]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/zil.c
OpenZFS 8997 - ztest assertion failure in zil_lwb_write_issue
[mirror_zfs.git] / module / zfs / zil.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
4747a7d3 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
55922e73 24 * Copyright (c) 2014 Integros [integros.com]
34dc7c2f
BB
25 */
26
428870ff
BB
27/* Portions Copyright 2010 Robert Milkowski */
28
34dc7c2f
BB
29#include <sys/zfs_context.h>
30#include <sys/spa.h>
31#include <sys/dmu.h>
32#include <sys/zap.h>
33#include <sys/arc.h>
34#include <sys/stat.h>
35#include <sys/resource.h>
36#include <sys/zil.h>
37#include <sys/zil_impl.h>
38#include <sys/dsl_dataset.h>
572e2857 39#include <sys/vdev_impl.h>
34dc7c2f 40#include <sys/dmu_tx.h>
428870ff 41#include <sys/dsl_pool.h>
920dd524 42#include <sys/metaslab.h>
49ee64e5 43#include <sys/trace_zil.h>
a6255b7f 44#include <sys/abd.h>
34dc7c2f
BB
45
46/*
1ce23dca
PS
47 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
48 * calls that change the file system. Each itx has enough information to
49 * be able to replay them after a system crash, power loss, or
50 * equivalent failure mode. These are stored in memory until either:
34dc7c2f 51 *
1ce23dca
PS
52 * 1. they are committed to the pool by the DMU transaction group
53 * (txg), at which point they can be discarded; or
54 * 2. they are committed to the on-disk ZIL for the dataset being
55 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
56 * requirement).
34dc7c2f 57 *
1ce23dca
PS
58 * In the event of a crash or power loss, the itxs contained by each
59 * dataset's on-disk ZIL will be replayed when that dataset is first
2fe61a7e 60 * instantiated (e.g. if the dataset is a normal fileystem, when it is
1ce23dca 61 * first mounted).
34dc7c2f 62 *
1ce23dca
PS
63 * As hinted at above, there is one ZIL per dataset (both the in-memory
64 * representation, and the on-disk representation). The on-disk format
65 * consists of 3 parts:
66 *
67 * - a single, per-dataset, ZIL header; which points to a chain of
68 * - zero or more ZIL blocks; each of which contains
69 * - zero or more ZIL records
70 *
71 * A ZIL record holds the information necessary to replay a single
72 * system call transaction. A ZIL block can hold many ZIL records, and
73 * the blocks are chained together, similarly to a singly linked list.
74 *
75 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
76 * block in the chain, and the ZIL header points to the first block in
77 * the chain.
78 *
79 * Note, there is not a fixed place in the pool to hold these ZIL
80 * blocks; they are dynamically allocated and freed as needed from the
81 * blocks available on the pool, though they can be preferentially
82 * allocated from a dedicated "log" vdev.
34dc7c2f
BB
83 */
84
1ce23dca
PS
85/*
86 * This controls the amount of time that a ZIL block (lwb) will remain
87 * "open" when it isn't "full", and it has a thread waiting for it to be
88 * committed to stable storage. Please refer to the zil_commit_waiter()
89 * function (and the comments within it) for more details.
90 */
91int zfs_commit_timeout_pct = 5;
92
b6ad9671
ED
93/*
94 * See zil.h for more information about these fields.
95 */
96zil_stats_t zil_stats = {
d1d7e268
MK
97 { "zil_commit_count", KSTAT_DATA_UINT64 },
98 { "zil_commit_writer_count", KSTAT_DATA_UINT64 },
99 { "zil_itx_count", KSTAT_DATA_UINT64 },
100 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
101 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
102 { "zil_itx_copied_count", KSTAT_DATA_UINT64 },
103 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
104 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
105 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
106 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
107 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
108 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
109 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
b6ad9671
ED
110};
111
112static kstat_t *zil_ksp;
113
34dc7c2f 114/*
d3cc8b15 115 * Disable intent logging replay. This global ZIL switch affects all pools.
34dc7c2f 116 */
d3cc8b15 117int zil_replay_disable = 0;
34dc7c2f
BB
118
119/*
120 * Tunable parameter for debugging or performance analysis. Setting
121 * zfs_nocacheflush will cause corruption on power loss if a volatile
122 * out-of-order write cache is enabled.
123 */
c409e464 124int zfs_nocacheflush = 0;
34dc7c2f 125
1b7c1e5c
GDN
126/*
127 * Limit SLOG write size per commit executed with synchronous priority.
128 * Any writes above that will be executed with lower (asynchronous) priority
129 * to limit potential SLOG device abuse by single active ZIL writer.
130 */
131unsigned long zil_slog_bulk = 768 * 1024;
132
34dc7c2f 133static kmem_cache_t *zil_lwb_cache;
1ce23dca 134static kmem_cache_t *zil_zcw_cache;
34dc7c2f 135
572e2857 136static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
428870ff
BB
137
138#define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
139 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
140
34dc7c2f 141static int
428870ff 142zil_bp_compare(const void *x1, const void *x2)
34dc7c2f 143{
428870ff
BB
144 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
145 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
34dc7c2f 146
ee36c709
GN
147 int cmp = AVL_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
148 if (likely(cmp))
149 return (cmp);
34dc7c2f 150
ee36c709 151 return (AVL_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
34dc7c2f
BB
152}
153
154static void
428870ff 155zil_bp_tree_init(zilog_t *zilog)
34dc7c2f 156{
428870ff
BB
157 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
158 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
34dc7c2f
BB
159}
160
161static void
428870ff 162zil_bp_tree_fini(zilog_t *zilog)
34dc7c2f 163{
428870ff
BB
164 avl_tree_t *t = &zilog->zl_bp_tree;
165 zil_bp_node_t *zn;
34dc7c2f
BB
166 void *cookie = NULL;
167
168 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
428870ff 169 kmem_free(zn, sizeof (zil_bp_node_t));
34dc7c2f
BB
170
171 avl_destroy(t);
172}
173
428870ff
BB
174int
175zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
34dc7c2f 176{
428870ff 177 avl_tree_t *t = &zilog->zl_bp_tree;
9b67f605 178 const dva_t *dva;
428870ff 179 zil_bp_node_t *zn;
34dc7c2f
BB
180 avl_index_t where;
181
9b67f605
MA
182 if (BP_IS_EMBEDDED(bp))
183 return (0);
184
185 dva = BP_IDENTITY(bp);
186
34dc7c2f 187 if (avl_find(t, dva, &where) != NULL)
2e528b49 188 return (SET_ERROR(EEXIST));
34dc7c2f 189
79c76d5b 190 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
34dc7c2f
BB
191 zn->zn_dva = *dva;
192 avl_insert(t, zn, where);
193
194 return (0);
195}
196
197static zil_header_t *
198zil_header_in_syncing_context(zilog_t *zilog)
199{
200 return ((zil_header_t *)zilog->zl_header);
201}
202
203static void
204zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
205{
206 zio_cksum_t *zc = &bp->blk_cksum;
207
208 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
209 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
210 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
211 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
212}
213
214/*
428870ff 215 * Read a log block and make sure it's valid.
34dc7c2f
BB
216 */
217static int
b5256303
TC
218zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
219 blkptr_t *nbp, void *dst, char **end)
34dc7c2f 220{
428870ff 221 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
2a432414 222 arc_flags_t aflags = ARC_FLAG_WAIT;
428870ff 223 arc_buf_t *abuf = NULL;
5dbd68a3 224 zbookmark_phys_t zb;
34dc7c2f
BB
225 int error;
226
428870ff
BB
227 if (zilog->zl_header->zh_claim_txg == 0)
228 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
34dc7c2f 229
428870ff
BB
230 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
231 zio_flags |= ZIO_FLAG_SPECULATIVE;
34dc7c2f 232
b5256303
TC
233 if (!decrypt)
234 zio_flags |= ZIO_FLAG_RAW;
235
428870ff
BB
236 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
237 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
238
b5256303
TC
239 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
240 &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
34dc7c2f
BB
241
242 if (error == 0) {
34dc7c2f
BB
243 zio_cksum_t cksum = bp->blk_cksum;
244
245 /*
b128c09f
BB
246 * Validate the checksummed log block.
247 *
34dc7c2f
BB
248 * Sequence numbers should be... sequential. The checksum
249 * verifier for the next block should be bp's checksum plus 1.
b128c09f
BB
250 *
251 * Also check the log chain linkage and size used.
34dc7c2f
BB
252 */
253 cksum.zc_word[ZIL_ZC_SEQ]++;
254
428870ff
BB
255 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
256 zil_chain_t *zilc = abuf->b_data;
257 char *lr = (char *)(zilc + 1);
258 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
34dc7c2f 259
428870ff
BB
260 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
261 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
2e528b49 262 error = SET_ERROR(ECKSUM);
428870ff 263 } else {
f1512ee6 264 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
428870ff
BB
265 bcopy(lr, dst, len);
266 *end = (char *)dst + len;
267 *nbp = zilc->zc_next_blk;
268 }
269 } else {
270 char *lr = abuf->b_data;
271 uint64_t size = BP_GET_LSIZE(bp);
272 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
273
274 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
275 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
276 (zilc->zc_nused > (size - sizeof (*zilc)))) {
2e528b49 277 error = SET_ERROR(ECKSUM);
428870ff 278 } else {
f1512ee6
MA
279 ASSERT3U(zilc->zc_nused, <=,
280 SPA_OLD_MAXBLOCKSIZE);
428870ff
BB
281 bcopy(lr, dst, zilc->zc_nused);
282 *end = (char *)dst + zilc->zc_nused;
283 *nbp = zilc->zc_next_blk;
284 }
34dc7c2f 285 }
428870ff 286
d3c2ae1c 287 arc_buf_destroy(abuf, &abuf);
428870ff
BB
288 }
289
290 return (error);
291}
292
293/*
294 * Read a TX_WRITE log data block.
295 */
296static int
297zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
298{
299 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
300 const blkptr_t *bp = &lr->lr_blkptr;
2a432414 301 arc_flags_t aflags = ARC_FLAG_WAIT;
428870ff 302 arc_buf_t *abuf = NULL;
5dbd68a3 303 zbookmark_phys_t zb;
428870ff
BB
304 int error;
305
306 if (BP_IS_HOLE(bp)) {
307 if (wbuf != NULL)
308 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
309 return (0);
34dc7c2f
BB
310 }
311
428870ff
BB
312 if (zilog->zl_header->zh_claim_txg == 0)
313 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
314
b5256303
TC
315 /*
316 * If we are not using the resulting data, we are just checking that
317 * it hasn't been corrupted so we don't need to waste CPU time
318 * decompressing and decrypting it.
319 */
320 if (wbuf == NULL)
321 zio_flags |= ZIO_FLAG_RAW;
322
428870ff
BB
323 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
324 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
325
294f6806 326 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
428870ff
BB
327 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
328
329 if (error == 0) {
330 if (wbuf != NULL)
331 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
d3c2ae1c 332 arc_buf_destroy(abuf, &abuf);
428870ff 333 }
34dc7c2f
BB
334
335 return (error);
336}
337
338/*
339 * Parse the intent log, and call parse_func for each valid record within.
34dc7c2f 340 */
428870ff 341int
34dc7c2f 342zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
b5256303
TC
343 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
344 boolean_t decrypt)
34dc7c2f
BB
345{
346 const zil_header_t *zh = zilog->zl_header;
428870ff
BB
347 boolean_t claimed = !!zh->zh_claim_txg;
348 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
349 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
350 uint64_t max_blk_seq = 0;
351 uint64_t max_lr_seq = 0;
352 uint64_t blk_count = 0;
353 uint64_t lr_count = 0;
354 blkptr_t blk, next_blk;
34dc7c2f 355 char *lrbuf, *lrp;
428870ff 356 int error = 0;
34dc7c2f 357
d1d7e268 358 bzero(&next_blk, sizeof (blkptr_t));
d4ed6673 359
428870ff
BB
360 /*
361 * Old logs didn't record the maximum zh_claim_lr_seq.
362 */
363 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
364 claim_lr_seq = UINT64_MAX;
34dc7c2f
BB
365
366 /*
367 * Starting at the block pointed to by zh_log we read the log chain.
368 * For each block in the chain we strongly check that block to
369 * ensure its validity. We stop when an invalid block is found.
370 * For each block pointer in the chain we call parse_blk_func().
371 * For each record in each valid block we call parse_lr_func().
372 * If the log has been claimed, stop if we encounter a sequence
373 * number greater than the highest claimed sequence number.
374 */
f1512ee6 375 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
428870ff 376 zil_bp_tree_init(zilog);
34dc7c2f 377
428870ff
BB
378 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
379 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
380 int reclen;
d4ed6673 381 char *end = NULL;
34dc7c2f 382
428870ff
BB
383 if (blk_seq > claim_blk_seq)
384 break;
b5256303
TC
385
386 error = parse_blk_func(zilog, &blk, arg, txg);
387 if (error != 0)
428870ff
BB
388 break;
389 ASSERT3U(max_blk_seq, <, blk_seq);
390 max_blk_seq = blk_seq;
391 blk_count++;
34dc7c2f 392
428870ff
BB
393 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
394 break;
34dc7c2f 395
b5256303
TC
396 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
397 lrbuf, &end);
13fe0198 398 if (error != 0)
34dc7c2f
BB
399 break;
400
428870ff 401 for (lrp = lrbuf; lrp < end; lrp += reclen) {
34dc7c2f
BB
402 lr_t *lr = (lr_t *)lrp;
403 reclen = lr->lrc_reclen;
404 ASSERT3U(reclen, >=, sizeof (lr_t));
428870ff
BB
405 if (lr->lrc_seq > claim_lr_seq)
406 goto done;
b5256303
TC
407
408 error = parse_lr_func(zilog, lr, arg, txg);
409 if (error != 0)
428870ff
BB
410 goto done;
411 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
412 max_lr_seq = lr->lrc_seq;
413 lr_count++;
34dc7c2f 414 }
34dc7c2f 415 }
428870ff
BB
416done:
417 zilog->zl_parse_error = error;
418 zilog->zl_parse_blk_seq = max_blk_seq;
419 zilog->zl_parse_lr_seq = max_lr_seq;
420 zilog->zl_parse_blk_count = blk_count;
421 zilog->zl_parse_lr_count = lr_count;
422
423 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
b5256303
TC
424 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq) ||
425 (decrypt && error == EIO));
428870ff
BB
426
427 zil_bp_tree_fini(zilog);
f1512ee6 428 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
34dc7c2f 429
428870ff 430 return (error);
34dc7c2f
BB
431}
432
428870ff 433static int
34dc7c2f
BB
434zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
435{
34dc7c2f
BB
436 /*
437 * Claim log block if not already committed and not already claimed.
428870ff 438 * If tx == NULL, just verify that the block is claimable.
34dc7c2f 439 */
b0bc7a84
MG
440 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
441 zil_bp_tree_add(zilog, bp) != 0)
428870ff
BB
442 return (0);
443
444 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
445 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
446 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
34dc7c2f
BB
447}
448
428870ff 449static int
34dc7c2f
BB
450zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
451{
428870ff
BB
452 lr_write_t *lr = (lr_write_t *)lrc;
453 int error;
454
455 if (lrc->lrc_txtype != TX_WRITE)
456 return (0);
457
458 /*
459 * If the block is not readable, don't claim it. This can happen
460 * in normal operation when a log block is written to disk before
461 * some of the dmu_sync() blocks it points to. In this case, the
462 * transaction cannot have been committed to anyone (we would have
463 * waited for all writes to be stable first), so it is semantically
464 * correct to declare this the end of the log.
465 */
b5256303
TC
466 if (lr->lr_blkptr.blk_birth >= first_txg) {
467 error = zil_read_log_data(zilog, lr, NULL);
468 if (error != 0)
469 return (error);
470 }
471
428870ff 472 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
34dc7c2f
BB
473}
474
475/* ARGSUSED */
428870ff 476static int
34dc7c2f
BB
477zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
478{
428870ff
BB
479 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
480
481 return (0);
34dc7c2f
BB
482}
483
428870ff 484static int
34dc7c2f
BB
485zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
486{
428870ff
BB
487 lr_write_t *lr = (lr_write_t *)lrc;
488 blkptr_t *bp = &lr->lr_blkptr;
489
34dc7c2f
BB
490 /*
491 * If we previously claimed it, we need to free it.
492 */
428870ff 493 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
b0bc7a84
MG
494 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
495 !BP_IS_HOLE(bp))
428870ff
BB
496 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
497
498 return (0);
499}
500
1ce23dca
PS
501static int
502zil_lwb_vdev_compare(const void *x1, const void *x2)
503{
504 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
505 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
506
507 return (AVL_CMP(v1, v2));
508}
509
428870ff 510static lwb_t *
1b7c1e5c
GDN
511zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
512 boolean_t fastwrite)
428870ff
BB
513{
514 lwb_t *lwb;
515
79c76d5b 516 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
428870ff
BB
517 lwb->lwb_zilog = zilog;
518 lwb->lwb_blk = *bp;
920dd524 519 lwb->lwb_fastwrite = fastwrite;
1b7c1e5c 520 lwb->lwb_slog = slog;
1ce23dca 521 lwb->lwb_state = LWB_STATE_CLOSED;
428870ff
BB
522 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
523 lwb->lwb_max_txg = txg;
1ce23dca
PS
524 lwb->lwb_write_zio = NULL;
525 lwb->lwb_root_zio = NULL;
428870ff 526 lwb->lwb_tx = NULL;
1ce23dca 527 lwb->lwb_issued_timestamp = 0;
428870ff
BB
528 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
529 lwb->lwb_nused = sizeof (zil_chain_t);
530 lwb->lwb_sz = BP_GET_LSIZE(bp);
531 } else {
532 lwb->lwb_nused = 0;
533 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
34dc7c2f 534 }
428870ff
BB
535
536 mutex_enter(&zilog->zl_lock);
537 list_insert_tail(&zilog->zl_lwb_list, lwb);
538 mutex_exit(&zilog->zl_lock);
539
1ce23dca
PS
540 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
541 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
2fe61a7e
PS
542 VERIFY(list_is_empty(&lwb->lwb_waiters));
543 VERIFY(list_is_empty(&lwb->lwb_itxs));
1ce23dca 544
428870ff 545 return (lwb);
34dc7c2f
BB
546}
547
1ce23dca
PS
548static void
549zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
550{
551 ASSERT(MUTEX_HELD(&zilog->zl_lock));
552 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
2fe61a7e
PS
553 VERIFY(list_is_empty(&lwb->lwb_waiters));
554 VERIFY(list_is_empty(&lwb->lwb_itxs));
1ce23dca 555 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1ce23dca
PS
556 ASSERT3P(lwb->lwb_write_zio, ==, NULL);
557 ASSERT3P(lwb->lwb_root_zio, ==, NULL);
2fe61a7e
PS
558 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
559 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
560 lwb->lwb_state == LWB_STATE_DONE);
1ce23dca
PS
561
562 /*
563 * Clear the zilog's field to indicate this lwb is no longer
564 * valid, and prevent use-after-free errors.
565 */
566 if (zilog->zl_last_lwb_opened == lwb)
567 zilog->zl_last_lwb_opened = NULL;
568
569 kmem_cache_free(zil_lwb_cache, lwb);
570}
571
29809a6c
MA
572/*
573 * Called when we create in-memory log transactions so that we know
574 * to cleanup the itxs at the end of spa_sync().
575 */
576void
577zilog_dirty(zilog_t *zilog, uint64_t txg)
578{
579 dsl_pool_t *dp = zilog->zl_dmu_pool;
580 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
581
1ce23dca
PS
582 ASSERT(spa_writeable(zilog->zl_spa));
583
0c66c32d 584 if (ds->ds_is_snapshot)
29809a6c
MA
585 panic("dirtying snapshot!");
586
13fe0198 587 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
29809a6c
MA
588 /* up the hold count until we can be written out */
589 dmu_buf_add_ref(ds->ds_dbuf, zilog);
1ce23dca
PS
590
591 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
29809a6c
MA
592 }
593}
594
55922e73
GW
595/*
596 * Determine if the zil is dirty in the specified txg. Callers wanting to
597 * ensure that the dirty state does not change must hold the itxg_lock for
598 * the specified txg. Holding the lock will ensure that the zil cannot be
599 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
600 * state.
601 */
602boolean_t
603zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
604{
605 dsl_pool_t *dp = zilog->zl_dmu_pool;
606
607 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
608 return (B_TRUE);
609 return (B_FALSE);
610}
611
612/*
613 * Determine if the zil is dirty. The zil is considered dirty if it has
614 * any pending itx records that have not been cleaned by zil_clean().
615 */
29809a6c
MA
616boolean_t
617zilog_is_dirty(zilog_t *zilog)
618{
619 dsl_pool_t *dp = zilog->zl_dmu_pool;
29809a6c 620
1c27024e 621 for (int t = 0; t < TXG_SIZE; t++) {
29809a6c
MA
622 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
623 return (B_TRUE);
624 }
625 return (B_FALSE);
626}
627
34dc7c2f
BB
628/*
629 * Create an on-disk intent log.
630 */
428870ff 631static lwb_t *
34dc7c2f
BB
632zil_create(zilog_t *zilog)
633{
634 const zil_header_t *zh = zilog->zl_header;
428870ff 635 lwb_t *lwb = NULL;
34dc7c2f
BB
636 uint64_t txg = 0;
637 dmu_tx_t *tx = NULL;
638 blkptr_t blk;
639 int error = 0;
920dd524 640 boolean_t fastwrite = FALSE;
1b7c1e5c 641 boolean_t slog = FALSE;
34dc7c2f
BB
642
643 /*
644 * Wait for any previous destroy to complete.
645 */
646 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
647
648 ASSERT(zh->zh_claim_txg == 0);
649 ASSERT(zh->zh_replay_seq == 0);
650
651 blk = zh->zh_log;
652
653 /*
428870ff
BB
654 * Allocate an initial log block if:
655 * - there isn't one already
4e33ba4c 656 * - the existing block is the wrong endianness
34dc7c2f 657 */
fb5f0bc8 658 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
34dc7c2f 659 tx = dmu_tx_create(zilog->zl_os);
1ce23dca 660 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
34dc7c2f
BB
661 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
662 txg = dmu_tx_get_txg(tx);
663
fb5f0bc8 664 if (!BP_IS_HOLE(&blk)) {
428870ff 665 zio_free_zil(zilog->zl_spa, txg, &blk);
fb5f0bc8
BB
666 BP_ZERO(&blk);
667 }
668
b5256303 669 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
1b7c1e5c 670 ZIL_MIN_BLKSZ, &slog);
920dd524 671 fastwrite = TRUE;
34dc7c2f
BB
672
673 if (error == 0)
674 zil_init_log_chain(zilog, &blk);
675 }
676
677 /*
1ce23dca 678 * Allocate a log write block (lwb) for the first log block.
34dc7c2f 679 */
428870ff 680 if (error == 0)
1b7c1e5c 681 lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
34dc7c2f
BB
682
683 /*
684 * If we just allocated the first log block, commit our transaction
2fe61a7e 685 * and wait for zil_sync() to stuff the block pointer into zh_log.
34dc7c2f
BB
686 * (zh is part of the MOS, so we cannot modify it in open context.)
687 */
688 if (tx != NULL) {
689 dmu_tx_commit(tx);
690 txg_wait_synced(zilog->zl_dmu_pool, txg);
691 }
692
693 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
428870ff
BB
694
695 return (lwb);
34dc7c2f
BB
696}
697
698/*
1ce23dca
PS
699 * In one tx, free all log blocks and clear the log header. If keep_first
700 * is set, then we're replaying a log with no content. We want to keep the
701 * first block, however, so that the first synchronous transaction doesn't
702 * require a txg_wait_synced() in zil_create(). We don't need to
703 * txg_wait_synced() here either when keep_first is set, because both
704 * zil_create() and zil_destroy() will wait for any in-progress destroys
705 * to complete.
34dc7c2f
BB
706 */
707void
708zil_destroy(zilog_t *zilog, boolean_t keep_first)
709{
710 const zil_header_t *zh = zilog->zl_header;
711 lwb_t *lwb;
712 dmu_tx_t *tx;
713 uint64_t txg;
714
715 /*
716 * Wait for any previous destroy to complete.
717 */
718 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
719
428870ff
BB
720 zilog->zl_old_header = *zh; /* debugging aid */
721
34dc7c2f
BB
722 if (BP_IS_HOLE(&zh->zh_log))
723 return;
724
725 tx = dmu_tx_create(zilog->zl_os);
1ce23dca 726 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
34dc7c2f
BB
727 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
728 txg = dmu_tx_get_txg(tx);
729
730 mutex_enter(&zilog->zl_lock);
731
34dc7c2f
BB
732 ASSERT3U(zilog->zl_destroy_txg, <, txg);
733 zilog->zl_destroy_txg = txg;
734 zilog->zl_keep_first = keep_first;
735
736 if (!list_is_empty(&zilog->zl_lwb_list)) {
737 ASSERT(zh->zh_claim_txg == 0);
3e31d2b0 738 VERIFY(!keep_first);
34dc7c2f 739 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
920dd524
ED
740 if (lwb->lwb_fastwrite)
741 metaslab_fastwrite_unmark(zilog->zl_spa,
742 &lwb->lwb_blk);
1ce23dca 743
34dc7c2f
BB
744 list_remove(&zilog->zl_lwb_list, lwb);
745 if (lwb->lwb_buf != NULL)
746 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1ce23dca
PS
747 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
748 zil_free_lwb(zilog, lwb);
34dc7c2f 749 }
428870ff 750 } else if (!keep_first) {
29809a6c 751 zil_destroy_sync(zilog, tx);
34dc7c2f
BB
752 }
753 mutex_exit(&zilog->zl_lock);
754
755 dmu_tx_commit(tx);
756}
757
29809a6c
MA
758void
759zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
760{
761 ASSERT(list_is_empty(&zilog->zl_lwb_list));
762 (void) zil_parse(zilog, zil_free_log_block,
b5256303 763 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
29809a6c
MA
764}
765
34dc7c2f 766int
9c43027b 767zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
34dc7c2f
BB
768{
769 dmu_tx_t *tx = txarg;
770 uint64_t first_txg = dmu_tx_get_txg(tx);
771 zilog_t *zilog;
772 zil_header_t *zh;
773 objset_t *os;
774 int error;
775
9c43027b 776 error = dmu_objset_own_obj(dp, ds->ds_object,
b5256303 777 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
13fe0198 778 if (error != 0) {
6d9036f3
MA
779 /*
780 * EBUSY indicates that the objset is inconsistent, in which
781 * case it can not have a ZIL.
782 */
783 if (error != EBUSY) {
9c43027b
AJ
784 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
785 (unsigned long long)ds->ds_object, error);
6d9036f3
MA
786 }
787
34dc7c2f
BB
788 return (0);
789 }
790
791 zilog = dmu_objset_zil(os);
792 zh = zil_header_in_syncing_context(zilog);
793
428870ff 794 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
9babb374 795 if (!BP_IS_HOLE(&zh->zh_log))
428870ff 796 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
9babb374 797 BP_ZERO(&zh->zh_log);
b5256303
TC
798 if (os->os_encrypted)
799 os->os_next_write_raw = B_TRUE;
9babb374 800 dsl_dataset_dirty(dmu_objset_ds(os), tx);
b5256303 801 dmu_objset_disown(os, B_FALSE, FTAG);
428870ff 802 return (0);
9babb374
BB
803 }
804
34dc7c2f
BB
805 /*
806 * Claim all log blocks if we haven't already done so, and remember
807 * the highest claimed sequence number. This ensures that if we can
808 * read only part of the log now (e.g. due to a missing device),
809 * but we can read the entire log later, we will not try to replay
810 * or destroy beyond the last block we successfully claimed.
811 */
812 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
813 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
428870ff 814 (void) zil_parse(zilog, zil_claim_log_block,
b5256303 815 zil_claim_log_record, tx, first_txg, B_FALSE);
428870ff
BB
816 zh->zh_claim_txg = first_txg;
817 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
818 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
819 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
820 zh->zh_flags |= ZIL_REPLAY_NEEDED;
821 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
34dc7c2f
BB
822 dsl_dataset_dirty(dmu_objset_ds(os), tx);
823 }
824
825 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
b5256303 826 dmu_objset_disown(os, B_FALSE, FTAG);
34dc7c2f
BB
827 return (0);
828}
829
b128c09f
BB
830/*
831 * Check the log by walking the log chain.
832 * Checksum errors are ok as they indicate the end of the chain.
833 * Any other error (no device or read failure) returns an error.
834 */
9c43027b 835/* ARGSUSED */
b128c09f 836int
9c43027b 837zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
b128c09f
BB
838{
839 zilog_t *zilog;
b128c09f 840 objset_t *os;
572e2857 841 blkptr_t *bp;
b128c09f
BB
842 int error;
843
428870ff
BB
844 ASSERT(tx == NULL);
845
9c43027b 846 error = dmu_objset_from_ds(ds, &os);
13fe0198 847 if (error != 0) {
9c43027b
AJ
848 cmn_err(CE_WARN, "can't open objset %llu, error %d",
849 (unsigned long long)ds->ds_object, error);
b128c09f
BB
850 return (0);
851 }
852
853 zilog = dmu_objset_zil(os);
572e2857
BB
854 bp = (blkptr_t *)&zilog->zl_header->zh_log;
855
856 /*
857 * Check the first block and determine if it's on a log device
858 * which may have been removed or faulted prior to loading this
859 * pool. If so, there's no point in checking the rest of the log
860 * as its content should have already been synced to the pool.
861 */
862 if (!BP_IS_HOLE(bp)) {
863 vdev_t *vd;
864 boolean_t valid = B_TRUE;
865
866 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
867 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
868 if (vd->vdev_islog && vdev_is_dead(vd))
869 valid = vdev_log_state_valid(vd);
870 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
871
9c43027b 872 if (!valid)
572e2857 873 return (0);
572e2857 874 }
b128c09f 875
428870ff
BB
876 /*
877 * Because tx == NULL, zil_claim_log_block() will not actually claim
878 * any blocks, but just determine whether it is possible to do so.
879 * In addition to checking the log chain, zil_claim_log_block()
880 * will invoke zio_claim() with a done func of spa_claim_notify(),
881 * which will update spa_max_claim_txg. See spa_load() for details.
882 */
883 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
b5256303
TC
884 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa),
885 B_FALSE);
428870ff 886
428870ff 887 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
b128c09f
BB
888}
889
1ce23dca
PS
890/*
891 * When an itx is "skipped", this function is used to properly mark the
892 * waiter as "done, and signal any thread(s) waiting on it. An itx can
893 * be skipped (and not committed to an lwb) for a variety of reasons,
894 * one of them being that the itx was committed via spa_sync(), prior to
895 * it being committed to an lwb; this can happen if a thread calling
896 * zil_commit() is racing with spa_sync().
897 */
898static void
899zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
34dc7c2f 900{
1ce23dca
PS
901 mutex_enter(&zcw->zcw_lock);
902 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
903 zcw->zcw_done = B_TRUE;
904 cv_broadcast(&zcw->zcw_cv);
905 mutex_exit(&zcw->zcw_lock);
906}
34dc7c2f 907
1ce23dca
PS
908/*
909 * This function is used when the given waiter is to be linked into an
910 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
911 * At this point, the waiter will no longer be referenced by the itx,
912 * and instead, will be referenced by the lwb.
913 */
914static void
915zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
916{
2fe61a7e
PS
917 /*
918 * The lwb_waiters field of the lwb is protected by the zilog's
919 * zl_lock, thus it must be held when calling this function.
920 */
921 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
922
1ce23dca
PS
923 mutex_enter(&zcw->zcw_lock);
924 ASSERT(!list_link_active(&zcw->zcw_node));
925 ASSERT3P(zcw->zcw_lwb, ==, NULL);
926 ASSERT3P(lwb, !=, NULL);
927 ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
928 lwb->lwb_state == LWB_STATE_ISSUED);
929
930 list_insert_tail(&lwb->lwb_waiters, zcw);
931 zcw->zcw_lwb = lwb;
932 mutex_exit(&zcw->zcw_lock);
933}
934
935/*
936 * This function is used when zio_alloc_zil() fails to allocate a ZIL
937 * block, and the given waiter must be linked to the "nolwb waiters"
938 * list inside of zil_process_commit_list().
939 */
940static void
941zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
942{
943 mutex_enter(&zcw->zcw_lock);
944 ASSERT(!list_link_active(&zcw->zcw_node));
945 ASSERT3P(zcw->zcw_lwb, ==, NULL);
946 list_insert_tail(nolwb, zcw);
947 mutex_exit(&zcw->zcw_lock);
34dc7c2f
BB
948}
949
950void
1ce23dca 951zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
34dc7c2f 952{
1ce23dca 953 avl_tree_t *t = &lwb->lwb_vdev_tree;
34dc7c2f
BB
954 avl_index_t where;
955 zil_vdev_node_t *zv, zvsearch;
956 int ndvas = BP_GET_NDVAS(bp);
957 int i;
958
959 if (zfs_nocacheflush)
960 return;
961
1ce23dca 962 mutex_enter(&lwb->lwb_vdev_lock);
34dc7c2f
BB
963 for (i = 0; i < ndvas; i++) {
964 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
965 if (avl_find(t, &zvsearch, &where) == NULL) {
79c76d5b 966 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
34dc7c2f
BB
967 zv->zv_vdev = zvsearch.zv_vdev;
968 avl_insert(t, zv, where);
969 }
970 }
1ce23dca 971 mutex_exit(&lwb->lwb_vdev_lock);
34dc7c2f
BB
972}
973
1ce23dca
PS
974void
975zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
976{
977 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
978}
979
980/*
981 * This function is a called after all VDEVs associated with a given lwb
982 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
983 * as the lwb write completes, if "zfs_nocacheflush" is set.
984 *
985 * The intention is for this function to be called as soon as the
986 * contents of an lwb are considered "stable" on disk, and will survive
987 * any sudden loss of power. At this point, any threads waiting for the
988 * lwb to reach this state are signalled, and the "waiter" structures
989 * are marked "done".
990 */
572e2857 991static void
1ce23dca 992zil_lwb_flush_vdevs_done(zio_t *zio)
34dc7c2f 993{
1ce23dca
PS
994 lwb_t *lwb = zio->io_private;
995 zilog_t *zilog = lwb->lwb_zilog;
996 dmu_tx_t *tx = lwb->lwb_tx;
997 zil_commit_waiter_t *zcw;
998 itx_t *itx;
999
1000 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1001
1002 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
34dc7c2f 1003
1ce23dca 1004 mutex_enter(&zilog->zl_lock);
34dc7c2f
BB
1005
1006 /*
1ce23dca
PS
1007 * Ensure the lwb buffer pointer is cleared before releasing the
1008 * txg. If we have had an allocation failure and the txg is
1009 * waiting to sync then we want zil_sync() to remove the lwb so
1010 * that it's not picked up as the next new one in
1011 * zil_process_commit_list(). zil_sync() will only remove the
1012 * lwb if lwb_buf is null.
34dc7c2f 1013 */
1ce23dca
PS
1014 lwb->lwb_buf = NULL;
1015 lwb->lwb_tx = NULL;
34dc7c2f 1016
1ce23dca
PS
1017 ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1018 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
34dc7c2f 1019
1ce23dca
PS
1020 lwb->lwb_root_zio = NULL;
1021 lwb->lwb_state = LWB_STATE_DONE;
34dc7c2f 1022
1ce23dca
PS
1023 if (zilog->zl_last_lwb_opened == lwb) {
1024 /*
1025 * Remember the highest committed log sequence number
1026 * for ztest. We only update this value when all the log
1027 * writes succeeded, because ztest wants to ASSERT that
1028 * it got the whole log chain.
1029 */
1030 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1031 }
1032
1033 while ((itx = list_head(&lwb->lwb_itxs)) != NULL) {
1034 list_remove(&lwb->lwb_itxs, itx);
1035 zil_itx_destroy(itx);
1036 }
1037
1038 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1039 mutex_enter(&zcw->zcw_lock);
1040
1041 ASSERT(list_link_active(&zcw->zcw_node));
1042 list_remove(&lwb->lwb_waiters, zcw);
1043
1044 ASSERT3P(zcw->zcw_lwb, ==, lwb);
1045 zcw->zcw_lwb = NULL;
1046
1047 zcw->zcw_zio_error = zio->io_error;
1048
1049 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1050 zcw->zcw_done = B_TRUE;
1051 cv_broadcast(&zcw->zcw_cv);
1052
1053 mutex_exit(&zcw->zcw_lock);
34dc7c2f
BB
1054 }
1055
1ce23dca
PS
1056 mutex_exit(&zilog->zl_lock);
1057
34dc7c2f 1058 /*
1ce23dca
PS
1059 * Now that we've written this log block, we have a stable pointer
1060 * to the next block in the chain, so it's OK to let the txg in
1061 * which we allocated the next block sync.
34dc7c2f 1062 */
1ce23dca 1063 dmu_tx_commit(tx);
34dc7c2f
BB
1064}
1065
1066/*
1ce23dca
PS
1067 * This is called when an lwb write completes. This means, this specific
1068 * lwb was written to disk, and all dependent lwb have also been
1069 * written to disk.
1070 *
1071 * At this point, a DKIOCFLUSHWRITECACHE command hasn't been issued to
1072 * the VDEVs involved in writing out this specific lwb. The lwb will be
1073 * "done" once zil_lwb_flush_vdevs_done() is called, which occurs in the
1074 * zio completion callback for the lwb's root zio.
34dc7c2f
BB
1075 */
1076static void
1077zil_lwb_write_done(zio_t *zio)
1078{
1079 lwb_t *lwb = zio->io_private;
1ce23dca 1080 spa_t *spa = zio->io_spa;
34dc7c2f 1081 zilog_t *zilog = lwb->lwb_zilog;
1ce23dca
PS
1082 avl_tree_t *t = &lwb->lwb_vdev_tree;
1083 void *cookie = NULL;
1084 zil_vdev_node_t *zv;
1085
1086 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
34dc7c2f 1087
b128c09f 1088 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
b128c09f
BB
1089 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1090 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1091 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1092 ASSERT(!BP_IS_GANG(zio->io_bp));
1093 ASSERT(!BP_IS_HOLE(zio->io_bp));
9b67f605 1094 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
b128c09f 1095
a6255b7f 1096 abd_put(zio->io_abd);
1ce23dca
PS
1097
1098 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1099
34dc7c2f 1100 mutex_enter(&zilog->zl_lock);
1ce23dca 1101 lwb->lwb_write_zio = NULL;
920dd524 1102 lwb->lwb_fastwrite = FALSE;
428870ff 1103 mutex_exit(&zilog->zl_lock);
9babb374 1104
1ce23dca
PS
1105 if (avl_numnodes(t) == 0)
1106 return;
1107
9babb374 1108 /*
1ce23dca
PS
1109 * If there was an IO error, we're not going to call zio_flush()
1110 * on these vdevs, so we simply empty the tree and free the
1111 * nodes. We avoid calling zio_flush() since there isn't any
1112 * good reason for doing so, after the lwb block failed to be
1113 * written out.
9babb374 1114 */
1ce23dca
PS
1115 if (zio->io_error != 0) {
1116 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1117 kmem_free(zv, sizeof (*zv));
1118 return;
1119 }
1120
1121 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1122 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1123 if (vd != NULL)
1124 zio_flush(lwb->lwb_root_zio, vd);
1125 kmem_free(zv, sizeof (*zv));
1126 }
34dc7c2f
BB
1127}
1128
1129/*
1ce23dca
PS
1130 * This function's purpose is to "open" an lwb such that it is ready to
1131 * accept new itxs being committed to it. To do this, the lwb's zio
1132 * structures are created, and linked to the lwb. This function is
1133 * idempotent; if the passed in lwb has already been opened, this
1134 * function is essentially a no-op.
34dc7c2f
BB
1135 */
1136static void
1ce23dca 1137zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
34dc7c2f 1138{
5dbd68a3 1139 zbookmark_phys_t zb;
1b7c1e5c 1140 zio_priority_t prio;
34dc7c2f 1141
1b2b0aca 1142 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1ce23dca
PS
1143 ASSERT3P(lwb, !=, NULL);
1144 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1145 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1146
428870ff
BB
1147 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1148 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1149 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
34dc7c2f 1150
920dd524
ED
1151 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
1152 mutex_enter(&zilog->zl_lock);
1ce23dca 1153 if (lwb->lwb_root_zio == NULL) {
a6255b7f
DQ
1154 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1155 BP_GET_LSIZE(&lwb->lwb_blk));
1ce23dca 1156
920dd524
ED
1157 if (!lwb->lwb_fastwrite) {
1158 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
1159 lwb->lwb_fastwrite = 1;
1160 }
1ce23dca 1161
1b7c1e5c
GDN
1162 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1163 prio = ZIO_PRIORITY_SYNC_WRITE;
1164 else
1165 prio = ZIO_PRIORITY_ASYNC_WRITE;
1ce23dca
PS
1166
1167 lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1168 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1169 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1170
1171 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1172 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1173 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1174 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
920dd524 1175 ZIO_FLAG_FASTWRITE, &zb);
1ce23dca
PS
1176 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1177
1178 lwb->lwb_state = LWB_STATE_OPENED;
1179
1180 /*
1181 * The zilog's "zl_last_lwb_opened" field is used to
1182 * build the lwb/zio dependency chain, which is used to
1183 * preserve the ordering of lwb completions that is
1184 * required by the semantics of the ZIL. Each new lwb
1185 * zio becomes a parent of the "previous" lwb zio, such
1186 * that the new lwb's zio cannot complete until the
1187 * "previous" lwb's zio completes.
1188 *
1189 * This is required by the semantics of zil_commit();
1190 * the commit waiters attached to the lwbs will be woken
1191 * in the lwb zio's completion callback, so this zio
1192 * dependency graph ensures the waiters are woken in the
1193 * correct order (the same order the lwbs were created).
1194 */
1195 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1196 if (last_lwb_opened != NULL &&
1197 last_lwb_opened->lwb_state != LWB_STATE_DONE) {
1198 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1199 last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1200 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1201 zio_add_child(lwb->lwb_root_zio,
1202 last_lwb_opened->lwb_root_zio);
1203 }
1204 zilog->zl_last_lwb_opened = lwb;
34dc7c2f 1205 }
920dd524 1206 mutex_exit(&zilog->zl_lock);
1ce23dca
PS
1207
1208 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1209 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1210 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
34dc7c2f
BB
1211}
1212
428870ff
BB
1213/*
1214 * Define a limited set of intent log block sizes.
d3cc8b15 1215 *
428870ff
BB
1216 * These must be a multiple of 4KB. Note only the amount used (again
1217 * aligned to 4KB) actually gets written. However, we can't always just
f1512ee6 1218 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
428870ff
BB
1219 */
1220uint64_t zil_block_buckets[] = {
1221 4096, /* non TX_WRITE */
1222 8192+4096, /* data base */
1223 32*1024 + 4096, /* NFS writes */
1224 UINT64_MAX
1225};
1226
34dc7c2f
BB
1227/*
1228 * Start a log block write and advance to the next log block.
1229 * Calls are serialized.
1230 */
1231static lwb_t *
1ce23dca 1232zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
34dc7c2f 1233{
428870ff
BB
1234 lwb_t *nlwb = NULL;
1235 zil_chain_t *zilc;
34dc7c2f 1236 spa_t *spa = zilog->zl_spa;
428870ff
BB
1237 blkptr_t *bp;
1238 dmu_tx_t *tx;
34dc7c2f 1239 uint64_t txg;
428870ff
BB
1240 uint64_t zil_blksz, wsz;
1241 int i, error;
1b7c1e5c 1242 boolean_t slog;
428870ff 1243
1b2b0aca 1244 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1ce23dca
PS
1245 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1246 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1247 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1248
428870ff
BB
1249 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1250 zilc = (zil_chain_t *)lwb->lwb_buf;
1251 bp = &zilc->zc_next_blk;
1252 } else {
1253 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1254 bp = &zilc->zc_next_blk;
1255 }
34dc7c2f 1256
428870ff 1257 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
34dc7c2f
BB
1258
1259 /*
1260 * Allocate the next block and save its address in this block
1261 * before writing it in order to establish the log chain.
1262 * Note that if the allocation of nlwb synced before we wrote
1263 * the block that points at it (lwb), we'd leak it if we crashed.
428870ff
BB
1264 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1265 * We dirty the dataset to ensure that zil_sync() will be called
1266 * to clean up in the event of allocation failure or I/O failure.
34dc7c2f 1267 */
1ce23dca 1268
428870ff 1269 tx = dmu_tx_create(zilog->zl_os);
e98b6117
AG
1270
1271 /*
0735ecb3
PS
1272 * Since we are not going to create any new dirty data, and we
1273 * can even help with clearing the existing dirty data, we
1274 * should not be subject to the dirty data based delays. We
1275 * use TXG_NOTHROTTLE to bypass the delay mechanism.
e98b6117 1276 */
0735ecb3
PS
1277 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1278
428870ff
BB
1279 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1280 txg = dmu_tx_get_txg(tx);
1281
1282 lwb->lwb_tx = tx;
34dc7c2f
BB
1283
1284 /*
428870ff
BB
1285 * Log blocks are pre-allocated. Here we select the size of the next
1286 * block, based on size used in the last block.
1287 * - first find the smallest bucket that will fit the block from a
1288 * limited set of block sizes. This is because it's faster to write
1289 * blocks allocated from the same metaslab as they are adjacent or
1290 * close.
1291 * - next find the maximum from the new suggested size and an array of
1292 * previous sizes. This lessens a picket fence effect of wrongly
2fe61a7e 1293 * guessing the size if we have a stream of say 2k, 64k, 2k, 64k
428870ff
BB
1294 * requests.
1295 *
1296 * Note we only write what is used, but we can't just allocate
1297 * the maximum block size because we can exhaust the available
1298 * pool log space.
34dc7c2f 1299 */
428870ff
BB
1300 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1301 for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1302 continue;
1303 zil_blksz = zil_block_buckets[i];
1304 if (zil_blksz == UINT64_MAX)
f1512ee6 1305 zil_blksz = SPA_OLD_MAXBLOCKSIZE;
428870ff
BB
1306 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1307 for (i = 0; i < ZIL_PREV_BLKS; i++)
1308 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1309 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
34dc7c2f
BB
1310
1311 BP_ZERO(bp);
b5256303 1312 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog);
1b7c1e5c 1313 if (slog) {
b6ad9671
ED
1314 ZIL_STAT_BUMP(zil_itx_metaslab_slog_count);
1315 ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused);
d1d7e268 1316 } else {
b6ad9671
ED
1317 ZIL_STAT_BUMP(zil_itx_metaslab_normal_count);
1318 ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused);
1319 }
13fe0198 1320 if (error == 0) {
428870ff
BB
1321 ASSERT3U(bp->blk_birth, ==, txg);
1322 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1323 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
34dc7c2f
BB
1324
1325 /*
1ce23dca 1326 * Allocate a new log write block (lwb).
34dc7c2f 1327 */
1b7c1e5c 1328 nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
34dc7c2f
BB
1329 }
1330
428870ff
BB
1331 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1332 /* For Slim ZIL only write what is used. */
1333 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1334 ASSERT3U(wsz, <=, lwb->lwb_sz);
1ce23dca 1335 zio_shrink(lwb->lwb_write_zio, wsz);
34dc7c2f 1336
428870ff
BB
1337 } else {
1338 wsz = lwb->lwb_sz;
1339 }
34dc7c2f 1340
428870ff
BB
1341 zilc->zc_pad = 0;
1342 zilc->zc_nused = lwb->lwb_nused;
1343 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
34dc7c2f
BB
1344
1345 /*
428870ff 1346 * clear unused data for security
34dc7c2f 1347 */
428870ff 1348 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
34dc7c2f 1349
1ce23dca
PS
1350 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1351
1352 zil_lwb_add_block(lwb, &lwb->lwb_blk);
1353 lwb->lwb_issued_timestamp = gethrtime();
1354 lwb->lwb_state = LWB_STATE_ISSUED;
1355
1356 zio_nowait(lwb->lwb_root_zio);
1357 zio_nowait(lwb->lwb_write_zio);
34dc7c2f
BB
1358
1359 /*
428870ff
BB
1360 * If there was an allocation failure then nlwb will be null which
1361 * forces a txg_wait_synced().
34dc7c2f 1362 */
34dc7c2f
BB
1363 return (nlwb);
1364}
1365
1366static lwb_t *
1367zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1368{
1b7c1e5c
GDN
1369 lr_t *lrcb, *lrc;
1370 lr_write_t *lrwb, *lrw;
428870ff 1371 char *lr_buf;
1b7c1e5c 1372 uint64_t dlen, dnow, lwb_sp, reclen, txg;
34dc7c2f 1373
1b2b0aca 1374 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1ce23dca
PS
1375 ASSERT3P(lwb, !=, NULL);
1376 ASSERT3P(lwb->lwb_buf, !=, NULL);
1377
1378 zil_lwb_write_open(zilog, lwb);
428870ff 1379
1ce23dca
PS
1380 lrc = &itx->itx_lr;
1381 lrw = (lr_write_t *)lrc;
1382
1383 /*
1384 * A commit itx doesn't represent any on-disk state; instead
1385 * it's simply used as a place holder on the commit list, and
1386 * provides a mechanism for attaching a "commit waiter" onto the
1387 * correct lwb (such that the waiter can be signalled upon
1388 * completion of that lwb). Thus, we don't process this itx's
1389 * log record if it's a commit itx (these itx's don't have log
1390 * records), and instead link the itx's waiter onto the lwb's
1391 * list of waiters.
1392 *
1393 * For more details, see the comment above zil_commit().
1394 */
1395 if (lrc->lrc_txtype == TX_COMMIT) {
2fe61a7e 1396 mutex_enter(&zilog->zl_lock);
1ce23dca
PS
1397 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1398 itx->itx_private = NULL;
2fe61a7e 1399 mutex_exit(&zilog->zl_lock);
1ce23dca
PS
1400 return (lwb);
1401 }
34dc7c2f 1402
1b7c1e5c 1403 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
34dc7c2f 1404 dlen = P2ROUNDUP_TYPED(
428870ff 1405 lrw->lr_length, sizeof (uint64_t), uint64_t);
1b7c1e5c
GDN
1406 } else {
1407 dlen = 0;
1408 }
1409 reclen = lrc->lrc_reclen;
34dc7c2f 1410 zilog->zl_cur_used += (reclen + dlen);
1b7c1e5c 1411 txg = lrc->lrc_txg;
34dc7c2f 1412
1ce23dca 1413 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
34dc7c2f 1414
1b7c1e5c 1415cont:
34dc7c2f
BB
1416 /*
1417 * If this record won't fit in the current log block, start a new one.
1b7c1e5c 1418 * For WR_NEED_COPY optimize layout for minimal number of chunks.
34dc7c2f 1419 */
1b7c1e5c
GDN
1420 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1421 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1422 lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1423 lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1ce23dca 1424 lwb = zil_lwb_write_issue(zilog, lwb);
34dc7c2f
BB
1425 if (lwb == NULL)
1426 return (NULL);
1ce23dca 1427 zil_lwb_write_open(zilog, lwb);
428870ff 1428 ASSERT(LWB_EMPTY(lwb));
1b7c1e5c
GDN
1429 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1430 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
34dc7c2f
BB
1431 }
1432
1b7c1e5c 1433 dnow = MIN(dlen, lwb_sp - reclen);
428870ff
BB
1434 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1435 bcopy(lrc, lr_buf, reclen);
1b7c1e5c
GDN
1436 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
1437 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
34dc7c2f 1438
b6ad9671
ED
1439 ZIL_STAT_BUMP(zil_itx_count);
1440
34dc7c2f
BB
1441 /*
1442 * If it's a write, fetch the data or get its blkptr as appropriate.
1443 */
1444 if (lrc->lrc_txtype == TX_WRITE) {
1445 if (txg > spa_freeze_txg(zilog->zl_spa))
1446 txg_wait_synced(zilog->zl_dmu_pool, txg);
b6ad9671
ED
1447 if (itx->itx_wr_state == WR_COPIED) {
1448 ZIL_STAT_BUMP(zil_itx_copied_count);
1449 ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length);
1450 } else {
34dc7c2f
BB
1451 char *dbuf;
1452 int error;
1453
1b7c1e5c 1454 if (itx->itx_wr_state == WR_NEED_COPY) {
428870ff 1455 dbuf = lr_buf + reclen;
1b7c1e5c
GDN
1456 lrcb->lrc_reclen += dnow;
1457 if (lrwb->lr_length > dnow)
1458 lrwb->lr_length = dnow;
1459 lrw->lr_offset += dnow;
1460 lrw->lr_length -= dnow;
b6ad9671 1461 ZIL_STAT_BUMP(zil_itx_needcopy_count);
d1d7e268
MK
1462 ZIL_STAT_INCR(zil_itx_needcopy_bytes,
1463 lrw->lr_length);
34dc7c2f 1464 } else {
1ce23dca 1465 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
34dc7c2f 1466 dbuf = NULL;
b6ad9671 1467 ZIL_STAT_BUMP(zil_itx_indirect_count);
d1d7e268
MK
1468 ZIL_STAT_INCR(zil_itx_indirect_bytes,
1469 lrw->lr_length);
34dc7c2f 1470 }
1ce23dca
PS
1471
1472 /*
1473 * We pass in the "lwb_write_zio" rather than
1474 * "lwb_root_zio" so that the "lwb_write_zio"
1475 * becomes the parent of any zio's created by
1476 * the "zl_get_data" callback. The vdevs are
1477 * flushed after the "lwb_write_zio" completes,
1478 * so we want to make sure that completion
1479 * callback waits for these additional zio's,
1480 * such that the vdevs used by those zio's will
1481 * be included in the lwb's vdev tree, and those
1482 * vdevs will be properly flushed. If we passed
1483 * in "lwb_root_zio" here, then these additional
1484 * vdevs may not be flushed; e.g. if these zio's
1485 * completed after "lwb_write_zio" completed.
1486 */
1487 error = zilog->zl_get_data(itx->itx_private,
1488 lrwb, dbuf, lwb, lwb->lwb_write_zio);
1489
45d1cae3
BB
1490 if (error == EIO) {
1491 txg_wait_synced(zilog->zl_dmu_pool, txg);
1492 return (lwb);
1493 }
13fe0198 1494 if (error != 0) {
34dc7c2f
BB
1495 ASSERT(error == ENOENT || error == EEXIST ||
1496 error == EALREADY);
1497 return (lwb);
1498 }
1499 }
1500 }
1501
428870ff
BB
1502 /*
1503 * We're actually making an entry, so update lrc_seq to be the
1504 * log record sequence number. Note that this is generally not
1505 * equal to the itx sequence number because not all transactions
1506 * are synchronous, and sometimes spa_sync() gets there first.
1507 */
1ce23dca 1508 lrcb->lrc_seq = ++zilog->zl_lr_seq;
1b7c1e5c 1509 lwb->lwb_nused += reclen + dnow;
1ce23dca
PS
1510
1511 zil_lwb_add_txg(lwb, txg);
1512
428870ff 1513 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
c99c9001 1514 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
34dc7c2f 1515
1b7c1e5c
GDN
1516 dlen -= dnow;
1517 if (dlen > 0) {
1518 zilog->zl_cur_used += reclen;
1519 goto cont;
1520 }
1521
34dc7c2f
BB
1522 return (lwb);
1523}
1524
1525itx_t *
1526zil_itx_create(uint64_t txtype, size_t lrsize)
1527{
72841b9f 1528 size_t itxsize;
34dc7c2f
BB
1529 itx_t *itx;
1530
1531 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
72841b9f 1532 itxsize = offsetof(itx_t, itx_lr) + lrsize;
34dc7c2f 1533
72841b9f 1534 itx = zio_data_buf_alloc(itxsize);
34dc7c2f
BB
1535 itx->itx_lr.lrc_txtype = txtype;
1536 itx->itx_lr.lrc_reclen = lrsize;
34dc7c2f 1537 itx->itx_lr.lrc_seq = 0; /* defensive */
572e2857 1538 itx->itx_sync = B_TRUE; /* default is synchronous */
119a394a
ED
1539 itx->itx_callback = NULL;
1540 itx->itx_callback_data = NULL;
72841b9f 1541 itx->itx_size = itxsize;
34dc7c2f
BB
1542
1543 return (itx);
1544}
1545
428870ff
BB
1546void
1547zil_itx_destroy(itx_t *itx)
1548{
1ce23dca
PS
1549 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
1550 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1551
1552 if (itx->itx_callback != NULL)
1553 itx->itx_callback(itx->itx_callback_data);
1554
72841b9f 1555 zio_data_buf_free(itx, itx->itx_size);
428870ff
BB
1556}
1557
572e2857
BB
1558/*
1559 * Free up the sync and async itxs. The itxs_t has already been detached
1560 * so no locks are needed.
1561 */
1562static void
1563zil_itxg_clean(itxs_t *itxs)
34dc7c2f 1564{
572e2857
BB
1565 itx_t *itx;
1566 list_t *list;
1567 avl_tree_t *t;
1568 void *cookie;
1569 itx_async_node_t *ian;
1570
1571 list = &itxs->i_sync_list;
1572 while ((itx = list_head(list)) != NULL) {
1ce23dca
PS
1573 /*
1574 * In the general case, commit itxs will not be found
1575 * here, as they'll be committed to an lwb via
1576 * zil_lwb_commit(), and free'd in that function. Having
1577 * said that, it is still possible for commit itxs to be
1578 * found here, due to the following race:
1579 *
1580 * - a thread calls zil_commit() which assigns the
1581 * commit itx to a per-txg i_sync_list
1582 * - zil_itxg_clean() is called (e.g. via spa_sync())
1583 * while the waiter is still on the i_sync_list
1584 *
1585 * There's nothing to prevent syncing the txg while the
1586 * waiter is on the i_sync_list. This normally doesn't
1587 * happen because spa_sync() is slower than zil_commit(),
1588 * but if zil_commit() calls txg_wait_synced() (e.g.
1589 * because zil_create() or zil_commit_writer_stall() is
1590 * called) we will hit this case.
1591 */
1592 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1593 zil_commit_waiter_skip(itx->itx_private);
1594
572e2857 1595 list_remove(list, itx);
19ea3d25 1596 zil_itx_destroy(itx);
572e2857 1597 }
34dc7c2f 1598
572e2857
BB
1599 cookie = NULL;
1600 t = &itxs->i_async_tree;
1601 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1602 list = &ian->ia_list;
1603 while ((itx = list_head(list)) != NULL) {
1604 list_remove(list, itx);
1ce23dca
PS
1605 /* commit itxs should never be on the async lists. */
1606 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
19ea3d25 1607 zil_itx_destroy(itx);
572e2857
BB
1608 }
1609 list_destroy(list);
1610 kmem_free(ian, sizeof (itx_async_node_t));
1611 }
1612 avl_destroy(t);
34dc7c2f 1613
572e2857
BB
1614 kmem_free(itxs, sizeof (itxs_t));
1615}
34dc7c2f 1616
572e2857
BB
1617static int
1618zil_aitx_compare(const void *x1, const void *x2)
1619{
1620 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1621 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1622
ee36c709 1623 return (AVL_CMP(o1, o2));
34dc7c2f
BB
1624}
1625
1626/*
572e2857 1627 * Remove all async itx with the given oid.
34dc7c2f
BB
1628 */
1629static void
572e2857 1630zil_remove_async(zilog_t *zilog, uint64_t oid)
34dc7c2f 1631{
572e2857
BB
1632 uint64_t otxg, txg;
1633 itx_async_node_t *ian;
1634 avl_tree_t *t;
1635 avl_index_t where;
34dc7c2f
BB
1636 list_t clean_list;
1637 itx_t *itx;
1638
572e2857 1639 ASSERT(oid != 0);
34dc7c2f
BB
1640 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1641
572e2857
BB
1642 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1643 otxg = ZILTEST_TXG;
1644 else
1645 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
34dc7c2f 1646
572e2857
BB
1647 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1648 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1649
1650 mutex_enter(&itxg->itxg_lock);
1651 if (itxg->itxg_txg != txg) {
1652 mutex_exit(&itxg->itxg_lock);
1653 continue;
1654 }
34dc7c2f 1655
572e2857
BB
1656 /*
1657 * Locate the object node and append its list.
1658 */
1659 t = &itxg->itxg_itxs->i_async_tree;
1660 ian = avl_find(t, &oid, &where);
1661 if (ian != NULL)
1662 list_move_tail(&clean_list, &ian->ia_list);
1663 mutex_exit(&itxg->itxg_lock);
1664 }
34dc7c2f
BB
1665 while ((itx = list_head(&clean_list)) != NULL) {
1666 list_remove(&clean_list, itx);
1ce23dca
PS
1667 /* commit itxs should never be on the async lists. */
1668 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
19ea3d25 1669 zil_itx_destroy(itx);
34dc7c2f
BB
1670 }
1671 list_destroy(&clean_list);
1672}
1673
572e2857
BB
1674void
1675zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1676{
1677 uint64_t txg;
1678 itxg_t *itxg;
1679 itxs_t *itxs, *clean = NULL;
1680
1681 /*
1682 * Object ids can be re-instantiated in the next txg so
1683 * remove any async transactions to avoid future leaks.
1684 * This can happen if a fsync occurs on the re-instantiated
1685 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1686 * the new file data and flushes a write record for the old object.
1687 */
1688 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1689 zil_remove_async(zilog, itx->itx_oid);
1690
1691 /*
1692 * Ensure the data of a renamed file is committed before the rename.
1693 */
1694 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1695 zil_async_to_sync(zilog, itx->itx_oid);
1696
29809a6c 1697 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
572e2857
BB
1698 txg = ZILTEST_TXG;
1699 else
1700 txg = dmu_tx_get_txg(tx);
1701
1702 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1703 mutex_enter(&itxg->itxg_lock);
1704 itxs = itxg->itxg_itxs;
1705 if (itxg->itxg_txg != txg) {
1706 if (itxs != NULL) {
1707 /*
1708 * The zil_clean callback hasn't got around to cleaning
1709 * this itxg. Save the itxs for release below.
1710 * This should be rare.
1711 */
55922e73
GW
1712 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1713 "txg %llu", itxg->itxg_txg);
572e2857
BB
1714 clean = itxg->itxg_itxs;
1715 }
572e2857 1716 itxg->itxg_txg = txg;
d1d7e268 1717 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
79c76d5b 1718 KM_SLEEP);
572e2857
BB
1719
1720 list_create(&itxs->i_sync_list, sizeof (itx_t),
1721 offsetof(itx_t, itx_node));
1722 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1723 sizeof (itx_async_node_t),
1724 offsetof(itx_async_node_t, ia_node));
1725 }
1726 if (itx->itx_sync) {
1727 list_insert_tail(&itxs->i_sync_list, itx);
572e2857
BB
1728 } else {
1729 avl_tree_t *t = &itxs->i_async_tree;
50c957f7
NB
1730 uint64_t foid =
1731 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
572e2857
BB
1732 itx_async_node_t *ian;
1733 avl_index_t where;
1734
1735 ian = avl_find(t, &foid, &where);
1736 if (ian == NULL) {
d1d7e268 1737 ian = kmem_alloc(sizeof (itx_async_node_t),
79c76d5b 1738 KM_SLEEP);
572e2857
BB
1739 list_create(&ian->ia_list, sizeof (itx_t),
1740 offsetof(itx_t, itx_node));
1741 ian->ia_foid = foid;
1742 avl_insert(t, ian, where);
1743 }
1744 list_insert_tail(&ian->ia_list, itx);
1745 }
1746
1747 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1ce23dca
PS
1748
1749 /*
1750 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1751 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1752 * need to be careful to always dirty the ZIL using the "real"
1753 * TXG (not itxg_txg) even when the SPA is frozen.
1754 */
1755 zilog_dirty(zilog, dmu_tx_get_txg(tx));
572e2857
BB
1756 mutex_exit(&itxg->itxg_lock);
1757
1758 /* Release the old itxs now we've dropped the lock */
1759 if (clean != NULL)
1760 zil_itxg_clean(clean);
1761}
1762
34dc7c2f
BB
1763/*
1764 * If there are any in-memory intent log transactions which have now been
29809a6c
MA
1765 * synced then start up a taskq to free them. We should only do this after we
1766 * have written out the uberblocks (i.e. txg has been comitted) so that
1767 * don't inadvertently clean out in-memory log records that would be required
1768 * by zil_commit().
34dc7c2f
BB
1769 */
1770void
572e2857 1771zil_clean(zilog_t *zilog, uint64_t synced_txg)
34dc7c2f 1772{
572e2857
BB
1773 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1774 itxs_t *clean_me;
34dc7c2f 1775
1ce23dca
PS
1776 ASSERT3U(synced_txg, <, ZILTEST_TXG);
1777
572e2857
BB
1778 mutex_enter(&itxg->itxg_lock);
1779 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1780 mutex_exit(&itxg->itxg_lock);
1781 return;
1782 }
1783 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
a032ac4b 1784 ASSERT3U(itxg->itxg_txg, !=, 0);
572e2857
BB
1785 clean_me = itxg->itxg_itxs;
1786 itxg->itxg_itxs = NULL;
1787 itxg->itxg_txg = 0;
1788 mutex_exit(&itxg->itxg_lock);
1789 /*
1790 * Preferably start a task queue to free up the old itxs but
1791 * if taskq_dispatch can't allocate resources to do that then
1792 * free it in-line. This should be rare. Note, using TQ_SLEEP
1793 * created a bad performance problem.
1794 */
a032ac4b
BB
1795 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1796 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1797 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1798 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP);
1799 if (id == TASKQID_INVALID)
572e2857
BB
1800 zil_itxg_clean(clean_me);
1801}
1802
1803/*
1ce23dca
PS
1804 * This function will traverse the queue of itxs that need to be
1805 * committed, and move them onto the ZIL's zl_itx_commit_list.
572e2857
BB
1806 */
1807static void
1808zil_get_commit_list(zilog_t *zilog)
1809{
1810 uint64_t otxg, txg;
1811 list_t *commit_list = &zilog->zl_itx_commit_list;
572e2857 1812
1b2b0aca 1813 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1ce23dca 1814
572e2857
BB
1815 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1816 otxg = ZILTEST_TXG;
1817 else
1818 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1819
55922e73
GW
1820 /*
1821 * This is inherently racy, since there is nothing to prevent
1822 * the last synced txg from changing. That's okay since we'll
1823 * only commit things in the future.
1824 */
572e2857
BB
1825 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1826 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1827
1828 mutex_enter(&itxg->itxg_lock);
1829 if (itxg->itxg_txg != txg) {
1830 mutex_exit(&itxg->itxg_lock);
1831 continue;
1832 }
1833
55922e73
GW
1834 /*
1835 * If we're adding itx records to the zl_itx_commit_list,
1836 * then the zil better be dirty in this "txg". We can assert
1837 * that here since we're holding the itxg_lock which will
1838 * prevent spa_sync from cleaning it. Once we add the itxs
1839 * to the zl_itx_commit_list we must commit it to disk even
1840 * if it's unnecessary (i.e. the txg was synced).
1841 */
1842 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1843 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
572e2857 1844 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
572e2857
BB
1845
1846 mutex_exit(&itxg->itxg_lock);
1847 }
572e2857
BB
1848}
1849
1850/*
1851 * Move the async itxs for a specified object to commit into sync lists.
1852 */
1853static void
1854zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1855{
1856 uint64_t otxg, txg;
1857 itx_async_node_t *ian;
1858 avl_tree_t *t;
1859 avl_index_t where;
1860
1861 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1862 otxg = ZILTEST_TXG;
1863 else
1864 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1865
55922e73
GW
1866 /*
1867 * This is inherently racy, since there is nothing to prevent
1868 * the last synced txg from changing.
1869 */
572e2857
BB
1870 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1871 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1872
1873 mutex_enter(&itxg->itxg_lock);
1874 if (itxg->itxg_txg != txg) {
1875 mutex_exit(&itxg->itxg_lock);
1876 continue;
1877 }
1878
1879 /*
1880 * If a foid is specified then find that node and append its
1881 * list. Otherwise walk the tree appending all the lists
1882 * to the sync list. We add to the end rather than the
1883 * beginning to ensure the create has happened.
1884 */
1885 t = &itxg->itxg_itxs->i_async_tree;
1886 if (foid != 0) {
1887 ian = avl_find(t, &foid, &where);
1888 if (ian != NULL) {
1889 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1890 &ian->ia_list);
1891 }
1892 } else {
1893 void *cookie = NULL;
1894
1895 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1896 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1897 &ian->ia_list);
1898 list_destroy(&ian->ia_list);
1899 kmem_free(ian, sizeof (itx_async_node_t));
1900 }
1901 }
1902 mutex_exit(&itxg->itxg_lock);
34dc7c2f 1903 }
34dc7c2f
BB
1904}
1905
1ce23dca
PS
1906/*
1907 * This function will prune commit itxs that are at the head of the
1908 * commit list (it won't prune past the first non-commit itx), and
1909 * either: a) attach them to the last lwb that's still pending
1910 * completion, or b) skip them altogether.
1911 *
1912 * This is used as a performance optimization to prevent commit itxs
1913 * from generating new lwbs when it's unnecessary to do so.
1914 */
b128c09f 1915static void
1ce23dca 1916zil_prune_commit_list(zilog_t *zilog)
34dc7c2f 1917{
572e2857 1918 itx_t *itx;
34dc7c2f 1919
1b2b0aca 1920 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
572e2857 1921
1ce23dca
PS
1922 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
1923 lr_t *lrc = &itx->itx_lr;
1924 if (lrc->lrc_txtype != TX_COMMIT)
1925 break;
572e2857 1926
1ce23dca
PS
1927 mutex_enter(&zilog->zl_lock);
1928
1929 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
1930 if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_DONE) {
1931 /*
1932 * All of the itxs this waiter was waiting on
1933 * must have already completed (or there were
1934 * never any itx's for it to wait on), so it's
1935 * safe to skip this waiter and mark it done.
1936 */
1937 zil_commit_waiter_skip(itx->itx_private);
1938 } else {
1939 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
1940 itx->itx_private = NULL;
1941 }
1942
1943 mutex_exit(&zilog->zl_lock);
1944
1945 list_remove(&zilog->zl_itx_commit_list, itx);
1946 zil_itx_destroy(itx);
1947 }
1948
1949 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1950}
1951
1952static void
1953zil_commit_writer_stall(zilog_t *zilog)
1954{
1955 /*
1956 * When zio_alloc_zil() fails to allocate the next lwb block on
1957 * disk, we must call txg_wait_synced() to ensure all of the
1958 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
1959 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
1960 * to zil_process_commit_list()) will have to call zil_create(),
1961 * and start a new ZIL chain.
1962 *
1963 * Since zil_alloc_zil() failed, the lwb that was previously
1964 * issued does not have a pointer to the "next" lwb on disk.
1965 * Thus, if another ZIL writer thread was to allocate the "next"
1966 * on-disk lwb, that block could be leaked in the event of a
1967 * crash (because the previous lwb on-disk would not point to
1968 * it).
1969 *
1b2b0aca 1970 * We must hold the zilog's zl_issuer_lock while we do this, to
1ce23dca
PS
1971 * ensure no new threads enter zil_process_commit_list() until
1972 * all lwb's in the zl_lwb_list have been synced and freed
1973 * (which is achieved via the txg_wait_synced() call).
1974 */
1b2b0aca 1975 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1ce23dca
PS
1976 txg_wait_synced(zilog->zl_dmu_pool, 0);
1977 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
1978}
1979
1980/*
1981 * This function will traverse the commit list, creating new lwbs as
1982 * needed, and committing the itxs from the commit list to these newly
1983 * created lwbs. Additionally, as a new lwb is created, the previous
1984 * lwb will be issued to the zio layer to be written to disk.
1985 */
1986static void
1987zil_process_commit_list(zilog_t *zilog)
1988{
1989 spa_t *spa = zilog->zl_spa;
1990 list_t nolwb_itxs;
1991 list_t nolwb_waiters;
1992 lwb_t *lwb;
1993 itx_t *itx;
1994
1b2b0aca 1995 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
572e2857
BB
1996
1997 /*
1998 * Return if there's nothing to commit before we dirty the fs by
1999 * calling zil_create().
2000 */
1ce23dca 2001 if (list_head(&zilog->zl_itx_commit_list) == NULL)
572e2857 2002 return;
34dc7c2f 2003
1ce23dca
PS
2004 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2005 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2006 offsetof(zil_commit_waiter_t, zcw_node));
2007
2008 lwb = list_tail(&zilog->zl_lwb_list);
2009 if (lwb == NULL) {
2010 lwb = zil_create(zilog);
34dc7c2f 2011 } else {
1ce23dca
PS
2012 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2013 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
34dc7c2f
BB
2014 }
2015
1ce23dca
PS
2016 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2017 lr_t *lrc = &itx->itx_lr;
2018 uint64_t txg = lrc->lrc_txg;
2019
55922e73 2020 ASSERT3U(txg, !=, 0);
34dc7c2f 2021
1ce23dca
PS
2022 if (lrc->lrc_txtype == TX_COMMIT) {
2023 DTRACE_PROBE2(zil__process__commit__itx,
2024 zilog_t *, zilog, itx_t *, itx);
2025 } else {
2026 DTRACE_PROBE2(zil__process__normal__itx,
2027 zilog_t *, zilog, itx_t *, itx);
2028 }
2029
2030 list_remove(&zilog->zl_itx_commit_list, itx);
2031
1ce23dca
PS
2032 boolean_t synced = txg <= spa_last_synced_txg(spa);
2033 boolean_t frozen = txg > spa_freeze_txg(spa);
2034
2fe61a7e
PS
2035 /*
2036 * If the txg of this itx has already been synced out, then
2037 * we don't need to commit this itx to an lwb. This is
2038 * because the data of this itx will have already been
2039 * written to the main pool. This is inherently racy, and
2040 * it's still ok to commit an itx whose txg has already
2041 * been synced; this will result in a write that's
2042 * unnecessary, but will do no harm.
2043 *
2044 * With that said, we always want to commit TX_COMMIT itxs
2045 * to an lwb, regardless of whether or not that itx's txg
2046 * has been synced out. We do this to ensure any OPENED lwb
2047 * will always have at least one zil_commit_waiter_t linked
2048 * to the lwb.
2049 *
2050 * As a counter-example, if we skipped TX_COMMIT itx's
2051 * whose txg had already been synced, the following
2052 * situation could occur if we happened to be racing with
2053 * spa_sync:
2054 *
2055 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2056 * itx's txg is 10 and the last synced txg is 9.
2057 * 2. spa_sync finishes syncing out txg 10.
2058 * 3. We move to the next itx in the list, it's a TX_COMMIT
2059 * whose txg is 10, so we skip it rather than committing
2060 * it to the lwb used in (1).
2061 *
2062 * If the itx that is skipped in (3) is the last TX_COMMIT
2063 * itx in the commit list, than it's possible for the lwb
2064 * used in (1) to remain in the OPENED state indefinitely.
2065 *
2066 * To prevent the above scenario from occurring, ensuring
2067 * that once an lwb is OPENED it will transition to ISSUED
2068 * and eventually DONE, we always commit TX_COMMIT itx's to
2069 * an lwb here, even if that itx's txg has already been
2070 * synced.
2071 *
2072 * Finally, if the pool is frozen, we _always_ commit the
2073 * itx. The point of freezing the pool is to prevent data
2074 * from being written to the main pool via spa_sync, and
2075 * instead rely solely on the ZIL to persistently store the
2076 * data; i.e. when the pool is frozen, the last synced txg
2077 * value can't be trusted.
2078 */
2079 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
1ce23dca
PS
2080 if (lwb != NULL) {
2081 lwb = zil_lwb_commit(zilog, itx, lwb);
2082
2083 if (lwb == NULL)
2084 list_insert_tail(&nolwb_itxs, itx);
2085 else
2086 list_insert_tail(&lwb->lwb_itxs, itx);
2087 } else {
2088 if (lrc->lrc_txtype == TX_COMMIT) {
2089 zil_commit_waiter_link_nolwb(
2090 itx->itx_private, &nolwb_waiters);
2091 }
2092
2093 list_insert_tail(&nolwb_itxs, itx);
2094 }
2095 } else {
2fe61a7e 2096 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
1ce23dca
PS
2097 zil_itx_destroy(itx);
2098 }
34dc7c2f 2099 }
34dc7c2f 2100
1ce23dca
PS
2101 if (lwb == NULL) {
2102 /*
2103 * This indicates zio_alloc_zil() failed to allocate the
2104 * "next" lwb on-disk. When this happens, we must stall
2105 * the ZIL write pipeline; see the comment within
2106 * zil_commit_writer_stall() for more details.
2107 */
2108 zil_commit_writer_stall(zilog);
34dc7c2f 2109
1ce23dca
PS
2110 /*
2111 * Additionally, we have to signal and mark the "nolwb"
2112 * waiters as "done" here, since without an lwb, we
2113 * can't do this via zil_lwb_flush_vdevs_done() like
2114 * normal.
2115 */
2116 zil_commit_waiter_t *zcw;
2117 while ((zcw = list_head(&nolwb_waiters)) != NULL) {
2118 zil_commit_waiter_skip(zcw);
2119 list_remove(&nolwb_waiters, zcw);
2120 }
2121
2122 /*
2123 * And finally, we have to destroy the itx's that
2124 * couldn't be committed to an lwb; this will also call
2125 * the itx's callback if one exists for the itx.
2126 */
2127 while ((itx = list_head(&nolwb_itxs)) != NULL) {
2128 list_remove(&nolwb_itxs, itx);
2129 zil_itx_destroy(itx);
2130 }
2131 } else {
2132 ASSERT(list_is_empty(&nolwb_waiters));
2133 ASSERT3P(lwb, !=, NULL);
2134 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2135 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2136
2137 /*
2138 * At this point, the ZIL block pointed at by the "lwb"
2139 * variable is in one of the following states: "closed"
2140 * or "open".
2141 *
2fe61a7e
PS
2142 * If it's "closed", then no itxs have been committed to
2143 * it, so there's no point in issuing its zio (i.e. it's
2144 * "empty").
1ce23dca 2145 *
2fe61a7e
PS
2146 * If it's "open", then it contains one or more itxs that
2147 * eventually need to be committed to stable storage. In
2148 * this case we intentionally do not issue the lwb's zio
2149 * to disk yet, and instead rely on one of the following
2150 * two mechanisms for issuing the zio:
1ce23dca 2151 *
2fe61a7e 2152 * 1. Ideally, there will be more ZIL activity occurring
1ce23dca 2153 * on the system, such that this function will be
2fe61a7e 2154 * immediately called again (not necessarily by the same
1ce23dca
PS
2155 * thread) and this lwb's zio will be issued via
2156 * zil_lwb_commit(). This way, the lwb is guaranteed to
2157 * be "full" when it is issued to disk, and we'll make
2158 * use of the lwb's size the best we can.
2159 *
2fe61a7e 2160 * 2. If there isn't sufficient ZIL activity occurring on
1ce23dca
PS
2161 * the system, such that this lwb's zio isn't issued via
2162 * zil_lwb_commit(), zil_commit_waiter() will issue the
2163 * lwb's zio. If this occurs, the lwb is not guaranteed
2164 * to be "full" by the time its zio is issued, and means
2165 * the size of the lwb was "too large" given the amount
2fe61a7e 2166 * of ZIL activity occurring on the system at that time.
1ce23dca
PS
2167 *
2168 * We do this for a couple of reasons:
2169 *
2170 * 1. To try and reduce the number of IOPs needed to
2171 * write the same number of itxs. If an lwb has space
2fe61a7e 2172 * available in its buffer for more itxs, and more itxs
1ce23dca
PS
2173 * will be committed relatively soon (relative to the
2174 * latency of performing a write), then it's beneficial
2175 * to wait for these "next" itxs. This way, more itxs
2176 * can be committed to stable storage with fewer writes.
2177 *
2178 * 2. To try and use the largest lwb block size that the
2179 * incoming rate of itxs can support. Again, this is to
2180 * try and pack as many itxs into as few lwbs as
2181 * possible, without significantly impacting the latency
2182 * of each individual itx.
2183 */
2184 }
2185}
2186
2187/*
2188 * This function is responsible for ensuring the passed in commit waiter
2189 * (and associated commit itx) is committed to an lwb. If the waiter is
2190 * not already committed to an lwb, all itxs in the zilog's queue of
2191 * itxs will be processed. The assumption is the passed in waiter's
2192 * commit itx will found in the queue just like the other non-commit
2193 * itxs, such that when the entire queue is processed, the waiter will
2fe61a7e 2194 * have been committed to an lwb.
1ce23dca
PS
2195 *
2196 * The lwb associated with the passed in waiter is not guaranteed to
2197 * have been issued by the time this function completes. If the lwb is
2198 * not issued, we rely on future calls to zil_commit_writer() to issue
2199 * the lwb, or the timeout mechanism found in zil_commit_waiter().
2200 */
2201static void
2202zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2203{
2204 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2205 ASSERT(spa_writeable(zilog->zl_spa));
1ce23dca 2206
1b2b0aca 2207 mutex_enter(&zilog->zl_issuer_lock);
1ce23dca
PS
2208
2209 if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2210 /*
2211 * It's possible that, while we were waiting to acquire
1b2b0aca 2212 * the "zl_issuer_lock", another thread committed this
1ce23dca
PS
2213 * waiter to an lwb. If that occurs, we bail out early,
2214 * without processing any of the zilog's queue of itxs.
2215 *
2216 * On certain workloads and system configurations, the
1b2b0aca 2217 * "zl_issuer_lock" can become highly contended. In an
1ce23dca
PS
2218 * attempt to reduce this contention, we immediately drop
2219 * the lock if the waiter has already been processed.
2220 *
2221 * We've measured this optimization to reduce CPU spent
2222 * contending on this lock by up to 5%, using a system
2223 * with 32 CPUs, low latency storage (~50 usec writes),
2224 * and 1024 threads performing sync writes.
2225 */
2226 goto out;
2227 }
2228
2229 ZIL_STAT_BUMP(zil_commit_writer_count);
2230
2231 zil_get_commit_list(zilog);
2232 zil_prune_commit_list(zilog);
2233 zil_process_commit_list(zilog);
2234
2235out:
1b2b0aca 2236 mutex_exit(&zilog->zl_issuer_lock);
1ce23dca
PS
2237}
2238
2239static void
2240zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2241{
1b2b0aca 2242 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
1ce23dca
PS
2243 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2244 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2245
2246 lwb_t *lwb = zcw->zcw_lwb;
2247 ASSERT3P(lwb, !=, NULL);
2248 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
34dc7c2f
BB
2249
2250 /*
1ce23dca
PS
2251 * If the lwb has already been issued by another thread, we can
2252 * immediately return since there's no work to be done (the
2253 * point of this function is to issue the lwb). Additionally, we
1b2b0aca 2254 * do this prior to acquiring the zl_issuer_lock, to avoid
1ce23dca 2255 * acquiring it when it's not necessary to do so.
34dc7c2f 2256 */
1ce23dca
PS
2257 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2258 lwb->lwb_state == LWB_STATE_DONE)
2259 return;
34dc7c2f 2260
1ce23dca
PS
2261 /*
2262 * In order to call zil_lwb_write_issue() we must hold the
1b2b0aca 2263 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
1ce23dca 2264 * since we're already holding the commit waiter's "zcw_lock",
2fe61a7e 2265 * and those two locks are acquired in the opposite order
1ce23dca
PS
2266 * elsewhere.
2267 */
2268 mutex_exit(&zcw->zcw_lock);
1b2b0aca 2269 mutex_enter(&zilog->zl_issuer_lock);
1ce23dca 2270 mutex_enter(&zcw->zcw_lock);
34dc7c2f 2271
1ce23dca
PS
2272 /*
2273 * Since we just dropped and re-acquired the commit waiter's
2274 * lock, we have to re-check to see if the waiter was marked
2275 * "done" during that process. If the waiter was marked "done",
2276 * the "lwb" pointer is no longer valid (it can be free'd after
2277 * the waiter is marked "done"), so without this check we could
2278 * wind up with a use-after-free error below.
2279 */
2280 if (zcw->zcw_done)
2281 goto out;
119a394a 2282
1ce23dca
PS
2283 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2284
2285 /*
2fe61a7e
PS
2286 * We've already checked this above, but since we hadn't acquired
2287 * the zilog's zl_issuer_lock, we have to perform this check a
2288 * second time while holding the lock.
2289 *
2290 * We don't need to hold the zl_lock since the lwb cannot transition
2291 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2292 * _can_ transition from ISSUED to DONE, but it's OK to race with
2293 * that transition since we treat the lwb the same, whether it's in
2294 * the ISSUED or DONE states.
2295 *
2296 * The important thing, is we treat the lwb differently depending on
2297 * if it's ISSUED or OPENED, and block any other threads that might
2298 * attempt to issue this lwb. For that reason we hold the
2299 * zl_issuer_lock when checking the lwb_state; we must not call
1ce23dca 2300 * zil_lwb_write_issue() if the lwb had already been issued.
2fe61a7e
PS
2301 *
2302 * See the comment above the lwb_state_t structure definition for
2303 * more details on the lwb states, and locking requirements.
1ce23dca
PS
2304 */
2305 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2306 lwb->lwb_state == LWB_STATE_DONE)
2307 goto out;
2308
2309 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2310
2311 /*
2312 * As described in the comments above zil_commit_waiter() and
2313 * zil_process_commit_list(), we need to issue this lwb's zio
2314 * since we've reached the commit waiter's timeout and it still
2315 * hasn't been issued.
2316 */
2317 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2318
2319 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2320
2321 /*
2322 * Since the lwb's zio hadn't been issued by the time this thread
2323 * reached its timeout, we reset the zilog's "zl_cur_used" field
2324 * to influence the zil block size selection algorithm.
2325 *
2326 * By having to issue the lwb's zio here, it means the size of the
2327 * lwb was too large, given the incoming throughput of itxs. By
2328 * setting "zl_cur_used" to zero, we communicate this fact to the
2fe61a7e 2329 * block size selection algorithm, so it can take this information
1ce23dca
PS
2330 * into account, and potentially select a smaller size for the
2331 * next lwb block that is allocated.
2332 */
2333 zilog->zl_cur_used = 0;
2334
2335 if (nlwb == NULL) {
2336 /*
2337 * When zil_lwb_write_issue() returns NULL, this
2338 * indicates zio_alloc_zil() failed to allocate the
2339 * "next" lwb on-disk. When this occurs, the ZIL write
2340 * pipeline must be stalled; see the comment within the
2341 * zil_commit_writer_stall() function for more details.
2342 *
2343 * We must drop the commit waiter's lock prior to
2344 * calling zil_commit_writer_stall() or else we can wind
2345 * up with the following deadlock:
2346 *
2347 * - This thread is waiting for the txg to sync while
2348 * holding the waiter's lock; txg_wait_synced() is
2349 * used within txg_commit_writer_stall().
2350 *
2351 * - The txg can't sync because it is waiting for this
2352 * lwb's zio callback to call dmu_tx_commit().
2353 *
2354 * - The lwb's zio callback can't call dmu_tx_commit()
2355 * because it's blocked trying to acquire the waiter's
2356 * lock, which occurs prior to calling dmu_tx_commit()
2357 */
2358 mutex_exit(&zcw->zcw_lock);
2359 zil_commit_writer_stall(zilog);
2360 mutex_enter(&zcw->zcw_lock);
119a394a
ED
2361 }
2362
1ce23dca 2363out:
1b2b0aca 2364 mutex_exit(&zilog->zl_issuer_lock);
1ce23dca
PS
2365 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2366}
2367
2368/*
2369 * This function is responsible for performing the following two tasks:
2370 *
2371 * 1. its primary responsibility is to block until the given "commit
2372 * waiter" is considered "done".
2373 *
2374 * 2. its secondary responsibility is to issue the zio for the lwb that
2375 * the given "commit waiter" is waiting on, if this function has
2376 * waited "long enough" and the lwb is still in the "open" state.
2377 *
2378 * Given a sufficient amount of itxs being generated and written using
2379 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2380 * function. If this does not occur, this secondary responsibility will
2381 * ensure the lwb is issued even if there is not other synchronous
2382 * activity on the system.
2383 *
2384 * For more details, see zil_process_commit_list(); more specifically,
2385 * the comment at the bottom of that function.
2386 */
2387static void
2388zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2389{
2390 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
1b2b0aca 2391 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
1ce23dca 2392 ASSERT(spa_writeable(zilog->zl_spa));
1ce23dca
PS
2393
2394 mutex_enter(&zcw->zcw_lock);
428870ff
BB
2395
2396 /*
1ce23dca
PS
2397 * The timeout is scaled based on the lwb latency to avoid
2398 * significantly impacting the latency of each individual itx.
2399 * For more details, see the comment at the bottom of the
2400 * zil_process_commit_list() function.
428870ff 2401 */
1ce23dca
PS
2402 int pct = MAX(zfs_commit_timeout_pct, 1);
2403 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2404 hrtime_t wakeup = gethrtime() + sleep;
2405 boolean_t timedout = B_FALSE;
2406
2407 while (!zcw->zcw_done) {
2408 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2409
2410 lwb_t *lwb = zcw->zcw_lwb;
2411
2412 /*
2413 * Usually, the waiter will have a non-NULL lwb field here,
2414 * but it's possible for it to be NULL as a result of
2415 * zil_commit() racing with spa_sync().
2416 *
2417 * When zil_clean() is called, it's possible for the itxg
2418 * list (which may be cleaned via a taskq) to contain
2419 * commit itxs. When this occurs, the commit waiters linked
2420 * off of these commit itxs will not be committed to an
2421 * lwb. Additionally, these commit waiters will not be
2422 * marked done until zil_commit_waiter_skip() is called via
2423 * zil_itxg_clean().
2424 *
2425 * Thus, it's possible for this commit waiter (i.e. the
2426 * "zcw" variable) to be found in this "in between" state;
2427 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2428 * been skipped, so it's "zcw_done" field is still B_FALSE.
2429 */
2430 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2431
2432 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2433 ASSERT3B(timedout, ==, B_FALSE);
2434
2435 /*
2436 * If the lwb hasn't been issued yet, then we
2437 * need to wait with a timeout, in case this
2438 * function needs to issue the lwb after the
2439 * timeout is reached; responsibility (2) from
2440 * the comment above this function.
2441 */
2442 clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2443 &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2444 CALLOUT_FLAG_ABSOLUTE);
2445
2446 if (timeleft >= 0 || zcw->zcw_done)
2447 continue;
2448
2449 timedout = B_TRUE;
2450 zil_commit_waiter_timeout(zilog, zcw);
2451
2452 if (!zcw->zcw_done) {
2453 /*
2454 * If the commit waiter has already been
2455 * marked "done", it's possible for the
2456 * waiter's lwb structure to have already
2457 * been freed. Thus, we can only reliably
2458 * make these assertions if the waiter
2459 * isn't done.
2460 */
2461 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2462 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2463 }
2464 } else {
2465 /*
2466 * If the lwb isn't open, then it must have already
2467 * been issued. In that case, there's no need to
2468 * use a timeout when waiting for the lwb to
2469 * complete.
2470 *
2471 * Additionally, if the lwb is NULL, the waiter
2fe61a7e 2472 * will soon be signaled and marked done via
1ce23dca
PS
2473 * zil_clean() and zil_itxg_clean(), so no timeout
2474 * is required.
2475 */
2476
2477 IMPLY(lwb != NULL,
2478 lwb->lwb_state == LWB_STATE_ISSUED ||
2479 lwb->lwb_state == LWB_STATE_DONE);
2480 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2481 }
2482 }
2483
2484 mutex_exit(&zcw->zcw_lock);
2485}
2486
2487static zil_commit_waiter_t *
2488zil_alloc_commit_waiter(void)
2489{
2490 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2491
2492 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2493 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2494 list_link_init(&zcw->zcw_node);
2495 zcw->zcw_lwb = NULL;
2496 zcw->zcw_done = B_FALSE;
2497 zcw->zcw_zio_error = 0;
2498
2499 return (zcw);
2500}
2501
2502static void
2503zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2504{
2505 ASSERT(!list_link_active(&zcw->zcw_node));
2506 ASSERT3P(zcw->zcw_lwb, ==, NULL);
2507 ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2508 mutex_destroy(&zcw->zcw_lock);
2509 cv_destroy(&zcw->zcw_cv);
2510 kmem_cache_free(zil_zcw_cache, zcw);
34dc7c2f
BB
2511}
2512
2513/*
1ce23dca
PS
2514 * This function is used to create a TX_COMMIT itx and assign it. This
2515 * way, it will be linked into the ZIL's list of synchronous itxs, and
2516 * then later committed to an lwb (or skipped) when
2517 * zil_process_commit_list() is called.
2518 */
2519static void
2520zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2521{
2522 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2523 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2524
2525 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2526 itx->itx_sync = B_TRUE;
2527 itx->itx_private = zcw;
2528
2529 zil_itx_assign(zilog, itx, tx);
2530
2531 dmu_tx_commit(tx);
2532}
2533
2534/*
2535 * Commit ZFS Intent Log transactions (itxs) to stable storage.
2536 *
2537 * When writing ZIL transactions to the on-disk representation of the
2538 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2539 * itxs can be committed to a single lwb. Once a lwb is written and
2540 * committed to stable storage (i.e. the lwb is written, and vdevs have
2541 * been flushed), each itx that was committed to that lwb is also
2542 * considered to be committed to stable storage.
2543 *
2544 * When an itx is committed to an lwb, the log record (lr_t) contained
2545 * by the itx is copied into the lwb's zio buffer, and once this buffer
2546 * is written to disk, it becomes an on-disk ZIL block.
2547 *
2548 * As itxs are generated, they're inserted into the ZIL's queue of
2549 * uncommitted itxs. The semantics of zil_commit() are such that it will
2550 * block until all itxs that were in the queue when it was called, are
2551 * committed to stable storage.
2552 *
2553 * If "foid" is zero, this means all "synchronous" and "asynchronous"
2554 * itxs, for all objects in the dataset, will be committed to stable
2555 * storage prior to zil_commit() returning. If "foid" is non-zero, all
2556 * "synchronous" itxs for all objects, but only "asynchronous" itxs
2557 * that correspond to the foid passed in, will be committed to stable
2558 * storage prior to zil_commit() returning.
2559 *
2560 * Generally speaking, when zil_commit() is called, the consumer doesn't
2561 * actually care about _all_ of the uncommitted itxs. Instead, they're
2562 * simply trying to waiting for a specific itx to be committed to disk,
2563 * but the interface(s) for interacting with the ZIL don't allow such
2564 * fine-grained communication. A better interface would allow a consumer
2565 * to create and assign an itx, and then pass a reference to this itx to
2566 * zil_commit(); such that zil_commit() would return as soon as that
2567 * specific itx was committed to disk (instead of waiting for _all_
2568 * itxs to be committed).
2569 *
2570 * When a thread calls zil_commit() a special "commit itx" will be
2571 * generated, along with a corresponding "waiter" for this commit itx.
2572 * zil_commit() will wait on this waiter's CV, such that when the waiter
2fe61a7e 2573 * is marked done, and signaled, zil_commit() will return.
1ce23dca
PS
2574 *
2575 * This commit itx is inserted into the queue of uncommitted itxs. This
2576 * provides an easy mechanism for determining which itxs were in the
2577 * queue prior to zil_commit() having been called, and which itxs were
2578 * added after zil_commit() was called.
2579 *
2580 * The commit it is special; it doesn't have any on-disk representation.
2581 * When a commit itx is "committed" to an lwb, the waiter associated
2582 * with it is linked onto the lwb's list of waiters. Then, when that lwb
2fe61a7e 2583 * completes, each waiter on the lwb's list is marked done and signaled
1ce23dca
PS
2584 * -- allowing the thread waiting on the waiter to return from zil_commit().
2585 *
2586 * It's important to point out a few critical factors that allow us
2587 * to make use of the commit itxs, commit waiters, per-lwb lists of
2588 * commit waiters, and zio completion callbacks like we're doing:
572e2857 2589 *
1ce23dca 2590 * 1. The list of waiters for each lwb is traversed, and each commit
2fe61a7e 2591 * waiter is marked "done" and signaled, in the zio completion
1ce23dca 2592 * callback of the lwb's zio[*].
572e2857 2593 *
2fe61a7e 2594 * * Actually, the waiters are signaled in the zio completion
1ce23dca
PS
2595 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2596 * that are sent to the vdevs upon completion of the lwb zio.
572e2857 2597 *
1ce23dca
PS
2598 * 2. When the itxs are inserted into the ZIL's queue of uncommitted
2599 * itxs, the order in which they are inserted is preserved[*]; as
2600 * itxs are added to the queue, they are added to the tail of
2601 * in-memory linked lists.
572e2857 2602 *
1ce23dca
PS
2603 * When committing the itxs to lwbs (to be written to disk), they
2604 * are committed in the same order in which the itxs were added to
2605 * the uncommitted queue's linked list(s); i.e. the linked list of
2606 * itxs to commit is traversed from head to tail, and each itx is
2607 * committed to an lwb in that order.
2608 *
2609 * * To clarify:
2610 *
2611 * - the order of "sync" itxs is preserved w.r.t. other
2612 * "sync" itxs, regardless of the corresponding objects.
2613 * - the order of "async" itxs is preserved w.r.t. other
2614 * "async" itxs corresponding to the same object.
2615 * - the order of "async" itxs is *not* preserved w.r.t. other
2616 * "async" itxs corresponding to different objects.
2617 * - the order of "sync" itxs w.r.t. "async" itxs (or vice
2618 * versa) is *not* preserved, even for itxs that correspond
2619 * to the same object.
2620 *
2621 * For more details, see: zil_itx_assign(), zil_async_to_sync(),
2622 * zil_get_commit_list(), and zil_process_commit_list().
2623 *
2624 * 3. The lwbs represent a linked list of blocks on disk. Thus, any
2625 * lwb cannot be considered committed to stable storage, until its
2626 * "previous" lwb is also committed to stable storage. This fact,
2627 * coupled with the fact described above, means that itxs are
2628 * committed in (roughly) the order in which they were generated.
2629 * This is essential because itxs are dependent on prior itxs.
2630 * Thus, we *must not* deem an itx as being committed to stable
2631 * storage, until *all* prior itxs have also been committed to
2632 * stable storage.
2633 *
2634 * To enforce this ordering of lwb zio's, while still leveraging as
2635 * much of the underlying storage performance as possible, we rely
2636 * on two fundamental concepts:
2637 *
2638 * 1. The creation and issuance of lwb zio's is protected by
1b2b0aca 2639 * the zilog's "zl_issuer_lock", which ensures only a single
1ce23dca
PS
2640 * thread is creating and/or issuing lwb's at a time
2641 * 2. The "previous" lwb is a child of the "current" lwb
2fe61a7e 2642 * (leveraging the zio parent-child dependency graph)
1ce23dca
PS
2643 *
2644 * By relying on this parent-child zio relationship, we can have
2645 * many lwb zio's concurrently issued to the underlying storage,
2646 * but the order in which they complete will be the same order in
2647 * which they were created.
34dc7c2f
BB
2648 */
2649void
572e2857 2650zil_commit(zilog_t *zilog, uint64_t foid)
34dc7c2f 2651{
1ce23dca
PS
2652 /*
2653 * We should never attempt to call zil_commit on a snapshot for
2654 * a couple of reasons:
2655 *
2656 * 1. A snapshot may never be modified, thus it cannot have any
2657 * in-flight itxs that would have modified the dataset.
2658 *
2659 * 2. By design, when zil_commit() is called, a commit itx will
2660 * be assigned to this zilog; as a result, the zilog will be
2661 * dirtied. We must not dirty the zilog of a snapshot; there's
2662 * checks in the code that enforce this invariant, and will
2663 * cause a panic if it's not upheld.
2664 */
2665 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
34dc7c2f 2666
572e2857
BB
2667 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2668 return;
34dc7c2f 2669
1ce23dca
PS
2670 if (!spa_writeable(zilog->zl_spa)) {
2671 /*
2672 * If the SPA is not writable, there should never be any
2673 * pending itxs waiting to be committed to disk. If that
2674 * weren't true, we'd skip writing those itxs out, and
2fe61a7e 2675 * would break the semantics of zil_commit(); thus, we're
1ce23dca
PS
2676 * verifying that truth before we return to the caller.
2677 */
2678 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2679 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2680 for (int i = 0; i < TXG_SIZE; i++)
2681 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2682 return;
2683 }
2684
2685 /*
2686 * If the ZIL is suspended, we don't want to dirty it by calling
2687 * zil_commit_itx_assign() below, nor can we write out
2688 * lwbs like would be done in zil_commit_write(). Thus, we
2689 * simply rely on txg_wait_synced() to maintain the necessary
2690 * semantics, and avoid calling those functions altogether.
2691 */
2692 if (zilog->zl_suspend > 0) {
2693 txg_wait_synced(zilog->zl_dmu_pool, 0);
2694 return;
2695 }
2696
2fe61a7e
PS
2697 zil_commit_impl(zilog, foid);
2698}
2699
2700void
2701zil_commit_impl(zilog_t *zilog, uint64_t foid)
2702{
b6ad9671
ED
2703 ZIL_STAT_BUMP(zil_commit_count);
2704
1ce23dca
PS
2705 /*
2706 * Move the "async" itxs for the specified foid to the "sync"
2707 * queues, such that they will be later committed (or skipped)
2708 * to an lwb when zil_process_commit_list() is called.
2709 *
2710 * Since these "async" itxs must be committed prior to this
2711 * call to zil_commit returning, we must perform this operation
2712 * before we call zil_commit_itx_assign().
2713 */
572e2857 2714 zil_async_to_sync(zilog, foid);
34dc7c2f 2715
1ce23dca
PS
2716 /*
2717 * We allocate a new "waiter" structure which will initially be
2718 * linked to the commit itx using the itx's "itx_private" field.
2719 * Since the commit itx doesn't represent any on-disk state,
2720 * when it's committed to an lwb, rather than copying the its
2721 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2722 * added to the lwb's list of waiters. Then, when the lwb is
2723 * committed to stable storage, each waiter in the lwb's list of
2724 * waiters will be marked "done", and signalled.
2725 *
2726 * We must create the waiter and assign the commit itx prior to
2727 * calling zil_commit_writer(), or else our specific commit itx
2728 * is not guaranteed to be committed to an lwb prior to calling
2729 * zil_commit_waiter().
2730 */
2731 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2732 zil_commit_itx_assign(zilog, zcw);
428870ff 2733
1ce23dca
PS
2734 zil_commit_writer(zilog, zcw);
2735 zil_commit_waiter(zilog, zcw);
428870ff 2736
1ce23dca
PS
2737 if (zcw->zcw_zio_error != 0) {
2738 /*
2739 * If there was an error writing out the ZIL blocks that
2740 * this thread is waiting on, then we fallback to
2741 * relying on spa_sync() to write out the data this
2742 * thread is waiting on. Obviously this has performance
2743 * implications, but the expectation is for this to be
2744 * an exceptional case, and shouldn't occur often.
2745 */
2746 DTRACE_PROBE2(zil__commit__io__error,
2747 zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2748 txg_wait_synced(zilog->zl_dmu_pool, 0);
2749 }
8c0712fd 2750
1ce23dca 2751 zil_free_commit_waiter(zcw);
428870ff
BB
2752}
2753
34dc7c2f
BB
2754/*
2755 * Called in syncing context to free committed log blocks and update log header.
2756 */
2757void
2758zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2759{
2760 zil_header_t *zh = zil_header_in_syncing_context(zilog);
2761 uint64_t txg = dmu_tx_get_txg(tx);
2762 spa_t *spa = zilog->zl_spa;
428870ff 2763 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
34dc7c2f
BB
2764 lwb_t *lwb;
2765
9babb374
BB
2766 /*
2767 * We don't zero out zl_destroy_txg, so make sure we don't try
2768 * to destroy it twice.
2769 */
2770 if (spa_sync_pass(spa) != 1)
2771 return;
2772
34dc7c2f
BB
2773 mutex_enter(&zilog->zl_lock);
2774
2775 ASSERT(zilog->zl_stop_sync == 0);
2776
428870ff
BB
2777 if (*replayed_seq != 0) {
2778 ASSERT(zh->zh_replay_seq < *replayed_seq);
2779 zh->zh_replay_seq = *replayed_seq;
2780 *replayed_seq = 0;
2781 }
34dc7c2f
BB
2782
2783 if (zilog->zl_destroy_txg == txg) {
2784 blkptr_t blk = zh->zh_log;
2785
2786 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
34dc7c2f
BB
2787
2788 bzero(zh, sizeof (zil_header_t));
fb5f0bc8 2789 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
34dc7c2f
BB
2790
2791 if (zilog->zl_keep_first) {
2792 /*
2793 * If this block was part of log chain that couldn't
2794 * be claimed because a device was missing during
2795 * zil_claim(), but that device later returns,
2796 * then this block could erroneously appear valid.
2797 * To guard against this, assign a new GUID to the new
2798 * log chain so it doesn't matter what blk points to.
2799 */
2800 zil_init_log_chain(zilog, &blk);
2801 zh->zh_log = blk;
2802 }
2803 }
2804
9babb374 2805 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
34dc7c2f
BB
2806 zh->zh_log = lwb->lwb_blk;
2807 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2808 break;
2809 list_remove(&zilog->zl_lwb_list, lwb);
1ce23dca
PS
2810 zio_free(spa, txg, &lwb->lwb_blk);
2811 zil_free_lwb(zilog, lwb);
34dc7c2f
BB
2812
2813 /*
2814 * If we don't have anything left in the lwb list then
2815 * we've had an allocation failure and we need to zero
2816 * out the zil_header blkptr so that we don't end
2817 * up freeing the same block twice.
2818 */
2819 if (list_head(&zilog->zl_lwb_list) == NULL)
2820 BP_ZERO(&zh->zh_log);
2821 }
920dd524
ED
2822
2823 /*
2824 * Remove fastwrite on any blocks that have been pre-allocated for
2825 * the next commit. This prevents fastwrite counter pollution by
2826 * unused, long-lived LWBs.
2827 */
2828 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
1ce23dca 2829 if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) {
920dd524
ED
2830 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
2831 lwb->lwb_fastwrite = 0;
2832 }
2833 }
2834
34dc7c2f
BB
2835 mutex_exit(&zilog->zl_lock);
2836}
2837
1ce23dca
PS
2838/* ARGSUSED */
2839static int
2840zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2841{
2842 lwb_t *lwb = vbuf;
2843 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2844 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2845 offsetof(zil_commit_waiter_t, zcw_node));
2846 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2847 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2848 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2849 return (0);
2850}
2851
2852/* ARGSUSED */
2853static void
2854zil_lwb_dest(void *vbuf, void *unused)
2855{
2856 lwb_t *lwb = vbuf;
2857 mutex_destroy(&lwb->lwb_vdev_lock);
2858 avl_destroy(&lwb->lwb_vdev_tree);
2859 list_destroy(&lwb->lwb_waiters);
2860 list_destroy(&lwb->lwb_itxs);
2861}
2862
34dc7c2f
BB
2863void
2864zil_init(void)
2865{
2866 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1ce23dca
PS
2867 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2868
2869 zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2870 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
b6ad9671
ED
2871
2872 zil_ksp = kstat_create("zfs", 0, "zil", "misc",
d1d7e268 2873 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
b6ad9671
ED
2874 KSTAT_FLAG_VIRTUAL);
2875
2876 if (zil_ksp != NULL) {
2877 zil_ksp->ks_data = &zil_stats;
2878 kstat_install(zil_ksp);
2879 }
34dc7c2f
BB
2880}
2881
2882void
2883zil_fini(void)
2884{
1ce23dca 2885 kmem_cache_destroy(zil_zcw_cache);
34dc7c2f 2886 kmem_cache_destroy(zil_lwb_cache);
b6ad9671
ED
2887
2888 if (zil_ksp != NULL) {
2889 kstat_delete(zil_ksp);
2890 zil_ksp = NULL;
2891 }
34dc7c2f
BB
2892}
2893
428870ff
BB
2894void
2895zil_set_sync(zilog_t *zilog, uint64_t sync)
2896{
2897 zilog->zl_sync = sync;
2898}
2899
2900void
2901zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2902{
2903 zilog->zl_logbias = logbias;
2904}
2905
34dc7c2f
BB
2906zilog_t *
2907zil_alloc(objset_t *os, zil_header_t *zh_phys)
2908{
2909 zilog_t *zilog;
2910
79c76d5b 2911 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
34dc7c2f
BB
2912
2913 zilog->zl_header = zh_phys;
2914 zilog->zl_os = os;
2915 zilog->zl_spa = dmu_objset_spa(os);
2916 zilog->zl_dmu_pool = dmu_objset_pool(os);
2917 zilog->zl_destroy_txg = TXG_INITIAL - 1;
428870ff
BB
2918 zilog->zl_logbias = dmu_objset_logbias(os);
2919 zilog->zl_sync = dmu_objset_syncprop(os);
1ce23dca
PS
2920 zilog->zl_dirty_max_txg = 0;
2921 zilog->zl_last_lwb_opened = NULL;
2922 zilog->zl_last_lwb_latency = 0;
34dc7c2f
BB
2923
2924 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1b2b0aca 2925 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 2926
1c27024e 2927 for (int i = 0; i < TXG_SIZE; i++) {
572e2857
BB
2928 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2929 MUTEX_DEFAULT, NULL);
2930 }
34dc7c2f
BB
2931
2932 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
2933 offsetof(lwb_t, lwb_node));
2934
572e2857
BB
2935 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
2936 offsetof(itx_t, itx_node));
2937
34dc7c2f
BB
2938 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
2939
2940 return (zilog);
2941}
2942
2943void
2944zil_free(zilog_t *zilog)
2945{
d6320ddb 2946 int i;
34dc7c2f
BB
2947
2948 zilog->zl_stop_sync = 1;
2949
13fe0198
MA
2950 ASSERT0(zilog->zl_suspend);
2951 ASSERT0(zilog->zl_suspending);
2952
3e31d2b0 2953 ASSERT(list_is_empty(&zilog->zl_lwb_list));
34dc7c2f
BB
2954 list_destroy(&zilog->zl_lwb_list);
2955
572e2857
BB
2956 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
2957 list_destroy(&zilog->zl_itx_commit_list);
2958
d6320ddb 2959 for (i = 0; i < TXG_SIZE; i++) {
572e2857
BB
2960 /*
2961 * It's possible for an itx to be generated that doesn't dirty
2962 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
2963 * callback to remove the entry. We remove those here.
2964 *
2965 * Also free up the ziltest itxs.
2966 */
2967 if (zilog->zl_itxg[i].itxg_itxs)
2968 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
2969 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
2970 }
2971
1b2b0aca 2972 mutex_destroy(&zilog->zl_issuer_lock);
34dc7c2f
BB
2973 mutex_destroy(&zilog->zl_lock);
2974
34dc7c2f
BB
2975 cv_destroy(&zilog->zl_cv_suspend);
2976
2977 kmem_free(zilog, sizeof (zilog_t));
2978}
2979
34dc7c2f
BB
2980/*
2981 * Open an intent log.
2982 */
2983zilog_t *
2984zil_open(objset_t *os, zil_get_data_t *get_data)
2985{
2986 zilog_t *zilog = dmu_objset_zil(os);
2987
1ce23dca
PS
2988 ASSERT3P(zilog->zl_get_data, ==, NULL);
2989 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3e31d2b0
ES
2990 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2991
34dc7c2f 2992 zilog->zl_get_data = get_data;
34dc7c2f
BB
2993
2994 return (zilog);
2995}
2996
2997/*
2998 * Close an intent log.
2999 */
3000void
3001zil_close(zilog_t *zilog)
3002{
3e31d2b0 3003 lwb_t *lwb;
1ce23dca 3004 uint64_t txg;
572e2857 3005
1ce23dca
PS
3006 if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3007 zil_commit(zilog, 0);
3008 } else {
3009 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3010 ASSERT0(zilog->zl_dirty_max_txg);
3011 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3012 }
572e2857 3013
572e2857 3014 mutex_enter(&zilog->zl_lock);
3e31d2b0 3015 lwb = list_tail(&zilog->zl_lwb_list);
1ce23dca
PS
3016 if (lwb == NULL)
3017 txg = zilog->zl_dirty_max_txg;
3018 else
3019 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
572e2857 3020 mutex_exit(&zilog->zl_lock);
1ce23dca
PS
3021
3022 /*
3023 * We need to use txg_wait_synced() to wait long enough for the
3024 * ZIL to be clean, and to wait for all pending lwbs to be
3025 * written out.
3026 */
3027 if (txg != 0)
34dc7c2f 3028 txg_wait_synced(zilog->zl_dmu_pool, txg);
55922e73
GW
3029
3030 if (zilog_is_dirty(zilog))
3031 zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
50c957f7 3032 if (txg < spa_freeze_txg(zilog->zl_spa))
55922e73 3033 VERIFY(!zilog_is_dirty(zilog));
34dc7c2f 3034
34dc7c2f 3035 zilog->zl_get_data = NULL;
3e31d2b0
ES
3036
3037 /*
1ce23dca 3038 * We should have only one lwb left on the list; remove it now.
3e31d2b0
ES
3039 */
3040 mutex_enter(&zilog->zl_lock);
3041 lwb = list_head(&zilog->zl_lwb_list);
3042 if (lwb != NULL) {
1ce23dca
PS
3043 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3044 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3045
920dd524
ED
3046 if (lwb->lwb_fastwrite)
3047 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
1ce23dca 3048
3e31d2b0
ES
3049 list_remove(&zilog->zl_lwb_list, lwb);
3050 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1ce23dca 3051 zil_free_lwb(zilog, lwb);
3e31d2b0
ES
3052 }
3053 mutex_exit(&zilog->zl_lock);
34dc7c2f
BB
3054}
3055
13fe0198
MA
3056static char *suspend_tag = "zil suspending";
3057
34dc7c2f
BB
3058/*
3059 * Suspend an intent log. While in suspended mode, we still honor
3060 * synchronous semantics, but we rely on txg_wait_synced() to do it.
13fe0198
MA
3061 * On old version pools, we suspend the log briefly when taking a
3062 * snapshot so that it will have an empty intent log.
3063 *
3064 * Long holds are not really intended to be used the way we do here --
3065 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
3066 * could fail. Therefore we take pains to only put a long hold if it is
3067 * actually necessary. Fortunately, it will only be necessary if the
3068 * objset is currently mounted (or the ZVOL equivalent). In that case it
3069 * will already have a long hold, so we are not really making things any worse.
3070 *
3071 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3072 * zvol_state_t), and use their mechanism to prevent their hold from being
3073 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
3074 * very little gain.
3075 *
3076 * if cookiep == NULL, this does both the suspend & resume.
3077 * Otherwise, it returns with the dataset "long held", and the cookie
3078 * should be passed into zil_resume().
34dc7c2f
BB
3079 */
3080int
13fe0198 3081zil_suspend(const char *osname, void **cookiep)
34dc7c2f 3082{
13fe0198
MA
3083 objset_t *os;
3084 zilog_t *zilog;
3085 const zil_header_t *zh;
3086 int error;
3087
3088 error = dmu_objset_hold(osname, suspend_tag, &os);
3089 if (error != 0)
3090 return (error);
3091 zilog = dmu_objset_zil(os);
34dc7c2f
BB
3092
3093 mutex_enter(&zilog->zl_lock);
13fe0198
MA
3094 zh = zilog->zl_header;
3095
9babb374 3096 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
34dc7c2f 3097 mutex_exit(&zilog->zl_lock);
13fe0198 3098 dmu_objset_rele(os, suspend_tag);
2e528b49 3099 return (SET_ERROR(EBUSY));
34dc7c2f 3100 }
13fe0198
MA
3101
3102 /*
3103 * Don't put a long hold in the cases where we can avoid it. This
3104 * is when there is no cookie so we are doing a suspend & resume
3105 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3106 * for the suspend because it's already suspended, or there's no ZIL.
3107 */
3108 if (cookiep == NULL && !zilog->zl_suspending &&
3109 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3110 mutex_exit(&zilog->zl_lock);
3111 dmu_objset_rele(os, suspend_tag);
3112 return (0);
3113 }
3114
3115 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3116 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3117
3118 zilog->zl_suspend++;
3119
3120 if (zilog->zl_suspend > 1) {
34dc7c2f 3121 /*
13fe0198 3122 * Someone else is already suspending it.
34dc7c2f
BB
3123 * Just wait for them to finish.
3124 */
13fe0198 3125
34dc7c2f
BB
3126 while (zilog->zl_suspending)
3127 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
34dc7c2f 3128 mutex_exit(&zilog->zl_lock);
13fe0198
MA
3129
3130 if (cookiep == NULL)
3131 zil_resume(os);
3132 else
3133 *cookiep = os;
3134 return (0);
3135 }
3136
3137 /*
3138 * If there is no pointer to an on-disk block, this ZIL must not
3139 * be active (e.g. filesystem not mounted), so there's nothing
3140 * to clean up.
3141 */
3142 if (BP_IS_HOLE(&zh->zh_log)) {
3143 ASSERT(cookiep != NULL); /* fast path already handled */
3144
3145 *cookiep = os;
3146 mutex_exit(&zilog->zl_lock);
34dc7c2f
BB
3147 return (0);
3148 }
13fe0198 3149
4807c0ba
TC
3150 /*
3151 * The ZIL has work to do. Ensure that the associated encryption
3152 * key will remain mapped while we are committing the log by
3153 * grabbing a reference to it. If the key isn't loaded we have no
3154 * choice but to return an error until the wrapping key is loaded.
3155 */
3156 if (os->os_encrypted && spa_keystore_create_mapping(os->os_spa,
3157 dmu_objset_ds(os), FTAG) != 0) {
3158 zilog->zl_suspend--;
3159 mutex_exit(&zilog->zl_lock);
3160 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3161 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3162 return (SET_ERROR(EBUSY));
3163 }
3164
34dc7c2f
BB
3165 zilog->zl_suspending = B_TRUE;
3166 mutex_exit(&zilog->zl_lock);
3167
2fe61a7e
PS
3168 /*
3169 * We need to use zil_commit_impl to ensure we wait for all
3170 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed
3171 * to disk before proceeding. If we used zil_commit instead, it
3172 * would just call txg_wait_synced(), because zl_suspend is set.
3173 * txg_wait_synced() doesn't wait for these lwb's to be
3174 * LWB_STATE_DONE before returning.
3175 */
3176 zil_commit_impl(zilog, 0);
3177
3178 /*
3179 * Now that we've ensured all lwb's are LWB_STATE_DONE, we use
3180 * txg_wait_synced() to ensure the data from the zilog has
3181 * migrated to the main pool before calling zil_destroy().
3182 */
3183 txg_wait_synced(zilog->zl_dmu_pool, 0);
34dc7c2f
BB
3184
3185 zil_destroy(zilog, B_FALSE);
3186
3187 mutex_enter(&zilog->zl_lock);
3188 zilog->zl_suspending = B_FALSE;
3189 cv_broadcast(&zilog->zl_cv_suspend);
3190 mutex_exit(&zilog->zl_lock);
3191
4807c0ba
TC
3192 if (os->os_encrypted) {
3193 /*
3194 * Encrypted datasets need to wait for all data to be
3195 * synced out before removing the mapping.
3196 *
3197 * XXX: Depending on the number of datasets with
3198 * outstanding ZIL data on a given log device, this
3199 * might cause spa_offline_log() to take a long time.
3200 */
3201 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3202 VERIFY0(spa_keystore_remove_mapping(os->os_spa,
3203 dmu_objset_id(os), FTAG));
3204 }
3205
13fe0198
MA
3206 if (cookiep == NULL)
3207 zil_resume(os);
3208 else
3209 *cookiep = os;
34dc7c2f
BB
3210 return (0);
3211}
3212
3213void
13fe0198 3214zil_resume(void *cookie)
34dc7c2f 3215{
13fe0198
MA
3216 objset_t *os = cookie;
3217 zilog_t *zilog = dmu_objset_zil(os);
3218
34dc7c2f
BB
3219 mutex_enter(&zilog->zl_lock);
3220 ASSERT(zilog->zl_suspend != 0);
3221 zilog->zl_suspend--;
3222 mutex_exit(&zilog->zl_lock);
13fe0198
MA
3223 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3224 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
34dc7c2f
BB
3225}
3226
3227typedef struct zil_replay_arg {
867959b5 3228 zil_replay_func_t **zr_replay;
34dc7c2f 3229 void *zr_arg;
34dc7c2f 3230 boolean_t zr_byteswap;
428870ff 3231 char *zr_lr;
34dc7c2f
BB
3232} zil_replay_arg_t;
3233
428870ff
BB
3234static int
3235zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3236{
eca7b760 3237 char name[ZFS_MAX_DATASET_NAME_LEN];
428870ff
BB
3238
3239 zilog->zl_replaying_seq--; /* didn't actually replay this one */
3240
3241 dmu_objset_name(zilog->zl_os, name);
3242
3243 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3244 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3245 (u_longlong_t)lr->lrc_seq,
3246 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3247 (lr->lrc_txtype & TX_CI) ? "CI" : "");
3248
3249 return (error);
3250}
3251
3252static int
34dc7c2f
BB
3253zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3254{
3255 zil_replay_arg_t *zr = zra;
3256 const zil_header_t *zh = zilog->zl_header;
3257 uint64_t reclen = lr->lrc_reclen;
3258 uint64_t txtype = lr->lrc_txtype;
428870ff 3259 int error = 0;
34dc7c2f 3260
428870ff 3261 zilog->zl_replaying_seq = lr->lrc_seq;
34dc7c2f
BB
3262
3263 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
428870ff
BB
3264 return (0);
3265
3266 if (lr->lrc_txg < claim_txg) /* already committed */
3267 return (0);
34dc7c2f
BB
3268
3269 /* Strip case-insensitive bit, still present in log record */
3270 txtype &= ~TX_CI;
3271
428870ff
BB
3272 if (txtype == 0 || txtype >= TX_MAX_TYPE)
3273 return (zil_replay_error(zilog, lr, EINVAL));
3274
3275 /*
3276 * If this record type can be logged out of order, the object
3277 * (lr_foid) may no longer exist. That's legitimate, not an error.
3278 */
3279 if (TX_OOO(txtype)) {
3280 error = dmu_object_info(zilog->zl_os,
50c957f7 3281 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
428870ff
BB
3282 if (error == ENOENT || error == EEXIST)
3283 return (0);
fb5f0bc8
BB
3284 }
3285
34dc7c2f
BB
3286 /*
3287 * Make a copy of the data so we can revise and extend it.
3288 */
428870ff
BB
3289 bcopy(lr, zr->zr_lr, reclen);
3290
3291 /*
3292 * If this is a TX_WRITE with a blkptr, suck in the data.
3293 */
3294 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3295 error = zil_read_log_data(zilog, (lr_write_t *)lr,
3296 zr->zr_lr + reclen);
13fe0198 3297 if (error != 0)
428870ff
BB
3298 return (zil_replay_error(zilog, lr, error));
3299 }
34dc7c2f
BB
3300
3301 /*
3302 * The log block containing this lr may have been byteswapped
3303 * so that we can easily examine common fields like lrc_txtype.
428870ff 3304 * However, the log is a mix of different record types, and only the
34dc7c2f
BB
3305 * replay vectors know how to byteswap their records. Therefore, if
3306 * the lr was byteswapped, undo it before invoking the replay vector.
3307 */
3308 if (zr->zr_byteswap)
428870ff 3309 byteswap_uint64_array(zr->zr_lr, reclen);
34dc7c2f
BB
3310
3311 /*
3312 * We must now do two things atomically: replay this log record,
fb5f0bc8
BB
3313 * and update the log header sequence number to reflect the fact that
3314 * we did so. At the end of each replay function the sequence number
3315 * is updated if we are in replay mode.
34dc7c2f 3316 */
428870ff 3317 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
13fe0198 3318 if (error != 0) {
34dc7c2f
BB
3319 /*
3320 * The DMU's dnode layer doesn't see removes until the txg
3321 * commits, so a subsequent claim can spuriously fail with
fb5f0bc8 3322 * EEXIST. So if we receive any error we try syncing out
428870ff
BB
3323 * any removes then retry the transaction. Note that we
3324 * specify B_FALSE for byteswap now, so we don't do it twice.
34dc7c2f 3325 */
428870ff
BB
3326 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3327 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
13fe0198 3328 if (error != 0)
428870ff 3329 return (zil_replay_error(zilog, lr, error));
34dc7c2f 3330 }
428870ff 3331 return (0);
34dc7c2f
BB
3332}
3333
3334/* ARGSUSED */
428870ff 3335static int
34dc7c2f
BB
3336zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3337{
3338 zilog->zl_replay_blks++;
428870ff
BB
3339
3340 return (0);
34dc7c2f
BB
3341}
3342
3343/*
3344 * If this dataset has a non-empty intent log, replay it and destroy it.
3345 */
3346void
867959b5 3347zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
34dc7c2f
BB
3348{
3349 zilog_t *zilog = dmu_objset_zil(os);
3350 const zil_header_t *zh = zilog->zl_header;
3351 zil_replay_arg_t zr;
3352
9babb374 3353 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
34dc7c2f
BB
3354 zil_destroy(zilog, B_TRUE);
3355 return;
3356 }
3357
34dc7c2f
BB
3358 zr.zr_replay = replay_func;
3359 zr.zr_arg = arg;
34dc7c2f 3360 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
79c76d5b 3361 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
34dc7c2f
BB
3362
3363 /*
3364 * Wait for in-progress removes to sync before starting replay.
3365 */
3366 txg_wait_synced(zilog->zl_dmu_pool, 0);
3367
fb5f0bc8 3368 zilog->zl_replay = B_TRUE;
428870ff 3369 zilog->zl_replay_time = ddi_get_lbolt();
34dc7c2f
BB
3370 ASSERT(zilog->zl_replay_blks == 0);
3371 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
b5256303 3372 zh->zh_claim_txg, B_TRUE);
00b46022 3373 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
34dc7c2f
BB
3374
3375 zil_destroy(zilog, B_FALSE);
3376 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
fb5f0bc8 3377 zilog->zl_replay = B_FALSE;
34dc7c2f
BB
3378}
3379
428870ff
BB
3380boolean_t
3381zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
34dc7c2f 3382{
428870ff
BB
3383 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3384 return (B_TRUE);
34dc7c2f 3385
428870ff
BB
3386 if (zilog->zl_replay) {
3387 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3388 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3389 zilog->zl_replaying_seq;
3390 return (B_TRUE);
34dc7c2f
BB
3391 }
3392
428870ff 3393 return (B_FALSE);
34dc7c2f 3394}
9babb374
BB
3395
3396/* ARGSUSED */
3397int
428870ff 3398zil_vdev_offline(const char *osname, void *arg)
9babb374 3399{
9babb374
BB
3400 int error;
3401
13fe0198
MA
3402 error = zil_suspend(osname, NULL);
3403 if (error != 0)
2e528b49 3404 return (SET_ERROR(EEXIST));
13fe0198 3405 return (0);
9babb374 3406}
c409e464
BB
3407
3408#if defined(_KERNEL) && defined(HAVE_SPL)
0f699108
AZ
3409EXPORT_SYMBOL(zil_alloc);
3410EXPORT_SYMBOL(zil_free);
3411EXPORT_SYMBOL(zil_open);
3412EXPORT_SYMBOL(zil_close);
3413EXPORT_SYMBOL(zil_replay);
3414EXPORT_SYMBOL(zil_replaying);
3415EXPORT_SYMBOL(zil_destroy);
3416EXPORT_SYMBOL(zil_destroy_sync);
3417EXPORT_SYMBOL(zil_itx_create);
3418EXPORT_SYMBOL(zil_itx_destroy);
3419EXPORT_SYMBOL(zil_itx_assign);
3420EXPORT_SYMBOL(zil_commit);
3421EXPORT_SYMBOL(zil_vdev_offline);
3422EXPORT_SYMBOL(zil_claim);
3423EXPORT_SYMBOL(zil_check_log_chain);
3424EXPORT_SYMBOL(zil_sync);
3425EXPORT_SYMBOL(zil_clean);
3426EXPORT_SYMBOL(zil_suspend);
3427EXPORT_SYMBOL(zil_resume);
1ce23dca 3428EXPORT_SYMBOL(zil_lwb_add_block);
0f699108
AZ
3429EXPORT_SYMBOL(zil_bp_tree_add);
3430EXPORT_SYMBOL(zil_set_sync);
3431EXPORT_SYMBOL(zil_set_logbias);
3432
1b7c1e5c 3433/* BEGIN CSTYLED */
2fe61a7e
PS
3434module_param(zfs_commit_timeout_pct, int, 0644);
3435MODULE_PARM_DESC(zfs_commit_timeout_pct, "ZIL block open timeout percentage");
3436
c409e464
BB
3437module_param(zil_replay_disable, int, 0644);
3438MODULE_PARM_DESC(zil_replay_disable, "Disable intent logging replay");
3439
3440module_param(zfs_nocacheflush, int, 0644);
3441MODULE_PARM_DESC(zfs_nocacheflush, "Disable cache flushes");
ee191e80 3442
1b7c1e5c
GDN
3443module_param(zil_slog_bulk, ulong, 0644);
3444MODULE_PARM_DESC(zil_slog_bulk, "Limit in bytes slog sync writes per commit");
3445/* END CSTYLED */
c409e464 3446#endif