]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/vmscan.c
mm/vmscan: remove misleading setting to sc->priority
[mirror_ubuntu-jammy-kernel.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
b1de0d13
MH
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4 15#include <linux/mm.h>
5b3cc15a 16#include <linux/sched/mm.h>
1da177e4 17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
26aa2d19 44#include <linux/migrate.h>
873b4771 45#include <linux/delayacct.h>
af936a16 46#include <linux/sysctl.h>
929bea7c 47#include <linux/oom.h>
64e3d12f 48#include <linux/pagevec.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
eb414681 52#include <linux/psi.h>
1da177e4
LT
53
54#include <asm/tlbflush.h>
55#include <asm/div64.h>
56
57#include <linux/swapops.h>
117aad1e 58#include <linux/balloon_compaction.h>
1da177e4 59
0f8053a5
NP
60#include "internal.h"
61
33906bc5
MG
62#define CREATE_TRACE_POINTS
63#include <trace/events/vmscan.h>
64
1da177e4 65struct scan_control {
22fba335
KM
66 /* How many pages shrink_list() should reclaim */
67 unsigned long nr_to_reclaim;
68
ee814fe2
JW
69 /*
70 * Nodemask of nodes allowed by the caller. If NULL, all nodes
71 * are scanned.
72 */
73 nodemask_t *nodemask;
9e3b2f8c 74
f16015fb
JW
75 /*
76 * The memory cgroup that hit its limit and as a result is the
77 * primary target of this reclaim invocation.
78 */
79 struct mem_cgroup *target_mem_cgroup;
66e1707b 80
7cf111bc
JW
81 /*
82 * Scan pressure balancing between anon and file LRUs
83 */
84 unsigned long anon_cost;
85 unsigned long file_cost;
86
b91ac374
JW
87 /* Can active pages be deactivated as part of reclaim? */
88#define DEACTIVATE_ANON 1
89#define DEACTIVATE_FILE 2
90 unsigned int may_deactivate:2;
91 unsigned int force_deactivate:1;
92 unsigned int skipped_deactivate:1;
93
1276ad68 94 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
95 unsigned int may_writepage:1;
96
97 /* Can mapped pages be reclaimed? */
98 unsigned int may_unmap:1;
99
100 /* Can pages be swapped as part of reclaim? */
101 unsigned int may_swap:1;
102
d6622f63 103 /*
f56ce412
JW
104 * Cgroup memory below memory.low is protected as long as we
105 * don't threaten to OOM. If any cgroup is reclaimed at
106 * reduced force or passed over entirely due to its memory.low
107 * setting (memcg_low_skipped), and nothing is reclaimed as a
108 * result, then go back for one more cycle that reclaims the protected
109 * memory (memcg_low_reclaim) to avert OOM.
d6622f63
YX
110 */
111 unsigned int memcg_low_reclaim:1;
112 unsigned int memcg_low_skipped:1;
241994ed 113
ee814fe2
JW
114 unsigned int hibernation_mode:1;
115
116 /* One of the zones is ready for compaction */
117 unsigned int compaction_ready:1;
118
b91ac374
JW
119 /* There is easily reclaimable cold cache in the current node */
120 unsigned int cache_trim_mode:1;
121
53138cea
JW
122 /* The file pages on the current node are dangerously low */
123 unsigned int file_is_tiny:1;
124
26aa2d19
DH
125 /* Always discard instead of demoting to lower tier memory */
126 unsigned int no_demotion:1;
127
bb451fdf
GT
128 /* Allocation order */
129 s8 order;
130
131 /* Scan (total_size >> priority) pages at once */
132 s8 priority;
133
134 /* The highest zone to isolate pages for reclaim from */
135 s8 reclaim_idx;
136
137 /* This context's GFP mask */
138 gfp_t gfp_mask;
139
ee814fe2
JW
140 /* Incremented by the number of inactive pages that were scanned */
141 unsigned long nr_scanned;
142
143 /* Number of pages freed so far during a call to shrink_zones() */
144 unsigned long nr_reclaimed;
d108c772
AR
145
146 struct {
147 unsigned int dirty;
148 unsigned int unqueued_dirty;
149 unsigned int congested;
150 unsigned int writeback;
151 unsigned int immediate;
152 unsigned int file_taken;
153 unsigned int taken;
154 } nr;
e5ca8071
YS
155
156 /* for recording the reclaimed slab by now */
157 struct reclaim_state reclaim_state;
1da177e4
LT
158};
159
1da177e4
LT
160#ifdef ARCH_HAS_PREFETCHW
161#define prefetchw_prev_lru_page(_page, _base, _field) \
162 do { \
163 if ((_page)->lru.prev != _base) { \
164 struct page *prev; \
165 \
166 prev = lru_to_page(&(_page->lru)); \
167 prefetchw(&prev->_field); \
168 } \
169 } while (0)
170#else
171#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
172#endif
173
174/*
c843966c 175 * From 0 .. 200. Higher means more swappy.
1da177e4
LT
176 */
177int vm_swappiness = 60;
1da177e4 178
0a432dcb
YS
179static void set_task_reclaim_state(struct task_struct *task,
180 struct reclaim_state *rs)
181{
182 /* Check for an overwrite */
183 WARN_ON_ONCE(rs && task->reclaim_state);
184
185 /* Check for the nulling of an already-nulled member */
186 WARN_ON_ONCE(!rs && !task->reclaim_state);
187
188 task->reclaim_state = rs;
189}
190
1da177e4
LT
191static LIST_HEAD(shrinker_list);
192static DECLARE_RWSEM(shrinker_rwsem);
193
0a432dcb 194#ifdef CONFIG_MEMCG
a2fb1261 195static int shrinker_nr_max;
2bfd3637 196
3c6f17e6 197/* The shrinker_info is expanded in a batch of BITS_PER_LONG */
a2fb1261
YS
198static inline int shrinker_map_size(int nr_items)
199{
200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
201}
2bfd3637 202
3c6f17e6
YS
203static inline int shrinker_defer_size(int nr_items)
204{
205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
206}
207
468ab843
YS
208static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
209 int nid)
210{
211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
212 lockdep_is_held(&shrinker_rwsem));
213}
214
e4262c4f 215static int expand_one_shrinker_info(struct mem_cgroup *memcg,
3c6f17e6
YS
216 int map_size, int defer_size,
217 int old_map_size, int old_defer_size)
2bfd3637 218{
e4262c4f 219 struct shrinker_info *new, *old;
2bfd3637
YS
220 struct mem_cgroup_per_node *pn;
221 int nid;
3c6f17e6 222 int size = map_size + defer_size;
2bfd3637 223
2bfd3637
YS
224 for_each_node(nid) {
225 pn = memcg->nodeinfo[nid];
468ab843 226 old = shrinker_info_protected(memcg, nid);
2bfd3637
YS
227 /* Not yet online memcg */
228 if (!old)
229 return 0;
230
231 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
232 if (!new)
233 return -ENOMEM;
234
3c6f17e6
YS
235 new->nr_deferred = (atomic_long_t *)(new + 1);
236 new->map = (void *)new->nr_deferred + defer_size;
237
238 /* map: set all old bits, clear all new bits */
239 memset(new->map, (int)0xff, old_map_size);
240 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
241 /* nr_deferred: copy old values, clear all new values */
242 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
243 memset((void *)new->nr_deferred + old_defer_size, 0,
244 defer_size - old_defer_size);
2bfd3637 245
e4262c4f 246 rcu_assign_pointer(pn->shrinker_info, new);
72673e86 247 kvfree_rcu(old, rcu);
2bfd3637
YS
248 }
249
250 return 0;
251}
252
e4262c4f 253void free_shrinker_info(struct mem_cgroup *memcg)
2bfd3637
YS
254{
255 struct mem_cgroup_per_node *pn;
e4262c4f 256 struct shrinker_info *info;
2bfd3637
YS
257 int nid;
258
2bfd3637
YS
259 for_each_node(nid) {
260 pn = memcg->nodeinfo[nid];
e4262c4f
YS
261 info = rcu_dereference_protected(pn->shrinker_info, true);
262 kvfree(info);
263 rcu_assign_pointer(pn->shrinker_info, NULL);
2bfd3637
YS
264 }
265}
266
e4262c4f 267int alloc_shrinker_info(struct mem_cgroup *memcg)
2bfd3637 268{
e4262c4f 269 struct shrinker_info *info;
2bfd3637 270 int nid, size, ret = 0;
3c6f17e6 271 int map_size, defer_size = 0;
2bfd3637 272
d27cf2aa 273 down_write(&shrinker_rwsem);
3c6f17e6
YS
274 map_size = shrinker_map_size(shrinker_nr_max);
275 defer_size = shrinker_defer_size(shrinker_nr_max);
276 size = map_size + defer_size;
2bfd3637 277 for_each_node(nid) {
e4262c4f
YS
278 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
279 if (!info) {
280 free_shrinker_info(memcg);
2bfd3637
YS
281 ret = -ENOMEM;
282 break;
283 }
3c6f17e6
YS
284 info->nr_deferred = (atomic_long_t *)(info + 1);
285 info->map = (void *)info->nr_deferred + defer_size;
e4262c4f 286 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
2bfd3637 287 }
d27cf2aa 288 up_write(&shrinker_rwsem);
2bfd3637
YS
289
290 return ret;
291}
292
3c6f17e6
YS
293static inline bool need_expand(int nr_max)
294{
295 return round_up(nr_max, BITS_PER_LONG) >
296 round_up(shrinker_nr_max, BITS_PER_LONG);
297}
298
e4262c4f 299static int expand_shrinker_info(int new_id)
2bfd3637 300{
3c6f17e6 301 int ret = 0;
a2fb1261 302 int new_nr_max = new_id + 1;
3c6f17e6
YS
303 int map_size, defer_size = 0;
304 int old_map_size, old_defer_size = 0;
2bfd3637
YS
305 struct mem_cgroup *memcg;
306
3c6f17e6 307 if (!need_expand(new_nr_max))
a2fb1261 308 goto out;
2bfd3637 309
2bfd3637 310 if (!root_mem_cgroup)
d27cf2aa
YS
311 goto out;
312
313 lockdep_assert_held(&shrinker_rwsem);
2bfd3637 314
3c6f17e6
YS
315 map_size = shrinker_map_size(new_nr_max);
316 defer_size = shrinker_defer_size(new_nr_max);
317 old_map_size = shrinker_map_size(shrinker_nr_max);
318 old_defer_size = shrinker_defer_size(shrinker_nr_max);
319
2bfd3637
YS
320 memcg = mem_cgroup_iter(NULL, NULL, NULL);
321 do {
3c6f17e6
YS
322 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
323 old_map_size, old_defer_size);
2bfd3637
YS
324 if (ret) {
325 mem_cgroup_iter_break(NULL, memcg);
d27cf2aa 326 goto out;
2bfd3637
YS
327 }
328 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
d27cf2aa 329out:
2bfd3637 330 if (!ret)
a2fb1261 331 shrinker_nr_max = new_nr_max;
d27cf2aa 332
2bfd3637
YS
333 return ret;
334}
335
336void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
337{
338 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
e4262c4f 339 struct shrinker_info *info;
2bfd3637
YS
340
341 rcu_read_lock();
e4262c4f 342 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
2bfd3637
YS
343 /* Pairs with smp mb in shrink_slab() */
344 smp_mb__before_atomic();
e4262c4f 345 set_bit(shrinker_id, info->map);
2bfd3637
YS
346 rcu_read_unlock();
347 }
348}
349
b4c2b231 350static DEFINE_IDR(shrinker_idr);
b4c2b231
KT
351
352static int prealloc_memcg_shrinker(struct shrinker *shrinker)
353{
354 int id, ret = -ENOMEM;
355
476b30a0
YS
356 if (mem_cgroup_disabled())
357 return -ENOSYS;
358
b4c2b231
KT
359 down_write(&shrinker_rwsem);
360 /* This may call shrinker, so it must use down_read_trylock() */
41ca668a 361 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
b4c2b231
KT
362 if (id < 0)
363 goto unlock;
364
0a4465d3 365 if (id >= shrinker_nr_max) {
e4262c4f 366 if (expand_shrinker_info(id)) {
0a4465d3
KT
367 idr_remove(&shrinker_idr, id);
368 goto unlock;
369 }
0a4465d3 370 }
b4c2b231
KT
371 shrinker->id = id;
372 ret = 0;
373unlock:
374 up_write(&shrinker_rwsem);
375 return ret;
376}
377
378static void unregister_memcg_shrinker(struct shrinker *shrinker)
379{
380 int id = shrinker->id;
381
382 BUG_ON(id < 0);
383
41ca668a
YS
384 lockdep_assert_held(&shrinker_rwsem);
385
b4c2b231 386 idr_remove(&shrinker_idr, id);
b4c2b231 387}
b4c2b231 388
86750830
YS
389static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
390 struct mem_cgroup *memcg)
391{
392 struct shrinker_info *info;
393
394 info = shrinker_info_protected(memcg, nid);
395 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
396}
397
398static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
399 struct mem_cgroup *memcg)
400{
401 struct shrinker_info *info;
402
403 info = shrinker_info_protected(memcg, nid);
404 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
405}
406
a178015c
YS
407void reparent_shrinker_deferred(struct mem_cgroup *memcg)
408{
409 int i, nid;
410 long nr;
411 struct mem_cgroup *parent;
412 struct shrinker_info *child_info, *parent_info;
413
414 parent = parent_mem_cgroup(memcg);
415 if (!parent)
416 parent = root_mem_cgroup;
417
418 /* Prevent from concurrent shrinker_info expand */
419 down_read(&shrinker_rwsem);
420 for_each_node(nid) {
421 child_info = shrinker_info_protected(memcg, nid);
422 parent_info = shrinker_info_protected(parent, nid);
423 for (i = 0; i < shrinker_nr_max; i++) {
424 nr = atomic_long_read(&child_info->nr_deferred[i]);
425 atomic_long_add(nr, &parent_info->nr_deferred[i]);
426 }
427 }
428 up_read(&shrinker_rwsem);
429}
430
b5ead35e 431static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 432{
b5ead35e 433 return sc->target_mem_cgroup;
89b5fae5 434}
97c9341f
TH
435
436/**
b5ead35e 437 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
438 * @sc: scan_control in question
439 *
440 * The normal page dirty throttling mechanism in balance_dirty_pages() is
441 * completely broken with the legacy memcg and direct stalling in
442 * shrink_page_list() is used for throttling instead, which lacks all the
443 * niceties such as fairness, adaptive pausing, bandwidth proportional
444 * allocation and configurability.
445 *
446 * This function tests whether the vmscan currently in progress can assume
447 * that the normal dirty throttling mechanism is operational.
448 */
b5ead35e 449static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 450{
b5ead35e 451 if (!cgroup_reclaim(sc))
97c9341f
TH
452 return true;
453#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 454 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
455 return true;
456#endif
457 return false;
458}
91a45470 459#else
0a432dcb
YS
460static int prealloc_memcg_shrinker(struct shrinker *shrinker)
461{
476b30a0 462 return -ENOSYS;
0a432dcb
YS
463}
464
465static void unregister_memcg_shrinker(struct shrinker *shrinker)
466{
467}
468
86750830
YS
469static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
470 struct mem_cgroup *memcg)
471{
472 return 0;
473}
474
475static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
476 struct mem_cgroup *memcg)
477{
478 return 0;
479}
480
b5ead35e 481static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 482{
b5ead35e 483 return false;
89b5fae5 484}
97c9341f 485
b5ead35e 486static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
487{
488 return true;
489}
91a45470
KH
490#endif
491
86750830
YS
492static long xchg_nr_deferred(struct shrinker *shrinker,
493 struct shrink_control *sc)
494{
495 int nid = sc->nid;
496
497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 nid = 0;
499
500 if (sc->memcg &&
501 (shrinker->flags & SHRINKER_MEMCG_AWARE))
502 return xchg_nr_deferred_memcg(nid, shrinker,
503 sc->memcg);
504
505 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
506}
507
508
509static long add_nr_deferred(long nr, struct shrinker *shrinker,
510 struct shrink_control *sc)
511{
512 int nid = sc->nid;
513
514 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
515 nid = 0;
516
517 if (sc->memcg &&
518 (shrinker->flags & SHRINKER_MEMCG_AWARE))
519 return add_nr_deferred_memcg(nr, nid, shrinker,
520 sc->memcg);
521
522 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
523}
524
26aa2d19
DH
525static bool can_demote(int nid, struct scan_control *sc)
526{
20b51af1
HY
527 if (!numa_demotion_enabled)
528 return false;
3a235693
DH
529 if (sc) {
530 if (sc->no_demotion)
531 return false;
532 /* It is pointless to do demotion in memcg reclaim */
533 if (cgroup_reclaim(sc))
534 return false;
535 }
26aa2d19
DH
536 if (next_demotion_node(nid) == NUMA_NO_NODE)
537 return false;
538
20b51af1 539 return true;
26aa2d19
DH
540}
541
a2a36488
KB
542static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
543 int nid,
544 struct scan_control *sc)
545{
546 if (memcg == NULL) {
547 /*
548 * For non-memcg reclaim, is there
549 * space in any swap device?
550 */
551 if (get_nr_swap_pages() > 0)
552 return true;
553 } else {
554 /* Is the memcg below its swap limit? */
555 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
556 return true;
557 }
558
559 /*
560 * The page can not be swapped.
561 *
562 * Can it be reclaimed from this node via demotion?
563 */
564 return can_demote(nid, sc);
565}
566
5a1c84b4
MG
567/*
568 * This misses isolated pages which are not accounted for to save counters.
569 * As the data only determines if reclaim or compaction continues, it is
570 * not expected that isolated pages will be a dominating factor.
571 */
572unsigned long zone_reclaimable_pages(struct zone *zone)
573{
574 unsigned long nr;
575
576 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
577 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
a2a36488 578 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
5a1c84b4
MG
579 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
580 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
581
582 return nr;
583}
584
fd538803
MH
585/**
586 * lruvec_lru_size - Returns the number of pages on the given LRU list.
587 * @lruvec: lru vector
588 * @lru: lru to use
589 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
590 */
2091339d
YZ
591static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
592 int zone_idx)
c9f299d9 593{
de3b0150 594 unsigned long size = 0;
fd538803
MH
595 int zid;
596
de3b0150 597 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
fd538803 598 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 599
fd538803
MH
600 if (!managed_zone(zone))
601 continue;
602
603 if (!mem_cgroup_disabled())
de3b0150 604 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 605 else
de3b0150 606 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 607 }
de3b0150 608 return size;
b4536f0c
MH
609}
610
1da177e4 611/*
1d3d4437 612 * Add a shrinker callback to be called from the vm.
1da177e4 613 */
8e04944f 614int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 615{
476b30a0
YS
616 unsigned int size;
617 int err;
618
619 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
620 err = prealloc_memcg_shrinker(shrinker);
621 if (err != -ENOSYS)
622 return err;
1d3d4437 623
476b30a0
YS
624 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
625 }
626
627 size = sizeof(*shrinker->nr_deferred);
1d3d4437
GC
628 if (shrinker->flags & SHRINKER_NUMA_AWARE)
629 size *= nr_node_ids;
630
631 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
632 if (!shrinker->nr_deferred)
633 return -ENOMEM;
b4c2b231 634
8e04944f
TH
635 return 0;
636}
637
638void free_prealloced_shrinker(struct shrinker *shrinker)
639{
41ca668a
YS
640 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
641 down_write(&shrinker_rwsem);
b4c2b231 642 unregister_memcg_shrinker(shrinker);
41ca668a 643 up_write(&shrinker_rwsem);
476b30a0 644 return;
41ca668a 645 }
b4c2b231 646
8e04944f
TH
647 kfree(shrinker->nr_deferred);
648 shrinker->nr_deferred = NULL;
649}
1d3d4437 650
8e04944f
TH
651void register_shrinker_prepared(struct shrinker *shrinker)
652{
8e1f936b
RR
653 down_write(&shrinker_rwsem);
654 list_add_tail(&shrinker->list, &shrinker_list);
41ca668a 655 shrinker->flags |= SHRINKER_REGISTERED;
8e1f936b 656 up_write(&shrinker_rwsem);
8e04944f
TH
657}
658
659int register_shrinker(struct shrinker *shrinker)
660{
661 int err = prealloc_shrinker(shrinker);
662
663 if (err)
664 return err;
665 register_shrinker_prepared(shrinker);
1d3d4437 666 return 0;
1da177e4 667}
8e1f936b 668EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
669
670/*
671 * Remove one
672 */
8e1f936b 673void unregister_shrinker(struct shrinker *shrinker)
1da177e4 674{
41ca668a 675 if (!(shrinker->flags & SHRINKER_REGISTERED))
bb422a73 676 return;
41ca668a 677
1da177e4
LT
678 down_write(&shrinker_rwsem);
679 list_del(&shrinker->list);
41ca668a
YS
680 shrinker->flags &= ~SHRINKER_REGISTERED;
681 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
682 unregister_memcg_shrinker(shrinker);
1da177e4 683 up_write(&shrinker_rwsem);
41ca668a 684
ae393321 685 kfree(shrinker->nr_deferred);
bb422a73 686 shrinker->nr_deferred = NULL;
1da177e4 687}
8e1f936b 688EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
689
690#define SHRINK_BATCH 128
1d3d4437 691
cb731d6c 692static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 693 struct shrinker *shrinker, int priority)
1d3d4437
GC
694{
695 unsigned long freed = 0;
696 unsigned long long delta;
697 long total_scan;
d5bc5fd3 698 long freeable;
1d3d4437
GC
699 long nr;
700 long new_nr;
1d3d4437
GC
701 long batch_size = shrinker->batch ? shrinker->batch
702 : SHRINK_BATCH;
5f33a080 703 long scanned = 0, next_deferred;
1d3d4437 704
d5bc5fd3 705 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
706 if (freeable == 0 || freeable == SHRINK_EMPTY)
707 return freeable;
1d3d4437
GC
708
709 /*
710 * copy the current shrinker scan count into a local variable
711 * and zero it so that other concurrent shrinker invocations
712 * don't also do this scanning work.
713 */
86750830 714 nr = xchg_nr_deferred(shrinker, shrinkctl);
1d3d4437 715
4b85afbd
JW
716 if (shrinker->seeks) {
717 delta = freeable >> priority;
718 delta *= 4;
719 do_div(delta, shrinker->seeks);
720 } else {
721 /*
722 * These objects don't require any IO to create. Trim
723 * them aggressively under memory pressure to keep
724 * them from causing refetches in the IO caches.
725 */
726 delta = freeable / 2;
727 }
172b06c3 728
18bb473e 729 total_scan = nr >> priority;
1d3d4437 730 total_scan += delta;
18bb473e 731 total_scan = min(total_scan, (2 * freeable));
1d3d4437
GC
732
733 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 734 freeable, delta, total_scan, priority);
1d3d4437 735
0b1fb40a
VD
736 /*
737 * Normally, we should not scan less than batch_size objects in one
738 * pass to avoid too frequent shrinker calls, but if the slab has less
739 * than batch_size objects in total and we are really tight on memory,
740 * we will try to reclaim all available objects, otherwise we can end
741 * up failing allocations although there are plenty of reclaimable
742 * objects spread over several slabs with usage less than the
743 * batch_size.
744 *
745 * We detect the "tight on memory" situations by looking at the total
746 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 747 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
748 * scanning at high prio and therefore should try to reclaim as much as
749 * possible.
750 */
751 while (total_scan >= batch_size ||
d5bc5fd3 752 total_scan >= freeable) {
a0b02131 753 unsigned long ret;
0b1fb40a 754 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 755
0b1fb40a 756 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 757 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
758 ret = shrinker->scan_objects(shrinker, shrinkctl);
759 if (ret == SHRINK_STOP)
760 break;
761 freed += ret;
1d3d4437 762
d460acb5
CW
763 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
764 total_scan -= shrinkctl->nr_scanned;
765 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
766
767 cond_resched();
768 }
769
18bb473e
YS
770 /*
771 * The deferred work is increased by any new work (delta) that wasn't
772 * done, decreased by old deferred work that was done now.
773 *
774 * And it is capped to two times of the freeable items.
775 */
776 next_deferred = max_t(long, (nr + delta - scanned), 0);
777 next_deferred = min(next_deferred, (2 * freeable));
778
1d3d4437
GC
779 /*
780 * move the unused scan count back into the shrinker in a
86750830 781 * manner that handles concurrent updates.
1d3d4437 782 */
86750830 783 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
1d3d4437 784
8efb4b59 785 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
1d3d4437 786 return freed;
1495f230
YH
787}
788
0a432dcb 789#ifdef CONFIG_MEMCG
b0dedc49
KT
790static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
791 struct mem_cgroup *memcg, int priority)
792{
e4262c4f 793 struct shrinker_info *info;
b8e57efa
KT
794 unsigned long ret, freed = 0;
795 int i;
b0dedc49 796
0a432dcb 797 if (!mem_cgroup_online(memcg))
b0dedc49
KT
798 return 0;
799
800 if (!down_read_trylock(&shrinker_rwsem))
801 return 0;
802
468ab843 803 info = shrinker_info_protected(memcg, nid);
e4262c4f 804 if (unlikely(!info))
b0dedc49
KT
805 goto unlock;
806
e4262c4f 807 for_each_set_bit(i, info->map, shrinker_nr_max) {
b0dedc49
KT
808 struct shrink_control sc = {
809 .gfp_mask = gfp_mask,
810 .nid = nid,
811 .memcg = memcg,
812 };
813 struct shrinker *shrinker;
814
815 shrinker = idr_find(&shrinker_idr, i);
41ca668a 816 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
7e010df5 817 if (!shrinker)
e4262c4f 818 clear_bit(i, info->map);
b0dedc49
KT
819 continue;
820 }
821
0a432dcb
YS
822 /* Call non-slab shrinkers even though kmem is disabled */
823 if (!memcg_kmem_enabled() &&
824 !(shrinker->flags & SHRINKER_NONSLAB))
825 continue;
826
b0dedc49 827 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6 828 if (ret == SHRINK_EMPTY) {
e4262c4f 829 clear_bit(i, info->map);
f90280d6
KT
830 /*
831 * After the shrinker reported that it had no objects to
832 * free, but before we cleared the corresponding bit in
833 * the memcg shrinker map, a new object might have been
834 * added. To make sure, we have the bit set in this
835 * case, we invoke the shrinker one more time and reset
836 * the bit if it reports that it is not empty anymore.
837 * The memory barrier here pairs with the barrier in
2bfd3637 838 * set_shrinker_bit():
f90280d6
KT
839 *
840 * list_lru_add() shrink_slab_memcg()
841 * list_add_tail() clear_bit()
842 * <MB> <MB>
843 * set_bit() do_shrink_slab()
844 */
845 smp_mb__after_atomic();
846 ret = do_shrink_slab(&sc, shrinker, priority);
847 if (ret == SHRINK_EMPTY)
848 ret = 0;
849 else
2bfd3637 850 set_shrinker_bit(memcg, nid, i);
f90280d6 851 }
b0dedc49
KT
852 freed += ret;
853
854 if (rwsem_is_contended(&shrinker_rwsem)) {
855 freed = freed ? : 1;
856 break;
857 }
858 }
859unlock:
860 up_read(&shrinker_rwsem);
861 return freed;
862}
0a432dcb 863#else /* CONFIG_MEMCG */
b0dedc49
KT
864static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
865 struct mem_cgroup *memcg, int priority)
866{
867 return 0;
868}
0a432dcb 869#endif /* CONFIG_MEMCG */
b0dedc49 870
6b4f7799 871/**
cb731d6c 872 * shrink_slab - shrink slab caches
6b4f7799
JW
873 * @gfp_mask: allocation context
874 * @nid: node whose slab caches to target
cb731d6c 875 * @memcg: memory cgroup whose slab caches to target
9092c71b 876 * @priority: the reclaim priority
1da177e4 877 *
6b4f7799 878 * Call the shrink functions to age shrinkable caches.
1da177e4 879 *
6b4f7799
JW
880 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
881 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 882 *
aeed1d32
VD
883 * @memcg specifies the memory cgroup to target. Unaware shrinkers
884 * are called only if it is the root cgroup.
cb731d6c 885 *
9092c71b
JB
886 * @priority is sc->priority, we take the number of objects and >> by priority
887 * in order to get the scan target.
b15e0905 888 *
6b4f7799 889 * Returns the number of reclaimed slab objects.
1da177e4 890 */
cb731d6c
VD
891static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
892 struct mem_cgroup *memcg,
9092c71b 893 int priority)
1da177e4 894{
b8e57efa 895 unsigned long ret, freed = 0;
1da177e4
LT
896 struct shrinker *shrinker;
897
fa1e512f
YS
898 /*
899 * The root memcg might be allocated even though memcg is disabled
900 * via "cgroup_disable=memory" boot parameter. This could make
901 * mem_cgroup_is_root() return false, then just run memcg slab
902 * shrink, but skip global shrink. This may result in premature
903 * oom.
904 */
905 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 906 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 907
e830c63a 908 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 909 goto out;
1da177e4
LT
910
911 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
912 struct shrink_control sc = {
913 .gfp_mask = gfp_mask,
914 .nid = nid,
cb731d6c 915 .memcg = memcg,
6b4f7799 916 };
ec97097b 917
9b996468
KT
918 ret = do_shrink_slab(&sc, shrinker, priority);
919 if (ret == SHRINK_EMPTY)
920 ret = 0;
921 freed += ret;
e496612c
MK
922 /*
923 * Bail out if someone want to register a new shrinker to
55b65a57 924 * prevent the registration from being stalled for long periods
e496612c
MK
925 * by parallel ongoing shrinking.
926 */
927 if (rwsem_is_contended(&shrinker_rwsem)) {
928 freed = freed ? : 1;
929 break;
930 }
1da177e4 931 }
6b4f7799 932
1da177e4 933 up_read(&shrinker_rwsem);
f06590bd
MK
934out:
935 cond_resched();
24f7c6b9 936 return freed;
1da177e4
LT
937}
938
cb731d6c
VD
939void drop_slab_node(int nid)
940{
941 unsigned long freed;
942
943 do {
944 struct mem_cgroup *memcg = NULL;
945
069c411d
CZ
946 if (fatal_signal_pending(current))
947 return;
948
cb731d6c 949 freed = 0;
aeed1d32 950 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 951 do {
9092c71b 952 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c
VD
953 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
954 } while (freed > 10);
955}
956
957void drop_slab(void)
958{
959 int nid;
960
961 for_each_online_node(nid)
962 drop_slab_node(nid);
963}
964
1da177e4
LT
965static inline int is_page_cache_freeable(struct page *page)
966{
ceddc3a5
JW
967 /*
968 * A freeable page cache page is referenced only by the caller
67891fff
MW
969 * that isolated the page, the page cache and optional buffer
970 * heads at page->private.
ceddc3a5 971 */
3efe62e4 972 int page_cache_pins = thp_nr_pages(page);
67891fff 973 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
1da177e4
LT
974}
975
cb16556d 976static int may_write_to_inode(struct inode *inode)
1da177e4 977{
930d9152 978 if (current->flags & PF_SWAPWRITE)
1da177e4 979 return 1;
703c2708 980 if (!inode_write_congested(inode))
1da177e4 981 return 1;
703c2708 982 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
983 return 1;
984 return 0;
985}
986
987/*
988 * We detected a synchronous write error writing a page out. Probably
989 * -ENOSPC. We need to propagate that into the address_space for a subsequent
990 * fsync(), msync() or close().
991 *
992 * The tricky part is that after writepage we cannot touch the mapping: nothing
993 * prevents it from being freed up. But we have a ref on the page and once
994 * that page is locked, the mapping is pinned.
995 *
996 * We're allowed to run sleeping lock_page() here because we know the caller has
997 * __GFP_FS.
998 */
999static void handle_write_error(struct address_space *mapping,
1000 struct page *page, int error)
1001{
7eaceacc 1002 lock_page(page);
3e9f45bd
GC
1003 if (page_mapping(page) == mapping)
1004 mapping_set_error(mapping, error);
1da177e4
LT
1005 unlock_page(page);
1006}
1007
04e62a29
CL
1008/* possible outcome of pageout() */
1009typedef enum {
1010 /* failed to write page out, page is locked */
1011 PAGE_KEEP,
1012 /* move page to the active list, page is locked */
1013 PAGE_ACTIVATE,
1014 /* page has been sent to the disk successfully, page is unlocked */
1015 PAGE_SUCCESS,
1016 /* page is clean and locked */
1017 PAGE_CLEAN,
1018} pageout_t;
1019
1da177e4 1020/*
1742f19f
AM
1021 * pageout is called by shrink_page_list() for each dirty page.
1022 * Calls ->writepage().
1da177e4 1023 */
cb16556d 1024static pageout_t pageout(struct page *page, struct address_space *mapping)
1da177e4
LT
1025{
1026 /*
1027 * If the page is dirty, only perform writeback if that write
1028 * will be non-blocking. To prevent this allocation from being
1029 * stalled by pagecache activity. But note that there may be
1030 * stalls if we need to run get_block(). We could test
1031 * PagePrivate for that.
1032 *
8174202b 1033 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
1034 * this page's queue, we can perform writeback even if that
1035 * will block.
1036 *
1037 * If the page is swapcache, write it back even if that would
1038 * block, for some throttling. This happens by accident, because
1039 * swap_backing_dev_info is bust: it doesn't reflect the
1040 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
1041 */
1042 if (!is_page_cache_freeable(page))
1043 return PAGE_KEEP;
1044 if (!mapping) {
1045 /*
1046 * Some data journaling orphaned pages can have
1047 * page->mapping == NULL while being dirty with clean buffers.
1048 */
266cf658 1049 if (page_has_private(page)) {
1da177e4
LT
1050 if (try_to_free_buffers(page)) {
1051 ClearPageDirty(page);
b1de0d13 1052 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
1053 return PAGE_CLEAN;
1054 }
1055 }
1056 return PAGE_KEEP;
1057 }
1058 if (mapping->a_ops->writepage == NULL)
1059 return PAGE_ACTIVATE;
cb16556d 1060 if (!may_write_to_inode(mapping->host))
1da177e4
LT
1061 return PAGE_KEEP;
1062
1063 if (clear_page_dirty_for_io(page)) {
1064 int res;
1065 struct writeback_control wbc = {
1066 .sync_mode = WB_SYNC_NONE,
1067 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
1068 .range_start = 0,
1069 .range_end = LLONG_MAX,
1da177e4
LT
1070 .for_reclaim = 1,
1071 };
1072
1073 SetPageReclaim(page);
1074 res = mapping->a_ops->writepage(page, &wbc);
1075 if (res < 0)
1076 handle_write_error(mapping, page, res);
994fc28c 1077 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
1078 ClearPageReclaim(page);
1079 return PAGE_ACTIVATE;
1080 }
c661b078 1081
1da177e4
LT
1082 if (!PageWriteback(page)) {
1083 /* synchronous write or broken a_ops? */
1084 ClearPageReclaim(page);
1085 }
3aa23851 1086 trace_mm_vmscan_writepage(page);
c4a25635 1087 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
1088 return PAGE_SUCCESS;
1089 }
1090
1091 return PAGE_CLEAN;
1092}
1093
a649fd92 1094/*
e286781d
NP
1095 * Same as remove_mapping, but if the page is removed from the mapping, it
1096 * gets returned with a refcount of 0.
a649fd92 1097 */
a528910e 1098static int __remove_mapping(struct address_space *mapping, struct page *page,
b910718a 1099 bool reclaimed, struct mem_cgroup *target_memcg)
49d2e9cc 1100{
bd4c82c2 1101 int refcount;
aae466b0 1102 void *shadow = NULL;
c4843a75 1103
28e4d965
NP
1104 BUG_ON(!PageLocked(page));
1105 BUG_ON(mapping != page_mapping(page));
49d2e9cc 1106
30472509 1107 xa_lock_irq(&mapping->i_pages);
49d2e9cc 1108 /*
0fd0e6b0
NP
1109 * The non racy check for a busy page.
1110 *
1111 * Must be careful with the order of the tests. When someone has
1112 * a ref to the page, it may be possible that they dirty it then
1113 * drop the reference. So if PageDirty is tested before page_count
1114 * here, then the following race may occur:
1115 *
1116 * get_user_pages(&page);
1117 * [user mapping goes away]
1118 * write_to(page);
1119 * !PageDirty(page) [good]
1120 * SetPageDirty(page);
1121 * put_page(page);
1122 * !page_count(page) [good, discard it]
1123 *
1124 * [oops, our write_to data is lost]
1125 *
1126 * Reversing the order of the tests ensures such a situation cannot
1127 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 1128 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
1129 *
1130 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 1131 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 1132 */
906d278d 1133 refcount = 1 + compound_nr(page);
bd4c82c2 1134 if (!page_ref_freeze(page, refcount))
49d2e9cc 1135 goto cannot_free;
1c4c3b99 1136 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
e286781d 1137 if (unlikely(PageDirty(page))) {
bd4c82c2 1138 page_ref_unfreeze(page, refcount);
49d2e9cc 1139 goto cannot_free;
e286781d 1140 }
49d2e9cc
CL
1141
1142 if (PageSwapCache(page)) {
1143 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 1144 mem_cgroup_swapout(page, swap);
aae466b0
JK
1145 if (reclaimed && !mapping_exiting(mapping))
1146 shadow = workingset_eviction(page, target_memcg);
1147 __delete_from_swap_cache(page, swap, shadow);
30472509 1148 xa_unlock_irq(&mapping->i_pages);
75f6d6d2 1149 put_swap_page(page, swap);
e286781d 1150 } else {
6072d13c
LT
1151 void (*freepage)(struct page *);
1152
1153 freepage = mapping->a_ops->freepage;
a528910e
JW
1154 /*
1155 * Remember a shadow entry for reclaimed file cache in
1156 * order to detect refaults, thus thrashing, later on.
1157 *
1158 * But don't store shadows in an address space that is
238c3046 1159 * already exiting. This is not just an optimization,
a528910e
JW
1160 * inode reclaim needs to empty out the radix tree or
1161 * the nodes are lost. Don't plant shadows behind its
1162 * back.
f9fe48be
RZ
1163 *
1164 * We also don't store shadows for DAX mappings because the
1165 * only page cache pages found in these are zero pages
1166 * covering holes, and because we don't want to mix DAX
1167 * exceptional entries and shadow exceptional entries in the
b93b0163 1168 * same address_space.
a528910e 1169 */
9de4f22a 1170 if (reclaimed && page_is_file_lru(page) &&
f9fe48be 1171 !mapping_exiting(mapping) && !dax_mapping(mapping))
b910718a 1172 shadow = workingset_eviction(page, target_memcg);
62cccb8c 1173 __delete_from_page_cache(page, shadow);
30472509 1174 xa_unlock_irq(&mapping->i_pages);
6072d13c
LT
1175
1176 if (freepage != NULL)
1177 freepage(page);
49d2e9cc
CL
1178 }
1179
49d2e9cc
CL
1180 return 1;
1181
1182cannot_free:
30472509 1183 xa_unlock_irq(&mapping->i_pages);
49d2e9cc
CL
1184 return 0;
1185}
1186
e286781d
NP
1187/*
1188 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
1189 * someone else has a ref on the page, abort and return 0. If it was
1190 * successfully detached, return 1. Assumes the caller has a single ref on
1191 * this page.
1192 */
1193int remove_mapping(struct address_space *mapping, struct page *page)
1194{
b910718a 1195 if (__remove_mapping(mapping, page, false, NULL)) {
e286781d
NP
1196 /*
1197 * Unfreezing the refcount with 1 rather than 2 effectively
1198 * drops the pagecache ref for us without requiring another
1199 * atomic operation.
1200 */
fe896d18 1201 page_ref_unfreeze(page, 1);
e286781d
NP
1202 return 1;
1203 }
1204 return 0;
1205}
1206
894bc310
LS
1207/**
1208 * putback_lru_page - put previously isolated page onto appropriate LRU list
1209 * @page: page to be put back to appropriate lru list
1210 *
1211 * Add previously isolated @page to appropriate LRU list.
1212 * Page may still be unevictable for other reasons.
1213 *
1214 * lru_lock must not be held, interrupts must be enabled.
1215 */
894bc310
LS
1216void putback_lru_page(struct page *page)
1217{
9c4e6b1a 1218 lru_cache_add(page);
894bc310
LS
1219 put_page(page); /* drop ref from isolate */
1220}
1221
dfc8d636
JW
1222enum page_references {
1223 PAGEREF_RECLAIM,
1224 PAGEREF_RECLAIM_CLEAN,
64574746 1225 PAGEREF_KEEP,
dfc8d636
JW
1226 PAGEREF_ACTIVATE,
1227};
1228
1229static enum page_references page_check_references(struct page *page,
1230 struct scan_control *sc)
1231{
64574746 1232 int referenced_ptes, referenced_page;
dfc8d636 1233 unsigned long vm_flags;
dfc8d636 1234
c3ac9a8a
JW
1235 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1236 &vm_flags);
64574746 1237 referenced_page = TestClearPageReferenced(page);
dfc8d636 1238
dfc8d636
JW
1239 /*
1240 * Mlock lost the isolation race with us. Let try_to_unmap()
1241 * move the page to the unevictable list.
1242 */
1243 if (vm_flags & VM_LOCKED)
1244 return PAGEREF_RECLAIM;
1245
64574746 1246 if (referenced_ptes) {
64574746
JW
1247 /*
1248 * All mapped pages start out with page table
1249 * references from the instantiating fault, so we need
1250 * to look twice if a mapped file page is used more
1251 * than once.
1252 *
1253 * Mark it and spare it for another trip around the
1254 * inactive list. Another page table reference will
1255 * lead to its activation.
1256 *
1257 * Note: the mark is set for activated pages as well
1258 * so that recently deactivated but used pages are
1259 * quickly recovered.
1260 */
1261 SetPageReferenced(page);
1262
34dbc67a 1263 if (referenced_page || referenced_ptes > 1)
64574746
JW
1264 return PAGEREF_ACTIVATE;
1265
c909e993
KK
1266 /*
1267 * Activate file-backed executable pages after first usage.
1268 */
b518154e 1269 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
c909e993
KK
1270 return PAGEREF_ACTIVATE;
1271
64574746
JW
1272 return PAGEREF_KEEP;
1273 }
dfc8d636
JW
1274
1275 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1276 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1277 return PAGEREF_RECLAIM_CLEAN;
1278
1279 return PAGEREF_RECLAIM;
dfc8d636
JW
1280}
1281
e2be15f6
MG
1282/* Check if a page is dirty or under writeback */
1283static void page_check_dirty_writeback(struct page *page,
1284 bool *dirty, bool *writeback)
1285{
b4597226
MG
1286 struct address_space *mapping;
1287
e2be15f6
MG
1288 /*
1289 * Anonymous pages are not handled by flushers and must be written
1290 * from reclaim context. Do not stall reclaim based on them
1291 */
9de4f22a 1292 if (!page_is_file_lru(page) ||
802a3a92 1293 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1294 *dirty = false;
1295 *writeback = false;
1296 return;
1297 }
1298
1299 /* By default assume that the page flags are accurate */
1300 *dirty = PageDirty(page);
1301 *writeback = PageWriteback(page);
b4597226
MG
1302
1303 /* Verify dirty/writeback state if the filesystem supports it */
1304 if (!page_has_private(page))
1305 return;
1306
1307 mapping = page_mapping(page);
1308 if (mapping && mapping->a_ops->is_dirty_writeback)
1309 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1310}
1311
26aa2d19
DH
1312static struct page *alloc_demote_page(struct page *page, unsigned long node)
1313{
1314 struct migration_target_control mtc = {
1315 /*
1316 * Allocate from 'node', or fail quickly and quietly.
1317 * When this happens, 'page' will likely just be discarded
1318 * instead of migrated.
1319 */
1320 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1321 __GFP_THISNODE | __GFP_NOWARN |
1322 __GFP_NOMEMALLOC | GFP_NOWAIT,
1323 .nid = node
1324 };
1325
1326 return alloc_migration_target(page, (unsigned long)&mtc);
1327}
1328
1329/*
1330 * Take pages on @demote_list and attempt to demote them to
1331 * another node. Pages which are not demoted are left on
1332 * @demote_pages.
1333 */
1334static unsigned int demote_page_list(struct list_head *demote_pages,
1335 struct pglist_data *pgdat)
1336{
1337 int target_nid = next_demotion_node(pgdat->node_id);
1338 unsigned int nr_succeeded;
1339 int err;
1340
1341 if (list_empty(demote_pages))
1342 return 0;
1343
1344 if (target_nid == NUMA_NO_NODE)
1345 return 0;
1346
1347 /* Demotion ignores all cpuset and mempolicy settings */
1348 err = migrate_pages(demote_pages, alloc_demote_page, NULL,
1349 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1350 &nr_succeeded);
1351
668e4147
YS
1352 if (current_is_kswapd())
1353 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1354 else
1355 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1356
26aa2d19
DH
1357 return nr_succeeded;
1358}
1359
1da177e4 1360/*
1742f19f 1361 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1362 */
730ec8c0
MS
1363static unsigned int shrink_page_list(struct list_head *page_list,
1364 struct pglist_data *pgdat,
1365 struct scan_control *sc,
730ec8c0
MS
1366 struct reclaim_stat *stat,
1367 bool ignore_references)
1da177e4
LT
1368{
1369 LIST_HEAD(ret_pages);
abe4c3b5 1370 LIST_HEAD(free_pages);
26aa2d19 1371 LIST_HEAD(demote_pages);
730ec8c0
MS
1372 unsigned int nr_reclaimed = 0;
1373 unsigned int pgactivate = 0;
26aa2d19 1374 bool do_demote_pass;
1da177e4 1375
060f005f 1376 memset(stat, 0, sizeof(*stat));
1da177e4 1377 cond_resched();
26aa2d19 1378 do_demote_pass = can_demote(pgdat->node_id, sc);
1da177e4 1379
26aa2d19 1380retry:
1da177e4
LT
1381 while (!list_empty(page_list)) {
1382 struct address_space *mapping;
1383 struct page *page;
8940b34a 1384 enum page_references references = PAGEREF_RECLAIM;
4b793062 1385 bool dirty, writeback, may_enter_fs;
98879b3b 1386 unsigned int nr_pages;
1da177e4
LT
1387
1388 cond_resched();
1389
1390 page = lru_to_page(page_list);
1391 list_del(&page->lru);
1392
529ae9aa 1393 if (!trylock_page(page))
1da177e4
LT
1394 goto keep;
1395
309381fe 1396 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4 1397
d8c6546b 1398 nr_pages = compound_nr(page);
98879b3b
YS
1399
1400 /* Account the number of base pages even though THP */
1401 sc->nr_scanned += nr_pages;
80e43426 1402
39b5f29a 1403 if (unlikely(!page_evictable(page)))
ad6b6704 1404 goto activate_locked;
894bc310 1405
a6dc60f8 1406 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1407 goto keep_locked;
1408
c661b078
AW
1409 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1410 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1411
e2be15f6 1412 /*
894befec 1413 * The number of dirty pages determines if a node is marked
e2be15f6
MG
1414 * reclaim_congested which affects wait_iff_congested. kswapd
1415 * will stall and start writing pages if the tail of the LRU
1416 * is all dirty unqueued pages.
1417 */
1418 page_check_dirty_writeback(page, &dirty, &writeback);
1419 if (dirty || writeback)
060f005f 1420 stat->nr_dirty++;
e2be15f6
MG
1421
1422 if (dirty && !writeback)
060f005f 1423 stat->nr_unqueued_dirty++;
e2be15f6 1424
d04e8acd
MG
1425 /*
1426 * Treat this page as congested if the underlying BDI is or if
1427 * pages are cycling through the LRU so quickly that the
1428 * pages marked for immediate reclaim are making it to the
1429 * end of the LRU a second time.
1430 */
e2be15f6 1431 mapping = page_mapping(page);
1da58ee2 1432 if (((dirty || writeback) && mapping &&
703c2708 1433 inode_write_congested(mapping->host)) ||
d04e8acd 1434 (writeback && PageReclaim(page)))
060f005f 1435 stat->nr_congested++;
e2be15f6 1436
283aba9f
MG
1437 /*
1438 * If a page at the tail of the LRU is under writeback, there
1439 * are three cases to consider.
1440 *
1441 * 1) If reclaim is encountering an excessive number of pages
1442 * under writeback and this page is both under writeback and
1443 * PageReclaim then it indicates that pages are being queued
1444 * for IO but are being recycled through the LRU before the
1445 * IO can complete. Waiting on the page itself risks an
1446 * indefinite stall if it is impossible to writeback the
1447 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1448 * note that the LRU is being scanned too quickly and the
1449 * caller can stall after page list has been processed.
283aba9f 1450 *
97c9341f 1451 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1452 * not marked for immediate reclaim, or the caller does not
1453 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1454 * not to fs). In this case mark the page for immediate
97c9341f 1455 * reclaim and continue scanning.
283aba9f 1456 *
ecf5fc6e
MH
1457 * Require may_enter_fs because we would wait on fs, which
1458 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1459 * enter reclaim, and deadlock if it waits on a page for
1460 * which it is needed to do the write (loop masks off
1461 * __GFP_IO|__GFP_FS for this reason); but more thought
1462 * would probably show more reasons.
1463 *
7fadc820 1464 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1465 * PageReclaim. memcg does not have any dirty pages
1466 * throttling so we could easily OOM just because too many
1467 * pages are in writeback and there is nothing else to
1468 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1469 *
1470 * In cases 1) and 2) we activate the pages to get them out of
1471 * the way while we continue scanning for clean pages on the
1472 * inactive list and refilling from the active list. The
1473 * observation here is that waiting for disk writes is more
1474 * expensive than potentially causing reloads down the line.
1475 * Since they're marked for immediate reclaim, they won't put
1476 * memory pressure on the cache working set any longer than it
1477 * takes to write them to disk.
283aba9f 1478 */
c661b078 1479 if (PageWriteback(page)) {
283aba9f
MG
1480 /* Case 1 above */
1481 if (current_is_kswapd() &&
1482 PageReclaim(page) &&
599d0c95 1483 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
060f005f 1484 stat->nr_immediate++;
c55e8d03 1485 goto activate_locked;
283aba9f
MG
1486
1487 /* Case 2 above */
b5ead35e 1488 } else if (writeback_throttling_sane(sc) ||
ecf5fc6e 1489 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1490 /*
1491 * This is slightly racy - end_page_writeback()
1492 * might have just cleared PageReclaim, then
1493 * setting PageReclaim here end up interpreted
1494 * as PageReadahead - but that does not matter
1495 * enough to care. What we do want is for this
1496 * page to have PageReclaim set next time memcg
1497 * reclaim reaches the tests above, so it will
1498 * then wait_on_page_writeback() to avoid OOM;
1499 * and it's also appropriate in global reclaim.
1500 */
1501 SetPageReclaim(page);
060f005f 1502 stat->nr_writeback++;
c55e8d03 1503 goto activate_locked;
283aba9f
MG
1504
1505 /* Case 3 above */
1506 } else {
7fadc820 1507 unlock_page(page);
283aba9f 1508 wait_on_page_writeback(page);
7fadc820
HD
1509 /* then go back and try same page again */
1510 list_add_tail(&page->lru, page_list);
1511 continue;
e62e384e 1512 }
c661b078 1513 }
1da177e4 1514
8940b34a 1515 if (!ignore_references)
02c6de8d
MK
1516 references = page_check_references(page, sc);
1517
dfc8d636
JW
1518 switch (references) {
1519 case PAGEREF_ACTIVATE:
1da177e4 1520 goto activate_locked;
64574746 1521 case PAGEREF_KEEP:
98879b3b 1522 stat->nr_ref_keep += nr_pages;
64574746 1523 goto keep_locked;
dfc8d636
JW
1524 case PAGEREF_RECLAIM:
1525 case PAGEREF_RECLAIM_CLEAN:
1526 ; /* try to reclaim the page below */
1527 }
1da177e4 1528
26aa2d19
DH
1529 /*
1530 * Before reclaiming the page, try to relocate
1531 * its contents to another node.
1532 */
1533 if (do_demote_pass &&
1534 (thp_migration_supported() || !PageTransHuge(page))) {
1535 list_add(&page->lru, &demote_pages);
1536 unlock_page(page);
1537 continue;
1538 }
1539
1da177e4
LT
1540 /*
1541 * Anonymous process memory has backing store?
1542 * Try to allocate it some swap space here.
802a3a92 1543 * Lazyfree page could be freed directly
1da177e4 1544 */
bd4c82c2
HY
1545 if (PageAnon(page) && PageSwapBacked(page)) {
1546 if (!PageSwapCache(page)) {
1547 if (!(sc->gfp_mask & __GFP_IO))
1548 goto keep_locked;
feb889fb
LT
1549 if (page_maybe_dma_pinned(page))
1550 goto keep_locked;
bd4c82c2
HY
1551 if (PageTransHuge(page)) {
1552 /* cannot split THP, skip it */
1553 if (!can_split_huge_page(page, NULL))
1554 goto activate_locked;
1555 /*
1556 * Split pages without a PMD map right
1557 * away. Chances are some or all of the
1558 * tail pages can be freed without IO.
1559 */
1560 if (!compound_mapcount(page) &&
1561 split_huge_page_to_list(page,
1562 page_list))
1563 goto activate_locked;
1564 }
1565 if (!add_to_swap(page)) {
1566 if (!PageTransHuge(page))
98879b3b 1567 goto activate_locked_split;
bd4c82c2
HY
1568 /* Fallback to swap normal pages */
1569 if (split_huge_page_to_list(page,
1570 page_list))
1571 goto activate_locked;
fe490cc0
HY
1572#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1573 count_vm_event(THP_SWPOUT_FALLBACK);
1574#endif
bd4c82c2 1575 if (!add_to_swap(page))
98879b3b 1576 goto activate_locked_split;
bd4c82c2 1577 }
0f074658 1578
4b793062 1579 may_enter_fs = true;
1da177e4 1580
bd4c82c2
HY
1581 /* Adding to swap updated mapping */
1582 mapping = page_mapping(page);
1583 }
7751b2da
KS
1584 } else if (unlikely(PageTransHuge(page))) {
1585 /* Split file THP */
1586 if (split_huge_page_to_list(page, page_list))
1587 goto keep_locked;
e2be15f6 1588 }
1da177e4 1589
98879b3b
YS
1590 /*
1591 * THP may get split above, need minus tail pages and update
1592 * nr_pages to avoid accounting tail pages twice.
1593 *
1594 * The tail pages that are added into swap cache successfully
1595 * reach here.
1596 */
1597 if ((nr_pages > 1) && !PageTransHuge(page)) {
1598 sc->nr_scanned -= (nr_pages - 1);
1599 nr_pages = 1;
1600 }
1601
1da177e4
LT
1602 /*
1603 * The page is mapped into the page tables of one or more
1604 * processes. Try to unmap it here.
1605 */
802a3a92 1606 if (page_mapped(page)) {
013339df 1607 enum ttu_flags flags = TTU_BATCH_FLUSH;
1f318a9b 1608 bool was_swapbacked = PageSwapBacked(page);
bd4c82c2
HY
1609
1610 if (unlikely(PageTransHuge(page)))
1611 flags |= TTU_SPLIT_HUGE_PMD;
1f318a9b 1612
1fb08ac6
YS
1613 try_to_unmap(page, flags);
1614 if (page_mapped(page)) {
98879b3b 1615 stat->nr_unmap_fail += nr_pages;
1f318a9b
JK
1616 if (!was_swapbacked && PageSwapBacked(page))
1617 stat->nr_lazyfree_fail += nr_pages;
1da177e4 1618 goto activate_locked;
1da177e4
LT
1619 }
1620 }
1621
1622 if (PageDirty(page)) {
ee72886d 1623 /*
4eda4823
JW
1624 * Only kswapd can writeback filesystem pages
1625 * to avoid risk of stack overflow. But avoid
1626 * injecting inefficient single-page IO into
1627 * flusher writeback as much as possible: only
1628 * write pages when we've encountered many
1629 * dirty pages, and when we've already scanned
1630 * the rest of the LRU for clean pages and see
1631 * the same dirty pages again (PageReclaim).
ee72886d 1632 */
9de4f22a 1633 if (page_is_file_lru(page) &&
4eda4823
JW
1634 (!current_is_kswapd() || !PageReclaim(page) ||
1635 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1636 /*
1637 * Immediately reclaim when written back.
1638 * Similar in principal to deactivate_page()
1639 * except we already have the page isolated
1640 * and know it's dirty
1641 */
c4a25635 1642 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1643 SetPageReclaim(page);
1644
c55e8d03 1645 goto activate_locked;
ee72886d
MG
1646 }
1647
dfc8d636 1648 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1649 goto keep_locked;
4dd4b920 1650 if (!may_enter_fs)
1da177e4 1651 goto keep_locked;
52a8363e 1652 if (!sc->may_writepage)
1da177e4
LT
1653 goto keep_locked;
1654
d950c947
MG
1655 /*
1656 * Page is dirty. Flush the TLB if a writable entry
1657 * potentially exists to avoid CPU writes after IO
1658 * starts and then write it out here.
1659 */
1660 try_to_unmap_flush_dirty();
cb16556d 1661 switch (pageout(page, mapping)) {
1da177e4
LT
1662 case PAGE_KEEP:
1663 goto keep_locked;
1664 case PAGE_ACTIVATE:
1665 goto activate_locked;
1666 case PAGE_SUCCESS:
6c357848 1667 stat->nr_pageout += thp_nr_pages(page);
96f8bf4f 1668
7d3579e8 1669 if (PageWriteback(page))
41ac1999 1670 goto keep;
7d3579e8 1671 if (PageDirty(page))
1da177e4 1672 goto keep;
7d3579e8 1673
1da177e4
LT
1674 /*
1675 * A synchronous write - probably a ramdisk. Go
1676 * ahead and try to reclaim the page.
1677 */
529ae9aa 1678 if (!trylock_page(page))
1da177e4
LT
1679 goto keep;
1680 if (PageDirty(page) || PageWriteback(page))
1681 goto keep_locked;
1682 mapping = page_mapping(page);
01359eb2 1683 fallthrough;
1da177e4
LT
1684 case PAGE_CLEAN:
1685 ; /* try to free the page below */
1686 }
1687 }
1688
1689 /*
1690 * If the page has buffers, try to free the buffer mappings
1691 * associated with this page. If we succeed we try to free
1692 * the page as well.
1693 *
1694 * We do this even if the page is PageDirty().
1695 * try_to_release_page() does not perform I/O, but it is
1696 * possible for a page to have PageDirty set, but it is actually
1697 * clean (all its buffers are clean). This happens if the
1698 * buffers were written out directly, with submit_bh(). ext3
894bc310 1699 * will do this, as well as the blockdev mapping.
1da177e4
LT
1700 * try_to_release_page() will discover that cleanness and will
1701 * drop the buffers and mark the page clean - it can be freed.
1702 *
1703 * Rarely, pages can have buffers and no ->mapping. These are
1704 * the pages which were not successfully invalidated in
d12b8951 1705 * truncate_cleanup_page(). We try to drop those buffers here
1da177e4
LT
1706 * and if that worked, and the page is no longer mapped into
1707 * process address space (page_count == 1) it can be freed.
1708 * Otherwise, leave the page on the LRU so it is swappable.
1709 */
266cf658 1710 if (page_has_private(page)) {
1da177e4
LT
1711 if (!try_to_release_page(page, sc->gfp_mask))
1712 goto activate_locked;
e286781d
NP
1713 if (!mapping && page_count(page) == 1) {
1714 unlock_page(page);
1715 if (put_page_testzero(page))
1716 goto free_it;
1717 else {
1718 /*
1719 * rare race with speculative reference.
1720 * the speculative reference will free
1721 * this page shortly, so we may
1722 * increment nr_reclaimed here (and
1723 * leave it off the LRU).
1724 */
1725 nr_reclaimed++;
1726 continue;
1727 }
1728 }
1da177e4
LT
1729 }
1730
802a3a92
SL
1731 if (PageAnon(page) && !PageSwapBacked(page)) {
1732 /* follow __remove_mapping for reference */
1733 if (!page_ref_freeze(page, 1))
1734 goto keep_locked;
d17be2d9
ML
1735 /*
1736 * The page has only one reference left, which is
1737 * from the isolation. After the caller puts the
1738 * page back on lru and drops the reference, the
1739 * page will be freed anyway. It doesn't matter
1740 * which lru it goes. So we don't bother checking
1741 * PageDirty here.
1742 */
802a3a92 1743 count_vm_event(PGLAZYFREED);
2262185c 1744 count_memcg_page_event(page, PGLAZYFREED);
b910718a
JW
1745 } else if (!mapping || !__remove_mapping(mapping, page, true,
1746 sc->target_mem_cgroup))
802a3a92 1747 goto keep_locked;
9a1ea439
HD
1748
1749 unlock_page(page);
e286781d 1750free_it:
98879b3b
YS
1751 /*
1752 * THP may get swapped out in a whole, need account
1753 * all base pages.
1754 */
1755 nr_reclaimed += nr_pages;
abe4c3b5
MG
1756
1757 /*
1758 * Is there need to periodically free_page_list? It would
1759 * appear not as the counts should be low
1760 */
7ae88534 1761 if (unlikely(PageTransHuge(page)))
ff45fc3c 1762 destroy_compound_page(page);
7ae88534 1763 else
bd4c82c2 1764 list_add(&page->lru, &free_pages);
1da177e4
LT
1765 continue;
1766
98879b3b
YS
1767activate_locked_split:
1768 /*
1769 * The tail pages that are failed to add into swap cache
1770 * reach here. Fixup nr_scanned and nr_pages.
1771 */
1772 if (nr_pages > 1) {
1773 sc->nr_scanned -= (nr_pages - 1);
1774 nr_pages = 1;
1775 }
1da177e4 1776activate_locked:
68a22394 1777 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1778 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1779 PageMlocked(page)))
a2c43eed 1780 try_to_free_swap(page);
309381fe 1781 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704 1782 if (!PageMlocked(page)) {
9de4f22a 1783 int type = page_is_file_lru(page);
ad6b6704 1784 SetPageActive(page);
98879b3b 1785 stat->nr_activate[type] += nr_pages;
2262185c 1786 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1787 }
1da177e4
LT
1788keep_locked:
1789 unlock_page(page);
1790keep:
1791 list_add(&page->lru, &ret_pages);
309381fe 1792 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1793 }
26aa2d19
DH
1794 /* 'page_list' is always empty here */
1795
1796 /* Migrate pages selected for demotion */
1797 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1798 /* Pages that could not be demoted are still in @demote_pages */
1799 if (!list_empty(&demote_pages)) {
1800 /* Pages which failed to demoted go back on @page_list for retry: */
1801 list_splice_init(&demote_pages, page_list);
1802 do_demote_pass = false;
1803 goto retry;
1804 }
abe4c3b5 1805
98879b3b
YS
1806 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1807
747db954 1808 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1809 try_to_unmap_flush();
2d4894b5 1810 free_unref_page_list(&free_pages);
abe4c3b5 1811
1da177e4 1812 list_splice(&ret_pages, page_list);
886cf190 1813 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1814
05ff5137 1815 return nr_reclaimed;
1da177e4
LT
1816}
1817
730ec8c0 1818unsigned int reclaim_clean_pages_from_list(struct zone *zone,
02c6de8d
MK
1819 struct list_head *page_list)
1820{
1821 struct scan_control sc = {
1822 .gfp_mask = GFP_KERNEL,
02c6de8d
MK
1823 .may_unmap = 1,
1824 };
1f318a9b 1825 struct reclaim_stat stat;
730ec8c0 1826 unsigned int nr_reclaimed;
02c6de8d
MK
1827 struct page *page, *next;
1828 LIST_HEAD(clean_pages);
2d2b8d2b 1829 unsigned int noreclaim_flag;
02c6de8d
MK
1830
1831 list_for_each_entry_safe(page, next, page_list, lru) {
ae37c7ff
OS
1832 if (!PageHuge(page) && page_is_file_lru(page) &&
1833 !PageDirty(page) && !__PageMovable(page) &&
1834 !PageUnevictable(page)) {
02c6de8d
MK
1835 ClearPageActive(page);
1836 list_move(&page->lru, &clean_pages);
1837 }
1838 }
1839
2d2b8d2b
YZ
1840 /*
1841 * We should be safe here since we are only dealing with file pages and
1842 * we are not kswapd and therefore cannot write dirty file pages. But
1843 * call memalloc_noreclaim_save() anyway, just in case these conditions
1844 * change in the future.
1845 */
1846 noreclaim_flag = memalloc_noreclaim_save();
1f318a9b 1847 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
013339df 1848 &stat, true);
2d2b8d2b
YZ
1849 memalloc_noreclaim_restore(noreclaim_flag);
1850
02c6de8d 1851 list_splice(&clean_pages, page_list);
2da9f630
NP
1852 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1853 -(long)nr_reclaimed);
1f318a9b
JK
1854 /*
1855 * Since lazyfree pages are isolated from file LRU from the beginning,
1856 * they will rotate back to anonymous LRU in the end if it failed to
1857 * discard so isolated count will be mismatched.
1858 * Compensate the isolated count for both LRU lists.
1859 */
1860 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1861 stat.nr_lazyfree_fail);
1862 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2da9f630 1863 -(long)stat.nr_lazyfree_fail);
1f318a9b 1864 return nr_reclaimed;
02c6de8d
MK
1865}
1866
5ad333eb
AW
1867/*
1868 * Attempt to remove the specified page from its LRU. Only take this page
1869 * if it is of the appropriate PageActive status. Pages which are being
1870 * freed elsewhere are also ignored.
1871 *
1872 * page: page to consider
1873 * mode: one of the LRU isolation modes defined above
1874 *
c2135f7c 1875 * returns true on success, false on failure.
5ad333eb 1876 */
c2135f7c 1877bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
5ad333eb 1878{
5ad333eb
AW
1879 /* Only take pages on the LRU. */
1880 if (!PageLRU(page))
c2135f7c 1881 return false;
5ad333eb 1882
e46a2879
MK
1883 /* Compaction should not handle unevictable pages but CMA can do so */
1884 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
c2135f7c 1885 return false;
894bc310 1886
c8244935
MG
1887 /*
1888 * To minimise LRU disruption, the caller can indicate that it only
1889 * wants to isolate pages it will be able to operate on without
1890 * blocking - clean pages for the most part.
1891 *
c8244935
MG
1892 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1893 * that it is possible to migrate without blocking
1894 */
1276ad68 1895 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1896 /* All the caller can do on PageWriteback is block */
1897 if (PageWriteback(page))
c2135f7c 1898 return false;
c8244935
MG
1899
1900 if (PageDirty(page)) {
1901 struct address_space *mapping;
69d763fc 1902 bool migrate_dirty;
c8244935 1903
c8244935
MG
1904 /*
1905 * Only pages without mappings or that have a
1906 * ->migratepage callback are possible to migrate
69d763fc
MG
1907 * without blocking. However, we can be racing with
1908 * truncation so it's necessary to lock the page
1909 * to stabilise the mapping as truncation holds
1910 * the page lock until after the page is removed
1911 * from the page cache.
c8244935 1912 */
69d763fc 1913 if (!trylock_page(page))
c2135f7c 1914 return false;
69d763fc 1915
c8244935 1916 mapping = page_mapping(page);
145e1a71 1917 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
1918 unlock_page(page);
1919 if (!migrate_dirty)
c2135f7c 1920 return false;
c8244935
MG
1921 }
1922 }
39deaf85 1923
f80c0673 1924 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
c2135f7c 1925 return false;
f80c0673 1926
c2135f7c 1927 return true;
5ad333eb
AW
1928}
1929
7ee36a14
MG
1930/*
1931 * Update LRU sizes after isolating pages. The LRU size updates must
55b65a57 1932 * be complete before mem_cgroup_update_lru_size due to a sanity check.
7ee36a14
MG
1933 */
1934static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1935 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1936{
7ee36a14
MG
1937 int zid;
1938
7ee36a14
MG
1939 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1940 if (!nr_zone_taken[zid])
1941 continue;
1942
a892cb6b 1943 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
b4536f0c
MH
1944 }
1945
7ee36a14
MG
1946}
1947
f611fab7 1948/*
15b44736
HD
1949 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1950 *
1951 * lruvec->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1952 * shrink the lists perform better by taking out a batch of pages
1953 * and working on them outside the LRU lock.
1954 *
1955 * For pagecache intensive workloads, this function is the hottest
1956 * spot in the kernel (apart from copy_*_user functions).
1957 *
15b44736 1958 * Lru_lock must be held before calling this function.
1da177e4 1959 *
791b48b6 1960 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1961 * @lruvec: The LRU vector to pull pages from.
1da177e4 1962 * @dst: The temp list to put pages on to.
f626012d 1963 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1964 * @sc: The scan_control struct for this reclaim session
3cb99451 1965 * @lru: LRU list id for isolating
1da177e4
LT
1966 *
1967 * returns how many pages were moved onto *@dst.
1968 */
69e05944 1969static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1970 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1971 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 1972 enum lru_list lru)
1da177e4 1973{
75b00af7 1974 struct list_head *src = &lruvec->lists[lru];
69e05944 1975 unsigned long nr_taken = 0;
599d0c95 1976 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1977 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1978 unsigned long skipped = 0;
791b48b6 1979 unsigned long scan, total_scan, nr_pages;
b2e18757 1980 LIST_HEAD(pages_skipped);
a9e7c39f 1981 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1da177e4 1982
98879b3b 1983 total_scan = 0;
791b48b6 1984 scan = 0;
98879b3b 1985 while (scan < nr_to_scan && !list_empty(src)) {
5ad333eb 1986 struct page *page;
5ad333eb 1987
1da177e4
LT
1988 page = lru_to_page(src);
1989 prefetchw_prev_lru_page(page, src, flags);
1990
d8c6546b 1991 nr_pages = compound_nr(page);
98879b3b
YS
1992 total_scan += nr_pages;
1993
b2e18757
MG
1994 if (page_zonenum(page) > sc->reclaim_idx) {
1995 list_move(&page->lru, &pages_skipped);
98879b3b 1996 nr_skipped[page_zonenum(page)] += nr_pages;
b2e18757
MG
1997 continue;
1998 }
1999
791b48b6
MK
2000 /*
2001 * Do not count skipped pages because that makes the function
2002 * return with no isolated pages if the LRU mostly contains
2003 * ineligible pages. This causes the VM to not reclaim any
2004 * pages, triggering a premature OOM.
98879b3b
YS
2005 *
2006 * Account all tail pages of THP. This would not cause
2007 * premature OOM since __isolate_lru_page() returns -EBUSY
2008 * only when the page is being freed somewhere else.
791b48b6 2009 */
98879b3b 2010 scan += nr_pages;
c2135f7c
AS
2011 if (!__isolate_lru_page_prepare(page, mode)) {
2012 /* It is being freed elsewhere */
2013 list_move(&page->lru, src);
2014 continue;
2015 }
2016 /*
2017 * Be careful not to clear PageLRU until after we're
2018 * sure the page is not being freed elsewhere -- the
2019 * page release code relies on it.
2020 */
2021 if (unlikely(!get_page_unless_zero(page))) {
2022 list_move(&page->lru, src);
2023 continue;
2024 }
5ad333eb 2025
c2135f7c
AS
2026 if (!TestClearPageLRU(page)) {
2027 /* Another thread is already isolating this page */
2028 put_page(page);
5ad333eb 2029 list_move(&page->lru, src);
c2135f7c 2030 continue;
5ad333eb 2031 }
c2135f7c
AS
2032
2033 nr_taken += nr_pages;
2034 nr_zone_taken[page_zonenum(page)] += nr_pages;
2035 list_move(&page->lru, dst);
1da177e4
LT
2036 }
2037
b2e18757
MG
2038 /*
2039 * Splice any skipped pages to the start of the LRU list. Note that
2040 * this disrupts the LRU order when reclaiming for lower zones but
2041 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2042 * scanning would soon rescan the same pages to skip and put the
2043 * system at risk of premature OOM.
2044 */
7cc30fcf
MG
2045 if (!list_empty(&pages_skipped)) {
2046 int zid;
2047
3db65812 2048 list_splice(&pages_skipped, src);
7cc30fcf
MG
2049 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2050 if (!nr_skipped[zid])
2051 continue;
2052
2053 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 2054 skipped += nr_skipped[zid];
7cc30fcf
MG
2055 }
2056 }
791b48b6 2057 *nr_scanned = total_scan;
1265e3a6 2058 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 2059 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 2060 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
2061 return nr_taken;
2062}
2063
62695a84
NP
2064/**
2065 * isolate_lru_page - tries to isolate a page from its LRU list
2066 * @page: page to isolate from its LRU list
2067 *
2068 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
2069 * vmstat statistic corresponding to whatever LRU list the page was on.
2070 *
2071 * Returns 0 if the page was removed from an LRU list.
2072 * Returns -EBUSY if the page was not on an LRU list.
2073 *
2074 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
2075 * the active list, it will have PageActive set. If it was found on
2076 * the unevictable list, it will have the PageUnevictable bit set. That flag
2077 * may need to be cleared by the caller before letting the page go.
62695a84
NP
2078 *
2079 * The vmstat statistic corresponding to the list on which the page was
2080 * found will be decremented.
2081 *
2082 * Restrictions:
a5d09bed 2083 *
62695a84 2084 * (1) Must be called with an elevated refcount on the page. This is a
01c4776b 2085 * fundamental difference from isolate_lru_pages (which is called
62695a84
NP
2086 * without a stable reference).
2087 * (2) the lru_lock must not be held.
2088 * (3) interrupts must be enabled.
2089 */
2090int isolate_lru_page(struct page *page)
2091{
2092 int ret = -EBUSY;
2093
309381fe 2094 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 2095 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 2096
d25b5bd8 2097 if (TestClearPageLRU(page)) {
fa9add64 2098 struct lruvec *lruvec;
62695a84 2099
d25b5bd8 2100 get_page(page);
6168d0da 2101 lruvec = lock_page_lruvec_irq(page);
46ae6b2c 2102 del_page_from_lru_list(page, lruvec);
6168d0da 2103 unlock_page_lruvec_irq(lruvec);
d25b5bd8 2104 ret = 0;
62695a84 2105 }
d25b5bd8 2106
62695a84
NP
2107 return ret;
2108}
2109
35cd7815 2110/*
d37dd5dc 2111 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
178821b8 2112 * then get rescheduled. When there are massive number of tasks doing page
d37dd5dc
FW
2113 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2114 * the LRU list will go small and be scanned faster than necessary, leading to
2115 * unnecessary swapping, thrashing and OOM.
35cd7815 2116 */
599d0c95 2117static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
2118 struct scan_control *sc)
2119{
2120 unsigned long inactive, isolated;
2121
2122 if (current_is_kswapd())
2123 return 0;
2124
b5ead35e 2125 if (!writeback_throttling_sane(sc))
35cd7815
RR
2126 return 0;
2127
2128 if (file) {
599d0c95
MG
2129 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2130 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 2131 } else {
599d0c95
MG
2132 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2133 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
2134 }
2135
3cf23841
FW
2136 /*
2137 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2138 * won't get blocked by normal direct-reclaimers, forming a circular
2139 * deadlock.
2140 */
d0164adc 2141 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
2142 inactive >>= 3;
2143
35cd7815
RR
2144 return isolated > inactive;
2145}
2146
a222f341 2147/*
15b44736
HD
2148 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2149 * On return, @list is reused as a list of pages to be freed by the caller.
a222f341
KT
2150 *
2151 * Returns the number of pages moved to the given lruvec.
2152 */
9ef56b78
MS
2153static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2154 struct list_head *list)
66635629 2155{
a222f341 2156 int nr_pages, nr_moved = 0;
3f79768f 2157 LIST_HEAD(pages_to_free);
a222f341 2158 struct page *page;
66635629 2159
a222f341
KT
2160 while (!list_empty(list)) {
2161 page = lru_to_page(list);
309381fe 2162 VM_BUG_ON_PAGE(PageLRU(page), page);
3d06afab 2163 list_del(&page->lru);
39b5f29a 2164 if (unlikely(!page_evictable(page))) {
6168d0da 2165 spin_unlock_irq(&lruvec->lru_lock);
66635629 2166 putback_lru_page(page);
6168d0da 2167 spin_lock_irq(&lruvec->lru_lock);
66635629
MG
2168 continue;
2169 }
fa9add64 2170
3d06afab
AS
2171 /*
2172 * The SetPageLRU needs to be kept here for list integrity.
2173 * Otherwise:
2174 * #0 move_pages_to_lru #1 release_pages
2175 * if !put_page_testzero
2176 * if (put_page_testzero())
2177 * !PageLRU //skip lru_lock
2178 * SetPageLRU()
2179 * list_add(&page->lru,)
2180 * list_add(&page->lru,)
2181 */
7a608572 2182 SetPageLRU(page);
a222f341 2183
3d06afab 2184 if (unlikely(put_page_testzero(page))) {
87560179 2185 __clear_page_lru_flags(page);
2bcf8879
HD
2186
2187 if (unlikely(PageCompound(page))) {
6168d0da 2188 spin_unlock_irq(&lruvec->lru_lock);
ff45fc3c 2189 destroy_compound_page(page);
6168d0da 2190 spin_lock_irq(&lruvec->lru_lock);
2bcf8879
HD
2191 } else
2192 list_add(&page->lru, &pages_to_free);
3d06afab
AS
2193
2194 continue;
66635629 2195 }
3d06afab 2196
afca9157
AS
2197 /*
2198 * All pages were isolated from the same lruvec (and isolation
2199 * inhibits memcg migration).
2200 */
7467c391 2201 VM_BUG_ON_PAGE(!page_matches_lruvec(page, lruvec), page);
3a9c9788 2202 add_page_to_lru_list(page, lruvec);
3d06afab 2203 nr_pages = thp_nr_pages(page);
3d06afab
AS
2204 nr_moved += nr_pages;
2205 if (PageActive(page))
2206 workingset_age_nonresident(lruvec, nr_pages);
66635629 2207 }
66635629 2208
3f79768f
HD
2209 /*
2210 * To save our caller's stack, now use input list for pages to free.
2211 */
a222f341
KT
2212 list_splice(&pages_to_free, list);
2213
2214 return nr_moved;
66635629
MG
2215}
2216
399ba0b9
N
2217/*
2218 * If a kernel thread (such as nfsd for loop-back mounts) services
a37b0715 2219 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
399ba0b9
N
2220 * In that case we should only throttle if the backing device it is
2221 * writing to is congested. In other cases it is safe to throttle.
2222 */
2223static int current_may_throttle(void)
2224{
a37b0715 2225 return !(current->flags & PF_LOCAL_THROTTLE) ||
399ba0b9
N
2226 current->backing_dev_info == NULL ||
2227 bdi_write_congested(current->backing_dev_info);
2228}
2229
1da177e4 2230/*
b2e18757 2231 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 2232 * of reclaimed pages
1da177e4 2233 */
9ef56b78 2234static unsigned long
1a93be0e 2235shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 2236 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
2237{
2238 LIST_HEAD(page_list);
e247dbce 2239 unsigned long nr_scanned;
730ec8c0 2240 unsigned int nr_reclaimed = 0;
e247dbce 2241 unsigned long nr_taken;
060f005f 2242 struct reclaim_stat stat;
497a6c1b 2243 bool file = is_file_lru(lru);
f46b7912 2244 enum vm_event_item item;
599d0c95 2245 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
db73ee0d 2246 bool stalled = false;
78dc583d 2247
599d0c95 2248 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
2249 if (stalled)
2250 return 0;
2251
2252 /* wait a bit for the reclaimer. */
2253 msleep(100);
2254 stalled = true;
35cd7815
RR
2255
2256 /* We are about to die and free our memory. Return now. */
2257 if (fatal_signal_pending(current))
2258 return SWAP_CLUSTER_MAX;
2259 }
2260
1da177e4 2261 lru_add_drain();
f80c0673 2262
6168d0da 2263 spin_lock_irq(&lruvec->lru_lock);
b35ea17b 2264
5dc35979 2265 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 2266 &nr_scanned, sc, lru);
95d918fc 2267
599d0c95 2268 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
f46b7912 2269 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
b5ead35e 2270 if (!cgroup_reclaim(sc))
f46b7912
KT
2271 __count_vm_events(item, nr_scanned);
2272 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
497a6c1b
JW
2273 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2274
6168d0da 2275 spin_unlock_irq(&lruvec->lru_lock);
b35ea17b 2276
d563c050 2277 if (nr_taken == 0)
66635629 2278 return 0;
5ad333eb 2279
013339df 2280 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
c661b078 2281
6168d0da 2282 spin_lock_irq(&lruvec->lru_lock);
497a6c1b
JW
2283 move_pages_to_lru(lruvec, &page_list);
2284
2285 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
f46b7912 2286 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
b5ead35e 2287 if (!cgroup_reclaim(sc))
f46b7912
KT
2288 __count_vm_events(item, nr_reclaimed);
2289 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
497a6c1b 2290 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
6168d0da 2291 spin_unlock_irq(&lruvec->lru_lock);
3f79768f 2292
75cc3c91 2293 lru_note_cost(lruvec, file, stat.nr_pageout);
747db954 2294 mem_cgroup_uncharge_list(&page_list);
2d4894b5 2295 free_unref_page_list(&page_list);
e11da5b4 2296
1c610d5f
AR
2297 /*
2298 * If dirty pages are scanned that are not queued for IO, it
2299 * implies that flushers are not doing their job. This can
2300 * happen when memory pressure pushes dirty pages to the end of
2301 * the LRU before the dirty limits are breached and the dirty
2302 * data has expired. It can also happen when the proportion of
2303 * dirty pages grows not through writes but through memory
2304 * pressure reclaiming all the clean cache. And in some cases,
2305 * the flushers simply cannot keep up with the allocation
2306 * rate. Nudge the flusher threads in case they are asleep.
2307 */
2308 if (stat.nr_unqueued_dirty == nr_taken)
2309 wakeup_flusher_threads(WB_REASON_VMSCAN);
2310
d108c772
AR
2311 sc->nr.dirty += stat.nr_dirty;
2312 sc->nr.congested += stat.nr_congested;
2313 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2314 sc->nr.writeback += stat.nr_writeback;
2315 sc->nr.immediate += stat.nr_immediate;
2316 sc->nr.taken += nr_taken;
2317 if (file)
2318 sc->nr.file_taken += nr_taken;
8e950282 2319
599d0c95 2320 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2321 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2322 return nr_reclaimed;
1da177e4
LT
2323}
2324
15b44736
HD
2325/*
2326 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2327 *
2328 * We move them the other way if the page is referenced by one or more
2329 * processes.
2330 *
2331 * If the pages are mostly unmapped, the processing is fast and it is
2332 * appropriate to hold lru_lock across the whole operation. But if
2333 * the pages are mapped, the processing is slow (page_referenced()), so
2334 * we should drop lru_lock around each page. It's impossible to balance
2335 * this, so instead we remove the pages from the LRU while processing them.
2336 * It is safe to rely on PG_active against the non-LRU pages in here because
2337 * nobody will play with that bit on a non-LRU page.
2338 *
2339 * The downside is that we have to touch page->_refcount against each page.
2340 * But we had to alter page->flags anyway.
2341 */
f626012d 2342static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2343 struct lruvec *lruvec,
f16015fb 2344 struct scan_control *sc,
9e3b2f8c 2345 enum lru_list lru)
1da177e4 2346{
44c241f1 2347 unsigned long nr_taken;
f626012d 2348 unsigned long nr_scanned;
6fe6b7e3 2349 unsigned long vm_flags;
1da177e4 2350 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2351 LIST_HEAD(l_active);
b69408e8 2352 LIST_HEAD(l_inactive);
1da177e4 2353 struct page *page;
9d998b4f
MH
2354 unsigned nr_deactivate, nr_activate;
2355 unsigned nr_rotated = 0;
3cb99451 2356 int file = is_file_lru(lru);
599d0c95 2357 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2358
2359 lru_add_drain();
f80c0673 2360
6168d0da 2361 spin_lock_irq(&lruvec->lru_lock);
925b7673 2362
5dc35979 2363 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2364 &nr_scanned, sc, lru);
89b5fae5 2365
599d0c95 2366 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1cfb419b 2367
912c0572
SB
2368 if (!cgroup_reclaim(sc))
2369 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2370 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2371
6168d0da 2372 spin_unlock_irq(&lruvec->lru_lock);
1da177e4 2373
1da177e4
LT
2374 while (!list_empty(&l_hold)) {
2375 cond_resched();
2376 page = lru_to_page(&l_hold);
2377 list_del(&page->lru);
7e9cd484 2378
39b5f29a 2379 if (unlikely(!page_evictable(page))) {
894bc310
LS
2380 putback_lru_page(page);
2381 continue;
2382 }
2383
cc715d99
MG
2384 if (unlikely(buffer_heads_over_limit)) {
2385 if (page_has_private(page) && trylock_page(page)) {
2386 if (page_has_private(page))
2387 try_to_release_page(page, 0);
2388 unlock_page(page);
2389 }
2390 }
2391
c3ac9a8a
JW
2392 if (page_referenced(page, 0, sc->target_mem_cgroup,
2393 &vm_flags)) {
8cab4754
WF
2394 /*
2395 * Identify referenced, file-backed active pages and
2396 * give them one more trip around the active list. So
2397 * that executable code get better chances to stay in
2398 * memory under moderate memory pressure. Anon pages
2399 * are not likely to be evicted by use-once streaming
2400 * IO, plus JVM can create lots of anon VM_EXEC pages,
2401 * so we ignore them here.
2402 */
9de4f22a 2403 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
6c357848 2404 nr_rotated += thp_nr_pages(page);
8cab4754
WF
2405 list_add(&page->lru, &l_active);
2406 continue;
2407 }
2408 }
7e9cd484 2409
5205e56e 2410 ClearPageActive(page); /* we are de-activating */
1899ad18 2411 SetPageWorkingset(page);
1da177e4
LT
2412 list_add(&page->lru, &l_inactive);
2413 }
2414
b555749a 2415 /*
8cab4754 2416 * Move pages back to the lru list.
b555749a 2417 */
6168d0da 2418 spin_lock_irq(&lruvec->lru_lock);
556adecb 2419
a222f341
KT
2420 nr_activate = move_pages_to_lru(lruvec, &l_active);
2421 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2422 /* Keep all free pages in l_active list */
2423 list_splice(&l_inactive, &l_active);
9851ac13
KT
2424
2425 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2426 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2427
599d0c95 2428 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
6168d0da 2429 spin_unlock_irq(&lruvec->lru_lock);
2bcf8879 2430
f372d89e
KT
2431 mem_cgroup_uncharge_list(&l_active);
2432 free_unref_page_list(&l_active);
9d998b4f
MH
2433 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2434 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2435}
2436
1a4e58cc
MK
2437unsigned long reclaim_pages(struct list_head *page_list)
2438{
f661d007 2439 int nid = NUMA_NO_NODE;
730ec8c0 2440 unsigned int nr_reclaimed = 0;
1a4e58cc
MK
2441 LIST_HEAD(node_page_list);
2442 struct reclaim_stat dummy_stat;
2443 struct page *page;
2d2b8d2b 2444 unsigned int noreclaim_flag;
1a4e58cc
MK
2445 struct scan_control sc = {
2446 .gfp_mask = GFP_KERNEL,
1a4e58cc
MK
2447 .may_writepage = 1,
2448 .may_unmap = 1,
2449 .may_swap = 1,
26aa2d19 2450 .no_demotion = 1,
1a4e58cc
MK
2451 };
2452
2d2b8d2b
YZ
2453 noreclaim_flag = memalloc_noreclaim_save();
2454
1a4e58cc
MK
2455 while (!list_empty(page_list)) {
2456 page = lru_to_page(page_list);
f661d007 2457 if (nid == NUMA_NO_NODE) {
1a4e58cc
MK
2458 nid = page_to_nid(page);
2459 INIT_LIST_HEAD(&node_page_list);
2460 }
2461
2462 if (nid == page_to_nid(page)) {
2463 ClearPageActive(page);
2464 list_move(&page->lru, &node_page_list);
2465 continue;
2466 }
2467
2468 nr_reclaimed += shrink_page_list(&node_page_list,
2469 NODE_DATA(nid),
013339df 2470 &sc, &dummy_stat, false);
1a4e58cc
MK
2471 while (!list_empty(&node_page_list)) {
2472 page = lru_to_page(&node_page_list);
2473 list_del(&page->lru);
2474 putback_lru_page(page);
2475 }
2476
f661d007 2477 nid = NUMA_NO_NODE;
1a4e58cc
MK
2478 }
2479
2480 if (!list_empty(&node_page_list)) {
2481 nr_reclaimed += shrink_page_list(&node_page_list,
2482 NODE_DATA(nid),
013339df 2483 &sc, &dummy_stat, false);
1a4e58cc
MK
2484 while (!list_empty(&node_page_list)) {
2485 page = lru_to_page(&node_page_list);
2486 list_del(&page->lru);
2487 putback_lru_page(page);
2488 }
2489 }
2490
2d2b8d2b
YZ
2491 memalloc_noreclaim_restore(noreclaim_flag);
2492
1a4e58cc
MK
2493 return nr_reclaimed;
2494}
2495
b91ac374
JW
2496static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2497 struct lruvec *lruvec, struct scan_control *sc)
2498{
2499 if (is_active_lru(lru)) {
2500 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2501 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2502 else
2503 sc->skipped_deactivate = 1;
2504 return 0;
2505 }
2506
2507 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2508}
2509
59dc76b0
RR
2510/*
2511 * The inactive anon list should be small enough that the VM never has
2512 * to do too much work.
14797e23 2513 *
59dc76b0
RR
2514 * The inactive file list should be small enough to leave most memory
2515 * to the established workingset on the scan-resistant active list,
2516 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2517 *
59dc76b0
RR
2518 * Both inactive lists should also be large enough that each inactive
2519 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2520 *
2a2e4885
JW
2521 * If that fails and refaulting is observed, the inactive list grows.
2522 *
59dc76b0 2523 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2524 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2525 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2526 *
59dc76b0
RR
2527 * total target max
2528 * memory ratio inactive
2529 * -------------------------------------
2530 * 10MB 1 5MB
2531 * 100MB 1 50MB
2532 * 1GB 3 250MB
2533 * 10GB 10 0.9GB
2534 * 100GB 31 3GB
2535 * 1TB 101 10GB
2536 * 10TB 320 32GB
56e49d21 2537 */
b91ac374 2538static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
56e49d21 2539{
b91ac374 2540 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2a2e4885
JW
2541 unsigned long inactive, active;
2542 unsigned long inactive_ratio;
59dc76b0 2543 unsigned long gb;
e3790144 2544
b91ac374
JW
2545 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2546 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
f8d1a311 2547
b91ac374 2548 gb = (inactive + active) >> (30 - PAGE_SHIFT);
4002570c 2549 if (gb)
b91ac374
JW
2550 inactive_ratio = int_sqrt(10 * gb);
2551 else
2552 inactive_ratio = 1;
fd538803 2553
59dc76b0 2554 return inactive * inactive_ratio < active;
b39415b2
RR
2555}
2556
9a265114
JW
2557enum scan_balance {
2558 SCAN_EQUAL,
2559 SCAN_FRACT,
2560 SCAN_ANON,
2561 SCAN_FILE,
2562};
2563
4f98a2fe
RR
2564/*
2565 * Determine how aggressively the anon and file LRU lists should be
2566 * scanned. The relative value of each set of LRU lists is determined
2567 * by looking at the fraction of the pages scanned we did rotate back
2568 * onto the active list instead of evict.
2569 *
be7bd59d
WL
2570 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2571 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2572 */
afaf07a6
JW
2573static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2574 unsigned long *nr)
4f98a2fe 2575{
a2a36488 2576 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
afaf07a6 2577 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
d483a5dd 2578 unsigned long anon_cost, file_cost, total_cost;
33377678 2579 int swappiness = mem_cgroup_swappiness(memcg);
ed017373 2580 u64 fraction[ANON_AND_FILE];
9a265114 2581 u64 denominator = 0; /* gcc */
9a265114 2582 enum scan_balance scan_balance;
4f98a2fe 2583 unsigned long ap, fp;
4111304d 2584 enum lru_list lru;
76a33fc3
SL
2585
2586 /* If we have no swap space, do not bother scanning anon pages. */
a2a36488 2587 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
9a265114 2588 scan_balance = SCAN_FILE;
76a33fc3
SL
2589 goto out;
2590 }
4f98a2fe 2591
10316b31
JW
2592 /*
2593 * Global reclaim will swap to prevent OOM even with no
2594 * swappiness, but memcg users want to use this knob to
2595 * disable swapping for individual groups completely when
2596 * using the memory controller's swap limit feature would be
2597 * too expensive.
2598 */
b5ead35e 2599 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2600 scan_balance = SCAN_FILE;
10316b31
JW
2601 goto out;
2602 }
2603
2604 /*
2605 * Do not apply any pressure balancing cleverness when the
2606 * system is close to OOM, scan both anon and file equally
2607 * (unless the swappiness setting disagrees with swapping).
2608 */
02695175 2609 if (!sc->priority && swappiness) {
9a265114 2610 scan_balance = SCAN_EQUAL;
10316b31
JW
2611 goto out;
2612 }
2613
62376251 2614 /*
53138cea 2615 * If the system is almost out of file pages, force-scan anon.
62376251 2616 */
b91ac374 2617 if (sc->file_is_tiny) {
53138cea
JW
2618 scan_balance = SCAN_ANON;
2619 goto out;
62376251
JW
2620 }
2621
7c5bd705 2622 /*
b91ac374
JW
2623 * If there is enough inactive page cache, we do not reclaim
2624 * anything from the anonymous working right now.
7c5bd705 2625 */
b91ac374 2626 if (sc->cache_trim_mode) {
9a265114 2627 scan_balance = SCAN_FILE;
7c5bd705
JW
2628 goto out;
2629 }
2630
9a265114 2631 scan_balance = SCAN_FRACT;
58c37f6e 2632 /*
314b57fb
JW
2633 * Calculate the pressure balance between anon and file pages.
2634 *
2635 * The amount of pressure we put on each LRU is inversely
2636 * proportional to the cost of reclaiming each list, as
2637 * determined by the share of pages that are refaulting, times
2638 * the relative IO cost of bringing back a swapped out
2639 * anonymous page vs reloading a filesystem page (swappiness).
2640 *
d483a5dd
JW
2641 * Although we limit that influence to ensure no list gets
2642 * left behind completely: at least a third of the pressure is
2643 * applied, before swappiness.
2644 *
314b57fb 2645 * With swappiness at 100, anon and file have equal IO cost.
58c37f6e 2646 */
d483a5dd
JW
2647 total_cost = sc->anon_cost + sc->file_cost;
2648 anon_cost = total_cost + sc->anon_cost;
2649 file_cost = total_cost + sc->file_cost;
2650 total_cost = anon_cost + file_cost;
58c37f6e 2651
d483a5dd
JW
2652 ap = swappiness * (total_cost + 1);
2653 ap /= anon_cost + 1;
4f98a2fe 2654
d483a5dd
JW
2655 fp = (200 - swappiness) * (total_cost + 1);
2656 fp /= file_cost + 1;
4f98a2fe 2657
76a33fc3
SL
2658 fraction[0] = ap;
2659 fraction[1] = fp;
a4fe1631 2660 denominator = ap + fp;
76a33fc3 2661out:
688035f7
JW
2662 for_each_evictable_lru(lru) {
2663 int file = is_file_lru(lru);
9783aa99 2664 unsigned long lruvec_size;
f56ce412 2665 unsigned long low, min;
688035f7 2666 unsigned long scan;
9783aa99
CD
2667
2668 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
f56ce412
JW
2669 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2670 &min, &low);
9783aa99 2671
f56ce412 2672 if (min || low) {
9783aa99
CD
2673 /*
2674 * Scale a cgroup's reclaim pressure by proportioning
2675 * its current usage to its memory.low or memory.min
2676 * setting.
2677 *
2678 * This is important, as otherwise scanning aggression
2679 * becomes extremely binary -- from nothing as we
2680 * approach the memory protection threshold, to totally
2681 * nominal as we exceed it. This results in requiring
2682 * setting extremely liberal protection thresholds. It
2683 * also means we simply get no protection at all if we
2684 * set it too low, which is not ideal.
1bc63fb1
CD
2685 *
2686 * If there is any protection in place, we reduce scan
2687 * pressure by how much of the total memory used is
2688 * within protection thresholds.
9783aa99 2689 *
9de7ca46
CD
2690 * There is one special case: in the first reclaim pass,
2691 * we skip over all groups that are within their low
2692 * protection. If that fails to reclaim enough pages to
2693 * satisfy the reclaim goal, we come back and override
2694 * the best-effort low protection. However, we still
2695 * ideally want to honor how well-behaved groups are in
2696 * that case instead of simply punishing them all
2697 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
2698 * memory they are using, reducing the scan pressure
2699 * again by how much of the total memory used is under
2700 * hard protection.
9783aa99 2701 */
1bc63fb1 2702 unsigned long cgroup_size = mem_cgroup_size(memcg);
f56ce412
JW
2703 unsigned long protection;
2704
2705 /* memory.low scaling, make sure we retry before OOM */
2706 if (!sc->memcg_low_reclaim && low > min) {
2707 protection = low;
2708 sc->memcg_low_skipped = 1;
2709 } else {
2710 protection = min;
2711 }
1bc63fb1
CD
2712
2713 /* Avoid TOCTOU with earlier protection check */
2714 cgroup_size = max(cgroup_size, protection);
2715
2716 scan = lruvec_size - lruvec_size * protection /
2717 cgroup_size;
9783aa99
CD
2718
2719 /*
1bc63fb1 2720 * Minimally target SWAP_CLUSTER_MAX pages to keep
55b65a57 2721 * reclaim moving forwards, avoiding decrementing
9de7ca46 2722 * sc->priority further than desirable.
9783aa99 2723 */
1bc63fb1 2724 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
2725 } else {
2726 scan = lruvec_size;
2727 }
2728
2729 scan >>= sc->priority;
6b4f7799 2730
688035f7
JW
2731 /*
2732 * If the cgroup's already been deleted, make sure to
2733 * scrape out the remaining cache.
2734 */
2735 if (!scan && !mem_cgroup_online(memcg))
9783aa99 2736 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 2737
688035f7
JW
2738 switch (scan_balance) {
2739 case SCAN_EQUAL:
2740 /* Scan lists relative to size */
2741 break;
2742 case SCAN_FRACT:
9a265114 2743 /*
688035f7
JW
2744 * Scan types proportional to swappiness and
2745 * their relative recent reclaim efficiency.
76073c64
GS
2746 * Make sure we don't miss the last page on
2747 * the offlined memory cgroups because of a
2748 * round-off error.
9a265114 2749 */
76073c64
GS
2750 scan = mem_cgroup_online(memcg) ?
2751 div64_u64(scan * fraction[file], denominator) :
2752 DIV64_U64_ROUND_UP(scan * fraction[file],
68600f62 2753 denominator);
688035f7
JW
2754 break;
2755 case SCAN_FILE:
2756 case SCAN_ANON:
2757 /* Scan one type exclusively */
e072bff6 2758 if ((scan_balance == SCAN_FILE) != file)
688035f7 2759 scan = 0;
688035f7
JW
2760 break;
2761 default:
2762 /* Look ma, no brain */
2763 BUG();
9a265114 2764 }
688035f7 2765
688035f7 2766 nr[lru] = scan;
76a33fc3 2767 }
6e08a369 2768}
4f98a2fe 2769
2f368a9f
DH
2770/*
2771 * Anonymous LRU management is a waste if there is
2772 * ultimately no way to reclaim the memory.
2773 */
2774static bool can_age_anon_pages(struct pglist_data *pgdat,
2775 struct scan_control *sc)
2776{
2777 /* Aging the anon LRU is valuable if swap is present: */
2778 if (total_swap_pages > 0)
2779 return true;
2780
2781 /* Also valuable if anon pages can be demoted: */
2782 return can_demote(pgdat->node_id, sc);
2783}
2784
afaf07a6 2785static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
9b4f98cd
JW
2786{
2787 unsigned long nr[NR_LRU_LISTS];
e82e0561 2788 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2789 unsigned long nr_to_scan;
2790 enum lru_list lru;
2791 unsigned long nr_reclaimed = 0;
2792 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2793 struct blk_plug plug;
1a501907 2794 bool scan_adjusted;
9b4f98cd 2795
afaf07a6 2796 get_scan_count(lruvec, sc, nr);
9b4f98cd 2797
e82e0561
MG
2798 /* Record the original scan target for proportional adjustments later */
2799 memcpy(targets, nr, sizeof(nr));
2800
1a501907
MG
2801 /*
2802 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2803 * event that can occur when there is little memory pressure e.g.
2804 * multiple streaming readers/writers. Hence, we do not abort scanning
2805 * when the requested number of pages are reclaimed when scanning at
2806 * DEF_PRIORITY on the assumption that the fact we are direct
2807 * reclaiming implies that kswapd is not keeping up and it is best to
2808 * do a batch of work at once. For memcg reclaim one check is made to
2809 * abort proportional reclaim if either the file or anon lru has already
2810 * dropped to zero at the first pass.
2811 */
b5ead35e 2812 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
1a501907
MG
2813 sc->priority == DEF_PRIORITY);
2814
9b4f98cd
JW
2815 blk_start_plug(&plug);
2816 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2817 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2818 unsigned long nr_anon, nr_file, percentage;
2819 unsigned long nr_scanned;
2820
9b4f98cd
JW
2821 for_each_evictable_lru(lru) {
2822 if (nr[lru]) {
2823 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2824 nr[lru] -= nr_to_scan;
2825
2826 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2827 lruvec, sc);
9b4f98cd
JW
2828 }
2829 }
e82e0561 2830
bd041733
MH
2831 cond_resched();
2832
e82e0561
MG
2833 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2834 continue;
2835
e82e0561
MG
2836 /*
2837 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2838 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2839 * proportionally what was requested by get_scan_count(). We
2840 * stop reclaiming one LRU and reduce the amount scanning
2841 * proportional to the original scan target.
2842 */
2843 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2844 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2845
1a501907
MG
2846 /*
2847 * It's just vindictive to attack the larger once the smaller
2848 * has gone to zero. And given the way we stop scanning the
2849 * smaller below, this makes sure that we only make one nudge
2850 * towards proportionality once we've got nr_to_reclaim.
2851 */
2852 if (!nr_file || !nr_anon)
2853 break;
2854
e82e0561
MG
2855 if (nr_file > nr_anon) {
2856 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2857 targets[LRU_ACTIVE_ANON] + 1;
2858 lru = LRU_BASE;
2859 percentage = nr_anon * 100 / scan_target;
2860 } else {
2861 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2862 targets[LRU_ACTIVE_FILE] + 1;
2863 lru = LRU_FILE;
2864 percentage = nr_file * 100 / scan_target;
2865 }
2866
2867 /* Stop scanning the smaller of the LRU */
2868 nr[lru] = 0;
2869 nr[lru + LRU_ACTIVE] = 0;
2870
2871 /*
2872 * Recalculate the other LRU scan count based on its original
2873 * scan target and the percentage scanning already complete
2874 */
2875 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2876 nr_scanned = targets[lru] - nr[lru];
2877 nr[lru] = targets[lru] * (100 - percentage) / 100;
2878 nr[lru] -= min(nr[lru], nr_scanned);
2879
2880 lru += LRU_ACTIVE;
2881 nr_scanned = targets[lru] - nr[lru];
2882 nr[lru] = targets[lru] * (100 - percentage) / 100;
2883 nr[lru] -= min(nr[lru], nr_scanned);
2884
2885 scan_adjusted = true;
9b4f98cd
JW
2886 }
2887 blk_finish_plug(&plug);
2888 sc->nr_reclaimed += nr_reclaimed;
2889
2890 /*
2891 * Even if we did not try to evict anon pages at all, we want to
2892 * rebalance the anon lru active/inactive ratio.
2893 */
2f368a9f
DH
2894 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
2895 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
9b4f98cd
JW
2896 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2897 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2898}
2899
23b9da55 2900/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2901static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2902{
d84da3f9 2903 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2904 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2905 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2906 return true;
2907
2908 return false;
2909}
2910
3e7d3449 2911/*
23b9da55
MG
2912 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2913 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2914 * true if more pages should be reclaimed such that when the page allocator
df3a45f9 2915 * calls try_to_compact_pages() that it will have enough free pages to succeed.
23b9da55 2916 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2917 */
a9dd0a83 2918static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 2919 unsigned long nr_reclaimed,
3e7d3449
MG
2920 struct scan_control *sc)
2921{
2922 unsigned long pages_for_compaction;
2923 unsigned long inactive_lru_pages;
a9dd0a83 2924 int z;
3e7d3449
MG
2925
2926 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2927 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2928 return false;
2929
5ee04716
VB
2930 /*
2931 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2932 * number of pages that were scanned. This will return to the caller
2933 * with the risk reclaim/compaction and the resulting allocation attempt
2934 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2935 * allocations through requiring that the full LRU list has been scanned
2936 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2937 * scan, but that approximation was wrong, and there were corner cases
2938 * where always a non-zero amount of pages were scanned.
2939 */
2940 if (!nr_reclaimed)
2941 return false;
3e7d3449 2942
3e7d3449 2943 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2944 for (z = 0; z <= sc->reclaim_idx; z++) {
2945 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2946 if (!managed_zone(zone))
a9dd0a83
MG
2947 continue;
2948
2949 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2950 case COMPACT_SUCCESS:
a9dd0a83
MG
2951 case COMPACT_CONTINUE:
2952 return false;
2953 default:
2954 /* check next zone */
2955 ;
2956 }
3e7d3449 2957 }
1c6c1597
HD
2958
2959 /*
2960 * If we have not reclaimed enough pages for compaction and the
2961 * inactive lists are large enough, continue reclaiming
2962 */
2963 pages_for_compaction = compact_gap(sc->order);
2964 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
a2a36488 2965 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
1c6c1597
HD
2966 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2967
5ee04716 2968 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
2969}
2970
0f6a5cff 2971static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2972{
0f6a5cff 2973 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
d2af3397 2974 struct mem_cgroup *memcg;
1da177e4 2975
0f6a5cff 2976 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
d2af3397 2977 do {
afaf07a6 2978 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
d2af3397
JW
2979 unsigned long reclaimed;
2980 unsigned long scanned;
5660048c 2981
e3336cab
XP
2982 /*
2983 * This loop can become CPU-bound when target memcgs
2984 * aren't eligible for reclaim - either because they
2985 * don't have any reclaimable pages, or because their
2986 * memory is explicitly protected. Avoid soft lockups.
2987 */
2988 cond_resched();
2989
45c7f7e1
CD
2990 mem_cgroup_calculate_protection(target_memcg, memcg);
2991
2992 if (mem_cgroup_below_min(memcg)) {
d2af3397
JW
2993 /*
2994 * Hard protection.
2995 * If there is no reclaimable memory, OOM.
2996 */
2997 continue;
45c7f7e1 2998 } else if (mem_cgroup_below_low(memcg)) {
d2af3397
JW
2999 /*
3000 * Soft protection.
3001 * Respect the protection only as long as
3002 * there is an unprotected supply
3003 * of reclaimable memory from other cgroups.
3004 */
3005 if (!sc->memcg_low_reclaim) {
3006 sc->memcg_low_skipped = 1;
bf8d5d52 3007 continue;
241994ed 3008 }
d2af3397 3009 memcg_memory_event(memcg, MEMCG_LOW);
d2af3397 3010 }
241994ed 3011
d2af3397
JW
3012 reclaimed = sc->nr_reclaimed;
3013 scanned = sc->nr_scanned;
afaf07a6
JW
3014
3015 shrink_lruvec(lruvec, sc);
70ddf637 3016
d2af3397
JW
3017 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3018 sc->priority);
6b4f7799 3019
d2af3397
JW
3020 /* Record the group's reclaim efficiency */
3021 vmpressure(sc->gfp_mask, memcg, false,
3022 sc->nr_scanned - scanned,
3023 sc->nr_reclaimed - reclaimed);
70ddf637 3024
0f6a5cff
JW
3025 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3026}
3027
6c9e0907 3028static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
0f6a5cff
JW
3029{
3030 struct reclaim_state *reclaim_state = current->reclaim_state;
0f6a5cff 3031 unsigned long nr_reclaimed, nr_scanned;
1b05117d 3032 struct lruvec *target_lruvec;
0f6a5cff 3033 bool reclaimable = false;
b91ac374 3034 unsigned long file;
0f6a5cff 3035
1b05117d
JW
3036 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3037
0f6a5cff 3038again:
aa48e47e
SB
3039 /*
3040 * Flush the memory cgroup stats, so that we read accurate per-memcg
3041 * lruvec stats for heuristics.
3042 */
3043 mem_cgroup_flush_stats();
3044
0f6a5cff
JW
3045 memset(&sc->nr, 0, sizeof(sc->nr));
3046
3047 nr_reclaimed = sc->nr_reclaimed;
3048 nr_scanned = sc->nr_scanned;
3049
7cf111bc
JW
3050 /*
3051 * Determine the scan balance between anon and file LRUs.
3052 */
6168d0da 3053 spin_lock_irq(&target_lruvec->lru_lock);
7cf111bc
JW
3054 sc->anon_cost = target_lruvec->anon_cost;
3055 sc->file_cost = target_lruvec->file_cost;
6168d0da 3056 spin_unlock_irq(&target_lruvec->lru_lock);
7cf111bc 3057
b91ac374
JW
3058 /*
3059 * Target desirable inactive:active list ratios for the anon
3060 * and file LRU lists.
3061 */
3062 if (!sc->force_deactivate) {
3063 unsigned long refaults;
3064
170b04b7
JK
3065 refaults = lruvec_page_state(target_lruvec,
3066 WORKINGSET_ACTIVATE_ANON);
3067 if (refaults != target_lruvec->refaults[0] ||
3068 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
b91ac374
JW
3069 sc->may_deactivate |= DEACTIVATE_ANON;
3070 else
3071 sc->may_deactivate &= ~DEACTIVATE_ANON;
3072
3073 /*
3074 * When refaults are being observed, it means a new
3075 * workingset is being established. Deactivate to get
3076 * rid of any stale active pages quickly.
3077 */
3078 refaults = lruvec_page_state(target_lruvec,
170b04b7
JK
3079 WORKINGSET_ACTIVATE_FILE);
3080 if (refaults != target_lruvec->refaults[1] ||
b91ac374
JW
3081 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3082 sc->may_deactivate |= DEACTIVATE_FILE;
3083 else
3084 sc->may_deactivate &= ~DEACTIVATE_FILE;
3085 } else
3086 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3087
3088 /*
3089 * If we have plenty of inactive file pages that aren't
3090 * thrashing, try to reclaim those first before touching
3091 * anonymous pages.
3092 */
3093 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3094 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3095 sc->cache_trim_mode = 1;
3096 else
3097 sc->cache_trim_mode = 0;
3098
53138cea
JW
3099 /*
3100 * Prevent the reclaimer from falling into the cache trap: as
3101 * cache pages start out inactive, every cache fault will tip
3102 * the scan balance towards the file LRU. And as the file LRU
3103 * shrinks, so does the window for rotation from references.
3104 * This means we have a runaway feedback loop where a tiny
3105 * thrashing file LRU becomes infinitely more attractive than
3106 * anon pages. Try to detect this based on file LRU size.
3107 */
3108 if (!cgroup_reclaim(sc)) {
53138cea 3109 unsigned long total_high_wmark = 0;
b91ac374
JW
3110 unsigned long free, anon;
3111 int z;
53138cea
JW
3112
3113 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3114 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3115 node_page_state(pgdat, NR_INACTIVE_FILE);
3116
3117 for (z = 0; z < MAX_NR_ZONES; z++) {
3118 struct zone *zone = &pgdat->node_zones[z];
3119 if (!managed_zone(zone))
3120 continue;
3121
3122 total_high_wmark += high_wmark_pages(zone);
3123 }
3124
b91ac374
JW
3125 /*
3126 * Consider anon: if that's low too, this isn't a
3127 * runaway file reclaim problem, but rather just
3128 * extreme pressure. Reclaim as per usual then.
3129 */
3130 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3131
3132 sc->file_is_tiny =
3133 file + free <= total_high_wmark &&
3134 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3135 anon >> sc->priority;
53138cea
JW
3136 }
3137
0f6a5cff 3138 shrink_node_memcgs(pgdat, sc);
2344d7e4 3139
d2af3397
JW
3140 if (reclaim_state) {
3141 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3142 reclaim_state->reclaimed_slab = 0;
3143 }
d108c772 3144
d2af3397 3145 /* Record the subtree's reclaim efficiency */
1b05117d 3146 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
d2af3397
JW
3147 sc->nr_scanned - nr_scanned,
3148 sc->nr_reclaimed - nr_reclaimed);
d108c772 3149
d2af3397
JW
3150 if (sc->nr_reclaimed - nr_reclaimed)
3151 reclaimable = true;
d108c772 3152
d2af3397
JW
3153 if (current_is_kswapd()) {
3154 /*
3155 * If reclaim is isolating dirty pages under writeback,
3156 * it implies that the long-lived page allocation rate
3157 * is exceeding the page laundering rate. Either the
3158 * global limits are not being effective at throttling
3159 * processes due to the page distribution throughout
3160 * zones or there is heavy usage of a slow backing
3161 * device. The only option is to throttle from reclaim
3162 * context which is not ideal as there is no guarantee
3163 * the dirtying process is throttled in the same way
3164 * balance_dirty_pages() manages.
3165 *
3166 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3167 * count the number of pages under pages flagged for
3168 * immediate reclaim and stall if any are encountered
3169 * in the nr_immediate check below.
3170 */
3171 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3172 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 3173
d2af3397
JW
3174 /* Allow kswapd to start writing pages during reclaim.*/
3175 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3176 set_bit(PGDAT_DIRTY, &pgdat->flags);
e3c1ac58 3177
d108c772 3178 /*
1eba09c1 3179 * If kswapd scans pages marked for immediate
d2af3397
JW
3180 * reclaim and under writeback (nr_immediate), it
3181 * implies that pages are cycling through the LRU
3182 * faster than they are written so also forcibly stall.
d108c772 3183 */
d2af3397
JW
3184 if (sc->nr.immediate)
3185 congestion_wait(BLK_RW_ASYNC, HZ/10);
3186 }
3187
3188 /*
1b05117d
JW
3189 * Tag a node/memcg as congested if all the dirty pages
3190 * scanned were backed by a congested BDI and
3191 * wait_iff_congested will stall.
3192 *
d2af3397
JW
3193 * Legacy memcg will stall in page writeback so avoid forcibly
3194 * stalling in wait_iff_congested().
3195 */
1b05117d
JW
3196 if ((current_is_kswapd() ||
3197 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
d2af3397 3198 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
1b05117d 3199 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
d2af3397
JW
3200
3201 /*
3202 * Stall direct reclaim for IO completions if underlying BDIs
3203 * and node is congested. Allow kswapd to continue until it
3204 * starts encountering unqueued dirty pages or cycling through
3205 * the LRU too quickly.
3206 */
1b05117d
JW
3207 if (!current_is_kswapd() && current_may_throttle() &&
3208 !sc->hibernation_mode &&
3209 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
d2af3397 3210 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
d108c772 3211
d2af3397
JW
3212 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3213 sc))
3214 goto again;
2344d7e4 3215
c73322d0
JW
3216 /*
3217 * Kswapd gives up on balancing particular nodes after too
3218 * many failures to reclaim anything from them and goes to
3219 * sleep. On reclaim progress, reset the failure counter. A
3220 * successful direct reclaim run will revive a dormant kswapd.
3221 */
3222 if (reclaimable)
3223 pgdat->kswapd_failures = 0;
f16015fb
JW
3224}
3225
53853e2d 3226/*
fdd4c614
VB
3227 * Returns true if compaction should go ahead for a costly-order request, or
3228 * the allocation would already succeed without compaction. Return false if we
3229 * should reclaim first.
53853e2d 3230 */
4f588331 3231static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 3232{
31483b6a 3233 unsigned long watermark;
fdd4c614 3234 enum compact_result suitable;
fe4b1b24 3235
fdd4c614
VB
3236 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3237 if (suitable == COMPACT_SUCCESS)
3238 /* Allocation should succeed already. Don't reclaim. */
3239 return true;
3240 if (suitable == COMPACT_SKIPPED)
3241 /* Compaction cannot yet proceed. Do reclaim. */
3242 return false;
fe4b1b24 3243
53853e2d 3244 /*
fdd4c614
VB
3245 * Compaction is already possible, but it takes time to run and there
3246 * are potentially other callers using the pages just freed. So proceed
3247 * with reclaim to make a buffer of free pages available to give
3248 * compaction a reasonable chance of completing and allocating the page.
3249 * Note that we won't actually reclaim the whole buffer in one attempt
3250 * as the target watermark in should_continue_reclaim() is lower. But if
3251 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 3252 */
fdd4c614 3253 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 3254
fdd4c614 3255 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
3256}
3257
1da177e4
LT
3258/*
3259 * This is the direct reclaim path, for page-allocating processes. We only
3260 * try to reclaim pages from zones which will satisfy the caller's allocation
3261 * request.
3262 *
1da177e4
LT
3263 * If a zone is deemed to be full of pinned pages then just give it a light
3264 * scan then give up on it.
3265 */
0a0337e0 3266static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 3267{
dd1a239f 3268 struct zoneref *z;
54a6eb5c 3269 struct zone *zone;
0608f43d
AM
3270 unsigned long nr_soft_reclaimed;
3271 unsigned long nr_soft_scanned;
619d0d76 3272 gfp_t orig_mask;
79dafcdc 3273 pg_data_t *last_pgdat = NULL;
1cfb419b 3274
cc715d99
MG
3275 /*
3276 * If the number of buffer_heads in the machine exceeds the maximum
3277 * allowed level, force direct reclaim to scan the highmem zone as
3278 * highmem pages could be pinning lowmem pages storing buffer_heads
3279 */
619d0d76 3280 orig_mask = sc->gfp_mask;
b2e18757 3281 if (buffer_heads_over_limit) {
cc715d99 3282 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 3283 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 3284 }
cc715d99 3285
d4debc66 3286 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 3287 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
3288 /*
3289 * Take care memory controller reclaiming has small influence
3290 * to global LRU.
3291 */
b5ead35e 3292 if (!cgroup_reclaim(sc)) {
344736f2
VD
3293 if (!cpuset_zone_allowed(zone,
3294 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 3295 continue;
65ec02cb 3296
0b06496a
JW
3297 /*
3298 * If we already have plenty of memory free for
3299 * compaction in this zone, don't free any more.
3300 * Even though compaction is invoked for any
3301 * non-zero order, only frequent costly order
3302 * reclamation is disruptive enough to become a
3303 * noticeable problem, like transparent huge
3304 * page allocations.
3305 */
3306 if (IS_ENABLED(CONFIG_COMPACTION) &&
3307 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 3308 compaction_ready(zone, sc)) {
0b06496a
JW
3309 sc->compaction_ready = true;
3310 continue;
e0887c19 3311 }
0b06496a 3312
79dafcdc
MG
3313 /*
3314 * Shrink each node in the zonelist once. If the
3315 * zonelist is ordered by zone (not the default) then a
3316 * node may be shrunk multiple times but in that case
3317 * the user prefers lower zones being preserved.
3318 */
3319 if (zone->zone_pgdat == last_pgdat)
3320 continue;
3321
0608f43d
AM
3322 /*
3323 * This steals pages from memory cgroups over softlimit
3324 * and returns the number of reclaimed pages and
3325 * scanned pages. This works for global memory pressure
3326 * and balancing, not for a memcg's limit.
3327 */
3328 nr_soft_scanned = 0;
ef8f2327 3329 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
3330 sc->order, sc->gfp_mask,
3331 &nr_soft_scanned);
3332 sc->nr_reclaimed += nr_soft_reclaimed;
3333 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 3334 /* need some check for avoid more shrink_zone() */
1cfb419b 3335 }
408d8544 3336
79dafcdc
MG
3337 /* See comment about same check for global reclaim above */
3338 if (zone->zone_pgdat == last_pgdat)
3339 continue;
3340 last_pgdat = zone->zone_pgdat;
970a39a3 3341 shrink_node(zone->zone_pgdat, sc);
1da177e4 3342 }
e0c23279 3343
619d0d76
WY
3344 /*
3345 * Restore to original mask to avoid the impact on the caller if we
3346 * promoted it to __GFP_HIGHMEM.
3347 */
3348 sc->gfp_mask = orig_mask;
1da177e4 3349}
4f98a2fe 3350
b910718a 3351static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2a2e4885 3352{
b910718a
JW
3353 struct lruvec *target_lruvec;
3354 unsigned long refaults;
2a2e4885 3355
b910718a 3356 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
170b04b7
JK
3357 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3358 target_lruvec->refaults[0] = refaults;
3359 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3360 target_lruvec->refaults[1] = refaults;
2a2e4885
JW
3361}
3362
1da177e4
LT
3363/*
3364 * This is the main entry point to direct page reclaim.
3365 *
3366 * If a full scan of the inactive list fails to free enough memory then we
3367 * are "out of memory" and something needs to be killed.
3368 *
3369 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3370 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
3371 * caller can't do much about. We kick the writeback threads and take explicit
3372 * naps in the hope that some of these pages can be written. But if the
3373 * allocating task holds filesystem locks which prevent writeout this might not
3374 * work, and the allocation attempt will fail.
a41f24ea
NA
3375 *
3376 * returns: 0, if no pages reclaimed
3377 * else, the number of pages reclaimed
1da177e4 3378 */
dac1d27b 3379static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 3380 struct scan_control *sc)
1da177e4 3381{
241994ed 3382 int initial_priority = sc->priority;
2a2e4885
JW
3383 pg_data_t *last_pgdat;
3384 struct zoneref *z;
3385 struct zone *zone;
241994ed 3386retry:
873b4771
KK
3387 delayacct_freepages_start();
3388
b5ead35e 3389 if (!cgroup_reclaim(sc))
7cc30fcf 3390 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 3391
9e3b2f8c 3392 do {
70ddf637
AV
3393 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3394 sc->priority);
66e1707b 3395 sc->nr_scanned = 0;
0a0337e0 3396 shrink_zones(zonelist, sc);
c6a8a8c5 3397
bb21c7ce 3398 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3399 break;
3400
3401 if (sc->compaction_ready)
3402 break;
1da177e4 3403
0e50ce3b
MK
3404 /*
3405 * If we're getting trouble reclaiming, start doing
3406 * writepage even in laptop mode.
3407 */
3408 if (sc->priority < DEF_PRIORITY - 2)
3409 sc->may_writepage = 1;
0b06496a 3410 } while (--sc->priority >= 0);
bb21c7ce 3411
2a2e4885
JW
3412 last_pgdat = NULL;
3413 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3414 sc->nodemask) {
3415 if (zone->zone_pgdat == last_pgdat)
3416 continue;
3417 last_pgdat = zone->zone_pgdat;
1b05117d 3418
2a2e4885 3419 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
1b05117d
JW
3420
3421 if (cgroup_reclaim(sc)) {
3422 struct lruvec *lruvec;
3423
3424 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3425 zone->zone_pgdat);
3426 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3427 }
2a2e4885
JW
3428 }
3429
873b4771
KK
3430 delayacct_freepages_end();
3431
bb21c7ce
KM
3432 if (sc->nr_reclaimed)
3433 return sc->nr_reclaimed;
3434
0cee34fd 3435 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3436 if (sc->compaction_ready)
7335084d
MG
3437 return 1;
3438
b91ac374
JW
3439 /*
3440 * We make inactive:active ratio decisions based on the node's
3441 * composition of memory, but a restrictive reclaim_idx or a
3442 * memory.low cgroup setting can exempt large amounts of
3443 * memory from reclaim. Neither of which are very common, so
3444 * instead of doing costly eligibility calculations of the
3445 * entire cgroup subtree up front, we assume the estimates are
3446 * good, and retry with forcible deactivation if that fails.
3447 */
3448 if (sc->skipped_deactivate) {
3449 sc->priority = initial_priority;
3450 sc->force_deactivate = 1;
3451 sc->skipped_deactivate = 0;
3452 goto retry;
3453 }
3454
241994ed 3455 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3456 if (sc->memcg_low_skipped) {
241994ed 3457 sc->priority = initial_priority;
b91ac374 3458 sc->force_deactivate = 0;
d6622f63
YX
3459 sc->memcg_low_reclaim = 1;
3460 sc->memcg_low_skipped = 0;
241994ed
JW
3461 goto retry;
3462 }
3463
bb21c7ce 3464 return 0;
1da177e4
LT
3465}
3466
c73322d0 3467static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3468{
3469 struct zone *zone;
3470 unsigned long pfmemalloc_reserve = 0;
3471 unsigned long free_pages = 0;
3472 int i;
3473 bool wmark_ok;
3474
c73322d0
JW
3475 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3476 return true;
3477
5515061d
MG
3478 for (i = 0; i <= ZONE_NORMAL; i++) {
3479 zone = &pgdat->node_zones[i];
d450abd8
JW
3480 if (!managed_zone(zone))
3481 continue;
3482
3483 if (!zone_reclaimable_pages(zone))
675becce
MG
3484 continue;
3485
5515061d
MG
3486 pfmemalloc_reserve += min_wmark_pages(zone);
3487 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3488 }
3489
675becce
MG
3490 /* If there are no reserves (unexpected config) then do not throttle */
3491 if (!pfmemalloc_reserve)
3492 return true;
3493
5515061d
MG
3494 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3495
3496 /* kswapd must be awake if processes are being throttled */
3497 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
97a225e6
JK
3498 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3499 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
5644e1fb 3500
5515061d
MG
3501 wake_up_interruptible(&pgdat->kswapd_wait);
3502 }
3503
3504 return wmark_ok;
3505}
3506
3507/*
3508 * Throttle direct reclaimers if backing storage is backed by the network
3509 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3510 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3511 * when the low watermark is reached.
3512 *
3513 * Returns true if a fatal signal was delivered during throttling. If this
3514 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3515 */
50694c28 3516static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3517 nodemask_t *nodemask)
3518{
675becce 3519 struct zoneref *z;
5515061d 3520 struct zone *zone;
675becce 3521 pg_data_t *pgdat = NULL;
5515061d
MG
3522
3523 /*
3524 * Kernel threads should not be throttled as they may be indirectly
3525 * responsible for cleaning pages necessary for reclaim to make forward
3526 * progress. kjournald for example may enter direct reclaim while
3527 * committing a transaction where throttling it could forcing other
3528 * processes to block on log_wait_commit().
3529 */
3530 if (current->flags & PF_KTHREAD)
50694c28
MG
3531 goto out;
3532
3533 /*
3534 * If a fatal signal is pending, this process should not throttle.
3535 * It should return quickly so it can exit and free its memory
3536 */
3537 if (fatal_signal_pending(current))
3538 goto out;
5515061d 3539
675becce
MG
3540 /*
3541 * Check if the pfmemalloc reserves are ok by finding the first node
3542 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3543 * GFP_KERNEL will be required for allocating network buffers when
3544 * swapping over the network so ZONE_HIGHMEM is unusable.
3545 *
3546 * Throttling is based on the first usable node and throttled processes
3547 * wait on a queue until kswapd makes progress and wakes them. There
3548 * is an affinity then between processes waking up and where reclaim
3549 * progress has been made assuming the process wakes on the same node.
3550 * More importantly, processes running on remote nodes will not compete
3551 * for remote pfmemalloc reserves and processes on different nodes
3552 * should make reasonable progress.
3553 */
3554 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3555 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3556 if (zone_idx(zone) > ZONE_NORMAL)
3557 continue;
3558
3559 /* Throttle based on the first usable node */
3560 pgdat = zone->zone_pgdat;
c73322d0 3561 if (allow_direct_reclaim(pgdat))
675becce
MG
3562 goto out;
3563 break;
3564 }
3565
3566 /* If no zone was usable by the allocation flags then do not throttle */
3567 if (!pgdat)
50694c28 3568 goto out;
5515061d 3569
68243e76
MG
3570 /* Account for the throttling */
3571 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3572
5515061d
MG
3573 /*
3574 * If the caller cannot enter the filesystem, it's possible that it
3575 * is due to the caller holding an FS lock or performing a journal
3576 * transaction in the case of a filesystem like ext[3|4]. In this case,
3577 * it is not safe to block on pfmemalloc_wait as kswapd could be
3578 * blocked waiting on the same lock. Instead, throttle for up to a
3579 * second before continuing.
3580 */
3581 if (!(gfp_mask & __GFP_FS)) {
3582 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3583 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3584
3585 goto check_pending;
5515061d
MG
3586 }
3587
3588 /* Throttle until kswapd wakes the process */
3589 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3590 allow_direct_reclaim(pgdat));
50694c28
MG
3591
3592check_pending:
3593 if (fatal_signal_pending(current))
3594 return true;
3595
3596out:
3597 return false;
5515061d
MG
3598}
3599
dac1d27b 3600unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3601 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3602{
33906bc5 3603 unsigned long nr_reclaimed;
66e1707b 3604 struct scan_control sc = {
ee814fe2 3605 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3606 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3607 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3608 .order = order,
3609 .nodemask = nodemask,
3610 .priority = DEF_PRIORITY,
66e1707b 3611 .may_writepage = !laptop_mode,
a6dc60f8 3612 .may_unmap = 1,
2e2e4259 3613 .may_swap = 1,
66e1707b
BS
3614 };
3615
bb451fdf
GT
3616 /*
3617 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3618 * Confirm they are large enough for max values.
3619 */
3620 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3621 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3622 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3623
5515061d 3624 /*
50694c28
MG
3625 * Do not enter reclaim if fatal signal was delivered while throttled.
3626 * 1 is returned so that the page allocator does not OOM kill at this
3627 * point.
5515061d 3628 */
f2f43e56 3629 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3630 return 1;
3631
1732d2b0 3632 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3633 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3634
3115cd91 3635 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3636
3637 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 3638 set_task_reclaim_state(current, NULL);
33906bc5
MG
3639
3640 return nr_reclaimed;
66e1707b
BS
3641}
3642
c255a458 3643#ifdef CONFIG_MEMCG
66e1707b 3644
d2e5fb92 3645/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 3646unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3647 gfp_t gfp_mask, bool noswap,
ef8f2327 3648 pg_data_t *pgdat,
0ae5e89c 3649 unsigned long *nr_scanned)
4e416953 3650{
afaf07a6 3651 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4e416953 3652 struct scan_control sc = {
b8f5c566 3653 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3654 .target_mem_cgroup = memcg,
4e416953
BS
3655 .may_writepage = !laptop_mode,
3656 .may_unmap = 1,
b2e18757 3657 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3658 .may_swap = !noswap,
4e416953 3659 };
0ae5e89c 3660
d2e5fb92
MH
3661 WARN_ON_ONCE(!current->reclaim_state);
3662
4e416953
BS
3663 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3664 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3665
9e3b2f8c 3666 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3667 sc.gfp_mask);
bdce6d9e 3668
4e416953
BS
3669 /*
3670 * NOTE: Although we can get the priority field, using it
3671 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3672 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3673 * will pick up pages from other mem cgroup's as well. We hack
3674 * the priority and make it zero.
3675 */
afaf07a6 3676 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
3677
3678 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3679
0ae5e89c 3680 *nr_scanned = sc.nr_scanned;
0308f7cf 3681
4e416953
BS
3682 return sc.nr_reclaimed;
3683}
3684
72835c86 3685unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3686 unsigned long nr_pages,
a7885eb8 3687 gfp_t gfp_mask,
b70a2a21 3688 bool may_swap)
66e1707b 3689{
bdce6d9e 3690 unsigned long nr_reclaimed;
499118e9 3691 unsigned int noreclaim_flag;
66e1707b 3692 struct scan_control sc = {
b70a2a21 3693 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3694 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3695 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3696 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3697 .target_mem_cgroup = memcg,
3698 .priority = DEF_PRIORITY,
3699 .may_writepage = !laptop_mode,
3700 .may_unmap = 1,
b70a2a21 3701 .may_swap = may_swap,
a09ed5e0 3702 };
889976db 3703 /*
fa40d1ee
SB
3704 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3705 * equal pressure on all the nodes. This is based on the assumption that
3706 * the reclaim does not bail out early.
889976db 3707 */
fa40d1ee 3708 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 3709
fa40d1ee 3710 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3711 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
499118e9 3712 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3713
3115cd91 3714 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3715
499118e9 3716 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e 3717 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 3718 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
3719
3720 return nr_reclaimed;
66e1707b
BS
3721}
3722#endif
3723
1d82de61 3724static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3725 struct scan_control *sc)
f16015fb 3726{
b95a2f2d 3727 struct mem_cgroup *memcg;
b91ac374 3728 struct lruvec *lruvec;
f16015fb 3729
2f368a9f 3730 if (!can_age_anon_pages(pgdat, sc))
b95a2f2d
JW
3731 return;
3732
b91ac374
JW
3733 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3734 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3735 return;
3736
b95a2f2d
JW
3737 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3738 do {
b91ac374
JW
3739 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3740 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3741 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3742 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3743 } while (memcg);
f16015fb
JW
3744}
3745
97a225e6 3746static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
1c30844d
MG
3747{
3748 int i;
3749 struct zone *zone;
3750
3751 /*
3752 * Check for watermark boosts top-down as the higher zones
3753 * are more likely to be boosted. Both watermarks and boosts
1eba09c1 3754 * should not be checked at the same time as reclaim would
1c30844d
MG
3755 * start prematurely when there is no boosting and a lower
3756 * zone is balanced.
3757 */
97a225e6 3758 for (i = highest_zoneidx; i >= 0; i--) {
1c30844d
MG
3759 zone = pgdat->node_zones + i;
3760 if (!managed_zone(zone))
3761 continue;
3762
3763 if (zone->watermark_boost)
3764 return true;
3765 }
3766
3767 return false;
3768}
3769
e716f2eb
MG
3770/*
3771 * Returns true if there is an eligible zone balanced for the request order
97a225e6 3772 * and highest_zoneidx
e716f2eb 3773 */
97a225e6 3774static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
60cefed4 3775{
e716f2eb
MG
3776 int i;
3777 unsigned long mark = -1;
3778 struct zone *zone;
60cefed4 3779
1c30844d
MG
3780 /*
3781 * Check watermarks bottom-up as lower zones are more likely to
3782 * meet watermarks.
3783 */
97a225e6 3784 for (i = 0; i <= highest_zoneidx; i++) {
e716f2eb 3785 zone = pgdat->node_zones + i;
6256c6b4 3786
e716f2eb
MG
3787 if (!managed_zone(zone))
3788 continue;
3789
3790 mark = high_wmark_pages(zone);
97a225e6 3791 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
e716f2eb
MG
3792 return true;
3793 }
3794
3795 /*
97a225e6 3796 * If a node has no populated zone within highest_zoneidx, it does not
e716f2eb
MG
3797 * need balancing by definition. This can happen if a zone-restricted
3798 * allocation tries to wake a remote kswapd.
3799 */
3800 if (mark == -1)
3801 return true;
3802
3803 return false;
60cefed4
JW
3804}
3805
631b6e08
MG
3806/* Clear pgdat state for congested, dirty or under writeback. */
3807static void clear_pgdat_congested(pg_data_t *pgdat)
3808{
1b05117d
JW
3809 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3810
3811 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
631b6e08
MG
3812 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3813 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3814}
3815
5515061d
MG
3816/*
3817 * Prepare kswapd for sleeping. This verifies that there are no processes
3818 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3819 *
3820 * Returns true if kswapd is ready to sleep
3821 */
97a225e6
JK
3822static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3823 int highest_zoneidx)
f50de2d3 3824{
5515061d 3825 /*
9e5e3661 3826 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3827 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3828 * race between when kswapd checks the watermarks and a process gets
3829 * throttled. There is also a potential race if processes get
3830 * throttled, kswapd wakes, a large process exits thereby balancing the
3831 * zones, which causes kswapd to exit balance_pgdat() before reaching
3832 * the wake up checks. If kswapd is going to sleep, no process should
3833 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3834 * the wake up is premature, processes will wake kswapd and get
3835 * throttled again. The difference from wake ups in balance_pgdat() is
3836 * that here we are under prepare_to_wait().
5515061d 3837 */
9e5e3661
VB
3838 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3839 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3840
c73322d0
JW
3841 /* Hopeless node, leave it to direct reclaim */
3842 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3843 return true;
3844
97a225e6 3845 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
e716f2eb
MG
3846 clear_pgdat_congested(pgdat);
3847 return true;
1d82de61
MG
3848 }
3849
333b0a45 3850 return false;
f50de2d3
MG
3851}
3852
75485363 3853/*
1d82de61
MG
3854 * kswapd shrinks a node of pages that are at or below the highest usable
3855 * zone that is currently unbalanced.
b8e83b94
MG
3856 *
3857 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3858 * reclaim or if the lack of progress was due to pages under writeback.
3859 * This is used to determine if the scanning priority needs to be raised.
75485363 3860 */
1d82de61 3861static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3862 struct scan_control *sc)
75485363 3863{
1d82de61
MG
3864 struct zone *zone;
3865 int z;
75485363 3866
1d82de61
MG
3867 /* Reclaim a number of pages proportional to the number of zones */
3868 sc->nr_to_reclaim = 0;
970a39a3 3869 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3870 zone = pgdat->node_zones + z;
6aa303de 3871 if (!managed_zone(zone))
1d82de61 3872 continue;
7c954f6d 3873
1d82de61
MG
3874 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3875 }
7c954f6d
MG
3876
3877 /*
1d82de61
MG
3878 * Historically care was taken to put equal pressure on all zones but
3879 * now pressure is applied based on node LRU order.
7c954f6d 3880 */
970a39a3 3881 shrink_node(pgdat, sc);
283aba9f 3882
7c954f6d 3883 /*
1d82de61
MG
3884 * Fragmentation may mean that the system cannot be rebalanced for
3885 * high-order allocations. If twice the allocation size has been
3886 * reclaimed then recheck watermarks only at order-0 to prevent
3887 * excessive reclaim. Assume that a process requested a high-order
3888 * can direct reclaim/compact.
7c954f6d 3889 */
9861a62c 3890 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3891 sc->order = 0;
7c954f6d 3892
b8e83b94 3893 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3894}
3895
c49c2c47
MG
3896/* Page allocator PCP high watermark is lowered if reclaim is active. */
3897static inline void
3898update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
3899{
3900 int i;
3901 struct zone *zone;
3902
3903 for (i = 0; i <= highest_zoneidx; i++) {
3904 zone = pgdat->node_zones + i;
3905
3906 if (!managed_zone(zone))
3907 continue;
3908
3909 if (active)
3910 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3911 else
3912 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3913 }
3914}
3915
3916static inline void
3917set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3918{
3919 update_reclaim_active(pgdat, highest_zoneidx, true);
3920}
3921
3922static inline void
3923clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3924{
3925 update_reclaim_active(pgdat, highest_zoneidx, false);
3926}
3927
1da177e4 3928/*
1d82de61
MG
3929 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3930 * that are eligible for use by the caller until at least one zone is
3931 * balanced.
1da177e4 3932 *
1d82de61 3933 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3934 *
3935 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3936 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 3937 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
3938 * or lower is eligible for reclaim until at least one usable zone is
3939 * balanced.
1da177e4 3940 */
97a225e6 3941static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
1da177e4 3942{
1da177e4 3943 int i;
0608f43d
AM
3944 unsigned long nr_soft_reclaimed;
3945 unsigned long nr_soft_scanned;
eb414681 3946 unsigned long pflags;
1c30844d
MG
3947 unsigned long nr_boost_reclaim;
3948 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3949 bool boosted;
1d82de61 3950 struct zone *zone;
179e9639
AM
3951 struct scan_control sc = {
3952 .gfp_mask = GFP_KERNEL,
ee814fe2 3953 .order = order,
a6dc60f8 3954 .may_unmap = 1,
179e9639 3955 };
93781325 3956
1732d2b0 3957 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 3958 psi_memstall_enter(&pflags);
4f3eaf45 3959 __fs_reclaim_acquire(_THIS_IP_);
93781325 3960
f8891e5e 3961 count_vm_event(PAGEOUTRUN);
1da177e4 3962
1c30844d
MG
3963 /*
3964 * Account for the reclaim boost. Note that the zone boost is left in
3965 * place so that parallel allocations that are near the watermark will
3966 * stall or direct reclaim until kswapd is finished.
3967 */
3968 nr_boost_reclaim = 0;
97a225e6 3969 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
3970 zone = pgdat->node_zones + i;
3971 if (!managed_zone(zone))
3972 continue;
3973
3974 nr_boost_reclaim += zone->watermark_boost;
3975 zone_boosts[i] = zone->watermark_boost;
3976 }
3977 boosted = nr_boost_reclaim;
3978
3979restart:
c49c2c47 3980 set_reclaim_active(pgdat, highest_zoneidx);
1c30844d 3981 sc.priority = DEF_PRIORITY;
9e3b2f8c 3982 do {
c73322d0 3983 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 3984 bool raise_priority = true;
1c30844d 3985 bool balanced;
93781325 3986 bool ret;
b8e83b94 3987
97a225e6 3988 sc.reclaim_idx = highest_zoneidx;
1da177e4 3989
86c79f6b 3990 /*
84c7a777
MG
3991 * If the number of buffer_heads exceeds the maximum allowed
3992 * then consider reclaiming from all zones. This has a dual
3993 * purpose -- on 64-bit systems it is expected that
3994 * buffer_heads are stripped during active rotation. On 32-bit
3995 * systems, highmem pages can pin lowmem memory and shrinking
3996 * buffers can relieve lowmem pressure. Reclaim may still not
3997 * go ahead if all eligible zones for the original allocation
3998 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3999 */
4000 if (buffer_heads_over_limit) {
4001 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4002 zone = pgdat->node_zones + i;
6aa303de 4003 if (!managed_zone(zone))
86c79f6b 4004 continue;
cc715d99 4005
970a39a3 4006 sc.reclaim_idx = i;
e1dbeda6 4007 break;
1da177e4 4008 }
1da177e4 4009 }
dafcb73e 4010
86c79f6b 4011 /*
1c30844d
MG
4012 * If the pgdat is imbalanced then ignore boosting and preserve
4013 * the watermarks for a later time and restart. Note that the
4014 * zone watermarks will be still reset at the end of balancing
4015 * on the grounds that the normal reclaim should be enough to
4016 * re-evaluate if boosting is required when kswapd next wakes.
4017 */
97a225e6 4018 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
1c30844d
MG
4019 if (!balanced && nr_boost_reclaim) {
4020 nr_boost_reclaim = 0;
4021 goto restart;
4022 }
4023
4024 /*
4025 * If boosting is not active then only reclaim if there are no
4026 * eligible zones. Note that sc.reclaim_idx is not used as
4027 * buffer_heads_over_limit may have adjusted it.
86c79f6b 4028 */
1c30844d 4029 if (!nr_boost_reclaim && balanced)
e716f2eb 4030 goto out;
e1dbeda6 4031
1c30844d
MG
4032 /* Limit the priority of boosting to avoid reclaim writeback */
4033 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4034 raise_priority = false;
4035
4036 /*
4037 * Do not writeback or swap pages for boosted reclaim. The
4038 * intent is to relieve pressure not issue sub-optimal IO
4039 * from reclaim context. If no pages are reclaimed, the
4040 * reclaim will be aborted.
4041 */
4042 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4043 sc.may_swap = !nr_boost_reclaim;
1c30844d 4044
1d82de61
MG
4045 /*
4046 * Do some background aging of the anon list, to give
4047 * pages a chance to be referenced before reclaiming. All
4048 * pages are rotated regardless of classzone as this is
4049 * about consistent aging.
4050 */
ef8f2327 4051 age_active_anon(pgdat, &sc);
1d82de61 4052
b7ea3c41
MG
4053 /*
4054 * If we're getting trouble reclaiming, start doing writepage
4055 * even in laptop mode.
4056 */
047d72c3 4057 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
4058 sc.may_writepage = 1;
4059
1d82de61
MG
4060 /* Call soft limit reclaim before calling shrink_node. */
4061 sc.nr_scanned = 0;
4062 nr_soft_scanned = 0;
ef8f2327 4063 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
4064 sc.gfp_mask, &nr_soft_scanned);
4065 sc.nr_reclaimed += nr_soft_reclaimed;
4066
1da177e4 4067 /*
1d82de61
MG
4068 * There should be no need to raise the scanning priority if
4069 * enough pages are already being scanned that that high
4070 * watermark would be met at 100% efficiency.
1da177e4 4071 */
970a39a3 4072 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 4073 raise_priority = false;
5515061d
MG
4074
4075 /*
4076 * If the low watermark is met there is no need for processes
4077 * to be throttled on pfmemalloc_wait as they should not be
4078 * able to safely make forward progress. Wake them
4079 */
4080 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 4081 allow_direct_reclaim(pgdat))
cfc51155 4082 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 4083
b8e83b94 4084 /* Check if kswapd should be suspending */
4f3eaf45 4085 __fs_reclaim_release(_THIS_IP_);
93781325 4086 ret = try_to_freeze();
4f3eaf45 4087 __fs_reclaim_acquire(_THIS_IP_);
93781325 4088 if (ret || kthread_should_stop())
b8e83b94 4089 break;
8357376d 4090
73ce02e9 4091 /*
b8e83b94
MG
4092 * Raise priority if scanning rate is too low or there was no
4093 * progress in reclaiming pages
73ce02e9 4094 */
c73322d0 4095 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
4096 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4097
4098 /*
4099 * If reclaim made no progress for a boost, stop reclaim as
4100 * IO cannot be queued and it could be an infinite loop in
4101 * extreme circumstances.
4102 */
4103 if (nr_boost_reclaim && !nr_reclaimed)
4104 break;
4105
c73322d0 4106 if (raise_priority || !nr_reclaimed)
b8e83b94 4107 sc.priority--;
1d82de61 4108 } while (sc.priority >= 1);
1da177e4 4109
c73322d0
JW
4110 if (!sc.nr_reclaimed)
4111 pgdat->kswapd_failures++;
4112
b8e83b94 4113out:
c49c2c47
MG
4114 clear_reclaim_active(pgdat, highest_zoneidx);
4115
1c30844d
MG
4116 /* If reclaim was boosted, account for the reclaim done in this pass */
4117 if (boosted) {
4118 unsigned long flags;
4119
97a225e6 4120 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
4121 if (!zone_boosts[i])
4122 continue;
4123
4124 /* Increments are under the zone lock */
4125 zone = pgdat->node_zones + i;
4126 spin_lock_irqsave(&zone->lock, flags);
4127 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4128 spin_unlock_irqrestore(&zone->lock, flags);
4129 }
4130
4131 /*
4132 * As there is now likely space, wakeup kcompact to defragment
4133 * pageblocks.
4134 */
97a225e6 4135 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
1c30844d
MG
4136 }
4137
2a2e4885 4138 snapshot_refaults(NULL, pgdat);
4f3eaf45 4139 __fs_reclaim_release(_THIS_IP_);
eb414681 4140 psi_memstall_leave(&pflags);
1732d2b0 4141 set_task_reclaim_state(current, NULL);
e5ca8071 4142
0abdee2b 4143 /*
1d82de61
MG
4144 * Return the order kswapd stopped reclaiming at as
4145 * prepare_kswapd_sleep() takes it into account. If another caller
4146 * entered the allocator slow path while kswapd was awake, order will
4147 * remain at the higher level.
0abdee2b 4148 */
1d82de61 4149 return sc.order;
1da177e4
LT
4150}
4151
e716f2eb 4152/*
97a225e6
JK
4153 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4154 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4155 * not a valid index then either kswapd runs for first time or kswapd couldn't
4156 * sleep after previous reclaim attempt (node is still unbalanced). In that
4157 * case return the zone index of the previous kswapd reclaim cycle.
e716f2eb 4158 */
97a225e6
JK
4159static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4160 enum zone_type prev_highest_zoneidx)
e716f2eb 4161{
97a225e6 4162 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4163
97a225e6 4164 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
e716f2eb
MG
4165}
4166
38087d9b 4167static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
97a225e6 4168 unsigned int highest_zoneidx)
f0bc0a60
KM
4169{
4170 long remaining = 0;
4171 DEFINE_WAIT(wait);
4172
4173 if (freezing(current) || kthread_should_stop())
4174 return;
4175
4176 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4177
333b0a45
SG
4178 /*
4179 * Try to sleep for a short interval. Note that kcompactd will only be
4180 * woken if it is possible to sleep for a short interval. This is
4181 * deliberate on the assumption that if reclaim cannot keep an
4182 * eligible zone balanced that it's also unlikely that compaction will
4183 * succeed.
4184 */
97a225e6 4185 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
fd901c95
VB
4186 /*
4187 * Compaction records what page blocks it recently failed to
4188 * isolate pages from and skips them in the future scanning.
4189 * When kswapd is going to sleep, it is reasonable to assume
4190 * that pages and compaction may succeed so reset the cache.
4191 */
4192 reset_isolation_suitable(pgdat);
4193
4194 /*
4195 * We have freed the memory, now we should compact it to make
4196 * allocation of the requested order possible.
4197 */
97a225e6 4198 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
fd901c95 4199
f0bc0a60 4200 remaining = schedule_timeout(HZ/10);
38087d9b
MG
4201
4202 /*
97a225e6 4203 * If woken prematurely then reset kswapd_highest_zoneidx and
38087d9b
MG
4204 * order. The values will either be from a wakeup request or
4205 * the previous request that slept prematurely.
4206 */
4207 if (remaining) {
97a225e6
JK
4208 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4209 kswapd_highest_zoneidx(pgdat,
4210 highest_zoneidx));
5644e1fb
QC
4211
4212 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4213 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
38087d9b
MG
4214 }
4215
f0bc0a60
KM
4216 finish_wait(&pgdat->kswapd_wait, &wait);
4217 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4218 }
4219
4220 /*
4221 * After a short sleep, check if it was a premature sleep. If not, then
4222 * go fully to sleep until explicitly woken up.
4223 */
d9f21d42 4224 if (!remaining &&
97a225e6 4225 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
f0bc0a60
KM
4226 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4227
4228 /*
4229 * vmstat counters are not perfectly accurate and the estimated
4230 * value for counters such as NR_FREE_PAGES can deviate from the
4231 * true value by nr_online_cpus * threshold. To avoid the zone
4232 * watermarks being breached while under pressure, we reduce the
4233 * per-cpu vmstat threshold while kswapd is awake and restore
4234 * them before going back to sleep.
4235 */
4236 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
4237
4238 if (!kthread_should_stop())
4239 schedule();
4240
f0bc0a60
KM
4241 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4242 } else {
4243 if (remaining)
4244 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4245 else
4246 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4247 }
4248 finish_wait(&pgdat->kswapd_wait, &wait);
4249}
4250
1da177e4
LT
4251/*
4252 * The background pageout daemon, started as a kernel thread
4f98a2fe 4253 * from the init process.
1da177e4
LT
4254 *
4255 * This basically trickles out pages so that we have _some_
4256 * free memory available even if there is no other activity
4257 * that frees anything up. This is needed for things like routing
4258 * etc, where we otherwise might have all activity going on in
4259 * asynchronous contexts that cannot page things out.
4260 *
4261 * If there are applications that are active memory-allocators
4262 * (most normal use), this basically shouldn't matter.
4263 */
4264static int kswapd(void *p)
4265{
e716f2eb 4266 unsigned int alloc_order, reclaim_order;
97a225e6 4267 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
68d68ff6 4268 pg_data_t *pgdat = (pg_data_t *)p;
1da177e4 4269 struct task_struct *tsk = current;
a70f7302 4270 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 4271
174596a0 4272 if (!cpumask_empty(cpumask))
c5f59f08 4273 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
4274
4275 /*
4276 * Tell the memory management that we're a "memory allocator",
4277 * and that if we need more memory we should get access to it
4278 * regardless (see "__alloc_pages()"). "kswapd" should
4279 * never get caught in the normal page freeing logic.
4280 *
4281 * (Kswapd normally doesn't need memory anyway, but sometimes
4282 * you need a small amount of memory in order to be able to
4283 * page out something else, and this flag essentially protects
4284 * us from recursively trying to free more memory as we're
4285 * trying to free the first piece of memory in the first place).
4286 */
930d9152 4287 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 4288 set_freezable();
1da177e4 4289
5644e1fb 4290 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4291 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 4292 for ( ; ; ) {
6f6313d4 4293 bool ret;
3e1d1d28 4294
5644e1fb 4295 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4296 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4297 highest_zoneidx);
e716f2eb 4298
38087d9b
MG
4299kswapd_try_sleep:
4300 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
97a225e6 4301 highest_zoneidx);
215ddd66 4302
97a225e6 4303 /* Read the new order and highest_zoneidx */
2b47a24c 4304 alloc_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4305 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4306 highest_zoneidx);
5644e1fb 4307 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4308 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 4309
8fe23e05
DR
4310 ret = try_to_freeze();
4311 if (kthread_should_stop())
4312 break;
4313
4314 /*
4315 * We can speed up thawing tasks if we don't call balance_pgdat
4316 * after returning from the refrigerator
4317 */
38087d9b
MG
4318 if (ret)
4319 continue;
4320
4321 /*
4322 * Reclaim begins at the requested order but if a high-order
4323 * reclaim fails then kswapd falls back to reclaiming for
4324 * order-0. If that happens, kswapd will consider sleeping
4325 * for the order it finished reclaiming at (reclaim_order)
4326 * but kcompactd is woken to compact for the original
4327 * request (alloc_order).
4328 */
97a225e6 4329 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
e5146b12 4330 alloc_order);
97a225e6
JK
4331 reclaim_order = balance_pgdat(pgdat, alloc_order,
4332 highest_zoneidx);
38087d9b
MG
4333 if (reclaim_order < alloc_order)
4334 goto kswapd_try_sleep;
1da177e4 4335 }
b0a8cc58 4336
71abdc15 4337 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
71abdc15 4338
1da177e4
LT
4339 return 0;
4340}
4341
4342/*
5ecd9d40
DR
4343 * A zone is low on free memory or too fragmented for high-order memory. If
4344 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4345 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4346 * has failed or is not needed, still wake up kcompactd if only compaction is
4347 * needed.
1da177e4 4348 */
5ecd9d40 4349void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
97a225e6 4350 enum zone_type highest_zoneidx)
1da177e4
LT
4351{
4352 pg_data_t *pgdat;
5644e1fb 4353 enum zone_type curr_idx;
1da177e4 4354
6aa303de 4355 if (!managed_zone(zone))
1da177e4
LT
4356 return;
4357
5ecd9d40 4358 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 4359 return;
5644e1fb 4360
88f5acf8 4361 pgdat = zone->zone_pgdat;
97a225e6 4362 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4363
97a225e6
JK
4364 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4365 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
5644e1fb
QC
4366
4367 if (READ_ONCE(pgdat->kswapd_order) < order)
4368 WRITE_ONCE(pgdat->kswapd_order, order);
dffcac2c 4369
8d0986e2 4370 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 4371 return;
e1a55637 4372
5ecd9d40
DR
4373 /* Hopeless node, leave it to direct reclaim if possible */
4374 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
97a225e6
JK
4375 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4376 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
5ecd9d40
DR
4377 /*
4378 * There may be plenty of free memory available, but it's too
4379 * fragmented for high-order allocations. Wake up kcompactd
4380 * and rely on compaction_suitable() to determine if it's
4381 * needed. If it fails, it will defer subsequent attempts to
4382 * ratelimit its work.
4383 */
4384 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
97a225e6 4385 wakeup_kcompactd(pgdat, order, highest_zoneidx);
e716f2eb 4386 return;
5ecd9d40 4387 }
88f5acf8 4388
97a225e6 4389 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
5ecd9d40 4390 gfp_flags);
8d0986e2 4391 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
4392}
4393
c6f37f12 4394#ifdef CONFIG_HIBERNATION
1da177e4 4395/*
7b51755c 4396 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
4397 * freed pages.
4398 *
4399 * Rather than trying to age LRUs the aim is to preserve the overall
4400 * LRU order by reclaiming preferentially
4401 * inactive > active > active referenced > active mapped
1da177e4 4402 */
7b51755c 4403unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 4404{
d6277db4 4405 struct scan_control sc = {
ee814fe2 4406 .nr_to_reclaim = nr_to_reclaim,
7b51755c 4407 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 4408 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 4409 .priority = DEF_PRIORITY,
d6277db4 4410 .may_writepage = 1,
ee814fe2
JW
4411 .may_unmap = 1,
4412 .may_swap = 1,
7b51755c 4413 .hibernation_mode = 1,
1da177e4 4414 };
a09ed5e0 4415 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 4416 unsigned long nr_reclaimed;
499118e9 4417 unsigned int noreclaim_flag;
1da177e4 4418
d92a8cfc 4419 fs_reclaim_acquire(sc.gfp_mask);
93781325 4420 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4421 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 4422
3115cd91 4423 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 4424
1732d2b0 4425 set_task_reclaim_state(current, NULL);
499118e9 4426 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4427 fs_reclaim_release(sc.gfp_mask);
d6277db4 4428
7b51755c 4429 return nr_reclaimed;
1da177e4 4430}
c6f37f12 4431#endif /* CONFIG_HIBERNATION */
1da177e4 4432
3218ae14
YG
4433/*
4434 * This kswapd start function will be called by init and node-hot-add.
4435 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4436 */
4437int kswapd_run(int nid)
4438{
4439 pg_data_t *pgdat = NODE_DATA(nid);
4440 int ret = 0;
4441
4442 if (pgdat->kswapd)
4443 return 0;
4444
4445 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4446 if (IS_ERR(pgdat->kswapd)) {
4447 /* failure at boot is fatal */
c6202adf 4448 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
4449 pr_err("Failed to start kswapd on node %d\n", nid);
4450 ret = PTR_ERR(pgdat->kswapd);
d72515b8 4451 pgdat->kswapd = NULL;
3218ae14
YG
4452 }
4453 return ret;
4454}
4455
8fe23e05 4456/*
d8adde17 4457 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4458 * hold mem_hotplug_begin/end().
8fe23e05
DR
4459 */
4460void kswapd_stop(int nid)
4461{
4462 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4463
d8adde17 4464 if (kswapd) {
8fe23e05 4465 kthread_stop(kswapd);
d8adde17
JL
4466 NODE_DATA(nid)->kswapd = NULL;
4467 }
8fe23e05
DR
4468}
4469
1da177e4
LT
4470static int __init kswapd_init(void)
4471{
6b700b5b 4472 int nid;
69e05944 4473
1da177e4 4474 swap_setup();
48fb2e24 4475 for_each_node_state(nid, N_MEMORY)
3218ae14 4476 kswapd_run(nid);
1da177e4
LT
4477 return 0;
4478}
4479
4480module_init(kswapd_init)
9eeff239
CL
4481
4482#ifdef CONFIG_NUMA
4483/*
a5f5f91d 4484 * Node reclaim mode
9eeff239 4485 *
a5f5f91d 4486 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4487 * the watermarks.
9eeff239 4488 */
a5f5f91d 4489int node_reclaim_mode __read_mostly;
9eeff239 4490
a92f7126 4491/*
a5f5f91d 4492 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4493 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4494 * a zone.
4495 */
a5f5f91d 4496#define NODE_RECLAIM_PRIORITY 4
a92f7126 4497
9614634f 4498/*
a5f5f91d 4499 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4500 * occur.
4501 */
4502int sysctl_min_unmapped_ratio = 1;
4503
0ff38490
CL
4504/*
4505 * If the number of slab pages in a zone grows beyond this percentage then
4506 * slab reclaim needs to occur.
4507 */
4508int sysctl_min_slab_ratio = 5;
4509
11fb9989 4510static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4511{
11fb9989
MG
4512 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4513 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4514 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4515
4516 /*
4517 * It's possible for there to be more file mapped pages than
4518 * accounted for by the pages on the file LRU lists because
4519 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4520 */
4521 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4522}
4523
4524/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4525static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4526{
d031a157
AM
4527 unsigned long nr_pagecache_reclaimable;
4528 unsigned long delta = 0;
90afa5de
MG
4529
4530 /*
95bbc0c7 4531 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4532 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4533 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4534 * a better estimate
4535 */
a5f5f91d
MG
4536 if (node_reclaim_mode & RECLAIM_UNMAP)
4537 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4538 else
a5f5f91d 4539 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4540
4541 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4542 if (!(node_reclaim_mode & RECLAIM_WRITE))
4543 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4544
4545 /* Watch for any possible underflows due to delta */
4546 if (unlikely(delta > nr_pagecache_reclaimable))
4547 delta = nr_pagecache_reclaimable;
4548
4549 return nr_pagecache_reclaimable - delta;
4550}
4551
9eeff239 4552/*
a5f5f91d 4553 * Try to free up some pages from this node through reclaim.
9eeff239 4554 */
a5f5f91d 4555static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4556{
7fb2d46d 4557 /* Minimum pages needed in order to stay on node */
69e05944 4558 const unsigned long nr_pages = 1 << order;
9eeff239 4559 struct task_struct *p = current;
499118e9 4560 unsigned int noreclaim_flag;
179e9639 4561 struct scan_control sc = {
62b726c1 4562 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4563 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4564 .order = order,
a5f5f91d
MG
4565 .priority = NODE_RECLAIM_PRIORITY,
4566 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4567 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4568 .may_swap = 1,
f2f43e56 4569 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4570 };
57f29762 4571 unsigned long pflags;
9eeff239 4572
132bb8cf
YS
4573 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4574 sc.gfp_mask);
4575
9eeff239 4576 cond_resched();
57f29762 4577 psi_memstall_enter(&pflags);
93781325 4578 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4579 /*
95bbc0c7 4580 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4581 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4582 * and RECLAIM_UNMAP.
d4f7796e 4583 */
499118e9
VB
4584 noreclaim_flag = memalloc_noreclaim_save();
4585 p->flags |= PF_SWAPWRITE;
1732d2b0 4586 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 4587
a5f5f91d 4588 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4589 /*
894befec 4590 * Free memory by calling shrink node with increasing
0ff38490
CL
4591 * priorities until we have enough memory freed.
4592 */
0ff38490 4593 do {
970a39a3 4594 shrink_node(pgdat, &sc);
9e3b2f8c 4595 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4596 }
c84db23c 4597
1732d2b0 4598 set_task_reclaim_state(p, NULL);
499118e9
VB
4599 current->flags &= ~PF_SWAPWRITE;
4600 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4601 fs_reclaim_release(sc.gfp_mask);
57f29762 4602 psi_memstall_leave(&pflags);
132bb8cf
YS
4603
4604 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4605
a79311c1 4606 return sc.nr_reclaimed >= nr_pages;
9eeff239 4607}
179e9639 4608
a5f5f91d 4609int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4610{
d773ed6b 4611 int ret;
179e9639
AM
4612
4613 /*
a5f5f91d 4614 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4615 * slab pages if we are over the defined limits.
34aa1330 4616 *
9614634f
CL
4617 * A small portion of unmapped file backed pages is needed for
4618 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4619 * thrown out if the node is overallocated. So we do not reclaim
4620 * if less than a specified percentage of the node is used by
9614634f 4621 * unmapped file backed pages.
179e9639 4622 */
a5f5f91d 4623 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
d42f3245
RG
4624 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4625 pgdat->min_slab_pages)
a5f5f91d 4626 return NODE_RECLAIM_FULL;
179e9639
AM
4627
4628 /*
d773ed6b 4629 * Do not scan if the allocation should not be delayed.
179e9639 4630 */
d0164adc 4631 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4632 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4633
4634 /*
a5f5f91d 4635 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4636 * have associated processors. This will favor the local processor
4637 * over remote processors and spread off node memory allocations
4638 * as wide as possible.
4639 */
a5f5f91d
MG
4640 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4641 return NODE_RECLAIM_NOSCAN;
d773ed6b 4642
a5f5f91d
MG
4643 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4644 return NODE_RECLAIM_NOSCAN;
fa5e084e 4645
a5f5f91d
MG
4646 ret = __node_reclaim(pgdat, gfp_mask, order);
4647 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4648
24cf7251
MG
4649 if (!ret)
4650 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4651
d773ed6b 4652 return ret;
179e9639 4653}
9eeff239 4654#endif
894bc310 4655
89e004ea 4656/**
64e3d12f
KHY
4657 * check_move_unevictable_pages - check pages for evictability and move to
4658 * appropriate zone lru list
4659 * @pvec: pagevec with lru pages to check
89e004ea 4660 *
64e3d12f
KHY
4661 * Checks pages for evictability, if an evictable page is in the unevictable
4662 * lru list, moves it to the appropriate evictable lru list. This function
4663 * should be only used for lru pages.
89e004ea 4664 */
64e3d12f 4665void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4666{
6168d0da 4667 struct lruvec *lruvec = NULL;
24513264
HD
4668 int pgscanned = 0;
4669 int pgrescued = 0;
4670 int i;
89e004ea 4671
64e3d12f
KHY
4672 for (i = 0; i < pvec->nr; i++) {
4673 struct page *page = pvec->pages[i];
8d8869ca
HD
4674 int nr_pages;
4675
4676 if (PageTransTail(page))
4677 continue;
4678
4679 nr_pages = thp_nr_pages(page);
4680 pgscanned += nr_pages;
89e004ea 4681
d25b5bd8
AS
4682 /* block memcg migration during page moving between lru */
4683 if (!TestClearPageLRU(page))
4684 continue;
4685
2a5e4e34 4686 lruvec = relock_page_lruvec_irq(page, lruvec);
d25b5bd8 4687 if (page_evictable(page) && PageUnevictable(page)) {
46ae6b2c 4688 del_page_from_lru_list(page, lruvec);
24513264 4689 ClearPageUnevictable(page);
3a9c9788 4690 add_page_to_lru_list(page, lruvec);
8d8869ca 4691 pgrescued += nr_pages;
89e004ea 4692 }
d25b5bd8 4693 SetPageLRU(page);
24513264 4694 }
89e004ea 4695
6168d0da 4696 if (lruvec) {
24513264
HD
4697 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4698 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
6168d0da 4699 unlock_page_lruvec_irq(lruvec);
d25b5bd8
AS
4700 } else if (pgscanned) {
4701 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
89e004ea 4702 }
89e004ea 4703}
64e3d12f 4704EXPORT_SYMBOL_GPL(check_move_unevictable_pages);