]> git.proxmox.com Git - mirror_zfs.git/blame - module/os/linux/zfs/abd_os.c
module/*.ko: prune .data, global .rodata
[mirror_zfs.git] / module / os / linux / zfs / abd_os.c
CommitLineData
fc551d7e
BA
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
23 * Copyright (c) 2019 by Delphix. All rights reserved.
24 */
25
26/*
fb822260 27 * See abd.c for a general overview of the arc buffered data (ABD).
fc551d7e
BA
28 *
29 * Linear buffers act exactly like normal buffers and are always mapped into the
30 * kernel's virtual memory space, while scattered ABD data chunks are allocated
31 * as physical pages and then mapped in only while they are actually being
32 * accessed through one of the abd_* library functions. Using scattered ABDs
33 * provides several benefits:
34 *
35 * (1) They avoid use of kmem_*, preventing performance problems where running
36 * kmem_reap on very large memory systems never finishes and causes
37 * constant TLB shootdowns.
38 *
39 * (2) Fragmentation is less of an issue since when we are at the limit of
40 * allocatable space, we won't have to search around for a long free
41 * hole in the VA space for large ARC allocations. Each chunk is mapped in
42 * individually, so even if we are using HIGHMEM (see next point) we
43 * wouldn't need to worry about finding a contiguous address range.
44 *
45 * (3) If we are not using HIGHMEM, then all physical memory is always
46 * mapped into the kernel's address space, so we also avoid the map /
47 * unmap costs on each ABD access.
48 *
49 * If we are not using HIGHMEM, scattered buffers which have only one chunk
50 * can be treated as linear buffers, because they are contiguous in the
fb822260 51 * kernel's virtual address space. See abd_alloc_chunks() for details.
fc551d7e
BA
52 */
53
54#include <sys/abd_impl.h>
55#include <sys/param.h>
56#include <sys/zio.h>
85ec5cba 57#include <sys/arc.h>
fc551d7e
BA
58#include <sys/zfs_context.h>
59#include <sys/zfs_znode.h>
60#ifdef _KERNEL
61#include <linux/kmap_compat.h>
62#include <linux/scatterlist.h>
63#else
64#define MAX_ORDER 1
65#endif
66
67typedef struct abd_stats {
68 kstat_named_t abdstat_struct_size;
69 kstat_named_t abdstat_linear_cnt;
70 kstat_named_t abdstat_linear_data_size;
71 kstat_named_t abdstat_scatter_cnt;
72 kstat_named_t abdstat_scatter_data_size;
73 kstat_named_t abdstat_scatter_chunk_waste;
74 kstat_named_t abdstat_scatter_orders[MAX_ORDER];
75 kstat_named_t abdstat_scatter_page_multi_chunk;
76 kstat_named_t abdstat_scatter_page_multi_zone;
77 kstat_named_t abdstat_scatter_page_alloc_retry;
78 kstat_named_t abdstat_scatter_sg_table_retry;
79} abd_stats_t;
80
81static abd_stats_t abd_stats = {
82 /* Amount of memory occupied by all of the abd_t struct allocations */
83 { "struct_size", KSTAT_DATA_UINT64 },
84 /*
85 * The number of linear ABDs which are currently allocated, excluding
86 * ABDs which don't own their data (for instance the ones which were
87 * allocated through abd_get_offset() and abd_get_from_buf()). If an
88 * ABD takes ownership of its buf then it will become tracked.
89 */
90 { "linear_cnt", KSTAT_DATA_UINT64 },
91 /* Amount of data stored in all linear ABDs tracked by linear_cnt */
92 { "linear_data_size", KSTAT_DATA_UINT64 },
93 /*
94 * The number of scatter ABDs which are currently allocated, excluding
95 * ABDs which don't own their data (for instance the ones which were
96 * allocated through abd_get_offset()).
97 */
98 { "scatter_cnt", KSTAT_DATA_UINT64 },
99 /* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
100 { "scatter_data_size", KSTAT_DATA_UINT64 },
101 /*
102 * The amount of space wasted at the end of the last chunk across all
103 * scatter ABDs tracked by scatter_cnt.
104 */
105 { "scatter_chunk_waste", KSTAT_DATA_UINT64 },
106 /*
107 * The number of compound allocations of a given order. These
108 * allocations are spread over all currently allocated ABDs, and
109 * act as a measure of memory fragmentation.
110 */
111 { { "scatter_order_N", KSTAT_DATA_UINT64 } },
112 /*
113 * The number of scatter ABDs which contain multiple chunks.
114 * ABDs are preferentially allocated from the minimum number of
115 * contiguous multi-page chunks, a single chunk is optimal.
116 */
117 { "scatter_page_multi_chunk", KSTAT_DATA_UINT64 },
118 /*
119 * The number of scatter ABDs which are split across memory zones.
120 * ABDs are preferentially allocated using pages from a single zone.
121 */
122 { "scatter_page_multi_zone", KSTAT_DATA_UINT64 },
123 /*
124 * The total number of retries encountered when attempting to
125 * allocate the pages to populate the scatter ABD.
126 */
127 { "scatter_page_alloc_retry", KSTAT_DATA_UINT64 },
128 /*
129 * The total number of retries encountered when attempting to
130 * allocate the sg table for an ABD.
131 */
132 { "scatter_sg_table_retry", KSTAT_DATA_UINT64 },
133};
134
c4c162c1
AM
135struct {
136 wmsum_t abdstat_struct_size;
137 wmsum_t abdstat_linear_cnt;
138 wmsum_t abdstat_linear_data_size;
139 wmsum_t abdstat_scatter_cnt;
140 wmsum_t abdstat_scatter_data_size;
141 wmsum_t abdstat_scatter_chunk_waste;
142 wmsum_t abdstat_scatter_orders[MAX_ORDER];
143 wmsum_t abdstat_scatter_page_multi_chunk;
144 wmsum_t abdstat_scatter_page_multi_zone;
145 wmsum_t abdstat_scatter_page_alloc_retry;
146 wmsum_t abdstat_scatter_sg_table_retry;
147} abd_sums;
148
fc551d7e
BA
149#define abd_for_each_sg(abd, sg, n, i) \
150 for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i)
151
fc551d7e
BA
152/*
153 * zfs_abd_scatter_min_size is the minimum allocation size to use scatter
154 * ABD's. Smaller allocations will use linear ABD's which uses
155 * zio_[data_]buf_alloc().
156 *
157 * Scatter ABD's use at least one page each, so sub-page allocations waste
158 * some space when allocated as scatter (e.g. 2KB scatter allocation wastes
159 * half of each page). Using linear ABD's for small allocations means that
160 * they will be put on slabs which contain many allocations. This can
161 * improve memory efficiency, but it also makes it much harder for ARC
162 * evictions to actually free pages, because all the buffers on one slab need
163 * to be freed in order for the slab (and underlying pages) to be freed.
164 * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's
165 * possible for them to actually waste more memory than scatter (one page per
166 * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th).
167 *
168 * Spill blocks are typically 512B and are heavily used on systems running
169 * selinux with the default dnode size and the `xattr=sa` property set.
170 *
171 * By default we use linear allocations for 512B and 1KB, and scatter
172 * allocations for larger (1.5KB and up).
173 */
18168da7 174static int zfs_abd_scatter_min_size = 512 * 3;
fc551d7e 175
fb822260
BA
176/*
177 * We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are
178 * just a single zero'd page. This allows us to conserve memory by
179 * only using a single zero page for the scatterlist.
180 */
181abd_t *abd_zero_scatter = NULL;
182
e08b9933
BA
183struct page;
184/*
185 * abd_zero_page we will be an allocated zero'd PAGESIZE buffer, which is
186 * assigned to set each of the pages of abd_zero_scatter.
187 */
188static struct page *abd_zero_page = NULL;
189
fc551d7e
BA
190static kmem_cache_t *abd_cache = NULL;
191static kstat_t *abd_ksp;
192
6366ef22 193static uint_t
fc551d7e
BA
194abd_chunkcnt_for_bytes(size_t size)
195{
196 return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE);
197}
198
199abd_t *
e2af2acc 200abd_alloc_struct_impl(size_t size)
fc551d7e
BA
201{
202 /*
203 * In Linux we do not use the size passed in during ABD
204 * allocation, so we just ignore it.
205 */
66cd33e0 206 (void) size;
fc551d7e
BA
207 abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE);
208 ASSERT3P(abd, !=, NULL);
209 ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t));
210
211 return (abd);
212}
213
214void
e2af2acc 215abd_free_struct_impl(abd_t *abd)
fc551d7e
BA
216{
217 kmem_cache_free(abd_cache, abd);
218 ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t));
219}
220
221#ifdef _KERNEL
18168da7
AZ
222static unsigned zfs_abd_scatter_max_order = MAX_ORDER - 1;
223
fc551d7e
BA
224/*
225 * Mark zfs data pages so they can be excluded from kernel crash dumps
226 */
227#ifdef _LP64
228#define ABD_FILE_CACHE_PAGE 0x2F5ABDF11ECAC4E
229
230static inline void
231abd_mark_zfs_page(struct page *page)
232{
233 get_page(page);
234 SetPagePrivate(page);
235 set_page_private(page, ABD_FILE_CACHE_PAGE);
236}
237
238static inline void
239abd_unmark_zfs_page(struct page *page)
240{
241 set_page_private(page, 0UL);
242 ClearPagePrivate(page);
243 put_page(page);
244}
245#else
246#define abd_mark_zfs_page(page)
247#define abd_unmark_zfs_page(page)
248#endif /* _LP64 */
249
250#ifndef CONFIG_HIGHMEM
251
252#ifndef __GFP_RECLAIM
253#define __GFP_RECLAIM __GFP_WAIT
254#endif
255
256/*
257 * The goal is to minimize fragmentation by preferentially populating ABDs
258 * with higher order compound pages from a single zone. Allocation size is
259 * progressively decreased until it can be satisfied without performing
260 * reclaim or compaction. When necessary this function will degenerate to
261 * allocating individual pages and allowing reclaim to satisfy allocations.
262 */
263void
264abd_alloc_chunks(abd_t *abd, size_t size)
265{
266 struct list_head pages;
267 struct sg_table table;
268 struct scatterlist *sg;
269 struct page *page, *tmp_page = NULL;
270 gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
271 gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM;
272 int max_order = MIN(zfs_abd_scatter_max_order, MAX_ORDER - 1);
273 int nr_pages = abd_chunkcnt_for_bytes(size);
274 int chunks = 0, zones = 0;
275 size_t remaining_size;
276 int nid = NUMA_NO_NODE;
277 int alloc_pages = 0;
278
279 INIT_LIST_HEAD(&pages);
280
281 while (alloc_pages < nr_pages) {
282 unsigned chunk_pages;
283 int order;
284
285 order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order);
286 chunk_pages = (1U << order);
287
288 page = alloc_pages_node(nid, order ? gfp_comp : gfp, order);
289 if (page == NULL) {
290 if (order == 0) {
291 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
292 schedule_timeout_interruptible(1);
293 } else {
294 max_order = MAX(0, order - 1);
295 }
296 continue;
297 }
298
299 list_add_tail(&page->lru, &pages);
300
301 if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid))
302 zones++;
303
304 nid = page_to_nid(page);
305 ABDSTAT_BUMP(abdstat_scatter_orders[order]);
306 chunks++;
307 alloc_pages += chunk_pages;
308 }
309
310 ASSERT3S(alloc_pages, ==, nr_pages);
311
312 while (sg_alloc_table(&table, chunks, gfp)) {
313 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
314 schedule_timeout_interruptible(1);
315 }
316
317 sg = table.sgl;
318 remaining_size = size;
319 list_for_each_entry_safe(page, tmp_page, &pages, lru) {
320 size_t sg_size = MIN(PAGESIZE << compound_order(page),
321 remaining_size);
322 sg_set_page(sg, page, sg_size, 0);
323 abd_mark_zfs_page(page);
324 remaining_size -= sg_size;
325
326 sg = sg_next(sg);
327 list_del(&page->lru);
328 }
329
330 /*
331 * These conditions ensure that a possible transformation to a linear
332 * ABD would be valid.
333 */
334 ASSERT(!PageHighMem(sg_page(table.sgl)));
335 ASSERT0(ABD_SCATTER(abd).abd_offset);
336
337 if (table.nents == 1) {
338 /*
339 * Since there is only one entry, this ABD can be represented
340 * as a linear buffer. All single-page (4K) ABD's can be
341 * represented this way. Some multi-page ABD's can also be
342 * represented this way, if we were able to allocate a single
343 * "chunk" (higher-order "page" which represents a power-of-2
344 * series of physically-contiguous pages). This is often the
345 * case for 2-page (8K) ABD's.
346 *
347 * Representing a single-entry scatter ABD as a linear ABD
348 * has the performance advantage of avoiding the copy (and
349 * allocation) in abd_borrow_buf_copy / abd_return_buf_copy.
350 * A performance increase of around 5% has been observed for
351 * ARC-cached reads (of small blocks which can take advantage
352 * of this).
353 *
354 * Note that this optimization is only possible because the
355 * pages are always mapped into the kernel's address space.
356 * This is not the case for highmem pages, so the
357 * optimization can not be made there.
358 */
359 abd->abd_flags |= ABD_FLAG_LINEAR;
360 abd->abd_flags |= ABD_FLAG_LINEAR_PAGE;
361 abd->abd_u.abd_linear.abd_sgl = table.sgl;
362 ABD_LINEAR_BUF(abd) = page_address(sg_page(table.sgl));
363 } else if (table.nents > 1) {
364 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
365 abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
366
367 if (zones) {
368 ABDSTAT_BUMP(abdstat_scatter_page_multi_zone);
369 abd->abd_flags |= ABD_FLAG_MULTI_ZONE;
370 }
371
372 ABD_SCATTER(abd).abd_sgl = table.sgl;
373 ABD_SCATTER(abd).abd_nents = table.nents;
374 }
375}
376#else
377
378/*
379 * Allocate N individual pages to construct a scatter ABD. This function
380 * makes no attempt to request contiguous pages and requires the minimal
381 * number of kernel interfaces. It's designed for maximum compatibility.
382 */
383void
384abd_alloc_chunks(abd_t *abd, size_t size)
385{
386 struct scatterlist *sg = NULL;
387 struct sg_table table;
388 struct page *page;
389 gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
390 int nr_pages = abd_chunkcnt_for_bytes(size);
391 int i = 0;
392
393 while (sg_alloc_table(&table, nr_pages, gfp)) {
394 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
395 schedule_timeout_interruptible(1);
396 }
397
398 ASSERT3U(table.nents, ==, nr_pages);
399 ABD_SCATTER(abd).abd_sgl = table.sgl;
400 ABD_SCATTER(abd).abd_nents = nr_pages;
401
402 abd_for_each_sg(abd, sg, nr_pages, i) {
403 while ((page = __page_cache_alloc(gfp)) == NULL) {
404 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
405 schedule_timeout_interruptible(1);
406 }
407
408 ABDSTAT_BUMP(abdstat_scatter_orders[0]);
409 sg_set_page(sg, page, PAGESIZE, 0);
410 abd_mark_zfs_page(page);
411 }
412
413 if (nr_pages > 1) {
414 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
415 abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
416 }
417}
418#endif /* !CONFIG_HIGHMEM */
419
420/*
421 * This must be called if any of the sg_table allocation functions
422 * are called.
423 */
424static void
425abd_free_sg_table(abd_t *abd)
426{
427 struct sg_table table;
428
429 table.sgl = ABD_SCATTER(abd).abd_sgl;
430 table.nents = table.orig_nents = ABD_SCATTER(abd).abd_nents;
431 sg_free_table(&table);
432}
433
434void
435abd_free_chunks(abd_t *abd)
436{
437 struct scatterlist *sg = NULL;
438 struct page *page;
439 int nr_pages = ABD_SCATTER(abd).abd_nents;
440 int order, i = 0;
441
442 if (abd->abd_flags & ABD_FLAG_MULTI_ZONE)
443 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone);
444
445 if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK)
446 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
447
448 abd_for_each_sg(abd, sg, nr_pages, i) {
449 page = sg_page(sg);
450 abd_unmark_zfs_page(page);
451 order = compound_order(page);
452 __free_pages(page, order);
453 ASSERT3U(sg->length, <=, PAGE_SIZE << order);
454 ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]);
455 }
456 abd_free_sg_table(abd);
457}
458
fb822260
BA
459/*
460 * Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in
e08b9933 461 * the scatterlist will be set to the zero'd out buffer abd_zero_page.
fb822260
BA
462 */
463static void
464abd_alloc_zero_scatter(void)
465{
466 struct scatterlist *sg = NULL;
467 struct sg_table table;
468 gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
e08b9933 469 gfp_t gfp_zero_page = gfp | __GFP_ZERO;
fb822260
BA
470 int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
471 int i = 0;
472
e08b9933
BA
473 while ((abd_zero_page = __page_cache_alloc(gfp_zero_page)) == NULL) {
474 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
475 schedule_timeout_interruptible(1);
476 }
477 abd_mark_zfs_page(abd_zero_page);
478
fb822260
BA
479 while (sg_alloc_table(&table, nr_pages, gfp)) {
480 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
481 schedule_timeout_interruptible(1);
482 }
483 ASSERT3U(table.nents, ==, nr_pages);
484
485 abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
e2af2acc 486 abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
fb822260
BA
487 ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
488 ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl;
489 ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
490 abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
fb822260 491 abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
fb822260
BA
492
493 abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
e08b9933 494 sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
fb822260
BA
495 }
496
497 ABDSTAT_BUMP(abdstat_scatter_cnt);
498 ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
499 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
500}
501
fc551d7e
BA
502#else /* _KERNEL */
503
504#ifndef PAGE_SHIFT
505#define PAGE_SHIFT (highbit64(PAGESIZE)-1)
506#endif
507
f52124dc
BA
508#define zfs_kmap_atomic(chunk) ((void *)chunk)
509#define zfs_kunmap_atomic(addr) do { (void)(addr); } while (0)
fc551d7e
BA
510#define local_irq_save(flags) do { (void)(flags); } while (0)
511#define local_irq_restore(flags) do { (void)(flags); } while (0)
512#define nth_page(pg, i) \
513 ((struct page *)((void *)(pg) + (i) * PAGESIZE))
514
515struct scatterlist {
516 struct page *page;
517 int length;
518 int end;
519};
520
521static void
522sg_init_table(struct scatterlist *sg, int nr)
523{
524 memset(sg, 0, nr * sizeof (struct scatterlist));
525 sg[nr - 1].end = 1;
526}
527
528/*
529 * This must be called if any of the sg_table allocation functions
530 * are called.
531 */
532static void
533abd_free_sg_table(abd_t *abd)
534{
535 int nents = ABD_SCATTER(abd).abd_nents;
536 vmem_free(ABD_SCATTER(abd).abd_sgl,
537 nents * sizeof (struct scatterlist));
538}
539
540#define for_each_sg(sgl, sg, nr, i) \
541 for ((i) = 0, (sg) = (sgl); (i) < (nr); (i)++, (sg) = sg_next(sg))
542
543static inline void
544sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len,
545 unsigned int offset)
546{
547 /* currently we don't use offset */
548 ASSERT(offset == 0);
549 sg->page = page;
550 sg->length = len;
551}
552
553static inline struct page *
554sg_page(struct scatterlist *sg)
555{
556 return (sg->page);
557}
558
559static inline struct scatterlist *
560sg_next(struct scatterlist *sg)
561{
562 if (sg->end)
563 return (NULL);
564
565 return (sg + 1);
566}
567
568void
569abd_alloc_chunks(abd_t *abd, size_t size)
570{
571 unsigned nr_pages = abd_chunkcnt_for_bytes(size);
572 struct scatterlist *sg;
573 int i;
574
575 ABD_SCATTER(abd).abd_sgl = vmem_alloc(nr_pages *
576 sizeof (struct scatterlist), KM_SLEEP);
577 sg_init_table(ABD_SCATTER(abd).abd_sgl, nr_pages);
578
579 abd_for_each_sg(abd, sg, nr_pages, i) {
580 struct page *p = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
581 sg_set_page(sg, p, PAGESIZE, 0);
582 }
583 ABD_SCATTER(abd).abd_nents = nr_pages;
584}
585
586void
587abd_free_chunks(abd_t *abd)
588{
589 int i, n = ABD_SCATTER(abd).abd_nents;
590 struct scatterlist *sg;
591
592 abd_for_each_sg(abd, sg, n, i) {
593 for (int j = 0; j < sg->length; j += PAGESIZE) {
594 struct page *p = nth_page(sg_page(sg), j >> PAGE_SHIFT);
595 umem_free(p, PAGESIZE);
596 }
597 }
598 abd_free_sg_table(abd);
599}
600
fb822260
BA
601static void
602abd_alloc_zero_scatter(void)
603{
604 unsigned nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
605 struct scatterlist *sg;
606 int i;
607
608 abd_zero_page = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
609 memset(abd_zero_page, 0, PAGESIZE);
610 abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
e2af2acc 611 abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
fb822260
BA
612 abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
613 ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
614 ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
615 abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
fb822260
BA
616 zfs_refcount_create(&abd_zero_scatter->abd_children);
617 ABD_SCATTER(abd_zero_scatter).abd_sgl = vmem_alloc(nr_pages *
618 sizeof (struct scatterlist), KM_SLEEP);
619
620 sg_init_table(ABD_SCATTER(abd_zero_scatter).abd_sgl, nr_pages);
621
622 abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
623 sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
624 }
625
626 ABDSTAT_BUMP(abdstat_scatter_cnt);
627 ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
628 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
629}
630
fc551d7e
BA
631#endif /* _KERNEL */
632
633boolean_t
634abd_size_alloc_linear(size_t size)
635{
7eebcd2b 636 return (!zfs_abd_scatter_enabled || size < zfs_abd_scatter_min_size);
fc551d7e
BA
637}
638
639void
640abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op)
641{
642 ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
85ec5cba 643 int waste = P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size;
fc551d7e
BA
644 if (op == ABDSTAT_INCR) {
645 ABDSTAT_BUMP(abdstat_scatter_cnt);
646 ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size);
85ec5cba
MA
647 ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste);
648 arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE);
fc551d7e
BA
649 } else {
650 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
651 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
85ec5cba
MA
652 ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste);
653 arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE);
fc551d7e
BA
654 }
655}
656
657void
658abd_update_linear_stats(abd_t *abd, abd_stats_op_t op)
659{
660 ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
661 if (op == ABDSTAT_INCR) {
662 ABDSTAT_BUMP(abdstat_linear_cnt);
663 ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
664 } else {
665 ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
666 ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
667 }
668}
669
670void
671abd_verify_scatter(abd_t *abd)
672{
673 size_t n;
674 int i = 0;
675 struct scatterlist *sg = NULL;
676
677 ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0);
678 ASSERT3U(ABD_SCATTER(abd).abd_offset, <,
679 ABD_SCATTER(abd).abd_sgl->length);
680 n = ABD_SCATTER(abd).abd_nents;
681 abd_for_each_sg(abd, sg, n, i) {
682 ASSERT3P(sg_page(sg), !=, NULL);
683 }
684}
685
fb822260
BA
686static void
687abd_free_zero_scatter(void)
688{
fb822260
BA
689 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
690 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE);
691 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
692
693 abd_free_sg_table(abd_zero_scatter);
694 abd_free_struct(abd_zero_scatter);
695 abd_zero_scatter = NULL;
e08b9933
BA
696 ASSERT3P(abd_zero_page, !=, NULL);
697#if defined(_KERNEL)
698 abd_unmark_zfs_page(abd_zero_page);
699 __free_page(abd_zero_page);
700#else
fb822260
BA
701 umem_free(abd_zero_page, PAGESIZE);
702#endif /* _KERNEL */
703}
704
c4c162c1
AM
705static int
706abd_kstats_update(kstat_t *ksp, int rw)
707{
708 abd_stats_t *as = ksp->ks_data;
709
710 if (rw == KSTAT_WRITE)
711 return (EACCES);
712 as->abdstat_struct_size.value.ui64 =
713 wmsum_value(&abd_sums.abdstat_struct_size);
714 as->abdstat_linear_cnt.value.ui64 =
715 wmsum_value(&abd_sums.abdstat_linear_cnt);
716 as->abdstat_linear_data_size.value.ui64 =
717 wmsum_value(&abd_sums.abdstat_linear_data_size);
718 as->abdstat_scatter_cnt.value.ui64 =
719 wmsum_value(&abd_sums.abdstat_scatter_cnt);
720 as->abdstat_scatter_data_size.value.ui64 =
721 wmsum_value(&abd_sums.abdstat_scatter_data_size);
722 as->abdstat_scatter_chunk_waste.value.ui64 =
723 wmsum_value(&abd_sums.abdstat_scatter_chunk_waste);
724 for (int i = 0; i < MAX_ORDER; i++) {
725 as->abdstat_scatter_orders[i].value.ui64 =
726 wmsum_value(&abd_sums.abdstat_scatter_orders[i]);
727 }
728 as->abdstat_scatter_page_multi_chunk.value.ui64 =
729 wmsum_value(&abd_sums.abdstat_scatter_page_multi_chunk);
730 as->abdstat_scatter_page_multi_zone.value.ui64 =
731 wmsum_value(&abd_sums.abdstat_scatter_page_multi_zone);
732 as->abdstat_scatter_page_alloc_retry.value.ui64 =
733 wmsum_value(&abd_sums.abdstat_scatter_page_alloc_retry);
734 as->abdstat_scatter_sg_table_retry.value.ui64 =
735 wmsum_value(&abd_sums.abdstat_scatter_sg_table_retry);
736 return (0);
737}
738
fc551d7e
BA
739void
740abd_init(void)
741{
742 int i;
743
744 abd_cache = kmem_cache_create("abd_t", sizeof (abd_t),
745 0, NULL, NULL, NULL, NULL, NULL, 0);
746
c4c162c1
AM
747 wmsum_init(&abd_sums.abdstat_struct_size, 0);
748 wmsum_init(&abd_sums.abdstat_linear_cnt, 0);
749 wmsum_init(&abd_sums.abdstat_linear_data_size, 0);
750 wmsum_init(&abd_sums.abdstat_scatter_cnt, 0);
751 wmsum_init(&abd_sums.abdstat_scatter_data_size, 0);
752 wmsum_init(&abd_sums.abdstat_scatter_chunk_waste, 0);
753 for (i = 0; i < MAX_ORDER; i++)
754 wmsum_init(&abd_sums.abdstat_scatter_orders[i], 0);
755 wmsum_init(&abd_sums.abdstat_scatter_page_multi_chunk, 0);
756 wmsum_init(&abd_sums.abdstat_scatter_page_multi_zone, 0);
757 wmsum_init(&abd_sums.abdstat_scatter_page_alloc_retry, 0);
758 wmsum_init(&abd_sums.abdstat_scatter_sg_table_retry, 0);
759
fc551d7e
BA
760 abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
761 sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
762 if (abd_ksp != NULL) {
763 for (i = 0; i < MAX_ORDER; i++) {
764 snprintf(abd_stats.abdstat_scatter_orders[i].name,
765 KSTAT_STRLEN, "scatter_order_%d", i);
766 abd_stats.abdstat_scatter_orders[i].data_type =
767 KSTAT_DATA_UINT64;
768 }
769 abd_ksp->ks_data = &abd_stats;
c4c162c1 770 abd_ksp->ks_update = abd_kstats_update;
fc551d7e
BA
771 kstat_install(abd_ksp);
772 }
fb822260
BA
773
774 abd_alloc_zero_scatter();
fc551d7e
BA
775}
776
777void
778abd_fini(void)
779{
fb822260
BA
780 abd_free_zero_scatter();
781
fc551d7e
BA
782 if (abd_ksp != NULL) {
783 kstat_delete(abd_ksp);
784 abd_ksp = NULL;
785 }
786
c4c162c1
AM
787 wmsum_fini(&abd_sums.abdstat_struct_size);
788 wmsum_fini(&abd_sums.abdstat_linear_cnt);
789 wmsum_fini(&abd_sums.abdstat_linear_data_size);
790 wmsum_fini(&abd_sums.abdstat_scatter_cnt);
791 wmsum_fini(&abd_sums.abdstat_scatter_data_size);
792 wmsum_fini(&abd_sums.abdstat_scatter_chunk_waste);
793 for (int i = 0; i < MAX_ORDER; i++)
794 wmsum_fini(&abd_sums.abdstat_scatter_orders[i]);
795 wmsum_fini(&abd_sums.abdstat_scatter_page_multi_chunk);
796 wmsum_fini(&abd_sums.abdstat_scatter_page_multi_zone);
797 wmsum_fini(&abd_sums.abdstat_scatter_page_alloc_retry);
798 wmsum_fini(&abd_sums.abdstat_scatter_sg_table_retry);
799
fc551d7e
BA
800 if (abd_cache) {
801 kmem_cache_destroy(abd_cache);
802 abd_cache = NULL;
803 }
804}
805
806void
807abd_free_linear_page(abd_t *abd)
808{
809 /* Transform it back into a scatter ABD for freeing */
810 struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl;
811 abd->abd_flags &= ~ABD_FLAG_LINEAR;
812 abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE;
813 ABD_SCATTER(abd).abd_nents = 1;
814 ABD_SCATTER(abd).abd_offset = 0;
815 ABD_SCATTER(abd).abd_sgl = sg;
816 abd_free_chunks(abd);
817
fc551d7e 818 abd_update_scatter_stats(abd, ABDSTAT_DECR);
fc551d7e
BA
819}
820
821/*
822 * If we're going to use this ABD for doing I/O using the block layer, the
823 * consumer of the ABD data doesn't care if it's scattered or not, and we don't
824 * plan to store this ABD in memory for a long period of time, we should
825 * allocate the ABD type that requires the least data copying to do the I/O.
826 *
827 * On Linux the optimal thing to do would be to use abd_get_offset() and
828 * construct a new ABD which shares the original pages thereby eliminating
829 * the copy. But for the moment a new linear ABD is allocated until this
830 * performance optimization can be implemented.
831 */
832abd_t *
833abd_alloc_for_io(size_t size, boolean_t is_metadata)
834{
835 return (abd_alloc(size, is_metadata));
836}
837
838abd_t *
c6d1112b
JL
839abd_get_offset_scatter(abd_t *abd, abd_t *sabd, size_t off,
840 size_t size)
fc551d7e 841{
66cd33e0 842 (void) size;
fc551d7e
BA
843 int i = 0;
844 struct scatterlist *sg = NULL;
845
846 abd_verify(sabd);
847 ASSERT3U(off, <=, sabd->abd_size);
848
849 size_t new_offset = ABD_SCATTER(sabd).abd_offset + off;
850
e2af2acc
MA
851 if (abd == NULL)
852 abd = abd_alloc_struct(0);
fc551d7e
BA
853
854 /*
855 * Even if this buf is filesystem metadata, we only track that
856 * if we own the underlying data buffer, which is not true in
857 * this case. Therefore, we don't ever use ABD_FLAG_META here.
858 */
fc551d7e
BA
859
860 abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) {
861 if (new_offset < sg->length)
862 break;
863 new_offset -= sg->length;
864 }
865
866 ABD_SCATTER(abd).abd_sgl = sg;
867 ABD_SCATTER(abd).abd_offset = new_offset;
868 ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i;
869
870 return (abd);
871}
872
873/*
874 * Initialize the abd_iter.
875 */
876void
877abd_iter_init(struct abd_iter *aiter, abd_t *abd)
878{
fb822260 879 ASSERT(!abd_is_gang(abd));
fc551d7e
BA
880 abd_verify(abd);
881 aiter->iter_abd = abd;
882 aiter->iter_mapaddr = NULL;
883 aiter->iter_mapsize = 0;
884 aiter->iter_pos = 0;
885 if (abd_is_linear(abd)) {
886 aiter->iter_offset = 0;
887 aiter->iter_sg = NULL;
888 } else {
889 aiter->iter_offset = ABD_SCATTER(abd).abd_offset;
890 aiter->iter_sg = ABD_SCATTER(abd).abd_sgl;
891 }
892}
893
894/*
895 * This is just a helper function to see if we have exhausted the
896 * abd_iter and reached the end.
897 */
898boolean_t
899abd_iter_at_end(struct abd_iter *aiter)
900{
901 return (aiter->iter_pos == aiter->iter_abd->abd_size);
902}
903
904/*
905 * Advance the iterator by a certain amount. Cannot be called when a chunk is
906 * in use. This can be safely called when the aiter has already exhausted, in
907 * which case this does nothing.
908 */
909void
910abd_iter_advance(struct abd_iter *aiter, size_t amount)
911{
912 ASSERT3P(aiter->iter_mapaddr, ==, NULL);
913 ASSERT0(aiter->iter_mapsize);
914
915 /* There's nothing left to advance to, so do nothing */
916 if (abd_iter_at_end(aiter))
917 return;
918
919 aiter->iter_pos += amount;
920 aiter->iter_offset += amount;
921 if (!abd_is_linear(aiter->iter_abd)) {
922 while (aiter->iter_offset >= aiter->iter_sg->length) {
923 aiter->iter_offset -= aiter->iter_sg->length;
924 aiter->iter_sg = sg_next(aiter->iter_sg);
925 if (aiter->iter_sg == NULL) {
926 ASSERT0(aiter->iter_offset);
927 break;
928 }
929 }
930 }
931}
932
933/*
934 * Map the current chunk into aiter. This can be safely called when the aiter
935 * has already exhausted, in which case this does nothing.
936 */
937void
938abd_iter_map(struct abd_iter *aiter)
939{
940 void *paddr;
941 size_t offset = 0;
942
943 ASSERT3P(aiter->iter_mapaddr, ==, NULL);
944 ASSERT0(aiter->iter_mapsize);
945
946 /* There's nothing left to iterate over, so do nothing */
947 if (abd_iter_at_end(aiter))
948 return;
949
950 if (abd_is_linear(aiter->iter_abd)) {
951 ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset);
952 offset = aiter->iter_offset;
953 aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
954 paddr = ABD_LINEAR_BUF(aiter->iter_abd);
955 } else {
956 offset = aiter->iter_offset;
957 aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset,
958 aiter->iter_abd->abd_size - aiter->iter_pos);
959
f52124dc 960 paddr = zfs_kmap_atomic(sg_page(aiter->iter_sg));
fc551d7e
BA
961 }
962
963 aiter->iter_mapaddr = (char *)paddr + offset;
964}
965
966/*
967 * Unmap the current chunk from aiter. This can be safely called when the aiter
968 * has already exhausted, in which case this does nothing.
969 */
970void
971abd_iter_unmap(struct abd_iter *aiter)
972{
973 /* There's nothing left to unmap, so do nothing */
974 if (abd_iter_at_end(aiter))
975 return;
976
977 if (!abd_is_linear(aiter->iter_abd)) {
978 /* LINTED E_FUNC_SET_NOT_USED */
f52124dc 979 zfs_kunmap_atomic(aiter->iter_mapaddr - aiter->iter_offset);
fc551d7e
BA
980 }
981
982 ASSERT3P(aiter->iter_mapaddr, !=, NULL);
983 ASSERT3U(aiter->iter_mapsize, >, 0);
984
985 aiter->iter_mapaddr = NULL;
986 aiter->iter_mapsize = 0;
987}
988
7564073e
MM
989void
990abd_cache_reap_now(void)
991{
992}
993
fc551d7e
BA
994#if defined(_KERNEL)
995/*
996 * bio_nr_pages for ABD.
997 * @off is the offset in @abd
998 */
999unsigned long
1000abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off)
1001{
1002 unsigned long pos;
1003
f8c0d7e1
MA
1004 if (abd_is_gang(abd)) {
1005 unsigned long count = 0;
1006
1007 for (abd_t *cabd = abd_gang_get_offset(abd, &off);
1008 cabd != NULL && size != 0;
1009 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
1010 ASSERT3U(off, <, cabd->abd_size);
1011 int mysize = MIN(size, cabd->abd_size - off);
1012 count += abd_nr_pages_off(cabd, mysize, off);
1013 size -= mysize;
1014 off = 0;
1015 }
1016 return (count);
1017 }
fb822260 1018
fc551d7e
BA
1019 if (abd_is_linear(abd))
1020 pos = (unsigned long)abd_to_buf(abd) + off;
1021 else
1022 pos = ABD_SCATTER(abd).abd_offset + off;
1023
f8c0d7e1
MA
1024 return (((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) -
1025 (pos >> PAGE_SHIFT));
fc551d7e
BA
1026}
1027
fb822260
BA
1028static unsigned int
1029bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size)
1030{
1031 unsigned int offset, size, i;
1032 struct page *page;
1033
1034 offset = offset_in_page(buf_ptr);
1035 for (i = 0; i < bio->bi_max_vecs; i++) {
1036 size = PAGE_SIZE - offset;
1037
1038 if (bio_size <= 0)
1039 break;
1040
1041 if (size > bio_size)
1042 size = bio_size;
1043
1044 if (is_vmalloc_addr(buf_ptr))
1045 page = vmalloc_to_page(buf_ptr);
1046 else
1047 page = virt_to_page(buf_ptr);
1048
1049 /*
1050 * Some network related block device uses tcp_sendpage, which
1051 * doesn't behave well when using 0-count page, this is a
1052 * safety net to catch them.
1053 */
1054 ASSERT3S(page_count(page), >, 0);
1055
1056 if (bio_add_page(bio, page, size, offset) != size)
1057 break;
1058
1059 buf_ptr += size;
1060 bio_size -= size;
1061 offset = 0;
1062 }
1063
1064 return (bio_size);
1065}
1066
fc551d7e 1067/*
fb822260
BA
1068 * bio_map for gang ABD.
1069 */
1070static unsigned int
1071abd_gang_bio_map_off(struct bio *bio, abd_t *abd,
1072 unsigned int io_size, size_t off)
1073{
1074 ASSERT(abd_is_gang(abd));
1075
1076 for (abd_t *cabd = abd_gang_get_offset(abd, &off);
1077 cabd != NULL;
1078 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
1079 ASSERT3U(off, <, cabd->abd_size);
1080 int size = MIN(io_size, cabd->abd_size - off);
1081 int remainder = abd_bio_map_off(bio, cabd, size, off);
1082 io_size -= (size - remainder);
1083 if (io_size == 0 || remainder > 0)
1084 return (io_size);
1085 off = 0;
1086 }
1087 ASSERT0(io_size);
1088 return (io_size);
1089}
1090
1091/*
1092 * bio_map for ABD.
fc551d7e
BA
1093 * @off is the offset in @abd
1094 * Remaining IO size is returned
1095 */
1096unsigned int
fb822260 1097abd_bio_map_off(struct bio *bio, abd_t *abd,
fc551d7e
BA
1098 unsigned int io_size, size_t off)
1099{
fc551d7e
BA
1100 struct abd_iter aiter;
1101
fc551d7e 1102 ASSERT3U(io_size, <=, abd->abd_size - off);
fb822260
BA
1103 if (abd_is_linear(abd))
1104 return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size));
1105
1106 ASSERT(!abd_is_linear(abd));
1107 if (abd_is_gang(abd))
1108 return (abd_gang_bio_map_off(bio, abd, io_size, off));
fc551d7e
BA
1109
1110 abd_iter_init(&aiter, abd);
1111 abd_iter_advance(&aiter, off);
1112
f8c0d7e1 1113 for (int i = 0; i < bio->bi_max_vecs; i++) {
fc551d7e
BA
1114 struct page *pg;
1115 size_t len, sgoff, pgoff;
1116 struct scatterlist *sg;
1117
1118 if (io_size <= 0)
1119 break;
1120
1121 sg = aiter.iter_sg;
1122 sgoff = aiter.iter_offset;
1123 pgoff = sgoff & (PAGESIZE - 1);
1124 len = MIN(io_size, PAGESIZE - pgoff);
1125 ASSERT(len > 0);
1126
1127 pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT);
1128 if (bio_add_page(bio, pg, len, pgoff) != len)
1129 break;
1130
1131 io_size -= len;
1132 abd_iter_advance(&aiter, len);
1133 }
1134
1135 return (io_size);
1136}
1137
1138/* Tunable Parameters */
1139module_param(zfs_abd_scatter_enabled, int, 0644);
1140MODULE_PARM_DESC(zfs_abd_scatter_enabled,
1141 "Toggle whether ABD allocations must be linear.");
1142module_param(zfs_abd_scatter_min_size, int, 0644);
1143MODULE_PARM_DESC(zfs_abd_scatter_min_size,
1144 "Minimum size of scatter allocations.");
1145/* CSTYLED */
1146module_param(zfs_abd_scatter_max_order, uint, 0644);
1147MODULE_PARM_DESC(zfs_abd_scatter_max_order,
1148 "Maximum order allocation used for a scatter ABD.");
1149#endif