
2479 free_kmem_cache_nodes(s);
2480 return 0;
2481}
2482
2483/*
2484 * Close a cache and release the kmem_cache structure
2485 * (must be used for caches created using kmem_cache_create)
2486 */
2487void kmem_cache_destroy(struct kmem_cache *s)
2488{
2489 down_write(&slub_lock);
2490 s->refcount--;
2491 if (!s->refcount) {
2492 list_del(&s->list);
d629d819
PE
2493 if (kmem_cache_close(s)) {
2494 printk(KERN_ERR "SLUB %s: %s called for cache that "
2495 "still has objects.\n", s->name, __func__);
2496 dump_stack();
2497 }
d76b1590
ED
2498 if (s->flags & SLAB_DESTROY_BY_RCU)
2499 rcu_barrier();
81819f0f 2500 sysfs_slab_remove(s);
2bce6485
CL
2501 }
2502 up_write(&slub_lock);
81819f0f
CL
2503}
2504EXPORT_SYMBOL(kmem_cache_destroy);
2505
2506/********************************************************************
2507 * Kmalloc subsystem
2508 *******************************************************************/
2509
51df1142 2510struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
2511EXPORT_SYMBOL(kmalloc_caches);
2512
51df1142
CL
2513static struct kmem_cache *kmem_cache;
2514
55136592 2515#ifdef CONFIG_ZONE_DMA
51df1142 2516static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
2517#endif
2518
81819f0f
CL
2519static int __init setup_slub_min_order(char *str)
2520{
06428780 2521 get_option(&str, &slub_min_order);
81819f0f
CL
2522
2523 return 1;
2524}
2525
2526__setup("slub_min_order=", setup_slub_min_order);
2527
2528static int __init setup_slub_max_order(char *str)
2529{
06428780 2530 get_option(&str, &slub_max_order);
818cf590 2531 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2532
2533 return 1;
2534}
2535
2536__setup("slub_max_order=", setup_slub_max_order);
2537
2538static int __init setup_slub_min_objects(char *str)
2539{
06428780 2540 get_option(&str, &slub_min_objects);
81819f0f
CL
2541
2542 return 1;
2543}
2544
2545__setup("slub_min_objects=", setup_slub_min_objects);
2546
2547static int __init setup_slub_nomerge(char *str)
2548{
2549 slub_nomerge = 1;
2550 return 1;
2551}
2552
2553__setup("slub_nomerge", setup_slub_nomerge);
2554
51df1142
CL
2555static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2556 int size, unsigned int flags)
81819f0f 2557{
51df1142
CL
2558 struct kmem_cache *s;
2559
2560 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2561
83b519e8
PE
2562 /*
2563 * This function is called with IRQs disabled during early-boot on
2564 * single CPU so there's no need to take slub_lock here.
2565 */
55136592 2566 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2567 flags, NULL))
81819f0f
CL
2568 goto panic;
2569
2570 list_add(&s->list, &slab_caches);
51df1142 2571 return s;
81819f0f
CL
2572
2573panic:
2574 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 2575 return NULL;
81819f0f
CL
2576}
2577
f1b26339
CL
2578/*
2579 * Conversion table for small slabs sizes / 8 to the index in the
2580 * kmalloc array. This is necessary for slabs < 192 since we have non power
2581 * of two cache sizes there. The size of larger slabs can be determined using
2582 * fls.
2583 */
2584static s8 size_index[24] = {
2585 3, /* 8 */
2586 4, /* 16 */
2587 5, /* 24 */
2588 5, /* 32 */
2589 6, /* 40 */
2590 6, /* 48 */
2591 6, /* 56 */
2592 6, /* 64 */
2593 1, /* 72 */
2594 1, /* 80 */
2595 1, /* 88 */
2596 1, /* 96 */
2597 7, /* 104 */
2598 7, /* 112 */
2599 7, /* 120 */
2600 7, /* 128 */
2601 2, /* 136 */
2602 2, /* 144 */
2603 2, /* 152 */
2604 2, /* 160 */
2605 2, /* 168 */
2606 2, /* 176 */
2607 2, /* 184 */
2608 2 /* 192 */
2609};
2610
acdfcd04
AK
2611static inline int size_index_elem(size_t bytes)
2612{
2613 return (bytes - 1) / 8;
2614}
2615
81819f0f
CL
2616static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2617{
f1b26339 2618 int index;
81819f0f 2619
f1b26339
CL
2620 if (size <= 192) {
2621 if (!size)
2622 return ZERO_SIZE_PTR;
81819f0f 2623
acdfcd04 2624 index = size_index[size_index_elem(size)];
aadb4bc4 2625 } else
f1b26339 2626 index = fls(size - 1);
81819f0f
CL
2627
2628#ifdef CONFIG_ZONE_DMA
f1b26339 2629 if (unlikely((flags & SLUB_DMA)))
51df1142 2630 return kmalloc_dma_caches[index];
f1b26339 2631
81819f0f 2632#endif
51df1142 2633 return kmalloc_caches[index];
81819f0f
CL
2634}
2635
2636void *__kmalloc(size_t size, gfp_t flags)
2637{
aadb4bc4 2638 struct kmem_cache *s;
5b882be4 2639 void *ret;
81819f0f 2640
ffadd4d0 2641 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2642 return kmalloc_large(size, flags);
aadb4bc4
CL
2643
2644 s = get_slab(size, flags);
2645
2646 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2647 return s;
2648
2154a336 2649 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2650
ca2b84cb 2651 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2652
2653 return ret;
81819f0f
CL
2654}
2655EXPORT_SYMBOL(__kmalloc);
2656
5d1f57e4 2657#ifdef CONFIG_NUMA
f619cfe1
CL
2658static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2659{
b1eeab67 2660 struct page *page;
e4f7c0b4 2661 void *ptr = NULL;
f619cfe1 2662
b1eeab67
VN
2663 flags |= __GFP_COMP | __GFP_NOTRACK;
2664 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2665 if (page)
e4f7c0b4
CM
2666 ptr = page_address(page);
2667
2668 kmemleak_alloc(ptr, size, 1, flags);
2669 return ptr;
f619cfe1
CL
2670}
2671
81819f0f
CL
2672void *__kmalloc_node(size_t size, gfp_t flags, int node)
2673{
aadb4bc4 2674 struct kmem_cache *s;
5b882be4 2675 void *ret;
81819f0f 2676
057685cf 2677 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2678 ret = kmalloc_large_node(size, flags, node);
2679
ca2b84cb
EGM
2680 trace_kmalloc_node(_RET_IP_, ret,
2681 size, PAGE_SIZE << get_order(size),
2682 flags, node);
5b882be4
EGM
2683
2684 return ret;
2685 }
aadb4bc4
CL
2686
2687 s = get_slab(size, flags);
2688
2689 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2690 return s;
2691
5b882be4
EGM
2692 ret = slab_alloc(s, flags, node, _RET_IP_);
2693
ca2b84cb 2694 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2695
2696 return ret;
81819f0f
CL
2697}
2698EXPORT_SYMBOL(__kmalloc_node);
2699#endif
2700
2701size_t ksize(const void *object)
2702{
272c1d21 2703 struct page *page;
81819f0f
CL
2704 struct kmem_cache *s;
2705
ef8b4520 2706 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2707 return 0;
2708
294a80a8 2709 page = virt_to_head_page(object);
294a80a8 2710
76994412
PE
2711 if (unlikely(!PageSlab(page))) {
2712 WARN_ON(!PageCompound(page));
294a80a8 2713 return PAGE_SIZE << compound_order(page);
76994412 2714 }
81819f0f 2715 s = page->slab;
81819f0f 2716
ae20bfda 2717#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2718 /*
2719 * Debugging requires use of the padding between object
2720 * and whatever may come after it.
2721 */
2722 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2723 return s->objsize;
2724
ae20bfda 2725#endif
81819f0f
CL
2726 /*
2727 * If we have the need to store the freelist pointer
2728 * back there or track user information then we can
2729 * only use the space before that information.
2730 */
2731 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2732 return s->inuse;
81819f0f
CL
2733 /*
2734 * Else we can use all the padding etc for the allocation
2735 */
2736 return s->size;
2737}
b1aabecd 2738EXPORT_SYMBOL(ksize);
81819f0f
CL
2739
2740void kfree(const void *x)
2741{
81819f0f 2742 struct page *page;
5bb983b0 2743 void *object = (void *)x;
81819f0f 2744
2121db74
PE
2745 trace_kfree(_RET_IP_, x);
2746
2408c550 2747 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2748 return;
2749
b49af68f 2750 page = virt_to_head_page(x);
aadb4bc4 2751 if (unlikely(!PageSlab(page))) {
0937502a 2752 BUG_ON(!PageCompound(page));
e4f7c0b4 2753 kmemleak_free(x);
aadb4bc4
CL
2754 put_page(page);
2755 return;
2756 }
ce71e27c 2757 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2758}
2759EXPORT_SYMBOL(kfree);
2760
2086d26a 2761/*
672bba3a
CL
2762 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2763 * the remaining slabs by the number of items in use. The slabs with the
2764 * most items in use come first. New allocations will then fill those up
2765 * and thus they can be removed from the partial lists.
2766 *
2767 * The slabs with the least items are placed last. This results in them
2768 * being allocated from last increasing the chance that the last objects
2769 * are freed in them.
2086d26a
CL
2770 */
2771int kmem_cache_shrink(struct kmem_cache *s)
2772{
2773 int node;
2774 int i;
2775 struct kmem_cache_node *n;
2776 struct page *page;
2777 struct page *t;
205ab99d 2778 int objects = oo_objects(s->max);
2086d26a 2779 struct list_head *slabs_by_inuse =
834f3d11 2780 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2781 unsigned long flags;
2782
2783 if (!slabs_by_inuse)
2784 return -ENOMEM;
2785
2786 flush_all(s);
f64dc58c 2787 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2788 n = get_node(s, node);
2789
2790 if (!n->nr_partial)
2791 continue;
2792
834f3d11 2793 for (i = 0; i < objects; i++)
2086d26a
CL
2794 INIT_LIST_HEAD(slabs_by_inuse + i);
2795
2796 spin_lock_irqsave(&n->list_lock, flags);
2797
2798 /*
672bba3a 2799 * Build lists indexed by the items in use in each slab.
2086d26a 2800 *
672bba3a
CL
2801 * Note that concurrent frees may occur while we hold the
2802 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2803 */
2804 list_for_each_entry_safe(page, t, &n->partial, lru) {
2805 if (!page->inuse && slab_trylock(page)) {
2806 /*
2807 * Must hold slab lock here because slab_free
2808 * may have freed the last object and be
2809 * waiting to release the slab.
2810 */
62e346a8 2811 __remove_partial(n, page);
2086d26a
CL
2812 slab_unlock(page);
2813 discard_slab(s, page);
2814 } else {
fcda3d89
CL
2815 list_move(&page->lru,
2816 slabs_by_inuse + page->inuse);
2086d26a
CL
2817 }
2818 }
2819
2086d26a 2820 /*
672bba3a
CL
2821 * Rebuild the partial list with the slabs filled up most
2822 * first and the least used slabs at the end.
2086d26a 2823 */
834f3d11 2824 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2825 list_splice(slabs_by_inuse + i, n->partial.prev);
2826
2086d26a
CL
2827 spin_unlock_irqrestore(&n->list_lock, flags);
2828 }
2829
2830 kfree(slabs_by_inuse);
2831 return 0;
2832}
2833EXPORT_SYMBOL(kmem_cache_shrink);
2834
92a5bbc1 2835#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
2836static int slab_mem_going_offline_callback(void *arg)
2837{
2838 struct kmem_cache *s;
2839
2840 down_read(&slub_lock);
2841 list_for_each_entry(s, &slab_caches, list)
2842 kmem_cache_shrink(s);
2843 up_read(&slub_lock);
2844
2845 return 0;
2846}
2847
2848static void slab_mem_offline_callback(void *arg)
2849{
2850 struct kmem_cache_node *n;
2851 struct kmem_cache *s;
2852 struct memory_notify *marg = arg;
2853 int offline_node;
2854
2855 offline_node = marg->status_change_nid;
2856
2857 /*
2858 * If the node still has available memory. we need kmem_cache_node
2859 * for it yet.
2860 */
2861 if (offline_node < 0)
2862 return;
2863
2864 down_read(&slub_lock);
2865 list_for_each_entry(s, &slab_caches, list) {
2866 n = get_node(s, offline_node);
2867 if (n) {
2868 /*
2869 * if n->nr_slabs > 0, slabs still exist on the node
2870 * that is going down. We were unable to free them,
c9404c9c 2871 * and offline_pages() function shouldn't call this
b9049e23
YG
2872 * callback. So, we must fail.
2873 */
0f389ec6 2874 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2875
2876 s->node[offline_node] = NULL;
8de66a0c 2877 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
2878 }
2879 }
2880 up_read(&slub_lock);
2881}
2882
2883static int slab_mem_going_online_callback(void *arg)
2884{
2885 struct kmem_cache_node *n;
2886 struct kmem_cache *s;
2887 struct memory_notify *marg = arg;
2888 int nid = marg->status_change_nid;
2889 int ret = 0;
2890
2891 /*
2892 * If the node's memory is already available, then kmem_cache_node is
2893 * already created. Nothing to do.
2894 */
2895 if (nid < 0)
2896 return 0;
2897
2898 /*
0121c619 2899 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2900 * allocate a kmem_cache_node structure in order to bring the node
2901 * online.
2902 */
2903 down_read(&slub_lock);
2904 list_for_each_entry(s, &slab_caches, list) {
2905 /*
2906 * XXX: kmem_cache_alloc_node will fallback to other nodes
2907 * since memory is not yet available from the node that
2908 * is brought up.
2909 */
8de66a0c 2910 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
2911 if (!n) {
2912 ret = -ENOMEM;
2913 goto out;
2914 }
5595cffc 2915 init_kmem_cache_node(n, s);
b9049e23
YG
2916 s->node[nid] = n;
2917 }
2918out:
2919 up_read(&slub_lock);
2920 return ret;
2921}
2922
2923static int slab_memory_callback(struct notifier_block *self,
2924 unsigned long action, void *arg)
2925{
2926 int ret = 0;
2927
2928 switch (action) {
2929 case MEM_GOING_ONLINE:
2930 ret = slab_mem_going_online_callback(arg);
2931 break;
2932 case MEM_GOING_OFFLINE:
2933 ret = slab_mem_going_offline_callback(arg);
2934 break;
2935 case MEM_OFFLINE:
2936 case MEM_CANCEL_ONLINE:
2937 slab_mem_offline_callback(arg);
2938 break;
2939 case MEM_ONLINE:
2940 case MEM_CANCEL_OFFLINE:
2941 break;
2942 }
dc19f9db
KH
2943 if (ret)
2944 ret = notifier_from_errno(ret);
2945 else
2946 ret = NOTIFY_OK;
b9049e23
YG
2947 return ret;
2948}
2949
2950#endif /* CONFIG_MEMORY_HOTPLUG */
2951
81819f0f
CL
2952/********************************************************************
2953 * Basic setup of slabs
2954 *******************************************************************/
2955
51df1142
CL
2956/*
2957 * Used for early kmem_cache structures that were allocated using
2958 * the page allocator
2959 */
2960
2961static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
2962{
2963 int node;
2964
2965 list_add(&s->list, &slab_caches);
2966 s->refcount = -1;
2967
2968 for_each_node_state(node, N_NORMAL_MEMORY) {
2969 struct kmem_cache_node *n = get_node(s, node);
2970 struct page *p;
2971
2972 if (n) {
2973 list_for_each_entry(p, &n->partial, lru)
2974 p->slab = s;
2975
2976#ifdef CONFIG_SLAB_DEBUG
2977 list_for_each_entry(p, &n->full, lru)
2978 p->slab = s;
2979#endif
2980 }
2981 }
2982}
2983
81819f0f
CL
2984void __init kmem_cache_init(void)
2985{
2986 int i;
4b356be0 2987 int caches = 0;
51df1142
CL
2988 struct kmem_cache *temp_kmem_cache;
2989 int order;
51df1142
CL
2990 struct kmem_cache *temp_kmem_cache_node;
2991 unsigned long kmalloc_size;
2992
2993 kmem_size = offsetof(struct kmem_cache, node) +
2994 nr_node_ids * sizeof(struct kmem_cache_node *);
2995
2996 /* Allocate two kmem_caches from the page allocator */
2997 kmalloc_size = ALIGN(kmem_size, cache_line_size());
2998 order = get_order(2 * kmalloc_size);
2999 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3000
81819f0f
CL
3001 /*
3002 * Must first have the slab cache available for the allocations of the
672bba3a 3003 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3004 * kmem_cache_open for slab_state == DOWN.
3005 */
51df1142
CL
3006 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3007
3008 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3009 sizeof(struct kmem_cache_node),
3010 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3011
0c40ba4f 3012 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3013
3014 /* Able to allocate the per node structures */
3015 slab_state = PARTIAL;
3016
51df1142
CL
3017 temp_kmem_cache = kmem_cache;
3018 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3019 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3020 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3021 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3022
51df1142
CL
3023 /*
3024 * Allocate kmem_cache_node properly from the kmem_cache slab.
3025 * kmem_cache_node is separately allocated so no need to
3026 * update any list pointers.
3027 */
3028 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3029
51df1142
CL
3030 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3031 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3032
3033 kmem_cache_bootstrap_fixup(kmem_cache_node);
3034
3035 caches++;
51df1142
CL
3036 kmem_cache_bootstrap_fixup(kmem_cache);
3037 caches++;
3038 /* Free temporary boot structure */
3039 free_pages((unsigned long)temp_kmem_cache, order);
3040
3041 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3042
3043 /*
3044 * Patch up the size_index table if we have strange large alignment
3045 * requirements for the kmalloc array. This is only the case for
6446faa2 3046 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3047 *
3048 * Largest permitted alignment is 256 bytes due to the way we
3049 * handle the index determination for the smaller caches.
3050 *
3051 * Make sure that nothing crazy happens if someone starts tinkering
3052 * around with ARCH_KMALLOC_MINALIGN
3053 */
3054 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3055 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3056
acdfcd04
AK
3057 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3058 int elem = size_index_elem(i);
3059 if (elem >= ARRAY_SIZE(size_index))
3060 break;
3061 size_index[elem] = KMALLOC_SHIFT_LOW;
3062 }
f1b26339 3063
acdfcd04
AK
3064 if (KMALLOC_MIN_SIZE == 64) {
3065 /*
3066 * The 96 byte size cache is not used if the alignment
3067 * is 64 byte.
3068 */
3069 for (i = 64 + 8; i <= 96; i += 8)
3070 size_index[size_index_elem(i)] = 7;
3071 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3072 /*
3073 * The 192 byte sized cache is not used if the alignment
3074 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3075 * instead.
3076 */
3077 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3078 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3079 }
3080
51df1142
CL
3081 /* Caches that are not of the two-to-the-power-of size */
3082 if (KMALLOC_MIN_SIZE <= 32) {
3083 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3084 caches++;
3085 }
3086
3087 if (KMALLOC_MIN_SIZE <= 64) {
3088 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3089 caches++;
3090 }
3091
3092 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3093 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3094 caches++;
3095 }
3096
81819f0f
CL
3097 slab_state = UP;
3098
3099 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3100 if (KMALLOC_MIN_SIZE <= 32) {
3101 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3102 BUG_ON(!kmalloc_caches[1]->name);
3103 }
3104
3105 if (KMALLOC_MIN_SIZE <= 64) {
3106 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3107 BUG_ON(!kmalloc_caches[2]->name);
3108 }
3109
d7278bd7
CL
3110 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3111 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3112
3113 BUG_ON(!s);
51df1142 3114 kmalloc_caches[i]->name = s;
d7278bd7 3115 }
81819f0f
CL
3116
3117#ifdef CONFIG_SMP
3118 register_cpu_notifier(&slab_notifier);
9dfc6e68 3119#endif
81819f0f 3120
55136592 3121#ifdef CONFIG_ZONE_DMA
51df1142
CL
3122 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3123 struct kmem_cache *s = kmalloc_caches[i];
55136592 3124
51df1142 3125 if (s && s->size) {
55136592
CL
3126 char *name = kasprintf(GFP_NOWAIT,
3127 "dma-kmalloc-%d", s->objsize);
3128
3129 BUG_ON(!name);
51df1142
CL
3130 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3131 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3132 }
3133 }
3134#endif
3adbefee
IM
3135 printk(KERN_INFO
3136 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3137 " CPUs=%d, Nodes=%d\n",
3138 caches, cache_line_size(),
81819f0f
CL
3139 slub_min_order, slub_max_order, slub_min_objects,
3140 nr_cpu_ids, nr_node_ids);
3141}
3142
7e85ee0c
PE
3143void __init kmem_cache_init_late(void)
3144{
7e85ee0c
PE
3145}
3146
81819f0f
CL
3147/*
3148 * Find a mergeable slab cache
3149 */
3150static int slab_unmergeable(struct kmem_cache *s)
3151{
3152 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3153 return 1;
3154
c59def9f 3155 if (s->ctor)
81819f0f
CL
3156 return 1;
3157
8ffa6875
CL
3158 /*
3159 * We may have set a slab to be unmergeable during bootstrap.
3160 */
3161 if (s->refcount < 0)
3162 return 1;
3163
81819f0f
CL
3164 return 0;
3165}
3166
3167static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3168 size_t align, unsigned long flags, const char *name,
51cc5068 3169 void (*ctor)(void *))
81819f0f 3170{
5b95a4ac 3171 struct kmem_cache *s;
81819f0f
CL
3172
3173 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3174 return NULL;
3175
c59def9f 3176 if (ctor)
81819f0f
CL
3177 return NULL;
3178
3179 size = ALIGN(size, sizeof(void *));
3180 align = calculate_alignment(flags, align, size);
3181 size = ALIGN(size, align);
ba0268a8 3182 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3183
5b95a4ac 3184 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3185 if (slab_unmergeable(s))
3186 continue;
3187
3188 if (size > s->size)
3189 continue;
3190
ba0268a8 3191 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3192 continue;
3193 /*
3194 * Check if alignment is compatible.
3195 * Courtesy of Adrian Drzewiecki
3196 */
06428780 3197 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3198 continue;
3199
3200 if (s->size - size >= sizeof(void *))
3201 continue;
3202
3203 return s;
3204 }
3205 return NULL;
3206}
3207
3208struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3209 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3210{
3211 struct kmem_cache *s;
84c1cf62 3212 char *n;
81819f0f 3213
fe1ff49d
BH
3214 if (WARN_ON(!name))
3215 return NULL;
3216
81819f0f 3217 down_write(&slub_lock);
ba0268a8 3218 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3219 if (s) {
3220 s->refcount++;
3221 /*
3222 * Adjust the object sizes so that we clear
3223 * the complete object on kzalloc.
3224 */
3225 s->objsize = max(s->objsize, (int)size);
3226 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3227
7b8f3b66 3228 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3229 s->refcount--;
81819f0f 3230 goto err;
7b8f3b66 3231 }
2bce6485 3232 up_write(&slub_lock);
a0e1d1be
CL
3233 return s;
3234 }
6446faa2 3235
84c1cf62
PE
3236 n = kstrdup(name, GFP_KERNEL);
3237 if (!n)
3238 goto err;
3239
a0e1d1be
CL
3240 s = kmalloc(kmem_size, GFP_KERNEL);
3241 if (s) {
84c1cf62 3242 if (kmem_cache_open(s, n,
c59def9f 3243 size, align, flags, ctor)) {
81819f0f 3244 list_add(&s->list, &slab_caches);
7b8f3b66 3245 if (sysfs_slab_add(s)) {
7b8f3b66 3246 list_del(&s->list);
84c1cf62 3247 kfree(n);
7b8f3b66 3248 kfree(s);
a0e1d1be 3249 goto err;
7b8f3b66 3250 }
2bce6485 3251 up_write(&slub_lock);
a0e1d1be
CL
3252 return s;
3253 }
84c1cf62 3254 kfree(n);
a0e1d1be 3255 kfree(s);
81819f0f 3256 }
68cee4f1 3257err:
81819f0f 3258 up_write(&slub_lock);
81819f0f 3259
81819f0f
CL
3260 if (flags & SLAB_PANIC)
3261 panic("Cannot create slabcache %s\n", name);
3262 else
3263 s = NULL;
3264 return s;
3265}
3266EXPORT_SYMBOL(kmem_cache_create);
3267
81819f0f 3268#ifdef CONFIG_SMP
81819f0f 3269/*
672bba3a
CL
3270 * Use the cpu notifier to insure that the cpu slabs are flushed when
3271 * necessary.
81819f0f
CL
3272 */
3273static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3274 unsigned long action, void *hcpu)
3275{
3276 long cpu = (long)hcpu;
5b95a4ac
CL
3277 struct kmem_cache *s;
3278 unsigned long flags;
81819f0f
CL
3279
3280 switch (action) {
3281 case CPU_UP_CANCELED:
8bb78442 3282 case CPU_UP_CANCELED_FROZEN:
81819f0f 3283 case CPU_DEAD:
8bb78442 3284 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3285 down_read(&slub_lock);
3286 list_for_each_entry(s, &slab_caches, list) {
3287 local_irq_save(flags);
3288 __flush_cpu_slab(s, cpu);
3289 local_irq_restore(flags);
3290 }
3291 up_read(&slub_lock);
81819f0f
CL
3292 break;
3293 default:
3294 break;
3295 }
3296 return NOTIFY_OK;
3297}
3298
06428780 3299static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3300 .notifier_call = slab_cpuup_callback
06428780 3301};
81819f0f
CL
3302
3303#endif
3304
ce71e27c 3305void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3306{
aadb4bc4 3307 struct kmem_cache *s;
94b528d0 3308 void *ret;
aadb4bc4 3309
ffadd4d0 3310 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3311 return kmalloc_large(size, gfpflags);
3312
aadb4bc4 3313 s = get_slab(size, gfpflags);
81819f0f 3314
2408c550 3315 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3316 return s;
81819f0f 3317
2154a336 3318 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0
EGM
3319
3320 /* Honor the call site pointer we recieved. */
ca2b84cb 3321 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3322
3323 return ret;
81819f0f
CL
3324}
3325
5d1f57e4 3326#ifdef CONFIG_NUMA
81819f0f 3327void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3328 int node, unsigned long caller)
81819f0f 3329{
aadb4bc4 3330 struct kmem_cache *s;
94b528d0 3331 void *ret;
aadb4bc4 3332
d3e14aa3
XF
3333 if (unlikely(size > SLUB_MAX_SIZE)) {
3334 ret = kmalloc_large_node(size, gfpflags, node);
3335
3336 trace_kmalloc_node(caller, ret,
3337 size, PAGE_SIZE << get_order(size),
3338 gfpflags, node);
3339
3340 return ret;
3341 }
eada35ef 3342
aadb4bc4 3343 s = get_slab(size, gfpflags);
81819f0f 3344
2408c550 3345 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3346 return s;
81819f0f 3347
94b528d0
EGM
3348 ret = slab_alloc(s, gfpflags, node, caller);
3349
3350 /* Honor the call site pointer we recieved. */
ca2b84cb 3351 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3352
3353 return ret;
81819f0f 3354}
5d1f57e4 3355#endif
81819f0f 3356
ab4d5ed5 3357#ifdef CONFIG_SYSFS
205ab99d
CL
3358static int count_inuse(struct page *page)
3359{
3360 return page->inuse;
3361}
3362
3363static int count_total(struct page *page)
3364{
3365 return page->objects;
3366}
ab4d5ed5 3367#endif
205ab99d 3368
ab4d5ed5 3369#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3370static int validate_slab(struct kmem_cache *s, struct page *page,
3371 unsigned long *map)
53e15af0
CL
3372{
3373 void *p;
a973e9dd 3374 void *addr = page_address(page);
53e15af0
CL
3375
3376 if (!check_slab(s, page) ||
3377 !on_freelist(s, page, NULL))
3378 return 0;
3379
3380 /* Now we know that a valid freelist exists */
39b26464 3381 bitmap_zero(map, page->objects);
53e15af0 3382
7656c72b
CL
3383 for_each_free_object(p, s, page->freelist) {
3384 set_bit(slab_index(p, s, addr), map);
37d57443 3385 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
53e15af0
CL
3386 return 0;
3387 }
3388
224a88be 3389 for_each_object(p, s, addr, page->objects)
7656c72b 3390 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3391 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3392 return 0;
3393 return 1;
3394}
3395
434e245d
CL
3396static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3397 unsigned long *map)
53e15af0
CL
3398{
3399 if (slab_trylock(page)) {
434e245d 3400 validate_slab(s, page, map);
53e15af0
CL
3401 slab_unlock(page);
3402 } else
3403 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3404 s->name, page);
53e15af0
CL
3405}
3406
434e245d
CL
3407static int validate_slab_node(struct kmem_cache *s,
3408 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3409{
3410 unsigned long count = 0;
3411 struct page *page;
3412 unsigned long flags;
3413
3414 spin_lock_irqsave(&n->list_lock, flags);
3415
3416 list_for_each_entry(page, &n->partial, lru) {
434e245d 3417 validate_slab_slab(s, page, map);
53e15af0
CL
3418 count++;
3419 }
3420 if (count != n->nr_partial)
3421 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3422 "counter=%ld\n", s->name, count, n->nr_partial);
3423
3424 if (!(s->flags & SLAB_STORE_USER))
3425 goto out;
3426
3427 list_for_each_entry(page, &n->full, lru) {
434e245d 3428 validate_slab_slab(s, page, map);
53e15af0
CL
3429 count++;
3430 }
3431 if (count != atomic_long_read(&n->nr_slabs))
3432 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3433 "counter=%ld\n", s->name, count,
3434 atomic_long_read(&n->nr_slabs));
3435
3436out:
3437 spin_unlock_irqrestore(&n->list_lock, flags);
3438 return count;
3439}
3440
434e245d 3441static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3442{
3443 int node;
3444 unsigned long count = 0;
205ab99d 3445 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3446 sizeof(unsigned long), GFP_KERNEL);
3447
3448 if (!map)
3449 return -ENOMEM;
53e15af0
CL
3450
3451 flush_all(s);
f64dc58c 3452 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3453 struct kmem_cache_node *n = get_node(s, node);
3454
434e245d 3455 count += validate_slab_node(s, n, map);
53e15af0 3456 }
434e245d 3457 kfree(map);
53e15af0
CL
3458 return count;
3459}
88a420e4 3460/*
672bba3a 3461 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3462 * and freed.
3463 */
3464
3465struct location {
3466 unsigned long count;
ce71e27c 3467 unsigned long addr;
45edfa58
CL
3468 long long sum_time;
3469 long min_time;
3470 long max_time;
3471 long min_pid;
3472 long max_pid;
174596a0 3473 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3474 nodemask_t nodes;
88a420e4
CL
3475};
3476
3477struct loc_track {
3478 unsigned long max;
3479 unsigned long count;
3480 struct location *loc;
3481};
3482
3483static void free_loc_track(struct loc_track *t)
3484{
3485 if (t->max)
3486 free_pages((unsigned long)t->loc,
3487 get_order(sizeof(struct location) * t->max));
3488}
3489
68dff6a9 3490static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3491{
3492 struct location *l;
3493 int order;
3494
88a420e4
CL
3495 order = get_order(sizeof(struct location) * max);
3496
68dff6a9 3497 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3498 if (!l)
3499 return 0;
3500
3501 if (t->count) {
3502 memcpy(l, t->loc, sizeof(struct location) * t->count);
3503 free_loc_track(t);
3504 }
3505 t->max = max;
3506 t->loc = l;
3507 return 1;
3508}
3509
3510static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3511 const struct track *track)
88a420e4
CL
3512{
3513 long start, end, pos;
3514 struct location *l;
ce71e27c 3515 unsigned long caddr;
45edfa58 3516 unsigned long age = jiffies - track->when;
88a420e4
CL
3517
3518 start = -1;
3519 end = t->count;
3520
3521 for ( ; ; ) {
3522 pos = start + (end - start + 1) / 2;
3523
3524 /*
3525 * There is nothing at "end". If we end up there
3526 * we need to add something to before end.
3527 */
3528 if (pos == end)
3529 break;
3530
3531 caddr = t->loc[pos].addr;
45edfa58
CL
3532 if (track->addr == caddr) {
3533
3534 l = &t->loc[pos];
3535 l->count++;
3536 if (track->when) {
3537 l->sum_time += age;
3538 if (age < l->min_time)
3539 l->min_time = age;
3540 if (age > l->max_time)
3541 l->max_time = age;
3542
3543 if (track->pid < l->min_pid)
3544 l->min_pid = track->pid;
3545 if (track->pid > l->max_pid)
3546 l->max_pid = track->pid;
3547
174596a0
RR
3548 cpumask_set_cpu(track->cpu,
3549 to_cpumask(l->cpus));
45edfa58
CL
3550 }
3551 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3552 return 1;
3553 }
3554
45edfa58 3555 if (track->addr < caddr)
88a420e4
CL
3556 end = pos;
3557 else
3558 start = pos;
3559 }
3560
3561 /*
672bba3a 3562 * Not found. Insert new tracking element.
88a420e4 3563 */
68dff6a9 3564 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3565 return 0;
3566
3567 l = t->loc + pos;
3568 if (pos < t->count)
3569 memmove(l + 1, l,
3570 (t->count - pos) * sizeof(struct location));
3571 t->count++;
3572 l->count = 1;
45edfa58
CL
3573 l->addr = track->addr;
3574 l->sum_time = age;
3575 l->min_time = age;
3576 l->max_time = age;
3577 l->min_pid = track->pid;
3578 l->max_pid = track->pid;
174596a0
RR
3579 cpumask_clear(to_cpumask(l->cpus));
3580 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3581 nodes_clear(l->nodes);
3582 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3583 return 1;
3584}
3585
3586static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 3587 struct page *page, enum track_item alloc,
a5dd5c11 3588 unsigned long *map)
88a420e4 3589{
a973e9dd 3590 void *addr = page_address(page);
88a420e4
CL
3591 void *p;
3592
39b26464 3593 bitmap_zero(map, page->objects);
7656c72b
CL
3594 for_each_free_object(p, s, page->freelist)
3595 set_bit(slab_index(p, s, addr), map);
88a420e4 3596
224a88be 3597 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3598 if (!test_bit(slab_index(p, s, addr), map))
3599 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3600}
3601
3602static int list_locations(struct kmem_cache *s, char *buf,
3603 enum track_item alloc)
3604{
e374d483 3605 int len = 0;
88a420e4 3606 unsigned long i;
68dff6a9 3607 struct loc_track t = { 0, 0, NULL };
88a420e4 3608 int node;
bbd7d57b
ED
3609 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3610 sizeof(unsigned long), GFP_KERNEL);
88a420e4 3611
bbd7d57b
ED
3612 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3613 GFP_TEMPORARY)) {
3614 kfree(map);
68dff6a9 3615 return sprintf(buf, "Out of memory\n");
bbd7d57b 3616 }
88a420e4
CL
3617 /* Push back cpu slabs */
3618 flush_all(s);
3619
f64dc58c 3620 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3621 struct kmem_cache_node *n = get_node(s, node);
3622 unsigned long flags;
3623 struct page *page;
3624
9e86943b 3625 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3626 continue;
3627
3628 spin_lock_irqsave(&n->list_lock, flags);
3629 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 3630 process_slab(&t, s, page, alloc, map);
88a420e4 3631 list_for_each_entry(page, &n->full, lru)
bbd7d57b 3632 process_slab(&t, s, page, alloc, map);
88a420e4
CL
3633 spin_unlock_irqrestore(&n->list_lock, flags);
3634 }
3635
3636 for (i = 0; i < t.count; i++) {
45edfa58 3637 struct location *l = &t.loc[i];
88a420e4 3638
9c246247 3639 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3640 break;
e374d483 3641 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3642
3643 if (l->addr)
62c70bce 3644 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 3645 else
e374d483 3646 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3647
3648 if (l->sum_time != l->min_time) {
e374d483 3649 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3650 l->min_time,
3651 (long)div_u64(l->sum_time, l->count),
3652 l->max_time);
45edfa58 3653 } else
e374d483 3654 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3655 l->min_time);
3656
3657 if (l->min_pid != l->max_pid)
e374d483 3658 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3659 l->min_pid, l->max_pid);
3660 else
e374d483 3661 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3662 l->min_pid);
3663
174596a0
RR
3664 if (num_online_cpus() > 1 &&
3665 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3666 len < PAGE_SIZE - 60) {
3667 len += sprintf(buf + len, " cpus=");
3668 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3669 to_cpumask(l->cpus));
45edfa58
CL
3670 }
3671
62bc62a8 3672 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3673 len < PAGE_SIZE - 60) {
3674 len += sprintf(buf + len, " nodes=");
3675 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3676 l->nodes);
3677 }
3678
e374d483 3679 len += sprintf(buf + len, "\n");
88a420e4
CL
3680 }
3681
3682 free_loc_track(&t);
bbd7d57b 3683 kfree(map);
88a420e4 3684 if (!t.count)
e374d483
HH
3685 len += sprintf(buf, "No data\n");
3686 return len;
88a420e4 3687}
ab4d5ed5 3688#endif
88a420e4 3689
a5a84755
CL
3690#ifdef SLUB_RESILIENCY_TEST
3691static void resiliency_test(void)
3692{
3693 u8 *p;
3694
3695 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3696
3697 printk(KERN_ERR "SLUB resiliency testing\n");
3698 printk(KERN_ERR "-----------------------\n");
3699 printk(KERN_ERR "A. Corruption after allocation\n");
3700
3701 p = kzalloc(16, GFP_KERNEL);
3702 p[16] = 0x12;
3703 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3704 " 0x12->0x%p\n\n", p + 16);
3705
3706 validate_slab_cache(kmalloc_caches[4]);
3707
3708 /* Hmmm... The next two are dangerous */
3709 p = kzalloc(32, GFP_KERNEL);
3710 p[32 + sizeof(void *)] = 0x34;
3711 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3712 " 0x34 -> -0x%p\n", p);
3713 printk(KERN_ERR
3714 "If allocated object is overwritten then not detectable\n\n");
3715
3716 validate_slab_cache(kmalloc_caches[5]);
3717 p = kzalloc(64, GFP_KERNEL);
3718 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3719 *p = 0x56;
3720 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3721 p);
3722 printk(KERN_ERR
3723 "If allocated object is overwritten then not detectable\n\n");
3724 validate_slab_cache(kmalloc_caches[6]);
3725
3726 printk(KERN_ERR "\nB. Corruption after free\n");
3727 p = kzalloc(128, GFP_KERNEL);
3728 kfree(p);
3729 *p = 0x78;
3730 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3731 validate_slab_cache(kmalloc_caches[7]);
3732
3733 p = kzalloc(256, GFP_KERNEL);
3734 kfree(p);
3735 p[50] = 0x9a;
3736 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3737 p);
3738 validate_slab_cache(kmalloc_caches[8]);
3739
3740 p = kzalloc(512, GFP_KERNEL);
3741 kfree(p);
3742 p[512] = 0xab;
3743 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3744 validate_slab_cache(kmalloc_caches[9]);
3745}
3746#else
3747#ifdef CONFIG_SYSFS
3748static void resiliency_test(void) {};
3749#endif
3750#endif
3751
ab4d5ed5 3752#ifdef CONFIG_SYSFS
81819f0f 3753enum slab_stat_type {
205ab99d
CL
3754 SL_ALL, /* All slabs */
3755 SL_PARTIAL, /* Only partially allocated slabs */
3756 SL_CPU, /* Only slabs used for cpu caches */
3757 SL_OBJECTS, /* Determine allocated objects not slabs */
3758 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3759};
3760
205ab99d 3761#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3762#define SO_PARTIAL (1 << SL_PARTIAL)
3763#define SO_CPU (1 << SL_CPU)
3764#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3765#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3766
62e5c4b4
CG
3767static ssize_t show_slab_objects(struct kmem_cache *s,
3768 char *buf, unsigned long flags)
81819f0f
CL
3769{
3770 unsigned long total = 0;
81819f0f
CL
3771 int node;
3772 int x;
3773 unsigned long *nodes;
3774 unsigned long *per_cpu;
3775
3776 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3777 if (!nodes)
3778 return -ENOMEM;
81819f0f
CL
3779 per_cpu = nodes + nr_node_ids;
3780
205ab99d
CL
3781 if (flags & SO_CPU) {
3782 int cpu;
81819f0f 3783
205ab99d 3784 for_each_possible_cpu(cpu) {
9dfc6e68 3785 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 3786
205ab99d
CL
3787 if (!c || c->node < 0)
3788 continue;
3789
3790 if (c->page) {
3791 if (flags & SO_TOTAL)
3792 x = c->page->objects;
3793 else if (flags & SO_OBJECTS)
3794 x = c->page->inuse;
81819f0f
CL
3795 else
3796 x = 1;
205ab99d 3797
81819f0f 3798 total += x;
205ab99d 3799 nodes[c->node] += x;
81819f0f 3800 }
205ab99d 3801 per_cpu[c->node]++;
81819f0f
CL
3802 }
3803 }
3804
04d94879 3805 lock_memory_hotplug();
ab4d5ed5 3806#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3807 if (flags & SO_ALL) {
3808 for_each_node_state(node, N_NORMAL_MEMORY) {
3809 struct kmem_cache_node *n = get_node(s, node);
3810
3811 if (flags & SO_TOTAL)
3812 x = atomic_long_read(&n->total_objects);
3813 else if (flags & SO_OBJECTS)
3814 x = atomic_long_read(&n->total_objects) -
3815 count_partial(n, count_free);
81819f0f 3816
81819f0f 3817 else
205ab99d 3818 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3819 total += x;
3820 nodes[node] += x;
3821 }
3822
ab4d5ed5
CL
3823 } else
3824#endif
3825 if (flags & SO_PARTIAL) {
205ab99d
CL
3826 for_each_node_state(node, N_NORMAL_MEMORY) {
3827 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3828
205ab99d
CL
3829 if (flags & SO_TOTAL)
3830 x = count_partial(n, count_total);
3831 else if (flags & SO_OBJECTS)
3832 x = count_partial(n, count_inuse);
81819f0f 3833 else
205ab99d 3834 x = n->nr_partial;
81819f0f
CL
3835 total += x;
3836 nodes[node] += x;
3837 }
3838 }
81819f0f
CL
3839 x = sprintf(buf, "%lu", total);
3840#ifdef CONFIG_NUMA
f64dc58c 3841 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3842 if (nodes[node])
3843 x += sprintf(buf + x, " N%d=%lu",
3844 node, nodes[node]);
3845#endif
04d94879 3846 unlock_memory_hotplug();
81819f0f
CL
3847 kfree(nodes);
3848 return x + sprintf(buf + x, "\n");
3849}
3850
ab4d5ed5 3851#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3852static int any_slab_objects(struct kmem_cache *s)
3853{
3854 int node;
81819f0f 3855
dfb4f096 3856 for_each_online_node(node) {
81819f0f
CL
3857 struct kmem_cache_node *n = get_node(s, node);
3858
dfb4f096
CL
3859 if (!n)
3860 continue;
3861
4ea33e2d 3862 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3863 return 1;
3864 }
3865 return 0;
3866}
ab4d5ed5 3867#endif
81819f0f
CL
3868
3869#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3870#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3871
3872struct slab_attribute {
3873 struct attribute attr;
3874 ssize_t (*show)(struct kmem_cache *s, char *buf);
3875 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3876};
3877
3878#define SLAB_ATTR_RO(_name) \
3879 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3880
3881#define SLAB_ATTR(_name) \
3882 static struct slab_attribute _name##_attr = \
3883 __ATTR(_name, 0644, _name##_show, _name##_store)
3884
81819f0f
CL
3885static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3886{
3887 return sprintf(buf, "%d\n", s->size);
3888}
3889SLAB_ATTR_RO(slab_size);
3890
3891static ssize_t align_show(struct kmem_cache *s, char *buf)
3892{
3893 return sprintf(buf, "%d\n", s->align);
3894}
3895SLAB_ATTR_RO(align);
3896
3897static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3898{
3899 return sprintf(buf, "%d\n", s->objsize);
3900}
3901SLAB_ATTR_RO(object_size);
3902
3903static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3904{
834f3d11 3905 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3906}
3907SLAB_ATTR_RO(objs_per_slab);
3908
06b285dc
CL
3909static ssize_t order_store(struct kmem_cache *s,
3910 const char *buf, size_t length)
3911{
0121c619
CL
3912 unsigned long order;
3913 int err;
3914
3915 err = strict_strtoul(buf, 10, &order);
3916 if (err)
3917 return err;
06b285dc
CL
3918
3919 if (order > slub_max_order || order < slub_min_order)
3920 return -EINVAL;
3921
3922 calculate_sizes(s, order);
3923 return length;
3924}
3925
81819f0f
CL
3926static ssize_t order_show(struct kmem_cache *s, char *buf)
3927{
834f3d11 3928 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3929}
06b285dc 3930SLAB_ATTR(order);
81819f0f 3931
73d342b1
DR
3932static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3933{
3934 return sprintf(buf, "%lu\n", s->min_partial);
3935}
3936
3937static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3938 size_t length)
3939{
3940 unsigned long min;
3941 int err;
3942
3943 err = strict_strtoul(buf, 10, &min);
3944 if (err)
3945 return err;
3946
c0bdb232 3947 set_min_partial(s, min);
73d342b1
DR
3948 return length;
3949}
3950SLAB_ATTR(min_partial);
3951
81819f0f
CL
3952static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3953{
62c70bce
JP
3954 if (!s->ctor)
3955 return 0;
3956 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
3957}
3958SLAB_ATTR_RO(ctor);
3959
81819f0f
CL
3960static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3961{
3962 return sprintf(buf, "%d\n", s->refcount - 1);
3963}
3964SLAB_ATTR_RO(aliases);
3965
81819f0f
CL
3966static ssize_t partial_show(struct kmem_cache *s, char *buf)
3967{
d9acf4b7 3968 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3969}
3970SLAB_ATTR_RO(partial);
3971
3972static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3973{
d9acf4b7 3974 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3975}
3976SLAB_ATTR_RO(cpu_slabs);
3977
3978static ssize_t objects_show(struct kmem_cache *s, char *buf)
3979{
205ab99d 3980 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3981}
3982SLAB_ATTR_RO(objects);
3983
205ab99d
CL
3984static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3985{
3986 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3987}
3988SLAB_ATTR_RO(objects_partial);
3989
a5a84755
CL
3990static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3991{
3992 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3993}
3994
3995static ssize_t reclaim_account_store(struct kmem_cache *s,
3996 const char *buf, size_t length)
3997{
3998 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3999 if (buf[0] == '1')
4000 s->flags |= SLAB_RECLAIM_ACCOUNT;
4001 return length;
4002}
4003SLAB_ATTR(reclaim_account);
4004
4005static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4006{
4007 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4008}
4009SLAB_ATTR_RO(hwcache_align);
4010
4011#ifdef CONFIG_ZONE_DMA
4012static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4013{
4014 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4015}
4016SLAB_ATTR_RO(cache_dma);
4017#endif
4018
4019static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4020{
4021 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4022}
4023SLAB_ATTR_RO(destroy_by_rcu);
4024
ab4d5ed5 4025#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4026static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4027{
4028 return show_slab_objects(s, buf, SO_ALL);
4029}
4030SLAB_ATTR_RO(slabs);
4031
205ab99d
CL
4032static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4033{
4034 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4035}
4036SLAB_ATTR_RO(total_objects);
4037
81819f0f
CL
4038static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4039{
4040 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4041}
4042
4043static ssize_t sanity_checks_store(struct kmem_cache *s,
4044 const char *buf, size_t length)
4045{
4046 s->flags &= ~SLAB_DEBUG_FREE;
4047 if (buf[0] == '1')
4048 s->flags |= SLAB_DEBUG_FREE;
4049 return length;
4050}
4051SLAB_ATTR(sanity_checks);
4052
4053static ssize_t trace_show(struct kmem_cache *s, char *buf)
4054{
4055 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4056}
4057
4058static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4059 size_t length)
4060{
4061 s->flags &= ~SLAB_TRACE;
4062 if (buf[0] == '1')
4063 s->flags |= SLAB_TRACE;
4064 return length;
4065}
4066SLAB_ATTR(trace);
4067
81819f0f
CL
4068static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4069{
4070 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4071}
4072
4073static ssize_t red_zone_store(struct kmem_cache *s,
4074 const char *buf, size_t length)
4075{
4076 if (any_slab_objects(s))
4077 return -EBUSY;
4078
4079 s->flags &= ~SLAB_RED_ZONE;
4080 if (buf[0] == '1')
4081 s->flags |= SLAB_RED_ZONE;
06b285dc 4082 calculate_sizes(s, -1);
81819f0f
CL
4083 return length;
4084}
4085SLAB_ATTR(red_zone);
4086
4087static ssize_t poison_show(struct kmem_cache *s, char *buf)
4088{
4089 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4090}
4091
4092static ssize_t poison_store(struct kmem_cache *s,
4093 const char *buf, size_t length)
4094{
4095 if (any_slab_objects(s))
4096 return -EBUSY;
4097
4098 s->flags &= ~SLAB_POISON;
4099 if (buf[0] == '1')
4100 s->flags |= SLAB_POISON;
06b285dc 4101 calculate_sizes(s, -1);
81819f0f
CL
4102 return length;
4103}
4104SLAB_ATTR(poison);
4105
4106static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4107{
4108 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4109}
4110
4111static ssize_t store_user_store(struct kmem_cache *s,
4112 const char *buf, size_t length)
4113{
4114 if (any_slab_objects(s))
4115 return -EBUSY;
4116
4117 s->flags &= ~SLAB_STORE_USER;
4118 if (buf[0] == '1')
4119 s->flags |= SLAB_STORE_USER;
06b285dc 4120 calculate_sizes(s, -1);
81819f0f
CL
4121 return length;
4122}
4123SLAB_ATTR(store_user);
4124
53e15af0
CL
4125static ssize_t validate_show(struct kmem_cache *s, char *buf)
4126{
4127 return 0;
4128}
4129
4130static ssize_t validate_store(struct kmem_cache *s,
4131 const char *buf, size_t length)
4132{
434e245d
CL
4133 int ret = -EINVAL;
4134
4135 if (buf[0] == '1') {
4136 ret = validate_slab_cache(s);
4137 if (ret >= 0)
4138 ret = length;
4139 }
4140 return ret;
53e15af0
CL
4141}
4142SLAB_ATTR(validate);
a5a84755
CL
4143
4144static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4145{
4146 if (!(s->flags & SLAB_STORE_USER))
4147 return -ENOSYS;
4148 return list_locations(s, buf, TRACK_ALLOC);
4149}
4150SLAB_ATTR_RO(alloc_calls);
4151
4152static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4153{
4154 if (!(s->flags & SLAB_STORE_USER))
4155 return -ENOSYS;
4156 return list_locations(s, buf, TRACK_FREE);
4157}
4158SLAB_ATTR_RO(free_calls);
4159#endif /* CONFIG_SLUB_DEBUG */
4160
4161#ifdef CONFIG_FAILSLAB
4162static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4163{
4164 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4165}
4166
4167static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4168 size_t length)
4169{
4170 s->flags &= ~SLAB_FAILSLAB;
4171 if (buf[0] == '1')
4172 s->flags |= SLAB_FAILSLAB;
4173 return length;
4174}
4175SLAB_ATTR(failslab);
ab4d5ed5 4176#endif
53e15af0 4177
2086d26a
CL
4178static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4179{
4180 return 0;
4181}
4182
4183static ssize_t shrink_store(struct kmem_cache *s,
4184 const char *buf, size_t length)
4185{
4186 if (buf[0] == '1') {
4187 int rc = kmem_cache_shrink(s);
4188
4189 if (rc)
4190 return rc;
4191 } else
4192 return -EINVAL;
4193 return length;
4194}
4195SLAB_ATTR(shrink);
4196
81819f0f 4197#ifdef CONFIG_NUMA
9824601e 4198static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4199{
9824601e 4200 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4201}
4202
9824601e 4203static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4204 const char *buf, size_t length)
4205{
0121c619
CL
4206 unsigned long ratio;
4207 int err;
4208
4209 err = strict_strtoul(buf, 10, &ratio);
4210 if (err)
4211 return err;
4212
e2cb96b7 4213 if (ratio <= 100)
0121c619 4214 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4215
81819f0f
CL
4216 return length;
4217}
9824601e 4218SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4219#endif
4220
8ff12cfc 4221#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4222static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4223{
4224 unsigned long sum = 0;
4225 int cpu;
4226 int len;
4227 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4228
4229 if (!data)
4230 return -ENOMEM;
4231
4232 for_each_online_cpu(cpu) {
9dfc6e68 4233 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4234
4235 data[cpu] = x;
4236 sum += x;
4237 }
4238
4239 len = sprintf(buf, "%lu", sum);
4240
50ef37b9 4241#ifdef CONFIG_SMP
8ff12cfc
CL
4242 for_each_online_cpu(cpu) {
4243 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4244 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4245 }
50ef37b9 4246#endif
8ff12cfc
CL
4247 kfree(data);
4248 return len + sprintf(buf + len, "\n");
4249}
4250
78eb00cc
DR
4251static void clear_stat(struct kmem_cache *s, enum stat_item si)
4252{
4253 int cpu;
4254
4255 for_each_online_cpu(cpu)
9dfc6e68 4256 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4257}
4258
8ff12cfc
CL
4259#define STAT_ATTR(si, text) \
4260static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4261{ \
4262 return show_stat(s, buf, si); \
4263} \
78eb00cc
DR
4264static ssize_t text##_store(struct kmem_cache *s, \
4265 const char *buf, size_t length) \
4266{ \
4267 if (buf[0] != '0') \
4268 return -EINVAL; \
4269 clear_stat(s, si); \
4270 return length; \
4271} \
4272SLAB_ATTR(text); \
8ff12cfc
CL
4273
4274STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4275STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4276STAT_ATTR(FREE_FASTPATH, free_fastpath);
4277STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4278STAT_ATTR(FREE_FROZEN, free_frozen);
4279STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4280STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4281STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4282STAT_ATTR(ALLOC_SLAB, alloc_slab);
4283STAT_ATTR(ALLOC_REFILL, alloc_refill);
4284STAT_ATTR(FREE_SLAB, free_slab);
4285STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4286STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4287STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4288STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4289STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4290STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4291STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4292#endif
4293
06428780 4294static struct attribute *slab_attrs[] = {
81819f0f
CL
4295 &slab_size_attr.attr,
4296 &object_size_attr.attr,
4297 &objs_per_slab_attr.attr,
4298 &order_attr.attr,
73d342b1 4299 &min_partial_attr.attr,
81819f0f 4300 &objects_attr.attr,
205ab99d 4301 &objects_partial_attr.attr,
81819f0f
CL
4302 &partial_attr.attr,
4303 &cpu_slabs_attr.attr,
4304 &ctor_attr.attr,
81819f0f
CL
4305 &aliases_attr.attr,
4306 &align_attr.attr,
81819f0f
CL
4307 &hwcache_align_attr.attr,
4308 &reclaim_account_attr.attr,
4309 &destroy_by_rcu_attr.attr,
a5a84755 4310 &shrink_attr.attr,
ab4d5ed5 4311#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4312 &total_objects_attr.attr,
4313 &slabs_attr.attr,
4314 &sanity_checks_attr.attr,
4315 &trace_attr.attr,
81819f0f
CL
4316 &red_zone_attr.attr,
4317 &poison_attr.attr,
4318 &store_user_attr.attr,
53e15af0 4319 &validate_attr.attr,
88a420e4
CL
4320 &alloc_calls_attr.attr,
4321 &free_calls_attr.attr,
ab4d5ed5 4322#endif
81819f0f
CL
4323#ifdef CONFIG_ZONE_DMA
4324 &cache_dma_attr.attr,
4325#endif
4326#ifdef CONFIG_NUMA
9824601e 4327 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4328#endif
4329#ifdef CONFIG_SLUB_STATS
4330 &alloc_fastpath_attr.attr,
4331 &alloc_slowpath_attr.attr,
4332 &free_fastpath_attr.attr,
4333 &free_slowpath_attr.attr,
4334 &free_frozen_attr.attr,
4335 &free_add_partial_attr.attr,
4336 &free_remove_partial_attr.attr,
4337 &alloc_from_partial_attr.attr,
4338 &alloc_slab_attr.attr,
4339 &alloc_refill_attr.attr,
4340 &free_slab_attr.attr,
4341 &cpuslab_flush_attr.attr,
4342 &deactivate_full_attr.attr,
4343 &deactivate_empty_attr.attr,
4344 &deactivate_to_head_attr.attr,
4345 &deactivate_to_tail_attr.attr,
4346 &deactivate_remote_frees_attr.attr,
65c3376a 4347 &order_fallback_attr.attr,
81819f0f 4348#endif
4c13dd3b
DM
4349#ifdef CONFIG_FAILSLAB
4350 &failslab_attr.attr,
4351#endif
4352
81819f0f
CL
4353 NULL
4354};
4355
4356static struct attribute_group slab_attr_group = {
4357 .attrs = slab_attrs,
4358};
4359
4360static ssize_t slab_attr_show(struct kobject *kobj,
4361 struct attribute *attr,
4362 char *buf)
4363{
4364 struct slab_attribute *attribute;
4365 struct kmem_cache *s;
4366 int err;
4367
4368 attribute = to_slab_attr(attr);
4369 s = to_slab(kobj);
4370
4371 if (!attribute->show)
4372 return -EIO;
4373
4374 err = attribute->show(s, buf);
4375
4376 return err;
4377}
4378
4379static ssize_t slab_attr_store(struct kobject *kobj,
4380 struct attribute *attr,
4381 const char *buf, size_t len)
4382{
4383 struct slab_attribute *attribute;
4384 struct kmem_cache *s;
4385 int err;
4386
4387 attribute = to_slab_attr(attr);
4388 s = to_slab(kobj);
4389
4390 if (!attribute->store)
4391 return -EIO;
4392
4393 err = attribute->store(s, buf, len);
4394
4395 return err;
4396}
4397
151c602f
CL
4398static void kmem_cache_release(struct kobject *kobj)
4399{
4400 struct kmem_cache *s = to_slab(kobj);
4401
84c1cf62 4402 kfree(s->name);
151c602f
CL
4403 kfree(s);
4404}
4405
52cf25d0 4406static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4407 .show = slab_attr_show,
4408 .store = slab_attr_store,
4409};
4410
4411static struct kobj_type slab_ktype = {
4412 .sysfs_ops = &slab_sysfs_ops,
151c602f 4413 .release = kmem_cache_release
81819f0f
CL
4414};
4415
4416static int uevent_filter(struct kset *kset, struct kobject *kobj)
4417{
4418 struct kobj_type *ktype = get_ktype(kobj);
4419
4420 if (ktype == &slab_ktype)
4421 return 1;
4422 return 0;
4423}
4424
9cd43611 4425static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4426 .filter = uevent_filter,
4427};
4428
27c3a314 4429static struct kset *slab_kset;
81819f0f
CL
4430
4431#define ID_STR_LENGTH 64
4432
4433/* Create a unique string id for a slab cache:
6446faa2
CL
4434 *
4435 * Format :[flags-]size
81819f0f
CL
4436 */
4437static char *create_unique_id(struct kmem_cache *s)
4438{
4439 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4440 char *p = name;
4441
4442 BUG_ON(!name);
4443
4444 *p++ = ':';
4445 /*
4446 * First flags affecting slabcache operations. We will only
4447 * get here for aliasable slabs so we do not need to support
4448 * too many flags. The flags here must cover all flags that
4449 * are matched during merging to guarantee that the id is
4450 * unique.
4451 */
4452 if (s->flags & SLAB_CACHE_DMA)
4453 *p++ = 'd';
4454 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4455 *p++ = 'a';
4456 if (s->flags & SLAB_DEBUG_FREE)
4457 *p++ = 'F';
5a896d9e
VN
4458 if (!(s->flags & SLAB_NOTRACK))
4459 *p++ = 't';
81819f0f
CL
4460 if (p != name + 1)
4461 *p++ = '-';
4462 p += sprintf(p, "%07d", s->size);
4463 BUG_ON(p > name + ID_STR_LENGTH - 1);
4464 return name;
4465}
4466
4467static int sysfs_slab_add(struct kmem_cache *s)
4468{
4469 int err;
4470 const char *name;
4471 int unmergeable;
4472
4473 if (slab_state < SYSFS)
4474 /* Defer until later */
4475 return 0;
4476
4477 unmergeable = slab_unmergeable(s);
4478 if (unmergeable) {
4479 /*
4480 * Slabcache can never be merged so we can use the name proper.
4481 * This is typically the case for debug situations. In that
4482 * case we can catch duplicate names easily.
4483 */
27c3a314 4484 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4485 name = s->name;
4486 } else {
4487 /*
4488 * Create a unique name for the slab as a target
4489 * for the symlinks.
4490 */
4491 name = create_unique_id(s);
4492 }
4493
27c3a314 4494 s->kobj.kset = slab_kset;
1eada11c
GKH
4495 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4496 if (err) {
4497 kobject_put(&s->kobj);
81819f0f 4498 return err;
1eada11c 4499 }
81819f0f
CL
4500
4501 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4502 if (err) {
4503 kobject_del(&s->kobj);
4504 kobject_put(&s->kobj);
81819f0f 4505 return err;
5788d8ad 4506 }
81819f0f
CL
4507 kobject_uevent(&s->kobj, KOBJ_ADD);
4508 if (!unmergeable) {
4509 /* Setup first alias */
4510 sysfs_slab_alias(s, s->name);
4511 kfree(name);
4512 }
4513 return 0;
4514}
4515
4516static void sysfs_slab_remove(struct kmem_cache *s)
4517{
2bce6485
CL
4518 if (slab_state < SYSFS)
4519 /*
4520 * Sysfs has not been setup yet so no need to remove the
4521 * cache from sysfs.
4522 */
4523 return;
4524
81819f0f
CL
4525 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4526 kobject_del(&s->kobj);
151c602f 4527 kobject_put(&s->kobj);
81819f0f
CL
4528}
4529
4530/*
4531 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4532 * available lest we lose that information.
81819f0f
CL
4533 */
4534struct saved_alias {
4535 struct kmem_cache *s;
4536 const char *name;
4537 struct saved_alias *next;
4538};
4539
5af328a5 4540static struct saved_alias *alias_list;
81819f0f
CL
4541
4542static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4543{
4544 struct saved_alias *al;
4545
4546 if (slab_state == SYSFS) {
4547 /*
4548 * If we have a leftover link then remove it.
4549 */
27c3a314
GKH
4550 sysfs_remove_link(&slab_kset->kobj, name);
4551 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4552 }
4553
4554 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4555 if (!al)
4556 return -ENOMEM;
4557
4558 al->s = s;
4559 al->name = name;
4560 al->next = alias_list;
4561 alias_list = al;
4562 return 0;
4563}
4564
4565static int __init slab_sysfs_init(void)
4566{
5b95a4ac 4567 struct kmem_cache *s;
81819f0f
CL
4568 int err;
4569
2bce6485
CL
4570 down_write(&slub_lock);
4571
0ff21e46 4572 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4573 if (!slab_kset) {
2bce6485 4574 up_write(&slub_lock);
81819f0f
CL
4575 printk(KERN_ERR "Cannot register slab subsystem.\n");
4576 return -ENOSYS;
4577 }
4578
26a7bd03
CL
4579 slab_state = SYSFS;
4580
5b95a4ac 4581 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4582 err = sysfs_slab_add(s);
5d540fb7
CL
4583 if (err)
4584 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4585 " to sysfs\n", s->name);
26a7bd03 4586 }
81819f0f
CL
4587
4588 while (alias_list) {
4589 struct saved_alias *al = alias_list;
4590
4591 alias_list = alias_list->next;
4592 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4593 if (err)
4594 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4595 " %s to sysfs\n", s->name);
81819f0f
CL
4596 kfree(al);
4597 }
4598
2bce6485 4599 up_write(&slub_lock);
81819f0f
CL
4600 resiliency_test();
4601 return 0;
4602}
4603
4604__initcall(slab_sysfs_init);
ab4d5ed5 4605#endif /* CONFIG_SYSFS */
57ed3eda
PE
4606
4607/*
4608 * The /proc/slabinfo ABI
4609 */
158a9624 4610#ifdef CONFIG_SLABINFO
57ed3eda
PE
4611static void print_slabinfo_header(struct seq_file *m)
4612{
4613 seq_puts(m, "slabinfo - version: 2.1\n");
4614 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4615 "<objperslab> <pagesperslab>");
4616 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4617 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4618 seq_putc(m, '\n');
4619}
4620
4621static void *s_start(struct seq_file *m, loff_t *pos)
4622{
4623 loff_t n = *pos;
4624
4625 down_read(&slub_lock);
4626 if (!n)
4627 print_slabinfo_header(m);
4628
4629 return seq_list_start(&slab_caches, *pos);
4630}
4631
4632static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4633{
4634 return seq_list_next(p, &slab_caches, pos);
4635}
4636
4637static void s_stop(struct seq_file *m, void *p)
4638{
4639 up_read(&slub_lock);
4640}
4641
4642static int s_show(struct seq_file *m, void *p)
4643{
4644 unsigned long nr_partials = 0;
4645 unsigned long nr_slabs = 0;
4646 unsigned long nr_inuse = 0;
205ab99d
CL
4647 unsigned long nr_objs = 0;
4648 unsigned long nr_free = 0;
57ed3eda
PE
4649 struct kmem_cache *s;
4650 int node;
4651
4652 s = list_entry(p, struct kmem_cache, list);
4653
4654 for_each_online_node(node) {
4655 struct kmem_cache_node *n = get_node(s, node);
4656
4657 if (!n)
4658 continue;
4659
4660 nr_partials += n->nr_partial;
4661 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4662 nr_objs += atomic_long_read(&n->total_objects);
4663 nr_free += count_partial(n, count_free);
57ed3eda
PE
4664 }
4665
205ab99d 4666 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4667
4668 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4669 nr_objs, s->size, oo_objects(s->oo),
4670 (1 << oo_order(s->oo)));
57ed3eda
PE
4671 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4672 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4673 0UL);
4674 seq_putc(m, '\n');
4675 return 0;
4676}
4677
7b3c3a50 4678static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4679 .start = s_start,
4680 .next = s_next,
4681 .stop = s_stop,
4682 .show = s_show,
4683};
4684
7b3c3a50
AD
4685static int slabinfo_open(struct inode *inode, struct file *file)
4686{
4687 return seq_open(file, &slabinfo_op);
4688}
4689
4690static const struct file_operations proc_slabinfo_operations = {
4691 .open = slabinfo_open,
4692 .read = seq_read,
4693 .llseek = seq_lseek,
4694 .release = seq_release,
4695};
4696
4697static int __init slab_proc_init(void)
4698{
cf5d1131 4699 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4700 return 0;
4701}
4702module_init(slab_proc_init);
158a9624 4703#endif /* CONFIG_SLABINFO */