]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
Include auth credentials in 'info vnc' ("Daniel P. Berrange")
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
8f40c388 4@settitle QEMU Emulator User Documentation
debc7065
FB
5@exampleindent 0
6@paragraphindent 0
7@c %**end of header
386405f7 8
0806e3f6 9@iftex
386405f7
FB
10@titlepage
11@sp 7
8f40c388 12@center @titlefont{QEMU Emulator}
debc7065
FB
13@sp 1
14@center @titlefont{User Documentation}
386405f7
FB
15@sp 3
16@end titlepage
0806e3f6 17@end iftex
386405f7 18
debc7065
FB
19@ifnottex
20@node Top
21@top
22
23@menu
24* Introduction::
25* Installation::
26* QEMU PC System emulator::
27* QEMU System emulator for non PC targets::
83195237 28* QEMU User space emulator::
debc7065
FB
29* compilation:: Compilation from the sources
30* Index::
31@end menu
32@end ifnottex
33
34@contents
35
36@node Introduction
386405f7
FB
37@chapter Introduction
38
debc7065
FB
39@menu
40* intro_features:: Features
41@end menu
42
43@node intro_features
322d0c66 44@section Features
386405f7 45
1f673135
FB
46QEMU is a FAST! processor emulator using dynamic translation to
47achieve good emulation speed.
1eb20527
FB
48
49QEMU has two operating modes:
0806e3f6
FB
50
51@itemize @minus
52
5fafdf24 53@item
1f673135 54Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
55example a PC), including one or several processors and various
56peripherals. It can be used to launch different Operating Systems
57without rebooting the PC or to debug system code.
1eb20527 58
5fafdf24 59@item
83195237
FB
60User mode emulation. In this mode, QEMU can launch
61processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
62launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63to ease cross-compilation and cross-debugging.
1eb20527
FB
64
65@end itemize
66
7c3fc84d 67QEMU can run without an host kernel driver and yet gives acceptable
5fafdf24 68performance.
322d0c66 69
52c00a5f
FB
70For system emulation, the following hardware targets are supported:
71@itemize
9d0a8e6f 72@item PC (x86 or x86_64 processor)
3f9f3aa1 73@item ISA PC (old style PC without PCI bus)
52c00a5f 74@item PREP (PowerPC processor)
d45952a0 75@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 76@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 77@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 78@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 79@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 80@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
81@item ARM Integrator/CP (ARM)
82@item ARM Versatile baseboard (ARM)
83@item ARM RealView Emulation baseboard (ARM)
ef4c3856 84@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
85@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 87@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 88@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 89@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 90@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 91@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
92@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93@item Siemens SX1 smartphone (OMAP310 processor)
52c00a5f 94@end itemize
386405f7 95
d9aedc32 96For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
0806e3f6 97
debc7065 98@node Installation
5b9f457a
FB
99@chapter Installation
100
15a34c63
FB
101If you want to compile QEMU yourself, see @ref{compilation}.
102
debc7065
FB
103@menu
104* install_linux:: Linux
105* install_windows:: Windows
106* install_mac:: Macintosh
107@end menu
108
109@node install_linux
1f673135
FB
110@section Linux
111
7c3fc84d
FB
112If a precompiled package is available for your distribution - you just
113have to install it. Otherwise, see @ref{compilation}.
5b9f457a 114
debc7065 115@node install_windows
1f673135 116@section Windows
8cd0ac2f 117
15a34c63 118Download the experimental binary installer at
debc7065 119@url{http://www.free.oszoo.org/@/download.html}.
d691f669 120
debc7065 121@node install_mac
1f673135 122@section Mac OS X
d691f669 123
15a34c63 124Download the experimental binary installer at
debc7065 125@url{http://www.free.oszoo.org/@/download.html}.
df0f11a0 126
debc7065 127@node QEMU PC System emulator
3f9f3aa1 128@chapter QEMU PC System emulator
1eb20527 129
debc7065
FB
130@menu
131* pcsys_introduction:: Introduction
132* pcsys_quickstart:: Quick Start
133* sec_invocation:: Invocation
134* pcsys_keys:: Keys
135* pcsys_monitor:: QEMU Monitor
136* disk_images:: Disk Images
137* pcsys_network:: Network emulation
138* direct_linux_boot:: Direct Linux Boot
139* pcsys_usb:: USB emulation
f858dcae 140* vnc_security:: VNC security
debc7065
FB
141* gdb_usage:: GDB usage
142* pcsys_os_specific:: Target OS specific information
143@end menu
144
145@node pcsys_introduction
0806e3f6
FB
146@section Introduction
147
148@c man begin DESCRIPTION
149
3f9f3aa1
FB
150The QEMU PC System emulator simulates the
151following peripherals:
0806e3f6
FB
152
153@itemize @minus
5fafdf24 154@item
15a34c63 155i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 156@item
15a34c63
FB
157Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
158extensions (hardware level, including all non standard modes).
0806e3f6
FB
159@item
160PS/2 mouse and keyboard
5fafdf24 161@item
15a34c63 1622 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
163@item
164Floppy disk
5fafdf24 165@item
c4a7060c 166PCI/ISA PCI network adapters
0806e3f6 167@item
05d5818c
FB
168Serial ports
169@item
c0fe3827
FB
170Creative SoundBlaster 16 sound card
171@item
172ENSONIQ AudioPCI ES1370 sound card
173@item
e5c9a13e
AZ
174Intel 82801AA AC97 Audio compatible sound card
175@item
c0fe3827 176Adlib(OPL2) - Yamaha YM3812 compatible chip
b389dbfb 177@item
26463dbc
AZ
178Gravis Ultrasound GF1 sound card
179@item
cc53d26d 180CS4231A compatible sound card
181@item
b389dbfb 182PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
183@end itemize
184
3f9f3aa1
FB
185SMP is supported with up to 255 CPUs.
186
1d1f8c33 187Note that adlib, gus and cs4231a are only available when QEMU was
188configured with --audio-card-list option containing the name(s) of
e5178e8d 189required card(s).
c0fe3827 190
15a34c63
FB
191QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
192VGA BIOS.
193
c0fe3827
FB
194QEMU uses YM3812 emulation by Tatsuyuki Satoh.
195
26463dbc
AZ
196QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
197by Tibor "TS" Schütz.
423d65f4 198
cc53d26d 199CS4231A is the chip used in Windows Sound System and GUSMAX products
200
0806e3f6
FB
201@c man end
202
debc7065 203@node pcsys_quickstart
1eb20527
FB
204@section Quick Start
205
285dc330 206Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
207
208@example
285dc330 209qemu linux.img
0806e3f6
FB
210@end example
211
212Linux should boot and give you a prompt.
213
6cc721cf 214@node sec_invocation
ec410fc9
FB
215@section Invocation
216
217@example
0806e3f6 218@c man begin SYNOPSIS
89dfe898 219usage: qemu [options] [@var{disk_image}]
0806e3f6 220@c man end
ec410fc9
FB
221@end example
222
0806e3f6 223@c man begin OPTIONS
d2c639d6
BS
224@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
225targets do not need a disk image.
ec410fc9
FB
226
227General options:
228@table @option
d2c639d6
BS
229@item -h
230Display help and exit
231
89dfe898
TS
232@item -M @var{machine}
233Select the emulated @var{machine} (@code{-M ?} for list)
3dbbdc25 234
d2c639d6
BS
235@item -cpu @var{model}
236Select CPU model (-cpu ? for list and additional feature selection)
237
238@item -smp @var{n}
239Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
241to 4.
242
89dfe898
TS
243@item -fda @var{file}
244@item -fdb @var{file}
debc7065 245Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
19cb3738 246use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
2be3bc02 247
89dfe898
TS
248@item -hda @var{file}
249@item -hdb @var{file}
250@item -hdc @var{file}
251@item -hdd @var{file}
debc7065 252Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
1f47a922 253
89dfe898
TS
254@item -cdrom @var{file}
255Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
be3edd95 256@option{-cdrom} at the same time). You can use the host CD-ROM by
19cb3738 257using @file{/dev/cdrom} as filename (@pxref{host_drives}).
181f1558 258
e0e7ada1
AZ
259@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
260
261Define a new drive. Valid options are:
262
263@table @code
264@item file=@var{file}
265This option defines which disk image (@pxref{disk_images}) to use with
609497ab
AZ
266this drive. If the filename contains comma, you must double it
267(for instance, "file=my,,file" to use file "my,file").
e0e7ada1
AZ
268@item if=@var{interface}
269This option defines on which type on interface the drive is connected.
6e02c38d 270Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
e0e7ada1
AZ
271@item bus=@var{bus},unit=@var{unit}
272These options define where is connected the drive by defining the bus number and
273the unit id.
274@item index=@var{index}
275This option defines where is connected the drive by using an index in the list
276of available connectors of a given interface type.
277@item media=@var{media}
278This option defines the type of the media: disk or cdrom.
279@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
280These options have the same definition as they have in @option{-hdachs}.
281@item snapshot=@var{snapshot}
282@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
33f00271 283@item cache=@var{cache}
9f7965c7 284@var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
1e72d3b7
AJ
285@item format=@var{format}
286Specify which disk @var{format} will be used rather than detecting
287the format. Can be used to specifiy format=raw to avoid interpreting
288an untrusted format header.
fa879c64
AL
289@item serial=@var{serial}
290This option specifies the serial number to assign to the device.
e0e7ada1
AZ
291@end table
292
9f7965c7
AL
293By default, writethrough caching is used for all block device. This means that
294the host page cache will be used to read and write data but write notification
295will be sent to the guest only when the data has been reported as written by
296the storage subsystem.
297
298Writeback caching will report data writes as completed as soon as the data is
299present in the host page cache. This is safe as long as you trust your host.
300If your host crashes or loses power, then the guest may experience data
301corruption. When using the @option{-snapshot} option, writeback caching is
302used by default.
303
304The host page can be avoided entirely with @option{cache=none}. This will
305attempt to do disk IO directly to the guests memory. QEMU may still perform
306an internal copy of the data.
307
4dc822d7
AL
308Some block drivers perform badly with @option{cache=writethrough}, most notably,
309qcow2. If performance is more important than correctness,
310@option{cache=writeback} should be used with qcow2. By default, if no explicit
311caching is specified for a qcow2 disk image, @option{cache=writeback} will be
312used. For all other disk types, @option{cache=writethrough} is the default.
313
e0e7ada1
AZ
314Instead of @option{-cdrom} you can use:
315@example
316qemu -drive file=file,index=2,media=cdrom
317@end example
318
319Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
320use:
321@example
322qemu -drive file=file,index=0,media=disk
323qemu -drive file=file,index=1,media=disk
324qemu -drive file=file,index=2,media=disk
325qemu -drive file=file,index=3,media=disk
326@end example
327
328You can connect a CDROM to the slave of ide0:
329@example
330qemu -drive file=file,if=ide,index=1,media=cdrom
331@end example
332
333If you don't specify the "file=" argument, you define an empty drive:
334@example
335qemu -drive if=ide,index=1,media=cdrom
336@end example
337
338You can connect a SCSI disk with unit ID 6 on the bus #0:
339@example
340qemu -drive file=file,if=scsi,bus=0,unit=6
341@end example
342
343Instead of @option{-fda}, @option{-fdb}, you can use:
344@example
345qemu -drive file=file,index=0,if=floppy
346qemu -drive file=file,index=1,if=floppy
347@end example
348
349By default, @var{interface} is "ide" and @var{index} is automatically
350incremented:
351@example
352qemu -drive file=a -drive file=b"
353@end example
354is interpreted like:
355@example
356qemu -hda a -hdb b
357@end example
358
d2c639d6
BS
359@item -mtdblock file
360Use 'file' as on-board Flash memory image.
361
362@item -sd file
363Use 'file' as SecureDigital card image.
364
365@item -pflash file
366Use 'file' as a parallel flash image.
367
eec85c2a
TS
368@item -boot [a|c|d|n]
369Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
370is the default.
1f47a922 371
181f1558 372@item -snapshot
1f47a922
FB
373Write to temporary files instead of disk image files. In this case,
374the raw disk image you use is not written back. You can however force
42550fde 375the write back by pressing @key{C-a s} (@pxref{disk_images}).
ec410fc9 376
89dfe898 377@item -m @var{megs}
00f82b8a
AJ
378Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB. Optionally,
379a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
380gigabytes respectively.
ec410fc9 381
d2c639d6 382@item -k @var{language}
34a3d239 383
d2c639d6
BS
384Use keyboard layout @var{language} (for example @code{fr} for
385French). This option is only needed where it is not easy to get raw PC
386keycodes (e.g. on Macs, with some X11 servers or with a VNC
387display). You don't normally need to use it on PC/Linux or PC/Windows
388hosts.
389
390The available layouts are:
391@example
392ar de-ch es fo fr-ca hu ja mk no pt-br sv
393da en-gb et fr fr-ch is lt nl pl ru th
394de en-us fi fr-be hr it lv nl-be pt sl tr
395@end example
396
397The default is @code{en-us}.
3f9f3aa1 398
1d14ffa9
FB
399@item -audio-help
400
401Will show the audio subsystem help: list of drivers, tunable
402parameters.
403
89dfe898 404@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
1d14ffa9
FB
405
406Enable audio and selected sound hardware. Use ? to print all
407available sound hardware.
408
409@example
9b3469cc 410qemu -soundhw sb16,adlib disk.img
411qemu -soundhw es1370 disk.img
412qemu -soundhw ac97 disk.img
413qemu -soundhw all disk.img
1d14ffa9
FB
414qemu -soundhw ?
415@end example
a8c490cd 416
e5c9a13e
AZ
417Note that Linux's i810_audio OSS kernel (for AC97) module might
418require manually specifying clocking.
419
420@example
421modprobe i810_audio clocking=48000
422@end example
423
d2c639d6 424@end table
15a34c63 425
d2c639d6
BS
426USB options:
427@table @option
7e0af5d0 428
d2c639d6
BS
429@item -usb
430Enable the USB driver (will be the default soon)
f7cce898 431
d2c639d6
BS
432@item -usbdevice @var{devname}
433Add the USB device @var{devname}. @xref{usb_devices}.
71e3ceb8 434
d2c639d6 435@table @code
9d0a8e6f 436
d2c639d6
BS
437@item mouse
438Virtual Mouse. This will override the PS/2 mouse emulation when activated.
73822ec8 439
d2c639d6
BS
440@item tablet
441Pointer device that uses absolute coordinates (like a touchscreen). This
442means qemu is able to report the mouse position without having to grab the
443mouse. Also overrides the PS/2 mouse emulation when activated.
444
445@item disk:[format=@var{format}]:file
446Mass storage device based on file. The optional @var{format} argument
447will be used rather than detecting the format. Can be used to specifiy
448format=raw to avoid interpreting an untrusted format header.
449
450@item host:bus.addr
451Pass through the host device identified by bus.addr (Linux only).
452
453@item host:vendor_id:product_id
454Pass through the host device identified by vendor_id:product_id (Linux only).
455
456@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
457Serial converter to host character device @var{dev}, see @code{-serial} for the
458available devices.
459
460@item braille
461Braille device. This will use BrlAPI to display the braille output on a real
462or fake device.
463
464@item net:options
465Network adapter that supports CDC ethernet and RNDIS protocols.
466
467@end table
9ae02555 468
89dfe898
TS
469@item -name @var{name}
470Sets the @var{name} of the guest.
1addc7c5 471This name will be displayed in the SDL window caption.
89dfe898 472The @var{name} will also be used for the VNC server.
c35734b2 473
d2c639d6
BS
474@item -uuid @var{uuid}
475Set system UUID.
476
0806e3f6
FB
477@end table
478
f858dcae
TS
479Display options:
480@table @option
481
482@item -nographic
483
484Normally, QEMU uses SDL to display the VGA output. With this option,
485you can totally disable graphical output so that QEMU is a simple
486command line application. The emulated serial port is redirected on
487the console. Therefore, you can still use QEMU to debug a Linux kernel
488with a serial console.
489
052caf70
AJ
490@item -curses
491
492Normally, QEMU uses SDL to display the VGA output. With this option,
493QEMU can display the VGA output when in text mode using a
494curses/ncurses interface. Nothing is displayed in graphical mode.
495
f858dcae
TS
496@item -no-frame
497
498Do not use decorations for SDL windows and start them using the whole
499available screen space. This makes the using QEMU in a dedicated desktop
500workspace more convenient.
501
d2c639d6
BS
502@item -alt-grab
503
504Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt).
505
99aa9e4c
AJ
506@item -no-quit
507
508Disable SDL window close capability.
509
d2c639d6
BS
510@item -sdl
511
512Enable SDL.
513
514@item -portrait
515
516Rotate graphical output 90 deg left (only PXA LCD).
517
518@item -vga @var{type}
519Select type of VGA card to emulate. Valid values for @var{type} are
520@table @code
521@item cirrus
522Cirrus Logic GD5446 Video card. All Windows versions starting from
523Windows 95 should recognize and use this graphic card. For optimal
524performances, use 16 bit color depth in the guest and the host OS.
525(This one is the default)
526@item std
527Standard VGA card with Bochs VBE extensions. If your guest OS
528supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
529to use high resolution modes (>= 1280x1024x16) then you should use
530this option.
531@item vmware
532VMWare SVGA-II compatible adapter. Use it if you have sufficiently
533recent XFree86/XOrg server or Windows guest with a driver for this
534card.
535@item none
536Disable VGA card.
537@end table
538
f858dcae
TS
539@item -full-screen
540Start in full screen.
541
89dfe898 542@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
f858dcae
TS
543
544Normally, QEMU uses SDL to display the VGA output. With this option,
545you can have QEMU listen on VNC display @var{display} and redirect the VGA
546display over the VNC session. It is very useful to enable the usb
547tablet device when using this option (option @option{-usbdevice
548tablet}). When using the VNC display, you must use the @option{-k}
549parameter to set the keyboard layout if you are not using en-us. Valid
550syntax for the @var{display} is
551
552@table @code
553
3aa3eea3 554@item @var{host}:@var{d}
f858dcae 555
3aa3eea3
AZ
556TCP connections will only be allowed from @var{host} on display @var{d}.
557By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
558be omitted in which case the server will accept connections from any host.
f858dcae 559
3aa3eea3 560@item @code{unix}:@var{path}
f858dcae
TS
561
562Connections will be allowed over UNIX domain sockets where @var{path} is the
563location of a unix socket to listen for connections on.
564
89dfe898 565@item none
f858dcae 566
3aa3eea3
AZ
567VNC is initialized but not started. The monitor @code{change} command
568can be used to later start the VNC server.
f858dcae
TS
569
570@end table
571
572Following the @var{display} value there may be one or more @var{option} flags
573separated by commas. Valid options are
574
575@table @code
576
3aa3eea3
AZ
577@item reverse
578
579Connect to a listening VNC client via a ``reverse'' connection. The
580client is specified by the @var{display}. For reverse network
581connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
582is a TCP port number, not a display number.
583
89dfe898 584@item password
f858dcae
TS
585
586Require that password based authentication is used for client connections.
587The password must be set separately using the @code{change} command in the
588@ref{pcsys_monitor}
589
89dfe898 590@item tls
f858dcae
TS
591
592Require that client use TLS when communicating with the VNC server. This
593uses anonymous TLS credentials so is susceptible to a man-in-the-middle
594attack. It is recommended that this option be combined with either the
595@var{x509} or @var{x509verify} options.
596
89dfe898 597@item x509=@var{/path/to/certificate/dir}
f858dcae 598
89dfe898 599Valid if @option{tls} is specified. Require that x509 credentials are used
f858dcae
TS
600for negotiating the TLS session. The server will send its x509 certificate
601to the client. It is recommended that a password be set on the VNC server
602to provide authentication of the client when this is used. The path following
603this option specifies where the x509 certificates are to be loaded from.
604See the @ref{vnc_security} section for details on generating certificates.
605
89dfe898 606@item x509verify=@var{/path/to/certificate/dir}
f858dcae 607
89dfe898 608Valid if @option{tls} is specified. Require that x509 credentials are used
f858dcae
TS
609for negotiating the TLS session. The server will send its x509 certificate
610to the client, and request that the client send its own x509 certificate.
611The server will validate the client's certificate against the CA certificate,
612and reject clients when validation fails. If the certificate authority is
613trusted, this is a sufficient authentication mechanism. You may still wish
614to set a password on the VNC server as a second authentication layer. The
615path following this option specifies where the x509 certificates are to
616be loaded from. See the @ref{vnc_security} section for details on generating
617certificates.
618
2f9606b3
AL
619@item sasl
620
621Require that the client use SASL to authenticate with the VNC server.
622The exact choice of authentication method used is controlled from the
623system / user's SASL configuration file for the 'qemu' service. This
624is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
625unprivileged user, an environment variable SASL_CONF_PATH can be used
626to make it search alternate locations for the service config.
627While some SASL auth methods can also provide data encryption (eg GSSAPI),
628it is recommended that SASL always be combined with the 'tls' and
629'x509' settings to enable use of SSL and server certificates. This
630ensures a data encryption preventing compromise of authentication
631credentials. See the @ref{vnc_security} section for details on using
632SASL authentication.
633
f858dcae
TS
634@end table
635
b389dbfb
FB
636@end table
637
1f673135
FB
638Network options:
639
640@table @option
641
7a9f6e4a 642@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}][,name=@var{name}]
41d03949 643Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
c4a7060c 644= 0 is the default). The NIC is an ne2k_pci by default on the PC
7a9f6e4a
AL
645target. Optionally, the MAC address can be changed to @var{addr}
646and a @var{name} can be assigned for use in monitor commands. If no
41d03949 647@option{-net} option is specified, a single NIC is created.
549444e1
AZ
648Qemu can emulate several different models of network card.
649Valid values for @var{type} are
650@code{i82551}, @code{i82557b}, @code{i82559er},
651@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
9ad97e65 652@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
c4a7060c
BS
653Not all devices are supported on all targets. Use -net nic,model=?
654for a list of available devices for your target.
41d03949 655
7a9f6e4a 656@item -net user[,vlan=@var{n}][,hostname=@var{name}][,name=@var{name}]
7e89463d 657Use the user mode network stack which requires no administrator
4be456f1 658privilege to run. @option{hostname=name} can be used to specify the client
115defd1 659hostname reported by the builtin DHCP server.
41d03949 660
8ca9217d
AL
661@item -net channel,@var{port}:@var{dev}
662Forward @option{user} TCP connection to port @var{port} to character device @var{dev}
663
7a9f6e4a 664@item -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
030370a2
AJ
665Connect the host TAP network interface @var{name} to VLAN @var{n}, use
666the network script @var{file} to configure it and the network script
667@var{dfile} to deconfigure it. If @var{name} is not provided, the OS
668automatically provides one. @option{fd}=@var{h} can be used to specify
669the handle of an already opened host TAP interface. The default network
670configure script is @file{/etc/qemu-ifup} and the default network
671deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no}
672or @option{downscript=no} to disable script execution. Example:
1f673135 673
41d03949
FB
674@example
675qemu linux.img -net nic -net tap
676@end example
677
678More complicated example (two NICs, each one connected to a TAP device)
679@example
680qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
681 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
682@end example
3f1a88f4 683
3f1a88f4 684
7a9f6e4a 685@item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
1f673135 686
41d03949
FB
687Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
688machine using a TCP socket connection. If @option{listen} is
689specified, QEMU waits for incoming connections on @var{port}
690(@var{host} is optional). @option{connect} is used to connect to
89dfe898 691another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
3d830459 692specifies an already opened TCP socket.
1f673135 693
41d03949
FB
694Example:
695@example
696# launch a first QEMU instance
debc7065
FB
697qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
698 -net socket,listen=:1234
699# connect the VLAN 0 of this instance to the VLAN 0
700# of the first instance
701qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
702 -net socket,connect=127.0.0.1:1234
41d03949 703@end example
52c00a5f 704
7a9f6e4a 705@item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
3d830459
FB
706
707Create a VLAN @var{n} shared with another QEMU virtual
5fafdf24 708machines using a UDP multicast socket, effectively making a bus for
3d830459
FB
709every QEMU with same multicast address @var{maddr} and @var{port}.
710NOTES:
711@enumerate
5fafdf24
TS
712@item
713Several QEMU can be running on different hosts and share same bus (assuming
3d830459
FB
714correct multicast setup for these hosts).
715@item
716mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
717@url{http://user-mode-linux.sf.net}.
4be456f1
TS
718@item
719Use @option{fd=h} to specify an already opened UDP multicast socket.
3d830459
FB
720@end enumerate
721
722Example:
723@example
724# launch one QEMU instance
debc7065
FB
725qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
726 -net socket,mcast=230.0.0.1:1234
3d830459 727# launch another QEMU instance on same "bus"
debc7065
FB
728qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
729 -net socket,mcast=230.0.0.1:1234
3d830459 730# launch yet another QEMU instance on same "bus"
debc7065
FB
731qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
732 -net socket,mcast=230.0.0.1:1234
3d830459
FB
733@end example
734
735Example (User Mode Linux compat.):
736@example
debc7065
FB
737# launch QEMU instance (note mcast address selected
738# is UML's default)
739qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
740 -net socket,mcast=239.192.168.1:1102
3d830459
FB
741# launch UML
742/path/to/linux ubd0=/path/to/root_fs eth0=mcast
743@end example
8a16d273 744
7a9f6e4a 745@item -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
8a16d273
TS
746Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
747listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
748and MODE @var{octalmode} to change default ownership and permissions for
749communication port. This option is available only if QEMU has been compiled
750with vde support enabled.
751
752Example:
753@example
754# launch vde switch
755vde_switch -F -sock /tmp/myswitch
756# launch QEMU instance
757qemu linux.img -net nic -net vde,sock=/tmp/myswitch
758@end example
3d830459 759
41d03949
FB
760@item -net none
761Indicate that no network devices should be configured. It is used to
039af320
FB
762override the default configuration (@option{-net nic -net user}) which
763is activated if no @option{-net} options are provided.
52c00a5f 764
89dfe898 765@item -tftp @var{dir}
9bf05444 766When using the user mode network stack, activate a built-in TFTP
0db1137d
TS
767server. The files in @var{dir} will be exposed as the root of a TFTP server.
768The TFTP client on the guest must be configured in binary mode (use the command
769@code{bin} of the Unix TFTP client). The host IP address on the guest is as
770usual 10.0.2.2.
9bf05444 771
89dfe898 772@item -bootp @var{file}
47d5d01a
TS
773When using the user mode network stack, broadcast @var{file} as the BOOTP
774filename. In conjunction with @option{-tftp}, this can be used to network boot
775a guest from a local directory.
776
777Example (using pxelinux):
778@example
779qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
780@end example
781
89dfe898 782@item -smb @var{dir}
2518bd0d 783When using the user mode network stack, activate a built-in SMB
89dfe898 784server so that Windows OSes can access to the host files in @file{@var{dir}}
2518bd0d
FB
785transparently.
786
787In the guest Windows OS, the line:
788@example
78910.0.2.4 smbserver
790@end example
791must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
792or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
793
89dfe898 794Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
2518bd0d
FB
795
796Note that a SAMBA server must be installed on the host OS in
366dfc52 797@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
6cc721cf 7982.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
2518bd0d 799
89dfe898 800@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
9bf05444
FB
801
802When using the user mode network stack, redirect incoming TCP or UDP
803connections to the host port @var{host-port} to the guest
804@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
805is not specified, its value is 10.0.2.15 (default address given by the
806built-in DHCP server).
807
808For example, to redirect host X11 connection from screen 1 to guest
809screen 0, use the following:
810
811@example
812# on the host
813qemu -redir tcp:6001::6000 [...]
814# this host xterm should open in the guest X11 server
815xterm -display :1
816@end example
817
818To redirect telnet connections from host port 5555 to telnet port on
819the guest, use the following:
820
821@example
822# on the host
823qemu -redir tcp:5555::23 [...]
824telnet localhost 5555
825@end example
826
827Then when you use on the host @code{telnet localhost 5555}, you
828connect to the guest telnet server.
829
1f673135
FB
830@end table
831
2d564691
AZ
832Bluetooth(R) options:
833@table @option
834
835@item -bt hci[...]
836Defines the function of the corresponding Bluetooth HCI. -bt options
837are matched with the HCIs present in the chosen machine type. For
838example when emulating a machine with only one HCI built into it, only
839the first @code{-bt hci[...]} option is valid and defines the HCI's
840logic. The Transport Layer is decided by the machine type. Currently
841the machines @code{n800} and @code{n810} have one HCI and all other
842machines have none.
843
844@anchor{bt-hcis}
845The following three types are recognized:
846
847@table @code
848@item -bt hci,null
849(default) The corresponding Bluetooth HCI assumes no internal logic
850and will not respond to any HCI commands or emit events.
851
852@item -bt hci,host[:@var{id}]
853(@code{bluez} only) The corresponding HCI passes commands / events
854to / from the physical HCI identified by the name @var{id} (default:
855@code{hci0}) on the computer running QEMU. Only available on @code{bluez}
856capable systems like Linux.
857
858@item -bt hci[,vlan=@var{n}]
859Add a virtual, standard HCI that will participate in the Bluetooth
860scatternet @var{n} (default @code{0}). Similarly to @option{-net}
861VLANs, devices inside a bluetooth network @var{n} can only communicate
862with other devices in the same network (scatternet).
863@end table
864
865@item -bt vhci[,vlan=@var{n}]
866(Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
867to the host bluetooth stack instead of to the emulated target. This
868allows the host and target machines to participate in a common scatternet
869and communicate. Requires the Linux @code{vhci} driver installed. Can
870be used as following:
871
872@example
873qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
874@end example
875
876@item -bt device:@var{dev}[,vlan=@var{n}]
877Emulate a bluetooth device @var{dev} and place it in network @var{n}
878(default @code{0}). QEMU can only emulate one type of bluetooth devices
879currently:
880
881@table @code
882@item keyboard
883Virtual wireless keyboard implementing the HIDP bluetooth profile.
884@end table
885
886@end table
887
d2c639d6
BS
888i386 target only:
889
890@table @option
891
892@item -win2k-hack
893Use it when installing Windows 2000 to avoid a disk full bug. After
894Windows 2000 is installed, you no longer need this option (this option
895slows down the IDE transfers).
896
897@item -rtc-td-hack
898Use it if you experience time drift problem in Windows with ACPI HAL.
899This option will try to figure out how many timer interrupts were not
900processed by the Windows guest and will re-inject them.
901
902@item -no-fd-bootchk
903Disable boot signature checking for floppy disks in Bochs BIOS. It may
904be needed to boot from old floppy disks.
905
906@item -no-acpi
907Disable ACPI (Advanced Configuration and Power Interface) support. Use
908it if your guest OS complains about ACPI problems (PC target machine
909only).
910
911@item -no-hpet
912Disable HPET support.
913
8a92ea2f
AL
914@item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
915Add ACPI table with specified header fields and context from specified files.
916
d2c639d6
BS
917@end table
918
41d03949 919Linux boot specific: When using these options, you can use a given
1f673135
FB
920Linux kernel without installing it in the disk image. It can be useful
921for easier testing of various kernels.
922
0806e3f6
FB
923@table @option
924
89dfe898 925@item -kernel @var{bzImage}
0806e3f6
FB
926Use @var{bzImage} as kernel image.
927
89dfe898 928@item -append @var{cmdline}
0806e3f6
FB
929Use @var{cmdline} as kernel command line
930
89dfe898 931@item -initrd @var{file}
0806e3f6
FB
932Use @var{file} as initial ram disk.
933
ec410fc9
FB
934@end table
935
15a34c63 936Debug/Expert options:
ec410fc9 937@table @option
a0a821a4 938
89dfe898 939@item -serial @var{dev}
0bab00f3
FB
940Redirect the virtual serial port to host character device
941@var{dev}. The default device is @code{vc} in graphical mode and
942@code{stdio} in non graphical mode.
943
d2c639d6 944This option can be used several times to simulate up to 4 serial
0bab00f3
FB
945ports.
946
c03b0f0f
FB
947Use @code{-serial none} to disable all serial ports.
948
0bab00f3 949Available character devices are:
a0a821a4 950@table @code
af3a9031
TS
951@item vc[:WxH]
952Virtual console. Optionally, a width and height can be given in pixel with
953@example
954vc:800x600
955@end example
956It is also possible to specify width or height in characters:
957@example
958vc:80Cx24C
959@end example
a0a821a4
FB
960@item pty
961[Linux only] Pseudo TTY (a new PTY is automatically allocated)
c03b0f0f
FB
962@item none
963No device is allocated.
a0a821a4
FB
964@item null
965void device
f8d179e3 966@item /dev/XXX
e57a8c0e 967[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
f8d179e3 968parameters are set according to the emulated ones.
89dfe898 969@item /dev/parport@var{N}
e57a8c0e 970[Linux only, parallel port only] Use host parallel port
5867c88a 971@var{N}. Currently SPP and EPP parallel port features can be used.
89dfe898
TS
972@item file:@var{filename}
973Write output to @var{filename}. No character can be read.
a0a821a4
FB
974@item stdio
975[Unix only] standard input/output
89dfe898 976@item pipe:@var{filename}
0bab00f3 977name pipe @var{filename}
89dfe898 978@item COM@var{n}
0bab00f3 979[Windows only] Use host serial port @var{n}
89dfe898
TS
980@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
981This implements UDP Net Console.
982When @var{remote_host} or @var{src_ip} are not specified
983they default to @code{0.0.0.0}.
984When not using a specified @var{src_port} a random port is automatically chosen.
aa71cf80
AJ
985@item msmouse
986Three button serial mouse. Configure the guest to use Microsoft protocol.
951f1351
FB
987
988If you just want a simple readonly console you can use @code{netcat} or
989@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
990@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
991will appear in the netconsole session.
0bab00f3
FB
992
993If you plan to send characters back via netconsole or you want to stop
994and start qemu a lot of times, you should have qemu use the same
995source port each time by using something like @code{-serial
951f1351 996udp::4555@@:4556} to qemu. Another approach is to use a patched
0bab00f3
FB
997version of netcat which can listen to a TCP port and send and receive
998characters via udp. If you have a patched version of netcat which
999activates telnet remote echo and single char transfer, then you can
1000use the following options to step up a netcat redirector to allow
1001telnet on port 5555 to access the qemu port.
1002@table @code
951f1351
FB
1003@item Qemu Options:
1004-serial udp::4555@@:4556
1005@item netcat options:
1006-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
1007@item telnet options:
1008localhost 5555
1009@end table
1010
1011
89dfe898 1012@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
951f1351
FB
1013The TCP Net Console has two modes of operation. It can send the serial
1014I/O to a location or wait for a connection from a location. By default
1015the TCP Net Console is sent to @var{host} at the @var{port}. If you use
f542086d
FB
1016the @var{server} option QEMU will wait for a client socket application
1017to connect to the port before continuing, unless the @code{nowait}
f7499989 1018option was specified. The @code{nodelay} option disables the Nagle buffering
4be456f1 1019algorithm. If @var{host} is omitted, 0.0.0.0 is assumed. Only
951f1351
FB
1020one TCP connection at a time is accepted. You can use @code{telnet} to
1021connect to the corresponding character device.
1022@table @code
1023@item Example to send tcp console to 192.168.0.2 port 4444
1024-serial tcp:192.168.0.2:4444
1025@item Example to listen and wait on port 4444 for connection
1026-serial tcp::4444,server
1027@item Example to not wait and listen on ip 192.168.0.100 port 4444
1028-serial tcp:192.168.0.100:4444,server,nowait
a0a821a4 1029@end table
a0a821a4 1030
89dfe898 1031@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
951f1351
FB
1032The telnet protocol is used instead of raw tcp sockets. The options
1033work the same as if you had specified @code{-serial tcp}. The
1034difference is that the port acts like a telnet server or client using
1035telnet option negotiation. This will also allow you to send the
1036MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
1037sequence. Typically in unix telnet you do it with Control-] and then
1038type "send break" followed by pressing the enter key.
0bab00f3 1039
89dfe898 1040@item unix:@var{path}[,server][,nowait]
ffd843bc
TS
1041A unix domain socket is used instead of a tcp socket. The option works the
1042same as if you had specified @code{-serial tcp} except the unix domain socket
1043@var{path} is used for connections.
1044
89dfe898 1045@item mon:@var{dev_string}
20d8a3ed
TS
1046This is a special option to allow the monitor to be multiplexed onto
1047another serial port. The monitor is accessed with key sequence of
1048@key{Control-a} and then pressing @key{c}. See monitor access
1049@ref{pcsys_keys} in the -nographic section for more keys.
1050@var{dev_string} should be any one of the serial devices specified
1051above. An example to multiplex the monitor onto a telnet server
1052listening on port 4444 would be:
1053@table @code
1054@item -serial mon:telnet::4444,server,nowait
1055@end table
1056
2e4d9fb1
AJ
1057@item braille
1058Braille device. This will use BrlAPI to display the braille output on a real
1059or fake device.
1060
0bab00f3 1061@end table
05d5818c 1062
89dfe898 1063@item -parallel @var{dev}
e57a8c0e
FB
1064Redirect the virtual parallel port to host device @var{dev} (same
1065devices as the serial port). On Linux hosts, @file{/dev/parportN} can
1066be used to use hardware devices connected on the corresponding host
1067parallel port.
1068
1069This option can be used several times to simulate up to 3 parallel
1070ports.
1071
c03b0f0f
FB
1072Use @code{-parallel none} to disable all parallel ports.
1073
89dfe898 1074@item -monitor @var{dev}
a0a821a4
FB
1075Redirect the monitor to host device @var{dev} (same devices as the
1076serial port).
1077The default device is @code{vc} in graphical mode and @code{stdio} in
1078non graphical mode.
1079
d2c639d6
BS
1080@item -pidfile @var{file}
1081Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
1082from a script.
1083
1084@item -S
1085Do not start CPU at startup (you must type 'c' in the monitor).
20d8a3ed 1086
ec410fc9 1087@item -s
5fafdf24 1088Wait gdb connection to port 1234 (@pxref{gdb_usage}).
d2c639d6 1089
89dfe898 1090@item -p @var{port}
4046d913
PB
1091Change gdb connection port. @var{port} can be either a decimal number
1092to specify a TCP port, or a host device (same devices as the serial port).
d2c639d6 1093
3b46e624 1094@item -d
9d4520d0 1095Output log in /tmp/qemu.log
89dfe898 1096@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
46d4767d
FB
1097Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1098@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1099translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
4be456f1 1100all those parameters. This option is useful for old MS-DOS disk
46d4767d 1101images.
7c3fc84d 1102
d2c639d6 1103@item -L @var{path}
87b47350
FB
1104Set the directory for the BIOS, VGA BIOS and keymaps.
1105
d2c639d6
BS
1106@item -bios @var{file}
1107Set the filename for the BIOS.
3cb0853a 1108
d2c639d6
BS
1109@item -kernel-kqemu
1110Enable KQEMU full virtualization (default is user mode only).
1111
1112@item -no-kqemu
1113Disable KQEMU kernel module usage. KQEMU options are only available if
1114KQEMU support is enabled when compiling.
1115
1116@item -enable-kvm
1117Enable KVM full virtualization support. This option is only available
1118if KVM support is enabled when compiling.
3c656346 1119
d1beab82
FB
1120@item -no-reboot
1121Exit instead of rebooting.
1122
99aa9e4c
AJ
1123@item -no-shutdown
1124Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1125This allows for instance switching to monitor to commit changes to the
1126disk image.
1127
d2c639d6 1128@item -loadvm @var{file}
d63d307f 1129Start right away with a saved state (@code{loadvm} in monitor)
8e71621f 1130
d2c639d6
BS
1131@item -daemonize
1132Daemonize the QEMU process after initialization. QEMU will not detach from
1133standard IO until it is ready to receive connections on any of its devices.
1134This option is a useful way for external programs to launch QEMU without having
1135to cope with initialization race conditions.
a87295e8 1136
d2c639d6
BS
1137@item -option-rom @var{file}
1138Load the contents of @var{file} as an option ROM.
1139This option is useful to load things like EtherBoot.
a87295e8 1140
d2c639d6
BS
1141@item -clock @var{method}
1142Force the use of the given methods for timer alarm. To see what timers
1143are available use -clock ?.
1144
1145@item -localtime
1146Set the real time clock to local time (the default is to UTC
1147time). This option is needed to have correct date in MS-DOS or
1148Windows.
1149
1150@item -startdate @var{date}
1151Set the initial date of the real time clock. Valid formats for
1152@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
1153@code{2006-06-17}. The default value is @code{now}.
2e70f6ef
PB
1154
1155@item -icount [N|auto]
1156Enable virtual instruction counter. The virtual cpu will execute one
1157instruction every 2^N ns of virtual time. If @code{auto} is specified
1158then the virtual cpu speed will be automatically adjusted to keep virtual
1159time within a few seconds of real time.
1160
1161Note that while this option can give deterministic behavior, it does not
1162provide cycle accurate emulation. Modern CPUs contain superscalar out of
dd5d6fe9 1163order cores with complex cache hierarchies. The number of instructions
2e70f6ef 1164executed often has little or no correlation with actual performance.
d2c639d6
BS
1165
1166@item -echr numeric_ascii_value
1167Change the escape character used for switching to the monitor when using
1168monitor and serial sharing. The default is @code{0x01} when using the
1169@code{-nographic} option. @code{0x01} is equal to pressing
1170@code{Control-a}. You can select a different character from the ascii
1171control keys where 1 through 26 map to Control-a through Control-z. For
1172instance you could use the either of the following to change the escape
1173character to Control-t.
1174@table @code
1175@item -echr 0x14
1176@item -echr 20
1177@end table
1178
0858532e
AL
1179@item -chroot dir
1180Immediately before starting guest execution, chroot to the specified
1181directory. Especially useful in combination with -runas.
1182
1183@item -runas user
1184Immediately before starting guest execution, drop root privileges, switching
1185to the specified user.
1186
ec410fc9
FB
1187@end table
1188
3e11db9a
FB
1189@c man end
1190
debc7065 1191@node pcsys_keys
3e11db9a
FB
1192@section Keys
1193
1194@c man begin OPTIONS
1195
a1b74fe8
FB
1196During the graphical emulation, you can use the following keys:
1197@table @key
f9859310 1198@item Ctrl-Alt-f
a1b74fe8 1199Toggle full screen
a0a821a4 1200
f9859310 1201@item Ctrl-Alt-n
a0a821a4
FB
1202Switch to virtual console 'n'. Standard console mappings are:
1203@table @emph
1204@item 1
1205Target system display
1206@item 2
1207Monitor
1208@item 3
1209Serial port
a1b74fe8
FB
1210@end table
1211
f9859310 1212@item Ctrl-Alt
a0a821a4
FB
1213Toggle mouse and keyboard grab.
1214@end table
1215
3e11db9a
FB
1216In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1217@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1218
a0a821a4
FB
1219During emulation, if you are using the @option{-nographic} option, use
1220@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
1221
1222@table @key
a1b74fe8 1223@item Ctrl-a h
d2c639d6 1224@item Ctrl-a ?
ec410fc9 1225Print this help
3b46e624 1226@item Ctrl-a x
366dfc52 1227Exit emulator
3b46e624 1228@item Ctrl-a s
1f47a922 1229Save disk data back to file (if -snapshot)
20d8a3ed 1230@item Ctrl-a t
d2c639d6 1231Toggle console timestamps
a1b74fe8 1232@item Ctrl-a b
1f673135 1233Send break (magic sysrq in Linux)
a1b74fe8 1234@item Ctrl-a c
1f673135 1235Switch between console and monitor
a1b74fe8
FB
1236@item Ctrl-a Ctrl-a
1237Send Ctrl-a
ec410fc9 1238@end table
0806e3f6
FB
1239@c man end
1240
1241@ignore
1242
1f673135
FB
1243@c man begin SEEALSO
1244The HTML documentation of QEMU for more precise information and Linux
1245user mode emulator invocation.
1246@c man end
1247
1248@c man begin AUTHOR
1249Fabrice Bellard
1250@c man end
1251
1252@end ignore
1253
debc7065 1254@node pcsys_monitor
1f673135
FB
1255@section QEMU Monitor
1256
1257The QEMU monitor is used to give complex commands to the QEMU
1258emulator. You can use it to:
1259
1260@itemize @minus
1261
1262@item
e598752a 1263Remove or insert removable media images
89dfe898 1264(such as CD-ROM or floppies).
1f673135 1265
5fafdf24 1266@item
1f673135
FB
1267Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1268from a disk file.
1269
1270@item Inspect the VM state without an external debugger.
1271
1272@end itemize
1273
1274@subsection Commands
1275
1276The following commands are available:
1277
1278@table @option
1279
89dfe898 1280@item help or ? [@var{cmd}]
1f673135
FB
1281Show the help for all commands or just for command @var{cmd}.
1282
3b46e624 1283@item commit
89dfe898 1284Commit changes to the disk images (if -snapshot is used).
1f673135 1285
89dfe898
TS
1286@item info @var{subcommand}
1287Show various information about the system state.
1f673135
FB
1288
1289@table @option
d2c639d6
BS
1290@item info version
1291show the version of QEMU
1f673135 1292@item info network
41d03949 1293show the various VLANs and the associated devices
d2c639d6
BS
1294@item info chardev
1295show the character devices
1f673135
FB
1296@item info block
1297show the block devices
d2c639d6
BS
1298@item info block
1299show block device statistics
1f673135
FB
1300@item info registers
1301show the cpu registers
d2c639d6
BS
1302@item info cpus
1303show infos for each CPU
1f673135
FB
1304@item info history
1305show the command line history
d2c639d6
BS
1306@item info irq
1307show the interrupts statistics (if available)
1308@item info pic
1309show i8259 (PIC) state
b389dbfb 1310@item info pci
d2c639d6
BS
1311show emulated PCI device info
1312@item info tlb
1313show virtual to physical memory mappings (i386 only)
1314@item info mem
1315show the active virtual memory mappings (i386 only)
1316@item info hpet
1317show state of HPET (i386 only)
1318@item info kqemu
1319show KQEMU information
1320@item info kvm
1321show KVM information
b389dbfb
FB
1322@item info usb
1323show USB devices plugged on the virtual USB hub
1324@item info usbhost
1325show all USB host devices
d2c639d6
BS
1326@item info profile
1327show profiling information
a3c25997
FB
1328@item info capture
1329show information about active capturing
13a2e80f
FB
1330@item info snapshots
1331show list of VM snapshots
d2c639d6
BS
1332@item info status
1333show the current VM status (running|paused)
1334@item info pcmcia
1335show guest PCMCIA status
455204eb
TS
1336@item info mice
1337show which guest mouse is receiving events
d2c639d6
BS
1338@item info vnc
1339show the vnc server status
1340@item info name
1341show the current VM name
1342@item info uuid
1343show the current VM UUID
1344@item info cpustats
1345show CPU statistics
1346@item info slirp
1347show SLIRP statistics (if available)
1348@item info migrate
1349show migration status
1350@item info balloon
1351show balloon information
1f673135
FB
1352@end table
1353
1354@item q or quit
1355Quit the emulator.
1356
89dfe898 1357@item eject [-f] @var{device}
e598752a 1358Eject a removable medium (use -f to force it).
1f673135 1359
89dfe898 1360@item change @var{device} @var{setting}
f858dcae 1361
89dfe898 1362Change the configuration of a device.
f858dcae
TS
1363
1364@table @option
d2c639d6 1365@item change @var{diskdevice} @var{filename} [@var{format}]
f858dcae
TS
1366Change the medium for a removable disk device to point to @var{filename}. eg
1367
1368@example
4bf27c24 1369(qemu) change ide1-cd0 /path/to/some.iso
f858dcae
TS
1370@end example
1371
d2c639d6
BS
1372@var{format} is optional.
1373
89dfe898 1374@item change vnc @var{display},@var{options}
f858dcae
TS
1375Change the configuration of the VNC server. The valid syntax for @var{display}
1376and @var{options} are described at @ref{sec_invocation}. eg
1377
1378@example
1379(qemu) change vnc localhost:1
1380@end example
1381
2569da0c 1382@item change vnc password [@var{password}]
f858dcae 1383
2569da0c
AL
1384Change the password associated with the VNC server. If the new password is not
1385supplied, the monitor will prompt for it to be entered. VNC passwords are only
1386significant up to 8 letters. eg
f858dcae
TS
1387
1388@example
1389(qemu) change vnc password
1390Password: ********
1391@end example
1392
1393@end table
1f673135 1394
89dfe898 1395@item screendump @var{filename}
1f673135
FB
1396Save screen into PPM image @var{filename}.
1397
d2c639d6
BS
1398@item logfile @var{filename}
1399Output logs to @var{filename}.
a3c25997 1400
89dfe898 1401@item log @var{item1}[,...]
1f673135
FB
1402Activate logging of the specified items to @file{/tmp/qemu.log}.
1403
89dfe898 1404@item savevm [@var{tag}|@var{id}]
13a2e80f
FB
1405Create a snapshot of the whole virtual machine. If @var{tag} is
1406provided, it is used as human readable identifier. If there is already
1407a snapshot with the same tag or ID, it is replaced. More info at
1408@ref{vm_snapshots}.
1f673135 1409
89dfe898 1410@item loadvm @var{tag}|@var{id}
13a2e80f
FB
1411Set the whole virtual machine to the snapshot identified by the tag
1412@var{tag} or the unique snapshot ID @var{id}.
1413
89dfe898 1414@item delvm @var{tag}|@var{id}
13a2e80f 1415Delete the snapshot identified by @var{tag} or @var{id}.
1f673135
FB
1416
1417@item stop
1418Stop emulation.
1419
1420@item c or cont
1421Resume emulation.
1422
89dfe898
TS
1423@item gdbserver [@var{port}]
1424Start gdbserver session (default @var{port}=1234)
1f673135 1425
89dfe898 1426@item x/fmt @var{addr}
1f673135
FB
1427Virtual memory dump starting at @var{addr}.
1428
89dfe898 1429@item xp /@var{fmt} @var{addr}
1f673135
FB
1430Physical memory dump starting at @var{addr}.
1431
1432@var{fmt} is a format which tells the command how to format the
1433data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1434
1435@table @var
5fafdf24 1436@item count
1f673135
FB
1437is the number of items to be dumped.
1438
1439@item format
4be456f1 1440can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1f673135
FB
1441c (char) or i (asm instruction).
1442
1443@item size
52c00a5f
FB
1444can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1445@code{h} or @code{w} can be specified with the @code{i} format to
1446respectively select 16 or 32 bit code instruction size.
1f673135
FB
1447
1448@end table
1449
5fafdf24 1450Examples:
1f673135
FB
1451@itemize
1452@item
1453Dump 10 instructions at the current instruction pointer:
5fafdf24 1454@example
1f673135
FB
1455(qemu) x/10i $eip
14560x90107063: ret
14570x90107064: sti
14580x90107065: lea 0x0(%esi,1),%esi
14590x90107069: lea 0x0(%edi,1),%edi
14600x90107070: ret
14610x90107071: jmp 0x90107080
14620x90107073: nop
14630x90107074: nop
14640x90107075: nop
14650x90107076: nop
1466@end example
1467
1468@item
1469Dump 80 16 bit values at the start of the video memory.
5fafdf24 1470@smallexample
1f673135
FB
1471(qemu) xp/80hx 0xb8000
14720x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
14730x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
14740x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
14750x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
14760x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
14770x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
14780x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
14790x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
14800x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
14810x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
debc7065 1482@end smallexample
1f673135
FB
1483@end itemize
1484
89dfe898 1485@item p or print/@var{fmt} @var{expr}
1f673135
FB
1486
1487Print expression value. Only the @var{format} part of @var{fmt} is
1488used.
0806e3f6 1489
89dfe898 1490@item sendkey @var{keys}
a3a91a35 1491
54ae1fbd
AJ
1492Send @var{keys} to the emulator. @var{keys} could be the name of the
1493key or @code{#} followed by the raw value in either decimal or hexadecimal
1494format. Use @code{-} to press several keys simultaneously. Example:
a3a91a35
FB
1495@example
1496sendkey ctrl-alt-f1
1497@end example
1498
1499This command is useful to send keys that your graphical user interface
1500intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1501
15a34c63
FB
1502@item system_reset
1503
1504Reset the system.
1505
d2c639d6 1506@item system_powerdown
0ecdffbb 1507
d2c639d6 1508Power down the system (if supported).
0ecdffbb 1509
d2c639d6
BS
1510@item sum @var{addr} @var{size}
1511
1512Compute the checksum of a memory region.
0ecdffbb 1513
89dfe898 1514@item usb_add @var{devname}
b389dbfb 1515
0aff66b5
PB
1516Add the USB device @var{devname}. For details of available devices see
1517@ref{usb_devices}
b389dbfb 1518
89dfe898 1519@item usb_del @var{devname}
b389dbfb
FB
1520
1521Remove the USB device @var{devname} from the QEMU virtual USB
1522hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1523command @code{info usb} to see the devices you can remove.
1524
d2c639d6
BS
1525@item mouse_move @var{dx} @var{dy} [@var{dz}]
1526Move the active mouse to the specified coordinates @var{dx} @var{dy}
1527with optional scroll axis @var{dz}.
1528
1529@item mouse_button @var{val}
1530Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1531
1532@item mouse_set @var{index}
1533Set which mouse device receives events at given @var{index}, index
1534can be obtained with
1535@example
1536info mice
1537@end example
1538
1539@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1540Capture audio into @var{filename}. Using sample rate @var{frequency}
1541bits per sample @var{bits} and number of channels @var{channels}.
1542
1543Defaults:
1544@itemize @minus
1545@item Sample rate = 44100 Hz - CD quality
1546@item Bits = 16
1547@item Number of channels = 2 - Stereo
1548@end itemize
1549
1550@item stopcapture @var{index}
1551Stop capture with a given @var{index}, index can be obtained with
1552@example
1553info capture
1554@end example
1555
1556@item memsave @var{addr} @var{size} @var{file}
1557save to disk virtual memory dump starting at @var{addr} of size @var{size}.
1558
1559@item pmemsave @var{addr} @var{size} @var{file}
1560save to disk physical memory dump starting at @var{addr} of size @var{size}.
1561
1562@item boot_set @var{bootdevicelist}
1563
1564Define new values for the boot device list. Those values will override
1565the values specified on the command line through the @code{-boot} option.
1566
1567The values that can be specified here depend on the machine type, but are
1568the same that can be specified in the @code{-boot} command line option.
1569
1570@item nmi @var{cpu}
1571Inject an NMI on the given CPU.
1572
1573@item migrate [-d] @var{uri}
1574Migrate to @var{uri} (using -d to not wait for completion).
1575
1576@item migrate_cancel
1577Cancel the current VM migration.
1578
1579@item migrate_set_speed @var{value}
1580Set maximum speed to @var{value} (in bytes) for migrations.
1581
1582@item balloon @var{value}
1583Request VM to change its memory allocation to @var{value} (in MB).
1584
1585@item set_link @var{name} [up|down]
1586Set link @var{name} up or down.
1587
1f673135 1588@end table
0806e3f6 1589
1f673135
FB
1590@subsection Integer expressions
1591
1592The monitor understands integers expressions for every integer
1593argument. You can use register names to get the value of specifics
1594CPU registers by prefixing them with @emph{$}.
ec410fc9 1595
1f47a922
FB
1596@node disk_images
1597@section Disk Images
1598
acd935ef
FB
1599Since version 0.6.1, QEMU supports many disk image formats, including
1600growable disk images (their size increase as non empty sectors are
13a2e80f
FB
1601written), compressed and encrypted disk images. Version 0.8.3 added
1602the new qcow2 disk image format which is essential to support VM
1603snapshots.
1f47a922 1604
debc7065
FB
1605@menu
1606* disk_images_quickstart:: Quick start for disk image creation
1607* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 1608* vm_snapshots:: VM snapshots
debc7065 1609* qemu_img_invocation:: qemu-img Invocation
975b092b 1610* qemu_nbd_invocation:: qemu-nbd Invocation
19cb3738 1611* host_drives:: Using host drives
debc7065 1612* disk_images_fat_images:: Virtual FAT disk images
75818250 1613* disk_images_nbd:: NBD access
debc7065
FB
1614@end menu
1615
1616@node disk_images_quickstart
acd935ef
FB
1617@subsection Quick start for disk image creation
1618
1619You can create a disk image with the command:
1f47a922 1620@example
acd935ef 1621qemu-img create myimage.img mysize
1f47a922 1622@end example
acd935ef
FB
1623where @var{myimage.img} is the disk image filename and @var{mysize} is its
1624size in kilobytes. You can add an @code{M} suffix to give the size in
1625megabytes and a @code{G} suffix for gigabytes.
1626
debc7065 1627See @ref{qemu_img_invocation} for more information.
1f47a922 1628
debc7065 1629@node disk_images_snapshot_mode
1f47a922
FB
1630@subsection Snapshot mode
1631
1632If you use the option @option{-snapshot}, all disk images are
1633considered as read only. When sectors in written, they are written in
1634a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
1635write back to the raw disk images by using the @code{commit} monitor
1636command (or @key{C-a s} in the serial console).
1f47a922 1637
13a2e80f
FB
1638@node vm_snapshots
1639@subsection VM snapshots
1640
1641VM snapshots are snapshots of the complete virtual machine including
1642CPU state, RAM, device state and the content of all the writable
1643disks. In order to use VM snapshots, you must have at least one non
1644removable and writable block device using the @code{qcow2} disk image
1645format. Normally this device is the first virtual hard drive.
1646
1647Use the monitor command @code{savevm} to create a new VM snapshot or
1648replace an existing one. A human readable name can be assigned to each
19d36792 1649snapshot in addition to its numerical ID.
13a2e80f
FB
1650
1651Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1652a VM snapshot. @code{info snapshots} lists the available snapshots
1653with their associated information:
1654
1655@example
1656(qemu) info snapshots
1657Snapshot devices: hda
1658Snapshot list (from hda):
1659ID TAG VM SIZE DATE VM CLOCK
16601 start 41M 2006-08-06 12:38:02 00:00:14.954
16612 40M 2006-08-06 12:43:29 00:00:18.633
16623 msys 40M 2006-08-06 12:44:04 00:00:23.514
1663@end example
1664
1665A VM snapshot is made of a VM state info (its size is shown in
1666@code{info snapshots}) and a snapshot of every writable disk image.
1667The VM state info is stored in the first @code{qcow2} non removable
1668and writable block device. The disk image snapshots are stored in
1669every disk image. The size of a snapshot in a disk image is difficult
1670to evaluate and is not shown by @code{info snapshots} because the
1671associated disk sectors are shared among all the snapshots to save
19d36792
FB
1672disk space (otherwise each snapshot would need a full copy of all the
1673disk images).
13a2e80f
FB
1674
1675When using the (unrelated) @code{-snapshot} option
1676(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1677but they are deleted as soon as you exit QEMU.
1678
1679VM snapshots currently have the following known limitations:
1680@itemize
5fafdf24 1681@item
13a2e80f
FB
1682They cannot cope with removable devices if they are removed or
1683inserted after a snapshot is done.
5fafdf24 1684@item
13a2e80f
FB
1685A few device drivers still have incomplete snapshot support so their
1686state is not saved or restored properly (in particular USB).
1687@end itemize
1688
acd935ef
FB
1689@node qemu_img_invocation
1690@subsection @code{qemu-img} Invocation
1f47a922 1691
acd935ef 1692@include qemu-img.texi
05efe46e 1693
975b092b
TS
1694@node qemu_nbd_invocation
1695@subsection @code{qemu-nbd} Invocation
1696
1697@include qemu-nbd.texi
1698
19cb3738
FB
1699@node host_drives
1700@subsection Using host drives
1701
1702In addition to disk image files, QEMU can directly access host
1703devices. We describe here the usage for QEMU version >= 0.8.3.
1704
1705@subsubsection Linux
1706
1707On Linux, you can directly use the host device filename instead of a
4be456f1 1708disk image filename provided you have enough privileges to access
19cb3738
FB
1709it. For example, use @file{/dev/cdrom} to access to the CDROM or
1710@file{/dev/fd0} for the floppy.
1711
f542086d 1712@table @code
19cb3738
FB
1713@item CD
1714You can specify a CDROM device even if no CDROM is loaded. QEMU has
1715specific code to detect CDROM insertion or removal. CDROM ejection by
1716the guest OS is supported. Currently only data CDs are supported.
1717@item Floppy
1718You can specify a floppy device even if no floppy is loaded. Floppy
1719removal is currently not detected accurately (if you change floppy
1720without doing floppy access while the floppy is not loaded, the guest
1721OS will think that the same floppy is loaded).
1722@item Hard disks
1723Hard disks can be used. Normally you must specify the whole disk
1724(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1725see it as a partitioned disk. WARNING: unless you know what you do, it
1726is better to only make READ-ONLY accesses to the hard disk otherwise
1727you may corrupt your host data (use the @option{-snapshot} command
1728line option or modify the device permissions accordingly).
1729@end table
1730
1731@subsubsection Windows
1732
01781963
FB
1733@table @code
1734@item CD
4be456f1 1735The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
1736alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1737supported as an alias to the first CDROM drive.
19cb3738 1738
e598752a 1739Currently there is no specific code to handle removable media, so it
19cb3738
FB
1740is better to use the @code{change} or @code{eject} monitor commands to
1741change or eject media.
01781963 1742@item Hard disks
89dfe898 1743Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
1744where @var{N} is the drive number (0 is the first hard disk).
1745
1746WARNING: unless you know what you do, it is better to only make
1747READ-ONLY accesses to the hard disk otherwise you may corrupt your
1748host data (use the @option{-snapshot} command line so that the
1749modifications are written in a temporary file).
1750@end table
1751
19cb3738
FB
1752
1753@subsubsection Mac OS X
1754
5fafdf24 1755@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 1756
e598752a 1757Currently there is no specific code to handle removable media, so it
19cb3738
FB
1758is better to use the @code{change} or @code{eject} monitor commands to
1759change or eject media.
1760
debc7065 1761@node disk_images_fat_images
2c6cadd4
FB
1762@subsection Virtual FAT disk images
1763
1764QEMU can automatically create a virtual FAT disk image from a
1765directory tree. In order to use it, just type:
1766
5fafdf24 1767@example
2c6cadd4
FB
1768qemu linux.img -hdb fat:/my_directory
1769@end example
1770
1771Then you access access to all the files in the @file{/my_directory}
1772directory without having to copy them in a disk image or to export
1773them via SAMBA or NFS. The default access is @emph{read-only}.
1774
1775Floppies can be emulated with the @code{:floppy:} option:
1776
5fafdf24 1777@example
2c6cadd4
FB
1778qemu linux.img -fda fat:floppy:/my_directory
1779@end example
1780
1781A read/write support is available for testing (beta stage) with the
1782@code{:rw:} option:
1783
5fafdf24 1784@example
2c6cadd4
FB
1785qemu linux.img -fda fat:floppy:rw:/my_directory
1786@end example
1787
1788What you should @emph{never} do:
1789@itemize
1790@item use non-ASCII filenames ;
1791@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
1792@item expect it to work when loadvm'ing ;
1793@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
1794@end itemize
1795
75818250
TS
1796@node disk_images_nbd
1797@subsection NBD access
1798
1799QEMU can access directly to block device exported using the Network Block Device
1800protocol.
1801
1802@example
1803qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1804@end example
1805
1806If the NBD server is located on the same host, you can use an unix socket instead
1807of an inet socket:
1808
1809@example
1810qemu linux.img -hdb nbd:unix:/tmp/my_socket
1811@end example
1812
1813In this case, the block device must be exported using qemu-nbd:
1814
1815@example
1816qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1817@end example
1818
1819The use of qemu-nbd allows to share a disk between several guests:
1820@example
1821qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1822@end example
1823
1824and then you can use it with two guests:
1825@example
1826qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1827qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1828@end example
1829
debc7065 1830@node pcsys_network
9d4fb82e
FB
1831@section Network emulation
1832
4be456f1 1833QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1834target) and can connect them to an arbitrary number of Virtual Local
1835Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1836VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1837simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1838network stack can replace the TAP device to have a basic network
1839connection.
1840
1841@subsection VLANs
9d4fb82e 1842
41d03949
FB
1843QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1844connection between several network devices. These devices can be for
1845example QEMU virtual Ethernet cards or virtual Host ethernet devices
1846(TAP devices).
9d4fb82e 1847
41d03949
FB
1848@subsection Using TAP network interfaces
1849
1850This is the standard way to connect QEMU to a real network. QEMU adds
1851a virtual network device on your host (called @code{tapN}), and you
1852can then configure it as if it was a real ethernet card.
9d4fb82e 1853
8f40c388
FB
1854@subsubsection Linux host
1855
9d4fb82e
FB
1856As an example, you can download the @file{linux-test-xxx.tar.gz}
1857archive and copy the script @file{qemu-ifup} in @file{/etc} and
1858configure properly @code{sudo} so that the command @code{ifconfig}
1859contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1860that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1861device @file{/dev/net/tun} must be present.
1862
ee0f4751
FB
1863See @ref{sec_invocation} to have examples of command lines using the
1864TAP network interfaces.
9d4fb82e 1865
8f40c388
FB
1866@subsubsection Windows host
1867
1868There is a virtual ethernet driver for Windows 2000/XP systems, called
1869TAP-Win32. But it is not included in standard QEMU for Windows,
1870so you will need to get it separately. It is part of OpenVPN package,
1871so download OpenVPN from : @url{http://openvpn.net/}.
1872
9d4fb82e
FB
1873@subsection Using the user mode network stack
1874
41d03949
FB
1875By using the option @option{-net user} (default configuration if no
1876@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1877network stack (you don't need root privilege to use the virtual
41d03949 1878network). The virtual network configuration is the following:
9d4fb82e
FB
1879
1880@example
1881
41d03949
FB
1882 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1883 | (10.0.2.2)
9d4fb82e 1884 |
2518bd0d 1885 ----> DNS server (10.0.2.3)
3b46e624 1886 |
2518bd0d 1887 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1888@end example
1889
1890The QEMU VM behaves as if it was behind a firewall which blocks all
1891incoming connections. You can use a DHCP client to automatically
41d03949
FB
1892configure the network in the QEMU VM. The DHCP server assign addresses
1893to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1894
1895In order to check that the user mode network is working, you can ping
1896the address 10.0.2.2 and verify that you got an address in the range
189710.0.2.x from the QEMU virtual DHCP server.
1898
b415a407 1899Note that @code{ping} is not supported reliably to the internet as it
4be456f1 1900would require root privileges. It means you can only ping the local
b415a407
FB
1901router (10.0.2.2).
1902
9bf05444
FB
1903When using the built-in TFTP server, the router is also the TFTP
1904server.
1905
1906When using the @option{-redir} option, TCP or UDP connections can be
1907redirected from the host to the guest. It allows for example to
1908redirect X11, telnet or SSH connections.
443f1376 1909
41d03949
FB
1910@subsection Connecting VLANs between QEMU instances
1911
1912Using the @option{-net socket} option, it is possible to make VLANs
1913that span several QEMU instances. See @ref{sec_invocation} to have a
1914basic example.
1915
9d4fb82e
FB
1916@node direct_linux_boot
1917@section Direct Linux Boot
1f673135
FB
1918
1919This section explains how to launch a Linux kernel inside QEMU without
1920having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1921kernel testing.
1f673135 1922
ee0f4751 1923The syntax is:
1f673135 1924@example
ee0f4751 1925qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1926@end example
1927
ee0f4751
FB
1928Use @option{-kernel} to provide the Linux kernel image and
1929@option{-append} to give the kernel command line arguments. The
1930@option{-initrd} option can be used to provide an INITRD image.
1f673135 1931
ee0f4751
FB
1932When using the direct Linux boot, a disk image for the first hard disk
1933@file{hda} is required because its boot sector is used to launch the
1934Linux kernel.
1f673135 1935
ee0f4751
FB
1936If you do not need graphical output, you can disable it and redirect
1937the virtual serial port and the QEMU monitor to the console with the
1938@option{-nographic} option. The typical command line is:
1f673135 1939@example
ee0f4751
FB
1940qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1941 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1942@end example
1943
ee0f4751
FB
1944Use @key{Ctrl-a c} to switch between the serial console and the
1945monitor (@pxref{pcsys_keys}).
1f673135 1946
debc7065 1947@node pcsys_usb
b389dbfb
FB
1948@section USB emulation
1949
0aff66b5
PB
1950QEMU emulates a PCI UHCI USB controller. You can virtually plug
1951virtual USB devices or real host USB devices (experimental, works only
1952on Linux hosts). Qemu will automatically create and connect virtual USB hubs
f542086d 1953as necessary to connect multiple USB devices.
b389dbfb 1954
0aff66b5
PB
1955@menu
1956* usb_devices::
1957* host_usb_devices::
1958@end menu
1959@node usb_devices
1960@subsection Connecting USB devices
b389dbfb 1961
0aff66b5
PB
1962USB devices can be connected with the @option{-usbdevice} commandline option
1963or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1964
db380c06
AZ
1965@table @code
1966@item mouse
0aff66b5 1967Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1968@item tablet
c6d46c20 1969Pointer device that uses absolute coordinates (like a touchscreen).
0aff66b5
PB
1970This means qemu is able to report the mouse position without having
1971to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1972@item disk:@var{file}
0aff66b5 1973Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1974@item host:@var{bus.addr}
0aff66b5
PB
1975Pass through the host device identified by @var{bus.addr}
1976(Linux only)
db380c06 1977@item host:@var{vendor_id:product_id}
0aff66b5
PB
1978Pass through the host device identified by @var{vendor_id:product_id}
1979(Linux only)
db380c06 1980@item wacom-tablet
f6d2a316
AZ
1981Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1982above but it can be used with the tslib library because in addition to touch
1983coordinates it reports touch pressure.
db380c06 1984@item keyboard
47b2d338 1985Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1986@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1987Serial converter. This emulates an FTDI FT232BM chip connected to host character
1988device @var{dev}. The available character devices are the same as for the
1989@code{-serial} option. The @code{vendorid} and @code{productid} options can be
a11d070e 1990used to override the default 0403:6001. For instance,
db380c06
AZ
1991@example
1992usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1993@end example
1994will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1995serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1996@item braille
1997Braille device. This will use BrlAPI to display the braille output on a real
1998or fake device.
9ad97e65
AZ
1999@item net:@var{options}
2000Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
2001specifies NIC options as with @code{-net nic,}@var{options} (see description).
2002For instance, user-mode networking can be used with
6c9f886c 2003@example
9ad97e65 2004qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
2005@end example
2006Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
2007@item bt[:@var{hci-type}]
2008Bluetooth dongle whose type is specified in the same format as with
2009the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
2010no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
2011This USB device implements the USB Transport Layer of HCI. Example
2012usage:
2013@example
2014qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
2015@end example
0aff66b5 2016@end table
b389dbfb 2017
0aff66b5 2018@node host_usb_devices
b389dbfb
FB
2019@subsection Using host USB devices on a Linux host
2020
2021WARNING: this is an experimental feature. QEMU will slow down when
2022using it. USB devices requiring real time streaming (i.e. USB Video
2023Cameras) are not supported yet.
2024
2025@enumerate
5fafdf24 2026@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
2027is actually using the USB device. A simple way to do that is simply to
2028disable the corresponding kernel module by renaming it from @file{mydriver.o}
2029to @file{mydriver.o.disabled}.
2030
2031@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
2032@example
2033ls /proc/bus/usb
2034001 devices drivers
2035@end example
2036
2037@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
2038@example
2039chown -R myuid /proc/bus/usb
2040@end example
2041
2042@item Launch QEMU and do in the monitor:
5fafdf24 2043@example
b389dbfb
FB
2044info usbhost
2045 Device 1.2, speed 480 Mb/s
2046 Class 00: USB device 1234:5678, USB DISK
2047@end example
2048You should see the list of the devices you can use (Never try to use
2049hubs, it won't work).
2050
2051@item Add the device in QEMU by using:
5fafdf24 2052@example
b389dbfb
FB
2053usb_add host:1234:5678
2054@end example
2055
2056Normally the guest OS should report that a new USB device is
2057plugged. You can use the option @option{-usbdevice} to do the same.
2058
2059@item Now you can try to use the host USB device in QEMU.
2060
2061@end enumerate
2062
2063When relaunching QEMU, you may have to unplug and plug again the USB
2064device to make it work again (this is a bug).
2065
f858dcae
TS
2066@node vnc_security
2067@section VNC security
2068
2069The VNC server capability provides access to the graphical console
2070of the guest VM across the network. This has a number of security
2071considerations depending on the deployment scenarios.
2072
2073@menu
2074* vnc_sec_none::
2075* vnc_sec_password::
2076* vnc_sec_certificate::
2077* vnc_sec_certificate_verify::
2078* vnc_sec_certificate_pw::
2f9606b3
AL
2079* vnc_sec_sasl::
2080* vnc_sec_certificate_sasl::
f858dcae 2081* vnc_generate_cert::
2f9606b3 2082* vnc_setup_sasl::
f858dcae
TS
2083@end menu
2084@node vnc_sec_none
2085@subsection Without passwords
2086
2087The simplest VNC server setup does not include any form of authentication.
2088For this setup it is recommended to restrict it to listen on a UNIX domain
2089socket only. For example
2090
2091@example
2092qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
2093@end example
2094
2095This ensures that only users on local box with read/write access to that
2096path can access the VNC server. To securely access the VNC server from a
2097remote machine, a combination of netcat+ssh can be used to provide a secure
2098tunnel.
2099
2100@node vnc_sec_password
2101@subsection With passwords
2102
2103The VNC protocol has limited support for password based authentication. Since
2104the protocol limits passwords to 8 characters it should not be considered
2105to provide high security. The password can be fairly easily brute-forced by
2106a client making repeat connections. For this reason, a VNC server using password
2107authentication should be restricted to only listen on the loopback interface
34a3d239 2108or UNIX domain sockets. Password authentication is requested with the @code{password}
f858dcae
TS
2109option, and then once QEMU is running the password is set with the monitor. Until
2110the monitor is used to set the password all clients will be rejected.
2111
2112@example
2113qemu [...OPTIONS...] -vnc :1,password -monitor stdio
2114(qemu) change vnc password
2115Password: ********
2116(qemu)
2117@end example
2118
2119@node vnc_sec_certificate
2120@subsection With x509 certificates
2121
2122The QEMU VNC server also implements the VeNCrypt extension allowing use of
2123TLS for encryption of the session, and x509 certificates for authentication.
2124The use of x509 certificates is strongly recommended, because TLS on its
2125own is susceptible to man-in-the-middle attacks. Basic x509 certificate
2126support provides a secure session, but no authentication. This allows any
2127client to connect, and provides an encrypted session.
2128
2129@example
2130qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
2131@end example
2132
2133In the above example @code{/etc/pki/qemu} should contain at least three files,
2134@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
2135users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
2136NB the @code{server-key.pem} file should be protected with file mode 0600 to
2137only be readable by the user owning it.
2138
2139@node vnc_sec_certificate_verify
2140@subsection With x509 certificates and client verification
2141
2142Certificates can also provide a means to authenticate the client connecting.
2143The server will request that the client provide a certificate, which it will
2144then validate against the CA certificate. This is a good choice if deploying
2145in an environment with a private internal certificate authority.
2146
2147@example
2148qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
2149@end example
2150
2151
2152@node vnc_sec_certificate_pw
2153@subsection With x509 certificates, client verification and passwords
2154
2155Finally, the previous method can be combined with VNC password authentication
2156to provide two layers of authentication for clients.
2157
2158@example
2159qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
2160(qemu) change vnc password
2161Password: ********
2162(qemu)
2163@end example
2164
2f9606b3
AL
2165
2166@node vnc_sec_sasl
2167@subsection With SASL authentication
2168
2169The SASL authentication method is a VNC extension, that provides an
2170easily extendable, pluggable authentication method. This allows for
2171integration with a wide range of authentication mechanisms, such as
2172PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
2173The strength of the authentication depends on the exact mechanism
2174configured. If the chosen mechanism also provides a SSF layer, then
2175it will encrypt the datastream as well.
2176
2177Refer to the later docs on how to choose the exact SASL mechanism
2178used for authentication, but assuming use of one supporting SSF,
2179then QEMU can be launched with:
2180
2181@example
2182qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
2183@end example
2184
2185@node vnc_sec_certificate_sasl
2186@subsection With x509 certificates and SASL authentication
2187
2188If the desired SASL authentication mechanism does not supported
2189SSF layers, then it is strongly advised to run it in combination
2190with TLS and x509 certificates. This provides securely encrypted
2191data stream, avoiding risk of compromising of the security
2192credentials. This can be enabled, by combining the 'sasl' option
2193with the aforementioned TLS + x509 options:
2194
2195@example
2196qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2197@end example
2198
2199
f858dcae
TS
2200@node vnc_generate_cert
2201@subsection Generating certificates for VNC
2202
2203The GNU TLS packages provides a command called @code{certtool} which can
2204be used to generate certificates and keys in PEM format. At a minimum it
2205is neccessary to setup a certificate authority, and issue certificates to
2206each server. If using certificates for authentication, then each client
2207will also need to be issued a certificate. The recommendation is for the
2208server to keep its certificates in either @code{/etc/pki/qemu} or for
2209unprivileged users in @code{$HOME/.pki/qemu}.
2210
2211@menu
2212* vnc_generate_ca::
2213* vnc_generate_server::
2214* vnc_generate_client::
2215@end menu
2216@node vnc_generate_ca
2217@subsubsection Setup the Certificate Authority
2218
2219This step only needs to be performed once per organization / organizational
2220unit. First the CA needs a private key. This key must be kept VERY secret
2221and secure. If this key is compromised the entire trust chain of the certificates
2222issued with it is lost.
2223
2224@example
2225# certtool --generate-privkey > ca-key.pem
2226@end example
2227
2228A CA needs to have a public certificate. For simplicity it can be a self-signed
2229certificate, or one issue by a commercial certificate issuing authority. To
2230generate a self-signed certificate requires one core piece of information, the
2231name of the organization.
2232
2233@example
2234# cat > ca.info <<EOF
2235cn = Name of your organization
2236ca
2237cert_signing_key
2238EOF
2239# certtool --generate-self-signed \
2240 --load-privkey ca-key.pem
2241 --template ca.info \
2242 --outfile ca-cert.pem
2243@end example
2244
2245The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
2246TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
2247
2248@node vnc_generate_server
2249@subsubsection Issuing server certificates
2250
2251Each server (or host) needs to be issued with a key and certificate. When connecting
2252the certificate is sent to the client which validates it against the CA certificate.
2253The core piece of information for a server certificate is the hostname. This should
2254be the fully qualified hostname that the client will connect with, since the client
2255will typically also verify the hostname in the certificate. On the host holding the
2256secure CA private key:
2257
2258@example
2259# cat > server.info <<EOF
2260organization = Name of your organization
2261cn = server.foo.example.com
2262tls_www_server
2263encryption_key
2264signing_key
2265EOF
2266# certtool --generate-privkey > server-key.pem
2267# certtool --generate-certificate \
2268 --load-ca-certificate ca-cert.pem \
2269 --load-ca-privkey ca-key.pem \
2270 --load-privkey server server-key.pem \
2271 --template server.info \
2272 --outfile server-cert.pem
2273@end example
2274
2275The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
2276to the server for which they were generated. The @code{server-key.pem} is security
2277sensitive and should be kept protected with file mode 0600 to prevent disclosure.
2278
2279@node vnc_generate_client
2280@subsubsection Issuing client certificates
2281
2282If the QEMU VNC server is to use the @code{x509verify} option to validate client
2283certificates as its authentication mechanism, each client also needs to be issued
2284a certificate. The client certificate contains enough metadata to uniquely identify
2285the client, typically organization, state, city, building, etc. On the host holding
2286the secure CA private key:
2287
2288@example
2289# cat > client.info <<EOF
2290country = GB
2291state = London
2292locality = London
2293organiazation = Name of your organization
2294cn = client.foo.example.com
2295tls_www_client
2296encryption_key
2297signing_key
2298EOF
2299# certtool --generate-privkey > client-key.pem
2300# certtool --generate-certificate \
2301 --load-ca-certificate ca-cert.pem \
2302 --load-ca-privkey ca-key.pem \
2303 --load-privkey client-key.pem \
2304 --template client.info \
2305 --outfile client-cert.pem
2306@end example
2307
2308The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
2309copied to the client for which they were generated.
2310
2f9606b3
AL
2311
2312@node vnc_setup_sasl
2313
2314@subsection Configuring SASL mechanisms
2315
2316The following documentation assumes use of the Cyrus SASL implementation on a
2317Linux host, but the principals should apply to any other SASL impl. When SASL
2318is enabled, the mechanism configuration will be loaded from system default
2319SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
2320unprivileged user, an environment variable SASL_CONF_PATH can be used
2321to make it search alternate locations for the service config.
2322
2323The default configuration might contain
2324
2325@example
2326mech_list: digest-md5
2327sasldb_path: /etc/qemu/passwd.db
2328@end example
2329
2330This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
2331Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
2332in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
2333command. While this mechanism is easy to configure and use, it is not
2334considered secure by modern standards, so only suitable for developers /
2335ad-hoc testing.
2336
2337A more serious deployment might use Kerberos, which is done with the 'gssapi'
2338mechanism
2339
2340@example
2341mech_list: gssapi
2342keytab: /etc/qemu/krb5.tab
2343@end example
2344
2345For this to work the administrator of your KDC must generate a Kerberos
2346principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
2347replacing 'somehost.example.com' with the fully qualified host name of the
2348machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
2349
2350Other configurations will be left as an exercise for the reader. It should
2351be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
2352encryption. For all other mechanisms, VNC should always be configured to
2353use TLS and x509 certificates to protect security credentials from snooping.
2354
0806e3f6 2355@node gdb_usage
da415d54
FB
2356@section GDB usage
2357
2358QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 2359'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 2360
9d4520d0 2361In order to use gdb, launch qemu with the '-s' option. It will wait for a
da415d54
FB
2362gdb connection:
2363@example
debc7065
FB
2364> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2365 -append "root=/dev/hda"
da415d54
FB
2366Connected to host network interface: tun0
2367Waiting gdb connection on port 1234
2368@end example
2369
2370Then launch gdb on the 'vmlinux' executable:
2371@example
2372> gdb vmlinux
2373@end example
2374
2375In gdb, connect to QEMU:
2376@example
6c9bf893 2377(gdb) target remote localhost:1234
da415d54
FB
2378@end example
2379
2380Then you can use gdb normally. For example, type 'c' to launch the kernel:
2381@example
2382(gdb) c
2383@end example
2384
0806e3f6
FB
2385Here are some useful tips in order to use gdb on system code:
2386
2387@enumerate
2388@item
2389Use @code{info reg} to display all the CPU registers.
2390@item
2391Use @code{x/10i $eip} to display the code at the PC position.
2392@item
2393Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 2394@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
2395@end enumerate
2396
60897d36
EI
2397Advanced debugging options:
2398
2399The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 2400@table @code
60897d36
EI
2401@item maintenance packet qqemu.sstepbits
2402
2403This will display the MASK bits used to control the single stepping IE:
2404@example
2405(gdb) maintenance packet qqemu.sstepbits
2406sending: "qqemu.sstepbits"
2407received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2408@end example
2409@item maintenance packet qqemu.sstep
2410
2411This will display the current value of the mask used when single stepping IE:
2412@example
2413(gdb) maintenance packet qqemu.sstep
2414sending: "qqemu.sstep"
2415received: "0x7"
2416@end example
2417@item maintenance packet Qqemu.sstep=HEX_VALUE
2418
2419This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2420@example
2421(gdb) maintenance packet Qqemu.sstep=0x5
2422sending: "qemu.sstep=0x5"
2423received: "OK"
2424@end example
94d45e44 2425@end table
60897d36 2426
debc7065 2427@node pcsys_os_specific
1a084f3d
FB
2428@section Target OS specific information
2429
2430@subsection Linux
2431
15a34c63
FB
2432To have access to SVGA graphic modes under X11, use the @code{vesa} or
2433the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2434color depth in the guest and the host OS.
1a084f3d 2435
e3371e62
FB
2436When using a 2.6 guest Linux kernel, you should add the option
2437@code{clock=pit} on the kernel command line because the 2.6 Linux
2438kernels make very strict real time clock checks by default that QEMU
2439cannot simulate exactly.
2440
7c3fc84d
FB
2441When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2442not activated because QEMU is slower with this patch. The QEMU
2443Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 2444Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
2445patch by default. Newer kernels don't have it.
2446
1a084f3d
FB
2447@subsection Windows
2448
2449If you have a slow host, using Windows 95 is better as it gives the
2450best speed. Windows 2000 is also a good choice.
2451
e3371e62
FB
2452@subsubsection SVGA graphic modes support
2453
2454QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
2455card. All Windows versions starting from Windows 95 should recognize
2456and use this graphic card. For optimal performances, use 16 bit color
2457depth in the guest and the host OS.
1a084f3d 2458
3cb0853a
FB
2459If you are using Windows XP as guest OS and if you want to use high
2460resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
24611280x1024x16), then you should use the VESA VBE virtual graphic card
2462(option @option{-std-vga}).
2463
e3371e62
FB
2464@subsubsection CPU usage reduction
2465
2466Windows 9x does not correctly use the CPU HLT
15a34c63
FB
2467instruction. The result is that it takes host CPU cycles even when
2468idle. You can install the utility from
2469@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2470problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 2471
9d0a8e6f 2472@subsubsection Windows 2000 disk full problem
e3371e62 2473
9d0a8e6f
FB
2474Windows 2000 has a bug which gives a disk full problem during its
2475installation. When installing it, use the @option{-win2k-hack} QEMU
2476option to enable a specific workaround. After Windows 2000 is
2477installed, you no longer need this option (this option slows down the
2478IDE transfers).
e3371e62 2479
6cc721cf
FB
2480@subsubsection Windows 2000 shutdown
2481
2482Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2483can. It comes from the fact that Windows 2000 does not automatically
2484use the APM driver provided by the BIOS.
2485
2486In order to correct that, do the following (thanks to Struan
2487Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2488Add/Troubleshoot a device => Add a new device & Next => No, select the
2489hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2490(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 2491correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
2492
2493@subsubsection Share a directory between Unix and Windows
2494
2495See @ref{sec_invocation} about the help of the option @option{-smb}.
2496
2192c332 2497@subsubsection Windows XP security problem
e3371e62
FB
2498
2499Some releases of Windows XP install correctly but give a security
2500error when booting:
2501@example
2502A problem is preventing Windows from accurately checking the
2503license for this computer. Error code: 0x800703e6.
2504@end example
e3371e62 2505
2192c332
FB
2506The workaround is to install a service pack for XP after a boot in safe
2507mode. Then reboot, and the problem should go away. Since there is no
2508network while in safe mode, its recommended to download the full
2509installation of SP1 or SP2 and transfer that via an ISO or using the
2510vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 2511
a0a821a4
FB
2512@subsection MS-DOS and FreeDOS
2513
2514@subsubsection CPU usage reduction
2515
2516DOS does not correctly use the CPU HLT instruction. The result is that
2517it takes host CPU cycles even when idle. You can install the utility
2518from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2519problem.
2520
debc7065 2521@node QEMU System emulator for non PC targets
3f9f3aa1
FB
2522@chapter QEMU System emulator for non PC targets
2523
2524QEMU is a generic emulator and it emulates many non PC
2525machines. Most of the options are similar to the PC emulator. The
4be456f1 2526differences are mentioned in the following sections.
3f9f3aa1 2527
debc7065
FB
2528@menu
2529* QEMU PowerPC System emulator::
24d4de45
TS
2530* Sparc32 System emulator::
2531* Sparc64 System emulator::
2532* MIPS System emulator::
2533* ARM System emulator::
2534* ColdFire System emulator::
debc7065
FB
2535@end menu
2536
2537@node QEMU PowerPC System emulator
3f9f3aa1 2538@section QEMU PowerPC System emulator
1a084f3d 2539
15a34c63
FB
2540Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2541or PowerMac PowerPC system.
1a084f3d 2542
b671f9ed 2543QEMU emulates the following PowerMac peripherals:
1a084f3d 2544
15a34c63 2545@itemize @minus
5fafdf24 2546@item
006f3a48 2547UniNorth or Grackle PCI Bridge
15a34c63
FB
2548@item
2549PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 2550@item
15a34c63 25512 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 2552@item
15a34c63
FB
2553NE2000 PCI adapters
2554@item
2555Non Volatile RAM
2556@item
2557VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
2558@end itemize
2559
b671f9ed 2560QEMU emulates the following PREP peripherals:
52c00a5f
FB
2561
2562@itemize @minus
5fafdf24 2563@item
15a34c63
FB
2564PCI Bridge
2565@item
2566PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 2567@item
52c00a5f
FB
25682 IDE interfaces with hard disk and CD-ROM support
2569@item
2570Floppy disk
5fafdf24 2571@item
15a34c63 2572NE2000 network adapters
52c00a5f
FB
2573@item
2574Serial port
2575@item
2576PREP Non Volatile RAM
15a34c63
FB
2577@item
2578PC compatible keyboard and mouse.
52c00a5f
FB
2579@end itemize
2580
15a34c63 2581QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 2582@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 2583
992e5acd 2584Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
2585for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
2586v2) portable firmware implementation. The goal is to implement a 100%
2587IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 2588
15a34c63
FB
2589@c man begin OPTIONS
2590
2591The following options are specific to the PowerPC emulation:
2592
2593@table @option
2594
3b46e624 2595@item -g WxH[xDEPTH]
15a34c63
FB
2596
2597Set the initial VGA graphic mode. The default is 800x600x15.
2598
95efd11c
BS
2599@item -prom-env string
2600
2601Set OpenBIOS variables in NVRAM, for example:
2602
2603@example
2604qemu-system-ppc -prom-env 'auto-boot?=false' \
2605 -prom-env 'boot-device=hd:2,\yaboot' \
2606 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2607@end example
2608
2609These variables are not used by Open Hack'Ware.
2610
15a34c63
FB
2611@end table
2612
5fafdf24 2613@c man end
15a34c63
FB
2614
2615
52c00a5f 2616More information is available at
3f9f3aa1 2617@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 2618
24d4de45
TS
2619@node Sparc32 System emulator
2620@section Sparc32 System emulator
e80cfcfc 2621
34a3d239
BS
2622Use the executable @file{qemu-system-sparc} to simulate the following
2623Sun4m architecture machines:
2624@itemize @minus
2625@item
2626SPARCstation 4
2627@item
2628SPARCstation 5
2629@item
2630SPARCstation 10
2631@item
2632SPARCstation 20
2633@item
2634SPARCserver 600MP
2635@item
2636SPARCstation LX
2637@item
2638SPARCstation Voyager
2639@item
2640SPARCclassic
2641@item
2642SPARCbook
2643@end itemize
2644
2645The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2646but Linux limits the number of usable CPUs to 4.
e80cfcfc 2647
34a3d239
BS
2648It's also possible to simulate a SPARCstation 2 (sun4c architecture),
2649SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
2650emulators are not usable yet.
2651
2652QEMU emulates the following sun4m/sun4c/sun4d peripherals:
e80cfcfc
FB
2653
2654@itemize @minus
3475187d 2655@item
7d85892b 2656IOMMU or IO-UNITs
e80cfcfc
FB
2657@item
2658TCX Frame buffer
5fafdf24 2659@item
e80cfcfc
FB
2660Lance (Am7990) Ethernet
2661@item
34a3d239 2662Non Volatile RAM M48T02/M48T08
e80cfcfc 2663@item
3475187d
FB
2664Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2665and power/reset logic
2666@item
2667ESP SCSI controller with hard disk and CD-ROM support
2668@item
6a3b9cc9 2669Floppy drive (not on SS-600MP)
a2502b58
BS
2670@item
2671CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2672@end itemize
2673
6a3b9cc9
BS
2674The number of peripherals is fixed in the architecture. Maximum
2675memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2676others 2047MB.
3475187d 2677
30a604f3 2678Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2679@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2680firmware implementation. The goal is to implement a 100% IEEE
26811275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2682
2683A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239
BS
2684the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2685some kernel versions work. Please note that currently Solaris kernels
2686don't work probably due to interface issues between OpenBIOS and
2687Solaris.
3475187d
FB
2688
2689@c man begin OPTIONS
2690
a2502b58 2691The following options are specific to the Sparc32 emulation:
3475187d
FB
2692
2693@table @option
2694
a2502b58 2695@item -g WxHx[xDEPTH]
3475187d 2696
a2502b58
BS
2697Set the initial TCX graphic mode. The default is 1024x768x8, currently
2698the only other possible mode is 1024x768x24.
3475187d 2699
66508601
BS
2700@item -prom-env string
2701
2702Set OpenBIOS variables in NVRAM, for example:
2703
2704@example
2705qemu-system-sparc -prom-env 'auto-boot?=false' \
2706 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2707@end example
2708
34a3d239 2709@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
a2502b58
BS
2710
2711Set the emulated machine type. Default is SS-5.
2712
3475187d
FB
2713@end table
2714
5fafdf24 2715@c man end
3475187d 2716
24d4de45
TS
2717@node Sparc64 System emulator
2718@section Sparc64 System emulator
e80cfcfc 2719
34a3d239
BS
2720Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2721(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2722Niagara (T1) machine. The emulator is not usable for anything yet, but
2723it can launch some kernels.
b756921a 2724
c7ba218d 2725QEMU emulates the following peripherals:
83469015
FB
2726
2727@itemize @minus
2728@item
5fafdf24 2729UltraSparc IIi APB PCI Bridge
83469015
FB
2730@item
2731PCI VGA compatible card with VESA Bochs Extensions
2732@item
34a3d239
BS
2733PS/2 mouse and keyboard
2734@item
83469015
FB
2735Non Volatile RAM M48T59
2736@item
2737PC-compatible serial ports
c7ba218d
BS
2738@item
27392 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2740@item
2741Floppy disk
83469015
FB
2742@end itemize
2743
c7ba218d
BS
2744@c man begin OPTIONS
2745
2746The following options are specific to the Sparc64 emulation:
2747
2748@table @option
2749
34a3d239
BS
2750@item -prom-env string
2751
2752Set OpenBIOS variables in NVRAM, for example:
2753
2754@example
2755qemu-system-sparc64 -prom-env 'auto-boot?=false'
2756@end example
2757
2758@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2759
2760Set the emulated machine type. The default is sun4u.
2761
2762@end table
2763
2764@c man end
2765
24d4de45
TS
2766@node MIPS System emulator
2767@section MIPS System emulator
9d0a8e6f 2768
d9aedc32
TS
2769Four executables cover simulation of 32 and 64-bit MIPS systems in
2770both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2771@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2772Five different machine types are emulated:
24d4de45
TS
2773
2774@itemize @minus
2775@item
2776A generic ISA PC-like machine "mips"
2777@item
2778The MIPS Malta prototype board "malta"
2779@item
d9aedc32 2780An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2781@item
f0fc6f8f 2782MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2783@item
2784A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2785@end itemize
2786
2787The generic emulation is supported by Debian 'Etch' and is able to
2788install Debian into a virtual disk image. The following devices are
2789emulated:
3f9f3aa1
FB
2790
2791@itemize @minus
5fafdf24 2792@item
6bf5b4e8 2793A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2794@item
2795PC style serial port
2796@item
24d4de45
TS
2797PC style IDE disk
2798@item
3f9f3aa1
FB
2799NE2000 network card
2800@end itemize
2801
24d4de45
TS
2802The Malta emulation supports the following devices:
2803
2804@itemize @minus
2805@item
0b64d008 2806Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2807@item
2808PIIX4 PCI/USB/SMbus controller
2809@item
2810The Multi-I/O chip's serial device
2811@item
2812PCnet32 PCI network card
2813@item
2814Malta FPGA serial device
2815@item
1f605a76 2816Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2817@end itemize
2818
2819The ACER Pica emulation supports:
2820
2821@itemize @minus
2822@item
2823MIPS R4000 CPU
2824@item
2825PC-style IRQ and DMA controllers
2826@item
2827PC Keyboard
2828@item
2829IDE controller
2830@end itemize
3f9f3aa1 2831
f0fc6f8f
TS
2832The mipssim pseudo board emulation provides an environment similiar
2833to what the proprietary MIPS emulator uses for running Linux.
2834It supports:
6bf5b4e8
TS
2835
2836@itemize @minus
2837@item
2838A range of MIPS CPUs, default is the 24Kf
2839@item
2840PC style serial port
2841@item
2842MIPSnet network emulation
2843@end itemize
2844
88cb0a02
AJ
2845The MIPS Magnum R4000 emulation supports:
2846
2847@itemize @minus
2848@item
2849MIPS R4000 CPU
2850@item
2851PC-style IRQ controller
2852@item
2853PC Keyboard
2854@item
2855SCSI controller
2856@item
2857G364 framebuffer
2858@end itemize
2859
2860
24d4de45
TS
2861@node ARM System emulator
2862@section ARM System emulator
3f9f3aa1
FB
2863
2864Use the executable @file{qemu-system-arm} to simulate a ARM
2865machine. The ARM Integrator/CP board is emulated with the following
2866devices:
2867
2868@itemize @minus
2869@item
9ee6e8bb 2870ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2871@item
2872Two PL011 UARTs
5fafdf24 2873@item
3f9f3aa1 2874SMC 91c111 Ethernet adapter
00a9bf19
PB
2875@item
2876PL110 LCD controller
2877@item
2878PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2879@item
2880PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2881@end itemize
2882
2883The ARM Versatile baseboard is emulated with the following devices:
2884
2885@itemize @minus
2886@item
9ee6e8bb 2887ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2888@item
2889PL190 Vectored Interrupt Controller
2890@item
2891Four PL011 UARTs
5fafdf24 2892@item
00a9bf19
PB
2893SMC 91c111 Ethernet adapter
2894@item
2895PL110 LCD controller
2896@item
2897PL050 KMI with PS/2 keyboard and mouse.
2898@item
2899PCI host bridge. Note the emulated PCI bridge only provides access to
2900PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2901This means some devices (eg. ne2k_pci NIC) are not usable, and others
2902(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2903mapped control registers.
e6de1bad
PB
2904@item
2905PCI OHCI USB controller.
2906@item
2907LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2908@item
2909PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2910@end itemize
2911
d7739d75
PB
2912The ARM RealView Emulation baseboard is emulated with the following devices:
2913
2914@itemize @minus
2915@item
9ee6e8bb 2916ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
d7739d75
PB
2917@item
2918ARM AMBA Generic/Distributed Interrupt Controller
2919@item
2920Four PL011 UARTs
5fafdf24 2921@item
d7739d75
PB
2922SMC 91c111 Ethernet adapter
2923@item
2924PL110 LCD controller
2925@item
2926PL050 KMI with PS/2 keyboard and mouse
2927@item
2928PCI host bridge
2929@item
2930PCI OHCI USB controller
2931@item
2932LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2933@item
2934PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2935@end itemize
2936
b00052e4
AZ
2937The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2938and "Terrier") emulation includes the following peripherals:
2939
2940@itemize @minus
2941@item
2942Intel PXA270 System-on-chip (ARM V5TE core)
2943@item
2944NAND Flash memory
2945@item
2946IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2947@item
2948On-chip OHCI USB controller
2949@item
2950On-chip LCD controller
2951@item
2952On-chip Real Time Clock
2953@item
2954TI ADS7846 touchscreen controller on SSP bus
2955@item
2956Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2957@item
2958GPIO-connected keyboard controller and LEDs
2959@item
549444e1 2960Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2961@item
2962Three on-chip UARTs
2963@item
2964WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2965@end itemize
2966
02645926
AZ
2967The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2968following elements:
2969
2970@itemize @minus
2971@item
2972Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2973@item
2974ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2975@item
2976On-chip LCD controller
2977@item
2978On-chip Real Time Clock
2979@item
2980TI TSC2102i touchscreen controller / analog-digital converter / Audio
2981CODEC, connected through MicroWire and I@math{^2}S busses
2982@item
2983GPIO-connected matrix keypad
2984@item
2985Secure Digital card connected to OMAP MMC/SD host
2986@item
2987Three on-chip UARTs
2988@end itemize
2989
c30bb264
AZ
2990Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2991emulation supports the following elements:
2992
2993@itemize @minus
2994@item
2995Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2996@item
2997RAM and non-volatile OneNAND Flash memories
2998@item
2999Display connected to EPSON remote framebuffer chip and OMAP on-chip
3000display controller and a LS041y3 MIPI DBI-C controller
3001@item
3002TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
3003driven through SPI bus
3004@item
3005National Semiconductor LM8323-controlled qwerty keyboard driven
3006through I@math{^2}C bus
3007@item
3008Secure Digital card connected to OMAP MMC/SD host
3009@item
3010Three OMAP on-chip UARTs and on-chip STI debugging console
3011@item
2d564691
AZ
3012A Bluetooth(R) transciever and HCI connected to an UART
3013@item
c30bb264
AZ
3014Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
3015TUSB6010 chip - only USB host mode is supported
3016@item
3017TI TMP105 temperature sensor driven through I@math{^2}C bus
3018@item
3019TI TWL92230C power management companion with an RTC on I@math{^2}C bus
3020@item
3021Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
3022through CBUS
3023@end itemize
3024
9ee6e8bb
PB
3025The Luminary Micro Stellaris LM3S811EVB emulation includes the following
3026devices:
3027
3028@itemize @minus
3029@item
3030Cortex-M3 CPU core.
3031@item
303264k Flash and 8k SRAM.
3033@item
3034Timers, UARTs, ADC and I@math{^2}C interface.
3035@item
3036OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
3037@end itemize
3038
3039The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
3040devices:
3041
3042@itemize @minus
3043@item
3044Cortex-M3 CPU core.
3045@item
3046256k Flash and 64k SRAM.
3047@item
3048Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
3049@item
3050OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
3051@end itemize
3052
57cd6e97
AZ
3053The Freecom MusicPal internet radio emulation includes the following
3054elements:
3055
3056@itemize @minus
3057@item
3058Marvell MV88W8618 ARM core.
3059@item
306032 MB RAM, 256 KB SRAM, 8 MB flash.
3061@item
3062Up to 2 16550 UARTs
3063@item
3064MV88W8xx8 Ethernet controller
3065@item
3066MV88W8618 audio controller, WM8750 CODEC and mixer
3067@item
3068