]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/dbuf.c
Revert "Reduce dbuf_find() lock contention"
[mirror_zfs.git] / module / zfs / dbuf.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
1d3ba0bf 9 * or https://opensource.org/licenses/CDDL-1.0.
34dc7c2f
BB
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
ef3c1dea 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
ba67d821 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
3a17a7a9 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
0c66c32d 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
10b3c7f5
MN
27 * Copyright (c) 2019, Klara Inc.
28 * Copyright (c) 2019, Allan Jude
34dc7c2f
BB
29 */
30
34dc7c2f 31#include <sys/zfs_context.h>
c28b2279 32#include <sys/arc.h>
34dc7c2f 33#include <sys/dmu.h>
ea97f8ce 34#include <sys/dmu_send.h>
34dc7c2f
BB
35#include <sys/dmu_impl.h>
36#include <sys/dbuf.h>
37#include <sys/dmu_objset.h>
38#include <sys/dsl_dataset.h>
39#include <sys/dsl_dir.h>
40#include <sys/dmu_tx.h>
41#include <sys/spa.h>
42#include <sys/zio.h>
43#include <sys/dmu_zfetch.h>
428870ff
BB
44#include <sys/sa.h>
45#include <sys/sa_impl.h>
9b67f605
MA
46#include <sys/zfeature.h>
47#include <sys/blkptr.h>
9bd274dd 48#include <sys/range_tree.h>
e5d1c27e 49#include <sys/trace_zfs.h>
d3c2ae1c 50#include <sys/callb.h>
a6255b7f 51#include <sys/abd.h>
a1d477c2 52#include <sys/vdev.h>
3f387973 53#include <cityhash.h>
2e5dc449 54#include <sys/spa_impl.h>
c4c162c1 55#include <sys/wmsum.h>
c9d62d13 56#include <sys/vdev_impl.h>
34dc7c2f 57
18168da7 58static kstat_t *dbuf_ksp;
5e021f56
GDN
59
60typedef struct dbuf_stats {
61 /*
62 * Various statistics about the size of the dbuf cache.
63 */
64 kstat_named_t cache_count;
65 kstat_named_t cache_size_bytes;
66 kstat_named_t cache_size_bytes_max;
67 /*
68 * Statistics regarding the bounds on the dbuf cache size.
69 */
70 kstat_named_t cache_target_bytes;
71 kstat_named_t cache_lowater_bytes;
72 kstat_named_t cache_hiwater_bytes;
73 /*
74 * Total number of dbuf cache evictions that have occurred.
75 */
76 kstat_named_t cache_total_evicts;
77 /*
78 * The distribution of dbuf levels in the dbuf cache and
79 * the total size of all dbufs at each level.
80 */
81 kstat_named_t cache_levels[DN_MAX_LEVELS];
82 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
83 /*
84 * Statistics about the dbuf hash table.
85 */
86 kstat_named_t hash_hits;
87 kstat_named_t hash_misses;
88 kstat_named_t hash_collisions;
89 kstat_named_t hash_elements;
90 kstat_named_t hash_elements_max;
91 /*
92 * Number of sublists containing more than one dbuf in the dbuf
93 * hash table. Keep track of the longest hash chain.
94 */
95 kstat_named_t hash_chains;
96 kstat_named_t hash_chain_max;
97 /*
98 * Number of times a dbuf_create() discovers that a dbuf was
99 * already created and in the dbuf hash table.
100 */
101 kstat_named_t hash_insert_race;
2e5dc449
MA
102 /*
103 * Statistics about the size of the metadata dbuf cache.
104 */
105 kstat_named_t metadata_cache_count;
106 kstat_named_t metadata_cache_size_bytes;
107 kstat_named_t metadata_cache_size_bytes_max;
108 /*
109 * For diagnostic purposes, this is incremented whenever we can't add
110 * something to the metadata cache because it's full, and instead put
111 * the data in the regular dbuf cache.
112 */
113 kstat_named_t metadata_cache_overflow;
5e021f56
GDN
114} dbuf_stats_t;
115
116dbuf_stats_t dbuf_stats = {
117 { "cache_count", KSTAT_DATA_UINT64 },
118 { "cache_size_bytes", KSTAT_DATA_UINT64 },
119 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
120 { "cache_target_bytes", KSTAT_DATA_UINT64 },
121 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
122 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
123 { "cache_total_evicts", KSTAT_DATA_UINT64 },
124 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
125 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
126 { "hash_hits", KSTAT_DATA_UINT64 },
127 { "hash_misses", KSTAT_DATA_UINT64 },
128 { "hash_collisions", KSTAT_DATA_UINT64 },
129 { "hash_elements", KSTAT_DATA_UINT64 },
130 { "hash_elements_max", KSTAT_DATA_UINT64 },
131 { "hash_chains", KSTAT_DATA_UINT64 },
132 { "hash_chain_max", KSTAT_DATA_UINT64 },
2e5dc449
MA
133 { "hash_insert_race", KSTAT_DATA_UINT64 },
134 { "metadata_cache_count", KSTAT_DATA_UINT64 },
135 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
136 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
137 { "metadata_cache_overflow", KSTAT_DATA_UINT64 }
5e021f56
GDN
138};
139
c4c162c1
AM
140struct {
141 wmsum_t cache_count;
142 wmsum_t cache_total_evicts;
143 wmsum_t cache_levels[DN_MAX_LEVELS];
144 wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
145 wmsum_t hash_hits;
146 wmsum_t hash_misses;
147 wmsum_t hash_collisions;
148 wmsum_t hash_chains;
149 wmsum_t hash_insert_race;
150 wmsum_t metadata_cache_count;
151 wmsum_t metadata_cache_overflow;
152} dbuf_sums;
153
5e021f56 154#define DBUF_STAT_INCR(stat, val) \
c4c162c1 155 wmsum_add(&dbuf_sums.stat, val);
5e021f56
GDN
156#define DBUF_STAT_DECR(stat, val) \
157 DBUF_STAT_INCR(stat, -(val));
158#define DBUF_STAT_BUMP(stat) \
159 DBUF_STAT_INCR(stat, 1);
160#define DBUF_STAT_BUMPDOWN(stat) \
161 DBUF_STAT_INCR(stat, -1);
162#define DBUF_STAT_MAX(stat, v) { \
163 uint64_t _m; \
164 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
165 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
166 continue; \
167}
168
13fe0198 169static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
b128c09f 170static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
fa3922df 171static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
8b3547a4 172static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags);
34dc7c2f
BB
173
174/*
175 * Global data structures and functions for the dbuf cache.
176 */
d3c2ae1c 177static kmem_cache_t *dbuf_kmem_cache;
0c66c32d 178static taskq_t *dbu_evict_taskq;
34dc7c2f 179
d3c2ae1c
GW
180static kthread_t *dbuf_cache_evict_thread;
181static kmutex_t dbuf_evict_lock;
182static kcondvar_t dbuf_evict_cv;
183static boolean_t dbuf_evict_thread_exit;
184
185/*
2e5dc449
MA
186 * There are two dbuf caches; each dbuf can only be in one of them at a time.
187 *
188 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
189 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
190 * that represent the metadata that describes filesystems/snapshots/
191 * bookmarks/properties/etc. We only evict from this cache when we export a
192 * pool, to short-circuit as much I/O as possible for all administrative
193 * commands that need the metadata. There is no eviction policy for this
194 * cache, because we try to only include types in it which would occupy a
195 * very small amount of space per object but create a large impact on the
196 * performance of these commands. Instead, after it reaches a maximum size
197 * (which should only happen on very small memory systems with a very large
198 * number of filesystem objects), we stop taking new dbufs into the
199 * metadata cache, instead putting them in the normal dbuf cache.
200 *
201 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
202 * are not currently held but have been recently released. These dbufs
203 * are not eligible for arc eviction until they are aged out of the cache.
204 * Dbufs that are aged out of the cache will be immediately destroyed and
205 * become eligible for arc eviction.
206 *
207 * Dbufs are added to these caches once the last hold is released. If a dbuf is
208 * later accessed and still exists in the dbuf cache, then it will be removed
209 * from the cache and later re-added to the head of the cache.
210 *
211 * If a given dbuf meets the requirements for the metadata cache, it will go
212 * there, otherwise it will be considered for the generic LRU dbuf cache. The
213 * caches and the refcounts tracking their sizes are stored in an array indexed
214 * by those caches' matching enum values (from dbuf_cached_state_t).
d3c2ae1c 215 */
2e5dc449 216typedef struct dbuf_cache {
ffdf019c
AM
217 multilist_t cache;
218 zfs_refcount_t size ____cacheline_aligned;
2e5dc449
MA
219} dbuf_cache_t;
220dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
d3c2ae1c 221
2e5dc449 222/* Size limits for the caches */
18168da7
AZ
223static unsigned long dbuf_cache_max_bytes = ULONG_MAX;
224static unsigned long dbuf_metadata_cache_max_bytes = ULONG_MAX;
8348fac3 225
2e5dc449 226/* Set the default sizes of the caches to log2 fraction of arc size */
18168da7
AZ
227static int dbuf_cache_shift = 5;
228static int dbuf_metadata_cache_shift = 6;
d3c2ae1c 229
8348fac3
RM
230static unsigned long dbuf_cache_target_bytes(void);
231static unsigned long dbuf_metadata_cache_target_bytes(void);
232
d3c2ae1c 233/*
2e5dc449 234 * The LRU dbuf cache uses a three-stage eviction policy:
d3c2ae1c
GW
235 * - A low water marker designates when the dbuf eviction thread
236 * should stop evicting from the dbuf cache.
237 * - When we reach the maximum size (aka mid water mark), we
238 * signal the eviction thread to run.
239 * - The high water mark indicates when the eviction thread
240 * is unable to keep up with the incoming load and eviction must
241 * happen in the context of the calling thread.
242 *
243 * The dbuf cache:
244 * (max size)
245 * low water mid water hi water
246 * +----------------------------------------+----------+----------+
247 * | | | |
248 * | | | |
249 * | | | |
250 * | | | |
251 * +----------------------------------------+----------+----------+
252 * stop signal evict
253 * evicting eviction directly
254 * thread
255 *
256 * The high and low water marks indicate the operating range for the eviction
257 * thread. The low water mark is, by default, 90% of the total size of the
258 * cache and the high water mark is at 110% (both of these percentages can be
259 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
260 * respectively). The eviction thread will try to ensure that the cache remains
261 * within this range by waking up every second and checking if the cache is
262 * above the low water mark. The thread can also be woken up by callers adding
263 * elements into the cache if the cache is larger than the mid water (i.e max
264 * cache size). Once the eviction thread is woken up and eviction is required,
265 * it will continue evicting buffers until it's able to reduce the cache size
266 * to the low water mark. If the cache size continues to grow and hits the high
4e33ba4c 267 * water mark, then callers adding elements to the cache will begin to evict
d3c2ae1c
GW
268 * directly from the cache until the cache is no longer above the high water
269 * mark.
270 */
271
272/*
273 * The percentage above and below the maximum cache size.
274 */
18168da7
AZ
275static uint_t dbuf_cache_hiwater_pct = 10;
276static uint_t dbuf_cache_lowater_pct = 10;
d3c2ae1c 277
34dc7c2f
BB
278static int
279dbuf_cons(void *vdb, void *unused, int kmflag)
280{
14e4e3cb 281 (void) unused, (void) kmflag;
34dc7c2f 282 dmu_buf_impl_t *db = vdb;
861166b0 283 memset(db, 0, sizeof (dmu_buf_impl_t));
34dc7c2f
BB
284
285 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
f664f1ee 286 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL);
34dc7c2f 287 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
d3c2ae1c 288 multilist_link_init(&db->db_cache_link);
424fd7c3 289 zfs_refcount_create(&db->db_holds);
8951cb8d 290
34dc7c2f
BB
291 return (0);
292}
293
34dc7c2f
BB
294static void
295dbuf_dest(void *vdb, void *unused)
296{
14e4e3cb 297 (void) unused;
34dc7c2f
BB
298 dmu_buf_impl_t *db = vdb;
299 mutex_destroy(&db->db_mtx);
f664f1ee 300 rw_destroy(&db->db_rwlock);
34dc7c2f 301 cv_destroy(&db->db_changed);
d3c2ae1c 302 ASSERT(!multilist_link_active(&db->db_cache_link));
424fd7c3 303 zfs_refcount_destroy(&db->db_holds);
34dc7c2f
BB
304}
305
306/*
307 * dbuf hash table routines
308 */
309static dbuf_hash_table_t dbuf_hash_table;
310
37fb3e43
PD
311/*
312 * We use Cityhash for this. It's fast, and has good hash properties without
313 * requiring any large static buffers.
314 */
34dc7c2f
BB
315static uint64_t
316dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
317{
37fb3e43 318 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
34dc7c2f
BB
319}
320
8b3547a4
MM
321#define DTRACE_SET_STATE(db, why) \
322 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \
323 const char *, why)
324
34dc7c2f
BB
325#define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
326 ((dbuf)->db.db_object == (obj) && \
327 (dbuf)->db_objset == (os) && \
328 (dbuf)->db_level == (level) && \
329 (dbuf)->db_blkid == (blkid))
330
331dmu_buf_impl_t *
6ebebace 332dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
34dc7c2f
BB
333{
334 dbuf_hash_table_t *h = &dbuf_hash_table;
d6320ddb
BB
335 uint64_t hv;
336 uint64_t idx;
34dc7c2f
BB
337 dmu_buf_impl_t *db;
338
d3c2ae1c 339 hv = dbuf_hash(os, obj, level, blkid);
d6320ddb
BB
340 idx = hv & h->hash_table_mask;
341
223b04d2 342 mutex_enter(DBUF_HASH_MUTEX(h, idx));
34dc7c2f
BB
343 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
344 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
345 mutex_enter(&db->db_mtx);
346 if (db->db_state != DB_EVICTING) {
223b04d2 347 mutex_exit(DBUF_HASH_MUTEX(h, idx));
34dc7c2f
BB
348 return (db);
349 }
350 mutex_exit(&db->db_mtx);
351 }
352 }
223b04d2 353 mutex_exit(DBUF_HASH_MUTEX(h, idx));
34dc7c2f
BB
354 return (NULL);
355}
356
6ebebace
JG
357static dmu_buf_impl_t *
358dbuf_find_bonus(objset_t *os, uint64_t object)
359{
360 dnode_t *dn;
361 dmu_buf_impl_t *db = NULL;
362
363 if (dnode_hold(os, object, FTAG, &dn) == 0) {
364 rw_enter(&dn->dn_struct_rwlock, RW_READER);
365 if (dn->dn_bonus != NULL) {
366 db = dn->dn_bonus;
367 mutex_enter(&db->db_mtx);
368 }
369 rw_exit(&dn->dn_struct_rwlock);
370 dnode_rele(dn, FTAG);
371 }
372 return (db);
373}
374
34dc7c2f
BB
375/*
376 * Insert an entry into the hash table. If there is already an element
377 * equal to elem in the hash table, then the already existing element
378 * will be returned and the new element will not be inserted.
379 * Otherwise returns NULL.
380 */
381static dmu_buf_impl_t *
382dbuf_hash_insert(dmu_buf_impl_t *db)
383{
384 dbuf_hash_table_t *h = &dbuf_hash_table;
428870ff 385 objset_t *os = db->db_objset;
34dc7c2f
BB
386 uint64_t obj = db->db.db_object;
387 int level = db->db_level;
d6320ddb 388 uint64_t blkid, hv, idx;
34dc7c2f 389 dmu_buf_impl_t *dbf;
5e021f56 390 uint32_t i;
34dc7c2f 391
d6320ddb 392 blkid = db->db_blkid;
d3c2ae1c 393 hv = dbuf_hash(os, obj, level, blkid);
d6320ddb
BB
394 idx = hv & h->hash_table_mask;
395
223b04d2 396 mutex_enter(DBUF_HASH_MUTEX(h, idx));
5e021f56
GDN
397 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
398 dbf = dbf->db_hash_next, i++) {
34dc7c2f
BB
399 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
400 mutex_enter(&dbf->db_mtx);
401 if (dbf->db_state != DB_EVICTING) {
223b04d2 402 mutex_exit(DBUF_HASH_MUTEX(h, idx));
34dc7c2f
BB
403 return (dbf);
404 }
405 mutex_exit(&dbf->db_mtx);
406 }
407 }
408
5e021f56
GDN
409 if (i > 0) {
410 DBUF_STAT_BUMP(hash_collisions);
411 if (i == 1)
412 DBUF_STAT_BUMP(hash_chains);
413
414 DBUF_STAT_MAX(hash_chain_max, i);
415 }
416
34dc7c2f
BB
417 mutex_enter(&db->db_mtx);
418 db->db_hash_next = h->hash_table[idx];
419 h->hash_table[idx] = db;
223b04d2 420 mutex_exit(DBUF_HASH_MUTEX(h, idx));
c4c162c1
AM
421 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64);
422 DBUF_STAT_MAX(hash_elements_max, he);
34dc7c2f
BB
423
424 return (NULL);
425}
426
2e5dc449
MA
427/*
428 * This returns whether this dbuf should be stored in the metadata cache, which
429 * is based on whether it's from one of the dnode types that store data related
430 * to traversing dataset hierarchies.
431 */
432static boolean_t
433dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
434{
435 DB_DNODE_ENTER(db);
436 dmu_object_type_t type = DB_DNODE(db)->dn_type;
437 DB_DNODE_EXIT(db);
438
439 /* Check if this dbuf is one of the types we care about */
440 if (DMU_OT_IS_METADATA_CACHED(type)) {
441 /* If we hit this, then we set something up wrong in dmu_ot */
442 ASSERT(DMU_OT_IS_METADATA(type));
443
444 /*
445 * Sanity check for small-memory systems: don't allocate too
446 * much memory for this purpose.
447 */
424fd7c3
TS
448 if (zfs_refcount_count(
449 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
8348fac3 450 dbuf_metadata_cache_target_bytes()) {
2e5dc449
MA
451 DBUF_STAT_BUMP(metadata_cache_overflow);
452 return (B_FALSE);
453 }
454
455 return (B_TRUE);
456 }
457
458 return (B_FALSE);
459}
460
34dc7c2f 461/*
bd089c54 462 * Remove an entry from the hash table. It must be in the EVICTING state.
34dc7c2f
BB
463 */
464static void
465dbuf_hash_remove(dmu_buf_impl_t *db)
466{
467 dbuf_hash_table_t *h = &dbuf_hash_table;
d6320ddb 468 uint64_t hv, idx;
34dc7c2f
BB
469 dmu_buf_impl_t *dbf, **dbp;
470
d3c2ae1c 471 hv = dbuf_hash(db->db_objset, db->db.db_object,
d6320ddb
BB
472 db->db_level, db->db_blkid);
473 idx = hv & h->hash_table_mask;
474
34dc7c2f 475 /*
4e33ba4c 476 * We mustn't hold db_mtx to maintain lock ordering:
223b04d2 477 * DBUF_HASH_MUTEX > db_mtx.
34dc7c2f 478 */
424fd7c3 479 ASSERT(zfs_refcount_is_zero(&db->db_holds));
34dc7c2f
BB
480 ASSERT(db->db_state == DB_EVICTING);
481 ASSERT(!MUTEX_HELD(&db->db_mtx));
482
223b04d2 483 mutex_enter(DBUF_HASH_MUTEX(h, idx));
34dc7c2f
BB
484 dbp = &h->hash_table[idx];
485 while ((dbf = *dbp) != db) {
486 dbp = &dbf->db_hash_next;
487 ASSERT(dbf != NULL);
488 }
489 *dbp = db->db_hash_next;
490 db->db_hash_next = NULL;
5e021f56
GDN
491 if (h->hash_table[idx] &&
492 h->hash_table[idx]->db_hash_next == NULL)
493 DBUF_STAT_BUMPDOWN(hash_chains);
223b04d2 494 mutex_exit(DBUF_HASH_MUTEX(h, idx));
c4c162c1 495 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64);
34dc7c2f
BB
496}
497
0c66c32d
JG
498typedef enum {
499 DBVU_EVICTING,
500 DBVU_NOT_EVICTING
501} dbvu_verify_type_t;
502
503static void
504dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
505{
506#ifdef ZFS_DEBUG
507 int64_t holds;
508
509 if (db->db_user == NULL)
510 return;
511
512 /* Only data blocks support the attachment of user data. */
513 ASSERT(db->db_level == 0);
514
515 /* Clients must resolve a dbuf before attaching user data. */
516 ASSERT(db->db.db_data != NULL);
517 ASSERT3U(db->db_state, ==, DB_CACHED);
518
424fd7c3 519 holds = zfs_refcount_count(&db->db_holds);
0c66c32d
JG
520 if (verify_type == DBVU_EVICTING) {
521 /*
522 * Immediate eviction occurs when holds == dirtycnt.
523 * For normal eviction buffers, holds is zero on
524 * eviction, except when dbuf_fix_old_data() calls
525 * dbuf_clear_data(). However, the hold count can grow
526 * during eviction even though db_mtx is held (see
527 * dmu_bonus_hold() for an example), so we can only
528 * test the generic invariant that holds >= dirtycnt.
529 */
530 ASSERT3U(holds, >=, db->db_dirtycnt);
531 } else {
bc4501f7 532 if (db->db_user_immediate_evict == TRUE)
0c66c32d
JG
533 ASSERT3U(holds, >=, db->db_dirtycnt);
534 else
535 ASSERT3U(holds, >, 0);
536 }
537#endif
538}
539
34dc7c2f
BB
540static void
541dbuf_evict_user(dmu_buf_impl_t *db)
542{
0c66c32d
JG
543 dmu_buf_user_t *dbu = db->db_user;
544
34dc7c2f
BB
545 ASSERT(MUTEX_HELD(&db->db_mtx));
546
0c66c32d 547 if (dbu == NULL)
34dc7c2f
BB
548 return;
549
0c66c32d
JG
550 dbuf_verify_user(db, DBVU_EVICTING);
551 db->db_user = NULL;
552
553#ifdef ZFS_DEBUG
554 if (dbu->dbu_clear_on_evict_dbufp != NULL)
555 *dbu->dbu_clear_on_evict_dbufp = NULL;
556#endif
557
558 /*
39efbde7
GM
559 * There are two eviction callbacks - one that we call synchronously
560 * and one that we invoke via a taskq. The async one is useful for
561 * avoiding lock order reversals and limiting stack depth.
562 *
563 * Note that if we have a sync callback but no async callback,
564 * it's likely that the sync callback will free the structure
565 * containing the dbu. In that case we need to take care to not
566 * dereference dbu after calling the sync evict func.
0c66c32d 567 */
a7004725 568 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
39efbde7
GM
569
570 if (dbu->dbu_evict_func_sync != NULL)
571 dbu->dbu_evict_func_sync(dbu);
572
573 if (has_async) {
574 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
575 dbu, 0, &dbu->dbu_tqent);
576 }
34dc7c2f
BB
577}
578
572e2857
BB
579boolean_t
580dbuf_is_metadata(dmu_buf_impl_t *db)
581{
cc79a5c2
BB
582 /*
583 * Consider indirect blocks and spill blocks to be meta data.
584 */
585 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
572e2857
BB
586 return (B_TRUE);
587 } else {
588 boolean_t is_metadata;
589
590 DB_DNODE_ENTER(db);
9ae529ec 591 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
572e2857
BB
592 DB_DNODE_EXIT(db);
593
594 return (is_metadata);
595 }
596}
597
c9d62d13
GA
598/*
599 * We want to exclude buffers that are on a special allocation class from
600 * L2ARC.
601 */
602boolean_t
603dbuf_is_l2cacheable(dmu_buf_impl_t *db)
604{
605 vdev_t *vd = NULL;
606 zfs_cache_type_t cache = db->db_objset->os_secondary_cache;
607 blkptr_t *bp = db->db_blkptr;
608
609 if (bp != NULL && !BP_IS_HOLE(bp)) {
610 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
611 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
612
613 if (vdev < rvd->vdev_children)
614 vd = rvd->vdev_child[vdev];
615
616 if (cache == ZFS_CACHE_ALL ||
617 (dbuf_is_metadata(db) && cache == ZFS_CACHE_METADATA)) {
618 if (vd == NULL)
619 return (B_TRUE);
620
621 if ((vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
622 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) ||
623 l2arc_exclude_special == 0)
624 return (B_TRUE);
625 }
626 }
627
628 return (B_FALSE);
629}
630
631static inline boolean_t
632dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
633{
634 vdev_t *vd = NULL;
635 zfs_cache_type_t cache = dn->dn_objset->os_secondary_cache;
636
637 if (bp != NULL && !BP_IS_HOLE(bp)) {
638 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
639 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
640
641 if (vdev < rvd->vdev_children)
642 vd = rvd->vdev_child[vdev];
643
644 if (cache == ZFS_CACHE_ALL || ((level > 0 ||
645 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)) &&
646 cache == ZFS_CACHE_METADATA)) {
647 if (vd == NULL)
648 return (B_TRUE);
649
650 if ((vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
651 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) ||
652 l2arc_exclude_special == 0)
653 return (B_TRUE);
654 }
655 }
656
657 return (B_FALSE);
658}
659
d3c2ae1c
GW
660
661/*
662 * This function *must* return indices evenly distributed between all
663 * sublists of the multilist. This is needed due to how the dbuf eviction
664 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
665 * distributed between all sublists and uses this assumption when
666 * deciding which sublist to evict from and how much to evict from it.
667 */
65c7cc49 668static unsigned int
d3c2ae1c 669dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
34dc7c2f 670{
d3c2ae1c
GW
671 dmu_buf_impl_t *db = obj;
672
673 /*
674 * The assumption here, is the hash value for a given
675 * dmu_buf_impl_t will remain constant throughout it's lifetime
676 * (i.e. it's objset, object, level and blkid fields don't change).
677 * Thus, we don't need to store the dbuf's sublist index
678 * on insertion, as this index can be recalculated on removal.
679 *
680 * Also, the low order bits of the hash value are thought to be
681 * distributed evenly. Otherwise, in the case that the multilist
682 * has a power of two number of sublists, each sublists' usage
5b7053a9
AM
683 * would not be evenly distributed. In this context full 64bit
684 * division would be a waste of time, so limit it to 32 bits.
d3c2ae1c 685 */
5b7053a9 686 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
d3c2ae1c
GW
687 db->db_level, db->db_blkid) %
688 multilist_get_num_sublists(ml));
689}
690
8348fac3
RM
691/*
692 * The target size of the dbuf cache can grow with the ARC target,
693 * unless limited by the tunable dbuf_cache_max_bytes.
694 */
e71cade6 695static inline unsigned long
696dbuf_cache_target_bytes(void)
697{
8348fac3
RM
698 return (MIN(dbuf_cache_max_bytes,
699 arc_target_bytes() >> dbuf_cache_shift));
700}
701
702/*
703 * The target size of the dbuf metadata cache can grow with the ARC target,
704 * unless limited by the tunable dbuf_metadata_cache_max_bytes.
705 */
706static inline unsigned long
707dbuf_metadata_cache_target_bytes(void)
708{
709 return (MIN(dbuf_metadata_cache_max_bytes,
710 arc_target_bytes() >> dbuf_metadata_cache_shift));
e71cade6 711}
712
5e021f56
GDN
713static inline uint64_t
714dbuf_cache_hiwater_bytes(void)
d3c2ae1c 715{
e71cade6 716 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
5e021f56
GDN
717 return (dbuf_cache_target +
718 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
719}
e71cade6 720
5e021f56
GDN
721static inline uint64_t
722dbuf_cache_lowater_bytes(void)
723{
724 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
725 return (dbuf_cache_target -
726 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
727}
d3c2ae1c 728
d3c2ae1c
GW
729static inline boolean_t
730dbuf_cache_above_lowater(void)
731{
424fd7c3 732 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
2e5dc449 733 dbuf_cache_lowater_bytes());
d3c2ae1c
GW
734}
735
736/*
737 * Evict the oldest eligible dbuf from the dbuf cache.
738 */
739static void
740dbuf_evict_one(void)
741{
ffdf019c 742 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
2e5dc449 743 multilist_sublist_t *mls = multilist_sublist_lock(
ffdf019c 744 &dbuf_caches[DB_DBUF_CACHE].cache, idx);
1c27024e 745
d3c2ae1c
GW
746 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
747
1c27024e 748 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
d3c2ae1c
GW
749 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
750 db = multilist_sublist_prev(mls, db);
751 }
752
753 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
754 multilist_sublist_t *, mls);
755
756 if (db != NULL) {
757 multilist_sublist_remove(mls, db);
758 multilist_sublist_unlock(mls);
424fd7c3
TS
759 (void) zfs_refcount_remove_many(
760 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db);
5e021f56
GDN
761 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
762 DBUF_STAT_BUMPDOWN(cache_count);
763 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
764 db->db.db_size);
2e5dc449
MA
765 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
766 db->db_caching_status = DB_NO_CACHE;
d3c2ae1c 767 dbuf_destroy(db);
5e021f56 768 DBUF_STAT_BUMP(cache_total_evicts);
d3c2ae1c
GW
769 } else {
770 multilist_sublist_unlock(mls);
771 }
d3c2ae1c
GW
772}
773
774/*
775 * The dbuf evict thread is responsible for aging out dbufs from the
776 * cache. Once the cache has reached it's maximum size, dbufs are removed
777 * and destroyed. The eviction thread will continue running until the size
778 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
779 * out of the cache it is destroyed and becomes eligible for arc eviction.
780 */
460748d4 781static __attribute__((noreturn)) void
c25b8f99 782dbuf_evict_thread(void *unused)
d3c2ae1c 783{
14e4e3cb 784 (void) unused;
d3c2ae1c
GW
785 callb_cpr_t cpr;
786
787 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
788
789 mutex_enter(&dbuf_evict_lock);
790 while (!dbuf_evict_thread_exit) {
791 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
792 CALLB_CPR_SAFE_BEGIN(&cpr);
ac6e5fb2 793 (void) cv_timedwait_idle_hires(&dbuf_evict_cv,
d3c2ae1c
GW
794 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
795 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
796 }
797 mutex_exit(&dbuf_evict_lock);
798
799 /*
800 * Keep evicting as long as we're above the low water mark
801 * for the cache. We do this without holding the locks to
802 * minimize lock contention.
803 */
804 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
805 dbuf_evict_one();
806 }
807
808 mutex_enter(&dbuf_evict_lock);
809 }
810
811 dbuf_evict_thread_exit = B_FALSE;
812 cv_broadcast(&dbuf_evict_cv);
813 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
814 thread_exit();
815}
816
817/*
818 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
819 * If the dbuf cache is at its high water mark, then evict a dbuf from the
7ada752a 820 * dbuf cache using the caller's context.
d3c2ae1c
GW
821 */
822static void
cbd8f5b7 823dbuf_evict_notify(uint64_t size)
d3c2ae1c 824{
38240ebd
MA
825 /*
826 * We check if we should evict without holding the dbuf_evict_lock,
827 * because it's OK to occasionally make the wrong decision here,
828 * and grabbing the lock results in massive lock contention.
829 */
cbd8f5b7
AM
830 if (size > dbuf_cache_target_bytes()) {
831 if (size > dbuf_cache_hiwater_bytes())
d3c2ae1c 832 dbuf_evict_one();
38240ebd 833 cv_signal(&dbuf_evict_cv);
d3c2ae1c 834 }
34dc7c2f
BB
835}
836
5e021f56
GDN
837static int
838dbuf_kstat_update(kstat_t *ksp, int rw)
839{
840 dbuf_stats_t *ds = ksp->ks_data;
d3c2ae1c 841
c4c162c1 842 if (rw == KSTAT_WRITE)
5e021f56 843 return (SET_ERROR(EACCES));
5e021f56 844
c4c162c1
AM
845 ds->cache_count.value.ui64 =
846 wmsum_value(&dbuf_sums.cache_count);
847 ds->cache_size_bytes.value.ui64 =
848 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
849 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
850 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
851 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
852 ds->cache_total_evicts.value.ui64 =
853 wmsum_value(&dbuf_sums.cache_total_evicts);
854 for (int i = 0; i < DN_MAX_LEVELS; i++) {
855 ds->cache_levels[i].value.ui64 =
856 wmsum_value(&dbuf_sums.cache_levels[i]);
857 ds->cache_levels_bytes[i].value.ui64 =
858 wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
859 }
860 ds->hash_hits.value.ui64 =
861 wmsum_value(&dbuf_sums.hash_hits);
862 ds->hash_misses.value.ui64 =
863 wmsum_value(&dbuf_sums.hash_misses);
864 ds->hash_collisions.value.ui64 =
865 wmsum_value(&dbuf_sums.hash_collisions);
866 ds->hash_chains.value.ui64 =
867 wmsum_value(&dbuf_sums.hash_chains);
868 ds->hash_insert_race.value.ui64 =
869 wmsum_value(&dbuf_sums.hash_insert_race);
870 ds->metadata_cache_count.value.ui64 =
871 wmsum_value(&dbuf_sums.metadata_cache_count);
872 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
873 &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
874 ds->metadata_cache_overflow.value.ui64 =
875 wmsum_value(&dbuf_sums.metadata_cache_overflow);
5e021f56
GDN
876 return (0);
877}
d3c2ae1c 878
34dc7c2f
BB
879void
880dbuf_init(void)
881{
882 uint64_t hsize = 1ULL << 16;
883 dbuf_hash_table_t *h = &dbuf_hash_table;
884 int i;
885
886 /*
490c845e 887 * The hash table is big enough to fill one eighth of physical memory
69de3421
TC
888 * with an average block size of zfs_arc_average_blocksize (default 8K).
889 * By default, the table will take up
890 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
34dc7c2f 891 */
490c845e 892 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
34dc7c2f
BB
893 hsize <<= 1;
894
895retry:
896 h->hash_table_mask = hsize - 1;
93ce2b4c 897#if defined(_KERNEL)
d1d7e268
MK
898 /*
899 * Large allocations which do not require contiguous pages
900 * should be using vmem_alloc() in the linux kernel
901 */
79c76d5b 902 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
00b46022 903#else
34dc7c2f 904 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
00b46022 905#endif
34dc7c2f
BB
906 if (h->hash_table == NULL) {
907 /* XXX - we should really return an error instead of assert */
908 ASSERT(hsize > (1ULL << 10));
909 hsize >>= 1;
910 goto retry;
911 }
912
d3c2ae1c 913 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
34dc7c2f
BB
914 sizeof (dmu_buf_impl_t),
915 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
916
223b04d2
BB
917 for (i = 0; i < DBUF_MUTEXES; i++)
918 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
e0b0ca98
BB
919
920 dbuf_stats_init(h);
0c66c32d
JG
921
922 /*
923 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
924 * configuration is not required.
925 */
1229323d 926 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
d3c2ae1c 927
2e5dc449 928 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
ffdf019c
AM
929 multilist_create(&dbuf_caches[dcs].cache,
930 sizeof (dmu_buf_impl_t),
2e5dc449
MA
931 offsetof(dmu_buf_impl_t, db_cache_link),
932 dbuf_cache_multilist_index_func);
424fd7c3 933 zfs_refcount_create(&dbuf_caches[dcs].size);
2e5dc449 934 }
d3c2ae1c 935
d3c2ae1c
GW
936 dbuf_evict_thread_exit = B_FALSE;
937 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
938 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
939 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
940 NULL, 0, &p0, TS_RUN, minclsyspri);
5e021f56 941
c4c162c1
AM
942 wmsum_init(&dbuf_sums.cache_count, 0);
943 wmsum_init(&dbuf_sums.cache_total_evicts, 0);
944 for (i = 0; i < DN_MAX_LEVELS; i++) {
945 wmsum_init(&dbuf_sums.cache_levels[i], 0);
946 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
947 }
948 wmsum_init(&dbuf_sums.hash_hits, 0);
949 wmsum_init(&dbuf_sums.hash_misses, 0);
950 wmsum_init(&dbuf_sums.hash_collisions, 0);
951 wmsum_init(&dbuf_sums.hash_chains, 0);
952 wmsum_init(&dbuf_sums.hash_insert_race, 0);
953 wmsum_init(&dbuf_sums.metadata_cache_count, 0);
954 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
955
5e021f56
GDN
956 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
957 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
958 KSTAT_FLAG_VIRTUAL);
959 if (dbuf_ksp != NULL) {
5e021f56
GDN
960 for (i = 0; i < DN_MAX_LEVELS; i++) {
961 snprintf(dbuf_stats.cache_levels[i].name,
962 KSTAT_STRLEN, "cache_level_%d", i);
963 dbuf_stats.cache_levels[i].data_type =
964 KSTAT_DATA_UINT64;
965 snprintf(dbuf_stats.cache_levels_bytes[i].name,
966 KSTAT_STRLEN, "cache_level_%d_bytes", i);
967 dbuf_stats.cache_levels_bytes[i].data_type =
968 KSTAT_DATA_UINT64;
969 }
741db5a3
AM
970 dbuf_ksp->ks_data = &dbuf_stats;
971 dbuf_ksp->ks_update = dbuf_kstat_update;
972 kstat_install(dbuf_ksp);
5e021f56 973 }
34dc7c2f
BB
974}
975
976void
977dbuf_fini(void)
978{
979 dbuf_hash_table_t *h = &dbuf_hash_table;
980 int i;
981
e0b0ca98
BB
982 dbuf_stats_destroy();
983
223b04d2
BB
984 for (i = 0; i < DBUF_MUTEXES; i++)
985 mutex_destroy(&h->hash_mutexes[i]);
93ce2b4c 986#if defined(_KERNEL)
d1d7e268
MK
987 /*
988 * Large allocations which do not require contiguous pages
989 * should be using vmem_free() in the linux kernel
990 */
00b46022
BB
991 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
992#else
34dc7c2f 993 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
00b46022 994#endif
d3c2ae1c 995 kmem_cache_destroy(dbuf_kmem_cache);
0c66c32d 996 taskq_destroy(dbu_evict_taskq);
d3c2ae1c
GW
997
998 mutex_enter(&dbuf_evict_lock);
999 dbuf_evict_thread_exit = B_TRUE;
1000 while (dbuf_evict_thread_exit) {
1001 cv_signal(&dbuf_evict_cv);
1002 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
1003 }
1004 mutex_exit(&dbuf_evict_lock);
d3c2ae1c
GW
1005
1006 mutex_destroy(&dbuf_evict_lock);
1007 cv_destroy(&dbuf_evict_cv);
1008
2e5dc449 1009 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
424fd7c3 1010 zfs_refcount_destroy(&dbuf_caches[dcs].size);
ffdf019c 1011 multilist_destroy(&dbuf_caches[dcs].cache);
2e5dc449 1012 }
5e021f56
GDN
1013
1014 if (dbuf_ksp != NULL) {
1015 kstat_delete(dbuf_ksp);
1016 dbuf_ksp = NULL;
1017 }
c4c162c1
AM
1018
1019 wmsum_fini(&dbuf_sums.cache_count);
1020 wmsum_fini(&dbuf_sums.cache_total_evicts);
1021 for (i = 0; i < DN_MAX_LEVELS; i++) {
1022 wmsum_fini(&dbuf_sums.cache_levels[i]);
1023 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
1024 }
1025 wmsum_fini(&dbuf_sums.hash_hits);
1026 wmsum_fini(&dbuf_sums.hash_misses);
1027 wmsum_fini(&dbuf_sums.hash_collisions);
1028 wmsum_fini(&dbuf_sums.hash_chains);
1029 wmsum_fini(&dbuf_sums.hash_insert_race);
1030 wmsum_fini(&dbuf_sums.metadata_cache_count);
1031 wmsum_fini(&dbuf_sums.metadata_cache_overflow);
34dc7c2f
BB
1032}
1033
1034/*
1035 * Other stuff.
1036 */
1037
1038#ifdef ZFS_DEBUG
1039static void
1040dbuf_verify(dmu_buf_impl_t *db)
1041{
572e2857 1042 dnode_t *dn;
428870ff 1043 dbuf_dirty_record_t *dr;
cccbed9f 1044 uint32_t txg_prev;
34dc7c2f
BB
1045
1046 ASSERT(MUTEX_HELD(&db->db_mtx));
1047
1048 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
1049 return;
1050
1051 ASSERT(db->db_objset != NULL);
572e2857
BB
1052 DB_DNODE_ENTER(db);
1053 dn = DB_DNODE(db);
34dc7c2f
BB
1054 if (dn == NULL) {
1055 ASSERT(db->db_parent == NULL);
1056 ASSERT(db->db_blkptr == NULL);
1057 } else {
1058 ASSERT3U(db->db.db_object, ==, dn->dn_object);
1059 ASSERT3P(db->db_objset, ==, dn->dn_objset);
1060 ASSERT3U(db->db_level, <, dn->dn_nlevels);
572e2857
BB
1061 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
1062 db->db_blkid == DMU_SPILL_BLKID ||
8951cb8d 1063 !avl_is_empty(&dn->dn_dbufs));
34dc7c2f 1064 }
428870ff
BB
1065 if (db->db_blkid == DMU_BONUS_BLKID) {
1066 ASSERT(dn != NULL);
1067 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1068 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
1069 } else if (db->db_blkid == DMU_SPILL_BLKID) {
34dc7c2f 1070 ASSERT(dn != NULL);
c99c9001 1071 ASSERT0(db->db.db_offset);
34dc7c2f
BB
1072 } else {
1073 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
1074 }
1075
cccbed9f 1076 if ((dr = list_head(&db->db_dirty_records)) != NULL) {
428870ff 1077 ASSERT(dr->dr_dbuf == db);
cccbed9f
MM
1078 txg_prev = dr->dr_txg;
1079 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
1080 dr = list_next(&db->db_dirty_records, dr)) {
1081 ASSERT(dr->dr_dbuf == db);
1082 ASSERT(txg_prev > dr->dr_txg);
1083 txg_prev = dr->dr_txg;
1084 }
1085 }
428870ff 1086
b128c09f
BB
1087 /*
1088 * We can't assert that db_size matches dn_datablksz because it
1089 * can be momentarily different when another thread is doing
1090 * dnode_set_blksz().
1091 */
1092 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
428870ff 1093 dr = db->db_data_pending;
b128c09f
BB
1094 /*
1095 * It should only be modified in syncing context, so
1096 * make sure we only have one copy of the data.
1097 */
1098 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
34dc7c2f
BB
1099 }
1100
1101 /* verify db->db_blkptr */
1102 if (db->db_blkptr) {
1103 if (db->db_parent == dn->dn_dbuf) {
1104 /* db is pointed to by the dnode */
1105 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
9babb374 1106 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
34dc7c2f
BB
1107 ASSERT(db->db_parent == NULL);
1108 else
1109 ASSERT(db->db_parent != NULL);
428870ff
BB
1110 if (db->db_blkid != DMU_SPILL_BLKID)
1111 ASSERT3P(db->db_blkptr, ==,
1112 &dn->dn_phys->dn_blkptr[db->db_blkid]);
34dc7c2f
BB
1113 } else {
1114 /* db is pointed to by an indirect block */
2a8ba608
MM
1115 int epb __maybe_unused = db->db_parent->db.db_size >>
1116 SPA_BLKPTRSHIFT;
34dc7c2f
BB
1117 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1118 ASSERT3U(db->db_parent->db.db_object, ==,
1119 db->db.db_object);
1120 /*
1121 * dnode_grow_indblksz() can make this fail if we don't
f664f1ee 1122 * have the parent's rwlock. XXX indblksz no longer
34dc7c2f
BB
1123 * grows. safe to do this now?
1124 */
f664f1ee 1125 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
34dc7c2f
BB
1126 ASSERT3P(db->db_blkptr, ==,
1127 ((blkptr_t *)db->db_parent->db.db_data +
1128 db->db_blkid % epb));
1129 }
1130 }
1131 }
1132 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
428870ff
BB
1133 (db->db_buf == NULL || db->db_buf->b_data) &&
1134 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
34dc7c2f
BB
1135 db->db_state != DB_FILL && !dn->dn_free_txg) {
1136 /*
1137 * If the blkptr isn't set but they have nonzero data,
1138 * it had better be dirty, otherwise we'll lose that
1139 * data when we evict this buffer.
bc77ba73
PD
1140 *
1141 * There is an exception to this rule for indirect blocks; in
1142 * this case, if the indirect block is a hole, we fill in a few
1143 * fields on each of the child blocks (importantly, birth time)
1144 * to prevent hole birth times from being lost when you
1145 * partially fill in a hole.
34dc7c2f
BB
1146 */
1147 if (db->db_dirtycnt == 0) {
bc77ba73
PD
1148 if (db->db_level == 0) {
1149 uint64_t *buf = db->db.db_data;
1150 int i;
34dc7c2f 1151
bc77ba73
PD
1152 for (i = 0; i < db->db.db_size >> 3; i++) {
1153 ASSERT(buf[i] == 0);
1154 }
1155 } else {
bc77ba73
PD
1156 blkptr_t *bps = db->db.db_data;
1157 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1158 db->db.db_size);
1159 /*
1160 * We want to verify that all the blkptrs in the
1161 * indirect block are holes, but we may have
1162 * automatically set up a few fields for them.
1163 * We iterate through each blkptr and verify
1164 * they only have those fields set.
1165 */
1c27024e 1166 for (int i = 0;
bc77ba73
PD
1167 i < db->db.db_size / sizeof (blkptr_t);
1168 i++) {
1169 blkptr_t *bp = &bps[i];
1170 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1171 &bp->blk_cksum));
1172 ASSERT(
1173 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1174 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1175 DVA_IS_EMPTY(&bp->blk_dva[2]));
1176 ASSERT0(bp->blk_fill);
1177 ASSERT0(bp->blk_pad[0]);
1178 ASSERT0(bp->blk_pad[1]);
1179 ASSERT(!BP_IS_EMBEDDED(bp));
1180 ASSERT(BP_IS_HOLE(bp));
1181 ASSERT0(bp->blk_phys_birth);
1182 }
34dc7c2f
BB
1183 }
1184 }
1185 }
572e2857 1186 DB_DNODE_EXIT(db);
34dc7c2f
BB
1187}
1188#endif
1189
0c66c32d
JG
1190static void
1191dbuf_clear_data(dmu_buf_impl_t *db)
1192{
1193 ASSERT(MUTEX_HELD(&db->db_mtx));
1194 dbuf_evict_user(db);
d3c2ae1c 1195 ASSERT3P(db->db_buf, ==, NULL);
0c66c32d 1196 db->db.db_data = NULL;
8b3547a4 1197 if (db->db_state != DB_NOFILL) {
0c66c32d 1198 db->db_state = DB_UNCACHED;
8b3547a4
MM
1199 DTRACE_SET_STATE(db, "clear data");
1200 }
0c66c32d
JG
1201}
1202
34dc7c2f
BB
1203static void
1204dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1205{
1206 ASSERT(MUTEX_HELD(&db->db_mtx));
0c66c32d
JG
1207 ASSERT(buf != NULL);
1208
34dc7c2f 1209 db->db_buf = buf;
0c66c32d
JG
1210 ASSERT(buf->b_data != NULL);
1211 db->db.db_data = buf->b_data;
34dc7c2f
BB
1212}
1213
8b3547a4
MM
1214static arc_buf_t *
1215dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
1216{
1217 spa_t *spa = db->db_objset->os_spa;
1218
1219 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
1220}
1221
428870ff
BB
1222/*
1223 * Loan out an arc_buf for read. Return the loaned arc_buf.
1224 */
1225arc_buf_t *
1226dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1227{
1228 arc_buf_t *abuf;
1229
d3c2ae1c 1230 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
428870ff 1231 mutex_enter(&db->db_mtx);
424fd7c3 1232 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
428870ff 1233 int blksz = db->db.db_size;
b0bc7a84 1234 spa_t *spa = db->db_objset->os_spa;
572e2857 1235
428870ff 1236 mutex_exit(&db->db_mtx);
2aa34383 1237 abuf = arc_loan_buf(spa, B_FALSE, blksz);
861166b0 1238 memcpy(abuf->b_data, db->db.db_data, blksz);
428870ff
BB
1239 } else {
1240 abuf = db->db_buf;
1241 arc_loan_inuse_buf(abuf, db);
d3c2ae1c 1242 db->db_buf = NULL;
0c66c32d 1243 dbuf_clear_data(db);
428870ff
BB
1244 mutex_exit(&db->db_mtx);
1245 }
1246 return (abuf);
1247}
1248
fcff0f35
PD
1249/*
1250 * Calculate which level n block references the data at the level 0 offset
1251 * provided.
1252 */
34dc7c2f 1253uint64_t
031d7c2f 1254dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
34dc7c2f 1255{
fcff0f35
PD
1256 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1257 /*
1258 * The level n blkid is equal to the level 0 blkid divided by
1259 * the number of level 0s in a level n block.
1260 *
1261 * The level 0 blkid is offset >> datablkshift =
1262 * offset / 2^datablkshift.
1263 *
1264 * The number of level 0s in a level n is the number of block
1265 * pointers in an indirect block, raised to the power of level.
1266 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1267 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1268 *
1269 * Thus, the level n blkid is: offset /
fe8a7982 1270 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
fcff0f35
PD
1271 * = offset / 2^(datablkshift + level *
1272 * (indblkshift - SPA_BLKPTRSHIFT))
1273 * = offset >> (datablkshift + level *
1274 * (indblkshift - SPA_BLKPTRSHIFT))
1275 */
031d7c2f
GN
1276
1277 const unsigned exp = dn->dn_datablkshift +
1278 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1279
1280 if (exp >= 8 * sizeof (offset)) {
1281 /* This only happens on the highest indirection level */
1282 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1283 return (0);
1284 }
1285
1286 ASSERT3U(exp, <, 8 * sizeof (offset));
1287
1288 return (offset >> exp);
34dc7c2f
BB
1289 } else {
1290 ASSERT3U(offset, <, dn->dn_datablksz);
1291 return (0);
1292 }
1293}
1294
f664f1ee
PD
1295/*
1296 * This function is used to lock the parent of the provided dbuf. This should be
1297 * used when modifying or reading db_blkptr.
1298 */
1299db_lock_type_t
a926aab9 1300dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag)
f664f1ee
PD
1301{
1302 enum db_lock_type ret = DLT_NONE;
1303 if (db->db_parent != NULL) {
1304 rw_enter(&db->db_parent->db_rwlock, rw);
1305 ret = DLT_PARENT;
1306 } else if (dmu_objset_ds(db->db_objset) != NULL) {
1307 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1308 tag);
1309 ret = DLT_OBJSET;
1310 }
1311 /*
1312 * We only return a DLT_NONE lock when it's the top-most indirect block
1313 * of the meta-dnode of the MOS.
1314 */
1315 return (ret);
1316}
1317
1318/*
1319 * We need to pass the lock type in because it's possible that the block will
1320 * move from being the topmost indirect block in a dnode (and thus, have no
1321 * parent) to not the top-most via an indirection increase. This would cause a
1322 * panic if we didn't pass the lock type in.
1323 */
1324void
a926aab9 1325dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag)
f664f1ee
PD
1326{
1327 if (type == DLT_PARENT)
1328 rw_exit(&db->db_parent->db_rwlock);
1329 else if (type == DLT_OBJSET)
1330 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1331}
1332
34dc7c2f 1333static void
d4a72f23
TC
1334dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1335 arc_buf_t *buf, void *vdb)
34dc7c2f 1336{
14e4e3cb 1337 (void) zb, (void) bp;
34dc7c2f
BB
1338 dmu_buf_impl_t *db = vdb;
1339
1340 mutex_enter(&db->db_mtx);
1341 ASSERT3U(db->db_state, ==, DB_READ);
1342 /*
1343 * All reads are synchronous, so we must have a hold on the dbuf
1344 */
424fd7c3 1345 ASSERT(zfs_refcount_count(&db->db_holds) > 0);
34dc7c2f
BB
1346 ASSERT(db->db_buf == NULL);
1347 ASSERT(db->db.db_data == NULL);
c3bd3fb4
TC
1348 if (buf == NULL) {
1349 /* i/o error */
1350 ASSERT(zio == NULL || zio->io_error != 0);
1351 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1352 ASSERT3P(db->db_buf, ==, NULL);
1353 db->db_state = DB_UNCACHED;
8b3547a4 1354 DTRACE_SET_STATE(db, "i/o error");
c3bd3fb4
TC
1355 } else if (db->db_level == 0 && db->db_freed_in_flight) {
1356 /* freed in flight */
1357 ASSERT(zio == NULL || zio->io_error == 0);
34dc7c2f 1358 arc_release(buf, db);
861166b0 1359 memset(buf->b_data, 0, db->db.db_size);
34dc7c2f
BB
1360 arc_buf_freeze(buf);
1361 db->db_freed_in_flight = FALSE;
1362 dbuf_set_data(db, buf);
1363 db->db_state = DB_CACHED;
8b3547a4 1364 DTRACE_SET_STATE(db, "freed in flight");
c3bd3fb4
TC
1365 } else {
1366 /* success */
1367 ASSERT(zio == NULL || zio->io_error == 0);
34dc7c2f
BB
1368 dbuf_set_data(db, buf);
1369 db->db_state = DB_CACHED;
8b3547a4 1370 DTRACE_SET_STATE(db, "successful read");
34dc7c2f
BB
1371 }
1372 cv_broadcast(&db->db_changed);
3d503a76 1373 dbuf_rele_and_unlock(db, NULL, B_FALSE);
34dc7c2f
BB
1374}
1375
8b3547a4
MM
1376/*
1377 * Shortcut for performing reads on bonus dbufs. Returns
1378 * an error if we fail to verify the dnode associated with
1379 * a decrypted block. Otherwise success.
1380 */
1381static int
1382dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags)
1383{
1384 int bonuslen, max_bonuslen, err;
1385
1386 err = dbuf_read_verify_dnode_crypt(db, flags);
1387 if (err)
1388 return (err);
1389
1390 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1391 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1392 ASSERT(MUTEX_HELD(&db->db_mtx));
1393 ASSERT(DB_DNODE_HELD(db));
1394 ASSERT3U(bonuslen, <=, db->db.db_size);
1395 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1396 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1397 if (bonuslen < max_bonuslen)
861166b0 1398 memset(db->db.db_data, 0, max_bonuslen);
8b3547a4 1399 if (bonuslen)
861166b0 1400 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen);
8b3547a4
MM
1401 db->db_state = DB_CACHED;
1402 DTRACE_SET_STATE(db, "bonus buffer filled");
1403 return (0);
1404}
1405
1406static void
1407dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn)
1408{
1409 blkptr_t *bps = db->db.db_data;
1410 uint32_t indbs = 1ULL << dn->dn_indblkshift;
1411 int n_bps = indbs >> SPA_BLKPTRSHIFT;
1412
1413 for (int i = 0; i < n_bps; i++) {
1414 blkptr_t *bp = &bps[i];
1415
1416 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, indbs);
1417 BP_SET_LSIZE(bp, BP_GET_LEVEL(db->db_blkptr) == 1 ?
1418 dn->dn_datablksz : BP_GET_LSIZE(db->db_blkptr));
1419 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1420 BP_SET_LEVEL(bp, BP_GET_LEVEL(db->db_blkptr) - 1);
1421 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1422 }
1423}
1424
1425/*
1426 * Handle reads on dbufs that are holes, if necessary. This function
1427 * requires that the dbuf's mutex is held. Returns success (0) if action
1428 * was taken, ENOENT if no action was taken.
1429 */
1430static int
14e4e3cb 1431dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn)
8b3547a4
MM
1432{
1433 ASSERT(MUTEX_HELD(&db->db_mtx));
1434
1435 int is_hole = db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr);
1436 /*
1437 * For level 0 blocks only, if the above check fails:
1438 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1439 * processes the delete record and clears the bp while we are waiting
1440 * for the dn_mtx (resulting in a "no" from block_freed).
1441 */
1442 if (!is_hole && db->db_level == 0) {
1443 is_hole = dnode_block_freed(dn, db->db_blkid) ||
1444 BP_IS_HOLE(db->db_blkptr);
1445 }
1446
1447 if (is_hole) {
1448 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
861166b0 1449 memset(db->db.db_data, 0, db->db.db_size);
8b3547a4
MM
1450
1451 if (db->db_blkptr != NULL && db->db_level > 0 &&
1452 BP_IS_HOLE(db->db_blkptr) &&
1453 db->db_blkptr->blk_birth != 0) {
1454 dbuf_handle_indirect_hole(db, dn);
1455 }
1456 db->db_state = DB_CACHED;
1457 DTRACE_SET_STATE(db, "hole read satisfied");
1458 return (0);
1459 }
1460 return (ENOENT);
1461}
69830602
TC
1462
1463/*
1464 * This function ensures that, when doing a decrypting read of a block,
1465 * we make sure we have decrypted the dnode associated with it. We must do
1466 * this so that we ensure we are fully authenticating the checksum-of-MACs
1467 * tree from the root of the objset down to this block. Indirect blocks are
1468 * always verified against their secure checksum-of-MACs assuming that the
1469 * dnode containing them is correct. Now that we are doing a decrypting read,
1470 * we can be sure that the key is loaded and verify that assumption. This is
1471 * especially important considering that we always read encrypted dnode
1472 * blocks as raw data (without verifying their MACs) to start, and
1473 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1474 */
1475static int
1476dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
1477{
1478 int err = 0;
1479 objset_t *os = db->db_objset;
1480 arc_buf_t *dnode_abuf;
1481 dnode_t *dn;
1482 zbookmark_phys_t zb;
1483
1484 ASSERT(MUTEX_HELD(&db->db_mtx));
1485
1486 if (!os->os_encrypted || os->os_raw_receive ||
1487 (flags & DB_RF_NO_DECRYPT) != 0)
1488 return (0);
1489
1490 DB_DNODE_ENTER(db);
1491 dn = DB_DNODE(db);
1492 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
1493
1494 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
1495 DB_DNODE_EXIT(db);
1496 return (0);
1497 }
1498
1499 SET_BOOKMARK(&zb, dmu_objset_id(os),
1500 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1501 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
1502
1503 /*
1504 * An error code of EACCES tells us that the key is still not
1505 * available. This is ok if we are only reading authenticated
1506 * (and therefore non-encrypted) blocks.
1507 */
1508 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1509 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1510 (db->db_blkid == DMU_BONUS_BLKID &&
1511 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1512 err = 0;
1513
69830602
TC
1514 DB_DNODE_EXIT(db);
1515
1516 return (err);
1517}
1518
f664f1ee
PD
1519/*
1520 * Drops db_mtx and the parent lock specified by dblt and tag before
1521 * returning.
1522 */
5f6d0b6f 1523static int
f664f1ee 1524dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags,
a926aab9 1525 db_lock_type_t dblt, const void *tag)
34dc7c2f 1526{
572e2857 1527 dnode_t *dn;
5dbd68a3 1528 zbookmark_phys_t zb;
2a432414 1529 uint32_t aflags = ARC_FLAG_NOWAIT;
8b3547a4 1530 int err, zio_flags;
34dc7c2f 1531
8b3547a4 1532 err = zio_flags = 0;
572e2857
BB
1533 DB_DNODE_ENTER(db);
1534 dn = DB_DNODE(db);
424fd7c3 1535 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
34dc7c2f
BB
1536 ASSERT(MUTEX_HELD(&db->db_mtx));
1537 ASSERT(db->db_state == DB_UNCACHED);
1538 ASSERT(db->db_buf == NULL);
f664f1ee
PD
1539 ASSERT(db->db_parent == NULL ||
1540 RW_LOCK_HELD(&db->db_parent->db_rwlock));
34dc7c2f 1541
428870ff 1542 if (db->db_blkid == DMU_BONUS_BLKID) {
8b3547a4
MM
1543 err = dbuf_read_bonus(db, dn, flags);
1544 goto early_unlock;
34dc7c2f
BB
1545 }
1546
14e4e3cb 1547 err = dbuf_read_hole(db, dn);
8b3547a4
MM
1548 if (err == 0)
1549 goto early_unlock;
34dc7c2f 1550
30af21b0
PD
1551 /*
1552 * Any attempt to read a redacted block should result in an error. This
1553 * will never happen under normal conditions, but can be useful for
1554 * debugging purposes.
1555 */
1556 if (BP_IS_REDACTED(db->db_blkptr)) {
1557 ASSERT(dsl_dataset_feature_is_active(
1558 db->db_objset->os_dsl_dataset,
1559 SPA_FEATURE_REDACTED_DATASETS));
8b3547a4
MM
1560 err = SET_ERROR(EIO);
1561 goto early_unlock;
30af21b0
PD
1562 }
1563
370bbf66
TC
1564 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1565 db->db.db_object, db->db_level, db->db_blkid);
1566
b5256303
TC
1567 /*
1568 * All bps of an encrypted os should have the encryption bit set.
1569 * If this is not true it indicates tampering and we report an error.
1570 */
1571 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1572 spa_log_error(db->db_objset->os_spa, &zb);
1573 zfs_panic_recover("unencrypted block in encrypted "
1574 "object set %llu", dmu_objset_id(db->db_objset));
8b3547a4
MM
1575 err = SET_ERROR(EIO);
1576 goto early_unlock;
b5256303
TC
1577 }
1578
69830602 1579 err = dbuf_read_verify_dnode_crypt(db, flags);
8b3547a4
MM
1580 if (err != 0)
1581 goto early_unlock;
69830602
TC
1582
1583 DB_DNODE_EXIT(db);
1584
1585 db->db_state = DB_READ;
8b3547a4 1586 DTRACE_SET_STATE(db, "read issued");
69830602
TC
1587 mutex_exit(&db->db_mtx);
1588
c9d62d13 1589 if (dbuf_is_l2cacheable(db))
69830602
TC
1590 aflags |= ARC_FLAG_L2CACHE;
1591
34dc7c2f 1592 dbuf_add_ref(db, NULL);
b128c09f 1593
b5256303
TC
1594 zio_flags = (flags & DB_RF_CANFAIL) ?
1595 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1596
1597 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1598 zio_flags |= ZIO_FLAG_RAW;
f664f1ee
PD
1599 /*
1600 * The zio layer will copy the provided blkptr later, but we need to
1601 * do this now so that we can release the parent's rwlock. We have to
1602 * do that now so that if dbuf_read_done is called synchronously (on
1603 * an l1 cache hit) we don't acquire the db_mtx while holding the
1604 * parent's rwlock, which would be a lock ordering violation.
1605 */
1606 blkptr_t bp = *db->db_blkptr;
1607 dmu_buf_unlock_parent(db, dblt, tag);
1608 (void) arc_read(zio, db->db_objset->os_spa, &bp,
b5256303 1609 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
34dc7c2f 1610 &aflags, &zb);
da8d5748 1611 return (err);
8b3547a4
MM
1612early_unlock:
1613 DB_DNODE_EXIT(db);
1614 mutex_exit(&db->db_mtx);
1615 dmu_buf_unlock_parent(db, dblt, tag);
1616 return (err);
34dc7c2f
BB
1617}
1618
2aa34383
DK
1619/*
1620 * This is our just-in-time copy function. It makes a copy of buffers that
1621 * have been modified in a previous transaction group before we access them in
1622 * the current active group.
1623 *
1624 * This function is used in three places: when we are dirtying a buffer for the
1625 * first time in a txg, when we are freeing a range in a dnode that includes
1626 * this buffer, and when we are accessing a buffer which was received compressed
1627 * and later referenced in a WRITE_BYREF record.
1628 *
1629 * Note that when we are called from dbuf_free_range() we do not put a hold on
1630 * the buffer, we just traverse the active dbuf list for the dnode.
1631 */
1632static void
1633dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1634{
cccbed9f 1635 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2aa34383
DK
1636
1637 ASSERT(MUTEX_HELD(&db->db_mtx));
1638 ASSERT(db->db.db_data != NULL);
1639 ASSERT(db->db_level == 0);
1640 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1641
1642 if (dr == NULL ||
1643 (dr->dt.dl.dr_data !=
1644 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1645 return;
1646
1647 /*
1648 * If the last dirty record for this dbuf has not yet synced
1649 * and its referencing the dbuf data, either:
1650 * reset the reference to point to a new copy,
1651 * or (if there a no active holders)
1652 * just null out the current db_data pointer.
1653 */
4807c0ba 1654 ASSERT3U(dr->dr_txg, >=, txg - 2);
2aa34383 1655 if (db->db_blkid == DMU_BONUS_BLKID) {
2aa34383
DK
1656 dnode_t *dn = DB_DNODE(db);
1657 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
a3fd9d9e 1658 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
2aa34383 1659 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
861166b0 1660 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
424fd7c3 1661 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
a81b8124
AR
1662 dnode_t *dn = DB_DNODE(db);
1663 int size = arc_buf_size(db->db_buf);
1664 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1665 spa_t *spa = db->db_objset->os_spa;
1666 enum zio_compress compress_type =
1667 arc_get_compression(db->db_buf);
1668 uint8_t complevel = arc_get_complevel(db->db_buf);
1669
1670 if (arc_is_encrypted(db->db_buf)) {
1671 boolean_t byteorder;
1672 uint8_t salt[ZIO_DATA_SALT_LEN];
1673 uint8_t iv[ZIO_DATA_IV_LEN];
1674 uint8_t mac[ZIO_DATA_MAC_LEN];
1675
1676 arc_get_raw_params(db->db_buf, &byteorder, salt,
1677 iv, mac);
1678 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1679 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1680 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1681 compress_type, complevel);
1682 } else if (compress_type != ZIO_COMPRESS_OFF) {
1683 ASSERT3U(type, ==, ARC_BUFC_DATA);
1684 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1685 size, arc_buf_lsize(db->db_buf), compress_type,
1686 complevel);
1687 } else {
1688 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1689 }
861166b0 1690 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
2aa34383
DK
1691 } else {
1692 db->db_buf = NULL;
1693 dbuf_clear_data(db);
1694 }
1695}
1696
34dc7c2f
BB
1697int
1698dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1699{
1700 int err = 0;
b0bc7a84 1701 boolean_t prefetch;
572e2857 1702 dnode_t *dn;
34dc7c2f
BB
1703
1704 /*
1705 * We don't have to hold the mutex to check db_state because it
1706 * can't be freed while we have a hold on the buffer.
1707 */
424fd7c3 1708 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
34dc7c2f 1709
b128c09f 1710 if (db->db_state == DB_NOFILL)
2e528b49 1711 return (SET_ERROR(EIO));
b128c09f 1712
572e2857
BB
1713 DB_DNODE_ENTER(db);
1714 dn = DB_DNODE(db);
34dc7c2f 1715
428870ff 1716 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
572e2857 1717 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
b128c09f 1718 DBUF_IS_CACHEABLE(db);
34dc7c2f
BB
1719
1720 mutex_enter(&db->db_mtx);
1721 if (db->db_state == DB_CACHED) {
b5256303
TC
1722 spa_t *spa = dn->dn_objset->os_spa;
1723
2aa34383 1724 /*
69830602
TC
1725 * Ensure that this block's dnode has been decrypted if
1726 * the caller has requested decrypted data.
2aa34383 1727 */
69830602
TC
1728 err = dbuf_read_verify_dnode_crypt(db, flags);
1729
1730 /*
1731 * If the arc buf is compressed or encrypted and the caller
1732 * requested uncompressed data, we need to untransform it
1733 * before returning. We also call arc_untransform() on any
1734 * unauthenticated blocks, which will verify their MAC if
1735 * the key is now available.
1736 */
1737 if (err == 0 && db->db_buf != NULL &&
1738 (flags & DB_RF_NO_DECRYPT) == 0 &&
b5256303 1739 (arc_is_encrypted(db->db_buf) ||
69830602 1740 arc_is_unauthenticated(db->db_buf) ||
b5256303 1741 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
a2c2ed1b
TC
1742 zbookmark_phys_t zb;
1743
1744 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1745 db->db.db_object, db->db_level, db->db_blkid);
b5256303 1746 dbuf_fix_old_data(db, spa_syncing_txg(spa));
a2c2ed1b 1747 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
2aa34383
DK
1748 dbuf_set_data(db, db->db_buf);
1749 }
34dc7c2f 1750 mutex_exit(&db->db_mtx);
f664f1ee
PD
1751 if (err == 0 && prefetch) {
1752 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
891568c9 1753 B_FALSE, flags & DB_RF_HAVESTRUCT);
f664f1ee 1754 }
572e2857 1755 DB_DNODE_EXIT(db);
5e021f56 1756 DBUF_STAT_BUMP(hash_hits);
34dc7c2f 1757 } else if (db->db_state == DB_UNCACHED) {
572e2857 1758 spa_t *spa = dn->dn_objset->os_spa;
a0043383 1759 boolean_t need_wait = B_FALSE;
572e2857 1760
f664f1ee
PD
1761 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1762
b0319c1f 1763 if (zio == NULL &&
a0043383 1764 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
572e2857 1765 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
a0043383
MA
1766 need_wait = B_TRUE;
1767 }
f664f1ee
PD
1768 err = dbuf_read_impl(db, zio, flags, dblt, FTAG);
1769 /*
1770 * dbuf_read_impl has dropped db_mtx and our parent's rwlock
1771 * for us
1772 */
1773 if (!err && prefetch) {
1774 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
891568c9 1775 db->db_state != DB_CACHED,
f664f1ee
PD
1776 flags & DB_RF_HAVESTRUCT);
1777 }
34dc7c2f 1778
572e2857 1779 DB_DNODE_EXIT(db);
5e021f56 1780 DBUF_STAT_BUMP(hash_misses);
34dc7c2f 1781
5e7f3ace
TC
1782 /*
1783 * If we created a zio_root we must execute it to avoid
1784 * leaking it, even if it isn't attached to any work due
1785 * to an error in dbuf_read_impl().
1786 */
1787 if (need_wait) {
1788 if (err == 0)
1789 err = zio_wait(zio);
1790 else
1791 VERIFY0(zio_wait(zio));
1792 }
34dc7c2f 1793 } else {
e49f1e20
WA
1794 /*
1795 * Another reader came in while the dbuf was in flight
1796 * between UNCACHED and CACHED. Either a writer will finish
1797 * writing the buffer (sending the dbuf to CACHED) or the
1798 * first reader's request will reach the read_done callback
1799 * and send the dbuf to CACHED. Otherwise, a failure
1800 * occurred and the dbuf went to UNCACHED.
1801 */
34dc7c2f 1802 mutex_exit(&db->db_mtx);
f664f1ee
PD
1803 if (prefetch) {
1804 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
891568c9 1805 B_TRUE, flags & DB_RF_HAVESTRUCT);
f664f1ee 1806 }
572e2857 1807 DB_DNODE_EXIT(db);
5e021f56 1808 DBUF_STAT_BUMP(hash_misses);
34dc7c2f 1809
e49f1e20 1810 /* Skip the wait per the caller's request. */
34dc7c2f 1811 if ((flags & DB_RF_NEVERWAIT) == 0) {
28caa74b 1812 mutex_enter(&db->db_mtx);
34dc7c2f
BB
1813 while (db->db_state == DB_READ ||
1814 db->db_state == DB_FILL) {
1815 ASSERT(db->db_state == DB_READ ||
1816 (flags & DB_RF_HAVESTRUCT) == 0);
64dbba36
AL
1817 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1818 db, zio_t *, zio);
34dc7c2f
BB
1819 cv_wait(&db->db_changed, &db->db_mtx);
1820 }
1821 if (db->db_state == DB_UNCACHED)
2e528b49 1822 err = SET_ERROR(EIO);
28caa74b 1823 mutex_exit(&db->db_mtx);
34dc7c2f 1824 }
34dc7c2f
BB
1825 }
1826
34dc7c2f
BB
1827 return (err);
1828}
1829
1830static void
1831dbuf_noread(dmu_buf_impl_t *db)
1832{
424fd7c3 1833 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
428870ff 1834 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
34dc7c2f
BB
1835 mutex_enter(&db->db_mtx);
1836 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1837 cv_wait(&db->db_changed, &db->db_mtx);
1838 if (db->db_state == DB_UNCACHED) {
34dc7c2f
BB
1839 ASSERT(db->db_buf == NULL);
1840 ASSERT(db->db.db_data == NULL);
8b3547a4 1841 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
34dc7c2f 1842 db->db_state = DB_FILL;
8b3547a4 1843 DTRACE_SET_STATE(db, "assigning filled buffer");
b128c09f 1844 } else if (db->db_state == DB_NOFILL) {
0c66c32d 1845 dbuf_clear_data(db);
34dc7c2f
BB
1846 } else {
1847 ASSERT3U(db->db_state, ==, DB_CACHED);
1848 }
1849 mutex_exit(&db->db_mtx);
1850}
1851
34dc7c2f
BB
1852void
1853dbuf_unoverride(dbuf_dirty_record_t *dr)
1854{
1855 dmu_buf_impl_t *db = dr->dr_dbuf;
428870ff 1856 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
34dc7c2f
BB
1857 uint64_t txg = dr->dr_txg;
1858
1859 ASSERT(MUTEX_HELD(&db->db_mtx));
00710365
AS
1860 /*
1861 * This assert is valid because dmu_sync() expects to be called by
1862 * a zilog's get_data while holding a range lock. This call only
1863 * comes from dbuf_dirty() callers who must also hold a range lock.
1864 */
34dc7c2f
BB
1865 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1866 ASSERT(db->db_level == 0);
1867
428870ff 1868 if (db->db_blkid == DMU_BONUS_BLKID ||
34dc7c2f
BB
1869 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1870 return;
1871
428870ff
BB
1872 ASSERT(db->db_data_pending != dr);
1873
34dc7c2f 1874 /* free this block */
b0bc7a84
MG
1875 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1876 zio_free(db->db_objset->os_spa, txg, bp);
428870ff 1877
34dc7c2f 1878 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
03c6040b 1879 dr->dt.dl.dr_nopwrite = B_FALSE;
0c03d21a 1880 dr->dt.dl.dr_has_raw_params = B_FALSE;
03c6040b 1881
34dc7c2f
BB
1882 /*
1883 * Release the already-written buffer, so we leave it in
1884 * a consistent dirty state. Note that all callers are
1885 * modifying the buffer, so they will immediately do
1886 * another (redundant) arc_release(). Therefore, leave
1887 * the buf thawed to save the effort of freezing &
1888 * immediately re-thawing it.
1889 */
1890 arc_release(dr->dt.dl.dr_data, db);
1891}
1892
b128c09f
BB
1893/*
1894 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1895 * data blocks in the free range, so that any future readers will find
b0bc7a84 1896 * empty blocks.
b128c09f 1897 */
34dc7c2f 1898void
8951cb8d
AR
1899dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1900 dmu_tx_t *tx)
34dc7c2f 1901{
0c66c32d
JG
1902 dmu_buf_impl_t *db_search;
1903 dmu_buf_impl_t *db, *db_next;
34dc7c2f 1904 uint64_t txg = tx->tx_txg;
8951cb8d 1905 avl_index_t where;
7b49bbc8 1906 dbuf_dirty_record_t *dr;
8951cb8d 1907
9c9531cb
GM
1908 if (end_blkid > dn->dn_maxblkid &&
1909 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
8951cb8d 1910 end_blkid = dn->dn_maxblkid;
8e739b2c
RE
1911 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
1912 (u_longlong_t)end_blkid);
34dc7c2f 1913
0c66c32d 1914 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
8951cb8d
AR
1915 db_search->db_level = 0;
1916 db_search->db_blkid = start_blkid;
9925c28c 1917 db_search->db_state = DB_SEARCH;
ea97f8ce 1918
b663a23d 1919 mutex_enter(&dn->dn_dbufs_mtx);
8951cb8d
AR
1920 db = avl_find(&dn->dn_dbufs, db_search, &where);
1921 ASSERT3P(db, ==, NULL);
9c9531cb 1922
8951cb8d
AR
1923 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1924
1925 for (; db != NULL; db = db_next) {
1926 db_next = AVL_NEXT(&dn->dn_dbufs, db);
428870ff 1927 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
b128c09f 1928
8951cb8d
AR
1929 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1930 break;
1931 }
1932 ASSERT3U(db->db_blkid, >=, start_blkid);
34dc7c2f
BB
1933
1934 /* found a level 0 buffer in the range */
13fe0198
MA
1935 mutex_enter(&db->db_mtx);
1936 if (dbuf_undirty(db, tx)) {
1937 /* mutex has been dropped and dbuf destroyed */
34dc7c2f 1938 continue;
13fe0198 1939 }
34dc7c2f 1940
34dc7c2f 1941 if (db->db_state == DB_UNCACHED ||
b128c09f 1942 db->db_state == DB_NOFILL ||
34dc7c2f
BB
1943 db->db_state == DB_EVICTING) {
1944 ASSERT(db->db.db_data == NULL);
1945 mutex_exit(&db->db_mtx);
1946 continue;
1947 }
1948 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1949 /* will be handled in dbuf_read_done or dbuf_rele */
1950 db->db_freed_in_flight = TRUE;
1951 mutex_exit(&db->db_mtx);
1952 continue;
1953 }
424fd7c3 1954 if (zfs_refcount_count(&db->db_holds) == 0) {
34dc7c2f 1955 ASSERT(db->db_buf);
d3c2ae1c 1956 dbuf_destroy(db);
34dc7c2f
BB
1957 continue;
1958 }
1959 /* The dbuf is referenced */
1960
7b49bbc8
MM
1961 dr = list_head(&db->db_dirty_records);
1962 if (dr != NULL) {
34dc7c2f
BB
1963 if (dr->dr_txg == txg) {
1964 /*
1965 * This buffer is "in-use", re-adjust the file
1966 * size to reflect that this buffer may
1967 * contain new data when we sync.
1968 */
428870ff
BB
1969 if (db->db_blkid != DMU_SPILL_BLKID &&
1970 db->db_blkid > dn->dn_maxblkid)
34dc7c2f
BB
1971 dn->dn_maxblkid = db->db_blkid;
1972 dbuf_unoverride(dr);
1973 } else {
1974 /*
1975 * This dbuf is not dirty in the open context.
1976 * Either uncache it (if its not referenced in
1977 * the open context) or reset its contents to
1978 * empty.
1979 */
1980 dbuf_fix_old_data(db, txg);
1981 }
1982 }
1983 /* clear the contents if its cached */
1984 if (db->db_state == DB_CACHED) {
1985 ASSERT(db->db.db_data != NULL);
1986 arc_release(db->db_buf, db);
f664f1ee 1987 rw_enter(&db->db_rwlock, RW_WRITER);
861166b0 1988 memset(db->db.db_data, 0, db->db.db_size);
f664f1ee 1989 rw_exit(&db->db_rwlock);
34dc7c2f
BB
1990 arc_buf_freeze(db->db_buf);
1991 }
1992
1993 mutex_exit(&db->db_mtx);
1994 }
8951cb8d 1995
34dc7c2f 1996 mutex_exit(&dn->dn_dbufs_mtx);
547df816 1997 kmem_free(db_search, sizeof (dmu_buf_impl_t));
34dc7c2f
BB
1998}
1999
34dc7c2f
BB
2000void
2001dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
2002{
28caa74b 2003 arc_buf_t *buf, *old_buf;
cccbed9f 2004 dbuf_dirty_record_t *dr;
34dc7c2f
BB
2005 int osize = db->db.db_size;
2006 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
572e2857 2007 dnode_t *dn;
34dc7c2f 2008
428870ff 2009 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
34dc7c2f 2010
572e2857
BB
2011 DB_DNODE_ENTER(db);
2012 dn = DB_DNODE(db);
2013
34dc7c2f
BB
2014 /*
2015 * XXX we should be doing a dbuf_read, checking the return
2016 * value and returning that up to our callers
2017 */
b0bc7a84 2018 dmu_buf_will_dirty(&db->db, tx);
34dc7c2f
BB
2019
2020 /* create the data buffer for the new block */
2aa34383 2021 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
34dc7c2f
BB
2022
2023 /* copy old block data to the new block */
28caa74b 2024 old_buf = db->db_buf;
861166b0 2025 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
34dc7c2f
BB
2026 /* zero the remainder */
2027 if (size > osize)
861166b0 2028 memset((uint8_t *)buf->b_data + osize, 0, size - osize);
34dc7c2f
BB
2029
2030 mutex_enter(&db->db_mtx);
2031 dbuf_set_data(db, buf);
28caa74b 2032 arc_buf_destroy(old_buf, db);
34dc7c2f
BB
2033 db->db.db_size = size;
2034
cccbed9f 2035 dr = list_head(&db->db_dirty_records);
7b49bbc8
MM
2036 /* dirty record added by dmu_buf_will_dirty() */
2037 VERIFY(dr != NULL);
cccbed9f
MM
2038 if (db->db_level == 0)
2039 dr->dt.dl.dr_data = buf;
2040 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2041 ASSERT3U(dr->dr_accounted, ==, osize);
2042 dr->dr_accounted = size;
34dc7c2f
BB
2043 mutex_exit(&db->db_mtx);
2044
3ec3bc21 2045 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
572e2857 2046 DB_DNODE_EXIT(db);
34dc7c2f
BB
2047}
2048
428870ff
BB
2049void
2050dbuf_release_bp(dmu_buf_impl_t *db)
2051{
2a8ba608 2052 objset_t *os __maybe_unused = db->db_objset;
428870ff
BB
2053
2054 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
2055 ASSERT(arc_released(os->os_phys_buf) ||
2056 list_link_active(&os->os_dsl_dataset->ds_synced_link));
2057 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
2058
294f6806 2059 (void) arc_release(db->db_buf, db);
428870ff
BB
2060}
2061
5a28a973
MA
2062/*
2063 * We already have a dirty record for this TXG, and we are being
2064 * dirtied again.
2065 */
2066static void
2067dbuf_redirty(dbuf_dirty_record_t *dr)
2068{
2069 dmu_buf_impl_t *db = dr->dr_dbuf;
2070
2071 ASSERT(MUTEX_HELD(&db->db_mtx));
2072
2073 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
2074 /*
2075 * If this buffer has already been written out,
2076 * we now need to reset its state.
2077 */
2078 dbuf_unoverride(dr);
2079 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
2080 db->db_state != DB_NOFILL) {
2081 /* Already released on initial dirty, so just thaw. */
2082 ASSERT(arc_released(db->db_buf));
2083 arc_buf_thaw(db->db_buf);
2084 }
2085 }
2086}
2087
ba67d821
MA
2088dbuf_dirty_record_t *
2089dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
2090{
2091 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2092 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
2093 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
2094 ASSERT(dn->dn_maxblkid >= blkid);
2095
2096 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
2097 list_link_init(&dr->dr_dirty_node);
2098 list_link_init(&dr->dr_dbuf_node);
2099 dr->dr_dnode = dn;
2100 dr->dr_txg = tx->tx_txg;
2101 dr->dt.dll.dr_blkid = blkid;
2102 dr->dr_accounted = dn->dn_datablksz;
2103
2104 /*
2105 * There should not be any dbuf for the block that we're dirtying.
2106 * Otherwise the buffer contents could be inconsistent between the
2107 * dbuf and the lightweight dirty record.
2108 */
2109 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid));
2110
2111 mutex_enter(&dn->dn_mtx);
2112 int txgoff = tx->tx_txg & TXG_MASK;
2113 if (dn->dn_free_ranges[txgoff] != NULL) {
2114 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
2115 }
2116
2117 if (dn->dn_nlevels == 1) {
2118 ASSERT3U(blkid, <, dn->dn_nblkptr);
2119 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2120 mutex_exit(&dn->dn_mtx);
2121 rw_exit(&dn->dn_struct_rwlock);
2122 dnode_setdirty(dn, tx);
2123 } else {
2124 mutex_exit(&dn->dn_mtx);
2125
2126 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2127 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
2128 1, blkid >> epbs, FTAG);
2129 rw_exit(&dn->dn_struct_rwlock);
2130 if (parent_db == NULL) {
2131 kmem_free(dr, sizeof (*dr));
2132 return (NULL);
2133 }
2134 int err = dbuf_read(parent_db, NULL,
2135 (DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2136 if (err != 0) {
2137 dbuf_rele(parent_db, FTAG);
2138 kmem_free(dr, sizeof (*dr));
2139 return (NULL);
2140 }
2141
2142 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
2143 dbuf_rele(parent_db, FTAG);
2144 mutex_enter(&parent_dr->dt.di.dr_mtx);
2145 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
2146 list_insert_tail(&parent_dr->dt.di.dr_children, dr);
2147 mutex_exit(&parent_dr->dt.di.dr_mtx);
2148 dr->dr_parent = parent_dr;
2149 }
2150
2151 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
2152
2153 return (dr);
2154}
2155
34dc7c2f
BB
2156dbuf_dirty_record_t *
2157dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2158{
572e2857
BB
2159 dnode_t *dn;
2160 objset_t *os;
cccbed9f 2161 dbuf_dirty_record_t *dr, *dr_next, *dr_head;
34dc7c2f 2162 int txgoff = tx->tx_txg & TXG_MASK;
f664f1ee 2163 boolean_t drop_struct_rwlock = B_FALSE;
34dc7c2f
BB
2164
2165 ASSERT(tx->tx_txg != 0);
424fd7c3 2166 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
34dc7c2f
BB
2167 DMU_TX_DIRTY_BUF(tx, db);
2168
572e2857
BB
2169 DB_DNODE_ENTER(db);
2170 dn = DB_DNODE(db);
34dc7c2f
BB
2171 /*
2172 * Shouldn't dirty a regular buffer in syncing context. Private
2173 * objects may be dirtied in syncing context, but only if they
2174 * were already pre-dirtied in open context.
34dc7c2f 2175 */
6d8da841 2176#ifdef ZFS_DEBUG
cc9bb3e5
GM
2177 if (dn->dn_objset->os_dsl_dataset != NULL) {
2178 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
2179 RW_READER, FTAG);
2180 }
34dc7c2f
BB
2181 ASSERT(!dmu_tx_is_syncing(tx) ||
2182 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
9babb374
BB
2183 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2184 dn->dn_objset->os_dsl_dataset == NULL);
cc9bb3e5
GM
2185 if (dn->dn_objset->os_dsl_dataset != NULL)
2186 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
2187#endif
34dc7c2f
BB
2188 /*
2189 * We make this assert for private objects as well, but after we
2190 * check if we're already dirty. They are allowed to re-dirty
2191 * in syncing context.
2192 */
2193 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2194 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2195 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2196
2197 mutex_enter(&db->db_mtx);
2198 /*
2199 * XXX make this true for indirects too? The problem is that
2200 * transactions created with dmu_tx_create_assigned() from
2201 * syncing context don't bother holding ahead.
2202 */
2203 ASSERT(db->db_level != 0 ||
b128c09f
BB
2204 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
2205 db->db_state == DB_NOFILL);
34dc7c2f
BB
2206
2207 mutex_enter(&dn->dn_mtx);
28caa74b 2208 dnode_set_dirtyctx(dn, tx, db);
edc1e713
TC
2209 if (tx->tx_txg > dn->dn_dirty_txg)
2210 dn->dn_dirty_txg = tx->tx_txg;
34dc7c2f
BB
2211 mutex_exit(&dn->dn_mtx);
2212
428870ff
BB
2213 if (db->db_blkid == DMU_SPILL_BLKID)
2214 dn->dn_have_spill = B_TRUE;
2215
34dc7c2f
BB
2216 /*
2217 * If this buffer is already dirty, we're done.
2218 */
cccbed9f
MM
2219 dr_head = list_head(&db->db_dirty_records);
2220 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
34dc7c2f 2221 db->db.db_object == DMU_META_DNODE_OBJECT);
cccbed9f
MM
2222 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2223 if (dr_next && dr_next->dr_txg == tx->tx_txg) {
572e2857
BB
2224 DB_DNODE_EXIT(db);
2225
cccbed9f 2226 dbuf_redirty(dr_next);
34dc7c2f 2227 mutex_exit(&db->db_mtx);
cccbed9f 2228 return (dr_next);
34dc7c2f
BB
2229 }
2230
2231 /*
2232 * Only valid if not already dirty.
2233 */
9babb374
BB
2234 ASSERT(dn->dn_object == 0 ||
2235 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
34dc7c2f
BB
2236 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2237
2238 ASSERT3U(dn->dn_nlevels, >, db->db_level);
34dc7c2f
BB
2239
2240 /*
2241 * We should only be dirtying in syncing context if it's the
9babb374
BB
2242 * mos or we're initializing the os or it's a special object.
2243 * However, we are allowed to dirty in syncing context provided
2244 * we already dirtied it in open context. Hence we must make
2245 * this assertion only if we're not already dirty.
34dc7c2f 2246 */
572e2857 2247 os = dn->dn_objset;
3b7f360c 2248 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
6d8da841 2249#ifdef ZFS_DEBUG
cc9bb3e5
GM
2250 if (dn->dn_objset->os_dsl_dataset != NULL)
2251 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
9babb374
BB
2252 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2253 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
cc9bb3e5
GM
2254 if (dn->dn_objset->os_dsl_dataset != NULL)
2255 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2256#endif
34dc7c2f
BB
2257 ASSERT(db->db.db_size != 0);
2258
2259 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2260
428870ff 2261 if (db->db_blkid != DMU_BONUS_BLKID) {
3ec3bc21 2262 dmu_objset_willuse_space(os, db->db.db_size, tx);
34dc7c2f
BB
2263 }
2264
2265 /*
2266 * If this buffer is dirty in an old transaction group we need
2267 * to make a copy of it so that the changes we make in this
2268 * transaction group won't leak out when we sync the older txg.
2269 */
79c76d5b 2270 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
98f72a53 2271 list_link_init(&dr->dr_dirty_node);
cccbed9f 2272 list_link_init(&dr->dr_dbuf_node);
ba67d821 2273 dr->dr_dnode = dn;
34dc7c2f
BB
2274 if (db->db_level == 0) {
2275 void *data_old = db->db_buf;
2276
b128c09f 2277 if (db->db_state != DB_NOFILL) {
428870ff 2278 if (db->db_blkid == DMU_BONUS_BLKID) {
b128c09f
BB
2279 dbuf_fix_old_data(db, tx->tx_txg);
2280 data_old = db->db.db_data;
2281 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2282 /*
2283 * Release the data buffer from the cache so
2284 * that we can modify it without impacting
2285 * possible other users of this cached data
2286 * block. Note that indirect blocks and
2287 * private objects are not released until the
2288 * syncing state (since they are only modified
2289 * then).
2290 */
2291 arc_release(db->db_buf, db);
2292 dbuf_fix_old_data(db, tx->tx_txg);
2293 data_old = db->db_buf;
2294 }
2295 ASSERT(data_old != NULL);
34dc7c2f 2296 }
34dc7c2f
BB
2297 dr->dt.dl.dr_data = data_old;
2298 } else {
448d7aaa 2299 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
34dc7c2f
BB
2300 list_create(&dr->dt.di.dr_children,
2301 sizeof (dbuf_dirty_record_t),
2302 offsetof(dbuf_dirty_record_t, dr_dirty_node));
2303 }
0f8ff49e 2304 if (db->db_blkid != DMU_BONUS_BLKID)
e8b96c60 2305 dr->dr_accounted = db->db.db_size;
34dc7c2f
BB
2306 dr->dr_dbuf = db;
2307 dr->dr_txg = tx->tx_txg;
cccbed9f 2308 list_insert_before(&db->db_dirty_records, dr_next, dr);
34dc7c2f
BB
2309
2310 /*
2311 * We could have been freed_in_flight between the dbuf_noread
2312 * and dbuf_dirty. We win, as though the dbuf_noread() had
2313 * happened after the free.
2314 */
428870ff
BB
2315 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2316 db->db_blkid != DMU_SPILL_BLKID) {
34dc7c2f 2317 mutex_enter(&dn->dn_mtx);
9bd274dd
MA
2318 if (dn->dn_free_ranges[txgoff] != NULL) {
2319 range_tree_clear(dn->dn_free_ranges[txgoff],
2320 db->db_blkid, 1);
2321 }
34dc7c2f
BB
2322 mutex_exit(&dn->dn_mtx);
2323 db->db_freed_in_flight = FALSE;
2324 }
2325
2326 /*
2327 * This buffer is now part of this txg
2328 */
2329 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2330 db->db_dirtycnt += 1;
2331 ASSERT3U(db->db_dirtycnt, <=, 3);
2332
2333 mutex_exit(&db->db_mtx);
2334
428870ff
BB
2335 if (db->db_blkid == DMU_BONUS_BLKID ||
2336 db->db_blkid == DMU_SPILL_BLKID) {
34dc7c2f
BB
2337 mutex_enter(&dn->dn_mtx);
2338 ASSERT(!list_link_active(&dr->dr_dirty_node));
2339 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2340 mutex_exit(&dn->dn_mtx);
2341 dnode_setdirty(dn, tx);
572e2857 2342 DB_DNODE_EXIT(db);
34dc7c2f 2343 return (dr);
98ace739
MA
2344 }
2345
98ace739
MA
2346 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2347 rw_enter(&dn->dn_struct_rwlock, RW_READER);
f664f1ee
PD
2348 drop_struct_rwlock = B_TRUE;
2349 }
2350
2351 /*
2352 * If we are overwriting a dedup BP, then unless it is snapshotted,
2353 * when we get to syncing context we will need to decrement its
2354 * refcount in the DDT. Prefetch the relevant DDT block so that
2355 * syncing context won't have to wait for the i/o.
2356 */
2357 if (db->db_blkptr != NULL) {
2358 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2359 ddt_prefetch(os->os_spa, db->db_blkptr);
2360 dmu_buf_unlock_parent(db, dblt, FTAG);
98ace739
MA
2361 }
2362
2ade4a99
MA
2363 /*
2364 * We need to hold the dn_struct_rwlock to make this assertion,
2365 * because it protects dn_phys / dn_next_nlevels from changing.
2366 */
2367 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2368 dn->dn_phys->dn_nlevels > db->db_level ||
2369 dn->dn_next_nlevels[txgoff] > db->db_level ||
2370 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2371 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2372
34dc7c2f 2373
b128c09f 2374 if (db->db_level == 0) {
69830602
TC
2375 ASSERT(!db->db_objset->os_raw_receive ||
2376 dn->dn_maxblkid >= db->db_blkid);
369aa501 2377 dnode_new_blkid(dn, db->db_blkid, tx,
f664f1ee 2378 drop_struct_rwlock, B_FALSE);
b128c09f
BB
2379 ASSERT(dn->dn_maxblkid >= db->db_blkid);
2380 }
2381
34dc7c2f
BB
2382 if (db->db_level+1 < dn->dn_nlevels) {
2383 dmu_buf_impl_t *parent = db->db_parent;
2384 dbuf_dirty_record_t *di;
2385 int parent_held = FALSE;
2386
2387 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2388 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
f664f1ee 2389 parent = dbuf_hold_level(dn, db->db_level + 1,
34dc7c2f 2390 db->db_blkid >> epbs, FTAG);
428870ff 2391 ASSERT(parent != NULL);
34dc7c2f
BB
2392 parent_held = TRUE;
2393 }
f664f1ee 2394 if (drop_struct_rwlock)
34dc7c2f 2395 rw_exit(&dn->dn_struct_rwlock);
f664f1ee 2396 ASSERT3U(db->db_level + 1, ==, parent->db_level);
34dc7c2f
BB
2397 di = dbuf_dirty(parent, tx);
2398 if (parent_held)
2399 dbuf_rele(parent, FTAG);
2400
2401 mutex_enter(&db->db_mtx);
e8b96c60
MA
2402 /*
2403 * Since we've dropped the mutex, it's possible that
2404 * dbuf_undirty() might have changed this out from under us.
2405 */
cccbed9f 2406 if (list_head(&db->db_dirty_records) == dr ||
34dc7c2f
BB
2407 dn->dn_object == DMU_META_DNODE_OBJECT) {
2408 mutex_enter(&di->dt.di.dr_mtx);
2409 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2410 ASSERT(!list_link_active(&dr->dr_dirty_node));
2411 list_insert_tail(&di->dt.di.dr_children, dr);
2412 mutex_exit(&di->dt.di.dr_mtx);
2413 dr->dr_parent = di;
2414 }
2415 mutex_exit(&db->db_mtx);
2416 } else {
f664f1ee 2417 ASSERT(db->db_level + 1 == dn->dn_nlevels);
34dc7c2f 2418 ASSERT(db->db_blkid < dn->dn_nblkptr);
572e2857 2419 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
34dc7c2f
BB
2420 mutex_enter(&dn->dn_mtx);
2421 ASSERT(!list_link_active(&dr->dr_dirty_node));
2422 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2423 mutex_exit(&dn->dn_mtx);
f664f1ee 2424 if (drop_struct_rwlock)
34dc7c2f
BB
2425 rw_exit(&dn->dn_struct_rwlock);
2426 }
2427
2428 dnode_setdirty(dn, tx);
572e2857 2429 DB_DNODE_EXIT(db);
34dc7c2f
BB
2430 return (dr);
2431}
2432
fa3922df
MM
2433static void
2434dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
2435{
2436 dmu_buf_impl_t *db = dr->dr_dbuf;
2437
2438 if (dr->dt.dl.dr_data != db->db.db_data) {
ba67d821 2439 struct dnode *dn = dr->dr_dnode;
fa3922df
MM
2440 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
2441
2442 kmem_free(dr->dt.dl.dr_data, max_bonuslen);
2443 arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
2444 }
2445 db->db_data_pending = NULL;
2446 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
2447 list_remove(&db->db_dirty_records, dr);
2448 if (dr->dr_dbuf->db_level != 0) {
2449 mutex_destroy(&dr->dt.di.dr_mtx);
2450 list_destroy(&dr->dt.di.dr_children);
2451 }
2452 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2453 ASSERT3U(db->db_dirtycnt, >, 0);
2454 db->db_dirtycnt -= 1;
2455}
2456
13fe0198 2457/*
e49f1e20
WA
2458 * Undirty a buffer in the transaction group referenced by the given
2459 * transaction. Return whether this evicted the dbuf.
13fe0198
MA
2460 */
2461static boolean_t
34dc7c2f
BB
2462dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2463{
34dc7c2f 2464 uint64_t txg = tx->tx_txg;
34dc7c2f
BB
2465
2466 ASSERT(txg != 0);
4bda3bd0
MA
2467
2468 /*
2469 * Due to our use of dn_nlevels below, this can only be called
2470 * in open context, unless we are operating on the MOS.
2471 * From syncing context, dn_nlevels may be different from the
2472 * dn_nlevels used when dbuf was dirtied.
2473 */
2474 ASSERT(db->db_objset ==
2475 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2476 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
428870ff 2477 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
13fe0198
MA
2478 ASSERT0(db->db_level);
2479 ASSERT(MUTEX_HELD(&db->db_mtx));
34dc7c2f 2480
34dc7c2f
BB
2481 /*
2482 * If this buffer is not dirty, we're done.
2483 */
ba67d821 2484 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
cccbed9f 2485 if (dr == NULL)
13fe0198 2486 return (B_FALSE);
428870ff 2487 ASSERT(dr->dr_dbuf == db);
34dc7c2f 2488
ba67d821 2489 dnode_t *dn = dr->dr_dnode;
572e2857 2490
34dc7c2f
BB
2491 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2492
2493 ASSERT(db->db.db_size != 0);
2494
4bda3bd0
MA
2495 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2496 dr->dr_accounted, txg);
34dc7c2f 2497
cccbed9f 2498 list_remove(&db->db_dirty_records, dr);
34dc7c2f 2499
ef3c1dea
GR
2500 /*
2501 * Note that there are three places in dbuf_dirty()
2502 * where this dirty record may be put on a list.
2503 * Make sure to do a list_remove corresponding to
2504 * every one of those list_insert calls.
2505 */
34dc7c2f
BB
2506 if (dr->dr_parent) {
2507 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2508 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2509 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
ef3c1dea 2510 } else if (db->db_blkid == DMU_SPILL_BLKID ||
4bda3bd0 2511 db->db_level + 1 == dn->dn_nlevels) {
b128c09f 2512 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
34dc7c2f
BB
2513 mutex_enter(&dn->dn_mtx);
2514 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2515 mutex_exit(&dn->dn_mtx);
2516 }
2517
13fe0198
MA
2518 if (db->db_state != DB_NOFILL) {
2519 dbuf_unoverride(dr);
34dc7c2f 2520
34dc7c2f 2521 ASSERT(db->db_buf != NULL);
13fe0198
MA
2522 ASSERT(dr->dt.dl.dr_data != NULL);
2523 if (dr->dt.dl.dr_data != db->db_buf)
d3c2ae1c 2524 arc_buf_destroy(dr->dt.dl.dr_data, db);
34dc7c2f 2525 }
58c4aa00 2526
34dc7c2f
BB
2527 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2528
2529 ASSERT(db->db_dirtycnt > 0);
2530 db->db_dirtycnt -= 1;
2531
424fd7c3 2532 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
d3c2ae1c
GW
2533 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2534 dbuf_destroy(db);
13fe0198 2535 return (B_TRUE);
34dc7c2f
BB
2536 }
2537
13fe0198 2538 return (B_FALSE);
34dc7c2f
BB
2539}
2540
b5256303
TC
2541static void
2542dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
34dc7c2f 2543{
b0bc7a84 2544 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
34dc7c2f
BB
2545
2546 ASSERT(tx->tx_txg != 0);
424fd7c3 2547 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
34dc7c2f 2548
5a28a973 2549 /*
e1cfd73f 2550 * Quick check for dirtiness. For already dirty blocks, this
5a28a973
MA
2551 * reduces runtime of this function by >90%, and overall performance
2552 * by 50% for some workloads (e.g. file deletion with indirect blocks
2553 * cached).
2554 */
2555 mutex_enter(&db->db_mtx);
2556
cccbed9f
MM
2557 if (db->db_state == DB_CACHED) {
2558 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
5a28a973
MA
2559 /*
2560 * It's possible that it is already dirty but not cached,
2561 * because there are some calls to dbuf_dirty() that don't
2562 * go through dmu_buf_will_dirty().
2563 */
cccbed9f 2564 if (dr != NULL) {
5a28a973
MA
2565 /* This dbuf is already dirty and cached. */
2566 dbuf_redirty(dr);
2567 mutex_exit(&db->db_mtx);
2568 return;
2569 }
2570 }
2571 mutex_exit(&db->db_mtx);
2572
572e2857
BB
2573 DB_DNODE_ENTER(db);
2574 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
b5256303 2575 flags |= DB_RF_HAVESTRUCT;
572e2857 2576 DB_DNODE_EXIT(db);
b5256303 2577 (void) dbuf_read(db, NULL, flags);
34dc7c2f
BB
2578 (void) dbuf_dirty(db, tx);
2579}
2580
b5256303
TC
2581void
2582dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2583{
2584 dmu_buf_will_dirty_impl(db_fake,
2585 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2586}
2587
a73e8fdb
PZ
2588boolean_t
2589dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2590{
2591 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
cccbed9f 2592 dbuf_dirty_record_t *dr;
a73e8fdb
PZ
2593
2594 mutex_enter(&db->db_mtx);
cccbed9f 2595 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
a73e8fdb 2596 mutex_exit(&db->db_mtx);
cccbed9f 2597 return (dr != NULL);
a73e8fdb
PZ
2598}
2599
b128c09f
BB
2600void
2601dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2602{
2603 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2604
2605 db->db_state = DB_NOFILL;
8b3547a4 2606 DTRACE_SET_STATE(db, "allocating NOFILL buffer");
b128c09f
BB
2607 dmu_buf_will_fill(db_fake, tx);
2608}
2609
34dc7c2f
BB
2610void
2611dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2612{
2613 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2614
428870ff 2615 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
34dc7c2f
BB
2616 ASSERT(tx->tx_txg != 0);
2617 ASSERT(db->db_level == 0);
424fd7c3 2618 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
34dc7c2f
BB
2619
2620 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2621 dmu_tx_private_ok(tx));
2622
2623 dbuf_noread(db);
2624 (void) dbuf_dirty(db, tx);
2625}
2626
b5256303
TC
2627/*
2628 * This function is effectively the same as dmu_buf_will_dirty(), but
0c03d21a
MA
2629 * indicates the caller expects raw encrypted data in the db, and provides
2630 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2631 * blkptr_t when this dbuf is written. This is only used for blocks of
2632 * dnodes, during raw receive.
b5256303
TC
2633 */
2634void
0c03d21a
MA
2635dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2636 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
b5256303
TC
2637{
2638 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2639 dbuf_dirty_record_t *dr;
2640
0c03d21a
MA
2641 /*
2642 * dr_has_raw_params is only processed for blocks of dnodes
2643 * (see dbuf_sync_dnode_leaf_crypt()).
2644 */
2645 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2646 ASSERT3U(db->db_level, ==, 0);
2647 ASSERT(db->db_objset->os_raw_receive);
2648
b5256303
TC
2649 dmu_buf_will_dirty_impl(db_fake,
2650 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2651
cccbed9f 2652 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
b5256303
TC
2653
2654 ASSERT3P(dr, !=, NULL);
0c03d21a
MA
2655
2656 dr->dt.dl.dr_has_raw_params = B_TRUE;
2657 dr->dt.dl.dr_byteorder = byteorder;
861166b0
AZ
2658 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
2659 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
2660 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
b5256303
TC
2661}
2662
30af21b0
PD
2663static void
2664dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2665{
2666 struct dirty_leaf *dl;
cccbed9f 2667 dbuf_dirty_record_t *dr;
30af21b0 2668
cccbed9f
MM
2669 dr = list_head(&db->db_dirty_records);
2670 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2671 dl = &dr->dt.dl;
30af21b0
PD
2672 dl->dr_overridden_by = *bp;
2673 dl->dr_override_state = DR_OVERRIDDEN;
cccbed9f 2674 dl->dr_overridden_by.blk_birth = dr->dr_txg;
30af21b0
PD
2675}
2676
34dc7c2f 2677void
30af21b0 2678dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx)
34dc7c2f 2679{
14e4e3cb 2680 (void) tx;
30af21b0 2681 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
8b3547a4 2682 dbuf_states_t old_state;
34dc7c2f
BB
2683 mutex_enter(&db->db_mtx);
2684 DBUF_VERIFY(db);
2685
8b3547a4
MM
2686 old_state = db->db_state;
2687 db->db_state = DB_CACHED;
2688 if (old_state == DB_FILL) {
34dc7c2f 2689 if (db->db_level == 0 && db->db_freed_in_flight) {
428870ff 2690 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
34dc7c2f
BB
2691 /* we were freed while filling */
2692 /* XXX dbuf_undirty? */
861166b0 2693 memset(db->db.db_data, 0, db->db.db_size);
34dc7c2f 2694 db->db_freed_in_flight = FALSE;
8b3547a4
MM
2695 DTRACE_SET_STATE(db,
2696 "fill done handling freed in flight");
2697 } else {
2698 DTRACE_SET_STATE(db, "fill done");
34dc7c2f 2699 }
34dc7c2f
BB
2700 cv_broadcast(&db->db_changed);
2701 }
2702 mutex_exit(&db->db_mtx);
2703}
2704
9b67f605
MA
2705void
2706dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2707 bp_embedded_type_t etype, enum zio_compress comp,
2708 int uncompressed_size, int compressed_size, int byteorder,
2709 dmu_tx_t *tx)
2710{
2711 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2712 struct dirty_leaf *dl;
2713 dmu_object_type_t type;
cccbed9f 2714 dbuf_dirty_record_t *dr;
9b67f605 2715
241b5415
MA
2716 if (etype == BP_EMBEDDED_TYPE_DATA) {
2717 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2718 SPA_FEATURE_EMBEDDED_DATA));
2719 }
2720
9b67f605
MA
2721 DB_DNODE_ENTER(db);
2722 type = DB_DNODE(db)->dn_type;
2723 DB_DNODE_EXIT(db);
2724
2725 ASSERT0(db->db_level);
2726 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2727
2728 dmu_buf_will_not_fill(dbuf, tx);
2729
cccbed9f
MM
2730 dr = list_head(&db->db_dirty_records);
2731 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2732 dl = &dr->dt.dl;
9b67f605
MA
2733 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2734 data, comp, uncompressed_size, compressed_size);
2735 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2736 BP_SET_TYPE(&dl->dr_overridden_by, type);
2737 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2738 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2739
2740 dl->dr_override_state = DR_OVERRIDDEN;
cccbed9f 2741 dl->dr_overridden_by.blk_birth = dr->dr_txg;
9b67f605
MA
2742}
2743
30af21b0
PD
2744void
2745dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
2746{
2747 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2748 dmu_object_type_t type;
2749 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
2750 SPA_FEATURE_REDACTED_DATASETS));
2751
2752 DB_DNODE_ENTER(db);
2753 type = DB_DNODE(db)->dn_type;
2754 DB_DNODE_EXIT(db);
2755
2756 ASSERT0(db->db_level);
2757 dmu_buf_will_not_fill(dbuf, tx);
2758
2759 blkptr_t bp = { { { {0} } } };
2760 BP_SET_TYPE(&bp, type);
2761 BP_SET_LEVEL(&bp, 0);
2762 BP_SET_BIRTH(&bp, tx->tx_txg, 0);
2763 BP_SET_REDACTED(&bp);
2764 BPE_SET_LSIZE(&bp, dbuf->db_size);
2765
2766 dbuf_override_impl(db, &bp, tx);
2767}
2768
9babb374
BB
2769/*
2770 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2771 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2772 */
2773void
2774dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2775{
424fd7c3 2776 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
428870ff 2777 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
9babb374 2778 ASSERT(db->db_level == 0);
2aa34383 2779 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
9babb374 2780 ASSERT(buf != NULL);
caf9dd20 2781 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
9babb374
BB
2782 ASSERT(tx->tx_txg != 0);
2783
2784 arc_return_buf(buf, db);
2785 ASSERT(arc_released(buf));
2786
2787 mutex_enter(&db->db_mtx);
2788
2789 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2790 cv_wait(&db->db_changed, &db->db_mtx);
2791
2792 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2793
2794 if (db->db_state == DB_CACHED &&
424fd7c3 2795 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
440a3eb9
TC
2796 /*
2797 * In practice, we will never have a case where we have an
2798 * encrypted arc buffer while additional holds exist on the
2799 * dbuf. We don't handle this here so we simply assert that
2800 * fact instead.
2801 */
2802 ASSERT(!arc_is_encrypted(buf));
9babb374
BB
2803 mutex_exit(&db->db_mtx);
2804 (void) dbuf_dirty(db, tx);
861166b0 2805 memcpy(db->db.db_data, buf->b_data, db->db.db_size);
d3c2ae1c 2806 arc_buf_destroy(buf, db);
9babb374
BB
2807 return;
2808 }
2809
2810 if (db->db_state == DB_CACHED) {
cccbed9f 2811 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
9babb374
BB
2812
2813 ASSERT(db->db_buf != NULL);
2814 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2815 ASSERT(dr->dt.dl.dr_data == db->db_buf);
440a3eb9 2816
9babb374
BB
2817 if (!arc_released(db->db_buf)) {
2818 ASSERT(dr->dt.dl.dr_override_state ==
2819 DR_OVERRIDDEN);
2820 arc_release(db->db_buf, db);
2821 }
2822 dr->dt.dl.dr_data = buf;
d3c2ae1c 2823 arc_buf_destroy(db->db_buf, db);
9babb374
BB
2824 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2825 arc_release(db->db_buf, db);
d3c2ae1c 2826 arc_buf_destroy(db->db_buf, db);
9babb374
BB
2827 }
2828 db->db_buf = NULL;
2829 }
2830 ASSERT(db->db_buf == NULL);
2831 dbuf_set_data(db, buf);
2832 db->db_state = DB_FILL;
8b3547a4 2833 DTRACE_SET_STATE(db, "filling assigned arcbuf");
9babb374
BB
2834 mutex_exit(&db->db_mtx);
2835 (void) dbuf_dirty(db, tx);
b0bc7a84 2836 dmu_buf_fill_done(&db->db, tx);
9babb374
BB
2837}
2838
34dc7c2f 2839void
d3c2ae1c 2840dbuf_destroy(dmu_buf_impl_t *db)
34dc7c2f 2841{
572e2857 2842 dnode_t *dn;
34dc7c2f 2843 dmu_buf_impl_t *parent = db->db_parent;
572e2857 2844 dmu_buf_impl_t *dndb;
34dc7c2f
BB
2845
2846 ASSERT(MUTEX_HELD(&db->db_mtx));
424fd7c3 2847 ASSERT(zfs_refcount_is_zero(&db->db_holds));
34dc7c2f 2848
d3c2ae1c
GW
2849 if (db->db_buf != NULL) {
2850 arc_buf_destroy(db->db_buf, db);
2851 db->db_buf = NULL;
2852 }
34dc7c2f 2853
d3c2ae1c
GW
2854 if (db->db_blkid == DMU_BONUS_BLKID) {
2855 int slots = DB_DNODE(db)->dn_num_slots;
2856 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
b5256303
TC
2857 if (db->db.db_data != NULL) {
2858 kmem_free(db->db.db_data, bonuslen);
2859 arc_space_return(bonuslen, ARC_SPACE_BONUS);
2860 db->db_state = DB_UNCACHED;
8b3547a4 2861 DTRACE_SET_STATE(db, "buffer cleared");
b5256303 2862 }
34dc7c2f
BB
2863 }
2864
d3c2ae1c
GW
2865 dbuf_clear_data(db);
2866
2867 if (multilist_link_active(&db->db_cache_link)) {
2e5dc449
MA
2868 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2869 db->db_caching_status == DB_DBUF_METADATA_CACHE);
2870
ffdf019c 2871 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
424fd7c3 2872 (void) zfs_refcount_remove_many(
2e5dc449 2873 &dbuf_caches[db->db_caching_status].size,
d3c2ae1c 2874 db->db.db_size, db);
2e5dc449
MA
2875
2876 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
2877 DBUF_STAT_BUMPDOWN(metadata_cache_count);
2878 } else {
2879 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2880 DBUF_STAT_BUMPDOWN(cache_count);
2881 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
2882 db->db.db_size);
2883 }
2884 db->db_caching_status = DB_NO_CACHE;
d3c2ae1c
GW
2885 }
2886
b128c09f 2887 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
34dc7c2f 2888 ASSERT(db->db_data_pending == NULL);
28caa74b 2889 ASSERT(list_is_empty(&db->db_dirty_records));
34dc7c2f
BB
2890
2891 db->db_state = DB_EVICTING;
8b3547a4 2892 DTRACE_SET_STATE(db, "buffer eviction started");
34dc7c2f
BB
2893 db->db_blkptr = NULL;
2894
d3c2ae1c
GW
2895 /*
2896 * Now that db_state is DB_EVICTING, nobody else can find this via
2897 * the hash table. We can now drop db_mtx, which allows us to
2898 * acquire the dn_dbufs_mtx.
2899 */
2900 mutex_exit(&db->db_mtx);
2901
572e2857
BB
2902 DB_DNODE_ENTER(db);
2903 dn = DB_DNODE(db);
2904 dndb = dn->dn_dbuf;
d3c2ae1c
GW
2905 if (db->db_blkid != DMU_BONUS_BLKID) {
2906 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2907 if (needlock)
a649768a
JD
2908 mutex_enter_nested(&dn->dn_dbufs_mtx,
2909 NESTED_SINGLE);
8951cb8d 2910 avl_remove(&dn->dn_dbufs, db);
572e2857
BB
2911 membar_producer();
2912 DB_DNODE_EXIT(db);
d3c2ae1c
GW
2913 if (needlock)
2914 mutex_exit(&dn->dn_dbufs_mtx);
572e2857
BB
2915 /*
2916 * Decrementing the dbuf count means that the hold corresponding
2917 * to the removed dbuf is no longer discounted in dnode_move(),
2918 * so the dnode cannot be moved until after we release the hold.
2919 * The membar_producer() ensures visibility of the decremented
2920 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2921 * release any lock.
2922 */
1fac63e5 2923 mutex_enter(&dn->dn_mtx);
3d503a76 2924 dnode_rele_and_unlock(dn, db, B_TRUE);
572e2857 2925 db->db_dnode_handle = NULL;
d3c2ae1c
GW
2926
2927 dbuf_hash_remove(db);
572e2857
BB
2928 } else {
2929 DB_DNODE_EXIT(db);
34dc7c2f
BB
2930 }
2931
424fd7c3 2932 ASSERT(zfs_refcount_is_zero(&db->db_holds));
34dc7c2f 2933
d3c2ae1c
GW
2934 db->db_parent = NULL;
2935
2936 ASSERT(db->db_buf == NULL);
2937 ASSERT(db->db.db_data == NULL);
2938 ASSERT(db->db_hash_next == NULL);
2939 ASSERT(db->db_blkptr == NULL);
2940 ASSERT(db->db_data_pending == NULL);
2e5dc449 2941 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
d3c2ae1c
GW
2942 ASSERT(!multilist_link_active(&db->db_cache_link));
2943
34dc7c2f 2944 /*
572e2857 2945 * If this dbuf is referenced from an indirect dbuf,
34dc7c2f
BB
2946 * decrement the ref count on the indirect dbuf.
2947 */
1fac63e5
MA
2948 if (parent && parent != dndb) {
2949 mutex_enter(&parent->db_mtx);
3d503a76 2950 dbuf_rele_and_unlock(parent, db, B_TRUE);
1fac63e5 2951 }
c175f5eb
BB
2952
2953 kmem_cache_free(dbuf_kmem_cache, db);
2954 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
34dc7c2f
BB
2955}
2956
fcff0f35
PD
2957/*
2958 * Note: While bpp will always be updated if the function returns success,
2959 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
9c5167d1 2960 * this happens when the dnode is the meta-dnode, or {user|group|project}used
fcff0f35
PD
2961 * object.
2962 */
bf701a83
BB
2963__attribute__((always_inline))
2964static inline int
34dc7c2f 2965dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
adb726eb 2966 dmu_buf_impl_t **parentp, blkptr_t **bpp)
34dc7c2f 2967{
34dc7c2f
BB
2968 *parentp = NULL;
2969 *bpp = NULL;
2970
428870ff
BB
2971 ASSERT(blkid != DMU_BONUS_BLKID);
2972
2973 if (blkid == DMU_SPILL_BLKID) {
2974 mutex_enter(&dn->dn_mtx);
2975 if (dn->dn_have_spill &&
2976 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
50c957f7 2977 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
428870ff
BB
2978 else
2979 *bpp = NULL;
2980 dbuf_add_ref(dn->dn_dbuf, NULL);
2981 *parentp = dn->dn_dbuf;
2982 mutex_exit(&dn->dn_mtx);
2983 return (0);
2984 }
34dc7c2f 2985
1c27024e 2986 int nlevels =
32d41fb7 2987 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
1c27024e 2988 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
34dc7c2f
BB
2989
2990 ASSERT3U(level * epbs, <, 64);
2991 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
32d41fb7
PD
2992 /*
2993 * This assertion shouldn't trip as long as the max indirect block size
2994 * is less than 1M. The reason for this is that up to that point,
2995 * the number of levels required to address an entire object with blocks
2996 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2997 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2998 * (i.e. we can address the entire object), objects will all use at most
2999 * N-1 levels and the assertion won't overflow. However, once epbs is
3000 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
3001 * enough to address an entire object, so objects will have 5 levels,
3002 * but then this assertion will overflow.
3003 *
3004 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3005 * need to redo this logic to handle overflows.
3006 */
3007 ASSERT(level >= nlevels ||
3008 ((nlevels - level - 1) * epbs) +
3009 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
34dc7c2f 3010 if (level >= nlevels ||
32d41fb7
PD
3011 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
3012 ((nlevels - level - 1) * epbs)) ||
3013 (fail_sparse &&
3014 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
34dc7c2f 3015 /* the buffer has no parent yet */
2e528b49 3016 return (SET_ERROR(ENOENT));
34dc7c2f
BB
3017 } else if (level < nlevels-1) {
3018 /* this block is referenced from an indirect block */
fc5bb51f 3019 int err;
64b6c47d
TN
3020
3021 err = dbuf_hold_impl(dn, level + 1,
adb726eb 3022 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
64b6c47d 3023
34dc7c2f
BB
3024 if (err)
3025 return (err);
3026 err = dbuf_read(*parentp, NULL,
3027 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
3028 if (err) {
3029 dbuf_rele(*parentp, NULL);
3030 *parentp = NULL;
3031 return (err);
3032 }
f664f1ee 3033 rw_enter(&(*parentp)->db_rwlock, RW_READER);
34dc7c2f
BB
3034 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
3035 (blkid & ((1ULL << epbs) - 1));
32d41fb7
PD
3036 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
3037 ASSERT(BP_IS_HOLE(*bpp));
f664f1ee 3038 rw_exit(&(*parentp)->db_rwlock);
34dc7c2f
BB
3039 return (0);
3040 } else {
3041 /* the block is referenced from the dnode */
3042 ASSERT3U(level, ==, nlevels-1);
3043 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
3044 blkid < dn->dn_phys->dn_nblkptr);
3045 if (dn->dn_dbuf) {
3046 dbuf_add_ref(dn->dn_dbuf, NULL);
3047 *parentp = dn->dn_dbuf;
3048 }
3049 *bpp = &dn->dn_phys->dn_blkptr[blkid];
3050 return (0);
3051 }
3052}
3053
3054static dmu_buf_impl_t *
3055dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3056 dmu_buf_impl_t *parent, blkptr_t *blkptr)
3057{
428870ff 3058 objset_t *os = dn->dn_objset;
34dc7c2f
BB
3059 dmu_buf_impl_t *db, *odb;
3060
3061 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3062 ASSERT(dn->dn_type != DMU_OT_NONE);
3063
d3c2ae1c 3064 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
34dc7c2f 3065
cccbed9f
MM
3066 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
3067 offsetof(dbuf_dirty_record_t, dr_dbuf_node));
3068
34dc7c2f
BB
3069 db->db_objset = os;
3070 db->db.db_object = dn->dn_object;
3071 db->db_level = level;
3072 db->db_blkid = blkid;
34dc7c2f 3073 db->db_dirtycnt = 0;
572e2857 3074 db->db_dnode_handle = dn->dn_handle;
34dc7c2f
BB
3075 db->db_parent = parent;
3076 db->db_blkptr = blkptr;
3077
0c66c32d 3078 db->db_user = NULL;
bc4501f7
JG
3079 db->db_user_immediate_evict = FALSE;
3080 db->db_freed_in_flight = FALSE;
3081 db->db_pending_evict = FALSE;
34dc7c2f 3082
428870ff 3083 if (blkid == DMU_BONUS_BLKID) {
34dc7c2f 3084 ASSERT3P(parent, ==, dn->dn_dbuf);
50c957f7 3085 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
34dc7c2f
BB
3086 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
3087 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
428870ff 3088 db->db.db_offset = DMU_BONUS_BLKID;
34dc7c2f 3089 db->db_state = DB_UNCACHED;
8b3547a4 3090 DTRACE_SET_STATE(db, "bonus buffer created");
2e5dc449 3091 db->db_caching_status = DB_NO_CACHE;
34dc7c2f 3092 /* the bonus dbuf is not placed in the hash table */
25458cbe 3093 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
34dc7c2f 3094 return (db);
428870ff
BB
3095 } else if (blkid == DMU_SPILL_BLKID) {
3096 db->db.db_size = (blkptr != NULL) ?
3097 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
3098 db->db.db_offset = 0;
34dc7c2f
BB
3099 } else {
3100 int blocksize =
e8b96c60 3101 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
34dc7c2f
BB
3102 db->db.db_size = blocksize;
3103 db->db.db_offset = db->db_blkid * blocksize;
3104 }
3105
3106 /*
3107 * Hold the dn_dbufs_mtx while we get the new dbuf
3108 * in the hash table *and* added to the dbufs list.
3109 * This prevents a possible deadlock with someone
e1cfd73f 3110 * trying to look up this dbuf before it's added to the
34dc7c2f
BB
3111 * dn_dbufs list.
3112 */
3113 mutex_enter(&dn->dn_dbufs_mtx);
8b3547a4 3114 db->db_state = DB_EVICTING; /* not worth logging this state change */
34dc7c2f
BB
3115 if ((odb = dbuf_hash_insert(db)) != NULL) {
3116 /* someone else inserted it first */
34dc7c2f 3117 mutex_exit(&dn->dn_dbufs_mtx);
490c845e 3118 kmem_cache_free(dbuf_kmem_cache, db);
5e021f56 3119 DBUF_STAT_BUMP(hash_insert_race);
34dc7c2f
BB
3120 return (odb);
3121 }
8951cb8d 3122 avl_add(&dn->dn_dbufs, db);
9c9531cb 3123
34dc7c2f 3124 db->db_state = DB_UNCACHED;
8b3547a4 3125 DTRACE_SET_STATE(db, "regular buffer created");
2e5dc449 3126 db->db_caching_status = DB_NO_CACHE;
34dc7c2f 3127 mutex_exit(&dn->dn_dbufs_mtx);
25458cbe 3128 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
34dc7c2f
BB
3129
3130 if (parent && parent != dn->dn_dbuf)
3131 dbuf_add_ref(parent, db);
3132
3133 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
424fd7c3 3134 zfs_refcount_count(&dn->dn_holds) > 0);
c13060e4 3135 (void) zfs_refcount_add(&dn->dn_holds, db);
34dc7c2f
BB
3136
3137 dprintf_dbuf(db, "db=%p\n", db);
3138
3139 return (db);
3140}
3141
30af21b0
PD
3142/*
3143 * This function returns a block pointer and information about the object,
3144 * given a dnode and a block. This is a publicly accessible version of
3145 * dbuf_findbp that only returns some information, rather than the
3146 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock
3147 * should be locked as (at least) a reader.
3148 */
3149int
3150dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
3151 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
3152{
3153 dmu_buf_impl_t *dbp = NULL;
3154 blkptr_t *bp2;
3155 int err = 0;
3156 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3157
3158 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
3159 if (err == 0) {
3160 *bp = *bp2;
3161 if (dbp != NULL)
3162 dbuf_rele(dbp, NULL);
3163 if (datablkszsec != NULL)
3164 *datablkszsec = dn->dn_phys->dn_datablkszsec;
3165 if (indblkshift != NULL)
3166 *indblkshift = dn->dn_phys->dn_indblkshift;
3167 }
3168
3169 return (err);
3170}
3171
fcff0f35
PD
3172typedef struct dbuf_prefetch_arg {
3173 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
3174 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
3175 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
3176 int dpa_curlevel; /* The current level that we're reading */
d3c2ae1c 3177 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
fcff0f35
PD
3178 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
3179 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
3180 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
af20b970
MM
3181 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
3182 void *dpa_arg; /* prefetch completion arg */
fcff0f35
PD
3183} dbuf_prefetch_arg_t;
3184
af20b970
MM
3185static void
3186dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
3187{
6aa8c21a
AM
3188 if (dpa->dpa_cb != NULL) {
3189 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
3190 dpa->dpa_zb.zb_blkid, io_done);
3191 }
af20b970
MM
3192 kmem_free(dpa, sizeof (*dpa));
3193}
3194
3195static void
3196dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
3197 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3198{
14e4e3cb 3199 (void) zio, (void) zb, (void) iobp;
af20b970
MM
3200 dbuf_prefetch_arg_t *dpa = private;
3201
af20b970
MM
3202 if (abuf != NULL)
3203 arc_buf_destroy(abuf, private);
9619bcde
BB
3204
3205 dbuf_prefetch_fini(dpa, B_TRUE);
af20b970
MM
3206}
3207
fcff0f35
PD
3208/*
3209 * Actually issue the prefetch read for the block given.
3210 */
3211static void
3212dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
3213{
30af21b0
PD
3214 ASSERT(!BP_IS_REDACTED(bp) ||
3215 dsl_dataset_feature_is_active(
3216 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3217 SPA_FEATURE_REDACTED_DATASETS));
3218
3219 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
af20b970 3220 return (dbuf_prefetch_fini(dpa, B_FALSE));
fcff0f35 3221
4515b1d0 3222 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
1c27024e 3223 arc_flags_t aflags =
1e4732cb
MM
3224 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
3225 ARC_FLAG_NO_BUF;
fcff0f35 3226
4515b1d0
TC
3227 /* dnodes are always read as raw and then converted later */
3228 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
3229 dpa->dpa_curlevel == 0)
3230 zio_flags |= ZIO_FLAG_RAW;
3231
fcff0f35
PD
3232 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3233 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
3234 ASSERT(dpa->dpa_zio != NULL);
af20b970
MM
3235 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
3236 dbuf_issue_final_prefetch_done, dpa,
4515b1d0 3237 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
fcff0f35
PD
3238}
3239
3240/*
3241 * Called when an indirect block above our prefetch target is read in. This
3242 * will either read in the next indirect block down the tree or issue the actual
3243 * prefetch if the next block down is our target.
3244 */
3245static void
d4a72f23
TC
3246dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
3247 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
fcff0f35 3248{
14e4e3cb 3249 (void) zb, (void) iobp;
fcff0f35 3250 dbuf_prefetch_arg_t *dpa = private;
fcff0f35
PD
3251
3252 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
3253 ASSERT3S(dpa->dpa_curlevel, >, 0);
d3c2ae1c 3254
c3bd3fb4
TC
3255 if (abuf == NULL) {
3256 ASSERT(zio == NULL || zio->io_error != 0);
d954ca19
RY
3257 dbuf_prefetch_fini(dpa, B_TRUE);
3258 return;
c3bd3fb4
TC
3259 }
3260 ASSERT(zio == NULL || zio->io_error == 0);
3261
d3c2ae1c
GW
3262 /*
3263 * The dpa_dnode is only valid if we are called with a NULL
3264 * zio. This indicates that the arc_read() returned without
3265 * first calling zio_read() to issue a physical read. Once
3266 * a physical read is made the dpa_dnode must be invalidated
3267 * as the locks guarding it may have been dropped. If the
3268 * dpa_dnode is still valid, then we want to add it to the dbuf
3269 * cache. To do so, we must hold the dbuf associated with the block
3270 * we just prefetched, read its contents so that we associate it
3271 * with an arc_buf_t, and then release it.
3272 */
fcff0f35
PD
3273 if (zio != NULL) {
3274 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
b5256303 3275 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
d3c2ae1c
GW
3276 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3277 } else {
3278 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3279 }
fcff0f35 3280 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
d3c2ae1c
GW
3281
3282 dpa->dpa_dnode = NULL;
3283 } else if (dpa->dpa_dnode != NULL) {
3284 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3285 (dpa->dpa_epbs * (dpa->dpa_curlevel -
3286 dpa->dpa_zb.zb_level));
3287 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3288 dpa->dpa_curlevel, curblkid, FTAG);
305781da 3289 if (db == NULL) {
305781da 3290 arc_buf_destroy(abuf, private);
d954ca19
RY
3291 dbuf_prefetch_fini(dpa, B_TRUE);
3292 return;
305781da 3293 }
d3c2ae1c
GW
3294 (void) dbuf_read(db, NULL,
3295 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
3296 dbuf_rele(db, FTAG);
fcff0f35
PD
3297 }
3298
d4a72f23 3299 dpa->dpa_curlevel--;
1c27024e 3300 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
fcff0f35 3301 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
1c27024e 3302 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
fcff0f35 3303 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
d4a72f23 3304
30af21b0
PD
3305 ASSERT(!BP_IS_REDACTED(bp) ||
3306 dsl_dataset_feature_is_active(
3307 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3308 SPA_FEATURE_REDACTED_DATASETS));
3309 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
d954ca19 3310 arc_buf_destroy(abuf, private);
af20b970 3311 dbuf_prefetch_fini(dpa, B_TRUE);
d954ca19 3312 return;
fcff0f35
PD
3313 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3314 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3315 dbuf_issue_final_prefetch(dpa, bp);
fcff0f35
PD
3316 } else {
3317 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3318 zbookmark_phys_t zb;
3319
7c351e31 3320 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3321 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3322 iter_aflags |= ARC_FLAG_L2CACHE;
3323
fcff0f35
PD
3324 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3325
3326 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3327 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3328
3329 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
6aa8c21a
AM
3330 bp, dbuf_prefetch_indirect_done, dpa,
3331 ZIO_PRIORITY_SYNC_READ,
fcff0f35
PD
3332 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3333 &iter_aflags, &zb);
3334 }
d3c2ae1c
GW
3335
3336 arc_buf_destroy(abuf, private);
fcff0f35
PD
3337}
3338
3339/*
3340 * Issue prefetch reads for the given block on the given level. If the indirect
3341 * blocks above that block are not in memory, we will read them in
3342 * asynchronously. As a result, this call never blocks waiting for a read to
b5256303
TC
3343 * complete. Note that the prefetch might fail if the dataset is encrypted and
3344 * the encryption key is unmapped before the IO completes.
fcff0f35 3345 */
af20b970
MM
3346int
3347dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
3348 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
3349 void *arg)
34dc7c2f 3350{
fcff0f35
PD
3351 blkptr_t bp;
3352 int epbs, nlevels, curlevel;
3353 uint64_t curblkid;
34dc7c2f 3354
428870ff 3355 ASSERT(blkid != DMU_BONUS_BLKID);
34dc7c2f
BB
3356 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3357
7f60329a 3358 if (blkid > dn->dn_maxblkid)
af20b970 3359 goto no_issue;
7f60329a 3360
f664f1ee 3361 if (level == 0 && dnode_block_freed(dn, blkid))
af20b970 3362 goto no_issue;
34dc7c2f 3363
fcff0f35
PD
3364 /*
3365 * This dnode hasn't been written to disk yet, so there's nothing to
3366 * prefetch.
3367 */
3368 nlevels = dn->dn_phys->dn_nlevels;
3369 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
af20b970 3370 goto no_issue;
fcff0f35
PD
3371
3372 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3373 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
af20b970 3374 goto no_issue;
fcff0f35 3375
1c27024e 3376 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
fcff0f35
PD
3377 level, blkid);
3378 if (db != NULL) {
3379 mutex_exit(&db->db_mtx);
572e2857 3380 /*
fcff0f35
PD
3381 * This dbuf already exists. It is either CACHED, or
3382 * (we assume) about to be read or filled.
572e2857 3383 */
af20b970 3384 goto no_issue;
34dc7c2f
BB
3385 }
3386
fcff0f35
PD
3387 /*
3388 * Find the closest ancestor (indirect block) of the target block
3389 * that is present in the cache. In this indirect block, we will
3390 * find the bp that is at curlevel, curblkid.
3391 */
3392 curlevel = level;
3393 curblkid = blkid;
3394 while (curlevel < nlevels - 1) {
3395 int parent_level = curlevel + 1;
3396 uint64_t parent_blkid = curblkid >> epbs;
3397 dmu_buf_impl_t *db;
3398
3399 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3400 FALSE, TRUE, FTAG, &db) == 0) {
3401 blkptr_t *bpp = db->db_buf->b_data;
3402 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3403 dbuf_rele(db, FTAG);
3404 break;
3405 }
428870ff 3406
fcff0f35
PD
3407 curlevel = parent_level;
3408 curblkid = parent_blkid;
3409 }
34dc7c2f 3410
fcff0f35
PD
3411 if (curlevel == nlevels - 1) {
3412 /* No cached indirect blocks found. */
3413 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3414 bp = dn->dn_phys->dn_blkptr[curblkid];
34dc7c2f 3415 }
30af21b0
PD
3416 ASSERT(!BP_IS_REDACTED(&bp) ||
3417 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3418 SPA_FEATURE_REDACTED_DATASETS));
3419 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
af20b970 3420 goto no_issue;
fcff0f35
PD
3421
3422 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3423
1c27024e 3424 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
fcff0f35
PD
3425 ZIO_FLAG_CANFAIL);
3426
1c27024e
DB
3427 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3428 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
fcff0f35
PD
3429 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3430 dn->dn_object, level, blkid);
3431 dpa->dpa_curlevel = curlevel;
3432 dpa->dpa_prio = prio;
3433 dpa->dpa_aflags = aflags;
3434 dpa->dpa_spa = dn->dn_objset->os_spa;
d3c2ae1c 3435 dpa->dpa_dnode = dn;
fcff0f35
PD
3436 dpa->dpa_epbs = epbs;
3437 dpa->dpa_zio = pio;
af20b970
MM
3438 dpa->dpa_cb = cb;
3439 dpa->dpa_arg = arg;
fcff0f35 3440
7c351e31 3441 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
c9d62d13 3442 if (dnode_level_is_l2cacheable(&bp, dn, level))
7c351e31 3443 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3444
fcff0f35
PD
3445 /*
3446 * If we have the indirect just above us, no need to do the asynchronous
3447 * prefetch chain; we'll just run the last step ourselves. If we're at
3448 * a higher level, though, we want to issue the prefetches for all the
3449 * indirect blocks asynchronously, so we can go on with whatever we were
3450 * doing.
3451 */
3452 if (curlevel == level) {
3453 ASSERT3U(curblkid, ==, blkid);
3454 dbuf_issue_final_prefetch(dpa, &bp);
fcff0f35
PD
3455 } else {
3456 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3457 zbookmark_phys_t zb;
3458
7c351e31 3459 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
c9d62d13 3460 if (dnode_level_is_l2cacheable(&bp, dn, level))
7c351e31 3461 iter_aflags |= ARC_FLAG_L2CACHE;
3462
fcff0f35
PD
3463 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3464 dn->dn_object, curlevel, curblkid);
3465 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
6aa8c21a
AM
3466 &bp, dbuf_prefetch_indirect_done, dpa,
3467 ZIO_PRIORITY_SYNC_READ,
fcff0f35
PD
3468 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3469 &iter_aflags, &zb);
3470 }
3471 /*
3472 * We use pio here instead of dpa_zio since it's possible that
3473 * dpa may have already been freed.
3474 */
3475 zio_nowait(pio);
af20b970
MM
3476 return (1);
3477no_issue:
3478 if (cb != NULL)
6aa8c21a 3479 cb(arg, level, blkid, B_FALSE);
af20b970
MM
3480 return (0);
3481}
3482
3483int
3484dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3485 arc_flags_t aflags)
3486{
3487
3488 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
34dc7c2f
BB
3489}
3490
71a24c3c 3491/*
64b6c47d 3492 * Helper function for dbuf_hold_impl() to copy a buffer. Handles
71a24c3c
TC
3493 * the case of encrypted, compressed and uncompressed buffers by
3494 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3495 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3496 *
64b6c47d 3497 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
71a24c3c
TC
3498 */
3499noinline static void
64b6c47d 3500dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
71a24c3c 3501{
64b6c47d 3502 dbuf_dirty_record_t *dr = db->db_data_pending;
a81b8124
AR
3503 arc_buf_t *data = dr->dt.dl.dr_data;
3504 enum zio_compress compress_type = arc_get_compression(data);
3505 uint8_t complevel = arc_get_complevel(data);
3506
3507 if (arc_is_encrypted(data)) {
3508 boolean_t byteorder;
3509 uint8_t salt[ZIO_DATA_SALT_LEN];
3510 uint8_t iv[ZIO_DATA_IV_LEN];
3511 uint8_t mac[ZIO_DATA_MAC_LEN];
3512
3513 arc_get_raw_params(data, &byteorder, salt, iv, mac);
3514 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3515 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3516 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3517 compress_type, complevel));
3518 } else if (compress_type != ZIO_COMPRESS_OFF) {
3519 dbuf_set_data(db, arc_alloc_compressed_buf(
3520 dn->dn_objset->os_spa, db, arc_buf_size(data),
3521 arc_buf_lsize(data), compress_type, complevel));
3522 } else {
3523 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3524 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3525 }
71a24c3c 3526
f664f1ee 3527 rw_enter(&db->db_rwlock, RW_WRITER);
861166b0 3528 memcpy(db->db.db_data, data->b_data, arc_buf_size(data));
f664f1ee 3529 rw_exit(&db->db_rwlock);
71a24c3c
TC
3530}
3531
34dc7c2f
BB
3532/*
3533 * Returns with db_holds incremented, and db_mtx not held.
3534 * Note: dn_struct_rwlock must be held.
3535 */
64b6c47d
TN
3536int
3537dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3538 boolean_t fail_sparse, boolean_t fail_uncached,
a926aab9 3539 const void *tag, dmu_buf_impl_t **dbp)
34dc7c2f 3540{
64b6c47d 3541 dmu_buf_impl_t *db, *parent = NULL;
d3c2ae1c 3542
37f03da8 3543 /* If the pool has been created, verify the tx_sync_lock is not held */
64b6c47d 3544 spa_t *spa = dn->dn_objset->os_spa;
37f03da8
SH
3545 dsl_pool_t *dp = spa->spa_dsl_pool;
3546 if (dp != NULL) {
3547 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3548 }
3549
64b6c47d
TN
3550 ASSERT(blkid != DMU_BONUS_BLKID);
3551 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3552 ASSERT3U(dn->dn_nlevels, >, level);
3553
3554 *dbp = NULL;
3555
34dc7c2f 3556 /* dbuf_find() returns with db_mtx held */
64b6c47d 3557 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
fc5bb51f 3558
64b6c47d
TN
3559 if (db == NULL) {
3560 blkptr_t *bp = NULL;
3561 int err;
fc5bb51f 3562
64b6c47d 3563 if (fail_uncached)
fcff0f35
PD
3564 return (SET_ERROR(ENOENT));
3565
64b6c47d
TN
3566 ASSERT3P(parent, ==, NULL);
3567 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3568 if (fail_sparse) {
3569 if (err == 0 && bp && BP_IS_HOLE(bp))
3570 err = SET_ERROR(ENOENT);
3571 if (err) {
3572 if (parent)
3573 dbuf_rele(parent, NULL);
3574 return (err);
34dc7c2f
BB
3575 }
3576 }
64b6c47d
TN
3577 if (err && err != ENOENT)
3578 return (err);
3579 db = dbuf_create(dn, level, blkid, parent, bp);
34dc7c2f
BB
3580 }
3581
64b6c47d
TN
3582 if (fail_uncached && db->db_state != DB_CACHED) {
3583 mutex_exit(&db->db_mtx);
fcff0f35
PD
3584 return (SET_ERROR(ENOENT));
3585 }
3586
64b6c47d
TN
3587 if (db->db_buf != NULL) {
3588 arc_buf_access(db->db_buf);
3589 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
0873bb63 3590 }
34dc7c2f 3591
64b6c47d 3592 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
34dc7c2f
BB
3593
3594 /*
e1cfd73f 3595 * If this buffer is currently syncing out, and we are
34dc7c2f
BB
3596 * still referencing it from db_data, we need to make a copy
3597 * of it in case we decide we want to dirty it again in this txg.
3598 */
64b6c47d
TN
3599 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3600 dn->dn_object != DMU_META_DNODE_OBJECT &&
3601 db->db_state == DB_CACHED && db->db_data_pending) {
3602 dbuf_dirty_record_t *dr = db->db_data_pending;
3603 if (dr->dt.dl.dr_data == db->db_buf)
3604 dbuf_hold_copy(dn, db);
3605 }
3606
3607 if (multilist_link_active(&db->db_cache_link)) {
3608 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3609 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3610 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3611
ffdf019c 3612 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
424fd7c3 3613 (void) zfs_refcount_remove_many(
64b6c47d
TN
3614 &dbuf_caches[db->db_caching_status].size,
3615 db->db.db_size, db);
2e5dc449 3616
64b6c47d 3617 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
2e5dc449
MA
3618 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3619 } else {
64b6c47d 3620 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2e5dc449 3621 DBUF_STAT_BUMPDOWN(cache_count);
64b6c47d
TN
3622 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3623 db->db.db_size);
2e5dc449 3624 }
64b6c47d 3625 db->db_caching_status = DB_NO_CACHE;
d3c2ae1c 3626 }
64b6c47d
TN
3627 (void) zfs_refcount_add(&db->db_holds, tag);
3628 DBUF_VERIFY(db);
3629 mutex_exit(&db->db_mtx);
34dc7c2f
BB
3630
3631 /* NOTE: we can't rele the parent until after we drop the db_mtx */
64b6c47d
TN
3632 if (parent)
3633 dbuf_rele(parent, NULL);
34dc7c2f 3634
64b6c47d
TN
3635 ASSERT3P(DB_DNODE(db), ==, dn);
3636 ASSERT3U(db->db_blkid, ==, blkid);
3637 ASSERT3U(db->db_level, ==, level);
3638 *dbp = db;
34dc7c2f
BB
3639
3640 return (0);
3641}
3642
3643dmu_buf_impl_t *
a926aab9 3644dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag)
34dc7c2f 3645{
fcff0f35 3646 return (dbuf_hold_level(dn, 0, blkid, tag));
34dc7c2f
BB
3647}
3648
3649dmu_buf_impl_t *
a926aab9 3650dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag)
34dc7c2f
BB
3651{
3652 dmu_buf_impl_t *db;
fcff0f35 3653 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
34dc7c2f
BB
3654 return (err ? NULL : db);
3655}
3656
3657void
3658dbuf_create_bonus(dnode_t *dn)
3659{
3660 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3661
3662 ASSERT(dn->dn_bonus == NULL);
428870ff
BB
3663 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
3664}
3665
3666int
3667dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3668{
3669 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
572e2857 3670
428870ff 3671 if (db->db_blkid != DMU_SPILL_BLKID)
2e528b49 3672 return (SET_ERROR(ENOTSUP));
428870ff
BB
3673 if (blksz == 0)
3674 blksz = SPA_MINBLOCKSIZE;
f1512ee6
MA
3675 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3676 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
428870ff 3677
428870ff 3678 dbuf_new_size(db, blksz, tx);
428870ff
BB
3679
3680 return (0);
3681}
3682
3683void
3684dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3685{
3686 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
34dc7c2f
BB
3687}
3688
3689#pragma weak dmu_buf_add_ref = dbuf_add_ref
3690void
a926aab9 3691dbuf_add_ref(dmu_buf_impl_t *db, const void *tag)
34dc7c2f 3692{
c13060e4 3693 int64_t holds = zfs_refcount_add(&db->db_holds, tag);
d3c2ae1c 3694 VERIFY3S(holds, >, 1);
34dc7c2f
BB
3695}
3696
6ebebace
JG
3697#pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3698boolean_t
3699dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
a926aab9 3700 const void *tag)
6ebebace
JG
3701{
3702 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3703 dmu_buf_impl_t *found_db;
3704 boolean_t result = B_FALSE;
3705
d617648c 3706 if (blkid == DMU_BONUS_BLKID)
6ebebace
JG
3707 found_db = dbuf_find_bonus(os, obj);
3708 else
3709 found_db = dbuf_find(os, obj, 0, blkid);
3710
3711 if (found_db != NULL) {
3712 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
c13060e4 3713 (void) zfs_refcount_add(&db->db_holds, tag);
6ebebace
JG
3714 result = B_TRUE;
3715 }
d617648c 3716 mutex_exit(&found_db->db_mtx);
6ebebace
JG
3717 }
3718 return (result);
3719}
3720
572e2857
BB
3721/*
3722 * If you call dbuf_rele() you had better not be referencing the dnode handle
3723 * unless you have some other direct or indirect hold on the dnode. (An indirect
3724 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3725 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3726 * dnode's parent dbuf evicting its dnode handles.
3727 */
34dc7c2f 3728void
a926aab9 3729dbuf_rele(dmu_buf_impl_t *db, const void *tag)
428870ff
BB
3730{
3731 mutex_enter(&db->db_mtx);
3d503a76 3732 dbuf_rele_and_unlock(db, tag, B_FALSE);
428870ff
BB
3733}
3734
b0bc7a84 3735void
a926aab9 3736dmu_buf_rele(dmu_buf_t *db, const void *tag)
b0bc7a84
MG
3737{
3738 dbuf_rele((dmu_buf_impl_t *)db, tag);
3739}
3740
428870ff
BB
3741/*
3742 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
1fac63e5
MA
3743 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
3744 * argument should be set if we are already in the dbuf-evicting code
3745 * path, in which case we don't want to recursively evict. This allows us to
3746 * avoid deeply nested stacks that would have a call flow similar to this:
3747 *
3748 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3749 * ^ |
3750 * | |
3751 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
3752 *
428870ff
BB
3753 */
3754void
a926aab9 3755dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting)
34dc7c2f
BB
3756{
3757 int64_t holds;
cbd8f5b7 3758 uint64_t size;
34dc7c2f 3759
428870ff 3760 ASSERT(MUTEX_HELD(&db->db_mtx));
34dc7c2f
BB
3761 DBUF_VERIFY(db);
3762
572e2857
BB
3763 /*
3764 * Remove the reference to the dbuf before removing its hold on the
3765 * dnode so we can guarantee in dnode_move() that a referenced bonus
3766 * buffer has a corresponding dnode hold.
3767 */
424fd7c3 3768 holds = zfs_refcount_remove(&db->db_holds, tag);
34dc7c2f
BB
3769 ASSERT(holds >= 0);
3770
3771 /*
3772 * We can't freeze indirects if there is a possibility that they
3773 * may be modified in the current syncing context.
3774 */
d3c2ae1c
GW
3775 if (db->db_buf != NULL &&
3776 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
34dc7c2f 3777 arc_buf_freeze(db->db_buf);
d3c2ae1c 3778 }
34dc7c2f
BB
3779
3780 if (holds == db->db_dirtycnt &&
bc4501f7 3781 db->db_level == 0 && db->db_user_immediate_evict)
34dc7c2f
BB
3782 dbuf_evict_user(db);
3783
3784 if (holds == 0) {
428870ff 3785 if (db->db_blkid == DMU_BONUS_BLKID) {
4c7b7eed 3786 dnode_t *dn;
bc4501f7 3787 boolean_t evict_dbuf = db->db_pending_evict;
572e2857
BB
3788
3789 /*
4c7b7eed
JG
3790 * If the dnode moves here, we cannot cross this
3791 * barrier until the move completes.
572e2857
BB
3792 */
3793 DB_DNODE_ENTER(db);
4c7b7eed
JG
3794
3795 dn = DB_DNODE(db);
3796 atomic_dec_32(&dn->dn_dbufs_count);
3797
3798 /*
3799 * Decrementing the dbuf count means that the bonus
3800 * buffer's dnode hold is no longer discounted in
3801 * dnode_move(). The dnode cannot move until after
bc4501f7 3802 * the dnode_rele() below.
4c7b7eed 3803 */
572e2857 3804 DB_DNODE_EXIT(db);
4c7b7eed
JG
3805
3806 /*
3807 * Do not reference db after its lock is dropped.
3808 * Another thread may evict it.
3809 */
3810 mutex_exit(&db->db_mtx);
3811
bc4501f7 3812 if (evict_dbuf)
4c7b7eed 3813 dnode_evict_bonus(dn);
bc4501f7
JG
3814
3815 dnode_rele(dn, db);
34dc7c2f
BB
3816 } else if (db->db_buf == NULL) {
3817 /*
3818 * This is a special case: we never associated this
3819 * dbuf with any data allocated from the ARC.
3820 */
b128c09f
BB
3821 ASSERT(db->db_state == DB_UNCACHED ||
3822 db->db_state == DB_NOFILL);
d3c2ae1c 3823 dbuf_destroy(db);
34dc7c2f 3824 } else if (arc_released(db->db_buf)) {
34dc7c2f
BB
3825 /*
3826 * This dbuf has anonymous data associated with it.
3827 */
d3c2ae1c 3828 dbuf_destroy(db);
34dc7c2f 3829 } else {
d3c2ae1c
GW
3830 boolean_t do_arc_evict = B_FALSE;
3831 blkptr_t bp;
3832 spa_t *spa = dmu_objset_spa(db->db_objset);
3833
3834 if (!DBUF_IS_CACHEABLE(db) &&
3835 db->db_blkptr != NULL &&
3836 !BP_IS_HOLE(db->db_blkptr) &&
3837 !BP_IS_EMBEDDED(db->db_blkptr)) {
3838 do_arc_evict = B_TRUE;
3839 bp = *db->db_blkptr;
3840 }
1eb5bfa3 3841
d3c2ae1c
GW
3842 if (!DBUF_IS_CACHEABLE(db) ||
3843 db->db_pending_evict) {
3844 dbuf_destroy(db);
3845 } else if (!multilist_link_active(&db->db_cache_link)) {
2e5dc449
MA
3846 ASSERT3U(db->db_caching_status, ==,
3847 DB_NO_CACHE);
3848
3849 dbuf_cached_state_t dcs =
3850 dbuf_include_in_metadata_cache(db) ?
3851 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
3852 db->db_caching_status = dcs;
3853
ffdf019c 3854 multilist_insert(&dbuf_caches[dcs].cache, db);
c4c162c1 3855 uint64_t db_size = db->db.db_size;
cbd8f5b7 3856 size = zfs_refcount_add_many(
c4c162c1
AM
3857 &dbuf_caches[dcs].size, db_size, db);
3858 uint8_t db_level = db->db_level;
3859 mutex_exit(&db->db_mtx);
2e5dc449
MA
3860
3861 if (dcs == DB_DBUF_METADATA_CACHE) {
3862 DBUF_STAT_BUMP(metadata_cache_count);
3863 DBUF_STAT_MAX(
3864 metadata_cache_size_bytes_max,
cbd8f5b7 3865 size);
2e5dc449 3866 } else {
2e5dc449 3867 DBUF_STAT_BUMP(cache_count);
2e5dc449 3868 DBUF_STAT_MAX(cache_size_bytes_max,
cbd8f5b7 3869 size);
c4c162c1
AM
3870 DBUF_STAT_BUMP(cache_levels[db_level]);
3871 DBUF_STAT_INCR(
3872 cache_levels_bytes[db_level],
3873 db_size);
2e5dc449 3874 }
d3c2ae1c 3875
cbd8f5b7
AM
3876 if (dcs == DB_DBUF_CACHE && !evicting)
3877 dbuf_evict_notify(size);
bd089c54 3878 }
d3c2ae1c
GW
3879
3880 if (do_arc_evict)
3881 arc_freed(spa, &bp);
34dc7c2f
BB
3882 }
3883 } else {
3884 mutex_exit(&db->db_mtx);
3885 }
d3c2ae1c 3886
34dc7c2f
BB
3887}
3888
3889#pragma weak dmu_buf_refcount = dbuf_refcount
3890uint64_t
3891dbuf_refcount(dmu_buf_impl_t *db)
3892{
424fd7c3 3893 return (zfs_refcount_count(&db->db_holds));
34dc7c2f
BB
3894}
3895
cd32e5db
TC
3896uint64_t
3897dmu_buf_user_refcount(dmu_buf_t *db_fake)
3898{
3899 uint64_t holds;
3900 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3901
3902 mutex_enter(&db->db_mtx);
424fd7c3
TS
3903 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
3904 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
cd32e5db
TC
3905 mutex_exit(&db->db_mtx);
3906
3907 return (holds);
3908}
3909
34dc7c2f 3910void *
0c66c32d
JG
3911dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3912 dmu_buf_user_t *new_user)
34dc7c2f 3913{
0c66c32d
JG
3914 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3915
3916 mutex_enter(&db->db_mtx);
3917 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3918 if (db->db_user == old_user)
3919 db->db_user = new_user;
3920 else
3921 old_user = db->db_user;
3922 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3923 mutex_exit(&db->db_mtx);
3924
3925 return (old_user);
34dc7c2f
BB
3926}
3927
3928void *
0c66c32d 3929dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
34dc7c2f 3930{
0c66c32d 3931 return (dmu_buf_replace_user(db_fake, NULL, user));
34dc7c2f
BB
3932}
3933
3934void *
0c66c32d 3935dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
34dc7c2f
BB
3936{
3937 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
34dc7c2f 3938
bc4501f7 3939 db->db_user_immediate_evict = TRUE;
0c66c32d
JG
3940 return (dmu_buf_set_user(db_fake, user));
3941}
34dc7c2f 3942
0c66c32d
JG
3943void *
3944dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3945{
3946 return (dmu_buf_replace_user(db_fake, user, NULL));
34dc7c2f
BB
3947}
3948
3949void *
3950dmu_buf_get_user(dmu_buf_t *db_fake)
3951{
3952 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
34dc7c2f 3953
0c66c32d
JG
3954 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3955 return (db->db_user);
3956}
3957
3958void
493b6e56 3959dmu_buf_user_evict_wait(void)
0c66c32d
JG
3960{
3961 taskq_wait(dbu_evict_taskq);
34dc7c2f
BB
3962}
3963
03c6040b
GW
3964blkptr_t *
3965dmu_buf_get_blkptr(dmu_buf_t *db)
3966{
3967 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3968 return (dbi->db_blkptr);
3969}
3970
8bea9815
MA
3971objset_t *
3972dmu_buf_get_objset(dmu_buf_t *db)
3973{
3974 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3975 return (dbi->db_objset);
3976}
3977
2bce8049
MA
3978dnode_t *
3979dmu_buf_dnode_enter(dmu_buf_t *db)
3980{
3981 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3982 DB_DNODE_ENTER(dbi);
3983 return (DB_DNODE(dbi));
3984}
3985
3986void
3987dmu_buf_dnode_exit(dmu_buf_t *db)
3988{
3989 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3990 DB_DNODE_EXIT(dbi);
3991}
3992
34dc7c2f
BB
3993static void
3994dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3995{
3996 /* ASSERT(dmu_tx_is_syncing(tx) */
3997 ASSERT(MUTEX_HELD(&db->db_mtx));
3998
3999 if (db->db_blkptr != NULL)
4000 return;
4001
428870ff 4002 if (db->db_blkid == DMU_SPILL_BLKID) {
50c957f7 4003 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
428870ff
BB
4004 BP_ZERO(db->db_blkptr);
4005 return;
4006 }
34dc7c2f
BB
4007 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
4008 /*
4009 * This buffer was allocated at a time when there was
4010 * no available blkptrs from the dnode, or it was
e1cfd73f 4011 * inappropriate to hook it in (i.e., nlevels mismatch).
34dc7c2f
BB
4012 */
4013 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
4014 ASSERT(db->db_parent == NULL);
4015 db->db_parent = dn->dn_dbuf;
4016 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
4017 DBUF_VERIFY(db);
4018 } else {
4019 dmu_buf_impl_t *parent = db->db_parent;
4020 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4021
4022 ASSERT(dn->dn_phys->dn_nlevels > 1);
4023 if (parent == NULL) {
4024 mutex_exit(&db->db_mtx);
4025 rw_enter(&dn->dn_struct_rwlock, RW_READER);
fcff0f35
PD
4026 parent = dbuf_hold_level(dn, db->db_level + 1,
4027 db->db_blkid >> epbs, db);
34dc7c2f
BB
4028 rw_exit(&dn->dn_struct_rwlock);
4029 mutex_enter(&db->db_mtx);
4030 db->db_parent = parent;
4031 }
4032 db->db_blkptr = (blkptr_t *)parent->db.db_data +
4033 (db->db_blkid & ((1ULL << epbs) - 1));
4034 DBUF_VERIFY(db);
4035 }
4036}
4037
fa3922df
MM
4038static void
4039dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4040{
4041 dmu_buf_impl_t *db = dr->dr_dbuf;
4042 void *data = dr->dt.dl.dr_data;
4043
4044 ASSERT0(db->db_level);
4045 ASSERT(MUTEX_HELD(&db->db_mtx));
fa3922df
MM
4046 ASSERT(db->db_blkid == DMU_BONUS_BLKID);
4047 ASSERT(data != NULL);
4048
ba67d821 4049 dnode_t *dn = dr->dr_dnode;
fa3922df
MM
4050 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
4051 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
861166b0 4052 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));
fa3922df
MM
4053
4054 dbuf_sync_leaf_verify_bonus_dnode(dr);
4055
4056 dbuf_undirty_bonus(dr);
4057 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4058}
4059
b5256303 4060/*
0c03d21a
MA
4061 * When syncing out a blocks of dnodes, adjust the block to deal with
4062 * encryption. Normally, we make sure the block is decrypted before writing
4063 * it. If we have crypt params, then we are writing a raw (encrypted) block,
4064 * from a raw receive. In this case, set the ARC buf's crypt params so
4065 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
b5256303
TC
4066 */
4067static void
0c03d21a 4068dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
b5256303
TC
4069{
4070 int err;
4071 dmu_buf_impl_t *db = dr->dr_dbuf;
4072
4073 ASSERT(MUTEX_HELD(&db->db_mtx));
0c03d21a
MA
4074 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
4075 ASSERT3U(db->db_level, ==, 0);
b5256303 4076
0c03d21a 4077 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
a2c2ed1b
TC
4078 zbookmark_phys_t zb;
4079
b5256303
TC
4080 /*
4081 * Unfortunately, there is currently no mechanism for
4082 * syncing context to handle decryption errors. An error
4083 * here is only possible if an attacker maliciously
4084 * changed a dnode block and updated the associated
4085 * checksums going up the block tree.
4086 */
a2c2ed1b
TC
4087 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
4088 db->db.db_object, db->db_level, db->db_blkid);
b5256303 4089 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
a2c2ed1b 4090 &zb, B_TRUE);
b5256303
TC
4091 if (err)
4092 panic("Invalid dnode block MAC");
0c03d21a
MA
4093 } else if (dr->dt.dl.dr_has_raw_params) {
4094 (void) arc_release(dr->dt.dl.dr_data, db);
4095 arc_convert_to_raw(dr->dt.dl.dr_data,
4096 dmu_objset_id(db->db_objset),
4097 dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
4098 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
b5256303
TC
4099 }
4100}
4101
d1d7e268
MK
4102/*
4103 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
60948de1
BB
4104 * is critical the we not allow the compiler to inline this function in to
4105 * dbuf_sync_list() thereby drastically bloating the stack usage.
4106 */
4107noinline static void
34dc7c2f
BB
4108dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4109{
4110 dmu_buf_impl_t *db = dr->dr_dbuf;
ba67d821 4111 dnode_t *dn = dr->dr_dnode;
34dc7c2f
BB
4112
4113 ASSERT(dmu_tx_is_syncing(tx));
4114
4115 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4116
4117 mutex_enter(&db->db_mtx);
4118
4119 ASSERT(db->db_level > 0);
4120 DBUF_VERIFY(db);
4121
e49f1e20 4122 /* Read the block if it hasn't been read yet. */
34dc7c2f
BB
4123 if (db->db_buf == NULL) {
4124 mutex_exit(&db->db_mtx);
4125 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
4126 mutex_enter(&db->db_mtx);
4127 }
4128 ASSERT3U(db->db_state, ==, DB_CACHED);
34dc7c2f
BB
4129 ASSERT(db->db_buf != NULL);
4130
e49f1e20 4131 /* Indirect block size must match what the dnode thinks it is. */
572e2857 4132 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
34dc7c2f
BB
4133 dbuf_check_blkptr(dn, db);
4134
e49f1e20 4135 /* Provide the pending dirty record to child dbufs */
34dc7c2f
BB
4136 db->db_data_pending = dr;
4137
34dc7c2f 4138 mutex_exit(&db->db_mtx);
a1d477c2 4139
b128c09f 4140 dbuf_write(dr, db->db_buf, tx);
34dc7c2f 4141
ba67d821 4142 zio_t *zio = dr->dr_zio;
34dc7c2f 4143 mutex_enter(&dr->dt.di.dr_mtx);
4bda3bd0 4144 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
34dc7c2f
BB
4145 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4146 mutex_exit(&dr->dt.di.dr_mtx);
4147 zio_nowait(zio);
4148}
4149
0e37a0f4
SD
4150/*
4151 * Verify that the size of the data in our bonus buffer does not exceed
4152 * its recorded size.
4153 *
4154 * The purpose of this verification is to catch any cases in development
4155 * where the size of a phys structure (i.e space_map_phys_t) grows and,
4156 * due to incorrect feature management, older pools expect to read more
4157 * data even though they didn't actually write it to begin with.
4158 *
4159 * For a example, this would catch an error in the feature logic where we
4160 * open an older pool and we expect to write the space map histogram of
4161 * a space map with size SPACE_MAP_SIZE_V0.
4162 */
4163static void
4164dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
4165{
fa3922df 4166#ifdef ZFS_DEBUG
ba67d821 4167 dnode_t *dn = dr->dr_dnode;
0e37a0f4
SD
4168
4169 /*
4170 * Encrypted bonus buffers can have data past their bonuslen.
4171 * Skip the verification of these blocks.
4172 */
4173 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
4174 return;
4175
4176 uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
4177 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
4178 ASSERT3U(bonuslen, <=, maxbonuslen);
4179
4180 arc_buf_t *datap = dr->dt.dl.dr_data;
4181 char *datap_end = ((char *)datap) + bonuslen;
4182 char *datap_max = ((char *)datap) + maxbonuslen;
4183
4184 /* ensure that everything is zero after our data */
4185 for (; datap_end < datap_max; datap_end++)
4186 ASSERT(*datap_end == 0);
0e37a0f4 4187#endif
fa3922df 4188}
0e37a0f4 4189
ba67d821
MA
4190static blkptr_t *
4191dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
4192{
4193 /* This must be a lightweight dirty record. */
4194 ASSERT3P(dr->dr_dbuf, ==, NULL);
4195 dnode_t *dn = dr->dr_dnode;
4196
4197 if (dn->dn_phys->dn_nlevels == 1) {
4198 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
4199 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
4200 } else {
4201 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
4202 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
4203 VERIFY3U(parent_db->db_level, ==, 1);
4204 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn);
4205 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
4206 blkptr_t *bp = parent_db->db.db_data;
4207 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
4208 }
4209}
4210
4211static void
4212dbuf_lightweight_ready(zio_t *zio)
4213{
4214 dbuf_dirty_record_t *dr = zio->io_private;
4215 blkptr_t *bp = zio->io_bp;
4216
4217 if (zio->io_error != 0)
4218 return;
4219
4220 dnode_t *dn = dr->dr_dnode;
4221
4222 blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
4223 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4224 int64_t delta = bp_get_dsize_sync(spa, bp) -
4225 bp_get_dsize_sync(spa, bp_orig);
4226 dnode_diduse_space(dn, delta);
4227
4228 uint64_t blkid = dr->dt.dll.dr_blkid;
4229 mutex_enter(&dn->dn_mtx);
4230 if (blkid > dn->dn_phys->dn_maxblkid) {
4231 ASSERT0(dn->dn_objset->os_raw_receive);
4232 dn->dn_phys->dn_maxblkid = blkid;
4233 }
4234 mutex_exit(&dn->dn_mtx);
4235
4236 if (!BP_IS_EMBEDDED(bp)) {
4237 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
4238 BP_SET_FILL(bp, fill);
4239 }
4240
4241 dmu_buf_impl_t *parent_db;
4242 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
4243 if (dr->dr_parent == NULL) {
4244 parent_db = dn->dn_dbuf;
4245 } else {
4246 parent_db = dr->dr_parent->dr_dbuf;
4247 }
4248 rw_enter(&parent_db->db_rwlock, RW_WRITER);
4249 *bp_orig = *bp;
4250 rw_exit(&parent_db->db_rwlock);
4251}
4252
4253static void
4254dbuf_lightweight_physdone(zio_t *zio)
4255{
4256 dbuf_dirty_record_t *dr = zio->io_private;
4257 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
4258 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4259
4260 /*
4261 * The callback will be called io_phys_children times. Retire one
4262 * portion of our dirty space each time we are called. Any rounding
4263 * error will be cleaned up by dbuf_lightweight_done().
4264 */
4265 int delta = dr->dr_accounted / zio->io_phys_children;
4266 dsl_pool_undirty_space(dp, delta, zio->io_txg);
4267}
4268
4269static void
4270dbuf_lightweight_done(zio_t *zio)
4271{
4272 dbuf_dirty_record_t *dr = zio->io_private;
4273
4274 VERIFY0(zio->io_error);
4275
4276 objset_t *os = dr->dr_dnode->dn_objset;
4277 dmu_tx_t *tx = os->os_synctx;
4278
4279 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4280 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4281 } else {
4282 dsl_dataset_t *ds = os->os_dsl_dataset;
4283 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
4284 dsl_dataset_block_born(ds, zio->io_bp, tx);
4285 }
4286
4287 /*
4288 * See comment in dbuf_write_done().
4289 */
4290 if (zio->io_phys_children == 0) {
4291 dsl_pool_undirty_space(dmu_objset_pool(os),
4292 dr->dr_accounted, zio->io_txg);
4293 } else {
4294 dsl_pool_undirty_space(dmu_objset_pool(os),
4295 dr->dr_accounted % zio->io_phys_children, zio->io_txg);
4296 }
4297
4298 abd_free(dr->dt.dll.dr_abd);
4299 kmem_free(dr, sizeof (*dr));
4300}
4301
4302noinline static void
4303dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4304{
4305 dnode_t *dn = dr->dr_dnode;
4306 zio_t *pio;
4307 if (dn->dn_phys->dn_nlevels == 1) {
4308 pio = dn->dn_zio;
4309 } else {
4310 pio = dr->dr_parent->dr_zio;
4311 }
4312
4313 zbookmark_phys_t zb = {
4314 .zb_objset = dmu_objset_id(dn->dn_objset),
4315 .zb_object = dn->dn_object,
4316 .zb_level = 0,
4317 .zb_blkid = dr->dt.dll.dr_blkid,
4318 };
4319
4320 /*
4321 * See comment in dbuf_write(). This is so that zio->io_bp_orig
4322 * will have the old BP in dbuf_lightweight_done().
4323 */
4324 dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
4325
4326 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
4327 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
4328 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
4329 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
4330 dbuf_lightweight_physdone, dbuf_lightweight_done, dr,
4331 ZIO_PRIORITY_ASYNC_WRITE,
4332 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
4333
4334 zio_nowait(dr->dr_zio);
4335}
4336
d1d7e268
MK
4337/*
4338 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
60948de1
BB
4339 * critical the we not allow the compiler to inline this function in to
4340 * dbuf_sync_list() thereby drastically bloating the stack usage.
4341 */
4342noinline static void
34dc7c2f
BB
4343dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4344{
4345 arc_buf_t **datap = &dr->dt.dl.dr_data;
4346 dmu_buf_impl_t *db = dr->dr_dbuf;
ba67d821 4347 dnode_t *dn = dr->dr_dnode;
572e2857 4348 objset_t *os;
34dc7c2f 4349 uint64_t txg = tx->tx_txg;
34dc7c2f
BB
4350
4351 ASSERT(dmu_tx_is_syncing(tx));
4352
4353 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4354
4355 mutex_enter(&db->db_mtx);
4356 /*
4357 * To be synced, we must be dirtied. But we
4358 * might have been freed after the dirty.
4359 */
4360 if (db->db_state == DB_UNCACHED) {
4361 /* This buffer has been freed since it was dirtied */
4362 ASSERT(db->db.db_data == NULL);
4363 } else if (db->db_state == DB_FILL) {
4364 /* This buffer was freed and is now being re-filled */
4365 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
4366 } else {
b128c09f 4367 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
34dc7c2f
BB
4368 }
4369 DBUF_VERIFY(db);
4370
428870ff
BB
4371 if (db->db_blkid == DMU_SPILL_BLKID) {
4372 mutex_enter(&dn->dn_mtx);
81edd3e8
P
4373 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
4374 /*
4375 * In the previous transaction group, the bonus buffer
4376 * was entirely used to store the attributes for the
4377 * dnode which overrode the dn_spill field. However,
4378 * when adding more attributes to the file a spill
4379 * block was required to hold the extra attributes.
4380 *
4381 * Make sure to clear the garbage left in the dn_spill
4382 * field from the previous attributes in the bonus
4383 * buffer. Otherwise, after writing out the spill
4384 * block to the new allocated dva, it will free
4385 * the old block pointed to by the invalid dn_spill.
4386 */
4387 db->db_blkptr = NULL;
4388 }
428870ff
BB
4389 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
4390 mutex_exit(&dn->dn_mtx);
4391 }
4392
34dc7c2f
BB
4393 /*
4394 * If this is a bonus buffer, simply copy the bonus data into the
4395 * dnode. It will be written out when the dnode is synced (and it
4396 * will be synced, since it must have been dirty for dbuf_sync to
4397 * be called).
4398 */
428870ff 4399 if (db->db_blkid == DMU_BONUS_BLKID) {
428870ff 4400 ASSERT(dr->dr_dbuf == db);
fa3922df 4401 dbuf_sync_bonus(dr, tx);
34dc7c2f
BB
4402 return;
4403 }
4404
572e2857
BB
4405 os = dn->dn_objset;
4406
34dc7c2f
BB
4407 /*
4408 * This function may have dropped the db_mtx lock allowing a dmu_sync
4409 * operation to sneak in. As a result, we need to ensure that we
4410 * don't check the dr_override_state until we have returned from
4411 * dbuf_check_blkptr.
4412 */
4413 dbuf_check_blkptr(dn, db);
4414
4415 /*
572e2857 4416 * If this buffer is in the middle of an immediate write,
34dc7c2f
BB
4417 * wait for the synchronous IO to complete.
4418 */
4419 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4420 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4421 cv_wait(&db->db_changed, &db->db_mtx);
4422 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
4423 }
4424
b5256303
TC
4425 /*
4426 * If this is a dnode block, ensure it is appropriately encrypted
4427 * or decrypted, depending on what we are writing to it this txg.
4428 */
4429 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
0c03d21a 4430 dbuf_prepare_encrypted_dnode_leaf(dr);
b5256303 4431
9babb374
BB
4432 if (db->db_state != DB_NOFILL &&
4433 dn->dn_object != DMU_META_DNODE_OBJECT &&
424fd7c3 4434 zfs_refcount_count(&db->db_holds) > 1 &&
428870ff 4435 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
9babb374
BB
4436 *datap == db->db_buf) {
4437 /*
4438 * If this buffer is currently "in use" (i.e., there
4439 * are active holds and db_data still references it),
4440 * then make a copy before we start the write so that
4441 * any modifications from the open txg will not leak
4442 * into this write.
4443 *
4444 * NOTE: this copy does not need to be made for
4445 * objects only modified in the syncing context (e.g.
4446 * DNONE_DNODE blocks).
4447 */
a81b8124
AR
4448 int psize = arc_buf_size(*datap);
4449 int lsize = arc_buf_lsize(*datap);
4450 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4451 enum zio_compress compress_type = arc_get_compression(*datap);
4452 uint8_t complevel = arc_get_complevel(*datap);
4453
4454 if (arc_is_encrypted(*datap)) {
4455 boolean_t byteorder;
4456 uint8_t salt[ZIO_DATA_SALT_LEN];
4457 uint8_t iv[ZIO_DATA_IV_LEN];
4458 uint8_t mac[ZIO_DATA_MAC_LEN];
4459
4460 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4461 *datap = arc_alloc_raw_buf(os->os_spa, db,
4462 dmu_objset_id(os), byteorder, salt, iv, mac,
4463 dn->dn_type, psize, lsize, compress_type,
4464 complevel);
4465 } else if (compress_type != ZIO_COMPRESS_OFF) {
4466 ASSERT3U(type, ==, ARC_BUFC_DATA);
4467 *datap = arc_alloc_compressed_buf(os->os_spa, db,
4468 psize, lsize, compress_type, complevel);
4469 } else {
4470 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
4471 }
861166b0 4472 memcpy((*datap)->b_data, db->db.db_data, psize);
b128c09f 4473 }
34dc7c2f
BB
4474 db->db_data_pending = dr;
4475
4476 mutex_exit(&db->db_mtx);
4477
b128c09f 4478 dbuf_write(dr, *datap, tx);
34dc7c2f
BB
4479
4480 ASSERT(!list_link_active(&dr->dr_dirty_node));
572e2857 4481 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3fa93bb8 4482 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
572e2857 4483 } else {
34dc7c2f 4484 zio_nowait(dr->dr_zio);
572e2857 4485 }
34dc7c2f
BB
4486}
4487
4488void
4bda3bd0 4489dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
34dc7c2f
BB
4490{
4491 dbuf_dirty_record_t *dr;
4492
c65aa5b2 4493 while ((dr = list_head(list))) {
34dc7c2f
BB
4494 if (dr->dr_zio != NULL) {
4495 /*
4496 * If we find an already initialized zio then we
4497 * are processing the meta-dnode, and we have finished.
4498 * The dbufs for all dnodes are put back on the list
4499 * during processing, so that we can zio_wait()
4500 * these IOs after initiating all child IOs.
4501 */
4502 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4503 DMU_META_DNODE_OBJECT);
4504 break;
4505 }
4506 list_remove(list, dr);
ba67d821
MA
4507 if (dr->dr_dbuf == NULL) {
4508 dbuf_sync_lightweight(dr, tx);
4509 } else {
4510 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4511 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4512 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4513 }
4514 if (dr->dr_dbuf->db_level > 0)
4515 dbuf_sync_indirect(dr, tx);
4516 else
4517 dbuf_sync_leaf(dr, tx);
4518 }
34dc7c2f
BB
4519 }
4520}
4521
34dc7c2f
BB
4522static void
4523dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4524{
14e4e3cb 4525 (void) buf;
34dc7c2f 4526 dmu_buf_impl_t *db = vdb;
572e2857 4527 dnode_t *dn;
b128c09f 4528 blkptr_t *bp = zio->io_bp;
34dc7c2f 4529 blkptr_t *bp_orig = &zio->io_bp_orig;
428870ff
BB
4530 spa_t *spa = zio->io_spa;
4531 int64_t delta;
34dc7c2f 4532 uint64_t fill = 0;
428870ff 4533 int i;
34dc7c2f 4534
463a8cfe
AR
4535 ASSERT3P(db->db_blkptr, !=, NULL);
4536 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
b128c09f 4537
572e2857
BB
4538 DB_DNODE_ENTER(db);
4539 dn = DB_DNODE(db);
428870ff
BB
4540 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4541 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4542 zio->io_prev_space_delta = delta;
34dc7c2f 4543
b0bc7a84
MG
4544 if (bp->blk_birth != 0) {
4545 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4546 BP_GET_TYPE(bp) == dn->dn_type) ||
4547 (db->db_blkid == DMU_SPILL_BLKID &&
9b67f605
MA
4548 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4549 BP_IS_EMBEDDED(bp));
b0bc7a84 4550 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
34dc7c2f
BB
4551 }
4552
4553 mutex_enter(&db->db_mtx);
4554
428870ff
BB
4555#ifdef ZFS_DEBUG
4556 if (db->db_blkid == DMU_SPILL_BLKID) {
428870ff 4557 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
463a8cfe 4558 ASSERT(!(BP_IS_HOLE(bp)) &&
50c957f7 4559 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
428870ff
BB
4560 }
4561#endif
4562
34dc7c2f
BB
4563 if (db->db_level == 0) {
4564 mutex_enter(&dn->dn_mtx);
428870ff 4565 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
69830602
TC
4566 db->db_blkid != DMU_SPILL_BLKID) {
4567 ASSERT0(db->db_objset->os_raw_receive);
34dc7c2f 4568 dn->dn_phys->dn_maxblkid = db->db_blkid;
69830602 4569 }
34dc7c2f
BB
4570 mutex_exit(&dn->dn_mtx);
4571
4572 if (dn->dn_type == DMU_OT_DNODE) {
50c957f7
NB
4573 i = 0;
4574 while (i < db->db.db_size) {
817b1b6e
MA
4575 dnode_phys_t *dnp =
4576 (void *)(((char *)db->db.db_data) + i);
50c957f7
NB
4577
4578 i += DNODE_MIN_SIZE;
4579 if (dnp->dn_type != DMU_OT_NONE) {
34dc7c2f 4580 fill++;
50c957f7
NB
4581 i += dnp->dn_extra_slots *
4582 DNODE_MIN_SIZE;
4583 }
34dc7c2f
BB
4584 }
4585 } else {
b0bc7a84
MG
4586 if (BP_IS_HOLE(bp)) {
4587 fill = 0;
4588 } else {
4589 fill = 1;
4590 }
34dc7c2f
BB
4591 }
4592 } else {
b128c09f 4593 blkptr_t *ibp = db->db.db_data;
34dc7c2f 4594 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
b128c09f
BB
4595 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4596 if (BP_IS_HOLE(ibp))
34dc7c2f 4597 continue;
9b67f605 4598 fill += BP_GET_FILL(ibp);
34dc7c2f
BB
4599 }
4600 }
572e2857 4601 DB_DNODE_EXIT(db);
34dc7c2f 4602
9b67f605 4603 if (!BP_IS_EMBEDDED(bp))
b5256303 4604 BP_SET_FILL(bp, fill);
34dc7c2f
BB
4605
4606 mutex_exit(&db->db_mtx);
463a8cfe 4607
f664f1ee 4608 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
463a8cfe 4609 *db->db_blkptr = *bp;
f664f1ee 4610 dmu_buf_unlock_parent(db, dblt, FTAG);
34dc7c2f
BB
4611}
4612
bc77ba73
PD
4613/*
4614 * This function gets called just prior to running through the compression
4615 * stage of the zio pipeline. If we're an indirect block comprised of only
4616 * holes, then we want this indirect to be compressed away to a hole. In
4617 * order to do that we must zero out any information about the holes that
4618 * this indirect points to prior to before we try to compress it.
4619 */
4620static void
4621dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4622{
14e4e3cb 4623 (void) zio, (void) buf;
bc77ba73
PD
4624 dmu_buf_impl_t *db = vdb;
4625 dnode_t *dn;
4626 blkptr_t *bp;
721ed0ee 4627 unsigned int epbs, i;
bc77ba73
PD
4628
4629 ASSERT3U(db->db_level, >, 0);
4630 DB_DNODE_ENTER(db);
4631 dn = DB_DNODE(db);
4632 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
721ed0ee 4633 ASSERT3U(epbs, <, 31);
bc77ba73
PD
4634
4635 /* Determine if all our children are holes */
3f93077b 4636 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
bc77ba73
PD
4637 if (!BP_IS_HOLE(bp))
4638 break;
4639 }
4640
4641 /*
4642 * If all the children are holes, then zero them all out so that
4643 * we may get compressed away.
4644 */
3f93077b 4645 if (i == 1ULL << epbs) {
721ed0ee
GM
4646 /*
4647 * We only found holes. Grab the rwlock to prevent
4648 * anybody from reading the blocks we're about to
4649 * zero out.
4650 */
f664f1ee 4651 rw_enter(&db->db_rwlock, RW_WRITER);
861166b0 4652 memset(db->db.db_data, 0, db->db.db_size);
f664f1ee 4653 rw_exit(&db->db_rwlock);
bc77ba73
PD
4654 }
4655 DB_DNODE_EXIT(db);
4656}
4657
e8b96c60
MA
4658/*
4659 * The SPA will call this callback several times for each zio - once
4660 * for every physical child i/o (zio->io_phys_children times). This
4661 * allows the DMU to monitor the progress of each logical i/o. For example,
4662 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
4663 * block. There may be a long delay before all copies/fragments are completed,
4664 * so this callback allows us to retire dirty space gradually, as the physical
4665 * i/os complete.
4666 */
e8b96c60
MA
4667static void
4668dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
4669{
14e4e3cb 4670 (void) buf;
e8b96c60
MA
4671 dmu_buf_impl_t *db = arg;
4672 objset_t *os = db->db_objset;
4673 dsl_pool_t *dp = dmu_objset_pool(os);
4674 dbuf_dirty_record_t *dr;
4675 int delta = 0;
4676
4677 dr = db->db_data_pending;
4678 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4679
4680 /*
4681 * The callback will be called io_phys_children times. Retire one
4682 * portion of our dirty space each time we are called. Any rounding
0f8ff49e 4683 * error will be cleaned up by dbuf_write_done().
e8b96c60
MA
4684 */
4685 delta = dr->dr_accounted / zio->io_phys_children;
4686 dsl_pool_undirty_space(dp, delta, zio->io_txg);
4687}
4688
34dc7c2f
BB
4689static void
4690dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
4691{
14e4e3cb 4692 (void) buf;
34dc7c2f 4693 dmu_buf_impl_t *db = vdb;
428870ff 4694 blkptr_t *bp_orig = &zio->io_bp_orig;
b0bc7a84
MG
4695 blkptr_t *bp = db->db_blkptr;
4696 objset_t *os = db->db_objset;
4697 dmu_tx_t *tx = os->os_synctx;
34dc7c2f 4698
c99c9001 4699 ASSERT0(zio->io_error);
428870ff
BB
4700 ASSERT(db->db_blkptr == bp);
4701
03c6040b
GW
4702 /*
4703 * For nopwrites and rewrites we ensure that the bp matches our
4704 * original and bypass all the accounting.
4705 */
4706 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
428870ff
BB
4707 ASSERT(BP_EQUAL(bp, bp_orig));
4708 } else {
b0bc7a84 4709 dsl_dataset_t *ds = os->os_dsl_dataset;
428870ff
BB
4710 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
4711 dsl_dataset_block_born(ds, bp, tx);
4712 }
34dc7c2f
BB
4713
4714 mutex_enter(&db->db_mtx);
4715
428870ff
BB
4716 DBUF_VERIFY(db);
4717
ba67d821
MA
4718 dbuf_dirty_record_t *dr = db->db_data_pending;
4719 dnode_t *dn = dr->dr_dnode;
34dc7c2f 4720 ASSERT(!list_link_active(&dr->dr_dirty_node));
428870ff 4721 ASSERT(dr->dr_dbuf == db);
cccbed9f
MM
4722 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
4723 list_remove(&db->db_dirty_records, dr);
34dc7c2f 4724
428870ff
BB
4725#ifdef ZFS_DEBUG
4726 if (db->db_blkid == DMU_SPILL_BLKID) {
428870ff
BB
4727 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4728 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
50c957f7 4729 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
428870ff
BB
4730 }
4731#endif
4732
34dc7c2f 4733 if (db->db_level == 0) {
428870ff 4734 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
34dc7c2f 4735 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
b128c09f
BB
4736 if (db->db_state != DB_NOFILL) {
4737 if (dr->dt.dl.dr_data != db->db_buf)
d3c2ae1c 4738 arc_buf_destroy(dr->dt.dl.dr_data, db);
b128c09f 4739 }
34dc7c2f 4740 } else {
34dc7c2f 4741 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
b0bc7a84 4742 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
34dc7c2f 4743 if (!BP_IS_HOLE(db->db_blkptr)) {
2a8ba608
MM
4744 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
4745 SPA_BLKPTRSHIFT;
b0bc7a84
MG
4746 ASSERT3U(db->db_blkid, <=,
4747 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
34dc7c2f
BB
4748 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4749 db->db.db_size);
34dc7c2f
BB
4750 }
4751 mutex_destroy(&dr->dt.di.dr_mtx);
4752 list_destroy(&dr->dt.di.dr_children);
4753 }
34dc7c2f
BB
4754
4755 cv_broadcast(&db->db_changed);
4756 ASSERT(db->db_dirtycnt > 0);
4757 db->db_dirtycnt -= 1;
4758 db->db_data_pending = NULL;
3d503a76 4759 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
0f8ff49e
SD
4760
4761 /*
4762 * If we didn't do a physical write in this ZIO and we
4763 * still ended up here, it means that the space of the
4764 * dbuf that we just released (and undirtied) above hasn't
4765 * been marked as undirtied in the pool's accounting.
4766 *
4767 * Thus, we undirty that space in the pool's view of the
4768 * world here. For physical writes this type of update
4769 * happens in dbuf_write_physdone().
4770 *
4771 * If we did a physical write, cleanup any rounding errors
4772 * that came up due to writing multiple copies of a block
4773 * on disk [see dbuf_write_physdone()].
4774 */
4775 if (zio->io_phys_children == 0) {
4776 dsl_pool_undirty_space(dmu_objset_pool(os),
4777 dr->dr_accounted, zio->io_txg);
4778 } else {
4779 dsl_pool_undirty_space(dmu_objset_pool(os),
4780 dr->dr_accounted % zio->io_phys_children, zio->io_txg);
4781 }
4782
4783 kmem_free(dr, sizeof (dbuf_dirty_record_t));
428870ff
BB
4784}
4785
4786static void
4787dbuf_write_nofill_ready(zio_t *zio)
4788{
4789 dbuf_write_ready(zio, NULL, zio->io_private);
4790}
4791
4792static void
4793dbuf_write_nofill_done(zio_t *zio)
4794{
4795 dbuf_write_done(zio, NULL, zio->io_private);
4796}
4797
4798static void
4799dbuf_write_override_ready(zio_t *zio)
4800{
4801 dbuf_dirty_record_t *dr = zio->io_private;
4802 dmu_buf_impl_t *db = dr->dr_dbuf;
4803
4804 dbuf_write_ready(zio, NULL, db);
4805}
4806
4807static void
4808dbuf_write_override_done(zio_t *zio)
4809{
4810 dbuf_dirty_record_t *dr = zio->io_private;
4811 dmu_buf_impl_t *db = dr->dr_dbuf;
4812 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4813
4814 mutex_enter(&db->db_mtx);
4815 if (!BP_EQUAL(zio->io_bp, obp)) {
4816 if (!BP_IS_HOLE(obp))
4817 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4818 arc_release(dr->dt.dl.dr_data, db);
4819 }
34dc7c2f
BB
4820 mutex_exit(&db->db_mtx);
4821
428870ff 4822 dbuf_write_done(zio, NULL, db);
a6255b7f
DQ
4823
4824 if (zio->io_abd != NULL)
e2af2acc 4825 abd_free(zio->io_abd);
428870ff
BB
4826}
4827
a1d477c2
MA
4828typedef struct dbuf_remap_impl_callback_arg {
4829 objset_t *drica_os;
4830 uint64_t drica_blk_birth;
4831 dmu_tx_t *drica_tx;
4832} dbuf_remap_impl_callback_arg_t;
4833
4834static void
4835dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4836 void *arg)
4837{
4838 dbuf_remap_impl_callback_arg_t *drica = arg;
4839 objset_t *os = drica->drica_os;
4840 spa_t *spa = dmu_objset_spa(os);
4841 dmu_tx_t *tx = drica->drica_tx;
4842
4843 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4844
4845 if (os == spa_meta_objset(spa)) {
4846 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4847 } else {
4848 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4849 size, drica->drica_blk_birth, tx);
4850 }
4851}
4852
4853static void
f664f1ee 4854dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
a1d477c2
MA
4855{
4856 blkptr_t bp_copy = *bp;
4857 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4858 dbuf_remap_impl_callback_arg_t drica;
4859
4860 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4861
4862 drica.drica_os = dn->dn_objset;
4863 drica.drica_blk_birth = bp->blk_birth;
4864 drica.drica_tx = tx;
4865 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4866 &drica)) {
37f03da8
SH
4867 /*
4868 * If the blkptr being remapped is tracked by a livelist,
4869 * then we need to make sure the livelist reflects the update.
4870 * First, cancel out the old blkptr by appending a 'FREE'
4871 * entry. Next, add an 'ALLOC' to track the new version. This
4872 * way we avoid trying to free an inaccurate blkptr at delete.
4873 * Note that embedded blkptrs are not tracked in livelists.
4874 */
4875 if (dn->dn_objset != spa_meta_objset(spa)) {
4876 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
4877 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
4878 bp->blk_birth > ds->ds_dir->dd_origin_txg) {
4879 ASSERT(!BP_IS_EMBEDDED(bp));
4880 ASSERT(dsl_dir_is_clone(ds->ds_dir));
4881 ASSERT(spa_feature_is_enabled(spa,
4882 SPA_FEATURE_LIVELIST));
4883 bplist_append(&ds->ds_dir->dd_pending_frees,
4884 bp);
4885 bplist_append(&ds->ds_dir->dd_pending_allocs,
4886 &bp_copy);
4887 }
4888 }
4889
a1d477c2 4890 /*
f664f1ee 4891 * The db_rwlock prevents dbuf_read_impl() from
a1d477c2
MA
4892 * dereferencing the BP while we are changing it. To
4893 * avoid lock contention, only grab it when we are actually
4894 * changing the BP.
4895 */
f664f1ee
PD
4896 if (rw != NULL)
4897 rw_enter(rw, RW_WRITER);
a1d477c2 4898 *bp = bp_copy;
f664f1ee
PD
4899 if (rw != NULL)
4900 rw_exit(rw);
a1d477c2
MA
4901 }
4902}
4903
a1d477c2
MA
4904/*
4905 * Remap any existing BP's to concrete vdevs, if possible.
4906 */
4907static void
4908dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4909{
4910 spa_t *spa = dmu_objset_spa(db->db_objset);
4911 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4912
4913 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4914 return;
4915
4916 if (db->db_level > 0) {
4917 blkptr_t *bp = db->db.db_data;
4918 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
f664f1ee 4919 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
a1d477c2
MA
4920 }
4921 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
4922 dnode_phys_t *dnp = db->db.db_data;
4923 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
4924 DMU_OT_DNODE);
4925 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
4926 i += dnp[i].dn_extra_slots + 1) {
4927 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
f664f1ee
PD
4928 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
4929 &dn->dn_dbuf->db_rwlock);
4930 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
4931 tx);
a1d477c2
MA
4932 }
4933 }
4934 }
4935}
4936
4937
e49f1e20 4938/* Issue I/O to commit a dirty buffer to disk. */
428870ff
BB
4939static void
4940dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4941{
4942 dmu_buf_impl_t *db = dr->dr_dbuf;
ba67d821 4943 dnode_t *dn = dr->dr_dnode;
572e2857 4944 objset_t *os;
428870ff
BB
4945 dmu_buf_impl_t *parent = db->db_parent;
4946 uint64_t txg = tx->tx_txg;
5dbd68a3 4947 zbookmark_phys_t zb;
428870ff 4948 zio_prop_t zp;
28caa74b 4949 zio_t *pio; /* parent I/O */
428870ff 4950 int wp_flag = 0;
34dc7c2f 4951
463a8cfe
AR
4952 ASSERT(dmu_tx_is_syncing(tx));
4953
572e2857
BB
4954 os = dn->dn_objset;
4955
428870ff
BB
4956 if (db->db_state != DB_NOFILL) {
4957 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4958 /*
4959 * Private object buffers are released here rather
4960 * than in dbuf_dirty() since they are only modified
4961 * in the syncing context and we don't want the
4962 * overhead of making multiple copies of the data.
4963 */
4964 if (BP_IS_HOLE(db->db_blkptr)) {
4965 arc_buf_thaw(data);
4966 } else {
4967 dbuf_release_bp(db);
4968 }
a1d477c2 4969 dbuf_remap(dn, db, tx);
428870ff
BB
4970 }
4971 }
4972
4973 if (parent != dn->dn_dbuf) {
e49f1e20
WA
4974 /* Our parent is an indirect block. */
4975 /* We have a dirty parent that has been scheduled for write. */
428870ff 4976 ASSERT(parent && parent->db_data_pending);
e49f1e20 4977 /* Our parent's buffer is one level closer to the dnode. */
428870ff 4978 ASSERT(db->db_level == parent->db_level-1);
e49f1e20
WA
4979 /*
4980 * We're about to modify our parent's db_data by modifying
4981 * our block pointer, so the parent must be released.
4982 */
428870ff 4983 ASSERT(arc_released(parent->db_buf));
28caa74b 4984 pio = parent->db_data_pending->dr_zio;
428870ff 4985 } else {
e49f1e20 4986 /* Our parent is the dnode itself. */
428870ff
BB
4987 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
4988 db->db_blkid != DMU_SPILL_BLKID) ||
4989 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
4990 if (db->db_blkid != DMU_SPILL_BLKID)
4991 ASSERT3P(db->db_blkptr, ==,
4992 &dn->dn_phys->dn_blkptr[db->db_blkid]);
28caa74b 4993 pio = dn->dn_zio;
428870ff
BB
4994 }
4995
4996 ASSERT(db->db_level == 0 || data == db->db_buf);
4997 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
28caa74b 4998 ASSERT(pio);
428870ff
BB
4999
5000 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
5001 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
5002 db->db.db_object, db->db_level, db->db_blkid);
5003
5004 if (db->db_blkid == DMU_SPILL_BLKID)
5005 wp_flag = WP_SPILL;
5006 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
5007
82644107 5008 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
428870ff 5009
463a8cfe
AR
5010 /*
5011 * We copy the blkptr now (rather than when we instantiate the dirty
5012 * record), because its value can change between open context and
5013 * syncing context. We do not need to hold dn_struct_rwlock to read
5014 * db_blkptr because we are in syncing context.
5015 */
5016 dr->dr_bp_copy = *db->db_blkptr;
5017
9b67f605
MA
5018 if (db->db_level == 0 &&
5019 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
5020 /*
5021 * The BP for this block has been provided by open context
5022 * (by dmu_sync() or dmu_buf_write_embedded()).
5023 */
a6255b7f
DQ
5024 abd_t *contents = (data != NULL) ?
5025 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
9b67f605 5026
28caa74b
MM
5027 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
5028 contents, db->db.db_size, db->db.db_size, &zp,
5029 dbuf_write_override_ready, NULL, NULL,
bc77ba73 5030 dbuf_write_override_done,
e8b96c60 5031 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
428870ff
BB
5032 mutex_enter(&db->db_mtx);
5033 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
5034 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
03c6040b 5035 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
428870ff
BB
5036 mutex_exit(&db->db_mtx);
5037 } else if (db->db_state == DB_NOFILL) {
3c67d83a
TH
5038 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
5039 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
28caa74b 5040 dr->dr_zio = zio_write(pio, os->os_spa, txg,
2aa34383 5041 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
bc77ba73
PD
5042 dbuf_write_nofill_ready, NULL, NULL,
5043 dbuf_write_nofill_done, db,
428870ff
BB
5044 ZIO_PRIORITY_ASYNC_WRITE,
5045 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
5046 } else {
5047 ASSERT(arc_released(data));
bc77ba73
PD
5048
5049 /*
5050 * For indirect blocks, we want to setup the children
5051 * ready callback so that we can properly handle an indirect
5052 * block that only contains holes.
5053 */
1c27024e 5054 arc_write_done_func_t *children_ready_cb = NULL;
bc77ba73
PD
5055 if (db->db_level != 0)
5056 children_ready_cb = dbuf_write_children_ready;
5057
28caa74b 5058 dr->dr_zio = arc_write(pio, os->os_spa, txg,
c9d62d13 5059 &dr->dr_bp_copy, data, dbuf_is_l2cacheable(db),
d3c2ae1c
GW
5060 &zp, dbuf_write_ready,
5061 children_ready_cb, dbuf_write_physdone,
5062 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
5063 ZIO_FLAG_MUSTSUCCEED, &zb);
428870ff 5064 }
34dc7c2f 5065}
c28b2279 5066
8f576c23
BB
5067EXPORT_SYMBOL(dbuf_find);
5068EXPORT_SYMBOL(dbuf_is_metadata);
d3c2ae1c 5069EXPORT_SYMBOL(dbuf_destroy);
8f576c23
BB
5070EXPORT_SYMBOL(dbuf_loan_arcbuf);
5071EXPORT_SYMBOL(dbuf_whichblock);
5072EXPORT_SYMBOL(dbuf_read);
5073EXPORT_SYMBOL(dbuf_unoverride);
5074EXPORT_SYMBOL(dbuf_free_range);
5075EXPORT_SYMBOL(dbuf_new_size);
5076EXPORT_SYMBOL(dbuf_release_bp);
5077EXPORT_SYMBOL(dbuf_dirty);
0c03d21a 5078EXPORT_SYMBOL(dmu_buf_set_crypt_params);
c28b2279 5079EXPORT_SYMBOL(dmu_buf_will_dirty);
a73e8fdb 5080EXPORT_SYMBOL(dmu_buf_is_dirty);
8f576c23
BB
5081EXPORT_SYMBOL(dmu_buf_will_not_fill);
5082EXPORT_SYMBOL(dmu_buf_will_fill);
5083EXPORT_SYMBOL(dmu_buf_fill_done);
4047414a 5084EXPORT_SYMBOL(dmu_buf_rele);
8f576c23 5085EXPORT_SYMBOL(dbuf_assign_arcbuf);
8f576c23
BB
5086EXPORT_SYMBOL(dbuf_prefetch);
5087EXPORT_SYMBOL(dbuf_hold_impl);
5088EXPORT_SYMBOL(dbuf_hold);
5089EXPORT_SYMBOL(dbuf_hold_level);
5090EXPORT_SYMBOL(dbuf_create_bonus);
5091EXPORT_SYMBOL(dbuf_spill_set_blksz);
5092EXPORT_SYMBOL(dbuf_rm_spill);
5093EXPORT_SYMBOL(dbuf_add_ref);
5094EXPORT_SYMBOL(dbuf_rele);
5095EXPORT_SYMBOL(dbuf_rele_and_unlock);
5096EXPORT_SYMBOL(dbuf_refcount);
5097EXPORT_SYMBOL(dbuf_sync_list);
5098EXPORT_SYMBOL(dmu_buf_set_user);
5099EXPORT_SYMBOL(dmu_buf_set_user_ie);
8f576c23 5100EXPORT_SYMBOL(dmu_buf_get_user);
0f699108 5101EXPORT_SYMBOL(dmu_buf_get_blkptr);
d3c2ae1c 5102
03fdcb9a 5103ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, ULONG, ZMOD_RW,
02730c33 5104 "Maximum size in bytes of the dbuf cache.");
d3c2ae1c 5105
03fdcb9a 5106ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
7ada752a 5107 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
d3c2ae1c 5108
03fdcb9a 5109ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
7ada752a 5110 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
d3c2ae1c 5111
03fdcb9a 5112ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, ULONG, ZMOD_RW,
7ada752a 5113 "Maximum size in bytes of dbuf metadata cache.");
2e5dc449 5114
03fdcb9a 5115ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, INT, ZMOD_RW,
7ada752a 5116 "Set size of dbuf cache to log2 fraction of arc size.");
2e5dc449 5117
03fdcb9a 5118ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, INT, ZMOD_RW,
7ada752a 5119 "Set size of dbuf metadata cache to log2 fraction of arc size.");