]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/spa_misc.c
Use cached feature info in spa_add_feature_stats()
[mirror_zfs.git] / module / zfs / spa_misc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
b02fe35d 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
3541dc6d 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
34dc7c2f
BB
25 */
26
34dc7c2f
BB
27#include <sys/zfs_context.h>
28#include <sys/spa_impl.h>
29#include <sys/zio.h>
30#include <sys/zio_checksum.h>
31#include <sys/zio_compress.h>
32#include <sys/dmu.h>
33#include <sys/dmu_tx.h>
34#include <sys/zap.h>
35#include <sys/zil.h>
36#include <sys/vdev_impl.h>
bc25c932 37#include <sys/vdev_file.h>
34dc7c2f
BB
38#include <sys/metaslab.h>
39#include <sys/uberblock_impl.h>
40#include <sys/txg.h>
41#include <sys/avl.h>
42#include <sys/unique.h>
43#include <sys/dsl_pool.h>
44#include <sys/dsl_dir.h>
45#include <sys/dsl_prop.h>
26685276 46#include <sys/fm/util.h>
428870ff 47#include <sys/dsl_scan.h>
34dc7c2f
BB
48#include <sys/fs/zfs.h>
49#include <sys/metaslab_impl.h>
b128c09f 50#include <sys/arc.h>
428870ff 51#include <sys/ddt.h>
1421c891 52#include <sys/kstat.h>
34dc7c2f 53#include "zfs_prop.h"
9ae529ec 54#include "zfeature_common.h"
34dc7c2f
BB
55
56/*
57 * SPA locking
58 *
59 * There are four basic locks for managing spa_t structures:
60 *
61 * spa_namespace_lock (global mutex)
62 *
63 * This lock must be acquired to do any of the following:
64 *
65 * - Lookup a spa_t by name
66 * - Add or remove a spa_t from the namespace
67 * - Increase spa_refcount from non-zero
68 * - Check if spa_refcount is zero
69 * - Rename a spa_t
70 * - add/remove/attach/detach devices
71 * - Held for the duration of create/destroy/import/export
72 *
73 * It does not need to handle recursion. A create or destroy may
74 * reference objects (files or zvols) in other pools, but by
75 * definition they must have an existing reference, and will never need
76 * to lookup a spa_t by name.
77 *
78 * spa_refcount (per-spa refcount_t protected by mutex)
79 *
80 * This reference count keep track of any active users of the spa_t. The
81 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
82 * the refcount is never really 'zero' - opening a pool implicitly keeps
b128c09f 83 * some references in the DMU. Internally we check against spa_minref, but
34dc7c2f
BB
84 * present the image of a zero/non-zero value to consumers.
85 *
b128c09f 86 * spa_config_lock[] (per-spa array of rwlocks)
34dc7c2f
BB
87 *
88 * This protects the spa_t from config changes, and must be held in
89 * the following circumstances:
90 *
91 * - RW_READER to perform I/O to the spa
92 * - RW_WRITER to change the vdev config
93 *
34dc7c2f
BB
94 * The locking order is fairly straightforward:
95 *
96 * spa_namespace_lock -> spa_refcount
97 *
98 * The namespace lock must be acquired to increase the refcount from 0
99 * or to check if it is zero.
100 *
b128c09f 101 * spa_refcount -> spa_config_lock[]
34dc7c2f
BB
102 *
103 * There must be at least one valid reference on the spa_t to acquire
104 * the config lock.
105 *
b128c09f 106 * spa_namespace_lock -> spa_config_lock[]
34dc7c2f
BB
107 *
108 * The namespace lock must always be taken before the config lock.
109 *
110 *
b128c09f 111 * The spa_namespace_lock can be acquired directly and is globally visible.
34dc7c2f 112 *
b128c09f
BB
113 * The namespace is manipulated using the following functions, all of which
114 * require the spa_namespace_lock to be held.
34dc7c2f
BB
115 *
116 * spa_lookup() Lookup a spa_t by name.
117 *
118 * spa_add() Create a new spa_t in the namespace.
119 *
120 * spa_remove() Remove a spa_t from the namespace. This also
121 * frees up any memory associated with the spa_t.
122 *
123 * spa_next() Returns the next spa_t in the system, or the
124 * first if NULL is passed.
125 *
126 * spa_evict_all() Shutdown and remove all spa_t structures in
127 * the system.
128 *
129 * spa_guid_exists() Determine whether a pool/device guid exists.
130 *
131 * The spa_refcount is manipulated using the following functions:
132 *
133 * spa_open_ref() Adds a reference to the given spa_t. Must be
134 * called with spa_namespace_lock held if the
135 * refcount is currently zero.
136 *
137 * spa_close() Remove a reference from the spa_t. This will
138 * not free the spa_t or remove it from the
139 * namespace. No locking is required.
140 *
141 * spa_refcount_zero() Returns true if the refcount is currently
142 * zero. Must be called with spa_namespace_lock
143 * held.
144 *
b128c09f
BB
145 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
146 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
147 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
148 *
149 * To read the configuration, it suffices to hold one of these locks as reader.
150 * To modify the configuration, you must hold all locks as writer. To modify
151 * vdev state without altering the vdev tree's topology (e.g. online/offline),
152 * you must hold SCL_STATE and SCL_ZIO as writer.
153 *
154 * We use these distinct config locks to avoid recursive lock entry.
155 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
156 * block allocations (SCL_ALLOC), which may require reading space maps
157 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
158 *
159 * The spa config locks cannot be normal rwlocks because we need the
160 * ability to hand off ownership. For example, SCL_ZIO is acquired
161 * by the issuing thread and later released by an interrupt thread.
162 * They do, however, obey the usual write-wanted semantics to prevent
163 * writer (i.e. system administrator) starvation.
164 *
165 * The lock acquisition rules are as follows:
166 *
167 * SCL_CONFIG
168 * Protects changes to the vdev tree topology, such as vdev
169 * add/remove/attach/detach. Protects the dirty config list
170 * (spa_config_dirty_list) and the set of spares and l2arc devices.
171 *
172 * SCL_STATE
173 * Protects changes to pool state and vdev state, such as vdev
174 * online/offline/fault/degrade/clear. Protects the dirty state list
175 * (spa_state_dirty_list) and global pool state (spa_state).
176 *
177 * SCL_ALLOC
178 * Protects changes to metaslab groups and classes.
179 * Held as reader by metaslab_alloc() and metaslab_claim().
180 *
181 * SCL_ZIO
182 * Held by bp-level zios (those which have no io_vd upon entry)
183 * to prevent changes to the vdev tree. The bp-level zio implicitly
184 * protects all of its vdev child zios, which do not hold SCL_ZIO.
185 *
186 * SCL_FREE
187 * Protects changes to metaslab groups and classes.
188 * Held as reader by metaslab_free(). SCL_FREE is distinct from
189 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
190 * blocks in zio_done() while another i/o that holds either
191 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
192 *
193 * SCL_VDEV
194 * Held as reader to prevent changes to the vdev tree during trivial
428870ff 195 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
b128c09f
BB
196 * other locks, and lower than all of them, to ensure that it's safe
197 * to acquire regardless of caller context.
198 *
199 * In addition, the following rules apply:
200 *
201 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
202 * The lock ordering is SCL_CONFIG > spa_props_lock.
203 *
204 * (b) I/O operations on leaf vdevs. For any zio operation that takes
205 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
206 * or zio_write_phys() -- the caller must ensure that the config cannot
207 * cannot change in the interim, and that the vdev cannot be reopened.
208 * SCL_STATE as reader suffices for both.
34dc7c2f
BB
209 *
210 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
211 *
212 * spa_vdev_enter() Acquire the namespace lock and the config lock
213 * for writing.
214 *
215 * spa_vdev_exit() Release the config lock, wait for all I/O
216 * to complete, sync the updated configs to the
217 * cache, and release the namespace lock.
218 *
b128c09f
BB
219 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
220 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
221 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
222 *
9ae529ec 223 * spa_rename() is also implemented within this file since it requires
b128c09f 224 * manipulation of the namespace.
34dc7c2f
BB
225 */
226
227static avl_tree_t spa_namespace_avl;
228kmutex_t spa_namespace_lock;
229static kcondvar_t spa_namespace_cv;
230static int spa_active_count;
231int spa_max_replication_override = SPA_DVAS_PER_BP;
232
233static kmutex_t spa_spare_lock;
234static avl_tree_t spa_spare_avl;
235static kmutex_t spa_l2cache_lock;
236static avl_tree_t spa_l2cache_avl;
237
238kmem_cache_t *spa_buffer_pool;
fb5f0bc8 239int spa_mode_global;
34dc7c2f 240
0b39b9f9
PS
241#ifdef ZFS_DEBUG
242/* Everything except dprintf and spa is on by default in debug builds */
243int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
244#else
245int zfs_flags = 0;
246#endif
247
248/*
249 * zfs_recover can be set to nonzero to attempt to recover from
250 * otherwise-fatal errors, typically caused by on-disk corruption. When
251 * set, calls to zfs_panic_recover() will turn into warning messages.
252 * This should only be used as a last resort, as it typically results
253 * in leaked space, or worse.
254 */
255int zfs_recover = B_FALSE;
256
257/*
258 * If destroy encounters an EIO while reading metadata (e.g. indirect
259 * blocks), space referenced by the missing metadata can not be freed.
260 * Normally this causes the background destroy to become "stalled", as
261 * it is unable to make forward progress. While in this stalled state,
262 * all remaining space to free from the error-encountering filesystem is
263 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
264 * permanently leak the space from indirect blocks that can not be read,
265 * and continue to free everything else that it can.
266 *
267 * The default, "stalling" behavior is useful if the storage partially
268 * fails (i.e. some but not all i/os fail), and then later recovers. In
269 * this case, we will be able to continue pool operations while it is
270 * partially failed, and when it recovers, we can continue to free the
271 * space, with no leaks. However, note that this case is actually
272 * fairly rare.
273 *
274 * Typically pools either (a) fail completely (but perhaps temporarily,
275 * e.g. a top-level vdev going offline), or (b) have localized,
276 * permanent errors (e.g. disk returns the wrong data due to bit flip or
277 * firmware bug). In case (a), this setting does not matter because the
278 * pool will be suspended and the sync thread will not be able to make
279 * forward progress regardless. In case (b), because the error is
280 * permanent, the best we can do is leak the minimum amount of space,
281 * which is what setting this flag will do. Therefore, it is reasonable
282 * for this flag to normally be set, but we chose the more conservative
283 * approach of not setting it, so that there is no possibility of
284 * leaking space in the "partial temporary" failure case.
285 */
286int zfs_free_leak_on_eio = B_FALSE;
287
cc92e9d0 288/*
e8b96c60
MA
289 * Expiration time in milliseconds. This value has two meanings. First it is
290 * used to determine when the spa_deadman() logic should fire. By default the
291 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
292 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
293 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
294 * in a system panic.
cc92e9d0 295 */
e8b96c60 296unsigned long zfs_deadman_synctime_ms = 1000000ULL;
cc92e9d0
GW
297
298/*
299 * By default the deadman is enabled.
300 */
301int zfs_deadman_enabled = 1;
302
e8b96c60
MA
303/*
304 * The worst case is single-sector max-parity RAID-Z blocks, in which
305 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
306 * times the size; so just assume that. Add to this the fact that
307 * we can have up to 3 DVAs per bp, and one more factor of 2 because
308 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
309 * the worst case is:
310 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
311 */
312int spa_asize_inflation = 24;
313
34dc7c2f
BB
314/*
315 * ==========================================================================
316 * SPA config locking
317 * ==========================================================================
318 */
319static void
b128c09f
BB
320spa_config_lock_init(spa_t *spa)
321{
d6320ddb
BB
322 int i;
323
324 for (i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
325 spa_config_lock_t *scl = &spa->spa_config_lock[i];
326 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
327 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
13fe0198 328 refcount_create_untracked(&scl->scl_count);
b128c09f
BB
329 scl->scl_writer = NULL;
330 scl->scl_write_wanted = 0;
331 }
34dc7c2f
BB
332}
333
334static void
b128c09f
BB
335spa_config_lock_destroy(spa_t *spa)
336{
d6320ddb
BB
337 int i;
338
339 for (i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
340 spa_config_lock_t *scl = &spa->spa_config_lock[i];
341 mutex_destroy(&scl->scl_lock);
342 cv_destroy(&scl->scl_cv);
343 refcount_destroy(&scl->scl_count);
344 ASSERT(scl->scl_writer == NULL);
345 ASSERT(scl->scl_write_wanted == 0);
346 }
347}
348
349int
350spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
34dc7c2f 351{
d6320ddb
BB
352 int i;
353
354 for (i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
355 spa_config_lock_t *scl = &spa->spa_config_lock[i];
356 if (!(locks & (1 << i)))
357 continue;
358 mutex_enter(&scl->scl_lock);
359 if (rw == RW_READER) {
360 if (scl->scl_writer || scl->scl_write_wanted) {
361 mutex_exit(&scl->scl_lock);
362 spa_config_exit(spa, locks ^ (1 << i), tag);
363 return (0);
364 }
365 } else {
366 ASSERT(scl->scl_writer != curthread);
367 if (!refcount_is_zero(&scl->scl_count)) {
368 mutex_exit(&scl->scl_lock);
369 spa_config_exit(spa, locks ^ (1 << i), tag);
370 return (0);
371 }
372 scl->scl_writer = curthread;
373 }
374 (void) refcount_add(&scl->scl_count, tag);
375 mutex_exit(&scl->scl_lock);
376 }
377 return (1);
34dc7c2f
BB
378}
379
380void
b128c09f 381spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
34dc7c2f 382{
45d1cae3 383 int wlocks_held = 0;
d6320ddb 384 int i;
45d1cae3 385
13fe0198
MA
386 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
387
d6320ddb 388 for (i = 0; i < SCL_LOCKS; i++) {
b128c09f 389 spa_config_lock_t *scl = &spa->spa_config_lock[i];
45d1cae3
BB
390 if (scl->scl_writer == curthread)
391 wlocks_held |= (1 << i);
b128c09f
BB
392 if (!(locks & (1 << i)))
393 continue;
394 mutex_enter(&scl->scl_lock);
395 if (rw == RW_READER) {
396 while (scl->scl_writer || scl->scl_write_wanted) {
397 cv_wait(&scl->scl_cv, &scl->scl_lock);
398 }
399 } else {
400 ASSERT(scl->scl_writer != curthread);
401 while (!refcount_is_zero(&scl->scl_count)) {
402 scl->scl_write_wanted++;
403 cv_wait(&scl->scl_cv, &scl->scl_lock);
404 scl->scl_write_wanted--;
405 }
406 scl->scl_writer = curthread;
407 }
408 (void) refcount_add(&scl->scl_count, tag);
409 mutex_exit(&scl->scl_lock);
34dc7c2f 410 }
45d1cae3 411 ASSERT(wlocks_held <= locks);
34dc7c2f
BB
412}
413
414void
b128c09f 415spa_config_exit(spa_t *spa, int locks, void *tag)
34dc7c2f 416{
d6320ddb
BB
417 int i;
418
419 for (i = SCL_LOCKS - 1; i >= 0; i--) {
b128c09f
BB
420 spa_config_lock_t *scl = &spa->spa_config_lock[i];
421 if (!(locks & (1 << i)))
422 continue;
423 mutex_enter(&scl->scl_lock);
424 ASSERT(!refcount_is_zero(&scl->scl_count));
425 if (refcount_remove(&scl->scl_count, tag) == 0) {
426 ASSERT(scl->scl_writer == NULL ||
427 scl->scl_writer == curthread);
428 scl->scl_writer = NULL; /* OK in either case */
429 cv_broadcast(&scl->scl_cv);
430 }
431 mutex_exit(&scl->scl_lock);
34dc7c2f 432 }
34dc7c2f
BB
433}
434
b128c09f
BB
435int
436spa_config_held(spa_t *spa, int locks, krw_t rw)
34dc7c2f 437{
d6320ddb 438 int i, locks_held = 0;
34dc7c2f 439
d6320ddb 440 for (i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
441 spa_config_lock_t *scl = &spa->spa_config_lock[i];
442 if (!(locks & (1 << i)))
443 continue;
444 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
445 (rw == RW_WRITER && scl->scl_writer == curthread))
446 locks_held |= 1 << i;
447 }
448
449 return (locks_held);
34dc7c2f
BB
450}
451
452/*
453 * ==========================================================================
454 * SPA namespace functions
455 * ==========================================================================
456 */
457
458/*
459 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
460 * Returns NULL if no matching spa_t is found.
461 */
462spa_t *
463spa_lookup(const char *name)
464{
b128c09f
BB
465 static spa_t search; /* spa_t is large; don't allocate on stack */
466 spa_t *spa;
34dc7c2f 467 avl_index_t where;
34dc7c2f
BB
468 char *cp;
469
470 ASSERT(MUTEX_HELD(&spa_namespace_lock));
471
13fe0198
MA
472 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
473
34dc7c2f
BB
474 /*
475 * If it's a full dataset name, figure out the pool name and
476 * just use that.
477 */
da536844 478 cp = strpbrk(search.spa_name, "/@#");
13fe0198 479 if (cp != NULL)
34dc7c2f 480 *cp = '\0';
34dc7c2f 481
34dc7c2f
BB
482 spa = avl_find(&spa_namespace_avl, &search, &where);
483
34dc7c2f
BB
484 return (spa);
485}
486
cc92e9d0
GW
487/*
488 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
489 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
490 * looking for potentially hung I/Os.
491 */
492void
493spa_deadman(void *arg)
494{
495 spa_t *spa = arg;
496
497 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
498 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
499 ++spa->spa_deadman_calls);
500 if (zfs_deadman_enabled)
501 vdev_deadman(spa->spa_root_vdev);
502
503 spa->spa_deadman_tqid = taskq_dispatch_delay(system_taskq,
79c76d5b 504 spa_deadman, spa, KM_SLEEP, ddi_get_lbolt() +
cc92e9d0
GW
505 NSEC_TO_TICK(spa->spa_deadman_synctime));
506}
507
34dc7c2f
BB
508/*
509 * Create an uninitialized spa_t with the given name. Requires
510 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
511 * exist by calling spa_lookup() first.
512 */
513spa_t *
428870ff 514spa_add(const char *name, nvlist_t *config, const char *altroot)
34dc7c2f
BB
515{
516 spa_t *spa;
b128c09f 517 spa_config_dirent_t *dp;
d6320ddb 518 int t;
b0bc7a84 519 int i;
34dc7c2f
BB
520
521 ASSERT(MUTEX_HELD(&spa_namespace_lock));
522
79c76d5b 523 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
34dc7c2f 524
34dc7c2f 525 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 526 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
428870ff 527 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 528 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
428870ff 529 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 530 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
428870ff
BB
531 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
532 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
533 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
534
535 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
428870ff 536 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f 537 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
b128c09f 538 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f 539
d6320ddb 540 for (t = 0; t < TXG_SIZE; t++)
428870ff
BB
541 bplist_create(&spa->spa_free_bplist[t]);
542
b128c09f 543 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
34dc7c2f
BB
544 spa->spa_state = POOL_STATE_UNINITIALIZED;
545 spa->spa_freeze_txg = UINT64_MAX;
546 spa->spa_final_txg = UINT64_MAX;
428870ff
BB
547 spa->spa_load_max_txg = UINT64_MAX;
548 spa->spa_proc = &p0;
549 spa->spa_proc_state = SPA_PROC_NONE;
34dc7c2f 550
e8b96c60 551 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
cc92e9d0 552
34dc7c2f 553 refcount_create(&spa->spa_refcount);
b128c09f 554 spa_config_lock_init(spa);
1421c891 555 spa_stats_init(spa);
34dc7c2f
BB
556
557 avl_add(&spa_namespace_avl, spa);
558
34dc7c2f
BB
559 /*
560 * Set the alternate root, if there is one.
561 */
562 if (altroot) {
563 spa->spa_root = spa_strdup(altroot);
564 spa_active_count++;
565 }
566
b128c09f
BB
567 /*
568 * Every pool starts with the default cachefile
569 */
570 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
571 offsetof(spa_config_dirent_t, scd_link));
572
79c76d5b 573 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
428870ff 574 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
b128c09f
BB
575 list_insert_head(&spa->spa_config_list, dp);
576
572e2857 577 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
79c76d5b 578 KM_SLEEP) == 0);
572e2857 579
9ae529ec
CS
580 if (config != NULL) {
581 nvlist_t *features;
582
583 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
584 &features) == 0) {
585 VERIFY(nvlist_dup(features, &spa->spa_label_features,
586 0) == 0);
587 }
588
428870ff 589 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
9ae529ec
CS
590 }
591
592 if (spa->spa_label_features == NULL) {
593 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
79c76d5b 594 KM_SLEEP) == 0);
9ae529ec 595 }
428870ff 596
13fe0198
MA
597 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
598
b0bc7a84
MG
599 /*
600 * As a pool is being created, treat all features as disabled by
601 * setting SPA_FEATURE_DISABLED for all entries in the feature
602 * refcount cache.
603 */
604 for (i = 0; i < SPA_FEATURES; i++) {
605 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
606 }
607
34dc7c2f
BB
608 return (spa);
609}
610
611/*
612 * Removes a spa_t from the namespace, freeing up any memory used. Requires
613 * spa_namespace_lock. This is called only after the spa_t has been closed and
614 * deactivated.
615 */
616void
617spa_remove(spa_t *spa)
618{
b128c09f 619 spa_config_dirent_t *dp;
d6320ddb 620 int t;
b128c09f 621
34dc7c2f
BB
622 ASSERT(MUTEX_HELD(&spa_namespace_lock));
623 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
34dc7c2f 624
428870ff
BB
625 nvlist_free(spa->spa_config_splitting);
626
34dc7c2f
BB
627 avl_remove(&spa_namespace_avl, spa);
628 cv_broadcast(&spa_namespace_cv);
629
630 if (spa->spa_root) {
631 spa_strfree(spa->spa_root);
632 spa_active_count--;
633 }
634
b128c09f
BB
635 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
636 list_remove(&spa->spa_config_list, dp);
637 if (dp->scd_path != NULL)
638 spa_strfree(dp->scd_path);
639 kmem_free(dp, sizeof (spa_config_dirent_t));
640 }
34dc7c2f 641
b128c09f 642 list_destroy(&spa->spa_config_list);
34dc7c2f 643
9ae529ec 644 nvlist_free(spa->spa_label_features);
572e2857 645 nvlist_free(spa->spa_load_info);
417104bd 646 nvlist_free(spa->spa_feat_stats);
34dc7c2f
BB
647 spa_config_set(spa, NULL);
648
649 refcount_destroy(&spa->spa_refcount);
650
1421c891 651 spa_stats_destroy(spa);
b128c09f 652 spa_config_lock_destroy(spa);
34dc7c2f 653
d6320ddb 654 for (t = 0; t < TXG_SIZE; t++)
428870ff
BB
655 bplist_destroy(&spa->spa_free_bplist[t]);
656
34dc7c2f 657 cv_destroy(&spa->spa_async_cv);
428870ff 658 cv_destroy(&spa->spa_proc_cv);
34dc7c2f 659 cv_destroy(&spa->spa_scrub_io_cv);
b128c09f 660 cv_destroy(&spa->spa_suspend_cv);
34dc7c2f 661
34dc7c2f 662 mutex_destroy(&spa->spa_async_lock);
34dc7c2f 663 mutex_destroy(&spa->spa_errlist_lock);
428870ff 664 mutex_destroy(&spa->spa_errlog_lock);
34dc7c2f 665 mutex_destroy(&spa->spa_history_lock);
428870ff 666 mutex_destroy(&spa->spa_proc_lock);
34dc7c2f 667 mutex_destroy(&spa->spa_props_lock);
428870ff 668 mutex_destroy(&spa->spa_scrub_lock);
b128c09f 669 mutex_destroy(&spa->spa_suspend_lock);
428870ff 670 mutex_destroy(&spa->spa_vdev_top_lock);
34dc7c2f
BB
671
672 kmem_free(spa, sizeof (spa_t));
673}
674
675/*
676 * Given a pool, return the next pool in the namespace, or NULL if there is
677 * none. If 'prev' is NULL, return the first pool.
678 */
679spa_t *
680spa_next(spa_t *prev)
681{
682 ASSERT(MUTEX_HELD(&spa_namespace_lock));
683
684 if (prev)
685 return (AVL_NEXT(&spa_namespace_avl, prev));
686 else
687 return (avl_first(&spa_namespace_avl));
688}
689
690/*
691 * ==========================================================================
692 * SPA refcount functions
693 * ==========================================================================
694 */
695
696/*
697 * Add a reference to the given spa_t. Must have at least one reference, or
698 * have the namespace lock held.
699 */
700void
701spa_open_ref(spa_t *spa, void *tag)
702{
b128c09f 703 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
34dc7c2f 704 MUTEX_HELD(&spa_namespace_lock));
34dc7c2f
BB
705 (void) refcount_add(&spa->spa_refcount, tag);
706}
707
708/*
709 * Remove a reference to the given spa_t. Must have at least one reference, or
710 * have the namespace lock held.
711 */
712void
713spa_close(spa_t *spa, void *tag)
714{
b128c09f 715 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
34dc7c2f 716 MUTEX_HELD(&spa_namespace_lock));
34dc7c2f
BB
717 (void) refcount_remove(&spa->spa_refcount, tag);
718}
719
720/*
721 * Check to see if the spa refcount is zero. Must be called with
b128c09f 722 * spa_namespace_lock held. We really compare against spa_minref, which is the
34dc7c2f
BB
723 * number of references acquired when opening a pool
724 */
725boolean_t
726spa_refcount_zero(spa_t *spa)
727{
728 ASSERT(MUTEX_HELD(&spa_namespace_lock));
729
b128c09f 730 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
34dc7c2f
BB
731}
732
733/*
734 * ==========================================================================
735 * SPA spare and l2cache tracking
736 * ==========================================================================
737 */
738
739/*
740 * Hot spares and cache devices are tracked using the same code below,
741 * for 'auxiliary' devices.
742 */
743
744typedef struct spa_aux {
745 uint64_t aux_guid;
746 uint64_t aux_pool;
747 avl_node_t aux_avl;
748 int aux_count;
749} spa_aux_t;
750
751static int
752spa_aux_compare(const void *a, const void *b)
753{
754 const spa_aux_t *sa = a;
755 const spa_aux_t *sb = b;
756
757 if (sa->aux_guid < sb->aux_guid)
758 return (-1);
759 else if (sa->aux_guid > sb->aux_guid)
760 return (1);
761 else
762 return (0);
763}
764
765void
766spa_aux_add(vdev_t *vd, avl_tree_t *avl)
767{
768 avl_index_t where;
769 spa_aux_t search;
770 spa_aux_t *aux;
771
772 search.aux_guid = vd->vdev_guid;
773 if ((aux = avl_find(avl, &search, &where)) != NULL) {
774 aux->aux_count++;
775 } else {
79c76d5b 776 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
34dc7c2f
BB
777 aux->aux_guid = vd->vdev_guid;
778 aux->aux_count = 1;
779 avl_insert(avl, aux, where);
780 }
781}
782
783void
784spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
785{
786 spa_aux_t search;
787 spa_aux_t *aux;
788 avl_index_t where;
789
790 search.aux_guid = vd->vdev_guid;
791 aux = avl_find(avl, &search, &where);
792
793 ASSERT(aux != NULL);
794
795 if (--aux->aux_count == 0) {
796 avl_remove(avl, aux);
797 kmem_free(aux, sizeof (spa_aux_t));
798 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
799 aux->aux_pool = 0ULL;
800 }
801}
802
803boolean_t
b128c09f 804spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
34dc7c2f
BB
805{
806 spa_aux_t search, *found;
34dc7c2f
BB
807
808 search.aux_guid = guid;
b128c09f 809 found = avl_find(avl, &search, NULL);
34dc7c2f
BB
810
811 if (pool) {
812 if (found)
813 *pool = found->aux_pool;
814 else
815 *pool = 0ULL;
816 }
817
b128c09f
BB
818 if (refcnt) {
819 if (found)
820 *refcnt = found->aux_count;
821 else
822 *refcnt = 0;
823 }
824
34dc7c2f
BB
825 return (found != NULL);
826}
827
828void
829spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
830{
831 spa_aux_t search, *found;
832 avl_index_t where;
833
834 search.aux_guid = vd->vdev_guid;
835 found = avl_find(avl, &search, &where);
836 ASSERT(found != NULL);
837 ASSERT(found->aux_pool == 0ULL);
838
839 found->aux_pool = spa_guid(vd->vdev_spa);
840}
841
842/*
843 * Spares are tracked globally due to the following constraints:
844 *
845 * - A spare may be part of multiple pools.
846 * - A spare may be added to a pool even if it's actively in use within
847 * another pool.
848 * - A spare in use in any pool can only be the source of a replacement if
849 * the target is a spare in the same pool.
850 *
851 * We keep track of all spares on the system through the use of a reference
852 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
853 * spare, then we bump the reference count in the AVL tree. In addition, we set
854 * the 'vdev_isspare' member to indicate that the device is a spare (active or
855 * inactive). When a spare is made active (used to replace a device in the
856 * pool), we also keep track of which pool its been made a part of.
857 *
858 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
859 * called under the spa_namespace lock as part of vdev reconfiguration. The
860 * separate spare lock exists for the status query path, which does not need to
861 * be completely consistent with respect to other vdev configuration changes.
862 */
863
864static int
865spa_spare_compare(const void *a, const void *b)
866{
867 return (spa_aux_compare(a, b));
868}
869
870void
871spa_spare_add(vdev_t *vd)
872{
873 mutex_enter(&spa_spare_lock);
874 ASSERT(!vd->vdev_isspare);
875 spa_aux_add(vd, &spa_spare_avl);
876 vd->vdev_isspare = B_TRUE;
877 mutex_exit(&spa_spare_lock);
878}
879
880void
881spa_spare_remove(vdev_t *vd)
882{
883 mutex_enter(&spa_spare_lock);
884 ASSERT(vd->vdev_isspare);
885 spa_aux_remove(vd, &spa_spare_avl);
886 vd->vdev_isspare = B_FALSE;
887 mutex_exit(&spa_spare_lock);
888}
889
890boolean_t
b128c09f 891spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
34dc7c2f
BB
892{
893 boolean_t found;
894
895 mutex_enter(&spa_spare_lock);
b128c09f 896 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
34dc7c2f
BB
897 mutex_exit(&spa_spare_lock);
898
899 return (found);
900}
901
902void
903spa_spare_activate(vdev_t *vd)
904{
905 mutex_enter(&spa_spare_lock);
906 ASSERT(vd->vdev_isspare);
907 spa_aux_activate(vd, &spa_spare_avl);
908 mutex_exit(&spa_spare_lock);
909}
910
911/*
912 * Level 2 ARC devices are tracked globally for the same reasons as spares.
913 * Cache devices currently only support one pool per cache device, and so
914 * for these devices the aux reference count is currently unused beyond 1.
915 */
916
917static int
918spa_l2cache_compare(const void *a, const void *b)
919{
920 return (spa_aux_compare(a, b));
921}
922
923void
924spa_l2cache_add(vdev_t *vd)
925{
926 mutex_enter(&spa_l2cache_lock);
927 ASSERT(!vd->vdev_isl2cache);
928 spa_aux_add(vd, &spa_l2cache_avl);
929 vd->vdev_isl2cache = B_TRUE;
930 mutex_exit(&spa_l2cache_lock);
931}
932
933void
934spa_l2cache_remove(vdev_t *vd)
935{
936 mutex_enter(&spa_l2cache_lock);
937 ASSERT(vd->vdev_isl2cache);
938 spa_aux_remove(vd, &spa_l2cache_avl);
939 vd->vdev_isl2cache = B_FALSE;
940 mutex_exit(&spa_l2cache_lock);
941}
942
943boolean_t
944spa_l2cache_exists(uint64_t guid, uint64_t *pool)
945{
946 boolean_t found;
947
948 mutex_enter(&spa_l2cache_lock);
b128c09f 949 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
34dc7c2f
BB
950 mutex_exit(&spa_l2cache_lock);
951
952 return (found);
953}
954
955void
956spa_l2cache_activate(vdev_t *vd)
957{
958 mutex_enter(&spa_l2cache_lock);
959 ASSERT(vd->vdev_isl2cache);
960 spa_aux_activate(vd, &spa_l2cache_avl);
961 mutex_exit(&spa_l2cache_lock);
962}
963
34dc7c2f
BB
964/*
965 * ==========================================================================
966 * SPA vdev locking
967 * ==========================================================================
968 */
969
970/*
971 * Lock the given spa_t for the purpose of adding or removing a vdev.
972 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
973 * It returns the next transaction group for the spa_t.
974 */
975uint64_t
976spa_vdev_enter(spa_t *spa)
977{
428870ff 978 mutex_enter(&spa->spa_vdev_top_lock);
34dc7c2f 979 mutex_enter(&spa_namespace_lock);
428870ff
BB
980 return (spa_vdev_config_enter(spa));
981}
982
983/*
984 * Internal implementation for spa_vdev_enter(). Used when a vdev
985 * operation requires multiple syncs (i.e. removing a device) while
986 * keeping the spa_namespace_lock held.
987 */
988uint64_t
989spa_vdev_config_enter(spa_t *spa)
990{
991 ASSERT(MUTEX_HELD(&spa_namespace_lock));
34dc7c2f 992
b128c09f 993 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
34dc7c2f
BB
994
995 return (spa_last_synced_txg(spa) + 1);
996}
997
998/*
428870ff
BB
999 * Used in combination with spa_vdev_config_enter() to allow the syncing
1000 * of multiple transactions without releasing the spa_namespace_lock.
34dc7c2f 1001 */
428870ff
BB
1002void
1003spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
34dc7c2f
BB
1004{
1005 int config_changed = B_FALSE;
1006
d6320ddb 1007 ASSERT(MUTEX_HELD(&spa_namespace_lock));
34dc7c2f
BB
1008 ASSERT(txg > spa_last_synced_txg(spa));
1009
b128c09f
BB
1010 spa->spa_pending_vdev = NULL;
1011
34dc7c2f
BB
1012 /*
1013 * Reassess the DTLs.
1014 */
1015 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1016
b128c09f 1017 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
34dc7c2f 1018 config_changed = B_TRUE;
428870ff 1019 spa->spa_config_generation++;
34dc7c2f
BB
1020 }
1021
428870ff
BB
1022 /*
1023 * Verify the metaslab classes.
1024 */
1025 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1026 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1027
b128c09f 1028 spa_config_exit(spa, SCL_ALL, spa);
34dc7c2f 1029
428870ff
BB
1030 /*
1031 * Panic the system if the specified tag requires it. This
1032 * is useful for ensuring that configurations are updated
1033 * transactionally.
1034 */
1035 if (zio_injection_enabled)
1036 zio_handle_panic_injection(spa, tag, 0);
1037
34dc7c2f
BB
1038 /*
1039 * Note: this txg_wait_synced() is important because it ensures
1040 * that there won't be more than one config change per txg.
1041 * This allows us to use the txg as the generation number.
1042 */
1043 if (error == 0)
1044 txg_wait_synced(spa->spa_dsl_pool, txg);
1045
1046 if (vd != NULL) {
93cf2076 1047 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
fb5f0bc8 1048 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
34dc7c2f 1049 vdev_free(vd);
fb5f0bc8 1050 spa_config_exit(spa, SCL_ALL, spa);
34dc7c2f
BB
1051 }
1052
1053 /*
1054 * If the config changed, update the config cache.
1055 */
1056 if (config_changed)
b128c09f 1057 spa_config_sync(spa, B_FALSE, B_TRUE);
428870ff 1058}
34dc7c2f 1059
428870ff
BB
1060/*
1061 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1062 * locking of spa_vdev_enter(), we also want make sure the transactions have
1063 * synced to disk, and then update the global configuration cache with the new
1064 * information.
1065 */
1066int
1067spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1068{
1069 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
34dc7c2f 1070 mutex_exit(&spa_namespace_lock);
428870ff 1071 mutex_exit(&spa->spa_vdev_top_lock);
34dc7c2f
BB
1072
1073 return (error);
1074}
1075
b128c09f
BB
1076/*
1077 * Lock the given spa_t for the purpose of changing vdev state.
1078 */
1079void
428870ff 1080spa_vdev_state_enter(spa_t *spa, int oplocks)
b128c09f 1081{
428870ff
BB
1082 int locks = SCL_STATE_ALL | oplocks;
1083
1084 /*
1085 * Root pools may need to read of the underlying devfs filesystem
1086 * when opening up a vdev. Unfortunately if we're holding the
1087 * SCL_ZIO lock it will result in a deadlock when we try to issue
1088 * the read from the root filesystem. Instead we "prefetch"
1089 * the associated vnodes that we need prior to opening the
1090 * underlying devices and cache them so that we can prevent
1091 * any I/O when we are doing the actual open.
1092 */
1093 if (spa_is_root(spa)) {
1094 int low = locks & ~(SCL_ZIO - 1);
1095 int high = locks & ~low;
1096
1097 spa_config_enter(spa, high, spa, RW_WRITER);
1098 vdev_hold(spa->spa_root_vdev);
1099 spa_config_enter(spa, low, spa, RW_WRITER);
1100 } else {
1101 spa_config_enter(spa, locks, spa, RW_WRITER);
1102 }
1103 spa->spa_vdev_locks = locks;
b128c09f
BB
1104}
1105
1106int
1107spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1108{
428870ff
BB
1109 boolean_t config_changed = B_FALSE;
1110
1111 if (vd != NULL || error == 0)
1112 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1113 0, 0, B_FALSE);
1114
1115 if (vd != NULL) {
b128c09f 1116 vdev_state_dirty(vd->vdev_top);
428870ff
BB
1117 config_changed = B_TRUE;
1118 spa->spa_config_generation++;
1119 }
b128c09f 1120
428870ff
BB
1121 if (spa_is_root(spa))
1122 vdev_rele(spa->spa_root_vdev);
1123
1124 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1125 spa_config_exit(spa, spa->spa_vdev_locks, spa);
b128c09f 1126
fb5f0bc8
BB
1127 /*
1128 * If anything changed, wait for it to sync. This ensures that,
1129 * from the system administrator's perspective, zpool(1M) commands
1130 * are synchronous. This is important for things like zpool offline:
1131 * when the command completes, you expect no further I/O from ZFS.
1132 */
1133 if (vd != NULL)
1134 txg_wait_synced(spa->spa_dsl_pool, 0);
1135
428870ff
BB
1136 /*
1137 * If the config changed, update the config cache.
1138 */
1139 if (config_changed) {
1140 mutex_enter(&spa_namespace_lock);
1141 spa_config_sync(spa, B_FALSE, B_TRUE);
1142 mutex_exit(&spa_namespace_lock);
1143 }
1144
b128c09f
BB
1145 return (error);
1146}
1147
34dc7c2f
BB
1148/*
1149 * ==========================================================================
1150 * Miscellaneous functions
1151 * ==========================================================================
1152 */
1153
9ae529ec 1154void
b0bc7a84 1155spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
9ae529ec 1156{
fa86b5db
MA
1157 if (!nvlist_exists(spa->spa_label_features, feature)) {
1158 fnvlist_add_boolean(spa->spa_label_features, feature);
b0bc7a84
MG
1159 /*
1160 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1161 * dirty the vdev config because lock SCL_CONFIG is not held.
1162 * Thankfully, in this case we don't need to dirty the config
1163 * because it will be written out anyway when we finish
1164 * creating the pool.
1165 */
1166 if (tx->tx_txg != TXG_INITIAL)
1167 vdev_config_dirty(spa->spa_root_vdev);
fa86b5db 1168 }
9ae529ec
CS
1169}
1170
1171void
1172spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1173{
fa86b5db
MA
1174 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1175 vdev_config_dirty(spa->spa_root_vdev);
9ae529ec
CS
1176}
1177
34dc7c2f
BB
1178/*
1179 * Rename a spa_t.
1180 */
1181int
1182spa_rename(const char *name, const char *newname)
1183{
1184 spa_t *spa;
1185 int err;
1186
1187 /*
1188 * Lookup the spa_t and grab the config lock for writing. We need to
1189 * actually open the pool so that we can sync out the necessary labels.
1190 * It's OK to call spa_open() with the namespace lock held because we
1191 * allow recursive calls for other reasons.
1192 */
1193 mutex_enter(&spa_namespace_lock);
1194 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1195 mutex_exit(&spa_namespace_lock);
1196 return (err);
1197 }
1198
b128c09f 1199 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
34dc7c2f
BB
1200
1201 avl_remove(&spa_namespace_avl, spa);
b128c09f 1202 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
34dc7c2f
BB
1203 avl_add(&spa_namespace_avl, spa);
1204
1205 /*
1206 * Sync all labels to disk with the new names by marking the root vdev
1207 * dirty and waiting for it to sync. It will pick up the new pool name
1208 * during the sync.
1209 */
1210 vdev_config_dirty(spa->spa_root_vdev);
1211
b128c09f 1212 spa_config_exit(spa, SCL_ALL, FTAG);
34dc7c2f
BB
1213
1214 txg_wait_synced(spa->spa_dsl_pool, 0);
1215
1216 /*
1217 * Sync the updated config cache.
1218 */
b128c09f 1219 spa_config_sync(spa, B_FALSE, B_TRUE);
34dc7c2f
BB
1220
1221 spa_close(spa, FTAG);
1222
1223 mutex_exit(&spa_namespace_lock);
1224
1225 return (0);
1226}
1227
34dc7c2f 1228/*
572e2857
BB
1229 * Return the spa_t associated with given pool_guid, if it exists. If
1230 * device_guid is non-zero, determine whether the pool exists *and* contains
1231 * a device with the specified device_guid.
34dc7c2f 1232 */
572e2857
BB
1233spa_t *
1234spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
34dc7c2f
BB
1235{
1236 spa_t *spa;
1237 avl_tree_t *t = &spa_namespace_avl;
1238
1239 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1240
1241 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1242 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1243 continue;
1244 if (spa->spa_root_vdev == NULL)
1245 continue;
1246 if (spa_guid(spa) == pool_guid) {
1247 if (device_guid == 0)
1248 break;
1249
1250 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1251 device_guid) != NULL)
1252 break;
1253
1254 /*
1255 * Check any devices we may be in the process of adding.
1256 */
1257 if (spa->spa_pending_vdev) {
1258 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1259 device_guid) != NULL)
1260 break;
1261 }
1262 }
1263 }
1264
572e2857
BB
1265 return (spa);
1266}
1267
1268/*
1269 * Determine whether a pool with the given pool_guid exists.
1270 */
1271boolean_t
1272spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1273{
1274 return (spa_by_guid(pool_guid, device_guid) != NULL);
34dc7c2f
BB
1275}
1276
1277char *
1278spa_strdup(const char *s)
1279{
1280 size_t len;
1281 char *new;
1282
1283 len = strlen(s);
79c76d5b 1284 new = kmem_alloc(len + 1, KM_SLEEP);
34dc7c2f
BB
1285 bcopy(s, new, len);
1286 new[len] = '\0';
1287
1288 return (new);
1289}
1290
1291void
1292spa_strfree(char *s)
1293{
1294 kmem_free(s, strlen(s) + 1);
1295}
1296
1297uint64_t
1298spa_get_random(uint64_t range)
1299{
1300 uint64_t r;
1301
1302 ASSERT(range != 0);
1303
1304 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1305
1306 return (r % range);
1307}
1308
428870ff
BB
1309uint64_t
1310spa_generate_guid(spa_t *spa)
34dc7c2f 1311{
428870ff 1312 uint64_t guid = spa_get_random(-1ULL);
34dc7c2f 1313
428870ff
BB
1314 if (spa != NULL) {
1315 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1316 guid = spa_get_random(-1ULL);
1317 } else {
1318 while (guid == 0 || spa_guid_exists(guid, 0))
1319 guid = spa_get_random(-1ULL);
34dc7c2f
BB
1320 }
1321
428870ff
BB
1322 return (guid);
1323}
1324
1325void
b0bc7a84 1326snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
428870ff 1327{
9ae529ec 1328 char type[256];
428870ff
BB
1329 char *checksum = NULL;
1330 char *compress = NULL;
34dc7c2f 1331
428870ff 1332 if (bp != NULL) {
9ae529ec
CS
1333 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1334 dmu_object_byteswap_t bswap =
1335 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1336 (void) snprintf(type, sizeof (type), "bswap %s %s",
1337 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1338 "metadata" : "data",
1339 dmu_ot_byteswap[bswap].ob_name);
1340 } else {
1341 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1342 sizeof (type));
1343 }
9b67f605
MA
1344 if (!BP_IS_EMBEDDED(bp)) {
1345 checksum =
1346 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1347 }
428870ff 1348 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
34dc7c2f
BB
1349 }
1350
b0bc7a84
MG
1351 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1352 compress);
34dc7c2f
BB
1353}
1354
1355void
1356spa_freeze(spa_t *spa)
1357{
1358 uint64_t freeze_txg = 0;
1359
b128c09f 1360 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
34dc7c2f
BB
1361 if (spa->spa_freeze_txg == UINT64_MAX) {
1362 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1363 spa->spa_freeze_txg = freeze_txg;
1364 }
b128c09f 1365 spa_config_exit(spa, SCL_ALL, FTAG);
34dc7c2f
BB
1366 if (freeze_txg != 0)
1367 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1368}
1369
0b39b9f9
PS
1370void
1371zfs_panic_recover(const char *fmt, ...)
1372{
1373 va_list adx;
1374
1375 va_start(adx, fmt);
1376 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1377 va_end(adx);
1378}
1379
428870ff
BB
1380/*
1381 * This is a stripped-down version of strtoull, suitable only for converting
d3cc8b15 1382 * lowercase hexadecimal numbers that don't overflow.
428870ff
BB
1383 */
1384uint64_t
1385strtonum(const char *str, char **nptr)
1386{
1387 uint64_t val = 0;
1388 char c;
1389 int digit;
1390
1391 while ((c = *str) != '\0') {
1392 if (c >= '0' && c <= '9')
1393 digit = c - '0';
1394 else if (c >= 'a' && c <= 'f')
1395 digit = 10 + c - 'a';
1396 else
1397 break;
1398
1399 val *= 16;
1400 val += digit;
1401
1402 str++;
1403 }
1404
1405 if (nptr)
1406 *nptr = (char *)str;
1407
1408 return (val);
1409}
1410
34dc7c2f
BB
1411/*
1412 * ==========================================================================
1413 * Accessor functions
1414 * ==========================================================================
1415 */
1416
b128c09f
BB
1417boolean_t
1418spa_shutting_down(spa_t *spa)
34dc7c2f 1419{
b128c09f 1420 return (spa->spa_async_suspended);
34dc7c2f
BB
1421}
1422
1423dsl_pool_t *
1424spa_get_dsl(spa_t *spa)
1425{
1426 return (spa->spa_dsl_pool);
1427}
1428
9ae529ec
CS
1429boolean_t
1430spa_is_initializing(spa_t *spa)
1431{
1432 return (spa->spa_is_initializing);
1433}
1434
34dc7c2f
BB
1435blkptr_t *
1436spa_get_rootblkptr(spa_t *spa)
1437{
1438 return (&spa->spa_ubsync.ub_rootbp);
1439}
1440
1441void
1442spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1443{
1444 spa->spa_uberblock.ub_rootbp = *bp;
1445}
1446
1447void
1448spa_altroot(spa_t *spa, char *buf, size_t buflen)
1449{
1450 if (spa->spa_root == NULL)
1451 buf[0] = '\0';
1452 else
1453 (void) strncpy(buf, spa->spa_root, buflen);
1454}
1455
1456int
1457spa_sync_pass(spa_t *spa)
1458{
1459 return (spa->spa_sync_pass);
1460}
1461
1462char *
1463spa_name(spa_t *spa)
1464{
34dc7c2f
BB
1465 return (spa->spa_name);
1466}
1467
1468uint64_t
1469spa_guid(spa_t *spa)
1470{
3bc7e0fb
GW
1471 dsl_pool_t *dp = spa_get_dsl(spa);
1472 uint64_t guid;
1473
34dc7c2f
BB
1474 /*
1475 * If we fail to parse the config during spa_load(), we can go through
1476 * the error path (which posts an ereport) and end up here with no root
3541dc6d 1477 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
34dc7c2f
BB
1478 * this case.
1479 */
3bc7e0fb
GW
1480 if (spa->spa_root_vdev == NULL)
1481 return (spa->spa_config_guid);
1482
1483 guid = spa->spa_last_synced_guid != 0 ?
1484 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1485
1486 /*
1487 * Return the most recently synced out guid unless we're
1488 * in syncing context.
1489 */
1490 if (dp && dsl_pool_sync_context(dp))
34dc7c2f
BB
1491 return (spa->spa_root_vdev->vdev_guid);
1492 else
3bc7e0fb 1493 return (guid);
3541dc6d
GA
1494}
1495
1496uint64_t
1497spa_load_guid(spa_t *spa)
1498{
1499 /*
1500 * This is a GUID that exists solely as a reference for the
1501 * purposes of the arc. It is generated at load time, and
1502 * is never written to persistent storage.
1503 */
1504 return (spa->spa_load_guid);
34dc7c2f
BB
1505}
1506
1507uint64_t
1508spa_last_synced_txg(spa_t *spa)
1509{
1510 return (spa->spa_ubsync.ub_txg);
1511}
1512
1513uint64_t
1514spa_first_txg(spa_t *spa)
1515{
1516 return (spa->spa_first_txg);
1517}
1518
428870ff
BB
1519uint64_t
1520spa_syncing_txg(spa_t *spa)
1521{
1522 return (spa->spa_syncing_txg);
1523}
1524
b128c09f 1525pool_state_t
34dc7c2f
BB
1526spa_state(spa_t *spa)
1527{
1528 return (spa->spa_state);
1529}
1530
428870ff
BB
1531spa_load_state_t
1532spa_load_state(spa_t *spa)
34dc7c2f 1533{
428870ff 1534 return (spa->spa_load_state);
34dc7c2f
BB
1535}
1536
34dc7c2f 1537uint64_t
428870ff 1538spa_freeze_txg(spa_t *spa)
34dc7c2f 1539{
428870ff 1540 return (spa->spa_freeze_txg);
34dc7c2f
BB
1541}
1542
428870ff 1543/* ARGSUSED */
34dc7c2f 1544uint64_t
428870ff 1545spa_get_asize(spa_t *spa, uint64_t lsize)
34dc7c2f 1546{
e8b96c60 1547 return (lsize * spa_asize_inflation);
34dc7c2f
BB
1548}
1549
34dc7c2f
BB
1550uint64_t
1551spa_get_dspace(spa_t *spa)
1552{
428870ff 1553 return (spa->spa_dspace);
34dc7c2f
BB
1554}
1555
428870ff
BB
1556void
1557spa_update_dspace(spa_t *spa)
34dc7c2f 1558{
428870ff
BB
1559 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1560 ddt_get_dedup_dspace(spa);
34dc7c2f
BB
1561}
1562
1563/*
1564 * Return the failure mode that has been set to this pool. The default
1565 * behavior will be to block all I/Os when a complete failure occurs.
1566 */
1567uint8_t
1568spa_get_failmode(spa_t *spa)
1569{
1570 return (spa->spa_failmode);
1571}
1572
b128c09f
BB
1573boolean_t
1574spa_suspended(spa_t *spa)
1575{
1576 return (spa->spa_suspended);
1577}
1578
34dc7c2f
BB
1579uint64_t
1580spa_version(spa_t *spa)
1581{
1582 return (spa->spa_ubsync.ub_version);
1583}
1584
428870ff
BB
1585boolean_t
1586spa_deflate(spa_t *spa)
1587{
1588 return (spa->spa_deflate);
1589}
1590
1591metaslab_class_t *
1592spa_normal_class(spa_t *spa)
1593{
1594 return (spa->spa_normal_class);
1595}
1596
1597metaslab_class_t *
1598spa_log_class(spa_t *spa)
1599{
1600 return (spa->spa_log_class);
1601}
1602
34dc7c2f
BB
1603int
1604spa_max_replication(spa_t *spa)
1605{
1606 /*
1607 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1608 * handle BPs with more than one DVA allocated. Set our max
1609 * replication level accordingly.
1610 */
1611 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1612 return (1);
1613 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1614}
1615
428870ff
BB
1616int
1617spa_prev_software_version(spa_t *spa)
1618{
1619 return (spa->spa_prev_software_version);
1620}
1621
cc92e9d0
GW
1622uint64_t
1623spa_deadman_synctime(spa_t *spa)
1624{
1625 return (spa->spa_deadman_synctime);
1626}
1627
34dc7c2f 1628uint64_t
428870ff 1629dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
34dc7c2f 1630{
428870ff
BB
1631 uint64_t asize = DVA_GET_ASIZE(dva);
1632 uint64_t dsize = asize;
34dc7c2f 1633
428870ff 1634 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 1635
428870ff
BB
1636 if (asize != 0 && spa->spa_deflate) {
1637 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2c33b912
BB
1638 if (vd != NULL)
1639 dsize = (asize >> SPA_MINBLOCKSHIFT) *
1640 vd->vdev_deflate_ratio;
34dc7c2f 1641 }
428870ff
BB
1642
1643 return (dsize);
1644}
1645
1646uint64_t
1647bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1648{
1649 uint64_t dsize = 0;
d6320ddb 1650 int d;
428870ff 1651
9b67f605 1652 for (d = 0; d < BP_GET_NDVAS(bp); d++)
428870ff
BB
1653 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1654
1655 return (dsize);
1656}
1657
1658uint64_t
1659bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1660{
1661 uint64_t dsize = 0;
d6320ddb 1662 int d;
428870ff
BB
1663
1664 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1665
9b67f605 1666 for (d = 0; d < BP_GET_NDVAS(bp); d++)
428870ff
BB
1667 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1668
b128c09f 1669 spa_config_exit(spa, SCL_VDEV, FTAG);
428870ff
BB
1670
1671 return (dsize);
34dc7c2f
BB
1672}
1673
1674/*
1675 * ==========================================================================
1676 * Initialization and Termination
1677 * ==========================================================================
1678 */
1679
1680static int
1681spa_name_compare(const void *a1, const void *a2)
1682{
1683 const spa_t *s1 = a1;
1684 const spa_t *s2 = a2;
1685 int s;
1686
1687 s = strcmp(s1->spa_name, s2->spa_name);
1688 if (s > 0)
1689 return (1);
1690 if (s < 0)
1691 return (-1);
1692 return (0);
1693}
1694
34dc7c2f 1695void
0bc8fd78 1696spa_boot_init(void)
34dc7c2f
BB
1697{
1698 spa_config_load();
1699}
1700
1701void
1702spa_init(int mode)
1703{
1704 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1705 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1706 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1707 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1708
1709 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1710 offsetof(spa_t, spa_avl));
1711
1712 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1713 offsetof(spa_aux_t, aux_avl));
1714
1715 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1716 offsetof(spa_aux_t, aux_avl));
1717
fb5f0bc8 1718 spa_mode_global = mode;
34dc7c2f 1719
498877ba
MA
1720#ifndef _KERNEL
1721 if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1722 struct sigaction sa;
1723
1724 sa.sa_flags = SA_SIGINFO;
1725 sigemptyset(&sa.sa_mask);
1726 sa.sa_sigaction = arc_buf_sigsegv;
1727
1728 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
1729 perror("could not enable watchpoints: "
1730 "sigaction(SIGSEGV, ...) = ");
1731 } else {
1732 arc_watch = B_TRUE;
1733 }
1734 }
1735#endif
1736
26685276 1737 fm_init();
34dc7c2f
BB
1738 refcount_init();
1739 unique_init();
93cf2076 1740 range_tree_init();
ecf3d9b8 1741 ddt_init();
34dc7c2f
BB
1742 zio_init();
1743 dmu_init();
1744 zil_init();
1745 vdev_cache_stat_init();
bc25c932 1746 vdev_file_init();
34dc7c2f
BB
1747 zfs_prop_init();
1748 zpool_prop_init();
9ae529ec 1749 zpool_feature_init();
34dc7c2f 1750 spa_config_load();
b128c09f 1751 l2arc_start();
34dc7c2f
BB
1752}
1753
1754void
1755spa_fini(void)
1756{
b128c09f
BB
1757 l2arc_stop();
1758
34dc7c2f
BB
1759 spa_evict_all();
1760
bc25c932 1761 vdev_file_fini();
34dc7c2f
BB
1762 vdev_cache_stat_fini();
1763 zil_fini();
1764 dmu_fini();
1765 zio_fini();
ecf3d9b8 1766 ddt_fini();
93cf2076 1767 range_tree_fini();
34dc7c2f
BB
1768 unique_fini();
1769 refcount_fini();
26685276 1770 fm_fini();
34dc7c2f
BB
1771
1772 avl_destroy(&spa_namespace_avl);
1773 avl_destroy(&spa_spare_avl);
1774 avl_destroy(&spa_l2cache_avl);
1775
1776 cv_destroy(&spa_namespace_cv);
1777 mutex_destroy(&spa_namespace_lock);
1778 mutex_destroy(&spa_spare_lock);
1779 mutex_destroy(&spa_l2cache_lock);
1780}
1781
1782/*
1783 * Return whether this pool has slogs. No locking needed.
1784 * It's not a problem if the wrong answer is returned as it's only for
1785 * performance and not correctness
1786 */
1787boolean_t
1788spa_has_slogs(spa_t *spa)
1789{
1790 return (spa->spa_log_class->mc_rotor != NULL);
1791}
b128c09f 1792
428870ff
BB
1793spa_log_state_t
1794spa_get_log_state(spa_t *spa)
1795{
1796 return (spa->spa_log_state);
1797}
1798
1799void
1800spa_set_log_state(spa_t *spa, spa_log_state_t state)
1801{
1802 spa->spa_log_state = state;
1803}
1804
b128c09f
BB
1805boolean_t
1806spa_is_root(spa_t *spa)
1807{
1808 return (spa->spa_is_root);
1809}
fb5f0bc8
BB
1810
1811boolean_t
1812spa_writeable(spa_t *spa)
1813{
1814 return (!!(spa->spa_mode & FWRITE));
1815}
1816
acbad6ff
AR
1817/*
1818 * Returns true if there is a pending sync task in any of the current
1819 * syncing txg, the current quiescing txg, or the current open txg.
1820 */
1821boolean_t
1822spa_has_pending_synctask(spa_t *spa)
1823{
1824 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
1825}
1826
fb5f0bc8
BB
1827int
1828spa_mode(spa_t *spa)
1829{
1830 return (spa->spa_mode);
1831}
428870ff
BB
1832
1833uint64_t
1834spa_bootfs(spa_t *spa)
1835{
1836 return (spa->spa_bootfs);
1837}
1838
1839uint64_t
1840spa_delegation(spa_t *spa)
1841{
1842 return (spa->spa_delegation);
1843}
1844
1845objset_t *
1846spa_meta_objset(spa_t *spa)
1847{
1848 return (spa->spa_meta_objset);
1849}
1850
1851enum zio_checksum
1852spa_dedup_checksum(spa_t *spa)
1853{
1854 return (spa->spa_dedup_checksum);
1855}
1856
1857/*
1858 * Reset pool scan stat per scan pass (or reboot).
1859 */
1860void
1861spa_scan_stat_init(spa_t *spa)
1862{
1863 /* data not stored on disk */
1864 spa->spa_scan_pass_start = gethrestime_sec();
1865 spa->spa_scan_pass_exam = 0;
1866 vdev_scan_stat_init(spa->spa_root_vdev);
1867}
1868
1869/*
1870 * Get scan stats for zpool status reports
1871 */
1872int
1873spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1874{
1875 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1876
1877 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2e528b49 1878 return (SET_ERROR(ENOENT));
428870ff
BB
1879 bzero(ps, sizeof (pool_scan_stat_t));
1880
1881 /* data stored on disk */
1882 ps->pss_func = scn->scn_phys.scn_func;
1883 ps->pss_start_time = scn->scn_phys.scn_start_time;
1884 ps->pss_end_time = scn->scn_phys.scn_end_time;
1885 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1886 ps->pss_examined = scn->scn_phys.scn_examined;
1887 ps->pss_to_process = scn->scn_phys.scn_to_process;
1888 ps->pss_processed = scn->scn_phys.scn_processed;
1889 ps->pss_errors = scn->scn_phys.scn_errors;
1890 ps->pss_state = scn->scn_phys.scn_state;
1891
1892 /* data not stored on disk */
1893 ps->pss_pass_start = spa->spa_scan_pass_start;
1894 ps->pss_pass_exam = spa->spa_scan_pass_exam;
1895
1896 return (0);
1897}
c28b2279 1898
6d974228
GW
1899boolean_t
1900spa_debug_enabled(spa_t *spa)
1901{
1902 return (spa->spa_debug);
1903}
1904
c28b2279
BB
1905#if defined(_KERNEL) && defined(HAVE_SPL)
1906/* Namespace manipulation */
1907EXPORT_SYMBOL(spa_lookup);
1908EXPORT_SYMBOL(spa_add);
1909EXPORT_SYMBOL(spa_remove);
1910EXPORT_SYMBOL(spa_next);
1911
1912/* Refcount functions */
1913EXPORT_SYMBOL(spa_open_ref);
1914EXPORT_SYMBOL(spa_close);
1915EXPORT_SYMBOL(spa_refcount_zero);
1916
1917/* Pool configuration lock */
1918EXPORT_SYMBOL(spa_config_tryenter);
1919EXPORT_SYMBOL(spa_config_enter);
1920EXPORT_SYMBOL(spa_config_exit);
1921EXPORT_SYMBOL(spa_config_held);
1922
1923/* Pool vdev add/remove lock */
1924EXPORT_SYMBOL(spa_vdev_enter);
1925EXPORT_SYMBOL(spa_vdev_exit);
1926
1927/* Pool vdev state change lock */
1928EXPORT_SYMBOL(spa_vdev_state_enter);
1929EXPORT_SYMBOL(spa_vdev_state_exit);
1930
1931/* Accessor functions */
1932EXPORT_SYMBOL(spa_shutting_down);
1933EXPORT_SYMBOL(spa_get_dsl);
1934EXPORT_SYMBOL(spa_get_rootblkptr);
1935EXPORT_SYMBOL(spa_set_rootblkptr);
1936EXPORT_SYMBOL(spa_altroot);
1937EXPORT_SYMBOL(spa_sync_pass);
1938EXPORT_SYMBOL(spa_name);
1939EXPORT_SYMBOL(spa_guid);
1940EXPORT_SYMBOL(spa_last_synced_txg);
1941EXPORT_SYMBOL(spa_first_txg);
1942EXPORT_SYMBOL(spa_syncing_txg);
1943EXPORT_SYMBOL(spa_version);
1944EXPORT_SYMBOL(spa_state);
1945EXPORT_SYMBOL(spa_load_state);
1946EXPORT_SYMBOL(spa_freeze_txg);
1947EXPORT_SYMBOL(spa_get_asize);
1948EXPORT_SYMBOL(spa_get_dspace);
1949EXPORT_SYMBOL(spa_update_dspace);
1950EXPORT_SYMBOL(spa_deflate);
1951EXPORT_SYMBOL(spa_normal_class);
1952EXPORT_SYMBOL(spa_log_class);
1953EXPORT_SYMBOL(spa_max_replication);
1954EXPORT_SYMBOL(spa_prev_software_version);
1955EXPORT_SYMBOL(spa_get_failmode);
1956EXPORT_SYMBOL(spa_suspended);
1957EXPORT_SYMBOL(spa_bootfs);
1958EXPORT_SYMBOL(spa_delegation);
1959EXPORT_SYMBOL(spa_meta_objset);
1960
1961/* Miscellaneous support routines */
1962EXPORT_SYMBOL(spa_rename);
1963EXPORT_SYMBOL(spa_guid_exists);
1964EXPORT_SYMBOL(spa_strdup);
1965EXPORT_SYMBOL(spa_strfree);
1966EXPORT_SYMBOL(spa_get_random);
1967EXPORT_SYMBOL(spa_generate_guid);
b0bc7a84 1968EXPORT_SYMBOL(snprintf_blkptr);
c28b2279
BB
1969EXPORT_SYMBOL(spa_freeze);
1970EXPORT_SYMBOL(spa_upgrade);
1971EXPORT_SYMBOL(spa_evict_all);
1972EXPORT_SYMBOL(spa_lookup_by_guid);
1973EXPORT_SYMBOL(spa_has_spare);
1974EXPORT_SYMBOL(dva_get_dsize_sync);
1975EXPORT_SYMBOL(bp_get_dsize_sync);
1976EXPORT_SYMBOL(bp_get_dsize);
1977EXPORT_SYMBOL(spa_has_slogs);
1978EXPORT_SYMBOL(spa_is_root);
1979EXPORT_SYMBOL(spa_writeable);
1980EXPORT_SYMBOL(spa_mode);
1981
1982EXPORT_SYMBOL(spa_namespace_lock);
cc92e9d0 1983
33b6dbbc 1984module_param(zfs_flags, uint, 0644);
0b39b9f9
PS
1985MODULE_PARM_DESC(zfs_flags, "Set additional debugging flags");
1986
1987module_param(zfs_recover, int, 0644);
1988MODULE_PARM_DESC(zfs_recover, "Set to attempt to recover from fatal errors");
1989
1990module_param(zfs_free_leak_on_eio, int, 0644);
1991MODULE_PARM_DESC(zfs_free_leak_on_eio,
1992 "Set to ignore IO errors during free and permanently leak the space");
1993
e8b96c60 1994module_param(zfs_deadman_synctime_ms, ulong, 0644);
d1d7e268 1995MODULE_PARM_DESC(zfs_deadman_synctime_ms, "Expiration time in milliseconds");
cc92e9d0
GW
1996
1997module_param(zfs_deadman_enabled, int, 0644);
1998MODULE_PARM_DESC(zfs_deadman_enabled, "Enable deadman timer");
e8b96c60
MA
1999
2000module_param(spa_asize_inflation, int, 0644);
2001MODULE_PARM_DESC(spa_asize_inflation,
d1d7e268 2002 "SPA size estimate multiplication factor");
c28b2279 2003#endif