]> git.proxmox.com Git - rustc.git/blame - src/llvm/include/llvm/ADT/APFloat.h
Imported Upstream version 1.0.0~0alpha
[rustc.git] / src / llvm / include / llvm / ADT / APFloat.h
CommitLineData
1a4d82fc 1//===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
223e47cc
LB
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
1a4d82fc
JJ
9///
10/// \file
11/// \brief
12/// This file declares a class to represent arbitrary precision floating point
13/// values and provide a variety of arithmetic operations on them.
14///
223e47cc
LB
15//===----------------------------------------------------------------------===//
16
970d7e83
LB
17#ifndef LLVM_ADT_APFLOAT_H
18#define LLVM_ADT_APFLOAT_H
223e47cc 19
223e47cc
LB
20#include "llvm/ADT/APInt.h"
21
22namespace llvm {
23
1a4d82fc
JJ
24struct fltSemantics;
25class APSInt;
26class StringRef;
27
28/// Enum that represents what fraction of the LSB truncated bits of an fp number
29/// represent.
30///
31/// This essentially combines the roles of guard and sticky bits.
32enum lostFraction { // Example of truncated bits:
33 lfExactlyZero, // 000000
34 lfLessThanHalf, // 0xxxxx x's not all zero
35 lfExactlyHalf, // 100000
36 lfMoreThanHalf // 1xxxxx x's not all zero
37};
38
39/// \brief A self-contained host- and target-independent arbitrary-precision
40/// floating-point software implementation.
41///
42/// APFloat uses bignum integer arithmetic as provided by static functions in
43/// the APInt class. The library will work with bignum integers whose parts are
44/// any unsigned type at least 16 bits wide, but 64 bits is recommended.
45///
46/// Written for clarity rather than speed, in particular with a view to use in
47/// the front-end of a cross compiler so that target arithmetic can be correctly
48/// performed on the host. Performance should nonetheless be reasonable,
49/// particularly for its intended use. It may be useful as a base
50/// implementation for a run-time library during development of a faster
51/// target-specific one.
52///
53/// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
54/// implemented operations. Currently implemented operations are add, subtract,
55/// multiply, divide, fused-multiply-add, conversion-to-float,
56/// conversion-to-integer and conversion-from-integer. New rounding modes
57/// (e.g. away from zero) can be added with three or four lines of code.
58///
59/// Four formats are built-in: IEEE single precision, double precision,
60/// quadruple precision, and x87 80-bit extended double (when operating with
61/// full extended precision). Adding a new format that obeys IEEE semantics
62/// only requires adding two lines of code: a declaration and definition of the
63/// format.
64///
65/// All operations return the status of that operation as an exception bit-mask,
66/// so multiple operations can be done consecutively with their results or-ed
67/// together. The returned status can be useful for compiler diagnostics; e.g.,
68/// inexact, underflow and overflow can be easily diagnosed on constant folding,
69/// and compiler optimizers can determine what exceptions would be raised by
70/// folding operations and optimize, or perhaps not optimize, accordingly.
71///
72/// At present, underflow tininess is detected after rounding; it should be
73/// straight forward to add support for the before-rounding case too.
74///
75/// The library reads hexadecimal floating point numbers as per C99, and
76/// correctly rounds if necessary according to the specified rounding mode.
77/// Syntax is required to have been validated by the caller. It also converts
78/// floating point numbers to hexadecimal text as per the C99 %a and %A
79/// conversions. The output precision (or alternatively the natural minimal
80/// precision) can be specified; if the requested precision is less than the
81/// natural precision the output is correctly rounded for the specified rounding
82/// mode.
83///
84/// It also reads decimal floating point numbers and correctly rounds according
85/// to the specified rounding mode.
86///
87/// Conversion to decimal text is not currently implemented.
88///
89/// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
90/// signed exponent, and the significand as an array of integer parts. After
91/// normalization of a number of precision P the exponent is within the range of
92/// the format, and if the number is not denormal the P-th bit of the
93/// significand is set as an explicit integer bit. For denormals the most
94/// significant bit is shifted right so that the exponent is maintained at the
95/// format's minimum, so that the smallest denormal has just the least
96/// significant bit of the significand set. The sign of zeroes and infinities
97/// is significant; the exponent and significand of such numbers is not stored,
98/// but has a known implicit (deterministic) value: 0 for the significands, 0
99/// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and
100/// significand are deterministic, although not really meaningful, and preserved
101/// in non-conversion operations. The exponent is implicitly all 1 bits.
102///
103/// APFloat does not provide any exception handling beyond default exception
104/// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
105/// by encoding Signaling NaNs with the first bit of its trailing significand as
106/// 0.
107///
108/// TODO
109/// ====
110///
111/// Some features that may or may not be worth adding:
112///
113/// Binary to decimal conversion (hard).
114///
115/// Optional ability to detect underflow tininess before rounding.
116///
117/// New formats: x87 in single and double precision mode (IEEE apart from
118/// extended exponent range) (hard).
119///
120/// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
121///
122class APFloat {
123public:
124
125 /// A signed type to represent a floating point numbers unbiased exponent.
126 typedef signed short ExponentType;
127
128 /// \name Floating Point Semantics.
129 /// @{
130
131 static const fltSemantics IEEEhalf;
132 static const fltSemantics IEEEsingle;
133 static const fltSemantics IEEEdouble;
134 static const fltSemantics IEEEquad;
135 static const fltSemantics PPCDoubleDouble;
136 static const fltSemantics x87DoubleExtended;
137
138 /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
139 /// anything real.
140 static const fltSemantics Bogus;
141
142 /// @}
143
144 static unsigned int semanticsPrecision(const fltSemantics &);
145
146 /// IEEE-754R 5.11: Floating Point Comparison Relations.
147 enum cmpResult {
148 cmpLessThan,
149 cmpEqual,
150 cmpGreaterThan,
151 cmpUnordered
223e47cc
LB
152 };
153
1a4d82fc
JJ
154 /// IEEE-754R 4.3: Rounding-direction attributes.
155 enum roundingMode {
156 rmNearestTiesToEven,
157 rmTowardPositive,
158 rmTowardNegative,
159 rmTowardZero,
160 rmNearestTiesToAway
161 };
223e47cc 162
1a4d82fc
JJ
163 /// IEEE-754R 7: Default exception handling.
164 ///
165 /// opUnderflow or opOverflow are always returned or-ed with opInexact.
166 enum opStatus {
167 opOK = 0x00,
168 opInvalidOp = 0x01,
169 opDivByZero = 0x02,
170 opOverflow = 0x04,
171 opUnderflow = 0x08,
172 opInexact = 0x10
173 };
223e47cc 174
1a4d82fc
JJ
175 /// Category of internally-represented number.
176 enum fltCategory {
177 fcInfinity,
178 fcNaN,
179 fcNormal,
180 fcZero
223e47cc 181 };
970d7e83 182
1a4d82fc
JJ
183 /// Convenience enum used to construct an uninitialized APFloat.
184 enum uninitializedTag {
185 uninitialized
186 };
223e47cc 187
1a4d82fc
JJ
188 /// \name Constructors
189 /// @{
190
191 APFloat(const fltSemantics &); // Default construct to 0.0
192 APFloat(const fltSemantics &, StringRef);
193 APFloat(const fltSemantics &, integerPart);
194 APFloat(const fltSemantics &, uninitializedTag);
195 APFloat(const fltSemantics &, const APInt &);
196 explicit APFloat(double d);
197 explicit APFloat(float f);
198 APFloat(const APFloat &);
199 APFloat(APFloat &&);
200 ~APFloat();
201
202 /// @}
203
204 /// \brief Returns whether this instance allocated memory.
205 bool needsCleanup() const { return partCount() > 1; }
206
207 /// \name Convenience "constructors"
208 /// @{
209
210 /// Factory for Positive and Negative Zero.
211 ///
212 /// \param Negative True iff the number should be negative.
213 static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
214 APFloat Val(Sem, uninitialized);
215 Val.makeZero(Negative);
216 return Val;
217 }
218
219 /// Factory for Positive and Negative Infinity.
220 ///
221 /// \param Negative True iff the number should be negative.
222 static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
223 APFloat Val(Sem, uninitialized);
224 Val.makeInf(Negative);
225 return Val;
226 }
227
228 /// Factory for QNaN values.
229 ///
230 /// \param Negative - True iff the NaN generated should be negative.
231 /// \param type - The unspecified fill bits for creating the NaN, 0 by
232 /// default. The value is truncated as necessary.
233 static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
234 unsigned type = 0) {
235 if (type) {
236 APInt fill(64, type);
237 return getQNaN(Sem, Negative, &fill);
238 } else {
239 return getQNaN(Sem, Negative, nullptr);
240 }
241 }
242
243 /// Factory for QNaN values.
244 static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
245 const APInt *payload = nullptr) {
246 return makeNaN(Sem, false, Negative, payload);
247 }
248
249 /// Factory for SNaN values.
250 static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
251 const APInt *payload = nullptr) {
252 return makeNaN(Sem, true, Negative, payload);
253 }
254
255 /// Returns the largest finite number in the given semantics.
256 ///
257 /// \param Negative - True iff the number should be negative
258 static APFloat getLargest(const fltSemantics &Sem, bool Negative = false);
259
260 /// Returns the smallest (by magnitude) finite number in the given semantics.
261 /// Might be denormalized, which implies a relative loss of precision.
262 ///
263 /// \param Negative - True iff the number should be negative
264 static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false);
265
266 /// Returns the smallest (by magnitude) normalized finite number in the given
267 /// semantics.
268 ///
269 /// \param Negative - True iff the number should be negative
270 static APFloat getSmallestNormalized(const fltSemantics &Sem,
271 bool Negative = false);
272
273 /// Returns a float which is bitcasted from an all one value int.
274 ///
275 /// \param BitWidth - Select float type
276 /// \param isIEEE - If 128 bit number, select between PPC and IEEE
277 static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);
278
279 /// @}
280
281 /// Used to insert APFloat objects, or objects that contain APFloat objects,
282 /// into FoldingSets.
283 void Profile(FoldingSetNodeID &NID) const;
284
285 /// \brief Used by the Bitcode serializer to emit APInts to Bitcode.
286 void Emit(Serializer &S) const;
287
288 /// \brief Used by the Bitcode deserializer to deserialize APInts.
289 static APFloat ReadVal(Deserializer &D);
290
291 /// \name Arithmetic
292 /// @{
293
294 opStatus add(const APFloat &, roundingMode);
295 opStatus subtract(const APFloat &, roundingMode);
296 opStatus multiply(const APFloat &, roundingMode);
297 opStatus divide(const APFloat &, roundingMode);
298 /// IEEE remainder.
299 opStatus remainder(const APFloat &);
300 /// C fmod, or llvm frem.
301 opStatus mod(const APFloat &, roundingMode);
302 opStatus fusedMultiplyAdd(const APFloat &, const APFloat &, roundingMode);
303 opStatus roundToIntegral(roundingMode);
304 /// IEEE-754R 5.3.1: nextUp/nextDown.
305 opStatus next(bool nextDown);
306
307 /// @}
308
309 /// \name Sign operations.
310 /// @{
311
312 void changeSign();
313 void clearSign();
314 void copySign(const APFloat &);
315
316 /// @}
317
318 /// \name Conversions
319 /// @{
320
321 opStatus convert(const fltSemantics &, roundingMode, bool *);
322 opStatus convertToInteger(integerPart *, unsigned int, bool, roundingMode,
323 bool *) const;
324 opStatus convertToInteger(APSInt &, roundingMode, bool *) const;
325 opStatus convertFromAPInt(const APInt &, bool, roundingMode);
326 opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
327 bool, roundingMode);
328 opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
329 bool, roundingMode);
330 opStatus convertFromString(StringRef, roundingMode);
331 APInt bitcastToAPInt() const;
332 double convertToDouble() const;
333 float convertToFloat() const;
334
335 /// @}
336
337 /// The definition of equality is not straightforward for floating point, so
338 /// we won't use operator==. Use one of the following, or write whatever it
339 /// is you really mean.
340 bool operator==(const APFloat &) const LLVM_DELETED_FUNCTION;
341
342 /// IEEE comparison with another floating point number (NaNs compare
343 /// unordered, 0==-0).
344 cmpResult compare(const APFloat &) const;
345
346 /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
347 bool bitwiseIsEqual(const APFloat &) const;
348
349 /// Write out a hexadecimal representation of the floating point value to DST,
350 /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
351 /// Return the number of characters written, excluding the terminating NUL.
352 unsigned int convertToHexString(char *dst, unsigned int hexDigits,
353 bool upperCase, roundingMode) const;
354
355 /// \name IEEE-754R 5.7.2 General operations.
356 /// @{
357
358 /// IEEE-754R isSignMinus: Returns true if and only if the current value is
359 /// negative.
360 ///
361 /// This applies to zeros and NaNs as well.
362 bool isNegative() const { return sign; }
363
364 /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
365 ///
366 /// This implies that the current value of the float is not zero, subnormal,
367 /// infinite, or NaN following the definition of normality from IEEE-754R.
368 bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
369
370 /// Returns true if and only if the current value is zero, subnormal, or
371 /// normal.
372 ///
373 /// This means that the value is not infinite or NaN.
374 bool isFinite() const { return !isNaN() && !isInfinity(); }
375
376 /// Returns true if and only if the float is plus or minus zero.
377 bool isZero() const { return category == fcZero; }
378
379 /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
380 /// denormal.
381 bool isDenormal() const;
382
383 /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
384 bool isInfinity() const { return category == fcInfinity; }
385
386 /// Returns true if and only if the float is a quiet or signaling NaN.
387 bool isNaN() const { return category == fcNaN; }
388
389 /// Returns true if and only if the float is a signaling NaN.
390 bool isSignaling() const;
391
392 /// @}
393
394 /// \name Simple Queries
395 /// @{
396
397 fltCategory getCategory() const { return category; }
398 const fltSemantics &getSemantics() const { return *semantics; }
399 bool isNonZero() const { return category != fcZero; }
400 bool isFiniteNonZero() const { return isFinite() && !isZero(); }
401 bool isPosZero() const { return isZero() && !isNegative(); }
402 bool isNegZero() const { return isZero() && isNegative(); }
403
404 /// Returns true if and only if the number has the smallest possible non-zero
405 /// magnitude in the current semantics.
406 bool isSmallest() const;
407
408 /// Returns true if and only if the number has the largest possible finite
409 /// magnitude in the current semantics.
410 bool isLargest() const;
411
412 /// @}
413
414 APFloat &operator=(const APFloat &);
415 APFloat &operator=(APFloat &&);
416
417 /// \brief Overload to compute a hash code for an APFloat value.
418 ///
419 /// Note that the use of hash codes for floating point values is in general
420 /// frought with peril. Equality is hard to define for these values. For
421 /// example, should negative and positive zero hash to different codes? Are
422 /// they equal or not? This hash value implementation specifically
423 /// emphasizes producing different codes for different inputs in order to
424 /// be used in canonicalization and memoization. As such, equality is
425 /// bitwiseIsEqual, and 0 != -0.
426 friend hash_code hash_value(const APFloat &Arg);
427
428 /// Converts this value into a decimal string.
429 ///
430 /// \param FormatPrecision The maximum number of digits of
431 /// precision to output. If there are fewer digits available,
432 /// zero padding will not be used unless the value is
433 /// integral and small enough to be expressed in
434 /// FormatPrecision digits. 0 means to use the natural
435 /// precision of the number.
436 /// \param FormatMaxPadding The maximum number of zeros to
437 /// consider inserting before falling back to scientific
438 /// notation. 0 means to always use scientific notation.
439 ///
440 /// Number Precision MaxPadding Result
441 /// ------ --------- ---------- ------
442 /// 1.01E+4 5 2 10100
443 /// 1.01E+4 4 2 1.01E+4
444 /// 1.01E+4 5 1 1.01E+4
445 /// 1.01E-2 5 2 0.0101
446 /// 1.01E-2 4 2 0.0101
447 /// 1.01E-2 4 1 1.01E-2
448 void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
449 unsigned FormatMaxPadding = 3) const;
450
451 /// If this value has an exact multiplicative inverse, store it in inv and
452 /// return true.
453 bool getExactInverse(APFloat *inv) const;
454
455private:
456
457 /// \name Simple Queries
458 /// @{
459
460 integerPart *significandParts();
461 const integerPart *significandParts() const;
462 unsigned int partCount() const;
463
464 /// @}
465
466 /// \name Significand operations.
467 /// @{
468
469 integerPart addSignificand(const APFloat &);
470 integerPart subtractSignificand(const APFloat &, integerPart);
471 lostFraction addOrSubtractSignificand(const APFloat &, bool subtract);
472 lostFraction multiplySignificand(const APFloat &, const APFloat *);
473 lostFraction divideSignificand(const APFloat &);
474 void incrementSignificand();
475 void initialize(const fltSemantics *);
476 void shiftSignificandLeft(unsigned int);
477 lostFraction shiftSignificandRight(unsigned int);
478 unsigned int significandLSB() const;
479 unsigned int significandMSB() const;
480 void zeroSignificand();
481 /// Return true if the significand excluding the integral bit is all ones.
482 bool isSignificandAllOnes() const;
483 /// Return true if the significand excluding the integral bit is all zeros.
484 bool isSignificandAllZeros() const;
485
486 /// @}
487
488 /// \name Arithmetic on special values.
489 /// @{
490
491 opStatus addOrSubtractSpecials(const APFloat &, bool subtract);
492 opStatus divideSpecials(const APFloat &);
493 opStatus multiplySpecials(const APFloat &);
494 opStatus modSpecials(const APFloat &);
495
496 /// @}
497
498 /// \name Special value setters.
499 /// @{
500
501 void makeLargest(bool Neg = false);
502 void makeSmallest(bool Neg = false);
503 void makeNaN(bool SNaN = false, bool Neg = false,
504 const APInt *fill = nullptr);
505 static APFloat makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
506 const APInt *fill);
507 void makeInf(bool Neg = false);
508 void makeZero(bool Neg = false);
509
510 /// @}
511
512 /// \name Miscellany
513 /// @{
514
515 bool convertFromStringSpecials(StringRef str);
516 opStatus normalize(roundingMode, lostFraction);
517 opStatus addOrSubtract(const APFloat &, roundingMode, bool subtract);
518 cmpResult compareAbsoluteValue(const APFloat &) const;
519 opStatus handleOverflow(roundingMode);
520 bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
521 opStatus convertToSignExtendedInteger(integerPart *, unsigned int, bool,
522 roundingMode, bool *) const;
523 opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
524 roundingMode);
525 opStatus convertFromHexadecimalString(StringRef, roundingMode);
526 opStatus convertFromDecimalString(StringRef, roundingMode);
527 char *convertNormalToHexString(char *, unsigned int, bool,
528 roundingMode) const;
529 opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
530 roundingMode);
531
532 /// @}
533
534 APInt convertHalfAPFloatToAPInt() const;
535 APInt convertFloatAPFloatToAPInt() const;
536 APInt convertDoubleAPFloatToAPInt() const;
537 APInt convertQuadrupleAPFloatToAPInt() const;
538 APInt convertF80LongDoubleAPFloatToAPInt() const;
539 APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
540 void initFromAPInt(const fltSemantics *Sem, const APInt &api);
541 void initFromHalfAPInt(const APInt &api);
542 void initFromFloatAPInt(const APInt &api);
543 void initFromDoubleAPInt(const APInt &api);
544 void initFromQuadrupleAPInt(const APInt &api);
545 void initFromF80LongDoubleAPInt(const APInt &api);
546 void initFromPPCDoubleDoubleAPInt(const APInt &api);
547
548 void assign(const APFloat &);
549 void copySignificand(const APFloat &);
550 void freeSignificand();
551
552 /// The semantics that this value obeys.
553 const fltSemantics *semantics;
554
555 /// A binary fraction with an explicit integer bit.
556 ///
557 /// The significand must be at least one bit wider than the target precision.
558 union Significand {
559 integerPart part;
560 integerPart *parts;
561 } significand;
562
563 /// The signed unbiased exponent of the value.
564 ExponentType exponent;
565
566 /// What kind of floating point number this is.
567 ///
568 /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
569 /// Using the extra bit keeps it from failing under VisualStudio.
570 fltCategory category : 3;
571
572 /// Sign bit of the number.
573 unsigned int sign : 1;
574};
575
576/// See friend declaration above.
577///
578/// This additional declaration is required in order to compile LLVM with IBM
579/// xlC compiler.
580hash_code hash_value(const APFloat &Arg);
581} // namespace llvm
582
583#endif // LLVM_ADT_APFLOAT_H