]> git.proxmox.com Git - rustc.git/blame - src/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
Imported Upstream version 1.0.0~0alpha
[rustc.git] / src / llvm / lib / Transforms / InstCombine / InstCombineCompares.cpp
CommitLineData
223e47cc
LB
1//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitICmp and visitFCmp functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
223e47cc
LB
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/Analysis/MemoryBuiltins.h"
1a4d82fc 18#include "llvm/IR/ConstantRange.h"
970d7e83 19#include "llvm/IR/DataLayout.h"
1a4d82fc 20#include "llvm/IR/GetElementPtrTypeIterator.h"
970d7e83 21#include "llvm/IR/IntrinsicInst.h"
1a4d82fc 22#include "llvm/IR/PatternMatch.h"
970d7e83 23#include "llvm/Target/TargetLibraryInfo.h"
223e47cc
LB
24using namespace llvm;
25using namespace PatternMatch;
26
1a4d82fc
JJ
27#define DEBUG_TYPE "instcombine"
28
223e47cc
LB
29static ConstantInt *getOne(Constant *C) {
30 return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
31}
32
223e47cc
LB
33static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
34 return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
35}
36
37static bool HasAddOverflow(ConstantInt *Result,
38 ConstantInt *In1, ConstantInt *In2,
39 bool IsSigned) {
40 if (!IsSigned)
41 return Result->getValue().ult(In1->getValue());
42
43 if (In2->isNegative())
44 return Result->getValue().sgt(In1->getValue());
45 return Result->getValue().slt(In1->getValue());
46}
47
48/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
49/// overflowed for this type.
50static bool AddWithOverflow(Constant *&Result, Constant *In1,
51 Constant *In2, bool IsSigned = false) {
52 Result = ConstantExpr::getAdd(In1, In2);
53
54 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
55 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
56 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
57 if (HasAddOverflow(ExtractElement(Result, Idx),
58 ExtractElement(In1, Idx),
59 ExtractElement(In2, Idx),
60 IsSigned))
61 return true;
62 }
63 return false;
64 }
65
66 return HasAddOverflow(cast<ConstantInt>(Result),
67 cast<ConstantInt>(In1), cast<ConstantInt>(In2),
68 IsSigned);
69}
70
71static bool HasSubOverflow(ConstantInt *Result,
72 ConstantInt *In1, ConstantInt *In2,
73 bool IsSigned) {
74 if (!IsSigned)
75 return Result->getValue().ugt(In1->getValue());
76
77 if (In2->isNegative())
78 return Result->getValue().slt(In1->getValue());
79
80 return Result->getValue().sgt(In1->getValue());
81}
82
83/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
84/// overflowed for this type.
85static bool SubWithOverflow(Constant *&Result, Constant *In1,
86 Constant *In2, bool IsSigned = false) {
87 Result = ConstantExpr::getSub(In1, In2);
88
89 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
90 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
91 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
92 if (HasSubOverflow(ExtractElement(Result, Idx),
93 ExtractElement(In1, Idx),
94 ExtractElement(In2, Idx),
95 IsSigned))
96 return true;
97 }
98 return false;
99 }
100
101 return HasSubOverflow(cast<ConstantInt>(Result),
102 cast<ConstantInt>(In1), cast<ConstantInt>(In2),
103 IsSigned);
104}
105
106/// isSignBitCheck - Given an exploded icmp instruction, return true if the
107/// comparison only checks the sign bit. If it only checks the sign bit, set
108/// TrueIfSigned if the result of the comparison is true when the input value is
109/// signed.
110static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
111 bool &TrueIfSigned) {
112 switch (pred) {
113 case ICmpInst::ICMP_SLT: // True if LHS s< 0
114 TrueIfSigned = true;
115 return RHS->isZero();
116 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
117 TrueIfSigned = true;
118 return RHS->isAllOnesValue();
119 case ICmpInst::ICMP_SGT: // True if LHS s> -1
120 TrueIfSigned = false;
121 return RHS->isAllOnesValue();
122 case ICmpInst::ICMP_UGT:
123 // True if LHS u> RHS and RHS == high-bit-mask - 1
124 TrueIfSigned = true;
125 return RHS->isMaxValue(true);
126 case ICmpInst::ICMP_UGE:
127 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
128 TrueIfSigned = true;
129 return RHS->getValue().isSignBit();
130 default:
131 return false;
132 }
133}
134
1a4d82fc
JJ
135/// Returns true if the exploded icmp can be expressed as a signed comparison
136/// to zero and updates the predicate accordingly.
137/// The signedness of the comparison is preserved.
138static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
139 if (!ICmpInst::isSigned(pred))
140 return false;
141
142 if (RHS->isZero())
143 return ICmpInst::isRelational(pred);
144
145 if (RHS->isOne()) {
146 if (pred == ICmpInst::ICMP_SLT) {
147 pred = ICmpInst::ICMP_SLE;
148 return true;
149 }
150 } else if (RHS->isAllOnesValue()) {
151 if (pred == ICmpInst::ICMP_SGT) {
152 pred = ICmpInst::ICMP_SGE;
153 return true;
154 }
155 }
156
157 return false;
158}
159
223e47cc
LB
160// isHighOnes - Return true if the constant is of the form 1+0+.
161// This is the same as lowones(~X).
162static bool isHighOnes(const ConstantInt *CI) {
163 return (~CI->getValue() + 1).isPowerOf2();
164}
165
166/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
167/// set of known zero and one bits, compute the maximum and minimum values that
168/// could have the specified known zero and known one bits, returning them in
169/// min/max.
170static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
171 const APInt& KnownOne,
172 APInt& Min, APInt& Max) {
173 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
174 KnownZero.getBitWidth() == Min.getBitWidth() &&
175 KnownZero.getBitWidth() == Max.getBitWidth() &&
176 "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
177 APInt UnknownBits = ~(KnownZero|KnownOne);
178
179 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
180 // bit if it is unknown.
181 Min = KnownOne;
182 Max = KnownOne|UnknownBits;
183
184 if (UnknownBits.isNegative()) { // Sign bit is unknown
185 Min.setBit(Min.getBitWidth()-1);
186 Max.clearBit(Max.getBitWidth()-1);
187 }
188}
189
190// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
191// a set of known zero and one bits, compute the maximum and minimum values that
192// could have the specified known zero and known one bits, returning them in
193// min/max.
194static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
195 const APInt &KnownOne,
196 APInt &Min, APInt &Max) {
197 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
198 KnownZero.getBitWidth() == Min.getBitWidth() &&
199 KnownZero.getBitWidth() == Max.getBitWidth() &&
200 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
201 APInt UnknownBits = ~(KnownZero|KnownOne);
202
203 // The minimum value is when the unknown bits are all zeros.
204 Min = KnownOne;
205 // The maximum value is when the unknown bits are all ones.
206 Max = KnownOne|UnknownBits;
207}
208
209
210
211/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
212/// cmp pred (load (gep GV, ...)), cmpcst
213/// where GV is a global variable with a constant initializer. Try to simplify
214/// this into some simple computation that does not need the load. For example
215/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
216///
217/// If AndCst is non-null, then the loaded value is masked with that constant
218/// before doing the comparison. This handles cases like "A[i]&4 == 0".
219Instruction *InstCombiner::
220FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
221 CmpInst &ICI, ConstantInt *AndCst) {
222 // We need TD information to know the pointer size unless this is inbounds.
1a4d82fc
JJ
223 if (!GEP->isInBounds() && !DL)
224 return nullptr;
223e47cc
LB
225
226 Constant *Init = GV->getInitializer();
227 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
1a4d82fc
JJ
228 return nullptr;
229
223e47cc 230 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
1a4d82fc 231 if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays.
223e47cc
LB
232
233 // There are many forms of this optimization we can handle, for now, just do
234 // the simple index into a single-dimensional array.
235 //
236 // Require: GEP GV, 0, i {{, constant indices}}
237 if (GEP->getNumOperands() < 3 ||
238 !isa<ConstantInt>(GEP->getOperand(1)) ||
239 !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
240 isa<Constant>(GEP->getOperand(2)))
1a4d82fc 241 return nullptr;
223e47cc
LB
242
243 // Check that indices after the variable are constants and in-range for the
244 // type they index. Collect the indices. This is typically for arrays of
245 // structs.
246 SmallVector<unsigned, 4> LaterIndices;
247
248 Type *EltTy = Init->getType()->getArrayElementType();
249 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
250 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
1a4d82fc 251 if (!Idx) return nullptr; // Variable index.
223e47cc
LB
252
253 uint64_t IdxVal = Idx->getZExtValue();
1a4d82fc 254 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
223e47cc
LB
255
256 if (StructType *STy = dyn_cast<StructType>(EltTy))
257 EltTy = STy->getElementType(IdxVal);
258 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
1a4d82fc 259 if (IdxVal >= ATy->getNumElements()) return nullptr;
223e47cc
LB
260 EltTy = ATy->getElementType();
261 } else {
1a4d82fc 262 return nullptr; // Unknown type.
223e47cc
LB
263 }
264
265 LaterIndices.push_back(IdxVal);
266 }
267
268 enum { Overdefined = -3, Undefined = -2 };
269
270 // Variables for our state machines.
271
272 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
273 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
274 // and 87 is the second (and last) index. FirstTrueElement is -2 when
275 // undefined, otherwise set to the first true element. SecondTrueElement is
276 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
277 int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
278
279 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
280 // form "i != 47 & i != 87". Same state transitions as for true elements.
281 int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
282
283 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
284 /// define a state machine that triggers for ranges of values that the index
285 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
286 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
287 /// index in the range (inclusive). We use -2 for undefined here because we
288 /// use relative comparisons and don't want 0-1 to match -1.
289 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
290
291 // MagicBitvector - This is a magic bitvector where we set a bit if the
292 // comparison is true for element 'i'. If there are 64 elements or less in
293 // the array, this will fully represent all the comparison results.
294 uint64_t MagicBitvector = 0;
295
296
297 // Scan the array and see if one of our patterns matches.
298 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
299 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
300 Constant *Elt = Init->getAggregateElement(i);
1a4d82fc 301 if (!Elt) return nullptr;
223e47cc
LB
302
303 // If this is indexing an array of structures, get the structure element.
304 if (!LaterIndices.empty())
305 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
306
307 // If the element is masked, handle it.
308 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
309
310 // Find out if the comparison would be true or false for the i'th element.
311 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
1a4d82fc 312 CompareRHS, DL, TLI);
223e47cc
LB
313 // If the result is undef for this element, ignore it.
314 if (isa<UndefValue>(C)) {
315 // Extend range state machines to cover this element in case there is an
316 // undef in the middle of the range.
317 if (TrueRangeEnd == (int)i-1)
318 TrueRangeEnd = i;
319 if (FalseRangeEnd == (int)i-1)
320 FalseRangeEnd = i;
321 continue;
322 }
323
324 // If we can't compute the result for any of the elements, we have to give
325 // up evaluating the entire conditional.
1a4d82fc 326 if (!isa<ConstantInt>(C)) return nullptr;
223e47cc
LB
327
328 // Otherwise, we know if the comparison is true or false for this element,
329 // update our state machines.
330 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
331
332 // State machine for single/double/range index comparison.
333 if (IsTrueForElt) {
334 // Update the TrueElement state machine.
335 if (FirstTrueElement == Undefined)
336 FirstTrueElement = TrueRangeEnd = i; // First true element.
337 else {
338 // Update double-compare state machine.
339 if (SecondTrueElement == Undefined)
340 SecondTrueElement = i;
341 else
342 SecondTrueElement = Overdefined;
343
344 // Update range state machine.
345 if (TrueRangeEnd == (int)i-1)
346 TrueRangeEnd = i;
347 else
348 TrueRangeEnd = Overdefined;
349 }
350 } else {
351 // Update the FalseElement state machine.
352 if (FirstFalseElement == Undefined)
353 FirstFalseElement = FalseRangeEnd = i; // First false element.
354 else {
355 // Update double-compare state machine.
356 if (SecondFalseElement == Undefined)
357 SecondFalseElement = i;
358 else
359 SecondFalseElement = Overdefined;
360
361 // Update range state machine.
362 if (FalseRangeEnd == (int)i-1)
363 FalseRangeEnd = i;
364 else
365 FalseRangeEnd = Overdefined;
366 }
367 }
368
369
370 // If this element is in range, update our magic bitvector.
371 if (i < 64 && IsTrueForElt)
372 MagicBitvector |= 1ULL << i;
373
374 // If all of our states become overdefined, bail out early. Since the
375 // predicate is expensive, only check it every 8 elements. This is only
376 // really useful for really huge arrays.
377 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
378 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
379 FalseRangeEnd == Overdefined)
1a4d82fc 380 return nullptr;
223e47cc
LB
381 }
382
383 // Now that we've scanned the entire array, emit our new comparison(s). We
384 // order the state machines in complexity of the generated code.
385 Value *Idx = GEP->getOperand(2);
386
387 // If the index is larger than the pointer size of the target, truncate the
388 // index down like the GEP would do implicitly. We don't have to do this for
389 // an inbounds GEP because the index can't be out of range.
1a4d82fc
JJ
390 if (!GEP->isInBounds()) {
391 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
392 unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
393 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
394 Idx = Builder->CreateTrunc(Idx, IntPtrTy);
395 }
223e47cc
LB
396
397 // If the comparison is only true for one or two elements, emit direct
398 // comparisons.
399 if (SecondTrueElement != Overdefined) {
400 // None true -> false.
401 if (FirstTrueElement == Undefined)
1a4d82fc 402 return ReplaceInstUsesWith(ICI, Builder->getFalse());
223e47cc
LB
403
404 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
405
406 // True for one element -> 'i == 47'.
407 if (SecondTrueElement == Undefined)
408 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
409
410 // True for two elements -> 'i == 47 | i == 72'.
411 Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
412 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
413 Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
414 return BinaryOperator::CreateOr(C1, C2);
415 }
416
417 // If the comparison is only false for one or two elements, emit direct
418 // comparisons.
419 if (SecondFalseElement != Overdefined) {
420 // None false -> true.
421 if (FirstFalseElement == Undefined)
1a4d82fc 422 return ReplaceInstUsesWith(ICI, Builder->getTrue());
223e47cc
LB
423
424 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
425
426 // False for one element -> 'i != 47'.
427 if (SecondFalseElement == Undefined)
428 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
429
430 // False for two elements -> 'i != 47 & i != 72'.
431 Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
432 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
433 Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
434 return BinaryOperator::CreateAnd(C1, C2);
435 }
436
437 // If the comparison can be replaced with a range comparison for the elements
438 // where it is true, emit the range check.
439 if (TrueRangeEnd != Overdefined) {
440 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
441
442 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
443 if (FirstTrueElement) {
444 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
445 Idx = Builder->CreateAdd(Idx, Offs);
446 }
447
448 Value *End = ConstantInt::get(Idx->getType(),
449 TrueRangeEnd-FirstTrueElement+1);
450 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
451 }
452
453 // False range check.
454 if (FalseRangeEnd != Overdefined) {
455 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
456 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
457 if (FirstFalseElement) {
458 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
459 Idx = Builder->CreateAdd(Idx, Offs);
460 }
461
462 Value *End = ConstantInt::get(Idx->getType(),
463 FalseRangeEnd-FirstFalseElement);
464 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
465 }
466
467
1a4d82fc 468 // If a magic bitvector captures the entire comparison state
223e47cc
LB
469 // of this load, replace it with computation that does:
470 // ((magic_cst >> i) & 1) != 0
1a4d82fc
JJ
471 {
472 Type *Ty = nullptr;
473
474 // Look for an appropriate type:
475 // - The type of Idx if the magic fits
476 // - The smallest fitting legal type if we have a DataLayout
477 // - Default to i32
478 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
479 Ty = Idx->getType();
480 else if (DL)
481 Ty = DL->getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
482 else if (ArrayElementCount <= 32)
223e47cc 483 Ty = Type::getInt32Ty(Init->getContext());
1a4d82fc
JJ
484
485 if (Ty) {
486 Value *V = Builder->CreateIntCast(Idx, Ty, false);
487 V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
488 V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
489 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
490 }
223e47cc
LB
491 }
492
1a4d82fc 493 return nullptr;
223e47cc
LB
494}
495
496
497/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
498/// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
499/// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
500/// be complex, and scales are involved. The above expression would also be
501/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
502/// This later form is less amenable to optimization though, and we are allowed
503/// to generate the first by knowing that pointer arithmetic doesn't overflow.
504///
505/// If we can't emit an optimized form for this expression, this returns null.
506///
507static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
1a4d82fc 508 const DataLayout &DL = *IC.getDataLayout();
223e47cc
LB
509 gep_type_iterator GTI = gep_type_begin(GEP);
510
511 // Check to see if this gep only has a single variable index. If so, and if
512 // any constant indices are a multiple of its scale, then we can compute this
513 // in terms of the scale of the variable index. For example, if the GEP
514 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
515 // because the expression will cross zero at the same point.
516 unsigned i, e = GEP->getNumOperands();
517 int64_t Offset = 0;
518 for (i = 1; i != e; ++i, ++GTI) {
519 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
520 // Compute the aggregate offset of constant indices.
521 if (CI->isZero()) continue;
522
523 // Handle a struct index, which adds its field offset to the pointer.
524 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1a4d82fc 525 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
223e47cc 526 } else {
1a4d82fc 527 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
223e47cc
LB
528 Offset += Size*CI->getSExtValue();
529 }
530 } else {
531 // Found our variable index.
532 break;
533 }
534 }
535
536 // If there are no variable indices, we must have a constant offset, just
537 // evaluate it the general way.
1a4d82fc 538 if (i == e) return nullptr;
223e47cc
LB
539
540 Value *VariableIdx = GEP->getOperand(i);
541 // Determine the scale factor of the variable element. For example, this is
542 // 4 if the variable index is into an array of i32.
1a4d82fc 543 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
223e47cc
LB
544
545 // Verify that there are no other variable indices. If so, emit the hard way.
546 for (++i, ++GTI; i != e; ++i, ++GTI) {
547 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
1a4d82fc 548 if (!CI) return nullptr;
223e47cc
LB
549
550 // Compute the aggregate offset of constant indices.
551 if (CI->isZero()) continue;
552
553 // Handle a struct index, which adds its field offset to the pointer.
554 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1a4d82fc 555 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
223e47cc 556 } else {
1a4d82fc 557 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
223e47cc
LB
558 Offset += Size*CI->getSExtValue();
559 }
560 }
561
1a4d82fc
JJ
562
563
223e47cc
LB
564 // Okay, we know we have a single variable index, which must be a
565 // pointer/array/vector index. If there is no offset, life is simple, return
566 // the index.
1a4d82fc
JJ
567 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
568 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
223e47cc
LB
569 if (Offset == 0) {
570 // Cast to intptrty in case a truncation occurs. If an extension is needed,
571 // we don't need to bother extending: the extension won't affect where the
572 // computation crosses zero.
573 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
223e47cc
LB
574 VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
575 }
576 return VariableIdx;
577 }
578
579 // Otherwise, there is an index. The computation we will do will be modulo
580 // the pointer size, so get it.
581 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
582
583 Offset &= PtrSizeMask;
584 VariableScale &= PtrSizeMask;
585
586 // To do this transformation, any constant index must be a multiple of the
587 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
588 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
589 // multiple of the variable scale.
590 int64_t NewOffs = Offset / (int64_t)VariableScale;
591 if (Offset != NewOffs*(int64_t)VariableScale)
1a4d82fc 592 return nullptr;
223e47cc
LB
593
594 // Okay, we can do this evaluation. Start by converting the index to intptr.
223e47cc
LB
595 if (VariableIdx->getType() != IntPtrTy)
596 VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
597 true /*Signed*/);
598 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
599 return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
600}
601
602/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
603/// else. At this point we know that the GEP is on the LHS of the comparison.
604Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
605 ICmpInst::Predicate Cond,
606 Instruction &I) {
607 // Don't transform signed compares of GEPs into index compares. Even if the
608 // GEP is inbounds, the final add of the base pointer can have signed overflow
609 // and would change the result of the icmp.
610 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
611 // the maximum signed value for the pointer type.
612 if (ICmpInst::isSigned(Cond))
1a4d82fc 613 return nullptr;
223e47cc 614
1a4d82fc
JJ
615 // Look through bitcasts and addrspacecasts. We do not however want to remove
616 // 0 GEPs.
617 if (!isa<GetElementPtrInst>(RHS))
618 RHS = RHS->stripPointerCasts();
223e47cc
LB
619
620 Value *PtrBase = GEPLHS->getOperand(0);
1a4d82fc 621 if (DL && PtrBase == RHS && GEPLHS->isInBounds()) {
223e47cc
LB
622 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
623 // This transformation (ignoring the base and scales) is valid because we
624 // know pointers can't overflow since the gep is inbounds. See if we can
625 // output an optimized form.
626 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
627
628 // If not, synthesize the offset the hard way.
1a4d82fc 629 if (!Offset)
223e47cc
LB
630 Offset = EmitGEPOffset(GEPLHS);
631 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
632 Constant::getNullValue(Offset->getType()));
633 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
634 // If the base pointers are different, but the indices are the same, just
635 // compare the base pointer.
636 if (PtrBase != GEPRHS->getOperand(0)) {
637 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
638 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
639 GEPRHS->getOperand(0)->getType();
640 if (IndicesTheSame)
641 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
642 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
643 IndicesTheSame = false;
644 break;
645 }
646
647 // If all indices are the same, just compare the base pointers.
648 if (IndicesTheSame)
1a4d82fc 649 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
223e47cc
LB
650
651 // If we're comparing GEPs with two base pointers that only differ in type
652 // and both GEPs have only constant indices or just one use, then fold
653 // the compare with the adjusted indices.
1a4d82fc 654 if (DL && GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
223e47cc
LB
655 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
656 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
657 PtrBase->stripPointerCasts() ==
658 GEPRHS->getOperand(0)->stripPointerCasts()) {
1a4d82fc
JJ
659 Value *LOffset = EmitGEPOffset(GEPLHS);
660 Value *ROffset = EmitGEPOffset(GEPRHS);
661
662 // If we looked through an addrspacecast between different sized address
663 // spaces, the LHS and RHS pointers are different sized
664 // integers. Truncate to the smaller one.
665 Type *LHSIndexTy = LOffset->getType();
666 Type *RHSIndexTy = ROffset->getType();
667 if (LHSIndexTy != RHSIndexTy) {
668 if (LHSIndexTy->getPrimitiveSizeInBits() <
669 RHSIndexTy->getPrimitiveSizeInBits()) {
670 ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy);
671 } else
672 LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy);
673 }
674
223e47cc 675 Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
1a4d82fc 676 LOffset, ROffset);
223e47cc
LB
677 return ReplaceInstUsesWith(I, Cmp);
678 }
679
680 // Otherwise, the base pointers are different and the indices are
681 // different, bail out.
1a4d82fc 682 return nullptr;
223e47cc
LB
683 }
684
685 // If one of the GEPs has all zero indices, recurse.
1a4d82fc 686 if (GEPLHS->hasAllZeroIndices())
223e47cc 687 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
1a4d82fc 688 ICmpInst::getSwappedPredicate(Cond), I);
223e47cc
LB
689
690 // If the other GEP has all zero indices, recurse.
1a4d82fc 691 if (GEPRHS->hasAllZeroIndices())
223e47cc
LB
692 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
693
694 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
695 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
696 // If the GEPs only differ by one index, compare it.
697 unsigned NumDifferences = 0; // Keep track of # differences.
698 unsigned DiffOperand = 0; // The operand that differs.
699 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
700 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
701 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
702 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
703 // Irreconcilable differences.
704 NumDifferences = 2;
705 break;
706 } else {
707 if (NumDifferences++) break;
708 DiffOperand = i;
709 }
710 }
711
712 if (NumDifferences == 0) // SAME GEP?
713 return ReplaceInstUsesWith(I, // No comparison is needed here.
1a4d82fc 714 Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
223e47cc
LB
715
716 else if (NumDifferences == 1 && GEPsInBounds) {
717 Value *LHSV = GEPLHS->getOperand(DiffOperand);
718 Value *RHSV = GEPRHS->getOperand(DiffOperand);
719 // Make sure we do a signed comparison here.
720 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
721 }
722 }
723
724 // Only lower this if the icmp is the only user of the GEP or if we expect
725 // the result to fold to a constant!
1a4d82fc 726 if (DL &&
223e47cc
LB
727 GEPsInBounds &&
728 (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
729 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
730 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
731 Value *L = EmitGEPOffset(GEPLHS);
732 Value *R = EmitGEPOffset(GEPRHS);
733 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
734 }
735 }
1a4d82fc 736 return nullptr;
223e47cc
LB
737}
738
739/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
1a4d82fc 740Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI,
223e47cc 741 Value *X, ConstantInt *CI,
1a4d82fc 742 ICmpInst::Predicate Pred) {
223e47cc
LB
743 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
744 // so the values can never be equal. Similarly for all other "or equals"
745 // operators.
746
747 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
748 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
749 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
750 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
751 Value *R =
752 ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
753 return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
754 }
755
756 // (X+1) >u X --> X <u (0-1) --> X != 255
757 // (X+2) >u X --> X <u (0-2) --> X <u 254
758 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
759 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
760 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
761
762 unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
763 ConstantInt *SMax = ConstantInt::get(X->getContext(),
764 APInt::getSignedMaxValue(BitWidth));
765
766 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
767 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
768 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
769 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
770 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
771 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
772 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
773 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
774
775 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
776 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
777 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
778 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
779 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
780 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
781
782 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1a4d82fc 783 Constant *C = Builder->getInt(CI->getValue()-1);
223e47cc
LB
784 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
785}
786
787/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
788/// and CmpRHS are both known to be integer constants.
789Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
790 ConstantInt *DivRHS) {
791 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
792 const APInt &CmpRHSV = CmpRHS->getValue();
793
794 // FIXME: If the operand types don't match the type of the divide
795 // then don't attempt this transform. The code below doesn't have the
796 // logic to deal with a signed divide and an unsigned compare (and
797 // vice versa). This is because (x /s C1) <s C2 produces different
798 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
799 // (x /u C1) <u C2. Simply casting the operands and result won't
800 // work. :( The if statement below tests that condition and bails
801 // if it finds it.
802 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
803 if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
1a4d82fc 804 return nullptr;
223e47cc 805 if (DivRHS->isZero())
1a4d82fc 806 return nullptr; // The ProdOV computation fails on divide by zero.
223e47cc 807 if (DivIsSigned && DivRHS->isAllOnesValue())
1a4d82fc 808 return nullptr; // The overflow computation also screws up here
223e47cc
LB
809 if (DivRHS->isOne()) {
810 // This eliminates some funny cases with INT_MIN.
811 ICI.setOperand(0, DivI->getOperand(0)); // X/1 == X.
812 return &ICI;
813 }
814
815 // Compute Prod = CI * DivRHS. We are essentially solving an equation
816 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
817 // C2 (CI). By solving for X we can turn this into a range check
818 // instead of computing a divide.
819 Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
820
821 // Determine if the product overflows by seeing if the product is
822 // not equal to the divide. Make sure we do the same kind of divide
823 // as in the LHS instruction that we're folding.
824 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
825 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
826
827 // Get the ICmp opcode
828 ICmpInst::Predicate Pred = ICI.getPredicate();
829
830 /// If the division is known to be exact, then there is no remainder from the
831 /// divide, so the covered range size is unit, otherwise it is the divisor.
832 ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
833
834 // Figure out the interval that is being checked. For example, a comparison
835 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
836 // Compute this interval based on the constants involved and the signedness of
837 // the compare/divide. This computes a half-open interval, keeping track of
838 // whether either value in the interval overflows. After analysis each
839 // overflow variable is set to 0 if it's corresponding bound variable is valid
840 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
841 int LoOverflow = 0, HiOverflow = 0;
1a4d82fc 842 Constant *LoBound = nullptr, *HiBound = nullptr;
223e47cc
LB
843
844 if (!DivIsSigned) { // udiv
845 // e.g. X/5 op 3 --> [15, 20)
846 LoBound = Prod;
847 HiOverflow = LoOverflow = ProdOV;
848 if (!HiOverflow) {
849 // If this is not an exact divide, then many values in the range collapse
850 // to the same result value.
851 HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
852 }
853
854 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
855 if (CmpRHSV == 0) { // (X / pos) op 0
856 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
857 LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
858 HiBound = RangeSize;
859 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
860 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
861 HiOverflow = LoOverflow = ProdOV;
862 if (!HiOverflow)
863 HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
864 } else { // (X / pos) op neg
865 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
866 HiBound = AddOne(Prod);
867 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
868 if (!LoOverflow) {
869 ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
870 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
871 }
872 }
873 } else if (DivRHS->isNegative()) { // Divisor is < 0.
874 if (DivI->isExact())
875 RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
876 if (CmpRHSV == 0) { // (X / neg) op 0
877 // e.g. X/-5 op 0 --> [-4, 5)
878 LoBound = AddOne(RangeSize);
879 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
880 if (HiBound == DivRHS) { // -INTMIN = INTMIN
881 HiOverflow = 1; // [INTMIN+1, overflow)
1a4d82fc 882 HiBound = nullptr; // e.g. X/INTMIN = 0 --> X > INTMIN
223e47cc
LB
883 }
884 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
885 // e.g. X/-5 op 3 --> [-19, -14)
886 HiBound = AddOne(Prod);
887 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
888 if (!LoOverflow)
889 LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
890 } else { // (X / neg) op neg
891 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
892 LoOverflow = HiOverflow = ProdOV;
893 if (!HiOverflow)
894 HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
895 }
896
897 // Dividing by a negative swaps the condition. LT <-> GT
898 Pred = ICmpInst::getSwappedPredicate(Pred);
899 }
900
901 Value *X = DivI->getOperand(0);
902 switch (Pred) {
903 default: llvm_unreachable("Unhandled icmp opcode!");
904 case ICmpInst::ICMP_EQ:
905 if (LoOverflow && HiOverflow)
1a4d82fc 906 return ReplaceInstUsesWith(ICI, Builder->getFalse());
223e47cc
LB
907 if (HiOverflow)
908 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
909 ICmpInst::ICMP_UGE, X, LoBound);
910 if (LoOverflow)
911 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
912 ICmpInst::ICMP_ULT, X, HiBound);
913 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
914 DivIsSigned, true));
915 case ICmpInst::ICMP_NE:
916 if (LoOverflow && HiOverflow)
1a4d82fc 917 return ReplaceInstUsesWith(ICI, Builder->getTrue());
223e47cc
LB
918 if (HiOverflow)
919 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
920 ICmpInst::ICMP_ULT, X, LoBound);
921 if (LoOverflow)
922 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
923 ICmpInst::ICMP_UGE, X, HiBound);
924 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
925 DivIsSigned, false));
926 case ICmpInst::ICMP_ULT:
927 case ICmpInst::ICMP_SLT:
928 if (LoOverflow == +1) // Low bound is greater than input range.
1a4d82fc 929 return ReplaceInstUsesWith(ICI, Builder->getTrue());
223e47cc 930 if (LoOverflow == -1) // Low bound is less than input range.
1a4d82fc 931 return ReplaceInstUsesWith(ICI, Builder->getFalse());
223e47cc
LB
932 return new ICmpInst(Pred, X, LoBound);
933 case ICmpInst::ICMP_UGT:
934 case ICmpInst::ICMP_SGT:
935 if (HiOverflow == +1) // High bound greater than input range.
1a4d82fc 936 return ReplaceInstUsesWith(ICI, Builder->getFalse());
223e47cc 937 if (HiOverflow == -1) // High bound less than input range.
1a4d82fc 938 return ReplaceInstUsesWith(ICI, Builder->getTrue());
223e47cc
LB
939 if (Pred == ICmpInst::ICMP_UGT)
940 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
941 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
942 }
943}
944
945/// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
946Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
947 ConstantInt *ShAmt) {
948 const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
949
950 // Check that the shift amount is in range. If not, don't perform
951 // undefined shifts. When the shift is visited it will be
952 // simplified.
953 uint32_t TypeBits = CmpRHSV.getBitWidth();
954 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
955 if (ShAmtVal >= TypeBits || ShAmtVal == 0)
1a4d82fc 956 return nullptr;
223e47cc
LB
957
958 if (!ICI.isEquality()) {
959 // If we have an unsigned comparison and an ashr, we can't simplify this.
960 // Similarly for signed comparisons with lshr.
961 if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
1a4d82fc 962 return nullptr;
223e47cc
LB
963
964 // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
965 // by a power of 2. Since we already have logic to simplify these,
966 // transform to div and then simplify the resultant comparison.
967 if (Shr->getOpcode() == Instruction::AShr &&
968 (!Shr->isExact() || ShAmtVal == TypeBits - 1))
1a4d82fc 969 return nullptr;
223e47cc
LB
970
971 // Revisit the shift (to delete it).
972 Worklist.Add(Shr);
973
974 Constant *DivCst =
975 ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
976
977 Value *Tmp =
978 Shr->getOpcode() == Instruction::AShr ?
979 Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
980 Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
981
982 ICI.setOperand(0, Tmp);
983
984 // If the builder folded the binop, just return it.
985 BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
1a4d82fc 986 if (!TheDiv)
223e47cc
LB
987 return &ICI;
988
989 // Otherwise, fold this div/compare.
990 assert(TheDiv->getOpcode() == Instruction::SDiv ||
991 TheDiv->getOpcode() == Instruction::UDiv);
992
993 Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
994 assert(Res && "This div/cst should have folded!");
995 return Res;
996 }
997
998
999 // If we are comparing against bits always shifted out, the
1000 // comparison cannot succeed.
1001 APInt Comp = CmpRHSV << ShAmtVal;
1a4d82fc 1002 ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp);
223e47cc
LB
1003 if (Shr->getOpcode() == Instruction::LShr)
1004 Comp = Comp.lshr(ShAmtVal);
1005 else
1006 Comp = Comp.ashr(ShAmtVal);
1007
1008 if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
1009 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1a4d82fc 1010 Constant *Cst = Builder->getInt1(IsICMP_NE);
223e47cc
LB
1011 return ReplaceInstUsesWith(ICI, Cst);
1012 }
1013
1014 // Otherwise, check to see if the bits shifted out are known to be zero.
1015 // If so, we can compare against the unshifted value:
1016 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
1017 if (Shr->hasOneUse() && Shr->isExact())
1018 return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
1019
1020 if (Shr->hasOneUse()) {
1021 // Otherwise strength reduce the shift into an and.
1022 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
1a4d82fc 1023 Constant *Mask = Builder->getInt(Val);
223e47cc
LB
1024
1025 Value *And = Builder->CreateAnd(Shr->getOperand(0),
1026 Mask, Shr->getName()+".mask");
1027 return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
1028 }
1a4d82fc 1029 return nullptr;
223e47cc
LB
1030}
1031
1a4d82fc
JJ
1032/// FoldICmpCstShrCst - Handle "(icmp eq/ne (ashr/lshr const2, A), const1)" ->
1033/// (icmp eq/ne A, Log2(const2/const1)) ->
1034/// (icmp eq/ne A, Log2(const2) - Log2(const1)).
1035Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
1036 ConstantInt *CI1,
1037 ConstantInt *CI2) {
1038 assert(I.isEquality() && "Cannot fold icmp gt/lt");
1039
1040 auto getConstant = [&I, this](bool IsTrue) {
1041 if (I.getPredicate() == I.ICMP_NE)
1042 IsTrue = !IsTrue;
1043 return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
1044 };
1045
1046 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1047 if (I.getPredicate() == I.ICMP_NE)
1048 Pred = CmpInst::getInversePredicate(Pred);
1049 return new ICmpInst(Pred, LHS, RHS);
1050 };
1051
1052 APInt AP1 = CI1->getValue();
1053 APInt AP2 = CI2->getValue();
1054
1055 if (!AP1) {
1056 if (!AP2) {
1057 // Both Constants are 0.
1058 return getConstant(true);
1059 }
1060
1061 if (cast<BinaryOperator>(Op)->isExact())
1062 return getConstant(false);
1063
1064 if (AP2.isNegative()) {
1065 // MSB is set, so a lshr with a large enough 'A' would be undefined.
1066 return getConstant(false);
1067 }
1068
1069 // 'A' must be large enough to shift out the highest set bit.
1070 return getICmp(I.ICMP_UGT, A,
1071 ConstantInt::get(A->getType(), AP2.logBase2()));
1072 }
1073
1074 if (!AP2) {
1075 // Shifting 0 by any value gives 0.
1076 return getConstant(false);
1077 }
1078
1079 bool IsAShr = isa<AShrOperator>(Op);
1080 if (AP1 == AP2) {
1081 if (AP1.isAllOnesValue() && IsAShr) {
1082 // Arithmatic shift of -1 is always -1.
1083 return getConstant(true);
1084 }
1085 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1086 }
1087
1088 bool IsNegative = false;
1089 if (IsAShr) {
1090 if (AP1.isNegative() != AP2.isNegative()) {
1091 // Arithmetic shift will never change the sign.
1092 return getConstant(false);
1093 }
1094 // Both the constants are negative, take their positive to calculate log.
1095 if (AP1.isNegative()) {
1096 if (AP1.slt(AP2))
1097 // Right-shifting won't increase the magnitude.
1098 return getConstant(false);
1099 IsNegative = true;
1100 }
1101 }
1102
1103 if (!IsNegative && AP1.ugt(AP2))
1104 // Right-shifting will not increase the value.
1105 return getConstant(false);
1106
1107 // Get the distance between the highest bit that's set.
1108 int Shift;
1109 if (IsNegative)
1110 Shift = (-AP2).logBase2() - (-AP1).logBase2();
1111 else
1112 Shift = AP2.logBase2() - AP1.logBase2();
1113
1114 if (IsAShr ? AP1 == AP2.ashr(Shift) : AP1 == AP2.lshr(Shift))
1115 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1116
1117 // Shifting const2 will never be equal to const1.
1118 return getConstant(false);
1119}
223e47cc
LB
1120
1121/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
1122///
1123Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
1124 Instruction *LHSI,
1125 ConstantInt *RHS) {
1126 const APInt &RHSV = RHS->getValue();
1127
1128 switch (LHSI->getOpcode()) {
1129 case Instruction::Trunc:
1130 if (ICI.isEquality() && LHSI->hasOneUse()) {
1131 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1132 // of the high bits truncated out of x are known.
1133 unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
1134 SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
1135 APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1a4d82fc 1136 computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne, 0, &ICI);
223e47cc
LB
1137
1138 // If all the high bits are known, we can do this xform.
1139 if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
1140 // Pull in the high bits from known-ones set.
1141 APInt NewRHS = RHS->getValue().zext(SrcBits);
1142 NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
1143 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1a4d82fc 1144 Builder->getInt(NewRHS));
223e47cc
LB
1145 }
1146 }
1147 break;
1148
1a4d82fc
JJ
1149 case Instruction::Xor: // (icmp pred (xor X, XorCst), CI)
1150 if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
223e47cc
LB
1151 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1152 // fold the xor.
1153 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
1154 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
1155 Value *CompareVal = LHSI->getOperand(0);
1156
1a4d82fc 1157 // If the sign bit of the XorCst is not set, there is no change to
223e47cc 1158 // the operation, just stop using the Xor.
1a4d82fc 1159 if (!XorCst->isNegative()) {
223e47cc
LB
1160 ICI.setOperand(0, CompareVal);
1161 Worklist.Add(LHSI);
1162 return &ICI;
1163 }
1164
1165 // Was the old condition true if the operand is positive?
1166 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
1167
1168 // If so, the new one isn't.
1169 isTrueIfPositive ^= true;
1170
1171 if (isTrueIfPositive)
1172 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
1173 SubOne(RHS));
1174 else
1175 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
1176 AddOne(RHS));
1177 }
1178
1179 if (LHSI->hasOneUse()) {
1180 // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1a4d82fc
JJ
1181 if (!ICI.isEquality() && XorCst->getValue().isSignBit()) {
1182 const APInt &SignBit = XorCst->getValue();
223e47cc
LB
1183 ICmpInst::Predicate Pred = ICI.isSigned()
1184 ? ICI.getUnsignedPredicate()
1185 : ICI.getSignedPredicate();
1186 return new ICmpInst(Pred, LHSI->getOperand(0),
1a4d82fc 1187 Builder->getInt(RHSV ^ SignBit));
223e47cc
LB
1188 }
1189
1190 // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
1a4d82fc
JJ
1191 if (!ICI.isEquality() && XorCst->isMaxValue(true)) {
1192 const APInt &NotSignBit = XorCst->getValue();
223e47cc
LB
1193 ICmpInst::Predicate Pred = ICI.isSigned()
1194 ? ICI.getUnsignedPredicate()
1195 : ICI.getSignedPredicate();
1196 Pred = ICI.getSwappedPredicate(Pred);
1197 return new ICmpInst(Pred, LHSI->getOperand(0),
1a4d82fc 1198 Builder->getInt(RHSV ^ NotSignBit));
223e47cc
LB
1199 }
1200 }
1a4d82fc
JJ
1201
1202 // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
1203 // iff -C is a power of 2
1204 if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
1205 XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2())
1206 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst);
1207
1208 // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
1209 // iff -C is a power of 2
1210 if (ICI.getPredicate() == ICmpInst::ICMP_ULT &&
1211 XorCst->getValue() == -RHSV && RHSV.isPowerOf2())
1212 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst);
223e47cc
LB
1213 }
1214 break;
1a4d82fc 1215 case Instruction::And: // (icmp pred (and X, AndCst), RHS)
223e47cc
LB
1216 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1217 LHSI->getOperand(0)->hasOneUse()) {
1a4d82fc 1218 ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1));
223e47cc
LB
1219
1220 // If the LHS is an AND of a truncating cast, we can widen the
1221 // and/compare to be the input width without changing the value
1222 // produced, eliminating a cast.
1223 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1224 // We can do this transformation if either the AND constant does not
1225 // have its sign bit set or if it is an equality comparison.
1226 // Extending a relational comparison when we're checking the sign
1227 // bit would not work.
1228 if (ICI.isEquality() ||
1a4d82fc 1229 (!AndCst->isNegative() && RHSV.isNonNegative())) {
223e47cc
LB
1230 Value *NewAnd =
1231 Builder->CreateAnd(Cast->getOperand(0),
1a4d82fc 1232 ConstantExpr::getZExt(AndCst, Cast->getSrcTy()));
223e47cc
LB
1233 NewAnd->takeName(LHSI);
1234 return new ICmpInst(ICI.getPredicate(), NewAnd,
1235 ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
1236 }
1237 }
1238
1239 // If the LHS is an AND of a zext, and we have an equality compare, we can
1240 // shrink the and/compare to the smaller type, eliminating the cast.
1241 if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
1242 IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
1243 // Make sure we don't compare the upper bits, SimplifyDemandedBits
1244 // should fold the icmp to true/false in that case.
1245 if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
1246 Value *NewAnd =
1247 Builder->CreateAnd(Cast->getOperand(0),
1a4d82fc 1248 ConstantExpr::getTrunc(AndCst, Ty));
223e47cc
LB
1249 NewAnd->takeName(LHSI);
1250 return new ICmpInst(ICI.getPredicate(), NewAnd,
1251 ConstantExpr::getTrunc(RHS, Ty));
1252 }
1253 }
1254
1255 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1256 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
1257 // happens a LOT in code produced by the C front-end, for bitfield
1258 // access.
1259 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1260 if (Shift && !Shift->isShift())
1a4d82fc 1261 Shift = nullptr;
223e47cc
LB
1262
1263 ConstantInt *ShAmt;
1a4d82fc 1264 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : nullptr;
223e47cc 1265
1a4d82fc
JJ
1266 // This seemingly simple opportunity to fold away a shift turns out to
1267 // be rather complicated. See PR17827
1268 // ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details.
223e47cc 1269 if (ShAmt) {
1a4d82fc
JJ
1270 bool CanFold = false;
1271 unsigned ShiftOpcode = Shift->getOpcode();
1272 if (ShiftOpcode == Instruction::AShr) {
1273 // There may be some constraints that make this possible,
1274 // but nothing simple has been discovered yet.
1275 CanFold = false;
1276 } else if (ShiftOpcode == Instruction::Shl) {
1277 // For a left shift, we can fold if the comparison is not signed.
1278 // We can also fold a signed comparison if the mask value and
1279 // comparison value are not negative. These constraints may not be
1280 // obvious, but we can prove that they are correct using an SMT
1281 // solver.
1282 if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative()))
223e47cc 1283 CanFold = true;
1a4d82fc
JJ
1284 } else if (ShiftOpcode == Instruction::LShr) {
1285 // For a logical right shift, we can fold if the comparison is not
1286 // signed. We can also fold a signed comparison if the shifted mask
1287 // value and the shifted comparison value are not negative.
1288 // These constraints may not be obvious, but we can prove that they
1289 // are correct using an SMT solver.
1290 if (!ICI.isSigned())
1291 CanFold = true;
1292 else {
1293 ConstantInt *ShiftedAndCst =
1294 cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt));
1295 ConstantInt *ShiftedRHSCst =
1296 cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt));
1297
1298 if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative())
1299 CanFold = true;
1300 }
223e47cc
LB
1301 }
1302
1303 if (CanFold) {
1304 Constant *NewCst;
1a4d82fc 1305 if (ShiftOpcode == Instruction::Shl)
223e47cc
LB
1306 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1307 else
1308 NewCst = ConstantExpr::getShl(RHS, ShAmt);
1309
1310 // Check to see if we are shifting out any of the bits being
1311 // compared.
1a4d82fc 1312 if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) {
223e47cc
LB
1313 // If we shifted bits out, the fold is not going to work out.
1314 // As a special case, check to see if this means that the
1315 // result is always true or false now.
1316 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1a4d82fc 1317 return ReplaceInstUsesWith(ICI, Builder->getFalse());
223e47cc 1318 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1a4d82fc 1319 return ReplaceInstUsesWith(ICI, Builder->getTrue());
223e47cc
LB
1320 } else {
1321 ICI.setOperand(1, NewCst);
1a4d82fc
JJ
1322 Constant *NewAndCst;
1323 if (ShiftOpcode == Instruction::Shl)
1324 NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt);
223e47cc 1325 else
1a4d82fc
JJ
1326 NewAndCst = ConstantExpr::getShl(AndCst, ShAmt);
1327 LHSI->setOperand(1, NewAndCst);
223e47cc
LB
1328 LHSI->setOperand(0, Shift->getOperand(0));
1329 Worklist.Add(Shift); // Shift is dead.
1330 return &ICI;
1331 }
1332 }
1333 }
1334
1335 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
1336 // preferable because it allows the C<<Y expression to be hoisted out
1337 // of a loop if Y is invariant and X is not.
1338 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1339 ICI.isEquality() && !Shift->isArithmeticShift() &&
1340 !isa<Constant>(Shift->getOperand(0))) {
1341 // Compute C << Y.
1342 Value *NS;
1343 if (Shift->getOpcode() == Instruction::LShr) {
1a4d82fc 1344 NS = Builder->CreateShl(AndCst, Shift->getOperand(1));
223e47cc
LB
1345 } else {
1346 // Insert a logical shift.
1a4d82fc 1347 NS = Builder->CreateLShr(AndCst, Shift->getOperand(1));
223e47cc
LB
1348 }
1349
1350 // Compute X & (C << Y).
1351 Value *NewAnd =
1352 Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1353
1354 ICI.setOperand(0, NewAnd);
1355 return &ICI;
1356 }
970d7e83 1357
1a4d82fc
JJ
1358 // (icmp pred (and (or (lshr X, Y), X), 1), 0) -->
1359 // (icmp pred (and X, (or (shl 1, Y), 1), 0))
1360 //
1361 // iff pred isn't signed
1362 {
1363 Value *X, *Y, *LShr;
1364 if (!ICI.isSigned() && RHSV == 0) {
1365 if (match(LHSI->getOperand(1), m_One())) {
1366 Constant *One = cast<Constant>(LHSI->getOperand(1));
1367 Value *Or = LHSI->getOperand(0);
1368 if (match(Or, m_Or(m_Value(LShr), m_Value(X))) &&
1369 match(LShr, m_LShr(m_Specific(X), m_Value(Y)))) {
1370 unsigned UsesRemoved = 0;
1371 if (LHSI->hasOneUse())
1372 ++UsesRemoved;
1373 if (Or->hasOneUse())
1374 ++UsesRemoved;
1375 if (LShr->hasOneUse())
1376 ++UsesRemoved;
1377 Value *NewOr = nullptr;
1378 // Compute X & ((1 << Y) | 1)
1379 if (auto *C = dyn_cast<Constant>(Y)) {
1380 if (UsesRemoved >= 1)
1381 NewOr =
1382 ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1383 } else {
1384 if (UsesRemoved >= 3)
1385 NewOr = Builder->CreateOr(Builder->CreateShl(One, Y,
1386 LShr->getName(),
1387 /*HasNUW=*/true),
1388 One, Or->getName());
1389 }
1390 if (NewOr) {
1391 Value *NewAnd = Builder->CreateAnd(X, NewOr, LHSI->getName());
1392 ICI.setOperand(0, NewAnd);
1393 return &ICI;
1394 }
1395 }
1396 }
1397 }
1398 }
1399
1400 // Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any
1401 // bit set in (X & AndCst) will produce a result greater than RHSV.
970d7e83 1402 if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
1a4d82fc
JJ
1403 unsigned NTZ = AndCst->getValue().countTrailingZeros();
1404 if ((NTZ < AndCst->getBitWidth()) &&
1405 APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV))
970d7e83
LB
1406 return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
1407 Constant::getNullValue(RHS->getType()));
1408 }
223e47cc
LB
1409 }
1410
1411 // Try to optimize things like "A[i]&42 == 0" to index computations.
1412 if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1413 if (GetElementPtrInst *GEP =
1414 dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1415 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1416 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1417 !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1418 ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1419 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1420 return Res;
1421 }
1422 }
1a4d82fc
JJ
1423
1424 // X & -C == -C -> X > u ~C
1425 // X & -C != -C -> X <= u ~C
1426 // iff C is a power of 2
1427 if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2())
1428 return new ICmpInst(
1429 ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT
1430 : ICmpInst::ICMP_ULE,
1431 LHSI->getOperand(0), SubOne(RHS));
223e47cc
LB
1432 break;
1433
1434 case Instruction::Or: {
1435 if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1436 break;
1437 Value *P, *Q;
1438 if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1439 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1440 // -> and (icmp eq P, null), (icmp eq Q, null).
1441 Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1442 Constant::getNullValue(P->getType()));
1443 Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1444 Constant::getNullValue(Q->getType()));
1445 Instruction *Op;
1446 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1447 Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1448 else
1449 Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1450 return Op;
1451 }
1452 break;
1453 }
1454
1a4d82fc
JJ
1455 case Instruction::Mul: { // (icmp pred (mul X, Val), CI)
1456 ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1457 if (!Val) break;
1458
1459 // If this is a signed comparison to 0 and the mul is sign preserving,
1460 // use the mul LHS operand instead.
1461 ICmpInst::Predicate pred = ICI.getPredicate();
1462 if (isSignTest(pred, RHS) && !Val->isZero() &&
1463 cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1464 return new ICmpInst(Val->isNegative() ?
1465 ICmpInst::getSwappedPredicate(pred) : pred,
1466 LHSI->getOperand(0),
1467 Constant::getNullValue(RHS->getType()));
1468
1469 break;
1470 }
1471
223e47cc 1472 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
1a4d82fc 1473 uint32_t TypeBits = RHSV.getBitWidth();
223e47cc 1474 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1a4d82fc
JJ
1475 if (!ShAmt) {
1476 Value *X;
1477 // (1 << X) pred P2 -> X pred Log2(P2)
1478 if (match(LHSI, m_Shl(m_One(), m_Value(X)))) {
1479 bool RHSVIsPowerOf2 = RHSV.isPowerOf2();
1480 ICmpInst::Predicate Pred = ICI.getPredicate();
1481 if (ICI.isUnsigned()) {
1482 if (!RHSVIsPowerOf2) {
1483 // (1 << X) < 30 -> X <= 4
1484 // (1 << X) <= 30 -> X <= 4
1485 // (1 << X) >= 30 -> X > 4
1486 // (1 << X) > 30 -> X > 4
1487 if (Pred == ICmpInst::ICMP_ULT)
1488 Pred = ICmpInst::ICMP_ULE;
1489 else if (Pred == ICmpInst::ICMP_UGE)
1490 Pred = ICmpInst::ICMP_UGT;
1491 }
1492 unsigned RHSLog2 = RHSV.logBase2();
1493
1494 // (1 << X) >= 2147483648 -> X >= 31 -> X == 31
1495 // (1 << X) < 2147483648 -> X < 31 -> X != 31
1496 if (RHSLog2 == TypeBits-1) {
1497 if (Pred == ICmpInst::ICMP_UGE)
1498 Pred = ICmpInst::ICMP_EQ;
1499 else if (Pred == ICmpInst::ICMP_ULT)
1500 Pred = ICmpInst::ICMP_NE;
1501 }
223e47cc 1502
1a4d82fc
JJ
1503 return new ICmpInst(Pred, X,
1504 ConstantInt::get(RHS->getType(), RHSLog2));
1505 } else if (ICI.isSigned()) {
1506 if (RHSV.isAllOnesValue()) {
1507 // (1 << X) <= -1 -> X == 31
1508 if (Pred == ICmpInst::ICMP_SLE)
1509 return new ICmpInst(ICmpInst::ICMP_EQ, X,
1510 ConstantInt::get(RHS->getType(), TypeBits-1));
1511
1512 // (1 << X) > -1 -> X != 31
1513 if (Pred == ICmpInst::ICMP_SGT)
1514 return new ICmpInst(ICmpInst::ICMP_NE, X,
1515 ConstantInt::get(RHS->getType(), TypeBits-1));
1516 } else if (!RHSV) {
1517 // (1 << X) < 0 -> X == 31
1518 // (1 << X) <= 0 -> X == 31
1519 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1520 return new ICmpInst(ICmpInst::ICMP_EQ, X,
1521 ConstantInt::get(RHS->getType(), TypeBits-1));
1522
1523 // (1 << X) >= 0 -> X != 31
1524 // (1 << X) > 0 -> X != 31
1525 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
1526 return new ICmpInst(ICmpInst::ICMP_NE, X,
1527 ConstantInt::get(RHS->getType(), TypeBits-1));
1528 }
1529 } else if (ICI.isEquality()) {
1530 if (RHSVIsPowerOf2)
1531 return new ICmpInst(
1532 Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
1533 }
1534 }
1535 break;
1536 }
223e47cc
LB
1537
1538 // Check that the shift amount is in range. If not, don't perform
1539 // undefined shifts. When the shift is visited it will be
1540 // simplified.
1541 if (ShAmt->uge(TypeBits))
1542 break;
1543
1544 if (ICI.isEquality()) {
1545 // If we are comparing against bits always shifted out, the
1546 // comparison cannot succeed.
1547 Constant *Comp =
1548 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1549 ShAmt);
1550 if (Comp != RHS) {// Comparing against a bit that we know is zero.
1551 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1a4d82fc 1552 Constant *Cst = Builder->getInt1(IsICMP_NE);
223e47cc
LB
1553 return ReplaceInstUsesWith(ICI, Cst);
1554 }
1555
1556 // If the shift is NUW, then it is just shifting out zeros, no need for an
1557 // AND.
1558 if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1559 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1560 ConstantExpr::getLShr(RHS, ShAmt));
1561
1a4d82fc
JJ
1562 // If the shift is NSW and we compare to 0, then it is just shifting out
1563 // sign bits, no need for an AND either.
1564 if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
1565 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1566 ConstantExpr::getLShr(RHS, ShAmt));
1567
223e47cc
LB
1568 if (LHSI->hasOneUse()) {
1569 // Otherwise strength reduce the shift into an and.
1570 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1a4d82fc
JJ
1571 Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits,
1572 TypeBits - ShAmtVal));
223e47cc
LB
1573
1574 Value *And =
1575 Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1576 return new ICmpInst(ICI.getPredicate(), And,
1577 ConstantExpr::getLShr(RHS, ShAmt));
1578 }
1579 }
1580
1a4d82fc
JJ
1581 // If this is a signed comparison to 0 and the shift is sign preserving,
1582 // use the shift LHS operand instead.
1583 ICmpInst::Predicate pred = ICI.getPredicate();
1584 if (isSignTest(pred, RHS) &&
1585 cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1586 return new ICmpInst(pred,
1587 LHSI->getOperand(0),
1588 Constant::getNullValue(RHS->getType()));
1589
223e47cc
LB
1590 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1591 bool TrueIfSigned = false;
1592 if (LHSI->hasOneUse() &&
1593 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1594 // (X << 31) <s 0 --> (X&1) != 0
1595 Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
1596 APInt::getOneBitSet(TypeBits,
1597 TypeBits-ShAmt->getZExtValue()-1));
1598 Value *And =
1599 Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1600 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1601 And, Constant::getNullValue(And->getType()));
1602 }
970d7e83
LB
1603
1604 // Transform (icmp pred iM (shl iM %v, N), CI)
1605 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
1606 // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
1607 // This enables to get rid of the shift in favor of a trunc which can be
1608 // free on the target. It has the additional benefit of comparing to a
1609 // smaller constant, which will be target friendly.
1610 unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
1611 if (LHSI->hasOneUse() &&
1612 Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
1613 Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
1614 Constant *NCI = ConstantExpr::getTrunc(
1615 ConstantExpr::getAShr(RHS,
1616 ConstantInt::get(RHS->getType(), Amt)),
1617 NTy);
1618 return new ICmpInst(ICI.getPredicate(),
1619 Builder->CreateTrunc(LHSI->getOperand(0), NTy),
1620 NCI);
1621 }
1622
223e47cc
LB
1623 break;
1624 }
1625
1626 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
1627 case Instruction::AShr: {
1628 // Handle equality comparisons of shift-by-constant.
1629 BinaryOperator *BO = cast<BinaryOperator>(LHSI);
1630 if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1631 if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
1632 return Res;
1633 }
1634
1635 // Handle exact shr's.
1636 if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
1637 if (RHSV.isMinValue())
1638 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
1639 }
1640 break;
1641 }
1642
1643 case Instruction::SDiv:
1644 case Instruction::UDiv:
1645 // Fold: icmp pred ([us]div X, C1), C2 -> range test
1646 // Fold this div into the comparison, producing a range check.
1647 // Determine, based on the divide type, what the range is being
1648 // checked. If there is an overflow on the low or high side, remember
1649 // it, otherwise compute the range [low, hi) bounding the new value.
1650 // See: InsertRangeTest above for the kinds of replacements possible.
1651 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1652 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1653 DivRHS))
1654 return R;
1655 break;
1656
1a4d82fc
JJ
1657 case Instruction::Sub: {
1658 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0));
1659 if (!LHSC) break;
1660 const APInt &LHSV = LHSC->getValue();
1661
1662 // C1-X <u C2 -> (X|(C2-1)) == C1
1663 // iff C1 & (C2-1) == C2-1
1664 // C2 is a power of 2
1665 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
1666 RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1))
1667 return new ICmpInst(ICmpInst::ICMP_EQ,
1668 Builder->CreateOr(LHSI->getOperand(1), RHSV - 1),
1669 LHSC);
1670
1671 // C1-X >u C2 -> (X|C2) != C1
1672 // iff C1 & C2 == C2
1673 // C2+1 is a power of 2
1674 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1675 (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV)
1676 return new ICmpInst(ICmpInst::ICMP_NE,
1677 Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC);
1678 break;
1679 }
1680
223e47cc
LB
1681 case Instruction::Add:
1682 // Fold: icmp pred (add X, C1), C2
1683 if (!ICI.isEquality()) {
1684 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1685 if (!LHSC) break;
1686 const APInt &LHSV = LHSC->getValue();
1687
1688 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1689 .subtract(LHSV);
1690
1691 if (ICI.isSigned()) {
1692 if (CR.getLower().isSignBit()) {
1693 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1a4d82fc 1694 Builder->getInt(CR.getUpper()));
223e47cc
LB
1695 } else if (CR.getUpper().isSignBit()) {
1696 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1a4d82fc 1697 Builder->getInt(CR.getLower()));
223e47cc
LB
1698 }
1699 } else {
1700 if (CR.getLower().isMinValue()) {
1701 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1a4d82fc 1702 Builder->getInt(CR.getUpper()));
223e47cc
LB
1703 } else if (CR.getUpper().isMinValue()) {
1704 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1a4d82fc 1705 Builder->getInt(CR.getLower()));
223e47cc
LB
1706 }
1707 }
1a4d82fc
JJ
1708
1709 // X-C1 <u C2 -> (X & -C2) == C1
1710 // iff C1 & (C2-1) == 0
1711 // C2 is a power of 2
1712 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
1713 RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0)
1714 return new ICmpInst(ICmpInst::ICMP_EQ,
1715 Builder->CreateAnd(LHSI->getOperand(0), -RHSV),
1716 ConstantExpr::getNeg(LHSC));
1717
1718 // X-C1 >u C2 -> (X & ~C2) != C1
1719 // iff C1 & C2 == 0
1720 // C2+1 is a power of 2
1721 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1722 (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0)
1723 return new ICmpInst(ICmpInst::ICMP_NE,
1724 Builder->CreateAnd(LHSI->getOperand(0), ~RHSV),
1725 ConstantExpr::getNeg(LHSC));
223e47cc
LB
1726 }
1727 break;
1728 }
1729
1730 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1731 if (ICI.isEquality()) {
1732 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1733
1734 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1735 // the second operand is a constant, simplify a bit.
1736 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1737 switch (BO->getOpcode()) {
1738 case Instruction::SRem:
1739 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1740 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1741 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
1742 if (V.sgt(1) && V.isPowerOf2()) {
1743 Value *NewRem =
1744 Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1745 BO->getName());
1746 return new ICmpInst(ICI.getPredicate(), NewRem,
1747 Constant::getNullValue(BO->getType()));
1748 }
1749 }
1750 break;
1751 case Instruction::Add:
1752 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1753 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1754 if (BO->hasOneUse())
1755 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1756 ConstantExpr::getSub(RHS, BOp1C));
1757 } else if (RHSV == 0) {
1758 // Replace ((add A, B) != 0) with (A != -B) if A or B is
1759 // efficiently invertible, or if the add has just this one use.
1760 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1761
1762 if (Value *NegVal = dyn_castNegVal(BOp1))
1763 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
1764 if (Value *NegVal = dyn_castNegVal(BOp0))
1765 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
1766 if (BO->hasOneUse()) {
1767 Value *Neg = Builder->CreateNeg(BOp1);
1768 Neg->takeName(BO);
1769 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1770 }
1771 }
1772 break;
1773 case Instruction::Xor:
1774 // For the xor case, we can xor two constants together, eliminating
1775 // the explicit xor.
1776 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
1777 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1778 ConstantExpr::getXor(RHS, BOC));
1779 } else if (RHSV == 0) {
1780 // Replace ((xor A, B) != 0) with (A != B)
1781 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1782 BO->getOperand(1));
1783 }
1784 break;
1785 case Instruction::Sub:
1786 // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
1787 if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
1788 if (BO->hasOneUse())
1789 return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
1790 ConstantExpr::getSub(BOp0C, RHS));
1791 } else if (RHSV == 0) {
1792 // Replace ((sub A, B) != 0) with (A != B)
1793 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1794 BO->getOperand(1));
1795 }
1796 break;
1797 case Instruction::Or:
1798 // If bits are being or'd in that are not present in the constant we
1799 // are comparing against, then the comparison could never succeed!
1800 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1801 Constant *NotCI = ConstantExpr::getNot(RHS);
1802 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1a4d82fc 1803 return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
223e47cc
LB
1804 }
1805 break;
1806
1807 case Instruction::And:
1808 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1809 // If bits are being compared against that are and'd out, then the
1810 // comparison can never succeed!
1811 if ((RHSV & ~BOC->getValue()) != 0)
1a4d82fc 1812 return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
223e47cc
LB
1813
1814 // If we have ((X & C) == C), turn it into ((X & C) != 0).
1815 if (RHS == BOC && RHSV.isPowerOf2())
1816 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1817 ICmpInst::ICMP_NE, LHSI,
1818 Constant::getNullValue(RHS->getType()));
1819
1820 // Don't perform the following transforms if the AND has multiple uses
1821 if (!BO->hasOneUse())
1822 break;
1823
1824 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1825 if (BOC->getValue().isSignBit()) {
1826 Value *X = BO->getOperand(0);
1827 Constant *Zero = Constant::getNullValue(X->getType());
1828 ICmpInst::Predicate pred = isICMP_NE ?
1829 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1830 return new ICmpInst(pred, X, Zero);
1831 }
1832
1833 // ((X & ~7) == 0) --> X < 8
1834 if (RHSV == 0 && isHighOnes(BOC)) {
1835 Value *X = BO->getOperand(0);
1836 Constant *NegX = ConstantExpr::getNeg(BOC);
1837 ICmpInst::Predicate pred = isICMP_NE ?
1838 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1839 return new ICmpInst(pred, X, NegX);
1840 }
1841 }
1a4d82fc
JJ
1842 break;
1843 case Instruction::Mul:
1844 if (RHSV == 0 && BO->hasNoSignedWrap()) {
1845 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1846 // The trivial case (mul X, 0) is handled by InstSimplify
1847 // General case : (mul X, C) != 0 iff X != 0
1848 // (mul X, C) == 0 iff X == 0
1849 if (!BOC->isZero())
1850 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1851 Constant::getNullValue(RHS->getType()));
1852 }
1853 }
1854 break;
223e47cc
LB
1855 default: break;
1856 }
1857 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1858 // Handle icmp {eq|ne} <intrinsic>, intcst.
1859 switch (II->getIntrinsicID()) {
1860 case Intrinsic::bswap:
1861 Worklist.Add(II);
1862 ICI.setOperand(0, II->getArgOperand(0));
1a4d82fc 1863 ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
223e47cc
LB
1864 return &ICI;
1865 case Intrinsic::ctlz:
1866 case Intrinsic::cttz:
1867 // ctz(A) == bitwidth(a) -> A == 0 and likewise for !=
1868 if (RHSV == RHS->getType()->getBitWidth()) {
1869 Worklist.Add(II);
1870 ICI.setOperand(0, II->getArgOperand(0));
1871 ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1872 return &ICI;
1873 }
1874 break;
1875 case Intrinsic::ctpop:
1876 // popcount(A) == 0 -> A == 0 and likewise for !=
1877 if (RHS->isZero()) {
1878 Worklist.Add(II);
1879 ICI.setOperand(0, II->getArgOperand(0));
1880 ICI.setOperand(1, RHS);
1881 return &ICI;
1882 }
1883 break;
1884 default:
1885 break;
1886 }
1887 }
1888 }
1a4d82fc 1889 return nullptr;
223e47cc
LB
1890}
1891
1892/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1893/// We only handle extending casts so far.
1894///
1895Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
1896 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1897 Value *LHSCIOp = LHSCI->getOperand(0);
1898 Type *SrcTy = LHSCIOp->getType();
1899 Type *DestTy = LHSCI->getType();
1900 Value *RHSCIOp;
1901
1902 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
1903 // integer type is the same size as the pointer type.
1a4d82fc
JJ
1904 if (DL && LHSCI->getOpcode() == Instruction::PtrToInt &&
1905 DL->getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
1906 Value *RHSOp = nullptr;
223e47cc
LB
1907 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
1908 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1909 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
1910 RHSOp = RHSC->getOperand(0);
1911 // If the pointer types don't match, insert a bitcast.
1912 if (LHSCIOp->getType() != RHSOp->getType())
1913 RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1914 }
1915
1916 if (RHSOp)
1917 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1918 }
1919
1920 // The code below only handles extension cast instructions, so far.
1921 // Enforce this.
1922 if (LHSCI->getOpcode() != Instruction::ZExt &&
1923 LHSCI->getOpcode() != Instruction::SExt)
1a4d82fc 1924 return nullptr;
223e47cc
LB
1925
1926 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1927 bool isSignedCmp = ICI.isSigned();
1928
1929 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1930 // Not an extension from the same type?
1931 RHSCIOp = CI->getOperand(0);
1932 if (RHSCIOp->getType() != LHSCIOp->getType())
1a4d82fc 1933 return nullptr;
223e47cc
LB
1934
1935 // If the signedness of the two casts doesn't agree (i.e. one is a sext
1936 // and the other is a zext), then we can't handle this.
1937 if (CI->getOpcode() != LHSCI->getOpcode())
1a4d82fc 1938 return nullptr;
223e47cc
LB
1939
1940 // Deal with equality cases early.
1941 if (ICI.isEquality())
1942 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1943
1944 // A signed comparison of sign extended values simplifies into a
1945 // signed comparison.
1946 if (isSignedCmp && isSignedExt)
1947 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1948
1949 // The other three cases all fold into an unsigned comparison.
1950 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1951 }
1952
1953 // If we aren't dealing with a constant on the RHS, exit early
1954 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1955 if (!CI)
1a4d82fc 1956 return nullptr;
223e47cc
LB
1957
1958 // Compute the constant that would happen if we truncated to SrcTy then
1959 // reextended to DestTy.
1960 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1961 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1962 Res1, DestTy);
1963
1964 // If the re-extended constant didn't change...
1965 if (Res2 == CI) {
1966 // Deal with equality cases early.
1967 if (ICI.isEquality())
1968 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1969
1970 // A signed comparison of sign extended values simplifies into a
1971 // signed comparison.
1972 if (isSignedExt && isSignedCmp)
1973 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1974
1975 // The other three cases all fold into an unsigned comparison.
1976 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1977 }
1978
1979 // The re-extended constant changed so the constant cannot be represented
1980 // in the shorter type. Consequently, we cannot emit a simple comparison.
1981 // All the cases that fold to true or false will have already been handled
1982 // by SimplifyICmpInst, so only deal with the tricky case.
1983
1984 if (isSignedCmp || !isSignedExt)
1a4d82fc 1985 return nullptr;
223e47cc
LB
1986
1987 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1988 // should have been folded away previously and not enter in here.
1989
1990 // We're performing an unsigned comp with a sign extended value.
1991 // This is true if the input is >= 0. [aka >s -1]
1992 Constant *NegOne = Constant::getAllOnesValue(SrcTy);
1993 Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
1994
1995 // Finally, return the value computed.
1996 if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
1997 return ReplaceInstUsesWith(ICI, Result);
1998
1999 assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
2000 return BinaryOperator::CreateNot(Result);
2001}
2002
2003/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
2004/// I = icmp ugt (add (add A, B), CI2), CI1
2005/// If this is of the form:
2006/// sum = a + b
2007/// if (sum+128 >u 255)
2008/// Then replace it with llvm.sadd.with.overflow.i8.
2009///
2010static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
2011 ConstantInt *CI2, ConstantInt *CI1,
2012 InstCombiner &IC) {
2013 // The transformation we're trying to do here is to transform this into an
2014 // llvm.sadd.with.overflow. To do this, we have to replace the original add
2015 // with a narrower add, and discard the add-with-constant that is part of the
2016 // range check (if we can't eliminate it, this isn't profitable).
2017
2018 // In order to eliminate the add-with-constant, the compare can be its only
2019 // use.
2020 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1a4d82fc 2021 if (!AddWithCst->hasOneUse()) return nullptr;
223e47cc
LB
2022
2023 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1a4d82fc 2024 if (!CI2->getValue().isPowerOf2()) return nullptr;
223e47cc 2025 unsigned NewWidth = CI2->getValue().countTrailingZeros();
1a4d82fc 2026 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr;
223e47cc
LB
2027
2028 // The width of the new add formed is 1 more than the bias.
2029 ++NewWidth;
2030
2031 // Check to see that CI1 is an all-ones value with NewWidth bits.
2032 if (CI1->getBitWidth() == NewWidth ||
2033 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1a4d82fc 2034 return nullptr;
223e47cc
LB
2035
2036 // This is only really a signed overflow check if the inputs have been
2037 // sign-extended; check for that condition. For example, if CI2 is 2^31 and
2038 // the operands of the add are 64 bits wide, we need at least 33 sign bits.
2039 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1a4d82fc
JJ
2040 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
2041 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
2042 return nullptr;
223e47cc
LB
2043
2044 // In order to replace the original add with a narrower
2045 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
2046 // and truncates that discard the high bits of the add. Verify that this is
2047 // the case.
2048 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1a4d82fc
JJ
2049 for (User *U : OrigAdd->users()) {
2050 if (U == AddWithCst) continue;
223e47cc
LB
2051
2052 // Only accept truncates for now. We would really like a nice recursive
2053 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
2054 // chain to see which bits of a value are actually demanded. If the
2055 // original add had another add which was then immediately truncated, we
2056 // could still do the transformation.
1a4d82fc
JJ
2057 TruncInst *TI = dyn_cast<TruncInst>(U);
2058 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
2059 return nullptr;
223e47cc
LB
2060 }
2061
2062 // If the pattern matches, truncate the inputs to the narrower type and
2063 // use the sadd_with_overflow intrinsic to efficiently compute both the
2064 // result and the overflow bit.
2065 Module *M = I.getParent()->getParent()->getParent();
2066
2067 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
2068 Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
2069 NewType);
2070
2071 InstCombiner::BuilderTy *Builder = IC.Builder;
2072
2073 // Put the new code above the original add, in case there are any uses of the
2074 // add between the add and the compare.
2075 Builder->SetInsertPoint(OrigAdd);
2076
2077 Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
2078 Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
2079 CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
2080 Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
2081 Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
2082
2083 // The inner add was the result of the narrow add, zero extended to the
2084 // wider type. Replace it with the result computed by the intrinsic.
2085 IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
2086
2087 // The original icmp gets replaced with the overflow value.
2088 return ExtractValueInst::Create(Call, 1, "sadd.overflow");
2089}
2090
2091static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
2092 InstCombiner &IC) {
2093 // Don't bother doing this transformation for pointers, don't do it for
2094 // vectors.
1a4d82fc 2095 if (!isa<IntegerType>(OrigAddV->getType())) return nullptr;
223e47cc
LB
2096
2097 // If the add is a constant expr, then we don't bother transforming it.
2098 Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
1a4d82fc 2099 if (!OrigAdd) return nullptr;
223e47cc
LB
2100
2101 Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
2102
2103 // Put the new code above the original add, in case there are any uses of the
2104 // add between the add and the compare.
2105 InstCombiner::BuilderTy *Builder = IC.Builder;
2106 Builder->SetInsertPoint(OrigAdd);
2107
2108 Module *M = I.getParent()->getParent()->getParent();
2109 Type *Ty = LHS->getType();
2110 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
2111 CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
2112 Value *Add = Builder->CreateExtractValue(Call, 0);
2113
2114 IC.ReplaceInstUsesWith(*OrigAdd, Add);
2115
2116 // The original icmp gets replaced with the overflow value.
2117 return ExtractValueInst::Create(Call, 1, "uadd.overflow");
2118}
2119
1a4d82fc
JJ
2120/// \brief Recognize and process idiom involving test for multiplication
2121/// overflow.
2122///
2123/// The caller has matched a pattern of the form:
2124/// I = cmp u (mul(zext A, zext B), V
2125/// The function checks if this is a test for overflow and if so replaces
2126/// multiplication with call to 'mul.with.overflow' intrinsic.
2127///
2128/// \param I Compare instruction.
2129/// \param MulVal Result of 'mult' instruction. It is one of the arguments of
2130/// the compare instruction. Must be of integer type.
2131/// \param OtherVal The other argument of compare instruction.
2132/// \returns Instruction which must replace the compare instruction, NULL if no
2133/// replacement required.
2134static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal,
2135 Value *OtherVal, InstCombiner &IC) {
2136 // Don't bother doing this transformation for pointers, don't do it for
2137 // vectors.
2138 if (!isa<IntegerType>(MulVal->getType()))
2139 return nullptr;
2140
2141 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
2142 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
2143 Instruction *MulInstr = cast<Instruction>(MulVal);
2144 assert(MulInstr->getOpcode() == Instruction::Mul);
2145
2146 Instruction *LHS = cast<Instruction>(MulInstr->getOperand(0)),
2147 *RHS = cast<Instruction>(MulInstr->getOperand(1));
2148 assert(LHS->getOpcode() == Instruction::ZExt);
2149 assert(RHS->getOpcode() == Instruction::ZExt);
2150 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
2151
2152 // Calculate type and width of the result produced by mul.with.overflow.
2153 Type *TyA = A->getType(), *TyB = B->getType();
2154 unsigned WidthA = TyA->getPrimitiveSizeInBits(),
2155 WidthB = TyB->getPrimitiveSizeInBits();
2156 unsigned MulWidth;
2157 Type *MulType;
2158 if (WidthB > WidthA) {
2159 MulWidth = WidthB;
2160 MulType = TyB;
2161 } else {
2162 MulWidth = WidthA;
2163 MulType = TyA;
2164 }
2165
2166 // In order to replace the original mul with a narrower mul.with.overflow,
2167 // all uses must ignore upper bits of the product. The number of used low
2168 // bits must be not greater than the width of mul.with.overflow.
2169 if (MulVal->hasNUsesOrMore(2))
2170 for (User *U : MulVal->users()) {
2171 if (U == &I)
2172 continue;
2173 if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
2174 // Check if truncation ignores bits above MulWidth.
2175 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
2176 if (TruncWidth > MulWidth)
2177 return nullptr;
2178 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
2179 // Check if AND ignores bits above MulWidth.
2180 if (BO->getOpcode() != Instruction::And)
2181 return nullptr;
2182 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
2183 const APInt &CVal = CI->getValue();
2184 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
2185 return nullptr;
2186 }
2187 } else {
2188 // Other uses prohibit this transformation.
2189 return nullptr;
2190 }
2191 }
2192
2193 // Recognize patterns
2194 switch (I.getPredicate()) {
2195 case ICmpInst::ICMP_EQ:
2196 case ICmpInst::ICMP_NE:
2197 // Recognize pattern:
2198 // mulval = mul(zext A, zext B)
2199 // cmp eq/neq mulval, zext trunc mulval
2200 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
2201 if (Zext->hasOneUse()) {
2202 Value *ZextArg = Zext->getOperand(0);
2203 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
2204 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
2205 break; //Recognized
2206 }
2207
2208 // Recognize pattern:
2209 // mulval = mul(zext A, zext B)
2210 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
2211 ConstantInt *CI;
2212 Value *ValToMask;
2213 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
2214 if (ValToMask != MulVal)
2215 return nullptr;
2216 const APInt &CVal = CI->getValue() + 1;
2217 if (CVal.isPowerOf2()) {
2218 unsigned MaskWidth = CVal.logBase2();
2219 if (MaskWidth == MulWidth)
2220 break; // Recognized
2221 }
2222 }
2223 return nullptr;
2224
2225 case ICmpInst::ICMP_UGT:
2226 // Recognize pattern:
2227 // mulval = mul(zext A, zext B)
2228 // cmp ugt mulval, max
2229 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2230 APInt MaxVal = APInt::getMaxValue(MulWidth);
2231 MaxVal = MaxVal.zext(CI->getBitWidth());
2232 if (MaxVal.eq(CI->getValue()))
2233 break; // Recognized
2234 }
2235 return nullptr;
2236
2237 case ICmpInst::ICMP_UGE:
2238 // Recognize pattern:
2239 // mulval = mul(zext A, zext B)
2240 // cmp uge mulval, max+1
2241 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2242 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
2243 if (MaxVal.eq(CI->getValue()))
2244 break; // Recognized
2245 }
2246 return nullptr;
2247
2248 case ICmpInst::ICMP_ULE:
2249 // Recognize pattern:
2250 // mulval = mul(zext A, zext B)
2251 // cmp ule mulval, max
2252 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2253 APInt MaxVal = APInt::getMaxValue(MulWidth);
2254 MaxVal = MaxVal.zext(CI->getBitWidth());
2255 if (MaxVal.eq(CI->getValue()))
2256 break; // Recognized
2257 }
2258 return nullptr;
2259
2260 case ICmpInst::ICMP_ULT:
2261 // Recognize pattern:
2262 // mulval = mul(zext A, zext B)
2263 // cmp ule mulval, max + 1
2264 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2265 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
2266 if (MaxVal.eq(CI->getValue()))
2267 break; // Recognized
2268 }
2269 return nullptr;
2270
2271 default:
2272 return nullptr;
2273 }
2274
2275 InstCombiner::BuilderTy *Builder = IC.Builder;
2276 Builder->SetInsertPoint(MulInstr);
2277 Module *M = I.getParent()->getParent()->getParent();
2278
2279 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
2280 Value *MulA = A, *MulB = B;
2281 if (WidthA < MulWidth)
2282 MulA = Builder->CreateZExt(A, MulType);
2283 if (WidthB < MulWidth)
2284 MulB = Builder->CreateZExt(B, MulType);
2285 Value *F =
2286 Intrinsic::getDeclaration(M, Intrinsic::umul_with_overflow, MulType);
2287 CallInst *Call = Builder->CreateCall2(F, MulA, MulB, "umul");
2288 IC.Worklist.Add(MulInstr);
2289
2290 // If there are uses of mul result other than the comparison, we know that
2291 // they are truncation or binary AND. Change them to use result of
2292 // mul.with.overflow and adjust properly mask/size.
2293 if (MulVal->hasNUsesOrMore(2)) {
2294 Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value");
2295 for (User *U : MulVal->users()) {
2296 if (U == &I || U == OtherVal)
2297 continue;
2298 if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
2299 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
2300 IC.ReplaceInstUsesWith(*TI, Mul);
2301 else
2302 TI->setOperand(0, Mul);
2303 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
2304 assert(BO->getOpcode() == Instruction::And);
2305 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
2306 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
2307 APInt ShortMask = CI->getValue().trunc(MulWidth);
2308 Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask);
2309 Instruction *Zext =
2310 cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType()));
2311 IC.Worklist.Add(Zext);
2312 IC.ReplaceInstUsesWith(*BO, Zext);
2313 } else {
2314 llvm_unreachable("Unexpected Binary operation");
2315 }
2316 IC.Worklist.Add(cast<Instruction>(U));
2317 }
2318 }
2319 if (isa<Instruction>(OtherVal))
2320 IC.Worklist.Add(cast<Instruction>(OtherVal));
2321
2322 // The original icmp gets replaced with the overflow value, maybe inverted
2323 // depending on predicate.
2324 bool Inverse = false;
2325 switch (I.getPredicate()) {
2326 case ICmpInst::ICMP_NE:
2327 break;
2328 case ICmpInst::ICMP_EQ:
2329 Inverse = true;
2330 break;
2331 case ICmpInst::ICMP_UGT:
2332 case ICmpInst::ICMP_UGE:
2333 if (I.getOperand(0) == MulVal)
2334 break;
2335 Inverse = true;
2336 break;
2337 case ICmpInst::ICMP_ULT:
2338 case ICmpInst::ICMP_ULE:
2339 if (I.getOperand(1) == MulVal)
2340 break;
2341 Inverse = true;
2342 break;
2343 default:
2344 llvm_unreachable("Unexpected predicate");
2345 }
2346 if (Inverse) {
2347 Value *Res = Builder->CreateExtractValue(Call, 1);
2348 return BinaryOperator::CreateNot(Res);
2349 }
2350
2351 return ExtractValueInst::Create(Call, 1);
2352}
2353
223e47cc
LB
2354// DemandedBitsLHSMask - When performing a comparison against a constant,
2355// it is possible that not all the bits in the LHS are demanded. This helper
2356// method computes the mask that IS demanded.
2357static APInt DemandedBitsLHSMask(ICmpInst &I,
2358 unsigned BitWidth, bool isSignCheck) {
2359 if (isSignCheck)
2360 return APInt::getSignBit(BitWidth);
2361
2362 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
2363 if (!CI) return APInt::getAllOnesValue(BitWidth);
2364 const APInt &RHS = CI->getValue();
2365
2366 switch (I.getPredicate()) {
2367 // For a UGT comparison, we don't care about any bits that
2368 // correspond to the trailing ones of the comparand. The value of these
2369 // bits doesn't impact the outcome of the comparison, because any value
2370 // greater than the RHS must differ in a bit higher than these due to carry.
2371 case ICmpInst::ICMP_UGT: {
2372 unsigned trailingOnes = RHS.countTrailingOnes();
2373 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
2374 return ~lowBitsSet;
2375 }
2376
2377 // Similarly, for a ULT comparison, we don't care about the trailing zeros.
2378 // Any value less than the RHS must differ in a higher bit because of carries.
2379 case ICmpInst::ICMP_ULT: {
2380 unsigned trailingZeros = RHS.countTrailingZeros();
2381 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
2382 return ~lowBitsSet;
2383 }
2384
2385 default:
2386 return APInt::getAllOnesValue(BitWidth);
2387 }
2388
2389}
2390
1a4d82fc
JJ
2391/// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
2392/// should be swapped.
2393/// The decision is based on how many times these two operands are reused
2394/// as subtract operands and their positions in those instructions.
2395/// The rational is that several architectures use the same instruction for
2396/// both subtract and cmp, thus it is better if the order of those operands
2397/// match.
2398/// \return true if Op0 and Op1 should be swapped.
2399static bool swapMayExposeCSEOpportunities(const Value * Op0,
2400 const Value * Op1) {
2401 // Filter out pointer value as those cannot appears directly in subtract.
2402 // FIXME: we may want to go through inttoptrs or bitcasts.
2403 if (Op0->getType()->isPointerTy())
2404 return false;
2405 // Count every uses of both Op0 and Op1 in a subtract.
2406 // Each time Op0 is the first operand, count -1: swapping is bad, the
2407 // subtract has already the same layout as the compare.
2408 // Each time Op0 is the second operand, count +1: swapping is good, the
2409 // subtract has a different layout as the compare.
2410 // At the end, if the benefit is greater than 0, Op0 should come second to
2411 // expose more CSE opportunities.
2412 int GlobalSwapBenefits = 0;
2413 for (const User *U : Op0->users()) {
2414 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U);
2415 if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
2416 continue;
2417 // If Op0 is the first argument, this is not beneficial to swap the
2418 // arguments.
2419 int LocalSwapBenefits = -1;
2420 unsigned Op1Idx = 1;
2421 if (BinOp->getOperand(Op1Idx) == Op0) {
2422 Op1Idx = 0;
2423 LocalSwapBenefits = 1;
2424 }
2425 if (BinOp->getOperand(Op1Idx) != Op1)
2426 continue;
2427 GlobalSwapBenefits += LocalSwapBenefits;
2428 }
2429 return GlobalSwapBenefits > 0;
2430}
2431
223e47cc
LB
2432Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
2433 bool Changed = false;
2434 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1a4d82fc
JJ
2435 unsigned Op0Cplxity = getComplexity(Op0);
2436 unsigned Op1Cplxity = getComplexity(Op1);
223e47cc
LB
2437
2438 /// Orders the operands of the compare so that they are listed from most
2439 /// complex to least complex. This puts constants before unary operators,
2440 /// before binary operators.
1a4d82fc
JJ
2441 if (Op0Cplxity < Op1Cplxity ||
2442 (Op0Cplxity == Op1Cplxity &&
2443 swapMayExposeCSEOpportunities(Op0, Op1))) {
223e47cc
LB
2444 I.swapOperands();
2445 std::swap(Op0, Op1);
2446 Changed = true;
2447 }
2448
1a4d82fc 2449 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AT))
223e47cc
LB
2450 return ReplaceInstUsesWith(I, V);
2451
2452 // comparing -val or val with non-zero is the same as just comparing val
2453 // ie, abs(val) != 0 -> val != 0
2454 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
2455 {
2456 Value *Cond, *SelectTrue, *SelectFalse;
2457 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
2458 m_Value(SelectFalse)))) {
2459 if (Value *V = dyn_castNegVal(SelectTrue)) {
2460 if (V == SelectFalse)
2461 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
2462 }
2463 else if (Value *V = dyn_castNegVal(SelectFalse)) {
2464 if (V == SelectTrue)
2465 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
2466 }
2467 }
2468 }
2469
2470 Type *Ty = Op0->getType();
2471
2472 // icmp's with boolean values can always be turned into bitwise operations
2473 if (Ty->isIntegerTy(1)) {
2474 switch (I.getPredicate()) {
2475 default: llvm_unreachable("Invalid icmp instruction!");
2476 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
2477 Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
2478 return BinaryOperator::CreateNot(Xor);
2479 }
2480 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
2481 return BinaryOperator::CreateXor(Op0, Op1);
2482
2483 case ICmpInst::ICMP_UGT:
2484 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
2485 // FALL THROUGH
2486 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
2487 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2488 return BinaryOperator::CreateAnd(Not, Op1);
2489 }
2490 case ICmpInst::ICMP_SGT:
2491 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
2492 // FALL THROUGH
2493 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
2494 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2495 return BinaryOperator::CreateAnd(Not, Op0);
2496 }
2497 case ICmpInst::ICMP_UGE:
2498 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
2499 // FALL THROUGH
2500 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
2501 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2502 return BinaryOperator::CreateOr(Not, Op1);
2503 }
2504 case ICmpInst::ICMP_SGE:
2505 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
2506 // FALL THROUGH
2507 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
2508 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2509 return BinaryOperator::CreateOr(Not, Op0);
2510 }
2511 }
2512 }
2513
2514 unsigned BitWidth = 0;
2515 if (Ty->isIntOrIntVectorTy())
2516 BitWidth = Ty->getScalarSizeInBits();
1a4d82fc
JJ
2517 else if (DL) // Pointers require DL info to get their size.
2518 BitWidth = DL->getTypeSizeInBits(Ty->getScalarType());
223e47cc
LB
2519
2520 bool isSignBit = false;
2521
2522 // See if we are doing a comparison with a constant.
2523 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1a4d82fc 2524 Value *A = nullptr, *B = nullptr;
223e47cc
LB
2525
2526 // Match the following pattern, which is a common idiom when writing
2527 // overflow-safe integer arithmetic function. The source performs an
2528 // addition in wider type, and explicitly checks for overflow using
2529 // comparisons against INT_MIN and INT_MAX. Simplify this by using the
2530 // sadd_with_overflow intrinsic.
2531 //
2532 // TODO: This could probably be generalized to handle other overflow-safe
2533 // operations if we worked out the formulas to compute the appropriate
2534 // magic constants.
2535 //
2536 // sum = a + b
2537 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
2538 {
2539 ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
2540 if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2541 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
2542 if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
2543 return Res;
2544 }
2545
2546 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
2547 if (I.isEquality() && CI->isZero() &&
2548 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
2549 // (icmp cond A B) if cond is equality
2550 return new ICmpInst(I.getPredicate(), A, B);
2551 }
2552
2553 // If we have an icmp le or icmp ge instruction, turn it into the
2554 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
2555 // them being folded in the code below. The SimplifyICmpInst code has
2556 // already handled the edge cases for us, so we just assert on them.
2557 switch (I.getPredicate()) {
2558 default: break;
2559 case ICmpInst::ICMP_ULE:
2560 assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE
2561 return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
1a4d82fc 2562 Builder->getInt(CI->getValue()+1));
223e47cc
LB
2563 case ICmpInst::ICMP_SLE:
2564 assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE
2565 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
1a4d82fc 2566 Builder->getInt(CI->getValue()+1));
223e47cc
LB
2567 case ICmpInst::ICMP_UGE:
2568 assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE
2569 return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
1a4d82fc 2570 Builder->getInt(CI->getValue()-1));
223e47cc
LB
2571 case ICmpInst::ICMP_SGE:
2572 assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE
2573 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
1a4d82fc
JJ
2574 Builder->getInt(CI->getValue()-1));
2575 }
2576
2577 // (icmp eq/ne (ashr/lshr const2, A), const1)
2578 if (I.isEquality()) {
2579 ConstantInt *CI2;
2580 if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) ||
2581 match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) {
2582 return FoldICmpCstShrCst(I, Op0, A, CI, CI2);
2583 }
223e47cc
LB
2584 }
2585
2586 // If this comparison is a normal comparison, it demands all
2587 // bits, if it is a sign bit comparison, it only demands the sign bit.
2588 bool UnusedBit;
2589 isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
2590 }
2591
2592 // See if we can fold the comparison based on range information we can get
2593 // by checking whether bits are known to be zero or one in the input.
2594 if (BitWidth != 0) {
2595 APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
2596 APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
2597
2598 if (SimplifyDemandedBits(I.getOperandUse(0),
2599 DemandedBitsLHSMask(I, BitWidth, isSignBit),
2600 Op0KnownZero, Op0KnownOne, 0))
2601 return &I;
2602 if (SimplifyDemandedBits(I.getOperandUse(1),
2603 APInt::getAllOnesValue(BitWidth),
2604 Op1KnownZero, Op1KnownOne, 0))
2605 return &I;
2606
2607 // Given the known and unknown bits, compute a range that the LHS could be
2608 // in. Compute the Min, Max and RHS values based on the known bits. For the
2609 // EQ and NE we use unsigned values.
2610 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
2611 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
2612 if (I.isSigned()) {
2613 ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2614 Op0Min, Op0Max);
2615 ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2616 Op1Min, Op1Max);
2617 } else {
2618 ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2619 Op0Min, Op0Max);
2620 ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2621 Op1Min, Op1Max);
2622 }
2623
2624 // If Min and Max are known to be the same, then SimplifyDemandedBits
2625 // figured out that the LHS is a constant. Just constant fold this now so
2626 // that code below can assume that Min != Max.
2627 if (!isa<Constant>(Op0) && Op0Min == Op0Max)
2628 return new ICmpInst(I.getPredicate(),
2629 ConstantInt::get(Op0->getType(), Op0Min), Op1);
2630 if (!isa<Constant>(Op1) && Op1Min == Op1Max)
2631 return new ICmpInst(I.getPredicate(), Op0,
2632 ConstantInt::get(Op1->getType(), Op1Min));
2633
2634 // Based on the range information we know about the LHS, see if we can
2635 // simplify this comparison. For example, (x&4) < 8 is always true.
2636 switch (I.getPredicate()) {
2637 default: llvm_unreachable("Unknown icmp opcode!");
2638 case ICmpInst::ICMP_EQ: {
2639 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
2640 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2641
2642 // If all bits are known zero except for one, then we know at most one
2643 // bit is set. If the comparison is against zero, then this is a check
2644 // to see if *that* bit is set.
2645 APInt Op0KnownZeroInverted = ~Op0KnownZero;
1a4d82fc 2646 if (~Op1KnownZero == 0) {
223e47cc 2647 // If the LHS is an AND with the same constant, look through it.
1a4d82fc
JJ
2648 Value *LHS = nullptr;
2649 ConstantInt *LHSC = nullptr;
223e47cc
LB
2650 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2651 LHSC->getValue() != Op0KnownZeroInverted)
2652 LHS = Op0;
2653
2654 // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2655 // then turn "((1 << x)&8) == 0" into "x != 3".
1a4d82fc
JJ
2656 // or turn "((1 << x)&7) == 0" into "x > 2".
2657 Value *X = nullptr;
223e47cc 2658 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
1a4d82fc
JJ
2659 APInt ValToCheck = Op0KnownZeroInverted;
2660 if (ValToCheck.isPowerOf2()) {
2661 unsigned CmpVal = ValToCheck.countTrailingZeros();
2662 return new ICmpInst(ICmpInst::ICMP_NE, X,
2663 ConstantInt::get(X->getType(), CmpVal));
2664 } else if ((++ValToCheck).isPowerOf2()) {
2665 unsigned CmpVal = ValToCheck.countTrailingZeros() - 1;
2666 return new ICmpInst(ICmpInst::ICMP_UGT, X,
2667 ConstantInt::get(X->getType(), CmpVal));
2668 }
223e47cc
LB
2669 }
2670
2671 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
2672 // then turn "((8 >>u x)&1) == 0" into "x != 3".
2673 const APInt *CI;
2674 if (Op0KnownZeroInverted == 1 &&
2675 match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
2676 return new ICmpInst(ICmpInst::ICMP_NE, X,
2677 ConstantInt::get(X->getType(),
2678 CI->countTrailingZeros()));
2679 }
2680
2681 break;
2682 }
2683 case ICmpInst::ICMP_NE: {
2684 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
2685 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2686
2687 // If all bits are known zero except for one, then we know at most one
2688 // bit is set. If the comparison is against zero, then this is a check
2689 // to see if *that* bit is set.
2690 APInt Op0KnownZeroInverted = ~Op0KnownZero;
1a4d82fc 2691 if (~Op1KnownZero == 0) {
223e47cc 2692 // If the LHS is an AND with the same constant, look through it.
1a4d82fc
JJ
2693 Value *LHS = nullptr;
2694 ConstantInt *LHSC = nullptr;
223e47cc
LB
2695 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2696 LHSC->getValue() != Op0KnownZeroInverted)
2697 LHS = Op0;
2698
2699 // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2700 // then turn "((1 << x)&8) != 0" into "x == 3".
1a4d82fc
JJ
2701 // or turn "((1 << x)&7) != 0" into "x < 3".
2702 Value *X = nullptr;
223e47cc 2703 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
1a4d82fc
JJ
2704 APInt ValToCheck = Op0KnownZeroInverted;
2705 if (ValToCheck.isPowerOf2()) {
2706 unsigned CmpVal = ValToCheck.countTrailingZeros();
2707 return new ICmpInst(ICmpInst::ICMP_EQ, X,
2708 ConstantInt::get(X->getType(), CmpVal));
2709 } else if ((++ValToCheck).isPowerOf2()) {
2710 unsigned CmpVal = ValToCheck.countTrailingZeros();
2711 return new ICmpInst(ICmpInst::ICMP_ULT, X,
2712 ConstantInt::get(X->getType(), CmpVal));
2713 }
223e47cc
LB
2714 }
2715
2716 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
2717 // then turn "((8 >>u x)&1) != 0" into "x == 3".
2718 const APInt *CI;
2719 if (Op0KnownZeroInverted == 1 &&
2720 match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
2721 return new ICmpInst(ICmpInst::ICMP_EQ, X,
2722 ConstantInt::get(X->getType(),
2723 CI->countTrailingZeros()));
2724 }
2725
2726 break;
2727 }
2728 case ICmpInst::ICMP_ULT:
2729 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
2730 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2731 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
2732 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2733 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
2734 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2735 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2736 if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C
2737 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
1a4d82fc 2738 Builder->getInt(CI->getValue()-1));
223e47cc
LB
2739
2740 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
2741 if (CI->isMinValue(true))
2742 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2743 Constant::getAllOnesValue(Op0->getType()));
2744 }
2745 break;
2746 case ICmpInst::ICMP_UGT:
2747 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
2748 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2749 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
2750 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2751
2752 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
2753 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2754 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2755 if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C
2756 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
1a4d82fc 2757 Builder->getInt(CI->getValue()+1));
223e47cc
LB
2758
2759 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
2760 if (CI->isMaxValue(true))
2761 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2762 Constant::getNullValue(Op0->getType()));
2763 }
2764 break;
2765 case ICmpInst::ICMP_SLT:
2766 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
2767 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2768 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
2769 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2770 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
2771 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2772 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2773 if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C
2774 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
1a4d82fc 2775 Builder->getInt(CI->getValue()-1));
223e47cc
LB
2776 }
2777 break;
2778 case ICmpInst::ICMP_SGT:
2779 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
2780 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2781 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
2782 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2783
2784 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
2785 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2786 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2787 if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C
2788 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
1a4d82fc 2789 Builder->getInt(CI->getValue()+1));
223e47cc
LB
2790 }
2791 break;
2792 case ICmpInst::ICMP_SGE:
2793 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
2794 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
2795 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2796 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
2797 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2798 break;
2799 case ICmpInst::ICMP_SLE:
2800 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
2801 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
2802 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2803 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
2804 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2805 break;
2806 case ICmpInst::ICMP_UGE:
2807 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
2808 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
2809 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2810 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
2811 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2812 break;
2813 case ICmpInst::ICMP_ULE:
2814 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
2815 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
2816 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2817 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
2818 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2819 break;
2820 }
2821
2822 // Turn a signed comparison into an unsigned one if both operands
2823 // are known to have the same sign.
2824 if (I.isSigned() &&
2825 ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
2826 (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
2827 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
2828 }
2829
2830 // Test if the ICmpInst instruction is used exclusively by a select as
2831 // part of a minimum or maximum operation. If so, refrain from doing
2832 // any other folding. This helps out other analyses which understand
2833 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
2834 // and CodeGen. And in this case, at least one of the comparison
2835 // operands has at least one user besides the compare (the select),
2836 // which would often largely negate the benefit of folding anyway.
2837 if (I.hasOneUse())
1a4d82fc 2838 if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
223e47cc
LB
2839 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
2840 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
1a4d82fc 2841 return nullptr;
223e47cc
LB
2842
2843 // See if we are doing a comparison between a constant and an instruction that
2844 // can be folded into the comparison.
2845 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2846 // Since the RHS is a ConstantInt (CI), if the left hand side is an
2847 // instruction, see if that instruction also has constants so that the
2848 // instruction can be folded into the icmp
2849 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2850 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
2851 return Res;
2852 }
2853
2854 // Handle icmp with constant (but not simple integer constant) RHS
2855 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2856 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2857 switch (LHSI->getOpcode()) {
2858 case Instruction::GetElementPtr:
2859 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2860 if (RHSC->isNullValue() &&
2861 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2862 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2863 Constant::getNullValue(LHSI->getOperand(0)->getType()));
2864 break;
2865 case Instruction::PHI:
2866 // Only fold icmp into the PHI if the phi and icmp are in the same
2867 // block. If in the same block, we're encouraging jump threading. If
2868 // not, we are just pessimizing the code by making an i1 phi.
2869 if (LHSI->getParent() == I.getParent())
2870 if (Instruction *NV = FoldOpIntoPhi(I))
2871 return NV;
2872 break;
2873 case Instruction::Select: {
2874 // If either operand of the select is a constant, we can fold the
2875 // comparison into the select arms, which will cause one to be
2876 // constant folded and the select turned into a bitwise or.
1a4d82fc 2877 Value *Op1 = nullptr, *Op2 = nullptr;
223e47cc
LB
2878 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
2879 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2880 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
2881 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2882
2883 // We only want to perform this transformation if it will not lead to
2884 // additional code. This is true if either both sides of the select
2885 // fold to a constant (in which case the icmp is replaced with a select
2886 // which will usually simplify) or this is the only user of the
2887 // select (in which case we are trading a select+icmp for a simpler
2888 // select+icmp).
2889 if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
2890 if (!Op1)
2891 Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
2892 RHSC, I.getName());
2893 if (!Op2)
2894 Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
2895 RHSC, I.getName());
2896 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2897 }
2898 break;
2899 }
2900 case Instruction::IntToPtr:
2901 // icmp pred inttoptr(X), null -> icmp pred X, 0
1a4d82fc
JJ
2902 if (RHSC->isNullValue() && DL &&
2903 DL->getIntPtrType(RHSC->getType()) ==
223e47cc
LB
2904 LHSI->getOperand(0)->getType())
2905 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2906 Constant::getNullValue(LHSI->getOperand(0)->getType()));
2907 break;
2908
2909 case Instruction::Load:
2910 // Try to optimize things like "A[i] > 4" to index computations.
2911 if (GetElementPtrInst *GEP =
2912 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2913 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2914 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2915 !cast<LoadInst>(LHSI)->isVolatile())
2916 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2917 return Res;
2918 }
2919 break;
2920 }
2921 }
2922
2923 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
2924 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
2925 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
2926 return NI;
2927 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
2928 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
2929 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
2930 return NI;
2931
2932 // Test to see if the operands of the icmp are casted versions of other
2933 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
2934 // now.
2935 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
2936 if (Op0->getType()->isPointerTy() &&
2937 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2938 // We keep moving the cast from the left operand over to the right
2939 // operand, where it can often be eliminated completely.
2940 Op0 = CI->getOperand(0);
2941
2942 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2943 // so eliminate it as well.
2944 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
2945 Op1 = CI2->getOperand(0);
2946
2947 // If Op1 is a constant, we can fold the cast into the constant.
2948 if (Op0->getType() != Op1->getType()) {
2949 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
2950 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
2951 } else {
2952 // Otherwise, cast the RHS right before the icmp
2953 Op1 = Builder->CreateBitCast(Op1, Op0->getType());
2954 }
2955 }
2956 return new ICmpInst(I.getPredicate(), Op0, Op1);
2957 }
2958 }
2959
2960 if (isa<CastInst>(Op0)) {
2961 // Handle the special case of: icmp (cast bool to X), <cst>
2962 // This comes up when you have code like
2963 // int X = A < B;
2964 // if (X) ...
2965 // For generality, we handle any zero-extension of any operand comparison
2966 // with a constant or another cast from the same type.
2967 if (isa<Constant>(Op1) || isa<CastInst>(Op1))
2968 if (Instruction *R = visitICmpInstWithCastAndCast(I))
2969 return R;
2970 }
2971
2972 // Special logic for binary operators.
2973 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
2974 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
2975 if (BO0 || BO1) {
2976 CmpInst::Predicate Pred = I.getPredicate();
2977 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
2978 if (BO0 && isa<OverflowingBinaryOperator>(BO0))
2979 NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
2980 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
2981 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
2982 if (BO1 && isa<OverflowingBinaryOperator>(BO1))
2983 NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
2984 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
2985 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
2986
2987 // Analyze the case when either Op0 or Op1 is an add instruction.
2988 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
1a4d82fc 2989 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
223e47cc
LB
2990 if (BO0 && BO0->getOpcode() == Instruction::Add)
2991 A = BO0->getOperand(0), B = BO0->getOperand(1);
2992 if (BO1 && BO1->getOpcode() == Instruction::Add)
2993 C = BO1->getOperand(0), D = BO1->getOperand(1);
2994
2995 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2996 if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
2997 return new ICmpInst(Pred, A == Op1 ? B : A,
2998 Constant::getNullValue(Op1->getType()));
2999
3000 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3001 if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3002 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3003 C == Op0 ? D : C);
3004
3005 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
3006 if (A && C && (A == C || A == D || B == C || B == D) &&
3007 NoOp0WrapProblem && NoOp1WrapProblem &&
3008 // Try not to increase register pressure.
3009 BO0->hasOneUse() && BO1->hasOneUse()) {
3010 // Determine Y and Z in the form icmp (X+Y), (X+Z).
970d7e83
LB
3011 Value *Y, *Z;
3012 if (A == C) {
3013 // C + B == C + D -> B == D
3014 Y = B;
3015 Z = D;
3016 } else if (A == D) {
3017 // D + B == C + D -> B == C
3018 Y = B;
3019 Z = C;
3020 } else if (B == C) {
3021 // A + C == C + D -> A == D
3022 Y = A;
3023 Z = D;
3024 } else {
3025 assert(B == D);
3026 // A + D == C + D -> A == C
3027 Y = A;
3028 Z = C;
3029 }
223e47cc
LB
3030 return new ICmpInst(Pred, Y, Z);
3031 }
3032
1a4d82fc
JJ
3033 // icmp slt (X + -1), Y -> icmp sle X, Y
3034 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3035 match(B, m_AllOnes()))
3036 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3037
3038 // icmp sge (X + -1), Y -> icmp sgt X, Y
3039 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3040 match(B, m_AllOnes()))
3041 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3042
3043 // icmp sle (X + 1), Y -> icmp slt X, Y
3044 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
3045 match(B, m_One()))
3046 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3047
3048 // icmp sgt (X + 1), Y -> icmp sge X, Y
3049 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
3050 match(B, m_One()))
3051 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3052
3053 // if C1 has greater magnitude than C2:
3054 // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
3055 // s.t. C3 = C1 - C2
3056 //
3057 // if C2 has greater magnitude than C1:
3058 // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
3059 // s.t. C3 = C2 - C1
3060 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3061 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3062 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3063 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3064 const APInt &AP1 = C1->getValue();
3065 const APInt &AP2 = C2->getValue();
3066 if (AP1.isNegative() == AP2.isNegative()) {
3067 APInt AP1Abs = C1->getValue().abs();
3068 APInt AP2Abs = C2->getValue().abs();
3069 if (AP1Abs.uge(AP2Abs)) {
3070 ConstantInt *C3 = Builder->getInt(AP1 - AP2);
3071 Value *NewAdd = Builder->CreateNSWAdd(A, C3);
3072 return new ICmpInst(Pred, NewAdd, C);
3073 } else {
3074 ConstantInt *C3 = Builder->getInt(AP2 - AP1);
3075 Value *NewAdd = Builder->CreateNSWAdd(C, C3);
3076 return new ICmpInst(Pred, A, NewAdd);
3077 }
3078 }
3079 }
3080
3081
223e47cc
LB
3082 // Analyze the case when either Op0 or Op1 is a sub instruction.
3083 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
1a4d82fc 3084 A = nullptr; B = nullptr; C = nullptr; D = nullptr;
223e47cc
LB
3085 if (BO0 && BO0->getOpcode() == Instruction::Sub)
3086 A = BO0->getOperand(0), B = BO0->getOperand(1);
3087 if (BO1 && BO1->getOpcode() == Instruction::Sub)
3088 C = BO1->getOperand(0), D = BO1->getOperand(1);
3089
3090 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
3091 if (A == Op1 && NoOp0WrapProblem)
3092 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3093
3094 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
3095 if (C == Op0 && NoOp1WrapProblem)
3096 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3097
3098 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
3099 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
3100 // Try not to increase register pressure.
3101 BO0->hasOneUse() && BO1->hasOneUse())
3102 return new ICmpInst(Pred, A, C);
3103
3104 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
3105 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
3106 // Try not to increase register pressure.
3107 BO0->hasOneUse() && BO1->hasOneUse())
3108 return new ICmpInst(Pred, D, B);
3109
1a4d82fc
JJ
3110 // icmp (0-X) < cst --> x > -cst
3111 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3112 Value *X;
3113 if (match(BO0, m_Neg(m_Value(X))))
3114 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
3115 if (!RHSC->isMinValue(/*isSigned=*/true))
3116 return new ICmpInst(I.getSwappedPredicate(), X,
3117 ConstantExpr::getNeg(RHSC));
3118 }
3119
3120 BinaryOperator *SRem = nullptr;
223e47cc
LB
3121 // icmp (srem X, Y), Y
3122 if (BO0 && BO0->getOpcode() == Instruction::SRem &&
3123 Op1 == BO0->getOperand(1))
3124 SRem = BO0;
3125 // icmp Y, (srem X, Y)
3126 else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
3127 Op0 == BO1->getOperand(1))
3128 SRem = BO1;
3129 if (SRem) {
3130 // We don't check hasOneUse to avoid increasing register pressure because
3131 // the value we use is the same value this instruction was already using.
3132 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3133 default: break;
3134 case ICmpInst::ICMP_EQ:
3135 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3136 case ICmpInst::ICMP_NE:
3137 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3138 case ICmpInst::ICMP_SGT:
3139 case ICmpInst::ICMP_SGE:
3140 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3141 Constant::getAllOnesValue(SRem->getType()));
3142 case ICmpInst::ICMP_SLT:
3143 case ICmpInst::ICMP_SLE:
3144 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3145 Constant::getNullValue(SRem->getType()));
3146 }
3147 }
3148
3149 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
3150 BO0->hasOneUse() && BO1->hasOneUse() &&
3151 BO0->getOperand(1) == BO1->getOperand(1)) {
3152 switch (BO0->getOpcode()) {
3153 default: break;
3154 case Instruction::Add:
3155 case Instruction::Sub:
3156 case Instruction::Xor:
3157 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
3158 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3159 BO1->getOperand(0));
3160 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
3161 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
3162 if (CI->getValue().isSignBit()) {
3163 ICmpInst::Predicate Pred = I.isSigned()
3164 ? I.getUnsignedPredicate()
3165 : I.getSignedPredicate();
3166 return new ICmpInst(Pred, BO0->getOperand(0),
3167 BO1->getOperand(0));
3168 }
3169
3170 if (CI->isMaxValue(true)) {
3171 ICmpInst::Predicate Pred = I.isSigned()
3172 ? I.getUnsignedPredicate()
3173 : I.getSignedPredicate();
3174 Pred = I.getSwappedPredicate(Pred);
3175 return new ICmpInst(Pred, BO0->getOperand(0),
3176 BO1->getOperand(0));
3177 }
3178 }
3179 break;
3180 case Instruction::Mul:
3181 if (!I.isEquality())
3182 break;
3183
3184 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
3185 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
3186 // Mask = -1 >> count-trailing-zeros(Cst).
3187 if (!CI->isZero() && !CI->isOne()) {
3188 const APInt &AP = CI->getValue();
3189 ConstantInt *Mask = ConstantInt::get(I.getContext(),
3190 APInt::getLowBitsSet(AP.getBitWidth(),
3191 AP.getBitWidth() -
3192 AP.countTrailingZeros()));
3193 Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
3194 Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
3195 return new ICmpInst(I.getPredicate(), And1, And2);
3196 }
3197 }
3198 break;
3199 case Instruction::UDiv:
3200 case Instruction::LShr:
3201 if (I.isSigned())
3202 break;
3203 // fall-through
3204 case Instruction::SDiv:
3205 case Instruction::AShr:
3206 if (!BO0->isExact() || !BO1->isExact())
3207 break;
3208 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3209 BO1->getOperand(0));
3210 case Instruction::Shl: {
3211 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
3212 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
3213 if (!NUW && !NSW)
3214 break;
3215 if (!NSW && I.isSigned())
3216 break;
3217 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3218 BO1->getOperand(0));
3219 }
3220 }
3221 }
3222 }
3223
3224 { Value *A, *B;
1a4d82fc
JJ
3225 // Transform (A & ~B) == 0 --> (A & B) != 0
3226 // and (A & ~B) != 0 --> (A & B) == 0
3227 // if A is a power of 2.
3228 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
3229 match(Op1, m_Zero()) && isKnownToBeAPowerOfTwo(A, false,
3230 0, AT, &I, DT) &&
3231 I.isEquality())
3232 return new ICmpInst(I.getInversePredicate(),
3233 Builder->CreateAnd(A, B),
3234 Op1);
3235
223e47cc
LB
3236 // ~x < ~y --> y < x
3237 // ~x < cst --> ~cst < x
3238 if (match(Op0, m_Not(m_Value(A)))) {
3239 if (match(Op1, m_Not(m_Value(B))))
3240 return new ICmpInst(I.getPredicate(), B, A);
3241 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
3242 return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
3243 }
3244
3245 // (a+b) <u a --> llvm.uadd.with.overflow.
3246 // (a+b) <u b --> llvm.uadd.with.overflow.
3247 if (I.getPredicate() == ICmpInst::ICMP_ULT &&
3248 match(Op0, m_Add(m_Value(A), m_Value(B))) &&
3249 (Op1 == A || Op1 == B))
3250 if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
3251 return R;
3252
3253 // a >u (a+b) --> llvm.uadd.with.overflow.
3254 // b >u (a+b) --> llvm.uadd.with.overflow.
3255 if (I.getPredicate() == ICmpInst::ICMP_UGT &&
3256 match(Op1, m_Add(m_Value(A), m_Value(B))) &&
3257 (Op0 == A || Op0 == B))
3258 if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
3259 return R;
1a4d82fc
JJ
3260
3261 // (zext a) * (zext b) --> llvm.umul.with.overflow.
3262 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
3263 if (Instruction *R = ProcessUMulZExtIdiom(I, Op0, Op1, *this))
3264 return R;
3265 }
3266 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
3267 if (Instruction *R = ProcessUMulZExtIdiom(I, Op1, Op0, *this))
3268 return R;
3269 }
223e47cc
LB
3270 }
3271
3272 if (I.isEquality()) {
3273 Value *A, *B, *C, *D;
3274
3275 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3276 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
3277 Value *OtherVal = A == Op1 ? B : A;
3278 return new ICmpInst(I.getPredicate(), OtherVal,
3279 Constant::getNullValue(A->getType()));
3280 }
3281
3282 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
3283 // A^c1 == C^c2 --> A == C^(c1^c2)
3284 ConstantInt *C1, *C2;
3285 if (match(B, m_ConstantInt(C1)) &&
3286 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
1a4d82fc 3287 Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
223e47cc
LB
3288 Value *Xor = Builder->CreateXor(C, NC);
3289 return new ICmpInst(I.getPredicate(), A, Xor);
3290 }
3291
3292 // A^B == A^D -> B == D
3293 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
3294 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
3295 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
3296 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
3297 }
3298 }
3299
3300 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
3301 (A == Op0 || B == Op0)) {
3302 // A == (A^B) -> B == 0
3303 Value *OtherVal = A == Op0 ? B : A;
3304 return new ICmpInst(I.getPredicate(), OtherVal,
3305 Constant::getNullValue(A->getType()));
3306 }
3307
3308 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
3309 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
3310 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
1a4d82fc 3311 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
223e47cc
LB
3312
3313 if (A == C) {
3314 X = B; Y = D; Z = A;
3315 } else if (A == D) {
3316 X = B; Y = C; Z = A;
3317 } else if (B == C) {
3318 X = A; Y = D; Z = B;
3319 } else if (B == D) {
3320 X = A; Y = C; Z = B;
3321 }
3322
3323 if (X) { // Build (X^Y) & Z
3324 Op1 = Builder->CreateXor(X, Y);
3325 Op1 = Builder->CreateAnd(Op1, Z);
3326 I.setOperand(0, Op1);
3327 I.setOperand(1, Constant::getNullValue(Op1->getType()));
3328 return &I;
3329 }
3330 }
3331
3332 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
3333 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
3334 ConstantInt *Cst1;
3335 if ((Op0->hasOneUse() &&
3336 match(Op0, m_ZExt(m_Value(A))) &&
3337 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
3338 (Op1->hasOneUse() &&
3339 match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
3340 match(Op1, m_ZExt(m_Value(A))))) {
3341 APInt Pow2 = Cst1->getValue() + 1;
3342 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
3343 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
3344 return new ICmpInst(I.getPredicate(), A,
3345 Builder->CreateTrunc(B, A->getType()));
3346 }
3347
1a4d82fc
JJ
3348 // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
3349 // For lshr and ashr pairs.
3350 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3351 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
3352 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3353 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
3354 unsigned TypeBits = Cst1->getBitWidth();
3355 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3356 if (ShAmt < TypeBits && ShAmt != 0) {
3357 ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
3358 ? ICmpInst::ICMP_UGE
3359 : ICmpInst::ICMP_ULT;
3360 Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
3361 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
3362 return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
3363 }
3364 }
3365
223e47cc
LB
3366 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
3367 // "icmp (and X, mask), cst"
3368 uint64_t ShAmt = 0;
3369 if (Op0->hasOneUse() &&
3370 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
3371 m_ConstantInt(ShAmt))))) &&
3372 match(Op1, m_ConstantInt(Cst1)) &&
3373 // Only do this when A has multiple uses. This is most important to do
3374 // when it exposes other optimizations.
3375 !A->hasOneUse()) {
3376 unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
3377
3378 if (ShAmt < ASize) {
3379 APInt MaskV =
3380 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
3381 MaskV <<= ShAmt;
3382
3383 APInt CmpV = Cst1->getValue().zext(ASize);
3384 CmpV <<= ShAmt;
3385
3386 Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
3387 return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
3388 }
3389 }
3390 }
3391
3392 {
3393 Value *X; ConstantInt *Cst;
3394 // icmp X+Cst, X
3395 if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
1a4d82fc 3396 return FoldICmpAddOpCst(I, X, Cst, I.getPredicate());
223e47cc
LB
3397
3398 // icmp X, X+Cst
3399 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
1a4d82fc 3400 return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate());
223e47cc 3401 }
1a4d82fc 3402 return Changed ? &I : nullptr;
223e47cc
LB
3403}
3404
223e47cc
LB
3405/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
3406///
3407Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
3408 Instruction *LHSI,
3409 Constant *RHSC) {
1a4d82fc 3410 if (!isa<ConstantFP>(RHSC)) return nullptr;
223e47cc
LB
3411 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
3412
3413 // Get the width of the mantissa. We don't want to hack on conversions that
3414 // might lose information from the integer, e.g. "i64 -> float"
3415 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
1a4d82fc 3416 if (MantissaWidth == -1) return nullptr; // Unknown.
223e47cc
LB
3417
3418 // Check to see that the input is converted from an integer type that is small
3419 // enough that preserves all bits. TODO: check here for "known" sign bits.
3420 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
3421 unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
3422
3423 // If this is a uitofp instruction, we need an extra bit to hold the sign.
3424 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
3425 if (LHSUnsigned)
3426 ++InputSize;
3427
3428 // If the conversion would lose info, don't hack on this.
3429 if ((int)InputSize > MantissaWidth)
1a4d82fc 3430 return nullptr;
223e47cc
LB
3431
3432 // Otherwise, we can potentially simplify the comparison. We know that it
3433 // will always come through as an integer value and we know the constant is
3434 // not a NAN (it would have been previously simplified).
3435 assert(!RHS.isNaN() && "NaN comparison not already folded!");
3436
3437 ICmpInst::Predicate Pred;
3438 switch (I.getPredicate()) {
3439 default: llvm_unreachable("Unexpected predicate!");
3440 case FCmpInst::FCMP_UEQ:
3441 case FCmpInst::FCMP_OEQ:
3442 Pred = ICmpInst::ICMP_EQ;
3443 break;
3444 case FCmpInst::FCMP_UGT:
3445 case FCmpInst::FCMP_OGT:
3446 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
3447 break;
3448 case FCmpInst::FCMP_UGE:
3449 case FCmpInst::FCMP_OGE:
3450 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
3451 break;
3452 case FCmpInst::FCMP_ULT:
3453 case FCmpInst::FCMP_OLT:
3454 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
3455 break;
3456 case FCmpInst::FCMP_ULE:
3457 case FCmpInst::FCMP_OLE:
3458 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
3459 break;
3460 case FCmpInst::FCMP_UNE:
3461 case FCmpInst::FCMP_ONE:
3462 Pred = ICmpInst::ICMP_NE;
3463 break;
3464 case FCmpInst::FCMP_ORD:
1a4d82fc 3465 return ReplaceInstUsesWith(I, Builder->getTrue());
223e47cc 3466 case FCmpInst::FCMP_UNO:
1a4d82fc 3467 return ReplaceInstUsesWith(I, Builder->getFalse());
223e47cc
LB
3468 }
3469
3470 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
3471
3472 // Now we know that the APFloat is a normal number, zero or inf.
3473
3474 // See if the FP constant is too large for the integer. For example,
3475 // comparing an i8 to 300.0.
3476 unsigned IntWidth = IntTy->getScalarSizeInBits();
3477
3478 if (!LHSUnsigned) {
3479 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
3480 // and large values.
1a4d82fc 3481 APFloat SMax(RHS.getSemantics());
223e47cc
LB
3482 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
3483 APFloat::rmNearestTiesToEven);
3484 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
3485 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
3486 Pred == ICmpInst::ICMP_SLE)
1a4d82fc
JJ
3487 return ReplaceInstUsesWith(I, Builder->getTrue());
3488 return ReplaceInstUsesWith(I, Builder->getFalse());
223e47cc
LB
3489 }
3490 } else {
3491 // If the RHS value is > UnsignedMax, fold the comparison. This handles
3492 // +INF and large values.
1a4d82fc 3493 APFloat UMax(RHS.getSemantics());
223e47cc
LB
3494 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
3495 APFloat::rmNearestTiesToEven);
3496 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
3497 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
3498 Pred == ICmpInst::ICMP_ULE)
1a4d82fc
JJ
3499 return ReplaceInstUsesWith(I, Builder->getTrue());
3500 return ReplaceInstUsesWith(I, Builder->getFalse());
223e47cc
LB
3501 }
3502 }
3503
3504 if (!LHSUnsigned) {
3505 // See if the RHS value is < SignedMin.
1a4d82fc 3506 APFloat SMin(RHS.getSemantics());
223e47cc
LB
3507 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
3508 APFloat::rmNearestTiesToEven);
3509 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
3510 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
3511 Pred == ICmpInst::ICMP_SGE)
1a4d82fc
JJ
3512 return ReplaceInstUsesWith(I, Builder->getTrue());
3513 return ReplaceInstUsesWith(I, Builder->getFalse());
223e47cc
LB
3514 }
3515 } else {
3516 // See if the RHS value is < UnsignedMin.
1a4d82fc 3517 APFloat SMin(RHS.getSemantics());
223e47cc
LB
3518 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
3519 APFloat::rmNearestTiesToEven);
3520 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
3521 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
3522 Pred == ICmpInst::ICMP_UGE)
1a4d82fc
JJ
3523 return ReplaceInstUsesWith(I, Builder->getTrue());
3524 return ReplaceInstUsesWith(I, Builder->getFalse());
223e47cc
LB
3525 }
3526 }
3527
3528 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
3529 // [0, UMAX], but it may still be fractional. See if it is fractional by
3530 // casting the FP value to the integer value and back, checking for equality.
3531 // Don't do this for zero, because -0.0 is not fractional.
3532 Constant *RHSInt = LHSUnsigned
3533 ? ConstantExpr::getFPToUI(RHSC, IntTy)
3534 : ConstantExpr::getFPToSI(RHSC, IntTy);
3535 if (!RHS.isZero()) {
3536 bool Equal = LHSUnsigned
3537 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
3538 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
3539 if (!Equal) {
3540 // If we had a comparison against a fractional value, we have to adjust
3541 // the compare predicate and sometimes the value. RHSC is rounded towards
3542 // zero at this point.
3543 switch (Pred) {
3544 default: llvm_unreachable("Unexpected integer comparison!");
3545 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
1a4d82fc 3546 return ReplaceInstUsesWith(I, Builder->getTrue());
223e47cc 3547 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
1a4d82fc 3548 return ReplaceInstUsesWith(I, Builder->getFalse());
223e47cc
LB
3549 case ICmpInst::ICMP_ULE:
3550 // (float)int <= 4.4 --> int <= 4
3551 // (float)int <= -4.4 --> false
3552 if (RHS.isNegative())
1a4d82fc 3553 return ReplaceInstUsesWith(I, Builder->getFalse());
223e47cc
LB
3554 break;
3555 case ICmpInst::ICMP_SLE:
3556 // (float)int <= 4.4 --> int <= 4
3557 // (float)int <= -4.4 --> int < -4
3558 if (RHS.isNegative())
3559 Pred = ICmpInst::ICMP_SLT;
3560 break;
3561 case ICmpInst::ICMP_ULT:
3562 // (float)int < -4.4 --> false
3563 // (float)int < 4.4 --> int <= 4
3564 if (RHS.isNegative())
1a4d82fc 3565 return ReplaceInstUsesWith(I, Builder->getFalse());
223e47cc
LB
3566 Pred = ICmpInst::ICMP_ULE;
3567 break;
3568 case ICmpInst::ICMP_SLT:
3569 // (float)int < -4.4 --> int < -4
3570 // (float)int < 4.4 --> int <= 4
3571 if (!RHS.isNegative())
3572 Pred = ICmpInst::ICMP_SLE;
3573 break;
3574 case ICmpInst::ICMP_UGT:
3575 // (float)int > 4.4 --> int > 4
3576 // (float)int > -4.4 --> true
3577 if (RHS.isNegative())
1a4d82fc 3578 return ReplaceInstUsesWith(I, Builder->getTrue());
223e47cc
LB
3579 break;
3580 case ICmpInst::ICMP_SGT:
3581 // (float)int > 4.4 --> int > 4
3582 // (float)int > -4.4 --> int >= -4
3583 if (RHS.isNegative())
3584 Pred = ICmpInst::ICMP_SGE;
3585 break;
3586 case ICmpInst::ICMP_UGE:
3587 // (float)int >= -4.4 --> true
3588 // (float)int >= 4.4 --> int > 4
3589 if (RHS.isNegative())
1a4d82fc 3590 return ReplaceInstUsesWith(I, Builder->getTrue());
223e47cc
LB
3591 Pred = ICmpInst::ICMP_UGT;
3592 break;
3593 case ICmpInst::ICMP_SGE:
3594 // (float)int >= -4.4 --> int >= -4
3595 // (float)int >= 4.4 --> int > 4
3596 if (!RHS.isNegative())
3597 Pred = ICmpInst::ICMP_SGT;
3598 break;
3599 }
3600 }
3601 }
3602
3603 // Lower this FP comparison into an appropriate integer version of the
3604 // comparison.
3605 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
3606}
3607
3608Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
3609 bool Changed = false;
3610
3611 /// Orders the operands of the compare so that they are listed from most
3612 /// complex to least complex. This puts constants before unary operators,
3613 /// before binary operators.
3614 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
3615 I.swapOperands();
3616 Changed = true;
3617 }
3618
3619 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3620
1a4d82fc 3621 if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AT))
223e47cc
LB
3622 return ReplaceInstUsesWith(I, V);
3623
3624 // Simplify 'fcmp pred X, X'
3625 if (Op0 == Op1) {
3626 switch (I.getPredicate()) {
3627 default: llvm_unreachable("Unknown predicate!");
3628 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
3629 case FCmpInst::FCMP_ULT: // True if unordered or less than
3630 case FCmpInst::FCMP_UGT: // True if unordered or greater than
3631 case FCmpInst::FCMP_UNE: // True if unordered or not equal
3632 // Canonicalize these to be 'fcmp uno %X, 0.0'.
3633 I.setPredicate(FCmpInst::FCMP_UNO);
3634 I.setOperand(1, Constant::getNullValue(Op0->getType()));
3635 return &I;
3636
3637 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
3638 case FCmpInst::FCMP_OEQ: // True if ordered and equal
3639 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
3640 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
3641 // Canonicalize these to be 'fcmp ord %X, 0.0'.
3642 I.setPredicate(FCmpInst::FCMP_ORD);
3643 I.setOperand(1, Constant::getNullValue(Op0->getType()));
3644 return &I;
3645 }
3646 }
3647
3648 // Handle fcmp with constant RHS
3649 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
3650 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3651 switch (LHSI->getOpcode()) {
3652 case Instruction::FPExt: {
3653 // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
3654 FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
3655 ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
3656 if (!RHSF)
3657 break;
3658
223e47cc
LB
3659 const fltSemantics *Sem;
3660 // FIXME: This shouldn't be here.
3661 if (LHSExt->getSrcTy()->isHalfTy())
3662 Sem = &APFloat::IEEEhalf;
3663 else if (LHSExt->getSrcTy()->isFloatTy())
3664 Sem = &APFloat::IEEEsingle;
3665 else if (LHSExt->getSrcTy()->isDoubleTy())
3666 Sem = &APFloat::IEEEdouble;
3667 else if (LHSExt->getSrcTy()->isFP128Ty())
3668 Sem = &APFloat::IEEEquad;
3669 else if (LHSExt->getSrcTy()->isX86_FP80Ty())
3670 Sem = &APFloat::x87DoubleExtended;
970d7e83
LB
3671 else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
3672 Sem = &APFloat::PPCDoubleDouble;
223e47cc
LB
3673 else
3674 break;
3675
3676 bool Lossy;
3677 APFloat F = RHSF->getValueAPF();
3678 F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
3679
3680 // Avoid lossy conversions and denormals. Zero is a special case
3681 // that's OK to convert.
3682 APFloat Fabs = F;
3683 Fabs.clearSign();
3684 if (!Lossy &&
3685 ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
3686 APFloat::cmpLessThan) || Fabs.isZero()))
3687
3688 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
3689 ConstantFP::get(RHSC->getContext(), F));
3690 break;
3691 }
3692 case Instruction::PHI:
3693 // Only fold fcmp into the PHI if the phi and fcmp are in the same
3694 // block. If in the same block, we're encouraging jump threading. If
3695 // not, we are just pessimizing the code by making an i1 phi.
3696 if (LHSI->getParent() == I.getParent())
3697 if (Instruction *NV = FoldOpIntoPhi(I))
3698 return NV;
3699 break;
3700 case Instruction::SIToFP:
3701 case Instruction::UIToFP:
3702 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
3703 return NV;
3704 break;
223e47cc
LB
3705 case Instruction::FSub: {
3706 // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
3707 Value *Op;
3708 if (match(LHSI, m_FNeg(m_Value(Op))))
3709 return new FCmpInst(I.getSwappedPredicate(), Op,
3710 ConstantExpr::getFNeg(RHSC));
3711 break;
3712 }
3713 case Instruction::Load:
3714 if (GetElementPtrInst *GEP =
3715 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3716 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3717 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3718 !cast<LoadInst>(LHSI)->isVolatile())
3719 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
3720 return Res;
3721 }
3722 break;
3723 case Instruction::Call: {
3724 CallInst *CI = cast<CallInst>(LHSI);
3725 LibFunc::Func Func;
3726 // Various optimization for fabs compared with zero.
3727 if (RHSC->isNullValue() && CI->getCalledFunction() &&
3728 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
3729 TLI->has(Func)) {
3730 if (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
3731 Func == LibFunc::fabsl) {
3732 switch (I.getPredicate()) {
3733 default: break;
3734 // fabs(x) < 0 --> false
3735 case FCmpInst::FCMP_OLT:
3736 return ReplaceInstUsesWith(I, Builder->getFalse());
3737 // fabs(x) > 0 --> x != 0
3738 case FCmpInst::FCMP_OGT:
3739 return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0),
3740 RHSC);
3741 // fabs(x) <= 0 --> x == 0
3742 case FCmpInst::FCMP_OLE:
3743 return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0),
3744 RHSC);
3745 // fabs(x) >= 0 --> !isnan(x)
3746 case FCmpInst::FCMP_OGE:
3747 return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0),
3748 RHSC);
3749 // fabs(x) == 0 --> x == 0
3750 // fabs(x) != 0 --> x != 0
3751 case FCmpInst::FCMP_OEQ:
3752 case FCmpInst::FCMP_UEQ:
3753 case FCmpInst::FCMP_ONE:
3754 case FCmpInst::FCMP_UNE:
3755 return new FCmpInst(I.getPredicate(), CI->getArgOperand(0),
3756 RHSC);
3757 }
3758 }
3759 }
3760 }
3761 }
3762 }
3763
3764 // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
3765 Value *X, *Y;
3766 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
3767 return new FCmpInst(I.getSwappedPredicate(), X, Y);
3768
3769 // fcmp (fpext x), (fpext y) -> fcmp x, y
3770 if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
3771 if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
3772 if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
3773 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
3774 RHSExt->getOperand(0));
3775
1a4d82fc 3776 return Changed ? &I : nullptr;
223e47cc 3777}