]> git.proxmox.com Git - rustc.git/blame - src/librustc/middle/infer/combine.rs
* Introduce some changes by Angus Lees
[rustc.git] / src / librustc / middle / infer / combine.rs
CommitLineData
1a4d82fc
JJ
1// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
11///////////////////////////////////////////////////////////////////////////
12// # Type combining
13//
14// There are four type combiners: equate, sub, lub, and glb. Each
15// implements the trait `Combine` and contains methods for combining
16// two instances of various things and yielding a new instance. These
17// combiner methods always yield a `Result<T>`. There is a lot of
18// common code for these operations, implemented as default methods on
19// the `Combine` trait.
20//
21// Each operation may have side-effects on the inference context,
22// though these can be unrolled using snapshots. On success, the
23// LUB/GLB operations return the appropriate bound. The Eq and Sub
24// operations generally return the first operand.
25//
26// ## Contravariance
27//
28// When you are relating two things which have a contravariant
29// relationship, you should use `contratys()` or `contraregions()`,
30// rather than inversing the order of arguments! This is necessary
31// because the order of arguments is not relevant for LUB and GLB. It
32// is also useful to track which value is the "expected" value in
33// terms of error reporting.
34
35use super::equate::Equate;
36use super::glb::Glb;
37use super::lub::Lub;
38use super::sub::Sub;
39use super::unify::InferCtxtMethodsForSimplyUnifiableTypes;
40use super::{InferCtxt, cres};
41use super::{MiscVariable, TypeTrace};
42use super::type_variable::{RelationDir, EqTo, SubtypeOf, SupertypeOf};
43
44use middle::subst;
45use middle::subst::{ErasedRegions, NonerasedRegions, Substs};
46use middle::ty::{FloatVar, FnSig, IntVar, TyVar};
47use middle::ty::{IntType, UintType};
48use middle::ty::{BuiltinBounds};
49use middle::ty::{self, Ty};
50use middle::ty_fold;
51use middle::ty_fold::{TypeFoldable};
52use util::ppaux::Repr;
53
54use std::rc::Rc;
55use syntax::ast::{Onceness, Unsafety};
56use syntax::ast;
57use syntax::abi;
58use syntax::codemap::Span;
59
60pub trait Combine<'tcx> : Sized {
61 fn infcx<'a>(&'a self) -> &'a InferCtxt<'a, 'tcx>;
62 fn tcx<'a>(&'a self) -> &'a ty::ctxt<'tcx> { self.infcx().tcx }
63 fn tag(&self) -> String;
64 fn a_is_expected(&self) -> bool;
65 fn trace(&self) -> TypeTrace<'tcx>;
66
67 fn equate<'a>(&'a self) -> Equate<'a, 'tcx>;
68 fn sub<'a>(&'a self) -> Sub<'a, 'tcx>;
69 fn lub<'a>(&'a self) -> Lub<'a, 'tcx>;
70 fn glb<'a>(&'a self) -> Glb<'a, 'tcx>;
71
72 fn mts(&self, a: &ty::mt<'tcx>, b: &ty::mt<'tcx>) -> cres<'tcx, ty::mt<'tcx>>;
73 fn contratys(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> cres<'tcx, Ty<'tcx>>;
74 fn tys(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> cres<'tcx, Ty<'tcx>>;
75
76 fn tps(&self,
77 _: subst::ParamSpace,
78 as_: &[Ty<'tcx>],
79 bs: &[Ty<'tcx>])
80 -> cres<'tcx, Vec<Ty<'tcx>>> {
81 // FIXME -- In general, we treat variance a bit wrong
82 // here. For historical reasons, we treat tps and Self
83 // as invariant. This is overly conservative.
84
85 if as_.len() != bs.len() {
86 return Err(ty::terr_ty_param_size(expected_found(self,
87 as_.len(),
88 bs.len())));
89 }
90
91 try!(as_.iter().zip(bs.iter())
92 .map(|(a, b)| self.equate().tys(*a, *b))
93 .collect::<cres<Vec<Ty>>>());
94 Ok(as_.to_vec())
95 }
96
97 fn substs(&self,
98 item_def_id: ast::DefId,
99 a_subst: &subst::Substs<'tcx>,
100 b_subst: &subst::Substs<'tcx>)
101 -> cres<'tcx, subst::Substs<'tcx>>
102 {
103 let variances = if self.infcx().tcx.variance_computed.get() {
104 Some(ty::item_variances(self.infcx().tcx, item_def_id))
105 } else {
106 None
107 };
108 self.substs_variances(variances.as_ref().map(|v| &**v), a_subst, b_subst)
109 }
110
111 fn substs_variances(&self,
112 variances: Option<&ty::ItemVariances>,
113 a_subst: &subst::Substs<'tcx>,
114 b_subst: &subst::Substs<'tcx>)
115 -> cres<'tcx, subst::Substs<'tcx>>
116 {
117 let mut substs = subst::Substs::empty();
118
119 for &space in subst::ParamSpace::all().iter() {
120 let a_tps = a_subst.types.get_slice(space);
121 let b_tps = b_subst.types.get_slice(space);
122 let tps = try!(self.tps(space, a_tps, b_tps));
123 substs.types.replace(space, tps);
124 }
125
126 match (&a_subst.regions, &b_subst.regions) {
127 (&ErasedRegions, _) | (_, &ErasedRegions) => {
128 substs.regions = ErasedRegions;
129 }
130
131 (&NonerasedRegions(ref a), &NonerasedRegions(ref b)) => {
132 for &space in subst::ParamSpace::all().iter() {
133 let a_regions = a.get_slice(space);
134 let b_regions = b.get_slice(space);
135
136 let mut invariance = Vec::new();
137 let r_variances = match variances {
138 Some(variances) => {
139 variances.regions.get_slice(space)
140 }
141 None => {
142 for _ in a_regions.iter() {
143 invariance.push(ty::Invariant);
144 }
145 &invariance[]
146 }
147 };
148
149 let regions = try!(relate_region_params(self,
150 r_variances,
151 a_regions,
152 b_regions));
153 substs.mut_regions().replace(space, regions);
154 }
155 }
156 }
157
158 return Ok(substs);
159
160 fn relate_region_params<'tcx, C: Combine<'tcx>>(this: &C,
161 variances: &[ty::Variance],
162 a_rs: &[ty::Region],
163 b_rs: &[ty::Region])
164 -> cres<'tcx, Vec<ty::Region>> {
165 let tcx = this.infcx().tcx;
166 let num_region_params = variances.len();
167
168 debug!("relate_region_params(\
169 a_rs={}, \
170 b_rs={},
171 variances={})",
172 a_rs.repr(tcx),
173 b_rs.repr(tcx),
174 variances.repr(tcx));
175
176 assert_eq!(num_region_params, a_rs.len());
177 assert_eq!(num_region_params, b_rs.len());
178 let mut rs = vec!();
179 for i in range(0, num_region_params) {
180 let a_r = a_rs[i];
181 let b_r = b_rs[i];
182 let variance = variances[i];
183 let r = match variance {
184 ty::Invariant => this.equate().regions(a_r, b_r),
185 ty::Covariant => this.regions(a_r, b_r),
186 ty::Contravariant => this.contraregions(a_r, b_r),
187 ty::Bivariant => Ok(a_r),
188 };
189 rs.push(try!(r));
190 }
191 Ok(rs)
192 }
193 }
194
195 fn bare_fn_tys(&self, a: &ty::BareFnTy<'tcx>,
196 b: &ty::BareFnTy<'tcx>) -> cres<'tcx, ty::BareFnTy<'tcx>> {
197 let unsafety = try!(self.unsafeties(a.unsafety, b.unsafety));
198 let abi = try!(self.abi(a.abi, b.abi));
199 let sig = try!(self.binders(&a.sig, &b.sig));
200 Ok(ty::BareFnTy {unsafety: unsafety,
201 abi: abi,
202 sig: sig})
203 }
204
205 fn closure_tys(&self, a: &ty::ClosureTy<'tcx>,
206 b: &ty::ClosureTy<'tcx>) -> cres<'tcx, ty::ClosureTy<'tcx>> {
207
208 let store = match (a.store, b.store) {
209 (ty::RegionTraitStore(a_r, a_m),
210 ty::RegionTraitStore(b_r, b_m)) if a_m == b_m => {
211 let r = try!(self.contraregions(a_r, b_r));
212 ty::RegionTraitStore(r, a_m)
213 }
214
215 _ if a.store == b.store => {
216 a.store
217 }
218
219 _ => {
220 return Err(ty::terr_sigil_mismatch(expected_found(self, a.store, b.store)))
221 }
222 };
223 let unsafety = try!(self.unsafeties(a.unsafety, b.unsafety));
224 let onceness = try!(self.oncenesses(a.onceness, b.onceness));
225 let bounds = try!(self.existential_bounds(&a.bounds, &b.bounds));
226 let sig = try!(self.binders(&a.sig, &b.sig));
227 let abi = try!(self.abi(a.abi, b.abi));
228 Ok(ty::ClosureTy {
229 unsafety: unsafety,
230 onceness: onceness,
231 store: store,
232 bounds: bounds,
233 sig: sig,
234 abi: abi,
235 })
236 }
237
238 fn fn_sigs(&self, a: &ty::FnSig<'tcx>, b: &ty::FnSig<'tcx>) -> cres<'tcx, ty::FnSig<'tcx>> {
239 if a.variadic != b.variadic {
240 return Err(ty::terr_variadic_mismatch(expected_found(self, a.variadic, b.variadic)));
241 }
242
243 let inputs = try!(argvecs(self,
244 a.inputs.as_slice(),
245 b.inputs.as_slice()));
246
247 let output = try!(match (a.output, b.output) {
248 (ty::FnConverging(a_ty), ty::FnConverging(b_ty)) =>
249 Ok(ty::FnConverging(try!(self.tys(a_ty, b_ty)))),
250 (ty::FnDiverging, ty::FnDiverging) =>
251 Ok(ty::FnDiverging),
252 (a, b) =>
253 Err(ty::terr_convergence_mismatch(
254 expected_found(self, a != ty::FnDiverging, b != ty::FnDiverging))),
255 });
256
257 return Ok(ty::FnSig {inputs: inputs,
258 output: output,
259 variadic: a.variadic});
260
261
262 fn argvecs<'tcx, C: Combine<'tcx>>(combiner: &C,
263 a_args: &[Ty<'tcx>],
264 b_args: &[Ty<'tcx>])
265 -> cres<'tcx, Vec<Ty<'tcx>>>
266 {
267 if a_args.len() == b_args.len() {
268 a_args.iter().zip(b_args.iter())
269 .map(|(a, b)| combiner.args(*a, *b)).collect()
270 } else {
271 Err(ty::terr_arg_count)
272 }
273 }
274 }
275
276 fn args(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> cres<'tcx, Ty<'tcx>> {
277 self.contratys(a, b).and_then(|t| Ok(t))
278 }
279
280 fn unsafeties(&self, a: Unsafety, b: Unsafety) -> cres<'tcx, Unsafety>;
281
282 fn abi(&self, a: abi::Abi, b: abi::Abi) -> cres<'tcx, abi::Abi> {
283 if a == b {
284 Ok(a)
285 } else {
286 Err(ty::terr_abi_mismatch(expected_found(self, a, b)))
287 }
288 }
289
290 fn oncenesses(&self, a: Onceness, b: Onceness) -> cres<'tcx, Onceness>;
291
292 fn projection_tys(&self,
293 a: &ty::ProjectionTy<'tcx>,
294 b: &ty::ProjectionTy<'tcx>)
295 -> cres<'tcx, ty::ProjectionTy<'tcx>>
296 {
297 if a.item_name != b.item_name {
298 Err(ty::terr_projection_name_mismatched(
299 expected_found(self, a.item_name, b.item_name)))
300 } else {
301 let trait_ref = try!(self.trait_refs(&*a.trait_ref, &*b.trait_ref));
302 Ok(ty::ProjectionTy { trait_ref: Rc::new(trait_ref), item_name: a.item_name })
303 }
304 }
305
306 fn projection_predicates(&self,
307 a: &ty::ProjectionPredicate<'tcx>,
308 b: &ty::ProjectionPredicate<'tcx>)
309 -> cres<'tcx, ty::ProjectionPredicate<'tcx>>
310 {
311 let projection_ty = try!(self.projection_tys(&a.projection_ty, &b.projection_ty));
312 let ty = try!(self.tys(a.ty, b.ty));
313 Ok(ty::ProjectionPredicate { projection_ty: projection_ty, ty: ty })
314 }
315
316 fn projection_bounds(&self,
317 a: &Vec<ty::PolyProjectionPredicate<'tcx>>,
318 b: &Vec<ty::PolyProjectionPredicate<'tcx>>)
319 -> cres<'tcx, Vec<ty::PolyProjectionPredicate<'tcx>>>
320 {
321 // To be compatible, `a` and `b` must be for precisely the
322 // same set of traits and item names. We always require that
323 // projection bounds lists are sorted by trait-def-id and item-name,
324 // so we can just iterate through the lists pairwise, so long as they are the
325 // same length.
326 if a.len() != b.len() {
327 Err(ty::terr_projection_bounds_length(expected_found(self, a.len(), b.len())))
328 } else {
329 a.iter()
330 .zip(b.iter())
331 .map(|(a, b)| self.binders(a, b))
332 .collect()
333 }
334 }
335
336 fn existential_bounds(&self,
337 a: &ty::ExistentialBounds<'tcx>,
338 b: &ty::ExistentialBounds<'tcx>)
339 -> cres<'tcx, ty::ExistentialBounds<'tcx>>
340 {
341 let r = try!(self.contraregions(a.region_bound, b.region_bound));
342 let nb = try!(self.builtin_bounds(a.builtin_bounds, b.builtin_bounds));
343 let pb = try!(self.projection_bounds(&a.projection_bounds, &b.projection_bounds));
344 Ok(ty::ExistentialBounds { region_bound: r,
345 builtin_bounds: nb,
346 projection_bounds: pb })
347 }
348
349 fn builtin_bounds(&self,
350 a: ty::BuiltinBounds,
351 b: ty::BuiltinBounds)
352 -> cres<'tcx, ty::BuiltinBounds>;
353
354 fn contraregions(&self, a: ty::Region, b: ty::Region)
355 -> cres<'tcx, ty::Region>;
356
357 fn regions(&self, a: ty::Region, b: ty::Region) -> cres<'tcx, ty::Region>;
358
359 fn trait_stores(&self,
360 vk: ty::terr_vstore_kind,
361 a: ty::TraitStore,
362 b: ty::TraitStore)
363 -> cres<'tcx, ty::TraitStore> {
364 debug!("{}.trait_stores(a={:?}, b={:?})", self.tag(), a, b);
365
366 match (a, b) {
367 (ty::RegionTraitStore(a_r, a_m),
368 ty::RegionTraitStore(b_r, b_m)) if a_m == b_m => {
369 self.contraregions(a_r, b_r).and_then(|r| {
370 Ok(ty::RegionTraitStore(r, a_m))
371 })
372 }
373
374 _ if a == b => {
375 Ok(a)
376 }
377
378 _ => {
379 Err(ty::terr_trait_stores_differ(vk, expected_found(self, a, b)))
380 }
381 }
382 }
383
384 fn trait_refs(&self,
385 a: &ty::TraitRef<'tcx>,
386 b: &ty::TraitRef<'tcx>)
387 -> cres<'tcx, ty::TraitRef<'tcx>>
388 {
389 // Different traits cannot be related
390 if a.def_id != b.def_id {
391 Err(ty::terr_traits(expected_found(self, a.def_id, b.def_id)))
392 } else {
393 let substs = try!(self.substs(a.def_id, a.substs, b.substs));
394 Ok(ty::TraitRef { def_id: a.def_id, substs: self.tcx().mk_substs(substs) })
395 }
396 }
397
398 fn binders<T>(&self, a: &ty::Binder<T>, b: &ty::Binder<T>) -> cres<'tcx, ty::Binder<T>>
399 where T : Combineable<'tcx>;
400 // this must be overridden to do correctly, so as to account for higher-ranked
401 // behavior
402}
403
404pub trait Combineable<'tcx> : Repr<'tcx> + TypeFoldable<'tcx> {
405 fn combine<C:Combine<'tcx>>(combiner: &C, a: &Self, b: &Self) -> cres<'tcx, Self>;
406}
407
408impl<'tcx,T> Combineable<'tcx> for Rc<T>
409 where T : Combineable<'tcx>
410{
411 fn combine<C:Combine<'tcx>>(combiner: &C,
412 a: &Rc<T>,
413 b: &Rc<T>)
414 -> cres<'tcx, Rc<T>>
415 {
416 Ok(Rc::new(try!(Combineable::combine(combiner, &**a, &**b))))
417 }
418}
419
420impl<'tcx> Combineable<'tcx> for ty::TraitRef<'tcx> {
421 fn combine<C:Combine<'tcx>>(combiner: &C,
422 a: &ty::TraitRef<'tcx>,
423 b: &ty::TraitRef<'tcx>)
424 -> cres<'tcx, ty::TraitRef<'tcx>>
425 {
426 combiner.trait_refs(a, b)
427 }
428}
429
430impl<'tcx> Combineable<'tcx> for Ty<'tcx> {
431 fn combine<C:Combine<'tcx>>(combiner: &C,
432 a: &Ty<'tcx>,
433 b: &Ty<'tcx>)
434 -> cres<'tcx, Ty<'tcx>>
435 {
436 combiner.tys(*a, *b)
437 }
438}
439
440impl<'tcx> Combineable<'tcx> for ty::ProjectionPredicate<'tcx> {
441 fn combine<C:Combine<'tcx>>(combiner: &C,
442 a: &ty::ProjectionPredicate<'tcx>,
443 b: &ty::ProjectionPredicate<'tcx>)
444 -> cres<'tcx, ty::ProjectionPredicate<'tcx>>
445 {
446 combiner.projection_predicates(a, b)
447 }
448}
449
450impl<'tcx> Combineable<'tcx> for ty::FnSig<'tcx> {
451 fn combine<C:Combine<'tcx>>(combiner: &C,
452 a: &ty::FnSig<'tcx>,
453 b: &ty::FnSig<'tcx>)
454 -> cres<'tcx, ty::FnSig<'tcx>>
455 {
456 combiner.fn_sigs(a, b)
457 }
458}
459
460#[derive(Clone)]
461pub struct CombineFields<'a, 'tcx: 'a> {
462 pub infcx: &'a InferCtxt<'a, 'tcx>,
463 pub a_is_expected: bool,
464 pub trace: TypeTrace<'tcx>,
465}
466
467pub fn expected_found<'tcx, C: Combine<'tcx>, T>(
468 this: &C, a: T, b: T) -> ty::expected_found<T> {
469 if this.a_is_expected() {
470 ty::expected_found {expected: a, found: b}
471 } else {
472 ty::expected_found {expected: b, found: a}
473 }
474}
475
476pub fn super_tys<'tcx, C: Combine<'tcx>>(this: &C,
477 a: Ty<'tcx>,
478 b: Ty<'tcx>)
479 -> cres<'tcx, Ty<'tcx>>
480{
481 let tcx = this.infcx().tcx;
482 let a_sty = &a.sty;
483 let b_sty = &b.sty;
484 debug!("super_tys: a_sty={:?} b_sty={:?}", a_sty, b_sty);
485 return match (a_sty, b_sty) {
486 // The "subtype" ought to be handling cases involving var:
487 (&ty::ty_infer(TyVar(_)), _) |
488 (_, &ty::ty_infer(TyVar(_))) => {
489 tcx.sess.bug(
490 &format!("{}: bot and var types should have been handled ({},{})",
491 this.tag(),
492 a.repr(this.infcx().tcx),
493 b.repr(this.infcx().tcx))[]);
494 }
495
496 (&ty::ty_err, _) | (_, &ty::ty_err) => {
497 Ok(tcx.types.err)
498 }
499
500 // Relate integral variables to other types
501 (&ty::ty_infer(IntVar(a_id)), &ty::ty_infer(IntVar(b_id))) => {
502 try!(this.infcx().simple_vars(this.a_is_expected(),
503 a_id, b_id));
504 Ok(a)
505 }
506 (&ty::ty_infer(IntVar(v_id)), &ty::ty_int(v)) => {
507 unify_integral_variable(this, this.a_is_expected(),
508 v_id, IntType(v))
509 }
510 (&ty::ty_int(v), &ty::ty_infer(IntVar(v_id))) => {
511 unify_integral_variable(this, !this.a_is_expected(),
512 v_id, IntType(v))
513 }
514 (&ty::ty_infer(IntVar(v_id)), &ty::ty_uint(v)) => {
515 unify_integral_variable(this, this.a_is_expected(),
516 v_id, UintType(v))
517 }
518 (&ty::ty_uint(v), &ty::ty_infer(IntVar(v_id))) => {
519 unify_integral_variable(this, !this.a_is_expected(),
520 v_id, UintType(v))
521 }
522
523 // Relate floating-point variables to other types
524 (&ty::ty_infer(FloatVar(a_id)), &ty::ty_infer(FloatVar(b_id))) => {
525 try!(this.infcx().simple_vars(this.a_is_expected(), a_id, b_id));
526 Ok(a)
527 }
528 (&ty::ty_infer(FloatVar(v_id)), &ty::ty_float(v)) => {
529 unify_float_variable(this, this.a_is_expected(), v_id, v)
530 }
531 (&ty::ty_float(v), &ty::ty_infer(FloatVar(v_id))) => {
532 unify_float_variable(this, !this.a_is_expected(), v_id, v)
533 }
534
535 (&ty::ty_char, _) |
536 (&ty::ty_bool, _) |
537 (&ty::ty_int(_), _) |
538 (&ty::ty_uint(_), _) |
539 (&ty::ty_float(_), _) => {
540 if a == b {
541 Ok(a)
542 } else {
543 Err(ty::terr_sorts(expected_found(this, a, b)))
544 }
545 }
546
547 (&ty::ty_param(ref a_p), &ty::ty_param(ref b_p)) if
548 a_p.idx == b_p.idx && a_p.space == b_p.space => {
549 Ok(a)
550 }
551
552 (&ty::ty_enum(a_id, a_substs),
553 &ty::ty_enum(b_id, b_substs))
554 if a_id == b_id => {
555 let substs = try!(this.substs(a_id,
556 a_substs,
557 b_substs));
558 Ok(ty::mk_enum(tcx, a_id, tcx.mk_substs(substs)))
559 }
560
561 (&ty::ty_trait(ref a_),
562 &ty::ty_trait(ref b_)) => {
563 debug!("Trying to match traits {:?} and {:?}", a, b);
564 let principal = try!(this.binders(&a_.principal, &b_.principal));
565 let bounds = try!(this.existential_bounds(&a_.bounds, &b_.bounds));
566 Ok(ty::mk_trait(tcx, principal, bounds))
567 }
568
569 (&ty::ty_struct(a_id, a_substs), &ty::ty_struct(b_id, b_substs))
570 if a_id == b_id => {
571 let substs = try!(this.substs(a_id, a_substs, b_substs));
572 Ok(ty::mk_struct(tcx, a_id, tcx.mk_substs(substs)))
573 }
574
575 (&ty::ty_unboxed_closure(a_id, a_region, a_substs),
576 &ty::ty_unboxed_closure(b_id, b_region, b_substs))
577 if a_id == b_id => {
578 // All ty_unboxed_closure types with the same id represent
579 // the (anonymous) type of the same closure expression. So
580 // all of their regions should be equated.
581 let region = try!(this.equate().regions(*a_region, *b_region));
582 let substs = try!(this.substs_variances(None, a_substs, b_substs));
583 Ok(ty::mk_unboxed_closure(tcx, a_id, tcx.mk_region(region), tcx.mk_substs(substs)))
584 }
585
586 (&ty::ty_uniq(a_inner), &ty::ty_uniq(b_inner)) => {
587 let typ = try!(this.tys(a_inner, b_inner));
588 Ok(ty::mk_uniq(tcx, typ))
589 }
590
591 (&ty::ty_ptr(ref a_mt), &ty::ty_ptr(ref b_mt)) => {
592 let mt = try!(this.mts(a_mt, b_mt));
593 Ok(ty::mk_ptr(tcx, mt))
594 }
595
596 (&ty::ty_rptr(a_r, ref a_mt), &ty::ty_rptr(b_r, ref b_mt)) => {
597 let r = try!(this.contraregions(*a_r, *b_r));
598 // FIXME(14985) If we have mutable references to trait objects, we
599 // used to use covariant subtyping. I have preserved this behaviour,
600 // even though it is probably incorrect. So don't go down the usual
601 // path which would require invariance.
602 let mt = match (&a_mt.ty.sty, &b_mt.ty.sty) {
603 (&ty::ty_trait(..), &ty::ty_trait(..)) if a_mt.mutbl == b_mt.mutbl => {
604 let ty = try!(this.tys(a_mt.ty, b_mt.ty));
605 ty::mt { ty: ty, mutbl: a_mt.mutbl }
606 }
607 _ => try!(this.mts(a_mt, b_mt))
608 };
609 Ok(ty::mk_rptr(tcx, tcx.mk_region(r), mt))
610 }
611
612 (&ty::ty_vec(a_t, Some(sz_a)), &ty::ty_vec(b_t, Some(sz_b))) => {
613 this.tys(a_t, b_t).and_then(|t| {
614 if sz_a == sz_b {
615 Ok(ty::mk_vec(tcx, t, Some(sz_a)))
616 } else {
617 Err(ty::terr_fixed_array_size(expected_found(this, sz_a, sz_b)))
618 }
619 })
620 }
621
622 (&ty::ty_vec(a_t, sz_a), &ty::ty_vec(b_t, sz_b)) => {
623 this.tys(a_t, b_t).and_then(|t| {
624 if sz_a == sz_b {
625 Ok(ty::mk_vec(tcx, t, sz_a))
626 } else {
627 Err(ty::terr_sorts(expected_found(this, a, b)))
628 }
629 })
630 }
631
632 (&ty::ty_str, &ty::ty_str) => {
633 Ok(ty::mk_str(tcx))
634 }
635
636 (&ty::ty_tup(ref as_), &ty::ty_tup(ref bs)) => {
637 if as_.len() == bs.len() {
638 as_.iter().zip(bs.iter())
639 .map(|(a, b)| this.tys(*a, *b))
640 .collect::<Result<_, _>>()
641 .map(|ts| ty::mk_tup(tcx, ts))
642 } else if as_.len() != 0 && bs.len() != 0 {
643 Err(ty::terr_tuple_size(
644 expected_found(this, as_.len(), bs.len())))
645 } else {
646 Err(ty::terr_sorts(expected_found(this, a, b)))
647 }
648 }
649
650 (&ty::ty_bare_fn(a_opt_def_id, a_fty), &ty::ty_bare_fn(b_opt_def_id, b_fty))
651 if a_opt_def_id == b_opt_def_id =>
652 {
653 let fty = try!(this.bare_fn_tys(a_fty, b_fty));
654 Ok(ty::mk_bare_fn(tcx, a_opt_def_id, tcx.mk_bare_fn(fty)))
655 }
656
657 (&ty::ty_projection(ref a_data), &ty::ty_projection(ref b_data)) => {
658 let projection_ty = try!(this.projection_tys(a_data, b_data));
659 Ok(ty::mk_projection(tcx, projection_ty.trait_ref, projection_ty.item_name))
660 }
661
662 _ => Err(ty::terr_sorts(expected_found(this, a, b)))
663 };
664
665 fn unify_integral_variable<'tcx, C: Combine<'tcx>>(
666 this: &C,
667 vid_is_expected: bool,
668 vid: ty::IntVid,
669 val: ty::IntVarValue) -> cres<'tcx, Ty<'tcx>>
670 {
671 try!(this.infcx().simple_var_t(vid_is_expected, vid, val));
672 match val {
673 IntType(v) => Ok(ty::mk_mach_int(this.tcx(), v)),
674 UintType(v) => Ok(ty::mk_mach_uint(this.tcx(), v))
675 }
676 }
677
678 fn unify_float_variable<'tcx, C: Combine<'tcx>>(
679 this: &C,
680 vid_is_expected: bool,
681 vid: ty::FloatVid,
682 val: ast::FloatTy) -> cres<'tcx, Ty<'tcx>>
683 {
684 try!(this.infcx().simple_var_t(vid_is_expected, vid, val));
685 Ok(ty::mk_mach_float(this.tcx(), val))
686 }
687}
688
689impl<'f, 'tcx> CombineFields<'f, 'tcx> {
690 pub fn switch_expected(&self) -> CombineFields<'f, 'tcx> {
691 CombineFields {
692 a_is_expected: !self.a_is_expected,
693 ..(*self).clone()
694 }
695 }
696
697 fn equate(&self) -> Equate<'f, 'tcx> {
698 Equate((*self).clone())
699 }
700
701 fn sub(&self) -> Sub<'f, 'tcx> {
702 Sub((*self).clone())
703 }
704
705 pub fn instantiate(&self,
706 a_ty: Ty<'tcx>,
707 dir: RelationDir,
708 b_vid: ty::TyVid)
709 -> cres<'tcx, ()>
710 {
711 let tcx = self.infcx.tcx;
712 let mut stack = Vec::new();
713 stack.push((a_ty, dir, b_vid));
714 loop {
715 // For each turn of the loop, we extract a tuple
716 //
717 // (a_ty, dir, b_vid)
718 //
719 // to relate. Here dir is either SubtypeOf or
720 // SupertypeOf. The idea is that we should ensure that
721 // the type `a_ty` is a subtype or supertype (respectively) of the
722 // type to which `b_vid` is bound.
723 //
724 // If `b_vid` has not yet been instantiated with a type
725 // (which is always true on the first iteration, but not
726 // necessarily true on later iterations), we will first
727 // instantiate `b_vid` with a *generalized* version of
728 // `a_ty`. Generalization introduces other inference
729 // variables wherever subtyping could occur (at time of
730 // this writing, this means replacing free regions with
731 // region variables).
732 let (a_ty, dir, b_vid) = match stack.pop() {
733 None => break,
734 Some(e) => e,
735 };
736
737 debug!("instantiate(a_ty={} dir={:?} b_vid={})",
738 a_ty.repr(tcx),
739 dir,
740 b_vid.repr(tcx));
741
742 // Check whether `vid` has been instantiated yet. If not,
743 // make a generalized form of `ty` and instantiate with
744 // that.
745 let b_ty = self.infcx.type_variables.borrow().probe(b_vid);
746 let b_ty = match b_ty {
747 Some(t) => t, // ...already instantiated.
748 None => { // ...not yet instantiated:
749 // Generalize type if necessary.
750 let generalized_ty = try!(match dir {
751 EqTo => {
752 self.generalize(a_ty, b_vid, false)
753 }
754 SupertypeOf | SubtypeOf => {
755 self.generalize(a_ty, b_vid, true)
756 }
757 });
758 debug!("instantiate(a_ty={}, dir={:?}, \
759 b_vid={}, generalized_ty={})",
760 a_ty.repr(tcx), dir, b_vid.repr(tcx),
761 generalized_ty.repr(tcx));
762 self.infcx.type_variables
763 .borrow_mut()
764 .instantiate_and_push(
765 b_vid, generalized_ty, &mut stack);
766 generalized_ty
767 }
768 };
769
770 // The original triple was `(a_ty, dir, b_vid)` -- now we have
771 // resolved `b_vid` to `b_ty`, so apply `(a_ty, dir, b_ty)`:
772 //
773 // FIXME(#16847): This code is non-ideal because all these subtype
774 // relations wind up attributed to the same spans. We need
775 // to associate causes/spans with each of the relations in
776 // the stack to get this right.
777 match dir {
778 EqTo => {
779 try!(self.equate().tys(a_ty, b_ty));
780 }
781
782 SubtypeOf => {
783 try!(self.sub().tys(a_ty, b_ty));
784 }
785
786 SupertypeOf => {
787 try!(self.sub().contratys(a_ty, b_ty));
788 }
789 }
790 }
791
792 Ok(())
793 }
794
795 /// Attempts to generalize `ty` for the type variable `for_vid`. This checks for cycle -- that
796 /// is, whether the type `ty` references `for_vid`. If `make_region_vars` is true, it will also
797 /// replace all regions with fresh variables. Returns `ty_err` in the case of a cycle, `Ok`
798 /// otherwise.
799 fn generalize(&self,
800 ty: Ty<'tcx>,
801 for_vid: ty::TyVid,
802 make_region_vars: bool)
803 -> cres<'tcx, Ty<'tcx>>
804 {
805 let mut generalize = Generalizer { infcx: self.infcx,
806 span: self.trace.origin.span(),
807 for_vid: for_vid,
808 make_region_vars: make_region_vars,
809 cycle_detected: false };
810 let u = ty.fold_with(&mut generalize);
811 if generalize.cycle_detected {
812 Err(ty::terr_cyclic_ty)
813 } else {
814 Ok(u)
815 }
816 }
817}
818
819struct Generalizer<'cx, 'tcx:'cx> {
820 infcx: &'cx InferCtxt<'cx, 'tcx>,
821 span: Span,
822 for_vid: ty::TyVid,
823 make_region_vars: bool,
824 cycle_detected: bool,
825}
826
827impl<'cx, 'tcx> ty_fold::TypeFolder<'tcx> for Generalizer<'cx, 'tcx> {
828 fn tcx(&self) -> &ty::ctxt<'tcx> {
829 self.infcx.tcx
830 }
831
832 fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
833 // Check to see whether the type we are genealizing references
834 // `vid`. At the same time, also update any type variables to
835 // the values that they are bound to. This is needed to truly
836 // check for cycles, but also just makes things readable.
837 //
838 // (In particular, you could have something like `$0 = Box<$1>`
839 // where `$1` has already been instantiated with `Box<$0>`)
840 match t.sty {
841 ty::ty_infer(ty::TyVar(vid)) => {
842 if vid == self.for_vid {
843 self.cycle_detected = true;
844 self.tcx().types.err
845 } else {
846 match self.infcx.type_variables.borrow().probe(vid) {
847 Some(u) => self.fold_ty(u),
848 None => t,
849 }
850 }
851 }
852 _ => {
853 ty_fold::super_fold_ty(self, t)
854 }
855 }
856 }
857
858 fn fold_region(&mut self, r: ty::Region) -> ty::Region {
859 match r {
860 // Never make variables for regions bound within the type itself.
861 ty::ReLateBound(..) => { return r; }
862
863 // Early-bound regions should really have been substituted away before
864 // we get to this point.
865 ty::ReEarlyBound(..) => {
866 self.tcx().sess.span_bug(
867 self.span,
868 &format!("Encountered early bound region when generalizing: {}",
869 r.repr(self.tcx()))[]);
870 }
871
872 // Always make a fresh region variable for skolemized regions;
873 // the higher-ranked decision procedures rely on this.
874 ty::ReInfer(ty::ReSkolemized(..)) => { }
875
876 // For anything else, we make a region variable, unless we
877 // are *equating*, in which case it's just wasteful.
878 ty::ReEmpty |
879 ty::ReStatic |
880 ty::ReScope(..) |
881 ty::ReInfer(ty::ReVar(..)) |
882 ty::ReFree(..) => {
883 if !self.make_region_vars {
884 return r;
885 }
886 }
887 }
888
889 // FIXME: This is non-ideal because we don't give a
890 // very descriptive origin for this region variable.
891 self.infcx.next_region_var(MiscVariable(self.span))
892 }
893}