]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/metaslab.c
Concurrent small allocation defeats large allocation
[mirror_zfs.git] / module / zfs / metaslab.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
893a6d62 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
2e528b49 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
cc99f275 25 * Copyright (c) 2017, Intel Corporation.
34dc7c2f
BB
26 */
27
34dc7c2f 28#include <sys/zfs_context.h>
34dc7c2f
BB
29#include <sys/dmu.h>
30#include <sys/dmu_tx.h>
31#include <sys/space_map.h>
32#include <sys/metaslab_impl.h>
33#include <sys/vdev_impl.h>
34#include <sys/zio.h>
93cf2076 35#include <sys/spa_impl.h>
f3a7f661 36#include <sys/zfeature.h>
a1d477c2 37#include <sys/vdev_indirect_mapping.h>
d2734cce 38#include <sys/zap.h>
34dc7c2f 39
d1d7e268 40#define WITH_DF_BLOCK_ALLOCATOR
6d974228 41
3dfb57a3
DB
42#define GANG_ALLOCATION(flags) \
43 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
22c81dd8 44
e8fe6684
ED
45/*
46 * Metaslab granularity, in bytes. This is roughly similar to what would be
47 * referred to as the "stripe size" in traditional RAID arrays. In normal
48 * operation, we will try to write this amount of data to a top-level vdev
49 * before moving on to the next one.
50 */
99b14de4 51unsigned long metaslab_aliquot = 512 << 10;
e8fe6684 52
d830d479
MA
53/*
54 * For testing, make some blocks above a certain size be gang blocks.
55 */
56unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
34dc7c2f 57
d2734cce
SD
58/*
59 * Since we can touch multiple metaslabs (and their respective space maps)
60 * with each transaction group, we benefit from having a smaller space map
61 * block size since it allows us to issue more I/O operations scattered
62 * around the disk.
63 */
64int zfs_metaslab_sm_blksz = (1 << 12);
65
e51be066
GW
66/*
67 * The in-core space map representation is more compact than its on-disk form.
68 * The zfs_condense_pct determines how much more compact the in-core
4e21fd06 69 * space map representation must be before we compact it on-disk.
e51be066
GW
70 * Values should be greater than or equal to 100.
71 */
72int zfs_condense_pct = 200;
73
b02fe35d
AR
74/*
75 * Condensing a metaslab is not guaranteed to actually reduce the amount of
76 * space used on disk. In particular, a space map uses data in increments of
96358617 77 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
b02fe35d
AR
78 * same number of blocks after condensing. Since the goal of condensing is to
79 * reduce the number of IOPs required to read the space map, we only want to
80 * condense when we can be sure we will reduce the number of blocks used by the
81 * space map. Unfortunately, we cannot precisely compute whether or not this is
82 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
83 * we apply the following heuristic: do not condense a spacemap unless the
84 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
85 * blocks.
86 */
87int zfs_metaslab_condense_block_threshold = 4;
88
ac72fac3
GW
89/*
90 * The zfs_mg_noalloc_threshold defines which metaslab groups should
91 * be eligible for allocation. The value is defined as a percentage of
f3a7f661 92 * free space. Metaslab groups that have more free space than
ac72fac3
GW
93 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
94 * a metaslab group's free space is less than or equal to the
95 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
96 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
97 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
98 * groups are allowed to accept allocations. Gang blocks are always
99 * eligible to allocate on any metaslab group. The default value of 0 means
100 * no metaslab group will be excluded based on this criterion.
101 */
102int zfs_mg_noalloc_threshold = 0;
6d974228 103
f3a7f661
GW
104/*
105 * Metaslab groups are considered eligible for allocations if their
cb020f0d
SD
106 * fragmenation metric (measured as a percentage) is less than or
107 * equal to zfs_mg_fragmentation_threshold. If a metaslab group
108 * exceeds this threshold then it will be skipped unless all metaslab
109 * groups within the metaslab class have also crossed this threshold.
110 *
111 * This tunable was introduced to avoid edge cases where we continue
112 * allocating from very fragmented disks in our pool while other, less
113 * fragmented disks, exists. On the other hand, if all disks in the
114 * pool are uniformly approaching the threshold, the threshold can
115 * be a speed bump in performance, where we keep switching the disks
116 * that we allocate from (e.g. we allocate some segments from disk A
117 * making it bypassing the threshold while freeing segments from disk
118 * B getting its fragmentation below the threshold).
119 *
120 * Empirically, we've seen that our vdev selection for allocations is
121 * good enough that fragmentation increases uniformly across all vdevs
122 * the majority of the time. Thus we set the threshold percentage high
123 * enough to avoid hitting the speed bump on pools that are being pushed
124 * to the edge.
f3a7f661 125 */
cb020f0d 126int zfs_mg_fragmentation_threshold = 95;
f3a7f661
GW
127
128/*
129 * Allow metaslabs to keep their active state as long as their fragmentation
130 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
131 * active metaslab that exceeds this threshold will no longer keep its active
132 * status allowing better metaslabs to be selected.
133 */
134int zfs_metaslab_fragmentation_threshold = 70;
135
428870ff 136/*
aa7d06a9 137 * When set will load all metaslabs when pool is first opened.
428870ff 138 */
aa7d06a9
GW
139int metaslab_debug_load = 0;
140
141/*
142 * When set will prevent metaslabs from being unloaded.
143 */
144int metaslab_debug_unload = 0;
428870ff 145
9babb374
BB
146/*
147 * Minimum size which forces the dynamic allocator to change
428870ff 148 * it's allocation strategy. Once the space map cannot satisfy
9babb374
BB
149 * an allocation of this size then it switches to using more
150 * aggressive strategy (i.e search by size rather than offset).
151 */
4e21fd06 152uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
9babb374
BB
153
154/*
155 * The minimum free space, in percent, which must be available
156 * in a space map to continue allocations in a first-fit fashion.
4e21fd06 157 * Once the space map's free space drops below this level we dynamically
9babb374
BB
158 * switch to using best-fit allocations.
159 */
428870ff
BB
160int metaslab_df_free_pct = 4;
161
d3230d76
MA
162/*
163 * Maximum distance to search forward from the last offset. Without this
164 * limit, fragmented pools can see >100,000 iterations and
165 * metaslab_block_picker() becomes the performance limiting factor on
166 * high-performance storage.
167 *
168 * With the default setting of 16MB, we typically see less than 500
169 * iterations, even with very fragmented, ashift=9 pools. The maximum number
170 * of iterations possible is:
171 * metaslab_df_max_search / (2 * (1<<ashift))
172 * With the default setting of 16MB this is 16*1024 (with ashift=9) or
173 * 2048 (with ashift=12).
174 */
175int metaslab_df_max_search = 16 * 1024 * 1024;
176
177/*
178 * If we are not searching forward (due to metaslab_df_max_search,
179 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
180 * controls what segment is used. If it is set, we will use the largest free
181 * segment. If it is not set, we will use a segment of exactly the requested
182 * size (or larger).
183 */
184int metaslab_df_use_largest_segment = B_FALSE;
185
428870ff 186/*
93cf2076 187 * Percentage of all cpus that can be used by the metaslab taskq.
428870ff 188 */
93cf2076 189int metaslab_load_pct = 50;
428870ff
BB
190
191/*
93cf2076
GW
192 * Determines how many txgs a metaslab may remain loaded without having any
193 * allocations from it. As long as a metaslab continues to be used we will
194 * keep it loaded.
428870ff 195 */
93cf2076 196int metaslab_unload_delay = TXG_SIZE * 2;
9babb374 197
93cf2076
GW
198/*
199 * Max number of metaslabs per group to preload.
200 */
201int metaslab_preload_limit = SPA_DVAS_PER_BP;
202
203/*
204 * Enable/disable preloading of metaslab.
205 */
f3a7f661 206int metaslab_preload_enabled = B_TRUE;
93cf2076
GW
207
208/*
f3a7f661 209 * Enable/disable fragmentation weighting on metaslabs.
93cf2076 210 */
f3a7f661 211int metaslab_fragmentation_factor_enabled = B_TRUE;
93cf2076 212
f3a7f661
GW
213/*
214 * Enable/disable lba weighting (i.e. outer tracks are given preference).
215 */
216int metaslab_lba_weighting_enabled = B_TRUE;
217
218/*
219 * Enable/disable metaslab group biasing.
220 */
221int metaslab_bias_enabled = B_TRUE;
222
a1d477c2
MA
223/*
224 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
225 */
226boolean_t zfs_remap_blkptr_enable = B_TRUE;
227
4e21fd06
DB
228/*
229 * Enable/disable segment-based metaslab selection.
230 */
231int zfs_metaslab_segment_weight_enabled = B_TRUE;
232
233/*
234 * When using segment-based metaslab selection, we will continue
235 * allocating from the active metaslab until we have exhausted
236 * zfs_metaslab_switch_threshold of its buckets.
237 */
238int zfs_metaslab_switch_threshold = 2;
239
240/*
241 * Internal switch to enable/disable the metaslab allocation tracing
242 * facility.
243 */
244#ifdef _METASLAB_TRACING
245boolean_t metaslab_trace_enabled = B_TRUE;
246#endif
247
248/*
249 * Maximum entries that the metaslab allocation tracing facility will keep
250 * in a given list when running in non-debug mode. We limit the number
251 * of entries in non-debug mode to prevent us from using up too much memory.
252 * The limit should be sufficiently large that we don't expect any allocation
253 * to every exceed this value. In debug mode, the system will panic if this
254 * limit is ever reached allowing for further investigation.
255 */
256#ifdef _METASLAB_TRACING
257uint64_t metaslab_trace_max_entries = 5000;
258#endif
259
1b939560
BB
260/*
261 * Maximum number of metaslabs per group that can be disabled
262 * simultaneously.
263 */
264int max_disabled_ms = 3;
265
4e21fd06
DB
266static uint64_t metaslab_weight(metaslab_t *);
267static void metaslab_set_fragmentation(metaslab_t *);
d2734cce 268static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
a1d477c2 269static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
4e21fd06 270
492f64e9
PD
271static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
272static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
4e21fd06
DB
273#ifdef _METASLAB_TRACING
274kmem_cache_t *metaslab_alloc_trace_cache;
275#endif
93cf2076 276
34dc7c2f
BB
277/*
278 * ==========================================================================
279 * Metaslab classes
280 * ==========================================================================
281 */
282metaslab_class_t *
93cf2076 283metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
34dc7c2f
BB
284{
285 metaslab_class_t *mc;
286
79c76d5b 287 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
34dc7c2f 288
428870ff 289 mc->mc_spa = spa;
34dc7c2f 290 mc->mc_rotor = NULL;
9babb374 291 mc->mc_ops = ops;
3dfb57a3 292 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
492f64e9 293 mc->mc_alloc_slots = kmem_zalloc(spa->spa_alloc_count *
c13060e4 294 sizeof (zfs_refcount_t), KM_SLEEP);
492f64e9
PD
295 mc->mc_alloc_max_slots = kmem_zalloc(spa->spa_alloc_count *
296 sizeof (uint64_t), KM_SLEEP);
297 for (int i = 0; i < spa->spa_alloc_count; i++)
424fd7c3 298 zfs_refcount_create_tracked(&mc->mc_alloc_slots[i]);
34dc7c2f
BB
299
300 return (mc);
301}
302
303void
304metaslab_class_destroy(metaslab_class_t *mc)
305{
428870ff
BB
306 ASSERT(mc->mc_rotor == NULL);
307 ASSERT(mc->mc_alloc == 0);
308 ASSERT(mc->mc_deferred == 0);
309 ASSERT(mc->mc_space == 0);
310 ASSERT(mc->mc_dspace == 0);
34dc7c2f 311
492f64e9 312 for (int i = 0; i < mc->mc_spa->spa_alloc_count; i++)
424fd7c3 313 zfs_refcount_destroy(&mc->mc_alloc_slots[i]);
492f64e9 314 kmem_free(mc->mc_alloc_slots, mc->mc_spa->spa_alloc_count *
c13060e4 315 sizeof (zfs_refcount_t));
492f64e9
PD
316 kmem_free(mc->mc_alloc_max_slots, mc->mc_spa->spa_alloc_count *
317 sizeof (uint64_t));
3dfb57a3 318 mutex_destroy(&mc->mc_lock);
34dc7c2f
BB
319 kmem_free(mc, sizeof (metaslab_class_t));
320}
321
428870ff
BB
322int
323metaslab_class_validate(metaslab_class_t *mc)
34dc7c2f 324{
428870ff
BB
325 metaslab_group_t *mg;
326 vdev_t *vd;
34dc7c2f 327
428870ff
BB
328 /*
329 * Must hold one of the spa_config locks.
330 */
331 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
332 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
34dc7c2f 333
428870ff
BB
334 if ((mg = mc->mc_rotor) == NULL)
335 return (0);
336
337 do {
338 vd = mg->mg_vd;
339 ASSERT(vd->vdev_mg != NULL);
340 ASSERT3P(vd->vdev_top, ==, vd);
341 ASSERT3P(mg->mg_class, ==, mc);
342 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
343 } while ((mg = mg->mg_next) != mc->mc_rotor);
344
345 return (0);
34dc7c2f
BB
346}
347
cc99f275 348static void
428870ff
BB
349metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
350 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
34dc7c2f 351{
428870ff
BB
352 atomic_add_64(&mc->mc_alloc, alloc_delta);
353 atomic_add_64(&mc->mc_deferred, defer_delta);
354 atomic_add_64(&mc->mc_space, space_delta);
355 atomic_add_64(&mc->mc_dspace, dspace_delta);
356}
34dc7c2f 357
428870ff
BB
358uint64_t
359metaslab_class_get_alloc(metaslab_class_t *mc)
360{
361 return (mc->mc_alloc);
362}
34dc7c2f 363
428870ff
BB
364uint64_t
365metaslab_class_get_deferred(metaslab_class_t *mc)
366{
367 return (mc->mc_deferred);
368}
34dc7c2f 369
428870ff
BB
370uint64_t
371metaslab_class_get_space(metaslab_class_t *mc)
372{
373 return (mc->mc_space);
374}
34dc7c2f 375
428870ff
BB
376uint64_t
377metaslab_class_get_dspace(metaslab_class_t *mc)
378{
379 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
34dc7c2f
BB
380}
381
f3a7f661
GW
382void
383metaslab_class_histogram_verify(metaslab_class_t *mc)
384{
cc99f275
DB
385 spa_t *spa = mc->mc_spa;
386 vdev_t *rvd = spa->spa_root_vdev;
f3a7f661 387 uint64_t *mc_hist;
1c27024e 388 int i;
f3a7f661
GW
389
390 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
391 return;
392
393 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
79c76d5b 394 KM_SLEEP);
f3a7f661 395
1c27024e 396 for (int c = 0; c < rvd->vdev_children; c++) {
f3a7f661
GW
397 vdev_t *tvd = rvd->vdev_child[c];
398 metaslab_group_t *mg = tvd->vdev_mg;
399
400 /*
401 * Skip any holes, uninitialized top-levels, or
402 * vdevs that are not in this metalab class.
403 */
a1d477c2 404 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
f3a7f661
GW
405 mg->mg_class != mc) {
406 continue;
407 }
408
409 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
410 mc_hist[i] += mg->mg_histogram[i];
411 }
412
413 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
414 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
415
416 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
417}
418
419/*
420 * Calculate the metaslab class's fragmentation metric. The metric
421 * is weighted based on the space contribution of each metaslab group.
422 * The return value will be a number between 0 and 100 (inclusive), or
423 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
424 * zfs_frag_table for more information about the metric.
425 */
426uint64_t
427metaslab_class_fragmentation(metaslab_class_t *mc)
428{
429 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
430 uint64_t fragmentation = 0;
f3a7f661
GW
431
432 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
433
1c27024e 434 for (int c = 0; c < rvd->vdev_children; c++) {
f3a7f661
GW
435 vdev_t *tvd = rvd->vdev_child[c];
436 metaslab_group_t *mg = tvd->vdev_mg;
437
438 /*
a1d477c2
MA
439 * Skip any holes, uninitialized top-levels,
440 * or vdevs that are not in this metalab class.
f3a7f661 441 */
a1d477c2 442 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
f3a7f661
GW
443 mg->mg_class != mc) {
444 continue;
445 }
446
447 /*
448 * If a metaslab group does not contain a fragmentation
449 * metric then just bail out.
450 */
451 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
452 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
453 return (ZFS_FRAG_INVALID);
454 }
455
456 /*
457 * Determine how much this metaslab_group is contributing
458 * to the overall pool fragmentation metric.
459 */
460 fragmentation += mg->mg_fragmentation *
461 metaslab_group_get_space(mg);
462 }
463 fragmentation /= metaslab_class_get_space(mc);
464
465 ASSERT3U(fragmentation, <=, 100);
466 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
467 return (fragmentation);
468}
469
470/*
471 * Calculate the amount of expandable space that is available in
472 * this metaslab class. If a device is expanded then its expandable
473 * space will be the amount of allocatable space that is currently not
474 * part of this metaslab class.
475 */
476uint64_t
477metaslab_class_expandable_space(metaslab_class_t *mc)
478{
479 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
480 uint64_t space = 0;
f3a7f661
GW
481
482 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
1c27024e 483 for (int c = 0; c < rvd->vdev_children; c++) {
f3a7f661
GW
484 vdev_t *tvd = rvd->vdev_child[c];
485 metaslab_group_t *mg = tvd->vdev_mg;
486
a1d477c2 487 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
f3a7f661
GW
488 mg->mg_class != mc) {
489 continue;
490 }
491
0f676dc2
GM
492 /*
493 * Calculate if we have enough space to add additional
494 * metaslabs. We report the expandable space in terms
495 * of the metaslab size since that's the unit of expansion.
496 */
497 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
498 1ULL << tvd->vdev_ms_shift);
f3a7f661
GW
499 }
500 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
501 return (space);
502}
503
34dc7c2f
BB
504static int
505metaslab_compare(const void *x1, const void *x2)
506{
ee36c709
GN
507 const metaslab_t *m1 = (const metaslab_t *)x1;
508 const metaslab_t *m2 = (const metaslab_t *)x2;
34dc7c2f 509
492f64e9
PD
510 int sort1 = 0;
511 int sort2 = 0;
512 if (m1->ms_allocator != -1 && m1->ms_primary)
513 sort1 = 1;
514 else if (m1->ms_allocator != -1 && !m1->ms_primary)
515 sort1 = 2;
516 if (m2->ms_allocator != -1 && m2->ms_primary)
517 sort2 = 1;
518 else if (m2->ms_allocator != -1 && !m2->ms_primary)
519 sort2 = 2;
520
521 /*
522 * Sort inactive metaslabs first, then primaries, then secondaries. When
523 * selecting a metaslab to allocate from, an allocator first tries its
524 * primary, then secondary active metaslab. If it doesn't have active
525 * metaslabs, or can't allocate from them, it searches for an inactive
526 * metaslab to activate. If it can't find a suitable one, it will steal
527 * a primary or secondary metaslab from another allocator.
528 */
529 if (sort1 < sort2)
530 return (-1);
531 if (sort1 > sort2)
532 return (1);
533
ee36c709
GN
534 int cmp = AVL_CMP(m2->ms_weight, m1->ms_weight);
535 if (likely(cmp))
536 return (cmp);
34dc7c2f 537
ee36c709 538 IMPLY(AVL_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
34dc7c2f 539
ee36c709 540 return (AVL_CMP(m1->ms_start, m2->ms_start));
34dc7c2f
BB
541}
542
425d3237
SD
543uint64_t
544metaslab_allocated_space(metaslab_t *msp)
545{
546 return (msp->ms_allocated_space);
547}
548
4e21fd06
DB
549/*
550 * Verify that the space accounting on disk matches the in-core range_trees.
551 */
425d3237 552static void
4e21fd06
DB
553metaslab_verify_space(metaslab_t *msp, uint64_t txg)
554{
555 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
425d3237 556 uint64_t allocating = 0;
4e21fd06 557 uint64_t sm_free_space, msp_free_space;
4e21fd06
DB
558
559 ASSERT(MUTEX_HELD(&msp->ms_lock));
425d3237 560 ASSERT(!msp->ms_condensing);
4e21fd06
DB
561
562 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
563 return;
564
565 /*
566 * We can only verify the metaslab space when we're called
425d3237
SD
567 * from syncing context with a loaded metaslab that has an
568 * allocated space map. Calling this in non-syncing context
569 * does not provide a consistent view of the metaslab since
570 * we're performing allocations in the future.
4e21fd06
DB
571 */
572 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
573 !msp->ms_loaded)
574 return;
575
425d3237
SD
576 /*
577 * Even though the smp_alloc field can get negative (e.g.
578 * see vdev_checkpoint_sm), that should never be the case
579 * when it come's to a metaslab's space map.
580 */
581 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
582
583 sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
4e21fd06
DB
584
585 /*
425d3237
SD
586 * Account for future allocations since we would have
587 * already deducted that space from the ms_allocatable.
4e21fd06 588 */
1c27024e 589 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
425d3237 590 allocating +=
d2734cce 591 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
4e21fd06 592 }
4e21fd06 593
425d3237
SD
594 ASSERT3U(msp->ms_deferspace, ==,
595 range_tree_space(msp->ms_defer[0]) +
596 range_tree_space(msp->ms_defer[1]));
597
598 msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
d2734cce 599 msp->ms_deferspace + range_tree_space(msp->ms_freed);
4e21fd06
DB
600
601 VERIFY3U(sm_free_space, ==, msp_free_space);
602}
603
604/*
605 * ==========================================================================
606 * Metaslab groups
607 * ==========================================================================
608 */
ac72fac3
GW
609/*
610 * Update the allocatable flag and the metaslab group's capacity.
611 * The allocatable flag is set to true if the capacity is below
3dfb57a3
DB
612 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
613 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
614 * transitions from allocatable to non-allocatable or vice versa then the
615 * metaslab group's class is updated to reflect the transition.
ac72fac3
GW
616 */
617static void
618metaslab_group_alloc_update(metaslab_group_t *mg)
619{
620 vdev_t *vd = mg->mg_vd;
621 metaslab_class_t *mc = mg->mg_class;
622 vdev_stat_t *vs = &vd->vdev_stat;
623 boolean_t was_allocatable;
3dfb57a3 624 boolean_t was_initialized;
ac72fac3
GW
625
626 ASSERT(vd == vd->vdev_top);
a1d477c2
MA
627 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
628 SCL_ALLOC);
ac72fac3
GW
629
630 mutex_enter(&mg->mg_lock);
631 was_allocatable = mg->mg_allocatable;
3dfb57a3 632 was_initialized = mg->mg_initialized;
ac72fac3
GW
633
634 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
635 (vs->vs_space + 1);
636
3dfb57a3
DB
637 mutex_enter(&mc->mc_lock);
638
639 /*
640 * If the metaslab group was just added then it won't
641 * have any space until we finish syncing out this txg.
642 * At that point we will consider it initialized and available
643 * for allocations. We also don't consider non-activated
644 * metaslab groups (e.g. vdevs that are in the middle of being removed)
645 * to be initialized, because they can't be used for allocation.
646 */
647 mg->mg_initialized = metaslab_group_initialized(mg);
648 if (!was_initialized && mg->mg_initialized) {
649 mc->mc_groups++;
650 } else if (was_initialized && !mg->mg_initialized) {
651 ASSERT3U(mc->mc_groups, >, 0);
652 mc->mc_groups--;
653 }
654 if (mg->mg_initialized)
655 mg->mg_no_free_space = B_FALSE;
656
f3a7f661
GW
657 /*
658 * A metaslab group is considered allocatable if it has plenty
659 * of free space or is not heavily fragmented. We only take
660 * fragmentation into account if the metaslab group has a valid
661 * fragmentation metric (i.e. a value between 0 and 100).
662 */
3dfb57a3
DB
663 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
664 mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
f3a7f661
GW
665 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
666 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
ac72fac3
GW
667
668 /*
669 * The mc_alloc_groups maintains a count of the number of
670 * groups in this metaslab class that are still above the
671 * zfs_mg_noalloc_threshold. This is used by the allocating
672 * threads to determine if they should avoid allocations to
673 * a given group. The allocator will avoid allocations to a group
674 * if that group has reached or is below the zfs_mg_noalloc_threshold
675 * and there are still other groups that are above the threshold.
676 * When a group transitions from allocatable to non-allocatable or
677 * vice versa we update the metaslab class to reflect that change.
678 * When the mc_alloc_groups value drops to 0 that means that all
679 * groups have reached the zfs_mg_noalloc_threshold making all groups
680 * eligible for allocations. This effectively means that all devices
681 * are balanced again.
682 */
683 if (was_allocatable && !mg->mg_allocatable)
684 mc->mc_alloc_groups--;
685 else if (!was_allocatable && mg->mg_allocatable)
686 mc->mc_alloc_groups++;
3dfb57a3 687 mutex_exit(&mc->mc_lock);
f3a7f661 688
ac72fac3
GW
689 mutex_exit(&mg->mg_lock);
690}
691
34dc7c2f 692metaslab_group_t *
492f64e9 693metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
34dc7c2f
BB
694{
695 metaslab_group_t *mg;
696
79c76d5b 697 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
34dc7c2f 698 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
1b939560
BB
699 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
700 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
492f64e9
PD
701 mg->mg_primaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
702 KM_SLEEP);
703 mg->mg_secondaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
704 KM_SLEEP);
34dc7c2f
BB
705 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
706 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
34dc7c2f 707 mg->mg_vd = vd;
428870ff
BB
708 mg->mg_class = mc;
709 mg->mg_activation_count = 0;
3dfb57a3
DB
710 mg->mg_initialized = B_FALSE;
711 mg->mg_no_free_space = B_TRUE;
492f64e9
PD
712 mg->mg_allocators = allocators;
713
c13060e4
TS
714 mg->mg_alloc_queue_depth = kmem_zalloc(allocators *
715 sizeof (zfs_refcount_t), KM_SLEEP);
492f64e9
PD
716 mg->mg_cur_max_alloc_queue_depth = kmem_zalloc(allocators *
717 sizeof (uint64_t), KM_SLEEP);
718 for (int i = 0; i < allocators; i++) {
424fd7c3 719 zfs_refcount_create_tracked(&mg->mg_alloc_queue_depth[i]);
492f64e9
PD
720 mg->mg_cur_max_alloc_queue_depth[i] = 0;
721 }
34dc7c2f 722
3c51c5cb 723 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
1229323d 724 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
93cf2076 725
34dc7c2f
BB
726 return (mg);
727}
728
729void
730metaslab_group_destroy(metaslab_group_t *mg)
731{
428870ff
BB
732 ASSERT(mg->mg_prev == NULL);
733 ASSERT(mg->mg_next == NULL);
734 /*
735 * We may have gone below zero with the activation count
736 * either because we never activated in the first place or
737 * because we're done, and possibly removing the vdev.
738 */
739 ASSERT(mg->mg_activation_count <= 0);
740
3c51c5cb 741 taskq_destroy(mg->mg_taskq);
34dc7c2f 742 avl_destroy(&mg->mg_metaslab_tree);
492f64e9
PD
743 kmem_free(mg->mg_primaries, mg->mg_allocators * sizeof (metaslab_t *));
744 kmem_free(mg->mg_secondaries, mg->mg_allocators *
745 sizeof (metaslab_t *));
34dc7c2f 746 mutex_destroy(&mg->mg_lock);
1b939560
BB
747 mutex_destroy(&mg->mg_ms_disabled_lock);
748 cv_destroy(&mg->mg_ms_disabled_cv);
492f64e9
PD
749
750 for (int i = 0; i < mg->mg_allocators; i++) {
424fd7c3 751 zfs_refcount_destroy(&mg->mg_alloc_queue_depth[i]);
492f64e9
PD
752 mg->mg_cur_max_alloc_queue_depth[i] = 0;
753 }
754 kmem_free(mg->mg_alloc_queue_depth, mg->mg_allocators *
c13060e4 755 sizeof (zfs_refcount_t));
492f64e9
PD
756 kmem_free(mg->mg_cur_max_alloc_queue_depth, mg->mg_allocators *
757 sizeof (uint64_t));
758
34dc7c2f
BB
759 kmem_free(mg, sizeof (metaslab_group_t));
760}
761
428870ff
BB
762void
763metaslab_group_activate(metaslab_group_t *mg)
764{
765 metaslab_class_t *mc = mg->mg_class;
766 metaslab_group_t *mgprev, *mgnext;
767
a1d477c2 768 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER), !=, 0);
428870ff
BB
769
770 ASSERT(mc->mc_rotor != mg);
771 ASSERT(mg->mg_prev == NULL);
772 ASSERT(mg->mg_next == NULL);
773 ASSERT(mg->mg_activation_count <= 0);
774
775 if (++mg->mg_activation_count <= 0)
776 return;
777
778 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
ac72fac3 779 metaslab_group_alloc_update(mg);
428870ff
BB
780
781 if ((mgprev = mc->mc_rotor) == NULL) {
782 mg->mg_prev = mg;
783 mg->mg_next = mg;
784 } else {
785 mgnext = mgprev->mg_next;
786 mg->mg_prev = mgprev;
787 mg->mg_next = mgnext;
788 mgprev->mg_next = mg;
789 mgnext->mg_prev = mg;
790 }
791 mc->mc_rotor = mg;
792}
793
a1d477c2
MA
794/*
795 * Passivate a metaslab group and remove it from the allocation rotor.
796 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
797 * a metaslab group. This function will momentarily drop spa_config_locks
798 * that are lower than the SCL_ALLOC lock (see comment below).
799 */
428870ff
BB
800void
801metaslab_group_passivate(metaslab_group_t *mg)
802{
803 metaslab_class_t *mc = mg->mg_class;
a1d477c2 804 spa_t *spa = mc->mc_spa;
428870ff 805 metaslab_group_t *mgprev, *mgnext;
a1d477c2 806 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
428870ff 807
a1d477c2
MA
808 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
809 (SCL_ALLOC | SCL_ZIO));
428870ff
BB
810
811 if (--mg->mg_activation_count != 0) {
812 ASSERT(mc->mc_rotor != mg);
813 ASSERT(mg->mg_prev == NULL);
814 ASSERT(mg->mg_next == NULL);
815 ASSERT(mg->mg_activation_count < 0);
816 return;
817 }
818
a1d477c2
MA
819 /*
820 * The spa_config_lock is an array of rwlocks, ordered as
821 * follows (from highest to lowest):
822 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
823 * SCL_ZIO > SCL_FREE > SCL_VDEV
824 * (For more information about the spa_config_lock see spa_misc.c)
825 * The higher the lock, the broader its coverage. When we passivate
826 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
827 * config locks. However, the metaslab group's taskq might be trying
828 * to preload metaslabs so we must drop the SCL_ZIO lock and any
829 * lower locks to allow the I/O to complete. At a minimum,
830 * we continue to hold the SCL_ALLOC lock, which prevents any future
831 * allocations from taking place and any changes to the vdev tree.
832 */
833 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
c5528b9b 834 taskq_wait_outstanding(mg->mg_taskq, 0);
a1d477c2 835 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
f3a7f661 836 metaslab_group_alloc_update(mg);
492f64e9
PD
837 for (int i = 0; i < mg->mg_allocators; i++) {
838 metaslab_t *msp = mg->mg_primaries[i];
839 if (msp != NULL) {
840 mutex_enter(&msp->ms_lock);
841 metaslab_passivate(msp,
842 metaslab_weight_from_range_tree(msp));
843 mutex_exit(&msp->ms_lock);
844 }
845 msp = mg->mg_secondaries[i];
846 if (msp != NULL) {
847 mutex_enter(&msp->ms_lock);
848 metaslab_passivate(msp,
849 metaslab_weight_from_range_tree(msp));
850 mutex_exit(&msp->ms_lock);
851 }
852 }
93cf2076 853
428870ff
BB
854 mgprev = mg->mg_prev;
855 mgnext = mg->mg_next;
856
857 if (mg == mgnext) {
858 mc->mc_rotor = NULL;
859 } else {
860 mc->mc_rotor = mgnext;
861 mgprev->mg_next = mgnext;
862 mgnext->mg_prev = mgprev;
863 }
864
865 mg->mg_prev = NULL;
866 mg->mg_next = NULL;
867}
868
3dfb57a3
DB
869boolean_t
870metaslab_group_initialized(metaslab_group_t *mg)
871{
872 vdev_t *vd = mg->mg_vd;
873 vdev_stat_t *vs = &vd->vdev_stat;
874
875 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
876}
877
f3a7f661
GW
878uint64_t
879metaslab_group_get_space(metaslab_group_t *mg)
880{
881 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
882}
883
884void
885metaslab_group_histogram_verify(metaslab_group_t *mg)
886{
887 uint64_t *mg_hist;
888 vdev_t *vd = mg->mg_vd;
889 uint64_t ashift = vd->vdev_ashift;
1c27024e 890 int i;
f3a7f661
GW
891
892 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
893 return;
894
895 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
79c76d5b 896 KM_SLEEP);
f3a7f661
GW
897
898 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
899 SPACE_MAP_HISTOGRAM_SIZE + ashift);
900
1c27024e 901 for (int m = 0; m < vd->vdev_ms_count; m++) {
f3a7f661 902 metaslab_t *msp = vd->vdev_ms[m];
928e8ad4 903 ASSERT(msp != NULL);
f3a7f661 904
cc99f275
DB
905 /* skip if not active or not a member */
906 if (msp->ms_sm == NULL || msp->ms_group != mg)
f3a7f661
GW
907 continue;
908
909 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
910 mg_hist[i + ashift] +=
911 msp->ms_sm->sm_phys->smp_histogram[i];
912 }
913
914 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
915 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
916
917 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
918}
919
34dc7c2f 920static void
f3a7f661 921metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
34dc7c2f 922{
f3a7f661
GW
923 metaslab_class_t *mc = mg->mg_class;
924 uint64_t ashift = mg->mg_vd->vdev_ashift;
f3a7f661
GW
925
926 ASSERT(MUTEX_HELD(&msp->ms_lock));
927 if (msp->ms_sm == NULL)
928 return;
929
34dc7c2f 930 mutex_enter(&mg->mg_lock);
1c27024e 931 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
f3a7f661
GW
932 mg->mg_histogram[i + ashift] +=
933 msp->ms_sm->sm_phys->smp_histogram[i];
934 mc->mc_histogram[i + ashift] +=
935 msp->ms_sm->sm_phys->smp_histogram[i];
936 }
937 mutex_exit(&mg->mg_lock);
938}
939
940void
941metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
942{
943 metaslab_class_t *mc = mg->mg_class;
944 uint64_t ashift = mg->mg_vd->vdev_ashift;
f3a7f661
GW
945
946 ASSERT(MUTEX_HELD(&msp->ms_lock));
947 if (msp->ms_sm == NULL)
948 return;
949
950 mutex_enter(&mg->mg_lock);
1c27024e 951 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
f3a7f661
GW
952 ASSERT3U(mg->mg_histogram[i + ashift], >=,
953 msp->ms_sm->sm_phys->smp_histogram[i]);
954 ASSERT3U(mc->mc_histogram[i + ashift], >=,
955 msp->ms_sm->sm_phys->smp_histogram[i]);
956
957 mg->mg_histogram[i + ashift] -=
958 msp->ms_sm->sm_phys->smp_histogram[i];
959 mc->mc_histogram[i + ashift] -=
960 msp->ms_sm->sm_phys->smp_histogram[i];
961 }
962 mutex_exit(&mg->mg_lock);
963}
964
965static void
966metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
967{
34dc7c2f 968 ASSERT(msp->ms_group == NULL);
f3a7f661 969 mutex_enter(&mg->mg_lock);
34dc7c2f
BB
970 msp->ms_group = mg;
971 msp->ms_weight = 0;
972 avl_add(&mg->mg_metaslab_tree, msp);
973 mutex_exit(&mg->mg_lock);
f3a7f661
GW
974
975 mutex_enter(&msp->ms_lock);
976 metaslab_group_histogram_add(mg, msp);
977 mutex_exit(&msp->ms_lock);
34dc7c2f
BB
978}
979
980static void
981metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
982{
f3a7f661
GW
983 mutex_enter(&msp->ms_lock);
984 metaslab_group_histogram_remove(mg, msp);
985 mutex_exit(&msp->ms_lock);
986
34dc7c2f
BB
987 mutex_enter(&mg->mg_lock);
988 ASSERT(msp->ms_group == mg);
989 avl_remove(&mg->mg_metaslab_tree, msp);
990 msp->ms_group = NULL;
991 mutex_exit(&mg->mg_lock);
992}
993
492f64e9
PD
994static void
995metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
996{
679b0f2a 997 ASSERT(MUTEX_HELD(&msp->ms_lock));
492f64e9
PD
998 ASSERT(MUTEX_HELD(&mg->mg_lock));
999 ASSERT(msp->ms_group == mg);
679b0f2a 1000
492f64e9
PD
1001 avl_remove(&mg->mg_metaslab_tree, msp);
1002 msp->ms_weight = weight;
1003 avl_add(&mg->mg_metaslab_tree, msp);
1004
1005}
1006
34dc7c2f
BB
1007static void
1008metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1009{
1010 /*
1011 * Although in principle the weight can be any value, in
f3a7f661 1012 * practice we do not use values in the range [1, 511].
34dc7c2f 1013 */
f3a7f661 1014 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
34dc7c2f
BB
1015 ASSERT(MUTEX_HELD(&msp->ms_lock));
1016
1017 mutex_enter(&mg->mg_lock);
492f64e9 1018 metaslab_group_sort_impl(mg, msp, weight);
34dc7c2f
BB
1019 mutex_exit(&mg->mg_lock);
1020}
1021
f3a7f661
GW
1022/*
1023 * Calculate the fragmentation for a given metaslab group. We can use
1024 * a simple average here since all metaslabs within the group must have
1025 * the same size. The return value will be a value between 0 and 100
1026 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1027 * group have a fragmentation metric.
1028 */
1029uint64_t
1030metaslab_group_fragmentation(metaslab_group_t *mg)
1031{
1032 vdev_t *vd = mg->mg_vd;
1033 uint64_t fragmentation = 0;
1034 uint64_t valid_ms = 0;
f3a7f661 1035
1c27024e 1036 for (int m = 0; m < vd->vdev_ms_count; m++) {
f3a7f661
GW
1037 metaslab_t *msp = vd->vdev_ms[m];
1038
1039 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
1040 continue;
cc99f275
DB
1041 if (msp->ms_group != mg)
1042 continue;
f3a7f661
GW
1043
1044 valid_ms++;
1045 fragmentation += msp->ms_fragmentation;
1046 }
1047
cc99f275 1048 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
f3a7f661
GW
1049 return (ZFS_FRAG_INVALID);
1050
1051 fragmentation /= valid_ms;
1052 ASSERT3U(fragmentation, <=, 100);
1053 return (fragmentation);
1054}
1055
ac72fac3
GW
1056/*
1057 * Determine if a given metaslab group should skip allocations. A metaslab
f3a7f661
GW
1058 * group should avoid allocations if its free capacity is less than the
1059 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1060 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
3dfb57a3
DB
1061 * that can still handle allocations. If the allocation throttle is enabled
1062 * then we skip allocations to devices that have reached their maximum
1063 * allocation queue depth unless the selected metaslab group is the only
1064 * eligible group remaining.
ac72fac3
GW
1065 */
1066static boolean_t
3dfb57a3 1067metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
c197a77c 1068 uint64_t psize, int allocator, int d)
ac72fac3 1069{
3dfb57a3 1070 spa_t *spa = mg->mg_vd->vdev_spa;
ac72fac3
GW
1071 metaslab_class_t *mc = mg->mg_class;
1072
1073 /*
3dfb57a3
DB
1074 * We can only consider skipping this metaslab group if it's
1075 * in the normal metaslab class and there are other metaslab
1076 * groups to select from. Otherwise, we always consider it eligible
f3a7f661 1077 * for allocations.
ac72fac3 1078 */
cc99f275
DB
1079 if ((mc != spa_normal_class(spa) &&
1080 mc != spa_special_class(spa) &&
1081 mc != spa_dedup_class(spa)) ||
1082 mc->mc_groups <= 1)
3dfb57a3
DB
1083 return (B_TRUE);
1084
1085 /*
1086 * If the metaslab group's mg_allocatable flag is set (see comments
1087 * in metaslab_group_alloc_update() for more information) and
1088 * the allocation throttle is disabled then allow allocations to this
1089 * device. However, if the allocation throttle is enabled then
1090 * check if we have reached our allocation limit (mg_alloc_queue_depth)
1091 * to determine if we should allow allocations to this metaslab group.
1092 * If all metaslab groups are no longer considered allocatable
1093 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1094 * gang block size then we allow allocations on this metaslab group
1095 * regardless of the mg_allocatable or throttle settings.
1096 */
1097 if (mg->mg_allocatable) {
1098 metaslab_group_t *mgp;
1099 int64_t qdepth;
492f64e9 1100 uint64_t qmax = mg->mg_cur_max_alloc_queue_depth[allocator];
3dfb57a3
DB
1101
1102 if (!mc->mc_alloc_throttle_enabled)
1103 return (B_TRUE);
1104
1105 /*
1106 * If this metaslab group does not have any free space, then
1107 * there is no point in looking further.
1108 */
1109 if (mg->mg_no_free_space)
1110 return (B_FALSE);
1111
c197a77c 1112 /*
1113 * Relax allocation throttling for ditto blocks. Due to
1114 * random imbalances in allocation it tends to push copies
1115 * to one vdev, that looks a bit better at the moment.
1116 */
1117 qmax = qmax * (4 + d) / 4;
1118
424fd7c3
TS
1119 qdepth = zfs_refcount_count(
1120 &mg->mg_alloc_queue_depth[allocator]);
3dfb57a3
DB
1121
1122 /*
1123 * If this metaslab group is below its qmax or it's
1124 * the only allocatable metasable group, then attempt
1125 * to allocate from it.
1126 */
1127 if (qdepth < qmax || mc->mc_alloc_groups == 1)
1128 return (B_TRUE);
1129 ASSERT3U(mc->mc_alloc_groups, >, 1);
1130
1131 /*
1132 * Since this metaslab group is at or over its qmax, we
1133 * need to determine if there are metaslab groups after this
1134 * one that might be able to handle this allocation. This is
1135 * racy since we can't hold the locks for all metaslab
1136 * groups at the same time when we make this check.
1137 */
1138 for (mgp = mg->mg_next; mgp != rotor; mgp = mgp->mg_next) {
492f64e9 1139 qmax = mgp->mg_cur_max_alloc_queue_depth[allocator];
c197a77c 1140 qmax = qmax * (4 + d) / 4;
424fd7c3 1141 qdepth = zfs_refcount_count(
492f64e9 1142 &mgp->mg_alloc_queue_depth[allocator]);
3dfb57a3
DB
1143
1144 /*
1145 * If there is another metaslab group that
1146 * might be able to handle the allocation, then
1147 * we return false so that we skip this group.
1148 */
1149 if (qdepth < qmax && !mgp->mg_no_free_space)
1150 return (B_FALSE);
1151 }
1152
1153 /*
1154 * We didn't find another group to handle the allocation
1155 * so we can't skip this metaslab group even though
1156 * we are at or over our qmax.
1157 */
1158 return (B_TRUE);
1159
1160 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1161 return (B_TRUE);
1162 }
1163 return (B_FALSE);
ac72fac3
GW
1164}
1165
428870ff
BB
1166/*
1167 * ==========================================================================
93cf2076 1168 * Range tree callbacks
428870ff
BB
1169 * ==========================================================================
1170 */
93cf2076
GW
1171
1172/*
1173 * Comparison function for the private size-ordered tree. Tree is sorted
1174 * by size, larger sizes at the end of the tree.
1175 */
428870ff 1176static int
93cf2076 1177metaslab_rangesize_compare(const void *x1, const void *x2)
428870ff 1178{
93cf2076
GW
1179 const range_seg_t *r1 = x1;
1180 const range_seg_t *r2 = x2;
1181 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1182 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
428870ff 1183
ee36c709
GN
1184 int cmp = AVL_CMP(rs_size1, rs_size2);
1185 if (likely(cmp))
1186 return (cmp);
428870ff 1187
ee36c709 1188 return (AVL_CMP(r1->rs_start, r2->rs_start));
428870ff
BB
1189}
1190
93cf2076
GW
1191/*
1192 * ==========================================================================
4e21fd06 1193 * Common allocator routines
93cf2076
GW
1194 * ==========================================================================
1195 */
1196
9babb374 1197/*
428870ff 1198 * Return the maximum contiguous segment within the metaslab.
9babb374 1199 */
9babb374 1200uint64_t
93cf2076 1201metaslab_block_maxsize(metaslab_t *msp)
9babb374 1202{
d2734cce 1203 avl_tree_t *t = &msp->ms_allocatable_by_size;
93cf2076 1204 range_seg_t *rs;
9babb374 1205
93cf2076 1206 if (t == NULL || (rs = avl_last(t)) == NULL)
9babb374
BB
1207 return (0ULL);
1208
93cf2076
GW
1209 return (rs->rs_end - rs->rs_start);
1210}
1211
4e21fd06
DB
1212static range_seg_t *
1213metaslab_block_find(avl_tree_t *t, uint64_t start, uint64_t size)
93cf2076 1214{
4e21fd06
DB
1215 range_seg_t *rs, rsearch;
1216 avl_index_t where;
93cf2076 1217
4e21fd06
DB
1218 rsearch.rs_start = start;
1219 rsearch.rs_end = start + size;
93cf2076 1220
4e21fd06
DB
1221 rs = avl_find(t, &rsearch, &where);
1222 if (rs == NULL) {
1223 rs = avl_nearest(t, where, AVL_AFTER);
93cf2076 1224 }
93cf2076 1225
4e21fd06
DB
1226 return (rs);
1227}
93cf2076 1228
d3230d76 1229#if defined(WITH_DF_BLOCK_ALLOCATOR) || \
93cf2076
GW
1230 defined(WITH_CF_BLOCK_ALLOCATOR)
1231/*
1232 * This is a helper function that can be used by the allocator to find
1233 * a suitable block to allocate. This will search the specified AVL
1234 * tree looking for a block that matches the specified criteria.
1235 */
1236static uint64_t
1237metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
d3230d76 1238 uint64_t max_search)
93cf2076 1239{
4e21fd06 1240 range_seg_t *rs = metaslab_block_find(t, *cursor, size);
d3230d76 1241 uint64_t first_found;
93cf2076 1242
d3230d76
MA
1243 if (rs != NULL)
1244 first_found = rs->rs_start;
93cf2076 1245
d3230d76
MA
1246 while (rs != NULL && rs->rs_start - first_found <= max_search) {
1247 uint64_t offset = rs->rs_start;
93cf2076
GW
1248 if (offset + size <= rs->rs_end) {
1249 *cursor = offset + size;
1250 return (offset);
1251 }
1252 rs = AVL_NEXT(t, rs);
1253 }
1254
93cf2076 1255 *cursor = 0;
d3230d76 1256 return (-1ULL);
9babb374 1257}
d3230d76 1258#endif /* WITH_DF/CF_BLOCK_ALLOCATOR */
22c81dd8
BB
1259
1260#if defined(WITH_DF_BLOCK_ALLOCATOR)
428870ff
BB
1261/*
1262 * ==========================================================================
d3230d76
MA
1263 * Dynamic Fit (df) block allocator
1264 *
1265 * Search for a free chunk of at least this size, starting from the last
1266 * offset (for this alignment of block) looking for up to
1267 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not
1268 * found within 16MB, then return a free chunk of exactly the requested size (or
1269 * larger).
1270 *
1271 * If it seems like searching from the last offset will be unproductive, skip
1272 * that and just return a free chunk of exactly the requested size (or larger).
1273 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This
1274 * mechanism is probably not very useful and may be removed in the future.
1275 *
1276 * The behavior when not searching can be changed to return the largest free
1277 * chunk, instead of a free chunk of exactly the requested size, by setting
1278 * metaslab_df_use_largest_segment.
428870ff
BB
1279 * ==========================================================================
1280 */
9babb374 1281static uint64_t
93cf2076 1282metaslab_df_alloc(metaslab_t *msp, uint64_t size)
9babb374 1283{
93cf2076
GW
1284 /*
1285 * Find the largest power of 2 block size that evenly divides the
1286 * requested size. This is used to try to allocate blocks with similar
1287 * alignment from the same area of the metaslab (i.e. same cursor
1288 * bucket) but it does not guarantee that other allocations sizes
1289 * may exist in the same region.
1290 */
9babb374 1291 uint64_t align = size & -size;
9bd274dd 1292 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
d2734cce 1293 range_tree_t *rt = msp->ms_allocatable;
93cf2076 1294 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
d3230d76 1295 uint64_t offset;
9babb374 1296
93cf2076 1297 ASSERT(MUTEX_HELD(&msp->ms_lock));
d3230d76 1298 ASSERT3U(avl_numnodes(&rt->rt_root), ==,
d2734cce 1299 avl_numnodes(&msp->ms_allocatable_by_size));
9babb374 1300
9babb374 1301 /*
d3230d76
MA
1302 * If we're running low on space, find a segment based on size,
1303 * rather than iterating based on offset.
9babb374 1304 */
d3230d76 1305 if (metaslab_block_maxsize(msp) < metaslab_df_alloc_threshold ||
9babb374 1306 free_pct < metaslab_df_free_pct) {
d3230d76
MA
1307 offset = -1;
1308 } else {
1309 offset = metaslab_block_picker(&rt->rt_root,
1310 cursor, size, metaslab_df_max_search);
9babb374
BB
1311 }
1312
d3230d76
MA
1313 if (offset == -1) {
1314 range_seg_t *rs;
1315 if (metaslab_df_use_largest_segment) {
1316 /* use largest free segment */
1317 rs = avl_last(&msp->ms_allocatable_by_size);
1318 } else {
1319 /* use segment of this size, or next largest */
1320 rs = metaslab_block_find(&msp->ms_allocatable_by_size,
1321 0, size);
1322 }
1323 if (rs != NULL && rs->rs_start + size <= rs->rs_end) {
1324 offset = rs->rs_start;
1325 *cursor = offset + size;
1326 }
1327 }
1328
1329 return (offset);
9babb374
BB
1330}
1331
93cf2076 1332static metaslab_ops_t metaslab_df_ops = {
f3a7f661 1333 metaslab_df_alloc
34dc7c2f
BB
1334};
1335
93cf2076 1336metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
22c81dd8
BB
1337#endif /* WITH_DF_BLOCK_ALLOCATOR */
1338
93cf2076 1339#if defined(WITH_CF_BLOCK_ALLOCATOR)
428870ff
BB
1340/*
1341 * ==========================================================================
93cf2076
GW
1342 * Cursor fit block allocator -
1343 * Select the largest region in the metaslab, set the cursor to the beginning
1344 * of the range and the cursor_end to the end of the range. As allocations
1345 * are made advance the cursor. Continue allocating from the cursor until
1346 * the range is exhausted and then find a new range.
428870ff
BB
1347 * ==========================================================================
1348 */
1349static uint64_t
93cf2076 1350metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
428870ff 1351{
d2734cce
SD
1352 range_tree_t *rt = msp->ms_allocatable;
1353 avl_tree_t *t = &msp->ms_allocatable_by_size;
93cf2076
GW
1354 uint64_t *cursor = &msp->ms_lbas[0];
1355 uint64_t *cursor_end = &msp->ms_lbas[1];
428870ff
BB
1356 uint64_t offset = 0;
1357
93cf2076
GW
1358 ASSERT(MUTEX_HELD(&msp->ms_lock));
1359 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
428870ff 1360
93cf2076 1361 ASSERT3U(*cursor_end, >=, *cursor);
428870ff 1362
93cf2076
GW
1363 if ((*cursor + size) > *cursor_end) {
1364 range_seg_t *rs;
428870ff 1365
d2734cce 1366 rs = avl_last(&msp->ms_allocatable_by_size);
93cf2076
GW
1367 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1368 return (-1ULL);
428870ff 1369
93cf2076
GW
1370 *cursor = rs->rs_start;
1371 *cursor_end = rs->rs_end;
428870ff 1372 }
93cf2076
GW
1373
1374 offset = *cursor;
1375 *cursor += size;
1376
428870ff
BB
1377 return (offset);
1378}
1379
93cf2076 1380static metaslab_ops_t metaslab_cf_ops = {
f3a7f661 1381 metaslab_cf_alloc
428870ff
BB
1382};
1383
93cf2076
GW
1384metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
1385#endif /* WITH_CF_BLOCK_ALLOCATOR */
22c81dd8
BB
1386
1387#if defined(WITH_NDF_BLOCK_ALLOCATOR)
93cf2076
GW
1388/*
1389 * ==========================================================================
1390 * New dynamic fit allocator -
1391 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1392 * contiguous blocks. If no region is found then just use the largest segment
1393 * that remains.
1394 * ==========================================================================
1395 */
1396
1397/*
1398 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1399 * to request from the allocator.
1400 */
428870ff
BB
1401uint64_t metaslab_ndf_clump_shift = 4;
1402
1403static uint64_t
93cf2076 1404metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
428870ff 1405{
d2734cce 1406 avl_tree_t *t = &msp->ms_allocatable->rt_root;
428870ff 1407 avl_index_t where;
93cf2076 1408 range_seg_t *rs, rsearch;
9bd274dd 1409 uint64_t hbit = highbit64(size);
93cf2076
GW
1410 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1411 uint64_t max_size = metaslab_block_maxsize(msp);
428870ff 1412
93cf2076 1413 ASSERT(MUTEX_HELD(&msp->ms_lock));
d2734cce
SD
1414 ASSERT3U(avl_numnodes(t), ==,
1415 avl_numnodes(&msp->ms_allocatable_by_size));
428870ff
BB
1416
1417 if (max_size < size)
1418 return (-1ULL);
1419
93cf2076
GW
1420 rsearch.rs_start = *cursor;
1421 rsearch.rs_end = *cursor + size;
428870ff 1422
93cf2076
GW
1423 rs = avl_find(t, &rsearch, &where);
1424 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
d2734cce 1425 t = &msp->ms_allocatable_by_size;
428870ff 1426
93cf2076
GW
1427 rsearch.rs_start = 0;
1428 rsearch.rs_end = MIN(max_size,
428870ff 1429 1ULL << (hbit + metaslab_ndf_clump_shift));
93cf2076
GW
1430 rs = avl_find(t, &rsearch, &where);
1431 if (rs == NULL)
1432 rs = avl_nearest(t, where, AVL_AFTER);
1433 ASSERT(rs != NULL);
428870ff
BB
1434 }
1435
93cf2076
GW
1436 if ((rs->rs_end - rs->rs_start) >= size) {
1437 *cursor = rs->rs_start + size;
1438 return (rs->rs_start);
428870ff
BB
1439 }
1440 return (-1ULL);
1441}
1442
93cf2076 1443static metaslab_ops_t metaslab_ndf_ops = {
f3a7f661 1444 metaslab_ndf_alloc
428870ff
BB
1445};
1446
93cf2076 1447metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
22c81dd8 1448#endif /* WITH_NDF_BLOCK_ALLOCATOR */
9babb374 1449
93cf2076 1450
34dc7c2f
BB
1451/*
1452 * ==========================================================================
1453 * Metaslabs
1454 * ==========================================================================
1455 */
93cf2076 1456
928e8ad4
SD
1457static void
1458metaslab_aux_histograms_clear(metaslab_t *msp)
1459{
1460 /*
1461 * Auxiliary histograms are only cleared when resetting them,
1462 * which can only happen while the metaslab is loaded.
1463 */
1464 ASSERT(msp->ms_loaded);
1465
1466 bzero(msp->ms_synchist, sizeof (msp->ms_synchist));
1467 for (int t = 0; t < TXG_DEFER_SIZE; t++)
1468 bzero(msp->ms_deferhist[t], sizeof (msp->ms_deferhist[t]));
1469}
1470
1471static void
1472metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
1473 range_tree_t *rt)
1474{
1475 /*
1476 * This is modeled after space_map_histogram_add(), so refer to that
1477 * function for implementation details. We want this to work like
1478 * the space map histogram, and not the range tree histogram, as we
1479 * are essentially constructing a delta that will be later subtracted
1480 * from the space map histogram.
1481 */
1482 int idx = 0;
1483 for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1484 ASSERT3U(i, >=, idx + shift);
1485 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
1486
1487 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
1488 ASSERT3U(idx + shift, ==, i);
1489 idx++;
1490 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
1491 }
1492 }
1493}
1494
1495/*
1496 * Called at every sync pass that the metaslab gets synced.
1497 *
1498 * The reason is that we want our auxiliary histograms to be updated
1499 * wherever the metaslab's space map histogram is updated. This way
1500 * we stay consistent on which parts of the metaslab space map's
1501 * histogram are currently not available for allocations (e.g because
1502 * they are in the defer, freed, and freeing trees).
1503 */
1504static void
1505metaslab_aux_histograms_update(metaslab_t *msp)
1506{
1507 space_map_t *sm = msp->ms_sm;
1508 ASSERT(sm != NULL);
1509
1510 /*
1511 * This is similar to the metaslab's space map histogram updates
1512 * that take place in metaslab_sync(). The only difference is that
1513 * we only care about segments that haven't made it into the
1514 * ms_allocatable tree yet.
1515 */
1516 if (msp->ms_loaded) {
1517 metaslab_aux_histograms_clear(msp);
1518
1519 metaslab_aux_histogram_add(msp->ms_synchist,
1520 sm->sm_shift, msp->ms_freed);
1521
1522 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1523 metaslab_aux_histogram_add(msp->ms_deferhist[t],
1524 sm->sm_shift, msp->ms_defer[t]);
1525 }
1526 }
1527
1528 metaslab_aux_histogram_add(msp->ms_synchist,
1529 sm->sm_shift, msp->ms_freeing);
1530}
1531
1532/*
1533 * Called every time we are done syncing (writing to) the metaslab,
1534 * i.e. at the end of each sync pass.
1535 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
1536 */
1537static void
1538metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
1539{
1540 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1541 space_map_t *sm = msp->ms_sm;
1542
1543 if (sm == NULL) {
1544 /*
1545 * We came here from metaslab_init() when creating/opening a
1546 * pool, looking at a metaslab that hasn't had any allocations
1547 * yet.
1548 */
1549 return;
1550 }
1551
1552 /*
1553 * This is similar to the actions that we take for the ms_freed
1554 * and ms_defer trees in metaslab_sync_done().
1555 */
1556 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
1557 if (defer_allowed) {
1558 bcopy(msp->ms_synchist, msp->ms_deferhist[hist_index],
1559 sizeof (msp->ms_synchist));
1560 } else {
1561 bzero(msp->ms_deferhist[hist_index],
1562 sizeof (msp->ms_deferhist[hist_index]));
1563 }
1564 bzero(msp->ms_synchist, sizeof (msp->ms_synchist));
1565}
1566
1567/*
1568 * Ensure that the metaslab's weight and fragmentation are consistent
1569 * with the contents of the histogram (either the range tree's histogram
1570 * or the space map's depending whether the metaslab is loaded).
1571 */
1572static void
1573metaslab_verify_weight_and_frag(metaslab_t *msp)
1574{
1575 ASSERT(MUTEX_HELD(&msp->ms_lock));
1576
1577 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1578 return;
1579
1580 /* see comment in metaslab_verify_unflushed_changes() */
1581 if (msp->ms_group == NULL)
1582 return;
1583
1584 /*
1585 * Devices being removed always return a weight of 0 and leave
1586 * fragmentation and ms_max_size as is - there is nothing for
1587 * us to verify here.
1588 */
1589 vdev_t *vd = msp->ms_group->mg_vd;
1590 if (vd->vdev_removing)
1591 return;
1592
1593 /*
1594 * If the metaslab is dirty it probably means that we've done
1595 * some allocations or frees that have changed our histograms
1596 * and thus the weight.
1597 */
1598 for (int t = 0; t < TXG_SIZE; t++) {
1599 if (txg_list_member(&vd->vdev_ms_list, msp, t))
1600 return;
1601 }
1602
1603 /*
1604 * This verification checks that our in-memory state is consistent
1605 * with what's on disk. If the pool is read-only then there aren't
1606 * any changes and we just have the initially-loaded state.
1607 */
1608 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
1609 return;
1610
1611 /* some extra verification for in-core tree if you can */
1612 if (msp->ms_loaded) {
1613 range_tree_stat_verify(msp->ms_allocatable);
1614 VERIFY(space_map_histogram_verify(msp->ms_sm,
1615 msp->ms_allocatable));
1616 }
1617
1618 uint64_t weight = msp->ms_weight;
1619 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
1620 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
1621 uint64_t frag = msp->ms_fragmentation;
1622 uint64_t max_segsize = msp->ms_max_size;
1623
1624 msp->ms_weight = 0;
1625 msp->ms_fragmentation = 0;
1626 msp->ms_max_size = 0;
1627
1628 /*
1629 * This function is used for verification purposes. Regardless of
1630 * whether metaslab_weight() thinks this metaslab should be active or
1631 * not, we want to ensure that the actual weight (and therefore the
1632 * value of ms_weight) would be the same if it was to be recalculated
1633 * at this point.
1634 */
1635 msp->ms_weight = metaslab_weight(msp) | was_active;
1636
1637 VERIFY3U(max_segsize, ==, msp->ms_max_size);
1638
1639 /*
1640 * If the weight type changed then there is no point in doing
1641 * verification. Revert fields to their original values.
1642 */
1643 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
1644 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
1645 msp->ms_fragmentation = frag;
1646 msp->ms_weight = weight;
1647 return;
1648 }
1649
1650 VERIFY3U(msp->ms_fragmentation, ==, frag);
1651 VERIFY3U(msp->ms_weight, ==, weight);
1652}
1653
93cf2076
GW
1654/*
1655 * Wait for any in-progress metaslab loads to complete.
1656 */
b194fab0 1657static void
93cf2076
GW
1658metaslab_load_wait(metaslab_t *msp)
1659{
1660 ASSERT(MUTEX_HELD(&msp->ms_lock));
1661
1662 while (msp->ms_loading) {
1663 ASSERT(!msp->ms_loaded);
1664 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1665 }
1666}
1667
b194fab0
SD
1668static int
1669metaslab_load_impl(metaslab_t *msp)
93cf2076
GW
1670{
1671 int error = 0;
93cf2076
GW
1672
1673 ASSERT(MUTEX_HELD(&msp->ms_lock));
b194fab0 1674 ASSERT(msp->ms_loading);
425d3237 1675 ASSERT(!msp->ms_condensing);
93cf2076 1676
a1d477c2 1677 /*
425d3237
SD
1678 * We temporarily drop the lock to unblock other operations while we
1679 * are reading the space map. Therefore, metaslab_sync() and
1680 * metaslab_sync_done() can run at the same time as we do.
1681 *
1682 * metaslab_sync() can append to the space map while we are loading.
1683 * Therefore we load only entries that existed when we started the
1684 * load. Additionally, metaslab_sync_done() has to wait for the load
1685 * to complete because there are potential races like metaslab_load()
1686 * loading parts of the space map that are currently being appended
1687 * by metaslab_sync(). If we didn't, the ms_allocatable would have
1688 * entries that metaslab_sync_done() would try to re-add later.
1689 *
1690 * That's why before dropping the lock we remember the synced length
1691 * of the metaslab and read up to that point of the space map,
1692 * ignoring entries appended by metaslab_sync() that happen after we
1693 * drop the lock.
a1d477c2 1694 */
425d3237 1695 uint64_t length = msp->ms_synced_length;
a1d477c2 1696 mutex_exit(&msp->ms_lock);
93cf2076 1697
d2734cce 1698 if (msp->ms_sm != NULL) {
425d3237
SD
1699 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
1700 SM_FREE, length);
d2734cce 1701 } else {
425d3237
SD
1702 /*
1703 * The space map has not been allocated yet, so treat
1704 * all the space in the metaslab as free and add it to the
1705 * ms_allocatable tree.
1706 */
d2734cce
SD
1707 range_tree_add(msp->ms_allocatable,
1708 msp->ms_start, msp->ms_size);
1709 }
93cf2076 1710
425d3237
SD
1711 /*
1712 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
1713 * changing the ms_sm and the metaslab's range trees while we are
1714 * about to use them and populate the ms_allocatable. The ms_lock
1715 * is insufficient for this because metaslab_sync() doesn't hold
1716 * the ms_lock while writing the ms_checkpointing tree to disk.
1717 */
1718 mutex_enter(&msp->ms_sync_lock);
a1d477c2 1719 mutex_enter(&msp->ms_lock);
425d3237 1720 ASSERT(!msp->ms_condensing);
93cf2076 1721
8eef9976
SD
1722 if (error != 0) {
1723 mutex_exit(&msp->ms_sync_lock);
b194fab0 1724 return (error);
8eef9976 1725 }
4e21fd06 1726
b194fab0
SD
1727 ASSERT3P(msp->ms_group, !=, NULL);
1728 msp->ms_loaded = B_TRUE;
1729
1730 /*
425d3237
SD
1731 * The ms_allocatable contains the segments that exist in the
1732 * ms_defer trees [see ms_synced_length]. Thus we need to remove
1733 * them from ms_allocatable as they will be added again in
1734 * metaslab_sync_done().
b194fab0 1735 */
425d3237
SD
1736 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1737 range_tree_walk(msp->ms_defer[t],
1738 range_tree_remove, msp->ms_allocatable);
93cf2076 1739 }
425d3237 1740
928e8ad4
SD
1741 /*
1742 * Call metaslab_recalculate_weight_and_sort() now that the
1743 * metaslab is loaded so we get the metaslab's real weight.
1744 *
1745 * Unless this metaslab was created with older software and
1746 * has not yet been converted to use segment-based weight, we
1747 * expect the new weight to be better or equal to the weight
1748 * that the metaslab had while it was not loaded. This is
1749 * because the old weight does not take into account the
1750 * consolidation of adjacent segments between TXGs. [see
1751 * comment for ms_synchist and ms_deferhist[] for more info]
1752 */
1753 uint64_t weight = msp->ms_weight;
1754 metaslab_recalculate_weight_and_sort(msp);
1755 if (!WEIGHT_IS_SPACEBASED(weight))
1756 ASSERT3U(weight, <=, msp->ms_weight);
b194fab0
SD
1757 msp->ms_max_size = metaslab_block_maxsize(msp);
1758
425d3237
SD
1759 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1760 metaslab_verify_space(msp, spa_syncing_txg(spa));
1761 mutex_exit(&msp->ms_sync_lock);
1762
b194fab0
SD
1763 return (0);
1764}
1765
1766int
1767metaslab_load(metaslab_t *msp)
1768{
1769 ASSERT(MUTEX_HELD(&msp->ms_lock));
1770
1771 /*
1772 * There may be another thread loading the same metaslab, if that's
1773 * the case just wait until the other thread is done and return.
1774 */
1775 metaslab_load_wait(msp);
1776 if (msp->ms_loaded)
1777 return (0);
1778 VERIFY(!msp->ms_loading);
425d3237 1779 ASSERT(!msp->ms_condensing);
b194fab0
SD
1780
1781 msp->ms_loading = B_TRUE;
1782 int error = metaslab_load_impl(msp);
1783 msp->ms_loading = B_FALSE;
93cf2076 1784 cv_broadcast(&msp->ms_load_cv);
b194fab0 1785
93cf2076
GW
1786 return (error);
1787}
1788
1789void
1790metaslab_unload(metaslab_t *msp)
1791{
1792 ASSERT(MUTEX_HELD(&msp->ms_lock));
928e8ad4
SD
1793
1794 metaslab_verify_weight_and_frag(msp);
1795
d2734cce 1796 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
93cf2076 1797 msp->ms_loaded = B_FALSE;
928e8ad4 1798
679b0f2a 1799 msp->ms_activation_weight = 0;
93cf2076 1800 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
4e21fd06 1801 msp->ms_max_size = 0;
928e8ad4
SD
1802
1803 /*
1804 * We explicitly recalculate the metaslab's weight based on its space
1805 * map (as it is now not loaded). We want unload metaslabs to always
1806 * have their weights calculated from the space map histograms, while
1807 * loaded ones have it calculated from their in-core range tree
1808 * [see metaslab_load()]. This way, the weight reflects the information
1809 * available in-core, whether it is loaded or not
1810 *
1811 * If ms_group == NULL means that we came here from metaslab_fini(),
1812 * at which point it doesn't make sense for us to do the recalculation
1813 * and the sorting.
1814 */
1815 if (msp->ms_group != NULL)
1816 metaslab_recalculate_weight_and_sort(msp);
93cf2076
GW
1817}
1818
cc99f275
DB
1819static void
1820metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
1821 int64_t defer_delta, int64_t space_delta)
1822{
1823 vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
1824
1825 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
1826 ASSERT(vd->vdev_ms_count != 0);
1827
1828 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
1829 vdev_deflated_space(vd, space_delta));
1830}
1831
fb42a493
PS
1832int
1833metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
1834 metaslab_t **msp)
34dc7c2f
BB
1835{
1836 vdev_t *vd = mg->mg_vd;
cc99f275
DB
1837 spa_t *spa = vd->vdev_spa;
1838 objset_t *mos = spa->spa_meta_objset;
fb42a493
PS
1839 metaslab_t *ms;
1840 int error;
34dc7c2f 1841
79c76d5b 1842 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
fb42a493 1843 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
a1d477c2 1844 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
fb42a493 1845 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
619f0976 1846
fb42a493
PS
1847 ms->ms_id = id;
1848 ms->ms_start = id << vd->vdev_ms_shift;
1849 ms->ms_size = 1ULL << vd->vdev_ms_shift;
492f64e9
PD
1850 ms->ms_allocator = -1;
1851 ms->ms_new = B_TRUE;
34dc7c2f 1852
93cf2076
GW
1853 /*
1854 * We only open space map objects that already exist. All others
afe37326 1855 * will be opened when we finally allocate an object for it.
425d3237
SD
1856 *
1857 * Note:
1858 * When called from vdev_expand(), we can't call into the DMU as
1859 * we are holding the spa_config_lock as a writer and we would
1860 * deadlock [see relevant comment in vdev_metaslab_init()]. in
1861 * that case, the object parameter is zero though, so we won't
1862 * call into the DMU.
93cf2076 1863 */
afe37326 1864 if (object != 0) {
fb42a493 1865 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
a1d477c2 1866 ms->ms_size, vd->vdev_ashift);
fb42a493
PS
1867
1868 if (error != 0) {
1869 kmem_free(ms, sizeof (metaslab_t));
1870 return (error);
1871 }
1872
1873 ASSERT(ms->ms_sm != NULL);
425d3237 1874 ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
93cf2076 1875 }
34dc7c2f
BB
1876
1877 /*
425d3237 1878 * We create the ms_allocatable here, but we don't create the
258553d3 1879 * other range trees until metaslab_sync_done(). This serves
34dc7c2f 1880 * two purposes: it allows metaslab_sync_done() to detect the
425d3237
SD
1881 * addition of new space; and for debugging, it ensures that
1882 * we'd data fault on any attempt to use this metaslab before
1883 * it's ready.
34dc7c2f 1884 */
d2734cce
SD
1885 ms->ms_allocatable = range_tree_create_impl(&rt_avl_ops,
1886 &ms->ms_allocatable_by_size, metaslab_rangesize_compare, 0);
34dc7c2f 1887
1b939560
BB
1888 ms->ms_trim = range_tree_create(NULL, NULL);
1889
1890 metaslab_group_add(mg, ms);
4e21fd06 1891 metaslab_set_fragmentation(ms);
428870ff 1892
34dc7c2f
BB
1893 /*
1894 * If we're opening an existing pool (txg == 0) or creating
1895 * a new one (txg == TXG_INITIAL), all space is available now.
1896 * If we're adding space to an existing pool, the new space
1897 * does not become available until after this txg has synced.
4e21fd06
DB
1898 * The metaslab's weight will also be initialized when we sync
1899 * out this txg. This ensures that we don't attempt to allocate
1900 * from it before we have initialized it completely.
34dc7c2f 1901 */
425d3237 1902 if (txg <= TXG_INITIAL) {
fb42a493 1903 metaslab_sync_done(ms, 0);
425d3237
SD
1904 metaslab_space_update(vd, mg->mg_class,
1905 metaslab_allocated_space(ms), 0, 0);
1906 }
34dc7c2f 1907
93cf2076
GW
1908 /*
1909 * If metaslab_debug_load is set and we're initializing a metaslab
cc99f275
DB
1910 * that has an allocated space map object then load the space map
1911 * so that we can verify frees.
93cf2076 1912 */
fb42a493
PS
1913 if (metaslab_debug_load && ms->ms_sm != NULL) {
1914 mutex_enter(&ms->ms_lock);
1915 VERIFY0(metaslab_load(ms));
1916 mutex_exit(&ms->ms_lock);
93cf2076
GW
1917 }
1918
34dc7c2f 1919 if (txg != 0) {
34dc7c2f 1920 vdev_dirty(vd, 0, NULL, txg);
fb42a493 1921 vdev_dirty(vd, VDD_METASLAB, ms, txg);
34dc7c2f
BB
1922 }
1923
fb42a493
PS
1924 *msp = ms;
1925
1926 return (0);
34dc7c2f
BB
1927}
1928
1929void
1930metaslab_fini(metaslab_t *msp)
1931{
93cf2076 1932 metaslab_group_t *mg = msp->ms_group;
cc99f275 1933 vdev_t *vd = mg->mg_vd;
34dc7c2f
BB
1934
1935 metaslab_group_remove(mg, msp);
1936
1937 mutex_enter(&msp->ms_lock);
93cf2076 1938 VERIFY(msp->ms_group == NULL);
cc99f275 1939 metaslab_space_update(vd, mg->mg_class,
425d3237 1940 -metaslab_allocated_space(msp), 0, -msp->ms_size);
cc99f275 1941
93cf2076
GW
1942 space_map_close(msp->ms_sm);
1943
1944 metaslab_unload(msp);
cc99f275 1945
d2734cce
SD
1946 range_tree_destroy(msp->ms_allocatable);
1947 range_tree_destroy(msp->ms_freeing);
1948 range_tree_destroy(msp->ms_freed);
34dc7c2f 1949
1c27024e 1950 for (int t = 0; t < TXG_SIZE; t++) {
d2734cce 1951 range_tree_destroy(msp->ms_allocating[t]);
34dc7c2f
BB
1952 }
1953
1c27024e 1954 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
d2734cce 1955 range_tree_destroy(msp->ms_defer[t]);
e51be066 1956 }
c99c9001 1957 ASSERT0(msp->ms_deferspace);
428870ff 1958
d2734cce
SD
1959 range_tree_destroy(msp->ms_checkpointing);
1960
928e8ad4
SD
1961 for (int t = 0; t < TXG_SIZE; t++)
1962 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
1963
1b939560
BB
1964 range_tree_vacate(msp->ms_trim, NULL, NULL);
1965 range_tree_destroy(msp->ms_trim);
1966
34dc7c2f 1967 mutex_exit(&msp->ms_lock);
93cf2076 1968 cv_destroy(&msp->ms_load_cv);
34dc7c2f 1969 mutex_destroy(&msp->ms_lock);
a1d477c2 1970 mutex_destroy(&msp->ms_sync_lock);
492f64e9 1971 ASSERT3U(msp->ms_allocator, ==, -1);
34dc7c2f
BB
1972
1973 kmem_free(msp, sizeof (metaslab_t));
1974}
1975
f3a7f661
GW
1976#define FRAGMENTATION_TABLE_SIZE 17
1977
93cf2076 1978/*
f3a7f661
GW
1979 * This table defines a segment size based fragmentation metric that will
1980 * allow each metaslab to derive its own fragmentation value. This is done
1981 * by calculating the space in each bucket of the spacemap histogram and
928e8ad4 1982 * multiplying that by the fragmentation metric in this table. Doing
f3a7f661
GW
1983 * this for all buckets and dividing it by the total amount of free
1984 * space in this metaslab (i.e. the total free space in all buckets) gives
1985 * us the fragmentation metric. This means that a high fragmentation metric
1986 * equates to most of the free space being comprised of small segments.
1987 * Conversely, if the metric is low, then most of the free space is in
1988 * large segments. A 10% change in fragmentation equates to approximately
1989 * double the number of segments.
93cf2076 1990 *
f3a7f661
GW
1991 * This table defines 0% fragmented space using 16MB segments. Testing has
1992 * shown that segments that are greater than or equal to 16MB do not suffer
1993 * from drastic performance problems. Using this value, we derive the rest
1994 * of the table. Since the fragmentation value is never stored on disk, it
1995 * is possible to change these calculations in the future.
1996 */
1997int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1998 100, /* 512B */
1999 100, /* 1K */
2000 98, /* 2K */
2001 95, /* 4K */
2002 90, /* 8K */
2003 80, /* 16K */
2004 70, /* 32K */
2005 60, /* 64K */
2006 50, /* 128K */
2007 40, /* 256K */
2008 30, /* 512K */
2009 20, /* 1M */
2010 15, /* 2M */
2011 10, /* 4M */
2012 5, /* 8M */
2013 0 /* 16M */
2014};
2015
2016/*
425d3237
SD
2017 * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
2018 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
2019 * been upgraded and does not support this metric. Otherwise, the return
2020 * value should be in the range [0, 100].
93cf2076 2021 */
4e21fd06
DB
2022static void
2023metaslab_set_fragmentation(metaslab_t *msp)
93cf2076 2024{
f3a7f661
GW
2025 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2026 uint64_t fragmentation = 0;
2027 uint64_t total = 0;
2028 boolean_t feature_enabled = spa_feature_is_enabled(spa,
2029 SPA_FEATURE_SPACEMAP_HISTOGRAM);
93cf2076 2030
4e21fd06
DB
2031 if (!feature_enabled) {
2032 msp->ms_fragmentation = ZFS_FRAG_INVALID;
2033 return;
2034 }
f3a7f661 2035
93cf2076 2036 /*
f3a7f661
GW
2037 * A null space map means that the entire metaslab is free
2038 * and thus is not fragmented.
93cf2076 2039 */
4e21fd06
DB
2040 if (msp->ms_sm == NULL) {
2041 msp->ms_fragmentation = 0;
2042 return;
2043 }
f3a7f661
GW
2044
2045 /*
4e21fd06 2046 * If this metaslab's space map has not been upgraded, flag it
f3a7f661
GW
2047 * so that we upgrade next time we encounter it.
2048 */
2049 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
3b7f360c 2050 uint64_t txg = spa_syncing_txg(spa);
93cf2076
GW
2051 vdev_t *vd = msp->ms_group->mg_vd;
2052
3b7f360c
GW
2053 /*
2054 * If we've reached the final dirty txg, then we must
2055 * be shutting down the pool. We don't want to dirty
2056 * any data past this point so skip setting the condense
2057 * flag. We can retry this action the next time the pool
2058 * is imported.
2059 */
2060 if (spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
8b0a0840
TC
2061 msp->ms_condense_wanted = B_TRUE;
2062 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
964c2d69 2063 zfs_dbgmsg("txg %llu, requesting force condense: "
3b7f360c
GW
2064 "ms_id %llu, vdev_id %llu", txg, msp->ms_id,
2065 vd->vdev_id);
8b0a0840 2066 }
4e21fd06
DB
2067 msp->ms_fragmentation = ZFS_FRAG_INVALID;
2068 return;
93cf2076
GW
2069 }
2070
1c27024e 2071 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
f3a7f661
GW
2072 uint64_t space = 0;
2073 uint8_t shift = msp->ms_sm->sm_shift;
4e21fd06 2074
f3a7f661
GW
2075 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
2076 FRAGMENTATION_TABLE_SIZE - 1);
93cf2076 2077
93cf2076
GW
2078 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
2079 continue;
2080
f3a7f661
GW
2081 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
2082 total += space;
2083
2084 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
2085 fragmentation += space * zfs_frag_table[idx];
93cf2076 2086 }
f3a7f661
GW
2087
2088 if (total > 0)
2089 fragmentation /= total;
2090 ASSERT3U(fragmentation, <=, 100);
4e21fd06
DB
2091
2092 msp->ms_fragmentation = fragmentation;
93cf2076 2093}
34dc7c2f 2094
f3a7f661
GW
2095/*
2096 * Compute a weight -- a selection preference value -- for the given metaslab.
2097 * This is based on the amount of free space, the level of fragmentation,
2098 * the LBA range, and whether the metaslab is loaded.
2099 */
34dc7c2f 2100static uint64_t
4e21fd06 2101metaslab_space_weight(metaslab_t *msp)
34dc7c2f
BB
2102{
2103 metaslab_group_t *mg = msp->ms_group;
34dc7c2f
BB
2104 vdev_t *vd = mg->mg_vd;
2105 uint64_t weight, space;
2106
2107 ASSERT(MUTEX_HELD(&msp->ms_lock));
4e21fd06 2108 ASSERT(!vd->vdev_removing);
c2e42f9d 2109
34dc7c2f
BB
2110 /*
2111 * The baseline weight is the metaslab's free space.
2112 */
425d3237 2113 space = msp->ms_size - metaslab_allocated_space(msp);
f3a7f661 2114
f3a7f661
GW
2115 if (metaslab_fragmentation_factor_enabled &&
2116 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
2117 /*
2118 * Use the fragmentation information to inversely scale
2119 * down the baseline weight. We need to ensure that we
2120 * don't exclude this metaslab completely when it's 100%
2121 * fragmented. To avoid this we reduce the fragmented value
2122 * by 1.
2123 */
2124 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
2125
2126 /*
2127 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
2128 * this metaslab again. The fragmentation metric may have
2129 * decreased the space to something smaller than
2130 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
2131 * so that we can consume any remaining space.
2132 */
2133 if (space > 0 && space < SPA_MINBLOCKSIZE)
2134 space = SPA_MINBLOCKSIZE;
2135 }
34dc7c2f
BB
2136 weight = space;
2137
2138 /*
2139 * Modern disks have uniform bit density and constant angular velocity.
2140 * Therefore, the outer recording zones are faster (higher bandwidth)
2141 * than the inner zones by the ratio of outer to inner track diameter,
2142 * which is typically around 2:1. We account for this by assigning
2143 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
2144 * In effect, this means that we'll select the metaslab with the most
2145 * free bandwidth rather than simply the one with the most free space.
2146 */
fb40095f 2147 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
f3a7f661
GW
2148 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
2149 ASSERT(weight >= space && weight <= 2 * space);
2150 }
428870ff 2151
f3a7f661
GW
2152 /*
2153 * If this metaslab is one we're actively using, adjust its
2154 * weight to make it preferable to any inactive metaslab so
2155 * we'll polish it off. If the fragmentation on this metaslab
2156 * has exceed our threshold, then don't mark it active.
2157 */
2158 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
2159 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
428870ff
BB
2160 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
2161 }
34dc7c2f 2162
4e21fd06
DB
2163 WEIGHT_SET_SPACEBASED(weight);
2164 return (weight);
2165}
2166
2167/*
2168 * Return the weight of the specified metaslab, according to the segment-based
2169 * weighting algorithm. The metaslab must be loaded. This function can
2170 * be called within a sync pass since it relies only on the metaslab's
2171 * range tree which is always accurate when the metaslab is loaded.
2172 */
2173static uint64_t
2174metaslab_weight_from_range_tree(metaslab_t *msp)
2175{
2176 uint64_t weight = 0;
2177 uint32_t segments = 0;
4e21fd06
DB
2178
2179 ASSERT(msp->ms_loaded);
2180
1c27024e
DB
2181 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
2182 i--) {
4e21fd06
DB
2183 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
2184 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
2185
2186 segments <<= 1;
d2734cce 2187 segments += msp->ms_allocatable->rt_histogram[i];
4e21fd06
DB
2188
2189 /*
2190 * The range tree provides more precision than the space map
2191 * and must be downgraded so that all values fit within the
2192 * space map's histogram. This allows us to compare loaded
2193 * vs. unloaded metaslabs to determine which metaslab is
2194 * considered "best".
2195 */
2196 if (i > max_idx)
2197 continue;
2198
2199 if (segments != 0) {
2200 WEIGHT_SET_COUNT(weight, segments);
2201 WEIGHT_SET_INDEX(weight, i);
2202 WEIGHT_SET_ACTIVE(weight, 0);
2203 break;
2204 }
2205 }
2206 return (weight);
2207}
2208
2209/*
2210 * Calculate the weight based on the on-disk histogram. This should only
2211 * be called after a sync pass has completely finished since the on-disk
2212 * information is updated in metaslab_sync().
2213 */
2214static uint64_t
2215metaslab_weight_from_spacemap(metaslab_t *msp)
2216{
928e8ad4
SD
2217 space_map_t *sm = msp->ms_sm;
2218 ASSERT(!msp->ms_loaded);
2219 ASSERT(sm != NULL);
2220 ASSERT3U(space_map_object(sm), !=, 0);
2221 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
4e21fd06 2222
928e8ad4
SD
2223 /*
2224 * Create a joint histogram from all the segments that have made
2225 * it to the metaslab's space map histogram, that are not yet
2226 * available for allocation because they are still in the freeing
2227 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
2228 * these segments from the space map's histogram to get a more
2229 * accurate weight.
2230 */
2231 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
2232 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
2233 deferspace_histogram[i] += msp->ms_synchist[i];
2234 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2235 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2236 deferspace_histogram[i] += msp->ms_deferhist[t][i];
2237 }
2238 }
2239
2240 uint64_t weight = 0;
1c27024e 2241 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
928e8ad4
SD
2242 ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
2243 deferspace_histogram[i]);
2244 uint64_t count =
2245 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
2246 if (count != 0) {
2247 WEIGHT_SET_COUNT(weight, count);
2248 WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
4e21fd06
DB
2249 WEIGHT_SET_ACTIVE(weight, 0);
2250 break;
2251 }
2252 }
2253 return (weight);
2254}
2255
2256/*
2257 * Compute a segment-based weight for the specified metaslab. The weight
2258 * is determined by highest bucket in the histogram. The information
2259 * for the highest bucket is encoded into the weight value.
2260 */
2261static uint64_t
2262metaslab_segment_weight(metaslab_t *msp)
2263{
2264 metaslab_group_t *mg = msp->ms_group;
2265 uint64_t weight = 0;
2266 uint8_t shift = mg->mg_vd->vdev_ashift;
2267
2268 ASSERT(MUTEX_HELD(&msp->ms_lock));
2269
2270 /*
2271 * The metaslab is completely free.
2272 */
425d3237 2273 if (metaslab_allocated_space(msp) == 0) {
4e21fd06
DB
2274 int idx = highbit64(msp->ms_size) - 1;
2275 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
2276
2277 if (idx < max_idx) {
2278 WEIGHT_SET_COUNT(weight, 1ULL);
2279 WEIGHT_SET_INDEX(weight, idx);
2280 } else {
2281 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
2282 WEIGHT_SET_INDEX(weight, max_idx);
2283 }
2284 WEIGHT_SET_ACTIVE(weight, 0);
2285 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
2286
2287 return (weight);
2288 }
2289
2290 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
2291
2292 /*
2293 * If the metaslab is fully allocated then just make the weight 0.
2294 */
425d3237 2295 if (metaslab_allocated_space(msp) == msp->ms_size)
4e21fd06
DB
2296 return (0);
2297 /*
2298 * If the metaslab is already loaded, then use the range tree to
2299 * determine the weight. Otherwise, we rely on the space map information
2300 * to generate the weight.
2301 */
2302 if (msp->ms_loaded) {
2303 weight = metaslab_weight_from_range_tree(msp);
2304 } else {
2305 weight = metaslab_weight_from_spacemap(msp);
2306 }
2307
2308 /*
2309 * If the metaslab was active the last time we calculated its weight
2310 * then keep it active. We want to consume the entire region that
2311 * is associated with this weight.
2312 */
2313 if (msp->ms_activation_weight != 0 && weight != 0)
2314 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
2315 return (weight);
2316}
2317
2318/*
2319 * Determine if we should attempt to allocate from this metaslab. If the
2320 * metaslab has a maximum size then we can quickly determine if the desired
2321 * allocation size can be satisfied. Otherwise, if we're using segment-based
2322 * weighting then we can determine the maximum allocation that this metaslab
2323 * can accommodate based on the index encoded in the weight. If we're using
2324 * space-based weights then rely on the entire weight (excluding the weight
2325 * type bit).
2326 */
2327boolean_t
2328metaslab_should_allocate(metaslab_t *msp, uint64_t asize)
2329{
4e21fd06
DB
2330 if (msp->ms_max_size != 0)
2331 return (msp->ms_max_size >= asize);
2332
679b0f2a 2333 boolean_t should_allocate;
4e21fd06
DB
2334 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
2335 /*
2336 * The metaslab segment weight indicates segments in the
2337 * range [2^i, 2^(i+1)), where i is the index in the weight.
2338 * Since the asize might be in the middle of the range, we
2339 * should attempt the allocation if asize < 2^(i+1).
2340 */
2341 should_allocate = (asize <
2342 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
2343 } else {
2344 should_allocate = (asize <=
2345 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
2346 }
679b0f2a 2347
4e21fd06
DB
2348 return (should_allocate);
2349}
2350static uint64_t
2351metaslab_weight(metaslab_t *msp)
2352{
2353 vdev_t *vd = msp->ms_group->mg_vd;
2354 spa_t *spa = vd->vdev_spa;
2355 uint64_t weight;
2356
2357 ASSERT(MUTEX_HELD(&msp->ms_lock));
2358
2359 /*
a1d477c2 2360 * If this vdev is in the process of being removed, there is nothing
4e21fd06
DB
2361 * for us to do here.
2362 */
a1d477c2 2363 if (vd->vdev_removing)
4e21fd06 2364 return (0);
4e21fd06
DB
2365
2366 metaslab_set_fragmentation(msp);
2367
2368 /*
2369 * Update the maximum size if the metaslab is loaded. This will
2370 * ensure that we get an accurate maximum size if newly freed space
2371 * has been added back into the free tree.
2372 */
2373 if (msp->ms_loaded)
2374 msp->ms_max_size = metaslab_block_maxsize(msp);
425d3237
SD
2375 else
2376 ASSERT0(msp->ms_max_size);
4e21fd06
DB
2377
2378 /*
2379 * Segment-based weighting requires space map histogram support.
2380 */
2381 if (zfs_metaslab_segment_weight_enabled &&
2382 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
2383 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
2384 sizeof (space_map_phys_t))) {
2385 weight = metaslab_segment_weight(msp);
2386 } else {
2387 weight = metaslab_space_weight(msp);
2388 }
93cf2076 2389 return (weight);
34dc7c2f
BB
2390}
2391
928e8ad4
SD
2392void
2393metaslab_recalculate_weight_and_sort(metaslab_t *msp)
2394{
679b0f2a
PD
2395 ASSERT(MUTEX_HELD(&msp->ms_lock));
2396
928e8ad4
SD
2397 /* note: we preserve the mask (e.g. indication of primary, etc..) */
2398 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2399 metaslab_group_sort(msp->ms_group, msp,
2400 metaslab_weight(msp) | was_active);
2401}
2402
34dc7c2f 2403static int
492f64e9
PD
2404metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
2405 int allocator, uint64_t activation_weight)
2406{
679b0f2a
PD
2407 ASSERT(MUTEX_HELD(&msp->ms_lock));
2408
492f64e9
PD
2409 /*
2410 * If we're activating for the claim code, we don't want to actually
2411 * set the metaslab up for a specific allocator.
2412 */
2413 if (activation_weight == METASLAB_WEIGHT_CLAIM)
2414 return (0);
679b0f2a 2415
492f64e9
PD
2416 metaslab_t **arr = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
2417 mg->mg_primaries : mg->mg_secondaries);
2418
492f64e9
PD
2419 mutex_enter(&mg->mg_lock);
2420 if (arr[allocator] != NULL) {
2421 mutex_exit(&mg->mg_lock);
2422 return (EEXIST);
2423 }
2424
2425 arr[allocator] = msp;
2426 ASSERT3S(msp->ms_allocator, ==, -1);
2427 msp->ms_allocator = allocator;
2428 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
2429 mutex_exit(&mg->mg_lock);
2430
2431 return (0);
2432}
2433
2434static int
2435metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
34dc7c2f 2436{
34dc7c2f
BB
2437 ASSERT(MUTEX_HELD(&msp->ms_lock));
2438
679b0f2a
PD
2439 /*
2440 * The current metaslab is already activated for us so there
2441 * is nothing to do. Already activated though, doesn't mean
2442 * that this metaslab is activated for our allocator nor our
2443 * requested activation weight. The metaslab could have started
2444 * as an active one for our allocator but changed allocators
2445 * while we were waiting to grab its ms_lock or we stole it
2446 * [see find_valid_metaslab()]. This means that there is a
2447 * possibility of passivating a metaslab of another allocator
2448 * or from a different activation mask, from this thread.
2449 */
2450 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
2451 ASSERT(msp->ms_loaded);
2452 return (0);
2453 }
2454
2455 int error = metaslab_load(msp);
2456 if (error != 0) {
2457 metaslab_group_sort(msp->ms_group, msp, 0);
2458 return (error);
2459 }
2460
2461 /*
2462 * When entering metaslab_load() we may have dropped the
2463 * ms_lock because we were loading this metaslab, or we
2464 * were waiting for another thread to load it for us. In
2465 * that scenario, we recheck the weight of the metaslab
2466 * to see if it was activated by another thread.
2467 *
2468 * If the metaslab was activated for another allocator or
2469 * it was activated with a different activation weight (e.g.
2470 * we wanted to make it a primary but it was activated as
2471 * secondary) we return error (EBUSY).
2472 *
2473 * If the metaslab was activated for the same allocator
2474 * and requested activation mask, skip activating it.
2475 */
2476 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
2477 if (msp->ms_allocator != allocator)
2478 return (EBUSY);
2479
2480 if ((msp->ms_weight & activation_weight) == 0)
7ab96299 2481 return (SET_ERROR(EBUSY));
9babb374 2482
679b0f2a
PD
2483 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
2484 msp->ms_primary);
2485 return (0);
34dc7c2f 2486 }
679b0f2a
PD
2487
2488 if ((error = metaslab_activate_allocator(msp->ms_group, msp,
2489 allocator, activation_weight)) != 0) {
2490 return (error);
2491 }
2492
2493 ASSERT0(msp->ms_activation_weight);
2494 msp->ms_activation_weight = msp->ms_weight;
2495 metaslab_group_sort(msp->ms_group, msp,
2496 msp->ms_weight | activation_weight);
2497
93cf2076 2498 ASSERT(msp->ms_loaded);
34dc7c2f
BB
2499 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
2500
2501 return (0);
2502}
2503
492f64e9
PD
2504static void
2505metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
2506 uint64_t weight)
2507{
2508 ASSERT(MUTEX_HELD(&msp->ms_lock));
679b0f2a
PD
2509 ASSERT(msp->ms_loaded);
2510
492f64e9
PD
2511 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
2512 metaslab_group_sort(mg, msp, weight);
2513 return;
2514 }
2515
2516 mutex_enter(&mg->mg_lock);
2517 ASSERT3P(msp->ms_group, ==, mg);
679b0f2a
PD
2518 ASSERT3S(0, <=, msp->ms_allocator);
2519 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
2520
492f64e9 2521 if (msp->ms_primary) {
492f64e9
PD
2522 ASSERT3P(mg->mg_primaries[msp->ms_allocator], ==, msp);
2523 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
2524 mg->mg_primaries[msp->ms_allocator] = NULL;
2525 } else {
492f64e9 2526 ASSERT3P(mg->mg_secondaries[msp->ms_allocator], ==, msp);
679b0f2a 2527 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
492f64e9
PD
2528 mg->mg_secondaries[msp->ms_allocator] = NULL;
2529 }
2530 msp->ms_allocator = -1;
2531 metaslab_group_sort_impl(mg, msp, weight);
2532 mutex_exit(&mg->mg_lock);
2533}
2534
34dc7c2f 2535static void
4e21fd06 2536metaslab_passivate(metaslab_t *msp, uint64_t weight)
34dc7c2f 2537{
4e21fd06
DB
2538 ASSERTV(uint64_t size = weight & ~METASLAB_WEIGHT_TYPE);
2539
34dc7c2f
BB
2540 /*
2541 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
2542 * this metaslab again. In that case, it had better be empty,
2543 * or we would be leaving space on the table.
2544 */
94d49e8f
TC
2545 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
2546 size >= SPA_MINBLOCKSIZE ||
d2734cce 2547 range_tree_space(msp->ms_allocatable) == 0);
4e21fd06
DB
2548 ASSERT0(weight & METASLAB_ACTIVE_MASK);
2549
679b0f2a 2550 ASSERT(msp->ms_activation_weight != 0);
4e21fd06 2551 msp->ms_activation_weight = 0;
492f64e9 2552 metaslab_passivate_allocator(msp->ms_group, msp, weight);
679b0f2a 2553 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
34dc7c2f
BB
2554}
2555
4e21fd06
DB
2556/*
2557 * Segment-based metaslabs are activated once and remain active until
2558 * we either fail an allocation attempt (similar to space-based metaslabs)
2559 * or have exhausted the free space in zfs_metaslab_switch_threshold
2560 * buckets since the metaslab was activated. This function checks to see
2561 * if we've exhaused the zfs_metaslab_switch_threshold buckets in the
2562 * metaslab and passivates it proactively. This will allow us to select a
2563 * metaslab with a larger contiguous region, if any, remaining within this
2564 * metaslab group. If we're in sync pass > 1, then we continue using this
2565 * metaslab so that we don't dirty more block and cause more sync passes.
2566 */
2567void
2568metaslab_segment_may_passivate(metaslab_t *msp)
2569{
2570 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
4e21fd06
DB
2571
2572 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
2573 return;
2574
2575 /*
2576 * Since we are in the middle of a sync pass, the most accurate
2577 * information that is accessible to us is the in-core range tree
2578 * histogram; calculate the new weight based on that information.
2579 */
1c27024e
DB
2580 uint64_t weight = metaslab_weight_from_range_tree(msp);
2581 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
2582 int current_idx = WEIGHT_GET_INDEX(weight);
4e21fd06
DB
2583
2584 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
2585 metaslab_passivate(msp, weight);
2586}
2587
93cf2076
GW
2588static void
2589metaslab_preload(void *arg)
2590{
2591 metaslab_t *msp = arg;
2592 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1cd77734 2593 fstrans_cookie_t cookie = spl_fstrans_mark();
93cf2076 2594
080b3100
GW
2595 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
2596
93cf2076 2597 mutex_enter(&msp->ms_lock);
b194fab0 2598 (void) metaslab_load(msp);
4e21fd06 2599 msp->ms_selected_txg = spa_syncing_txg(spa);
93cf2076 2600 mutex_exit(&msp->ms_lock);
1cd77734 2601 spl_fstrans_unmark(cookie);
93cf2076
GW
2602}
2603
2604static void
2605metaslab_group_preload(metaslab_group_t *mg)
2606{
2607 spa_t *spa = mg->mg_vd->vdev_spa;
2608 metaslab_t *msp;
2609 avl_tree_t *t = &mg->mg_metaslab_tree;
2610 int m = 0;
2611
2612 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
c5528b9b 2613 taskq_wait_outstanding(mg->mg_taskq, 0);
93cf2076
GW
2614 return;
2615 }
93cf2076 2616
080b3100 2617 mutex_enter(&mg->mg_lock);
a1d477c2 2618
93cf2076 2619 /*
080b3100 2620 * Load the next potential metaslabs
93cf2076 2621 */
4e21fd06 2622 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
a1d477c2
MA
2623 ASSERT3P(msp->ms_group, ==, mg);
2624
f3a7f661
GW
2625 /*
2626 * We preload only the maximum number of metaslabs specified
2627 * by metaslab_preload_limit. If a metaslab is being forced
2628 * to condense then we preload it too. This will ensure
2629 * that force condensing happens in the next txg.
2630 */
2631 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
f3a7f661
GW
2632 continue;
2633 }
93cf2076
GW
2634
2635 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
48d3eb40 2636 msp, TQ_SLEEP) != TASKQID_INVALID);
93cf2076
GW
2637 }
2638 mutex_exit(&mg->mg_lock);
2639}
2640
e51be066 2641/*
93cf2076
GW
2642 * Determine if the space map's on-disk footprint is past our tolerance
2643 * for inefficiency. We would like to use the following criteria to make
2644 * our decision:
e51be066
GW
2645 *
2646 * 1. The size of the space map object should not dramatically increase as a
93cf2076 2647 * result of writing out the free space range tree.
e51be066
GW
2648 *
2649 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
93cf2076 2650 * times the size than the free space range tree representation
a1d477c2 2651 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1MB).
e51be066 2652 *
b02fe35d
AR
2653 * 3. The on-disk size of the space map should actually decrease.
2654 *
b02fe35d
AR
2655 * Unfortunately, we cannot compute the on-disk size of the space map in this
2656 * context because we cannot accurately compute the effects of compression, etc.
2657 * Instead, we apply the heuristic described in the block comment for
2658 * zfs_metaslab_condense_block_threshold - we only condense if the space used
2659 * is greater than a threshold number of blocks.
e51be066
GW
2660 */
2661static boolean_t
2662metaslab_should_condense(metaslab_t *msp)
2663{
93cf2076 2664 space_map_t *sm = msp->ms_sm;
d2734cce
SD
2665 vdev_t *vd = msp->ms_group->mg_vd;
2666 uint64_t vdev_blocksize = 1 << vd->vdev_ashift;
2667 uint64_t current_txg = spa_syncing_txg(vd->vdev_spa);
e51be066
GW
2668
2669 ASSERT(MUTEX_HELD(&msp->ms_lock));
93cf2076 2670 ASSERT(msp->ms_loaded);
e51be066
GW
2671
2672 /*
d2734cce
SD
2673 * Allocations and frees in early passes are generally more space
2674 * efficient (in terms of blocks described in space map entries)
2675 * than the ones in later passes (e.g. we don't compress after
2676 * sync pass 5) and condensing a metaslab multiple times in a txg
2677 * could degrade performance.
2678 *
2679 * Thus we prefer condensing each metaslab at most once every txg at
2680 * the earliest sync pass possible. If a metaslab is eligible for
2681 * condensing again after being considered for condensing within the
2682 * same txg, it will hopefully be dirty in the next txg where it will
2683 * be condensed at an earlier pass.
2684 */
2685 if (msp->ms_condense_checked_txg == current_txg)
2686 return (B_FALSE);
2687 msp->ms_condense_checked_txg = current_txg;
2688
2689 /*
4d044c4c
SD
2690 * We always condense metaslabs that are empty and metaslabs for
2691 * which a condense request has been made.
e51be066 2692 */
4d044c4c
SD
2693 if (avl_is_empty(&msp->ms_allocatable_by_size) ||
2694 msp->ms_condense_wanted)
e51be066
GW
2695 return (B_TRUE);
2696
4d044c4c
SD
2697 uint64_t object_size = space_map_length(msp->ms_sm);
2698 uint64_t optimal_size = space_map_estimate_optimal_size(sm,
2699 msp->ms_allocatable, SM_NO_VDEVID);
b02fe35d 2700
4d044c4c 2701 dmu_object_info_t doi;
b02fe35d 2702 dmu_object_info_from_db(sm->sm_dbuf, &doi);
4d044c4c 2703 uint64_t record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
b02fe35d 2704
4d044c4c 2705 return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
b02fe35d 2706 object_size > zfs_metaslab_condense_block_threshold * record_size);
e51be066
GW
2707}
2708
2709/*
2710 * Condense the on-disk space map representation to its minimized form.
2711 * The minimized form consists of a small number of allocations followed by
93cf2076 2712 * the entries of the free range tree.
e51be066
GW
2713 */
2714static void
2715metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
2716{
93cf2076
GW
2717 range_tree_t *condense_tree;
2718 space_map_t *sm = msp->ms_sm;
e51be066
GW
2719
2720 ASSERT(MUTEX_HELD(&msp->ms_lock));
93cf2076 2721 ASSERT(msp->ms_loaded);
e51be066 2722
f3a7f661 2723
a887d653 2724 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
5f3d9c69
JS
2725 "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
2726 msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
2727 msp->ms_group->mg_vd->vdev_spa->spa_name,
d2734cce
SD
2728 space_map_length(msp->ms_sm),
2729 avl_numnodes(&msp->ms_allocatable->rt_root),
f3a7f661
GW
2730 msp->ms_condense_wanted ? "TRUE" : "FALSE");
2731
2732 msp->ms_condense_wanted = B_FALSE;
e51be066
GW
2733
2734 /*
93cf2076 2735 * Create an range tree that is 100% allocated. We remove segments
e51be066
GW
2736 * that have been freed in this txg, any deferred frees that exist,
2737 * and any allocation in the future. Removing segments should be
93cf2076
GW
2738 * a relatively inexpensive operation since we expect these trees to
2739 * have a small number of nodes.
e51be066 2740 */
a1d477c2 2741 condense_tree = range_tree_create(NULL, NULL);
93cf2076 2742 range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
e51be066 2743
d2734cce
SD
2744 range_tree_walk(msp->ms_freeing, range_tree_remove, condense_tree);
2745 range_tree_walk(msp->ms_freed, range_tree_remove, condense_tree);
e51be066 2746
1c27024e 2747 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
d2734cce 2748 range_tree_walk(msp->ms_defer[t],
93cf2076
GW
2749 range_tree_remove, condense_tree);
2750 }
e51be066 2751
1c27024e 2752 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
d2734cce 2753 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
93cf2076
GW
2754 range_tree_remove, condense_tree);
2755 }
e51be066
GW
2756
2757 /*
2758 * We're about to drop the metaslab's lock thus allowing
2759 * other consumers to change it's content. Set the
93cf2076 2760 * metaslab's ms_condensing flag to ensure that
e51be066
GW
2761 * allocations on this metaslab do not occur while we're
2762 * in the middle of committing it to disk. This is only critical
d2734cce 2763 * for ms_allocatable as all other range trees use per txg
e51be066
GW
2764 * views of their content.
2765 */
93cf2076 2766 msp->ms_condensing = B_TRUE;
e51be066
GW
2767
2768 mutex_exit(&msp->ms_lock);
d2734cce 2769 space_map_truncate(sm, zfs_metaslab_sm_blksz, tx);
e51be066
GW
2770
2771 /*
4e21fd06 2772 * While we would ideally like to create a space map representation
e51be066 2773 * that consists only of allocation records, doing so can be
93cf2076 2774 * prohibitively expensive because the in-core free tree can be
e51be066 2775 * large, and therefore computationally expensive to subtract
93cf2076
GW
2776 * from the condense_tree. Instead we sync out two trees, a cheap
2777 * allocation only tree followed by the in-core free tree. While not
e51be066
GW
2778 * optimal, this is typically close to optimal, and much cheaper to
2779 * compute.
2780 */
4d044c4c 2781 space_map_write(sm, condense_tree, SM_ALLOC, SM_NO_VDEVID, tx);
93cf2076
GW
2782 range_tree_vacate(condense_tree, NULL, NULL);
2783 range_tree_destroy(condense_tree);
e51be066 2784
4d044c4c 2785 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
a1d477c2 2786 mutex_enter(&msp->ms_lock);
93cf2076 2787 msp->ms_condensing = B_FALSE;
e51be066
GW
2788}
2789
34dc7c2f
BB
2790/*
2791 * Write a metaslab to disk in the context of the specified transaction group.
2792 */
2793void
2794metaslab_sync(metaslab_t *msp, uint64_t txg)
2795{
93cf2076
GW
2796 metaslab_group_t *mg = msp->ms_group;
2797 vdev_t *vd = mg->mg_vd;
34dc7c2f 2798 spa_t *spa = vd->vdev_spa;
428870ff 2799 objset_t *mos = spa_meta_objset(spa);
d2734cce 2800 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
34dc7c2f 2801 dmu_tx_t *tx;
93cf2076 2802 uint64_t object = space_map_object(msp->ms_sm);
34dc7c2f 2803
428870ff
BB
2804 ASSERT(!vd->vdev_ishole);
2805
e51be066
GW
2806 /*
2807 * This metaslab has just been added so there's no work to do now.
2808 */
d2734cce 2809 if (msp->ms_freeing == NULL) {
93cf2076 2810 ASSERT3P(alloctree, ==, NULL);
e51be066
GW
2811 return;
2812 }
2813
93cf2076 2814 ASSERT3P(alloctree, !=, NULL);
d2734cce
SD
2815 ASSERT3P(msp->ms_freeing, !=, NULL);
2816 ASSERT3P(msp->ms_freed, !=, NULL);
2817 ASSERT3P(msp->ms_checkpointing, !=, NULL);
1b939560 2818 ASSERT3P(msp->ms_trim, !=, NULL);
e51be066 2819
f3a7f661 2820 /*
d2734cce
SD
2821 * Normally, we don't want to process a metaslab if there are no
2822 * allocations or frees to perform. However, if the metaslab is being
2823 * forced to condense and it's loaded, we need to let it through.
f3a7f661 2824 */
d2734cce
SD
2825 if (range_tree_is_empty(alloctree) &&
2826 range_tree_is_empty(msp->ms_freeing) &&
2827 range_tree_is_empty(msp->ms_checkpointing) &&
3b7f360c 2828 !(msp->ms_loaded && msp->ms_condense_wanted))
428870ff 2829 return;
34dc7c2f 2830
3b7f360c
GW
2831
2832 VERIFY(txg <= spa_final_dirty_txg(spa));
2833
34dc7c2f 2834 /*
425d3237
SD
2835 * The only state that can actually be changing concurrently
2836 * with metaslab_sync() is the metaslab's ms_allocatable. No
2837 * other thread can be modifying this txg's alloc, freeing,
d2734cce 2838 * freed, or space_map_phys_t. We drop ms_lock whenever we
425d3237
SD
2839 * could call into the DMU, because the DMU can call down to
2840 * us (e.g. via zio_free()) at any time.
a1d477c2
MA
2841 *
2842 * The spa_vdev_remove_thread() can be reading metaslab state
425d3237
SD
2843 * concurrently, and it is locked out by the ms_sync_lock.
2844 * Note that the ms_lock is insufficient for this, because it
2845 * is dropped by space_map_write().
34dc7c2f 2846 */
428870ff 2847 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
34dc7c2f 2848
93cf2076
GW
2849 if (msp->ms_sm == NULL) {
2850 uint64_t new_object;
2851
d2734cce 2852 new_object = space_map_alloc(mos, zfs_metaslab_sm_blksz, tx);
93cf2076
GW
2853 VERIFY3U(new_object, !=, 0);
2854
2855 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
a1d477c2 2856 msp->ms_start, msp->ms_size, vd->vdev_ashift));
425d3237 2857
93cf2076 2858 ASSERT(msp->ms_sm != NULL);
425d3237 2859 ASSERT0(metaslab_allocated_space(msp));
34dc7c2f
BB
2860 }
2861
d2734cce
SD
2862 if (!range_tree_is_empty(msp->ms_checkpointing) &&
2863 vd->vdev_checkpoint_sm == NULL) {
2864 ASSERT(spa_has_checkpoint(spa));
2865
2866 uint64_t new_object = space_map_alloc(mos,
2867 vdev_standard_sm_blksz, tx);
2868 VERIFY3U(new_object, !=, 0);
2869
2870 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
2871 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
2872 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2873
2874 /*
2875 * We save the space map object as an entry in vdev_top_zap
2876 * so it can be retrieved when the pool is reopened after an
2877 * export or through zdb.
2878 */
2879 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
2880 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
2881 sizeof (new_object), 1, &new_object, tx));
2882 }
2883
a1d477c2 2884 mutex_enter(&msp->ms_sync_lock);
428870ff
BB
2885 mutex_enter(&msp->ms_lock);
2886
96358617 2887 /*
4e21fd06
DB
2888 * Note: metaslab_condense() clears the space map's histogram.
2889 * Therefore we must verify and remove this histogram before
96358617
MA
2890 * condensing.
2891 */
2892 metaslab_group_histogram_verify(mg);
2893 metaslab_class_histogram_verify(mg->mg_class);
2894 metaslab_group_histogram_remove(mg, msp);
2895
d2734cce 2896 if (msp->ms_loaded && metaslab_should_condense(msp)) {
e51be066
GW
2897 metaslab_condense(msp, txg, tx);
2898 } else {
a1d477c2 2899 mutex_exit(&msp->ms_lock);
4d044c4c
SD
2900 space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
2901 SM_NO_VDEVID, tx);
2902 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
2903 SM_NO_VDEVID, tx);
a1d477c2 2904 mutex_enter(&msp->ms_lock);
e51be066 2905 }
428870ff 2906
425d3237
SD
2907 msp->ms_allocated_space += range_tree_space(alloctree);
2908 ASSERT3U(msp->ms_allocated_space, >=,
2909 range_tree_space(msp->ms_freeing));
2910 msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
2911
d2734cce
SD
2912 if (!range_tree_is_empty(msp->ms_checkpointing)) {
2913 ASSERT(spa_has_checkpoint(spa));
2914 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2915
2916 /*
2917 * Since we are doing writes to disk and the ms_checkpointing
2918 * tree won't be changing during that time, we drop the
2919 * ms_lock while writing to the checkpoint space map.
2920 */
2921 mutex_exit(&msp->ms_lock);
2922 space_map_write(vd->vdev_checkpoint_sm,
4d044c4c 2923 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
d2734cce 2924 mutex_enter(&msp->ms_lock);
d2734cce
SD
2925
2926 spa->spa_checkpoint_info.sci_dspace +=
2927 range_tree_space(msp->ms_checkpointing);
2928 vd->vdev_stat.vs_checkpoint_space +=
2929 range_tree_space(msp->ms_checkpointing);
2930 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
425d3237 2931 -space_map_allocated(vd->vdev_checkpoint_sm));
d2734cce
SD
2932
2933 range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
2934 }
2935
93cf2076
GW
2936 if (msp->ms_loaded) {
2937 /*
a1d477c2 2938 * When the space map is loaded, we have an accurate
93cf2076
GW
2939 * histogram in the range tree. This gives us an opportunity
2940 * to bring the space map's histogram up-to-date so we clear
2941 * it first before updating it.
2942 */
2943 space_map_histogram_clear(msp->ms_sm);
d2734cce 2944 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4e21fd06
DB
2945
2946 /*
2947 * Since we've cleared the histogram we need to add back
2948 * any free space that has already been processed, plus
2949 * any deferred space. This allows the on-disk histogram
2950 * to accurately reflect all free space even if some space
2951 * is not yet available for allocation (i.e. deferred).
2952 */
d2734cce 2953 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4e21fd06 2954
93cf2076 2955 /*
4e21fd06
DB
2956 * Add back any deferred free space that has not been
2957 * added back into the in-core free tree yet. This will
2958 * ensure that we don't end up with a space map histogram
2959 * that is completely empty unless the metaslab is fully
2960 * allocated.
93cf2076 2961 */
1c27024e 2962 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4e21fd06 2963 space_map_histogram_add(msp->ms_sm,
d2734cce 2964 msp->ms_defer[t], tx);
4e21fd06 2965 }
93cf2076 2966 }
4e21fd06
DB
2967
2968 /*
2969 * Always add the free space from this sync pass to the space
2970 * map histogram. We want to make sure that the on-disk histogram
2971 * accounts for all free space. If the space map is not loaded,
2972 * then we will lose some accuracy but will correct it the next
2973 * time we load the space map.
2974 */
d2734cce 2975 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
928e8ad4 2976 metaslab_aux_histograms_update(msp);
4e21fd06 2977
f3a7f661
GW
2978 metaslab_group_histogram_add(mg, msp);
2979 metaslab_group_histogram_verify(mg);
2980 metaslab_class_histogram_verify(mg->mg_class);
34dc7c2f 2981
e51be066 2982 /*
93cf2076 2983 * For sync pass 1, we avoid traversing this txg's free range tree
425d3237
SD
2984 * and instead will just swap the pointers for freeing and freed.
2985 * We can safely do this since the freed_tree is guaranteed to be
2986 * empty on the initial pass.
e51be066
GW
2987 */
2988 if (spa_sync_pass(spa) == 1) {
d2734cce 2989 range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
425d3237 2990 ASSERT0(msp->ms_allocated_this_txg);
e51be066 2991 } else {
d2734cce
SD
2992 range_tree_vacate(msp->ms_freeing,
2993 range_tree_add, msp->ms_freed);
34dc7c2f 2994 }
425d3237 2995 msp->ms_allocated_this_txg += range_tree_space(alloctree);
f3a7f661 2996 range_tree_vacate(alloctree, NULL, NULL);
34dc7c2f 2997
d2734cce
SD
2998 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
2999 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
3000 & TXG_MASK]));
3001 ASSERT0(range_tree_space(msp->ms_freeing));
3002 ASSERT0(range_tree_space(msp->ms_checkpointing));
34dc7c2f
BB
3003
3004 mutex_exit(&msp->ms_lock);
3005
93cf2076
GW
3006 if (object != space_map_object(msp->ms_sm)) {
3007 object = space_map_object(msp->ms_sm);
3008 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
3009 msp->ms_id, sizeof (uint64_t), &object, tx);
3010 }
a1d477c2 3011 mutex_exit(&msp->ms_sync_lock);
34dc7c2f
BB
3012 dmu_tx_commit(tx);
3013}
3014
893a6d62
PD
3015void
3016metaslab_potentially_unload(metaslab_t *msp, uint64_t txg)
3017{
3018 /*
3019 * If the metaslab is loaded and we've not tried to load or allocate
3020 * from it in 'metaslab_unload_delay' txgs, then unload it.
3021 */
3022 if (msp->ms_loaded &&
3023 msp->ms_disabled == 0 &&
3024 msp->ms_selected_txg + metaslab_unload_delay < txg) {
3025 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
3026 VERIFY0(range_tree_space(
3027 msp->ms_allocating[(txg + t) & TXG_MASK]));
3028 }
3029 if (msp->ms_allocator != -1) {
3030 metaslab_passivate(msp, msp->ms_weight &
3031 ~METASLAB_ACTIVE_MASK);
3032 }
3033
3034 if (!metaslab_debug_unload)
3035 metaslab_unload(msp);
3036 }
3037}
3038
34dc7c2f
BB
3039/*
3040 * Called after a transaction group has completely synced to mark
3041 * all of the metaslab's free space as usable.
3042 */
3043void
3044metaslab_sync_done(metaslab_t *msp, uint64_t txg)
3045{
34dc7c2f
BB
3046 metaslab_group_t *mg = msp->ms_group;
3047 vdev_t *vd = mg->mg_vd;
4e21fd06 3048 spa_t *spa = vd->vdev_spa;
93cf2076 3049 range_tree_t **defer_tree;
428870ff 3050 int64_t alloc_delta, defer_delta;
4e21fd06 3051 boolean_t defer_allowed = B_TRUE;
428870ff
BB
3052
3053 ASSERT(!vd->vdev_ishole);
34dc7c2f
BB
3054
3055 mutex_enter(&msp->ms_lock);
3056
3057 /*
3058 * If this metaslab is just becoming available, initialize its
258553d3 3059 * range trees and add its capacity to the vdev.
34dc7c2f 3060 */
d2734cce 3061 if (msp->ms_freed == NULL) {
1c27024e 3062 for (int t = 0; t < TXG_SIZE; t++) {
d2734cce 3063 ASSERT(msp->ms_allocating[t] == NULL);
93cf2076 3064
d2734cce 3065 msp->ms_allocating[t] = range_tree_create(NULL, NULL);
34dc7c2f 3066 }
428870ff 3067
d2734cce
SD
3068 ASSERT3P(msp->ms_freeing, ==, NULL);
3069 msp->ms_freeing = range_tree_create(NULL, NULL);
258553d3 3070
d2734cce
SD
3071 ASSERT3P(msp->ms_freed, ==, NULL);
3072 msp->ms_freed = range_tree_create(NULL, NULL);
258553d3 3073
1c27024e 3074 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
d2734cce 3075 ASSERT(msp->ms_defer[t] == NULL);
e51be066 3076
d2734cce 3077 msp->ms_defer[t] = range_tree_create(NULL, NULL);
93cf2076 3078 }
428870ff 3079
d2734cce
SD
3080 ASSERT3P(msp->ms_checkpointing, ==, NULL);
3081 msp->ms_checkpointing = range_tree_create(NULL, NULL);
3082
cc99f275 3083 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
34dc7c2f 3084 }
d2734cce
SD
3085 ASSERT0(range_tree_space(msp->ms_freeing));
3086 ASSERT0(range_tree_space(msp->ms_checkpointing));
34dc7c2f 3087
d2734cce 3088 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
93cf2076 3089
1c27024e 3090 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4e21fd06 3091 metaslab_class_get_alloc(spa_normal_class(spa));
a1d477c2 3092 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
4e21fd06
DB
3093 defer_allowed = B_FALSE;
3094 }
3095
3096 defer_delta = 0;
425d3237
SD
3097 alloc_delta = msp->ms_allocated_this_txg -
3098 range_tree_space(msp->ms_freed);
4e21fd06 3099 if (defer_allowed) {
d2734cce 3100 defer_delta = range_tree_space(msp->ms_freed) -
4e21fd06
DB
3101 range_tree_space(*defer_tree);
3102 } else {
3103 defer_delta -= range_tree_space(*defer_tree);
3104 }
428870ff 3105
cc99f275
DB
3106 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
3107 defer_delta, 0);
34dc7c2f 3108
34dc7c2f 3109 /*
93cf2076 3110 * If there's a metaslab_load() in progress, wait for it to complete
34dc7c2f 3111 * so that we have a consistent view of the in-core space map.
34dc7c2f 3112 */
93cf2076 3113 metaslab_load_wait(msp);
c2e42f9d 3114
1b939560
BB
3115 /*
3116 * When auto-trimming is enabled, free ranges which are added to
3117 * ms_allocatable are also be added to ms_trim. The ms_trim tree is
3118 * periodically consumed by the vdev_autotrim_thread() which issues
3119 * trims for all ranges and then vacates the tree. The ms_trim tree
3120 * can be discarded at any time with the sole consequence of recent
3121 * frees not being trimmed.
3122 */
3123 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
3124 range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
3125 if (!defer_allowed) {
3126 range_tree_walk(msp->ms_freed, range_tree_add,
3127 msp->ms_trim);
3128 }
3129 } else {
3130 range_tree_vacate(msp->ms_trim, NULL, NULL);
3131 }
3132
c2e42f9d 3133 /*
93cf2076 3134 * Move the frees from the defer_tree back to the free
d2734cce
SD
3135 * range tree (if it's loaded). Swap the freed_tree and
3136 * the defer_tree -- this is safe to do because we've
3137 * just emptied out the defer_tree.
c2e42f9d 3138 */
93cf2076 3139 range_tree_vacate(*defer_tree,
d2734cce 3140 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
4e21fd06 3141 if (defer_allowed) {
d2734cce 3142 range_tree_swap(&msp->ms_freed, defer_tree);
4e21fd06 3143 } else {
d2734cce
SD
3144 range_tree_vacate(msp->ms_freed,
3145 msp->ms_loaded ? range_tree_add : NULL,
3146 msp->ms_allocatable);
4e21fd06 3147 }
425d3237
SD
3148
3149 msp->ms_synced_length = space_map_length(msp->ms_sm);
34dc7c2f 3150
428870ff
BB
3151 msp->ms_deferspace += defer_delta;
3152 ASSERT3S(msp->ms_deferspace, >=, 0);
93cf2076 3153 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
428870ff
BB
3154 if (msp->ms_deferspace != 0) {
3155 /*
3156 * Keep syncing this metaslab until all deferred frees
3157 * are back in circulation.
3158 */
3159 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
3160 }
928e8ad4 3161 metaslab_aux_histograms_update_done(msp, defer_allowed);
428870ff 3162
492f64e9
PD
3163 if (msp->ms_new) {
3164 msp->ms_new = B_FALSE;
3165 mutex_enter(&mg->mg_lock);
3166 mg->mg_ms_ready++;
3167 mutex_exit(&mg->mg_lock);
3168 }
928e8ad4 3169
4e21fd06 3170 /*
928e8ad4
SD
3171 * Re-sort metaslab within its group now that we've adjusted
3172 * its allocatable space.
4e21fd06 3173 */
928e8ad4 3174 metaslab_recalculate_weight_and_sort(msp);
4e21fd06 3175
d2734cce
SD
3176 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
3177 ASSERT0(range_tree_space(msp->ms_freeing));
3178 ASSERT0(range_tree_space(msp->ms_freed));
3179 ASSERT0(range_tree_space(msp->ms_checkpointing));
a1d477c2 3180
425d3237 3181 msp->ms_allocated_this_txg = 0;
34dc7c2f
BB
3182 mutex_exit(&msp->ms_lock);
3183}
3184
428870ff
BB
3185void
3186metaslab_sync_reassess(metaslab_group_t *mg)
3187{
a1d477c2
MA
3188 spa_t *spa = mg->mg_class->mc_spa;
3189
3190 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1be627f5 3191 metaslab_group_alloc_update(mg);
f3a7f661 3192 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
6d974228 3193
428870ff 3194 /*
a1d477c2
MA
3195 * Preload the next potential metaslabs but only on active
3196 * metaslab groups. We can get into a state where the metaslab
3197 * is no longer active since we dirty metaslabs as we remove a
3198 * a device, thus potentially making the metaslab group eligible
3199 * for preloading.
428870ff 3200 */
a1d477c2
MA
3201 if (mg->mg_activation_count > 0) {
3202 metaslab_group_preload(mg);
3203 }
3204 spa_config_exit(spa, SCL_ALLOC, FTAG);
428870ff
BB
3205}
3206
cc99f275
DB
3207/*
3208 * When writing a ditto block (i.e. more than one DVA for a given BP) on
3209 * the same vdev as an existing DVA of this BP, then try to allocate it
3210 * on a different metaslab than existing DVAs (i.e. a unique metaslab).
3211 */
3212static boolean_t
3213metaslab_is_unique(metaslab_t *msp, dva_t *dva)
34dc7c2f 3214{
cc99f275
DB
3215 uint64_t dva_ms_id;
3216
3217 if (DVA_GET_ASIZE(dva) == 0)
3218 return (B_TRUE);
34dc7c2f
BB
3219
3220 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
cc99f275 3221 return (B_TRUE);
34dc7c2f 3222
cc99f275
DB
3223 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
3224
3225 return (msp->ms_id != dva_ms_id);
34dc7c2f
BB
3226}
3227
4e21fd06
DB
3228/*
3229 * ==========================================================================
3230 * Metaslab allocation tracing facility
3231 * ==========================================================================
3232 */
3233#ifdef _METASLAB_TRACING
3234kstat_t *metaslab_trace_ksp;
3235kstat_named_t metaslab_trace_over_limit;
3236
3237void
3238metaslab_alloc_trace_init(void)
3239{
3240 ASSERT(metaslab_alloc_trace_cache == NULL);
3241 metaslab_alloc_trace_cache = kmem_cache_create(
3242 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
3243 0, NULL, NULL, NULL, NULL, NULL, 0);
3244 metaslab_trace_ksp = kstat_create("zfs", 0, "metaslab_trace_stats",
3245 "misc", KSTAT_TYPE_NAMED, 1, KSTAT_FLAG_VIRTUAL);
3246 if (metaslab_trace_ksp != NULL) {
3247 metaslab_trace_ksp->ks_data = &metaslab_trace_over_limit;
3248 kstat_named_init(&metaslab_trace_over_limit,
3249 "metaslab_trace_over_limit", KSTAT_DATA_UINT64);
3250 kstat_install(metaslab_trace_ksp);
3251 }
3252}
3253
3254void
3255metaslab_alloc_trace_fini(void)
3256{
3257 if (metaslab_trace_ksp != NULL) {
3258 kstat_delete(metaslab_trace_ksp);
3259 metaslab_trace_ksp = NULL;
3260 }
3261 kmem_cache_destroy(metaslab_alloc_trace_cache);
3262 metaslab_alloc_trace_cache = NULL;
3263}
3264
3265/*
3266 * Add an allocation trace element to the allocation tracing list.
3267 */
3268static void
3269metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
492f64e9
PD
3270 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
3271 int allocator)
4e21fd06
DB
3272{
3273 metaslab_alloc_trace_t *mat;
3274
3275 if (!metaslab_trace_enabled)
3276 return;
3277
3278 /*
3279 * When the tracing list reaches its maximum we remove
3280 * the second element in the list before adding a new one.
3281 * By removing the second element we preserve the original
3282 * entry as a clue to what allocations steps have already been
3283 * performed.
3284 */
3285 if (zal->zal_size == metaslab_trace_max_entries) {
3286 metaslab_alloc_trace_t *mat_next;
3287#ifdef DEBUG
3288 panic("too many entries in allocation list");
3289#endif
3290 atomic_inc_64(&metaslab_trace_over_limit.value.ui64);
3291 zal->zal_size--;
3292 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
3293 list_remove(&zal->zal_list, mat_next);
3294 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
3295 }
3296
3297 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
3298 list_link_init(&mat->mat_list_node);
3299 mat->mat_mg = mg;
3300 mat->mat_msp = msp;
3301 mat->mat_size = psize;
3302 mat->mat_dva_id = dva_id;
3303 mat->mat_offset = offset;
3304 mat->mat_weight = 0;
492f64e9 3305 mat->mat_allocator = allocator;
4e21fd06
DB
3306
3307 if (msp != NULL)
3308 mat->mat_weight = msp->ms_weight;
3309
3310 /*
3311 * The list is part of the zio so locking is not required. Only
3312 * a single thread will perform allocations for a given zio.
3313 */
3314 list_insert_tail(&zal->zal_list, mat);
3315 zal->zal_size++;
3316
3317 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
3318}
3319
3320void
3321metaslab_trace_init(zio_alloc_list_t *zal)
3322{
3323 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
3324 offsetof(metaslab_alloc_trace_t, mat_list_node));
3325 zal->zal_size = 0;
3326}
3327
3328void
3329metaslab_trace_fini(zio_alloc_list_t *zal)
3330{
3331 metaslab_alloc_trace_t *mat;
3332
3333 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
3334 kmem_cache_free(metaslab_alloc_trace_cache, mat);
3335 list_destroy(&zal->zal_list);
3336 zal->zal_size = 0;
3337}
3338#else
3339
492f64e9 3340#define metaslab_trace_add(zal, mg, msp, psize, id, off, alloc)
4e21fd06
DB
3341
3342void
3343metaslab_alloc_trace_init(void)
3344{
3345}
3346
3347void
3348metaslab_alloc_trace_fini(void)
3349{
3350}
3351
3352void
3353metaslab_trace_init(zio_alloc_list_t *zal)
3354{
3355}
3356
3357void
3358metaslab_trace_fini(zio_alloc_list_t *zal)
3359{
3360}
3361
3362#endif /* _METASLAB_TRACING */
3363
3dfb57a3
DB
3364/*
3365 * ==========================================================================
3366 * Metaslab block operations
3367 * ==========================================================================
3368 */
3369
3370static void
492f64e9
PD
3371metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags,
3372 int allocator)
3dfb57a3 3373{
3dfb57a3 3374 if (!(flags & METASLAB_ASYNC_ALLOC) ||
492f64e9 3375 (flags & METASLAB_DONT_THROTTLE))
3dfb57a3
DB
3376 return;
3377
1c27024e 3378 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
3dfb57a3
DB
3379 if (!mg->mg_class->mc_alloc_throttle_enabled)
3380 return;
3381
c13060e4 3382 (void) zfs_refcount_add(&mg->mg_alloc_queue_depth[allocator], tag);
492f64e9
PD
3383}
3384
3385static void
3386metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
3387{
3388 uint64_t max = mg->mg_max_alloc_queue_depth;
3389 uint64_t cur = mg->mg_cur_max_alloc_queue_depth[allocator];
3390 while (cur < max) {
3391 if (atomic_cas_64(&mg->mg_cur_max_alloc_queue_depth[allocator],
3392 cur, cur + 1) == cur) {
3393 atomic_inc_64(
3394 &mg->mg_class->mc_alloc_max_slots[allocator]);
3395 return;
3396 }
3397 cur = mg->mg_cur_max_alloc_queue_depth[allocator];
3398 }
3dfb57a3
DB
3399}
3400
3401void
492f64e9
PD
3402metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags,
3403 int allocator, boolean_t io_complete)
3dfb57a3 3404{
3dfb57a3 3405 if (!(flags & METASLAB_ASYNC_ALLOC) ||
492f64e9 3406 (flags & METASLAB_DONT_THROTTLE))
3dfb57a3
DB
3407 return;
3408
1c27024e 3409 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
3dfb57a3
DB
3410 if (!mg->mg_class->mc_alloc_throttle_enabled)
3411 return;
3412
424fd7c3 3413 (void) zfs_refcount_remove(&mg->mg_alloc_queue_depth[allocator], tag);
492f64e9
PD
3414 if (io_complete)
3415 metaslab_group_increment_qdepth(mg, allocator);
3dfb57a3
DB
3416}
3417
3418void
492f64e9
PD
3419metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag,
3420 int allocator)
3dfb57a3
DB
3421{
3422#ifdef ZFS_DEBUG
3423 const dva_t *dva = bp->blk_dva;
3424 int ndvas = BP_GET_NDVAS(bp);
3dfb57a3 3425
1c27024e 3426 for (int d = 0; d < ndvas; d++) {
3dfb57a3
DB
3427 uint64_t vdev = DVA_GET_VDEV(&dva[d]);
3428 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
424fd7c3
TS
3429 VERIFY(zfs_refcount_not_held(
3430 &mg->mg_alloc_queue_depth[allocator], tag));
3dfb57a3
DB
3431 }
3432#endif
3433}
3434
34dc7c2f 3435static uint64_t
4e21fd06
DB
3436metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
3437{
3438 uint64_t start;
d2734cce 3439 range_tree_t *rt = msp->ms_allocatable;
4e21fd06
DB
3440 metaslab_class_t *mc = msp->ms_group->mg_class;
3441
3442 VERIFY(!msp->ms_condensing);
1b939560 3443 VERIFY0(msp->ms_disabled);
4e21fd06
DB
3444
3445 start = mc->mc_ops->msop_alloc(msp, size);
3446 if (start != -1ULL) {
3447 metaslab_group_t *mg = msp->ms_group;
3448 vdev_t *vd = mg->mg_vd;
3449
3450 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
3451 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3452 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
3453 range_tree_remove(rt, start, size);
1b939560 3454 range_tree_clear(msp->ms_trim, start, size);
4e21fd06 3455
d2734cce 3456 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4e21fd06
DB
3457 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
3458
d2734cce 3459 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
4e21fd06
DB
3460
3461 /* Track the last successful allocation */
3462 msp->ms_alloc_txg = txg;
3463 metaslab_verify_space(msp, txg);
3464 }
3465
3466 /*
3467 * Now that we've attempted the allocation we need to update the
3468 * metaslab's maximum block size since it may have changed.
3469 */
3470 msp->ms_max_size = metaslab_block_maxsize(msp);
3471 return (start);
3472}
3473
492f64e9
PD
3474/*
3475 * Find the metaslab with the highest weight that is less than what we've
3476 * already tried. In the common case, this means that we will examine each
3477 * metaslab at most once. Note that concurrent callers could reorder metaslabs
3478 * by activation/passivation once we have dropped the mg_lock. If a metaslab is
3479 * activated by another thread, and we fail to allocate from the metaslab we
3480 * have selected, we may not try the newly-activated metaslab, and instead
3481 * activate another metaslab. This is not optimal, but generally does not cause
3482 * any problems (a possible exception being if every metaslab is completely full
3483 * except for the the newly-activated metaslab which we fail to examine).
3484 */
3485static metaslab_t *
3486find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
cc99f275 3487 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
492f64e9
PD
3488 zio_alloc_list_t *zal, metaslab_t *search, boolean_t *was_active)
3489{
3490 avl_index_t idx;
3491 avl_tree_t *t = &mg->mg_metaslab_tree;
3492 metaslab_t *msp = avl_find(t, search, &idx);
3493 if (msp == NULL)
3494 msp = avl_nearest(t, idx, AVL_AFTER);
3495
3496 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
3497 int i;
3498 if (!metaslab_should_allocate(msp, asize)) {
3499 metaslab_trace_add(zal, mg, msp, asize, d,
3500 TRACE_TOO_SMALL, allocator);
3501 continue;
3502 }
3503
3504 /*
1b939560
BB
3505 * If the selected metaslab is condensing or disabled,
3506 * skip it.
492f64e9 3507 */
1b939560 3508 if (msp->ms_condensing || msp->ms_disabled > 0)
492f64e9
PD
3509 continue;
3510
3511 *was_active = msp->ms_allocator != -1;
3512 /*
3513 * If we're activating as primary, this is our first allocation
3514 * from this disk, so we don't need to check how close we are.
3515 * If the metaslab under consideration was already active,
3516 * we're getting desperate enough to steal another allocator's
3517 * metaslab, so we still don't care about distances.
3518 */
3519 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
3520 break;
3521
492f64e9 3522 for (i = 0; i < d; i++) {
cc99f275
DB
3523 if (want_unique &&
3524 !metaslab_is_unique(msp, &dva[i]))
3525 break; /* try another metaslab */
492f64e9
PD
3526 }
3527 if (i == d)
3528 break;
3529 }
3530
3531 if (msp != NULL) {
3532 search->ms_weight = msp->ms_weight;
3533 search->ms_start = msp->ms_start + 1;
3534 search->ms_allocator = msp->ms_allocator;
3535 search->ms_primary = msp->ms_primary;
3536 }
3537 return (msp);
3538}
3539
679b0f2a
PD
3540void
3541metaslab_active_mask_verify(metaslab_t *msp)
3542{
3543 ASSERT(MUTEX_HELD(&msp->ms_lock));
3544
3545 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
3546 return;
3547
3548 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
3549 return;
3550
3551 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
3552 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
3553 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
3554 VERIFY3S(msp->ms_allocator, !=, -1);
3555 VERIFY(msp->ms_primary);
3556 return;
3557 }
3558
3559 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
3560 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
3561 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
3562 VERIFY3S(msp->ms_allocator, !=, -1);
3563 VERIFY(!msp->ms_primary);
3564 return;
3565 }
3566
3567 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
3568 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
3569 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
3570 VERIFY3S(msp->ms_allocator, ==, -1);
3571 return;
3572 }
3573}
3574
492f64e9 3575/* ARGSUSED */
4e21fd06
DB
3576static uint64_t
3577metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
cc99f275
DB
3578 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva,
3579 int d, int allocator)
34dc7c2f
BB
3580{
3581 metaslab_t *msp = NULL;
3582 uint64_t offset = -1ULL;
34dc7c2f 3583
679b0f2a 3584 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
492f64e9
PD
3585 for (int i = 0; i < d; i++) {
3586 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
3587 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
34dc7c2f 3588 activation_weight = METASLAB_WEIGHT_SECONDARY;
492f64e9
PD
3589 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
3590 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
e38afd34 3591 activation_weight = METASLAB_WEIGHT_CLAIM;
9babb374
BB
3592 break;
3593 }
3594 }
34dc7c2f 3595
492f64e9
PD
3596 /*
3597 * If we don't have enough metaslabs active to fill the entire array, we
3598 * just use the 0th slot.
3599 */
e38afd34 3600 if (mg->mg_ms_ready < mg->mg_allocators * 3)
492f64e9 3601 allocator = 0;
492f64e9
PD
3602
3603 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
3604
1c27024e 3605 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4e21fd06
DB
3606 search->ms_weight = UINT64_MAX;
3607 search->ms_start = 0;
492f64e9
PD
3608 /*
3609 * At the end of the metaslab tree are the already-active metaslabs,
3610 * first the primaries, then the secondaries. When we resume searching
3611 * through the tree, we need to consider ms_allocator and ms_primary so
3612 * we start in the location right after where we left off, and don't
3613 * accidentally loop forever considering the same metaslabs.
3614 */
3615 search->ms_allocator = -1;
3616 search->ms_primary = B_TRUE;
34dc7c2f 3617 for (;;) {
492f64e9 3618 boolean_t was_active = B_FALSE;
9babb374 3619
34dc7c2f 3620 mutex_enter(&mg->mg_lock);
4e21fd06 3621
492f64e9
PD
3622 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
3623 mg->mg_primaries[allocator] != NULL) {
3624 msp = mg->mg_primaries[allocator];
679b0f2a
PD
3625
3626 /*
3627 * Even though we don't hold the ms_lock for the
3628 * primary metaslab, those fields should not
3629 * change while we hold the mg_lock. Thus is is
3630 * safe to make assertions on them.
3631 */
3632 ASSERT(msp->ms_primary);
3633 ASSERT3S(msp->ms_allocator, ==, allocator);
3634 ASSERT(msp->ms_loaded);
3635
492f64e9
PD
3636 was_active = B_TRUE;
3637 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
e38afd34 3638 mg->mg_secondaries[allocator] != NULL) {
492f64e9 3639 msp = mg->mg_secondaries[allocator];
679b0f2a
PD
3640
3641 /*
3642 * See comment above about the similar assertions
3643 * for the primary metaslab.
3644 */
3645 ASSERT(!msp->ms_primary);
3646 ASSERT3S(msp->ms_allocator, ==, allocator);
3647 ASSERT(msp->ms_loaded);
3648
492f64e9
PD
3649 was_active = B_TRUE;
3650 } else {
3651 msp = find_valid_metaslab(mg, activation_weight, dva, d,
cc99f275 3652 want_unique, asize, allocator, zal, search,
492f64e9 3653 &was_active);
34dc7c2f 3654 }
492f64e9 3655
34dc7c2f 3656 mutex_exit(&mg->mg_lock);
4e21fd06
DB
3657 if (msp == NULL) {
3658 kmem_free(search, sizeof (*search));
34dc7c2f 3659 return (-1ULL);
4e21fd06 3660 }
ac72fac3 3661 mutex_enter(&msp->ms_lock);
679b0f2a
PD
3662
3663 metaslab_active_mask_verify(msp);
3664
3665 /*
3666 * This code is disabled out because of issues with
3667 * tracepoints in non-gpl kernel modules.
3668 */
3669#if 0
3670 DTRACE_PROBE3(ms__activation__attempt,
3671 metaslab_t *, msp, uint64_t, activation_weight,
3672 boolean_t, was_active);
3673#endif
3674
34dc7c2f
BB
3675 /*
3676 * Ensure that the metaslab we have selected is still
3677 * capable of handling our request. It's possible that
3678 * another thread may have changed the weight while we
4e21fd06
DB
3679 * were blocked on the metaslab lock. We check the
3680 * active status first to see if we need to reselect
3681 * a new metaslab.
34dc7c2f 3682 */
4e21fd06 3683 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
679b0f2a 3684 ASSERT3S(msp->ms_allocator, ==, -1);
34dc7c2f
BB
3685 mutex_exit(&msp->ms_lock);
3686 continue;
3687 }
3688
492f64e9 3689 /*
679b0f2a
PD
3690 * If the metaslab was activated for another allocator
3691 * while we were waiting in the ms_lock above, or it's
3692 * a primary and we're seeking a secondary (or vice versa),
3693 * we go back and select a new metaslab.
492f64e9
PD
3694 */
3695 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
3696 (msp->ms_allocator != -1) &&
3697 (msp->ms_allocator != allocator || ((activation_weight ==
3698 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
679b0f2a
PD
3699 ASSERT(msp->ms_loaded);
3700 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
3701 msp->ms_allocator != -1);
492f64e9
PD
3702 mutex_exit(&msp->ms_lock);
3703 continue;
3704 }
3705
679b0f2a
PD
3706 /*
3707 * This metaslab was used for claiming regions allocated
3708 * by the ZIL during pool import. Once these regions are
3709 * claimed we don't need to keep the CLAIM bit set
3710 * anymore. Passivate this metaslab to zero its activation
3711 * mask.
3712 */
e38afd34 3713 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
3714 activation_weight != METASLAB_WEIGHT_CLAIM) {
679b0f2a
PD
3715 ASSERT(msp->ms_loaded);
3716 ASSERT3S(msp->ms_allocator, ==, -1);
492f64e9
PD
3717 metaslab_passivate(msp, msp->ms_weight &
3718 ~METASLAB_WEIGHT_CLAIM);
34dc7c2f
BB
3719 mutex_exit(&msp->ms_lock);
3720 continue;
3721 }
3722
679b0f2a
PD
3723 msp->ms_selected_txg = txg;
3724
3725 int activation_error =
3726 metaslab_activate(msp, allocator, activation_weight);
3727 metaslab_active_mask_verify(msp);
3728
3729 /*
3730 * If the metaslab was activated by another thread for
3731 * another allocator or activation_weight (EBUSY), or it
3732 * failed because another metaslab was assigned as primary
3733 * for this allocator (EEXIST) we continue using this
3734 * metaslab for our allocation, rather than going on to a
3735 * worse metaslab (we waited for that metaslab to be loaded
3736 * after all).
3737 *
3738 * If the activation failed due to an I/O error we skip to
3739 * the next metaslab.
3740 */
3741 boolean_t activated;
3742 if (activation_error == 0) {
3743 activated = B_TRUE;
3744 } else if (activation_error == EBUSY ||
3745 activation_error == EEXIST) {
3746 activated = B_FALSE;
3747 } else {
34dc7c2f
BB
3748 mutex_exit(&msp->ms_lock);
3749 continue;
3750 }
679b0f2a 3751 ASSERT(msp->ms_loaded);
4e21fd06
DB
3752
3753 /*
3754 * Now that we have the lock, recheck to see if we should
3755 * continue to use this metaslab for this allocation. The
679b0f2a
PD
3756 * the metaslab is now loaded so metaslab_should_allocate()
3757 * can accurately determine if the allocation attempt should
4e21fd06
DB
3758 * proceed.
3759 */
3760 if (!metaslab_should_allocate(msp, asize)) {
3761 /* Passivate this metaslab and select a new one. */
3762 metaslab_trace_add(zal, mg, msp, asize, d,
492f64e9 3763 TRACE_TOO_SMALL, allocator);
4e21fd06
DB
3764 goto next;
3765 }
3766
7a614407 3767 /*
679b0f2a
PD
3768 * If this metaslab is currently condensing then pick again
3769 * as we can't manipulate this metaslab until it's committed
619f0976
GW
3770 * to disk. If this metaslab is being initialized, we shouldn't
3771 * allocate from it since the allocated region might be
3772 * overwritten after allocation.
7a614407 3773 */
93cf2076 3774 if (msp->ms_condensing) {
4e21fd06 3775 metaslab_trace_add(zal, mg, msp, asize, d,
492f64e9 3776 TRACE_CONDENSING, allocator);
679b0f2a
PD
3777 if (activated) {
3778 metaslab_passivate(msp, msp->ms_weight &
3779 ~METASLAB_ACTIVE_MASK);
3780 }
7a614407
GW
3781 mutex_exit(&msp->ms_lock);
3782 continue;
1b939560 3783 } else if (msp->ms_disabled > 0) {
619f0976 3784 metaslab_trace_add(zal, mg, msp, asize, d,
1b939560 3785 TRACE_DISABLED, allocator);
679b0f2a
PD
3786 if (activated) {
3787 metaslab_passivate(msp, msp->ms_weight &
3788 ~METASLAB_ACTIVE_MASK);
3789 }
619f0976
GW
3790 mutex_exit(&msp->ms_lock);
3791 continue;
7a614407
GW
3792 }
3793
4e21fd06 3794 offset = metaslab_block_alloc(msp, asize, txg);
492f64e9 3795 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
4e21fd06
DB
3796
3797 if (offset != -1ULL) {
3798 /* Proactively passivate the metaslab, if needed */
679b0f2a
PD
3799 if (activated)
3800 metaslab_segment_may_passivate(msp);
34dc7c2f 3801 break;
4e21fd06
DB
3802 }
3803next:
3804 ASSERT(msp->ms_loaded);
3805
679b0f2a
PD
3806 /*
3807 * This code is disabled out because of issues with
3808 * tracepoints in non-gpl kernel modules.
3809 */
3810#if 0
3811 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
3812 uint64_t, asize);
3813#endif
3814
4e21fd06
DB
3815 /*
3816 * We were unable to allocate from this metaslab so determine
3817 * a new weight for this metaslab. Now that we have loaded
3818 * the metaslab we can provide a better hint to the metaslab
3819 * selector.
3820 *
3821 * For space-based metaslabs, we use the maximum block size.
3822 * This information is only available when the metaslab
3823 * is loaded and is more accurate than the generic free
3824 * space weight that was calculated by metaslab_weight().
3825 * This information allows us to quickly compare the maximum
3826 * available allocation in the metaslab to the allocation
3827 * size being requested.
3828 *
3829 * For segment-based metaslabs, determine the new weight
3830 * based on the highest bucket in the range tree. We
3831 * explicitly use the loaded segment weight (i.e. the range
3832 * tree histogram) since it contains the space that is
3833 * currently available for allocation and is accurate
3834 * even within a sync pass.
3835 */
679b0f2a 3836 uint64_t weight;
4e21fd06 3837 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
679b0f2a 3838 weight = metaslab_block_maxsize(msp);
4e21fd06 3839 WEIGHT_SET_SPACEBASED(weight);
679b0f2a
PD
3840 } else {
3841 weight = metaslab_weight_from_range_tree(msp);
3842 }
3843
3844 if (activated) {
4e21fd06
DB
3845 metaslab_passivate(msp, weight);
3846 } else {
679b0f2a
PD
3847 /*
3848 * For the case where we use the metaslab that is
3849 * active for another allocator we want to make
3850 * sure that we retain the activation mask.
3851 *
3852 * Note that we could attempt to use something like
3853 * metaslab_recalculate_weight_and_sort() that
3854 * retains the activation mask here. That function
3855 * uses metaslab_weight() to set the weight though
3856 * which is not as accurate as the calculations
3857 * above.
3858 */
3859 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
3860 metaslab_group_sort(mg, msp, weight);
4e21fd06 3861 }
679b0f2a 3862 metaslab_active_mask_verify(msp);
34dc7c2f 3863
4e21fd06
DB
3864 /*
3865 * We have just failed an allocation attempt, check
3866 * that metaslab_should_allocate() agrees. Otherwise,
3867 * we may end up in an infinite loop retrying the same
3868 * metaslab.
3869 */
3870 ASSERT(!metaslab_should_allocate(msp, asize));
cc99f275 3871
34dc7c2f
BB
3872 mutex_exit(&msp->ms_lock);
3873 }
4e21fd06
DB
3874 mutex_exit(&msp->ms_lock);
3875 kmem_free(search, sizeof (*search));
3876 return (offset);
3877}
34dc7c2f 3878
4e21fd06
DB
3879static uint64_t
3880metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
cc99f275
DB
3881 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva,
3882 int d, int allocator)
4e21fd06
DB
3883{
3884 uint64_t offset;
3885 ASSERT(mg->mg_initialized);
34dc7c2f 3886
cc99f275
DB
3887 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
3888 dva, d, allocator);
34dc7c2f 3889
4e21fd06
DB
3890 mutex_enter(&mg->mg_lock);
3891 if (offset == -1ULL) {
3892 mg->mg_failed_allocations++;
3893 metaslab_trace_add(zal, mg, NULL, asize, d,
492f64e9 3894 TRACE_GROUP_FAILURE, allocator);
4e21fd06
DB
3895 if (asize == SPA_GANGBLOCKSIZE) {
3896 /*
3897 * This metaslab group was unable to allocate
3898 * the minimum gang block size so it must be out of
3899 * space. We must notify the allocation throttle
3900 * to start skipping allocation attempts to this
3901 * metaslab group until more space becomes available.
3902 * Note: this failure cannot be caused by the
3903 * allocation throttle since the allocation throttle
3904 * is only responsible for skipping devices and
3905 * not failing block allocations.
3906 */
3907 mg->mg_no_free_space = B_TRUE;
3908 }
3909 }
3910 mg->mg_allocations++;
3911 mutex_exit(&mg->mg_lock);
34dc7c2f
BB
3912 return (offset);
3913}
3914
3915/*
3916 * Allocate a block for the specified i/o.
3917 */
a1d477c2 3918int
34dc7c2f 3919metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
4e21fd06 3920 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
492f64e9 3921 zio_alloc_list_t *zal, int allocator)
34dc7c2f 3922{
920dd524 3923 metaslab_group_t *mg, *fast_mg, *rotor;
34dc7c2f 3924 vdev_t *vd;
4e21fd06 3925 boolean_t try_hard = B_FALSE;
34dc7c2f
BB
3926
3927 ASSERT(!DVA_IS_VALID(&dva[d]));
3928
3929 /*
3930 * For testing, make some blocks above a certain size be gang blocks.
09b85f2d
BB
3931 * This will result in more split blocks when using device removal,
3932 * and a large number of split blocks coupled with ztest-induced
3933 * damage can result in extremely long reconstruction times. This
3934 * will also test spilling from special to normal.
34dc7c2f 3935 */
09b85f2d 3936 if (psize >= metaslab_force_ganging && (spa_get_random(100) < 3)) {
492f64e9
PD
3937 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
3938 allocator);
2e528b49 3939 return (SET_ERROR(ENOSPC));
4e21fd06 3940 }
34dc7c2f
BB
3941
3942 /*
3943 * Start at the rotor and loop through all mgs until we find something.
428870ff 3944 * Note that there's no locking on mc_rotor or mc_aliquot because
34dc7c2f
BB
3945 * nothing actually breaks if we miss a few updates -- we just won't
3946 * allocate quite as evenly. It all balances out over time.
3947 *
3948 * If we are doing ditto or log blocks, try to spread them across
3949 * consecutive vdevs. If we're forced to reuse a vdev before we've
3950 * allocated all of our ditto blocks, then try and spread them out on
3951 * that vdev as much as possible. If it turns out to not be possible,
3952 * gradually lower our standards until anything becomes acceptable.
3953 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
3954 * gives us hope of containing our fault domains to something we're
3955 * able to reason about. Otherwise, any two top-level vdev failures
3956 * will guarantee the loss of data. With consecutive allocation,
3957 * only two adjacent top-level vdev failures will result in data loss.
3958 *
3959 * If we are doing gang blocks (hintdva is non-NULL), try to keep
3960 * ourselves on the same vdev as our gang block header. That
3961 * way, we can hope for locality in vdev_cache, plus it makes our
3962 * fault domains something tractable.
3963 */
3964 if (hintdva) {
3965 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
428870ff
BB
3966
3967 /*
3968 * It's possible the vdev we're using as the hint no
a1d477c2
MA
3969 * longer exists or its mg has been closed (e.g. by
3970 * device removal). Consult the rotor when
428870ff
BB
3971 * all else fails.
3972 */
a1d477c2 3973 if (vd != NULL && vd->vdev_mg != NULL) {
34dc7c2f 3974 mg = vd->vdev_mg;
428870ff
BB
3975
3976 if (flags & METASLAB_HINTBP_AVOID &&
3977 mg->mg_next != NULL)
3978 mg = mg->mg_next;
3979 } else {
3980 mg = mc->mc_rotor;
3981 }
34dc7c2f
BB
3982 } else if (d != 0) {
3983 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
3984 mg = vd->vdev_mg->mg_next;
920dd524
ED
3985 } else if (flags & METASLAB_FASTWRITE) {
3986 mg = fast_mg = mc->mc_rotor;
3987
3988 do {
3989 if (fast_mg->mg_vd->vdev_pending_fastwrite <
3990 mg->mg_vd->vdev_pending_fastwrite)
3991 mg = fast_mg;
3992 } while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
3993
34dc7c2f 3994 } else {
cc99f275 3995 ASSERT(mc->mc_rotor != NULL);
34dc7c2f
BB
3996 mg = mc->mc_rotor;
3997 }
3998
3999 /*
428870ff
BB
4000 * If the hint put us into the wrong metaslab class, or into a
4001 * metaslab group that has been passivated, just follow the rotor.
34dc7c2f 4002 */
428870ff 4003 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
34dc7c2f
BB
4004 mg = mc->mc_rotor;
4005
4006 rotor = mg;
4007top:
34dc7c2f 4008 do {
4e21fd06 4009 boolean_t allocatable;
428870ff 4010
3dfb57a3 4011 ASSERT(mg->mg_activation_count == 1);
34dc7c2f 4012 vd = mg->mg_vd;
fb5f0bc8 4013
34dc7c2f 4014 /*
b128c09f 4015 * Don't allocate from faulted devices.
34dc7c2f 4016 */
4e21fd06 4017 if (try_hard) {
fb5f0bc8
BB
4018 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
4019 allocatable = vdev_allocatable(vd);
4020 spa_config_exit(spa, SCL_ZIO, FTAG);
4021 } else {
4022 allocatable = vdev_allocatable(vd);
4023 }
ac72fac3
GW
4024
4025 /*
4026 * Determine if the selected metaslab group is eligible
3dfb57a3
DB
4027 * for allocations. If we're ganging then don't allow
4028 * this metaslab group to skip allocations since that would
4029 * inadvertently return ENOSPC and suspend the pool
ac72fac3
GW
4030 * even though space is still available.
4031 */
4e21fd06 4032 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
3dfb57a3 4033 allocatable = metaslab_group_allocatable(mg, rotor,
c197a77c 4034 psize, allocator, d);
3dfb57a3 4035 }
ac72fac3 4036
4e21fd06
DB
4037 if (!allocatable) {
4038 metaslab_trace_add(zal, mg, NULL, psize, d,
492f64e9 4039 TRACE_NOT_ALLOCATABLE, allocator);
34dc7c2f 4040 goto next;
4e21fd06 4041 }
fb5f0bc8 4042
3dfb57a3
DB
4043 ASSERT(mg->mg_initialized);
4044
34dc7c2f 4045 /*
4e21fd06
DB
4046 * Avoid writing single-copy data to a failing,
4047 * non-redundant vdev, unless we've already tried all
4048 * other vdevs.
34dc7c2f
BB
4049 */
4050 if ((vd->vdev_stat.vs_write_errors > 0 ||
4051 vd->vdev_state < VDEV_STATE_HEALTHY) &&
4e21fd06
DB
4052 d == 0 && !try_hard && vd->vdev_children == 0) {
4053 metaslab_trace_add(zal, mg, NULL, psize, d,
492f64e9 4054 TRACE_VDEV_ERROR, allocator);
34dc7c2f
BB
4055 goto next;
4056 }
4057
4058 ASSERT(mg->mg_class == mc);
4059
1c27024e 4060 uint64_t asize = vdev_psize_to_asize(vd, psize);
34dc7c2f
BB
4061 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
4062
cc99f275
DB
4063 /*
4064 * If we don't need to try hard, then require that the
4065 * block be on an different metaslab from any other DVAs
4066 * in this BP (unique=true). If we are trying hard, then
4067 * allow any metaslab to be used (unique=false).
4068 */
1c27024e 4069 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
cc99f275 4070 !try_hard, dva, d, allocator);
3dfb57a3 4071
34dc7c2f
BB
4072 if (offset != -1ULL) {
4073 /*
4074 * If we've just selected this metaslab group,
4075 * figure out whether the corresponding vdev is
4076 * over- or under-used relative to the pool,
4077 * and set an allocation bias to even it out.
bb3250d0
ED
4078 *
4079 * Bias is also used to compensate for unequally
4080 * sized vdevs so that space is allocated fairly.
34dc7c2f 4081 */
f3a7f661 4082 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
34dc7c2f 4083 vdev_stat_t *vs = &vd->vdev_stat;
bb3250d0
ED
4084 int64_t vs_free = vs->vs_space - vs->vs_alloc;
4085 int64_t mc_free = mc->mc_space - mc->mc_alloc;
4086 int64_t ratio;
34dc7c2f
BB
4087
4088 /*
6d974228
GW
4089 * Calculate how much more or less we should
4090 * try to allocate from this device during
4091 * this iteration around the rotor.
6d974228 4092 *
bb3250d0
ED
4093 * This basically introduces a zero-centered
4094 * bias towards the devices with the most
4095 * free space, while compensating for vdev
4096 * size differences.
4097 *
4098 * Examples:
4099 * vdev V1 = 16M/128M
4100 * vdev V2 = 16M/128M
4101 * ratio(V1) = 100% ratio(V2) = 100%
4102 *
4103 * vdev V1 = 16M/128M
4104 * vdev V2 = 64M/128M
4105 * ratio(V1) = 127% ratio(V2) = 72%
6d974228 4106 *
bb3250d0
ED
4107 * vdev V1 = 16M/128M
4108 * vdev V2 = 64M/512M
4109 * ratio(V1) = 40% ratio(V2) = 160%
34dc7c2f 4110 */
bb3250d0
ED
4111 ratio = (vs_free * mc->mc_alloc_groups * 100) /
4112 (mc_free + 1);
4113 mg->mg_bias = ((ratio - 100) *
6d974228 4114 (int64_t)mg->mg_aliquot) / 100;
f3a7f661
GW
4115 } else if (!metaslab_bias_enabled) {
4116 mg->mg_bias = 0;
34dc7c2f
BB
4117 }
4118
920dd524
ED
4119 if ((flags & METASLAB_FASTWRITE) ||
4120 atomic_add_64_nv(&mc->mc_aliquot, asize) >=
34dc7c2f
BB
4121 mg->mg_aliquot + mg->mg_bias) {
4122 mc->mc_rotor = mg->mg_next;
428870ff 4123 mc->mc_aliquot = 0;
34dc7c2f
BB
4124 }
4125
4126 DVA_SET_VDEV(&dva[d], vd->vdev_id);
4127 DVA_SET_OFFSET(&dva[d], offset);
e3e7cf60
D
4128 DVA_SET_GANG(&dva[d],
4129 ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
34dc7c2f
BB
4130 DVA_SET_ASIZE(&dva[d], asize);
4131
920dd524
ED
4132 if (flags & METASLAB_FASTWRITE) {
4133 atomic_add_64(&vd->vdev_pending_fastwrite,
4134 psize);
920dd524
ED
4135 }
4136
34dc7c2f
BB
4137 return (0);
4138 }
4139next:
4140 mc->mc_rotor = mg->mg_next;
428870ff 4141 mc->mc_aliquot = 0;
34dc7c2f
BB
4142 } while ((mg = mg->mg_next) != rotor);
4143
4e21fd06
DB
4144 /*
4145 * If we haven't tried hard, do so now.
4146 */
4147 if (!try_hard) {
4148 try_hard = B_TRUE;
fb5f0bc8
BB
4149 goto top;
4150 }
4151
34dc7c2f
BB
4152 bzero(&dva[d], sizeof (dva_t));
4153
492f64e9 4154 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
2e528b49 4155 return (SET_ERROR(ENOSPC));
34dc7c2f
BB
4156}
4157
a1d477c2
MA
4158void
4159metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
d2734cce 4160 boolean_t checkpoint)
a1d477c2
MA
4161{
4162 metaslab_t *msp;
d2734cce 4163 spa_t *spa = vd->vdev_spa;
a1d477c2 4164
a1d477c2
MA
4165 ASSERT(vdev_is_concrete(vd));
4166 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
4167 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
4168
4169 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
4170
4171 VERIFY(!msp->ms_condensing);
4172 VERIFY3U(offset, >=, msp->ms_start);
4173 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
4174 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
4175 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
4176
4177 metaslab_check_free_impl(vd, offset, asize);
d2734cce 4178
a1d477c2 4179 mutex_enter(&msp->ms_lock);
d2734cce
SD
4180 if (range_tree_is_empty(msp->ms_freeing) &&
4181 range_tree_is_empty(msp->ms_checkpointing)) {
4182 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
4183 }
4184
4185 if (checkpoint) {
4186 ASSERT(spa_has_checkpoint(spa));
4187 range_tree_add(msp->ms_checkpointing, offset, asize);
4188 } else {
4189 range_tree_add(msp->ms_freeing, offset, asize);
a1d477c2 4190 }
a1d477c2
MA
4191 mutex_exit(&msp->ms_lock);
4192}
4193
4194/* ARGSUSED */
4195void
4196metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
4197 uint64_t size, void *arg)
4198{
d2734cce
SD
4199 boolean_t *checkpoint = arg;
4200
4201 ASSERT3P(checkpoint, !=, NULL);
a1d477c2
MA
4202
4203 if (vd->vdev_ops->vdev_op_remap != NULL)
d2734cce 4204 vdev_indirect_mark_obsolete(vd, offset, size);
a1d477c2 4205 else
d2734cce 4206 metaslab_free_impl(vd, offset, size, *checkpoint);
a1d477c2
MA
4207}
4208
4209static void
4210metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
d2734cce 4211 boolean_t checkpoint)
a1d477c2
MA
4212{
4213 spa_t *spa = vd->vdev_spa;
4214
4215 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
4216
d2734cce 4217 if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
a1d477c2
MA
4218 return;
4219
4220 if (spa->spa_vdev_removal != NULL &&
9e052db4 4221 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
a1d477c2
MA
4222 vdev_is_concrete(vd)) {
4223 /*
4224 * Note: we check if the vdev is concrete because when
4225 * we complete the removal, we first change the vdev to be
4226 * an indirect vdev (in open context), and then (in syncing
4227 * context) clear spa_vdev_removal.
4228 */
d2734cce 4229 free_from_removing_vdev(vd, offset, size);
a1d477c2 4230 } else if (vd->vdev_ops->vdev_op_remap != NULL) {
d2734cce 4231 vdev_indirect_mark_obsolete(vd, offset, size);
a1d477c2 4232 vd->vdev_ops->vdev_op_remap(vd, offset, size,
d2734cce 4233 metaslab_free_impl_cb, &checkpoint);
a1d477c2 4234 } else {
d2734cce 4235 metaslab_free_concrete(vd, offset, size, checkpoint);
a1d477c2
MA
4236 }
4237}
4238
4239typedef struct remap_blkptr_cb_arg {
4240 blkptr_t *rbca_bp;
4241 spa_remap_cb_t rbca_cb;
4242 vdev_t *rbca_remap_vd;
4243 uint64_t rbca_remap_offset;
4244 void *rbca_cb_arg;
4245} remap_blkptr_cb_arg_t;
4246
4247void
4248remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
4249 uint64_t size, void *arg)
4250{
4251 remap_blkptr_cb_arg_t *rbca = arg;
4252 blkptr_t *bp = rbca->rbca_bp;
4253
4254 /* We can not remap split blocks. */
4255 if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
4256 return;
4257 ASSERT0(inner_offset);
4258
4259 if (rbca->rbca_cb != NULL) {
4260 /*
4261 * At this point we know that we are not handling split
4262 * blocks and we invoke the callback on the previous
4263 * vdev which must be indirect.
4264 */
4265 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
4266
4267 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
4268 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
4269
4270 /* set up remap_blkptr_cb_arg for the next call */
4271 rbca->rbca_remap_vd = vd;
4272 rbca->rbca_remap_offset = offset;
4273 }
4274
4275 /*
4276 * The phys birth time is that of dva[0]. This ensures that we know
4277 * when each dva was written, so that resilver can determine which
4278 * blocks need to be scrubbed (i.e. those written during the time
4279 * the vdev was offline). It also ensures that the key used in
4280 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If
4281 * we didn't change the phys_birth, a lookup in the ARC for a
4282 * remapped BP could find the data that was previously stored at
4283 * this vdev + offset.
4284 */
4285 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
4286 DVA_GET_VDEV(&bp->blk_dva[0]));
4287 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
4288 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
4289 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
4290
4291 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
4292 DVA_SET_OFFSET(&bp->blk_dva[0], offset);
4293}
4294
34dc7c2f 4295/*
a1d477c2
MA
4296 * If the block pointer contains any indirect DVAs, modify them to refer to
4297 * concrete DVAs. Note that this will sometimes not be possible, leaving
4298 * the indirect DVA in place. This happens if the indirect DVA spans multiple
4299 * segments in the mapping (i.e. it is a "split block").
4300 *
4301 * If the BP was remapped, calls the callback on the original dva (note the
4302 * callback can be called multiple times if the original indirect DVA refers
4303 * to another indirect DVA, etc).
4304 *
4305 * Returns TRUE if the BP was remapped.
34dc7c2f 4306 */
a1d477c2
MA
4307boolean_t
4308spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
34dc7c2f 4309{
a1d477c2
MA
4310 remap_blkptr_cb_arg_t rbca;
4311
4312 if (!zfs_remap_blkptr_enable)
4313 return (B_FALSE);
4314
4315 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
4316 return (B_FALSE);
4317
4318 /*
4319 * Dedup BP's can not be remapped, because ddt_phys_select() depends
4320 * on DVA[0] being the same in the BP as in the DDT (dedup table).
4321 */
4322 if (BP_GET_DEDUP(bp))
4323 return (B_FALSE);
4324
4325 /*
4326 * Gang blocks can not be remapped, because
4327 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
4328 * the BP used to read the gang block header (GBH) being the same
4329 * as the DVA[0] that we allocated for the GBH.
4330 */
4331 if (BP_IS_GANG(bp))
4332 return (B_FALSE);
4333
4334 /*
4335 * Embedded BP's have no DVA to remap.
4336 */
4337 if (BP_GET_NDVAS(bp) < 1)
4338 return (B_FALSE);
4339
4340 /*
4341 * Note: we only remap dva[0]. If we remapped other dvas, we
4342 * would no longer know what their phys birth txg is.
4343 */
4344 dva_t *dva = &bp->blk_dva[0];
4345
34dc7c2f
BB
4346 uint64_t offset = DVA_GET_OFFSET(dva);
4347 uint64_t size = DVA_GET_ASIZE(dva);
a1d477c2
MA
4348 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
4349
4350 if (vd->vdev_ops->vdev_op_remap == NULL)
4351 return (B_FALSE);
4352
4353 rbca.rbca_bp = bp;
4354 rbca.rbca_cb = callback;
4355 rbca.rbca_remap_vd = vd;
4356 rbca.rbca_remap_offset = offset;
4357 rbca.rbca_cb_arg = arg;
4358
4359 /*
4360 * remap_blkptr_cb() will be called in order for each level of
4361 * indirection, until a concrete vdev is reached or a split block is
4362 * encountered. old_vd and old_offset are updated within the callback
4363 * as we go from the one indirect vdev to the next one (either concrete
4364 * or indirect again) in that order.
4365 */
4366 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
4367
4368 /* Check if the DVA wasn't remapped because it is a split block */
4369 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
4370 return (B_FALSE);
4371
4372 return (B_TRUE);
4373}
4374
4375/*
4376 * Undo the allocation of a DVA which happened in the given transaction group.
4377 */
4378void
4379metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
4380{
34dc7c2f 4381 metaslab_t *msp;
a1d477c2
MA
4382 vdev_t *vd;
4383 uint64_t vdev = DVA_GET_VDEV(dva);
4384 uint64_t offset = DVA_GET_OFFSET(dva);
4385 uint64_t size = DVA_GET_ASIZE(dva);
4386
4387 ASSERT(DVA_IS_VALID(dva));
4388 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
34dc7c2f 4389
34dc7c2f
BB
4390 if (txg > spa_freeze_txg(spa))
4391 return;
4392
7d2868d5 4393 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
34dc7c2f 4394 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
7d2868d5
BB
4395 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
4396 (u_longlong_t)vdev, (u_longlong_t)offset,
4397 (u_longlong_t)size);
34dc7c2f
BB
4398 return;
4399 }
4400
a1d477c2
MA
4401 ASSERT(!vd->vdev_removing);
4402 ASSERT(vdev_is_concrete(vd));
4403 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
4404 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
34dc7c2f
BB
4405
4406 if (DVA_GET_GANG(dva))
4407 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4408
a1d477c2 4409 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
93cf2076 4410
a1d477c2 4411 mutex_enter(&msp->ms_lock);
d2734cce 4412 range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
a1d477c2 4413 offset, size);
34dc7c2f 4414
a1d477c2
MA
4415 VERIFY(!msp->ms_condensing);
4416 VERIFY3U(offset, >=, msp->ms_start);
4417 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
d2734cce 4418 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
a1d477c2
MA
4419 msp->ms_size);
4420 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
4421 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
d2734cce 4422 range_tree_add(msp->ms_allocatable, offset, size);
34dc7c2f
BB
4423 mutex_exit(&msp->ms_lock);
4424}
4425
4426/*
d2734cce 4427 * Free the block represented by the given DVA.
34dc7c2f 4428 */
a1d477c2 4429void
d2734cce 4430metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
34dc7c2f
BB
4431{
4432 uint64_t vdev = DVA_GET_VDEV(dva);
4433 uint64_t offset = DVA_GET_OFFSET(dva);
4434 uint64_t size = DVA_GET_ASIZE(dva);
a1d477c2 4435 vdev_t *vd = vdev_lookup_top(spa, vdev);
34dc7c2f
BB
4436
4437 ASSERT(DVA_IS_VALID(dva));
a1d477c2 4438 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
34dc7c2f 4439
a1d477c2 4440 if (DVA_GET_GANG(dva)) {
34dc7c2f 4441 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
34dc7c2f
BB
4442 }
4443
d2734cce 4444 metaslab_free_impl(vd, offset, size, checkpoint);
34dc7c2f
BB
4445}
4446
3dfb57a3
DB
4447/*
4448 * Reserve some allocation slots. The reservation system must be called
4449 * before we call into the allocator. If there aren't any available slots
4450 * then the I/O will be throttled until an I/O completes and its slots are
4451 * freed up. The function returns true if it was successful in placing
4452 * the reservation.
4453 */
4454boolean_t
492f64e9
PD
4455metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
4456 zio_t *zio, int flags)
3dfb57a3
DB
4457{
4458 uint64_t available_slots = 0;
3dfb57a3 4459 boolean_t slot_reserved = B_FALSE;
492f64e9 4460 uint64_t max = mc->mc_alloc_max_slots[allocator];
3dfb57a3
DB
4461
4462 ASSERT(mc->mc_alloc_throttle_enabled);
4463 mutex_enter(&mc->mc_lock);
4464
492f64e9 4465 uint64_t reserved_slots =
424fd7c3 4466 zfs_refcount_count(&mc->mc_alloc_slots[allocator]);
492f64e9
PD
4467 if (reserved_slots < max)
4468 available_slots = max - reserved_slots;
3dfb57a3 4469
cc99f275
DB
4470 if (slots <= available_slots || GANG_ALLOCATION(flags) ||
4471 flags & METASLAB_MUST_RESERVE) {
3dfb57a3
DB
4472 /*
4473 * We reserve the slots individually so that we can unreserve
4474 * them individually when an I/O completes.
4475 */
1c27024e 4476 for (int d = 0; d < slots; d++) {
492f64e9 4477 reserved_slots =
c13060e4 4478 zfs_refcount_add(&mc->mc_alloc_slots[allocator],
492f64e9 4479 zio);
3dfb57a3
DB
4480 }
4481 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
4482 slot_reserved = B_TRUE;
4483 }
4484
4485 mutex_exit(&mc->mc_lock);
4486 return (slot_reserved);
4487}
4488
4489void
492f64e9
PD
4490metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
4491 int allocator, zio_t *zio)
3dfb57a3 4492{
3dfb57a3
DB
4493 ASSERT(mc->mc_alloc_throttle_enabled);
4494 mutex_enter(&mc->mc_lock);
1c27024e 4495 for (int d = 0; d < slots; d++) {
424fd7c3 4496 (void) zfs_refcount_remove(&mc->mc_alloc_slots[allocator],
492f64e9 4497 zio);
3dfb57a3
DB
4498 }
4499 mutex_exit(&mc->mc_lock);
4500}
4501
a1d477c2
MA
4502static int
4503metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
4504 uint64_t txg)
4505{
4506 metaslab_t *msp;
4507 spa_t *spa = vd->vdev_spa;
4508 int error = 0;
4509
4510 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
7ab96299 4511 return (SET_ERROR(ENXIO));
a1d477c2
MA
4512
4513 ASSERT3P(vd->vdev_ms, !=, NULL);
4514 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
4515
4516 mutex_enter(&msp->ms_lock);
4517
7ab96299 4518 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
492f64e9 4519 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
7ab96299
TC
4520 if (error == EBUSY) {
4521 ASSERT(msp->ms_loaded);
4522 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4523 error = 0;
4524 }
4525 }
a1d477c2 4526
d2734cce
SD
4527 if (error == 0 &&
4528 !range_tree_contains(msp->ms_allocatable, offset, size))
a1d477c2
MA
4529 error = SET_ERROR(ENOENT);
4530
4531 if (error || txg == 0) { /* txg == 0 indicates dry run */
4532 mutex_exit(&msp->ms_lock);
4533 return (error);
4534 }
4535
4536 VERIFY(!msp->ms_condensing);
4537 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
4538 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
d2734cce
SD
4539 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
4540 msp->ms_size);
4541 range_tree_remove(msp->ms_allocatable, offset, size);
1b939560 4542 range_tree_clear(msp->ms_trim, offset, size);
a1d477c2
MA
4543
4544 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
d2734cce 4545 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
a1d477c2 4546 vdev_dirty(vd, VDD_METASLAB, msp, txg);
d2734cce
SD
4547 range_tree_add(msp->ms_allocating[txg & TXG_MASK],
4548 offset, size);
a1d477c2
MA
4549 }
4550
4551 mutex_exit(&msp->ms_lock);
4552
4553 return (0);
4554}
4555
4556typedef struct metaslab_claim_cb_arg_t {
4557 uint64_t mcca_txg;
4558 int mcca_error;
4559} metaslab_claim_cb_arg_t;
4560
4561/* ARGSUSED */
4562static void
4563metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
4564 uint64_t size, void *arg)
4565{
4566 metaslab_claim_cb_arg_t *mcca_arg = arg;
4567
4568 if (mcca_arg->mcca_error == 0) {
4569 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
4570 size, mcca_arg->mcca_txg);
4571 }
4572}
4573
4574int
4575metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
4576{
4577 if (vd->vdev_ops->vdev_op_remap != NULL) {
4578 metaslab_claim_cb_arg_t arg;
4579
4580 /*
4581 * Only zdb(1M) can claim on indirect vdevs. This is used
4582 * to detect leaks of mapped space (that are not accounted
4583 * for in the obsolete counts, spacemap, or bpobj).
4584 */
4585 ASSERT(!spa_writeable(vd->vdev_spa));
4586 arg.mcca_error = 0;
4587 arg.mcca_txg = txg;
4588
4589 vd->vdev_ops->vdev_op_remap(vd, offset, size,
4590 metaslab_claim_impl_cb, &arg);
4591
4592 if (arg.mcca_error == 0) {
4593 arg.mcca_error = metaslab_claim_concrete(vd,
4594 offset, size, txg);
4595 }
4596 return (arg.mcca_error);
4597 } else {
4598 return (metaslab_claim_concrete(vd, offset, size, txg));
4599 }
4600}
4601
4602/*
4603 * Intent log support: upon opening the pool after a crash, notify the SPA
4604 * of blocks that the intent log has allocated for immediate write, but
4605 * which are still considered free by the SPA because the last transaction
4606 * group didn't commit yet.
4607 */
4608static int
4609metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
4610{
4611 uint64_t vdev = DVA_GET_VDEV(dva);
4612 uint64_t offset = DVA_GET_OFFSET(dva);
4613 uint64_t size = DVA_GET_ASIZE(dva);
4614 vdev_t *vd;
4615
4616 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
4617 return (SET_ERROR(ENXIO));
4618 }
4619
4620 ASSERT(DVA_IS_VALID(dva));
4621
4622 if (DVA_GET_GANG(dva))
4623 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4624
4625 return (metaslab_claim_impl(vd, offset, size, txg));
4626}
4627
34dc7c2f
BB
4628int
4629metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
4e21fd06 4630 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
492f64e9 4631 zio_alloc_list_t *zal, zio_t *zio, int allocator)
34dc7c2f
BB
4632{
4633 dva_t *dva = bp->blk_dva;
928e8ad4 4634 dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
1c27024e 4635 int error = 0;
34dc7c2f 4636
b128c09f 4637 ASSERT(bp->blk_birth == 0);
428870ff 4638 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
b128c09f
BB
4639
4640 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4641
4642 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
4643 spa_config_exit(spa, SCL_ALLOC, FTAG);
2e528b49 4644 return (SET_ERROR(ENOSPC));
b128c09f 4645 }
34dc7c2f
BB
4646
4647 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
4648 ASSERT(BP_GET_NDVAS(bp) == 0);
4649 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
4e21fd06 4650 ASSERT3P(zal, !=, NULL);
34dc7c2f 4651
1c27024e 4652 for (int d = 0; d < ndvas; d++) {
34dc7c2f 4653 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
492f64e9 4654 txg, flags, zal, allocator);
93cf2076 4655 if (error != 0) {
34dc7c2f 4656 for (d--; d >= 0; d--) {
a1d477c2 4657 metaslab_unalloc_dva(spa, &dva[d], txg);
3dfb57a3 4658 metaslab_group_alloc_decrement(spa,
492f64e9
PD
4659 DVA_GET_VDEV(&dva[d]), zio, flags,
4660 allocator, B_FALSE);
34dc7c2f
BB
4661 bzero(&dva[d], sizeof (dva_t));
4662 }
b128c09f 4663 spa_config_exit(spa, SCL_ALLOC, FTAG);
34dc7c2f 4664 return (error);
3dfb57a3
DB
4665 } else {
4666 /*
4667 * Update the metaslab group's queue depth
4668 * based on the newly allocated dva.
4669 */
4670 metaslab_group_alloc_increment(spa,
492f64e9 4671 DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
34dc7c2f 4672 }
3dfb57a3 4673
34dc7c2f
BB
4674 }
4675 ASSERT(error == 0);
4676 ASSERT(BP_GET_NDVAS(bp) == ndvas);
4677
b128c09f
BB
4678 spa_config_exit(spa, SCL_ALLOC, FTAG);
4679
efe7978d 4680 BP_SET_BIRTH(bp, txg, 0);
b128c09f 4681
34dc7c2f
BB
4682 return (0);
4683}
4684
4685void
4686metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
4687{
4688 const dva_t *dva = bp->blk_dva;
1c27024e 4689 int ndvas = BP_GET_NDVAS(bp);
34dc7c2f
BB
4690
4691 ASSERT(!BP_IS_HOLE(bp));
428870ff 4692 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
b128c09f 4693
d2734cce
SD
4694 /*
4695 * If we have a checkpoint for the pool we need to make sure that
4696 * the blocks that we free that are part of the checkpoint won't be
4697 * reused until the checkpoint is discarded or we revert to it.
4698 *
4699 * The checkpoint flag is passed down the metaslab_free code path
4700 * and is set whenever we want to add a block to the checkpoint's
4701 * accounting. That is, we "checkpoint" blocks that existed at the
4702 * time the checkpoint was created and are therefore referenced by
4703 * the checkpointed uberblock.
4704 *
4705 * Note that, we don't checkpoint any blocks if the current
4706 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
4707 * normally as they will be referenced by the checkpointed uberblock.
4708 */
4709 boolean_t checkpoint = B_FALSE;
4710 if (bp->blk_birth <= spa->spa_checkpoint_txg &&
4711 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
4712 /*
4713 * At this point, if the block is part of the checkpoint
4714 * there is no way it was created in the current txg.
4715 */
4716 ASSERT(!now);
4717 ASSERT3U(spa_syncing_txg(spa), ==, txg);
4718 checkpoint = B_TRUE;
4719 }
4720
b128c09f 4721 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
34dc7c2f 4722
a1d477c2
MA
4723 for (int d = 0; d < ndvas; d++) {
4724 if (now) {
4725 metaslab_unalloc_dva(spa, &dva[d], txg);
4726 } else {
d2734cce
SD
4727 ASSERT3U(txg, ==, spa_syncing_txg(spa));
4728 metaslab_free_dva(spa, &dva[d], checkpoint);
a1d477c2
MA
4729 }
4730 }
b128c09f
BB
4731
4732 spa_config_exit(spa, SCL_FREE, FTAG);
34dc7c2f
BB
4733}
4734
4735int
4736metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
4737{
4738 const dva_t *dva = bp->blk_dva;
4739 int ndvas = BP_GET_NDVAS(bp);
1c27024e 4740 int error = 0;
34dc7c2f
BB
4741
4742 ASSERT(!BP_IS_HOLE(bp));
4743
b128c09f
BB
4744 if (txg != 0) {
4745 /*
4746 * First do a dry run to make sure all DVAs are claimable,
4747 * so we don't have to unwind from partial failures below.
4748 */
4749 if ((error = metaslab_claim(spa, bp, 0)) != 0)
4750 return (error);
4751 }
4752
4753 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4754
cc99f275
DB
4755 for (int d = 0; d < ndvas; d++) {
4756 error = metaslab_claim_dva(spa, &dva[d], txg);
4757 if (error != 0)
b128c09f 4758 break;
cc99f275 4759 }
b128c09f
BB
4760
4761 spa_config_exit(spa, SCL_ALLOC, FTAG);
4762
4763 ASSERT(error == 0 || txg == 0);
34dc7c2f 4764
b128c09f 4765 return (error);
34dc7c2f 4766}
920dd524 4767
d1d7e268
MK
4768void
4769metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
920dd524
ED
4770{
4771 const dva_t *dva = bp->blk_dva;
4772 int ndvas = BP_GET_NDVAS(bp);
4773 uint64_t psize = BP_GET_PSIZE(bp);
4774 int d;
4775 vdev_t *vd;
4776
4777 ASSERT(!BP_IS_HOLE(bp));
9b67f605 4778 ASSERT(!BP_IS_EMBEDDED(bp));
920dd524
ED
4779 ASSERT(psize > 0);
4780
4781 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4782
4783 for (d = 0; d < ndvas; d++) {
4784 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
4785 continue;
4786 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
4787 }
4788
4789 spa_config_exit(spa, SCL_VDEV, FTAG);
4790}
4791
d1d7e268
MK
4792void
4793metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
920dd524
ED
4794{
4795 const dva_t *dva = bp->blk_dva;
4796 int ndvas = BP_GET_NDVAS(bp);
4797 uint64_t psize = BP_GET_PSIZE(bp);
4798 int d;
4799 vdev_t *vd;
4800
4801 ASSERT(!BP_IS_HOLE(bp));
9b67f605 4802 ASSERT(!BP_IS_EMBEDDED(bp));
920dd524
ED
4803 ASSERT(psize > 0);
4804
4805 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4806
4807 for (d = 0; d < ndvas; d++) {
4808 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
4809 continue;
4810 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
4811 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
4812 }
4813
4814 spa_config_exit(spa, SCL_VDEV, FTAG);
4815}
30b92c1d 4816
a1d477c2
MA
4817/* ARGSUSED */
4818static void
4819metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
4820 uint64_t size, void *arg)
4821{
4822 if (vd->vdev_ops == &vdev_indirect_ops)
4823 return;
4824
4825 metaslab_check_free_impl(vd, offset, size);
4826}
4827
4828static void
4829metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
4830{
4831 metaslab_t *msp;
4832 ASSERTV(spa_t *spa = vd->vdev_spa);
4833
4834 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
4835 return;
4836
4837 if (vd->vdev_ops->vdev_op_remap != NULL) {
4838 vd->vdev_ops->vdev_op_remap(vd, offset, size,
4839 metaslab_check_free_impl_cb, NULL);
4840 return;
4841 }
4842
4843 ASSERT(vdev_is_concrete(vd));
4844 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
4845 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
4846
4847 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
4848
4849 mutex_enter(&msp->ms_lock);
df72b8be
SD
4850 if (msp->ms_loaded) {
4851 range_tree_verify_not_present(msp->ms_allocatable,
4852 offset, size);
4853 }
a1d477c2 4854
1b939560 4855 range_tree_verify_not_present(msp->ms_trim, offset, size);
df72b8be
SD
4856 range_tree_verify_not_present(msp->ms_freeing, offset, size);
4857 range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
4858 range_tree_verify_not_present(msp->ms_freed, offset, size);
a1d477c2 4859 for (int j = 0; j < TXG_DEFER_SIZE; j++)
df72b8be 4860 range_tree_verify_not_present(msp->ms_defer[j], offset, size);
a1d477c2
MA
4861 mutex_exit(&msp->ms_lock);
4862}
4863
13fe0198
MA
4864void
4865metaslab_check_free(spa_t *spa, const blkptr_t *bp)
4866{
13fe0198
MA
4867 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
4868 return;
4869
4870 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1c27024e 4871 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
93cf2076
GW
4872 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
4873 vdev_t *vd = vdev_lookup_top(spa, vdev);
4874 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
13fe0198 4875 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
13fe0198 4876
a1d477c2
MA
4877 if (DVA_GET_GANG(&bp->blk_dva[i]))
4878 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4879
4880 ASSERT3P(vd, !=, NULL);
13fe0198 4881
a1d477c2 4882 metaslab_check_free_impl(vd, offset, size);
13fe0198
MA
4883 }
4884 spa_config_exit(spa, SCL_VDEV, FTAG);
4885}
4886
1b939560
BB
4887static void
4888metaslab_group_disable_wait(metaslab_group_t *mg)
4889{
4890 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
4891 while (mg->mg_disabled_updating) {
4892 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
4893 }
4894}
4895
4896static void
4897metaslab_group_disabled_increment(metaslab_group_t *mg)
4898{
4899 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
4900 ASSERT(mg->mg_disabled_updating);
4901
4902 while (mg->mg_ms_disabled >= max_disabled_ms) {
4903 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
4904 }
4905 mg->mg_ms_disabled++;
4906 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
4907}
4908
4909/*
4910 * Mark the metaslab as disabled to prevent any allocations on this metaslab.
4911 * We must also track how many metaslabs are currently disabled within a
4912 * metaslab group and limit them to prevent allocation failures from
4913 * occurring because all metaslabs are disabled.
4914 */
4915void
4916metaslab_disable(metaslab_t *msp)
4917{
4918 ASSERT(!MUTEX_HELD(&msp->ms_lock));
4919 metaslab_group_t *mg = msp->ms_group;
4920
4921 mutex_enter(&mg->mg_ms_disabled_lock);
4922
4923 /*
4924 * To keep an accurate count of how many threads have disabled
4925 * a specific metaslab group, we only allow one thread to mark
4926 * the metaslab group at a time. This ensures that the value of
4927 * ms_disabled will be accurate when we decide to mark a metaslab
4928 * group as disabled. To do this we force all other threads
4929 * to wait till the metaslab's mg_disabled_updating flag is no
4930 * longer set.
4931 */
4932 metaslab_group_disable_wait(mg);
4933 mg->mg_disabled_updating = B_TRUE;
4934 if (msp->ms_disabled == 0) {
4935 metaslab_group_disabled_increment(mg);
4936 }
4937 mutex_enter(&msp->ms_lock);
4938 msp->ms_disabled++;
4939 mutex_exit(&msp->ms_lock);
4940
4941 mg->mg_disabled_updating = B_FALSE;
4942 cv_broadcast(&mg->mg_ms_disabled_cv);
4943 mutex_exit(&mg->mg_ms_disabled_lock);
4944}
4945
4946void
4947metaslab_enable(metaslab_t *msp, boolean_t sync)
4948{
4949 metaslab_group_t *mg = msp->ms_group;
4950 spa_t *spa = mg->mg_vd->vdev_spa;
4951
4952 /*
4953 * Wait for the outstanding IO to be synced to prevent newly
4954 * allocated blocks from being overwritten. This used by
4955 * initialize and TRIM which are modifying unallocated space.
4956 */
4957 if (sync)
4958 txg_wait_synced(spa_get_dsl(spa), 0);
4959
4960 mutex_enter(&mg->mg_ms_disabled_lock);
4961 mutex_enter(&msp->ms_lock);
4962 if (--msp->ms_disabled == 0) {
4963 mg->mg_ms_disabled--;
4964 cv_broadcast(&mg->mg_ms_disabled_cv);
4965 }
4966 mutex_exit(&msp->ms_lock);
4967 mutex_exit(&mg->mg_ms_disabled_lock);
4968}
4969
93ce2b4c 4970#if defined(_KERNEL)
cc99f275 4971/* BEGIN CSTYLED */
99b14de4 4972module_param(metaslab_aliquot, ulong, 0644);
99b14de4
ED
4973MODULE_PARM_DESC(metaslab_aliquot,
4974 "allocation granularity (a.k.a. stripe size)");
02730c33
BB
4975
4976module_param(metaslab_debug_load, int, 0644);
93cf2076
GW
4977MODULE_PARM_DESC(metaslab_debug_load,
4978 "load all metaslabs when pool is first opened");
02730c33
BB
4979
4980module_param(metaslab_debug_unload, int, 0644);
1ce04573
BB
4981MODULE_PARM_DESC(metaslab_debug_unload,
4982 "prevent metaslabs from being unloaded");
02730c33
BB
4983
4984module_param(metaslab_preload_enabled, int, 0644);
f3a7f661
GW
4985MODULE_PARM_DESC(metaslab_preload_enabled,
4986 "preload potential metaslabs during reassessment");
f4a4046b 4987
02730c33 4988module_param(zfs_mg_noalloc_threshold, int, 0644);
f4a4046b
TC
4989MODULE_PARM_DESC(zfs_mg_noalloc_threshold,
4990 "percentage of free space for metaslab group to allow allocation");
02730c33
BB
4991
4992module_param(zfs_mg_fragmentation_threshold, int, 0644);
f3a7f661
GW
4993MODULE_PARM_DESC(zfs_mg_fragmentation_threshold,
4994 "fragmentation for metaslab group to allow allocation");
4995
02730c33 4996module_param(zfs_metaslab_fragmentation_threshold, int, 0644);
f3a7f661
GW
4997MODULE_PARM_DESC(zfs_metaslab_fragmentation_threshold,
4998 "fragmentation for metaslab to allow allocation");
02730c33
BB
4999
5000module_param(metaslab_fragmentation_factor_enabled, int, 0644);
f3a7f661
GW
5001MODULE_PARM_DESC(metaslab_fragmentation_factor_enabled,
5002 "use the fragmentation metric to prefer less fragmented metaslabs");
02730c33
BB
5003
5004module_param(metaslab_lba_weighting_enabled, int, 0644);
f3a7f661
GW
5005MODULE_PARM_DESC(metaslab_lba_weighting_enabled,
5006 "prefer metaslabs with lower LBAs");
02730c33
BB
5007
5008module_param(metaslab_bias_enabled, int, 0644);
f3a7f661
GW
5009MODULE_PARM_DESC(metaslab_bias_enabled,
5010 "enable metaslab group biasing");
4e21fd06
DB
5011
5012module_param(zfs_metaslab_segment_weight_enabled, int, 0644);
5013MODULE_PARM_DESC(zfs_metaslab_segment_weight_enabled,
5014 "enable segment-based metaslab selection");
5015
5016module_param(zfs_metaslab_switch_threshold, int, 0644);
5017MODULE_PARM_DESC(zfs_metaslab_switch_threshold,
5018 "segment-based metaslab selection maximum buckets before switching");
a1d477c2 5019
d830d479
MA
5020module_param(metaslab_force_ganging, ulong, 0644);
5021MODULE_PARM_DESC(metaslab_force_ganging,
a1d477c2 5022 "blocks larger than this size are forced to be gang blocks");
d3230d76
MA
5023
5024module_param(metaslab_df_max_search, int, 0644);
5025MODULE_PARM_DESC(metaslab_df_max_search,
5026 "max distance (bytes) to search forward before using size tree");
5027
5028module_param(metaslab_df_use_largest_segment, int, 0644);
5029MODULE_PARM_DESC(metaslab_df_use_largest_segment,
5030 "when looking in size tree, use largest segment instead of exact fit");
cc99f275
DB
5031/* END CSTYLED */
5032
93ce2b4c 5033#endif