]> git.proxmox.com Git - rustc.git/blame - src/llvm/lib/Transforms/Scalar/ScalarReplAggregates.cpp
Imported Upstream version 0.7
[rustc.git] / src / llvm / lib / Transforms / Scalar / ScalarReplAggregates.cpp
CommitLineData
223e47cc
LB
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation. This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible). Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because they
17// often interact, especially for C++ programs. As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
223e47cc
LB
24#include "llvm/ADT/SetVector.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Analysis/Dominators.h"
28#include "llvm/Analysis/Loads.h"
29#include "llvm/Analysis/ValueTracking.h"
970d7e83
LB
30#include "llvm/DIBuilder.h"
31#include "llvm/DebugInfo.h"
32#include "llvm/IR/Constants.h"
33#include "llvm/IR/DataLayout.h"
34#include "llvm/IR/DerivedTypes.h"
35#include "llvm/IR/Function.h"
36#include "llvm/IR/GlobalVariable.h"
37#include "llvm/IR/IRBuilder.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/IntrinsicInst.h"
40#include "llvm/IR/LLVMContext.h"
41#include "llvm/IR/Module.h"
42#include "llvm/IR/Operator.h"
43#include "llvm/Pass.h"
223e47cc
LB
44#include "llvm/Support/CallSite.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/GetElementPtrTypeIterator.h"
48#include "llvm/Support/MathExtras.h"
49#include "llvm/Support/raw_ostream.h"
223e47cc
LB
50#include "llvm/Transforms/Utils/Local.h"
51#include "llvm/Transforms/Utils/PromoteMemToReg.h"
52#include "llvm/Transforms/Utils/SSAUpdater.h"
53using namespace llvm;
54
55STATISTIC(NumReplaced, "Number of allocas broken up");
56STATISTIC(NumPromoted, "Number of allocas promoted");
57STATISTIC(NumAdjusted, "Number of scalar allocas adjusted to allow promotion");
58STATISTIC(NumConverted, "Number of aggregates converted to scalar");
59
60namespace {
61 struct SROA : public FunctionPass {
62 SROA(int T, bool hasDT, char &ID, int ST, int AT, int SLT)
63 : FunctionPass(ID), HasDomTree(hasDT) {
64 if (T == -1)
65 SRThreshold = 128;
66 else
67 SRThreshold = T;
68 if (ST == -1)
69 StructMemberThreshold = 32;
70 else
71 StructMemberThreshold = ST;
72 if (AT == -1)
73 ArrayElementThreshold = 8;
74 else
75 ArrayElementThreshold = AT;
76 if (SLT == -1)
77 // Do not limit the scalar integer load size if no threshold is given.
78 ScalarLoadThreshold = -1;
79 else
80 ScalarLoadThreshold = SLT;
81 }
82
83 bool runOnFunction(Function &F);
84
85 bool performScalarRepl(Function &F);
86 bool performPromotion(Function &F);
87
88 private:
89 bool HasDomTree;
970d7e83 90 DataLayout *TD;
223e47cc
LB
91
92 /// DeadInsts - Keep track of instructions we have made dead, so that
93 /// we can remove them after we are done working.
94 SmallVector<Value*, 32> DeadInsts;
95
96 /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
97 /// information about the uses. All these fields are initialized to false
98 /// and set to true when something is learned.
99 struct AllocaInfo {
100 /// The alloca to promote.
101 AllocaInst *AI;
102
103 /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
104 /// looping and avoid redundant work.
105 SmallPtrSet<PHINode*, 8> CheckedPHIs;
106
107 /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
108 bool isUnsafe : 1;
109
110 /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
111 bool isMemCpySrc : 1;
112
113 /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
114 bool isMemCpyDst : 1;
115
116 /// hasSubelementAccess - This is true if a subelement of the alloca is
117 /// ever accessed, or false if the alloca is only accessed with mem
118 /// intrinsics or load/store that only access the entire alloca at once.
119 bool hasSubelementAccess : 1;
120
121 /// hasALoadOrStore - This is true if there are any loads or stores to it.
122 /// The alloca may just be accessed with memcpy, for example, which would
123 /// not set this.
124 bool hasALoadOrStore : 1;
125
126 explicit AllocaInfo(AllocaInst *ai)
127 : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
128 hasSubelementAccess(false), hasALoadOrStore(false) {}
129 };
130
131 /// SRThreshold - The maximum alloca size to considered for SROA.
132 unsigned SRThreshold;
133
134 /// StructMemberThreshold - The maximum number of members a struct can
135 /// contain to be considered for SROA.
136 unsigned StructMemberThreshold;
137
138 /// ArrayElementThreshold - The maximum number of elements an array can
139 /// have to be considered for SROA.
140 unsigned ArrayElementThreshold;
141
142 /// ScalarLoadThreshold - The maximum size in bits of scalars to load when
143 /// converting to scalar
144 unsigned ScalarLoadThreshold;
145
146 void MarkUnsafe(AllocaInfo &I, Instruction *User) {
147 I.isUnsafe = true;
148 DEBUG(dbgs() << " Transformation preventing inst: " << *User << '\n');
149 }
150
151 bool isSafeAllocaToScalarRepl(AllocaInst *AI);
152
153 void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
154 void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
155 AllocaInfo &Info);
156 void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
157 void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
158 Type *MemOpType, bool isStore, AllocaInfo &Info,
159 Instruction *TheAccess, bool AllowWholeAccess);
160 bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size);
161 uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset,
162 Type *&IdxTy);
163
164 void DoScalarReplacement(AllocaInst *AI,
165 std::vector<AllocaInst*> &WorkList);
166 void DeleteDeadInstructions();
167
168 void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
169 SmallVector<AllocaInst*, 32> &NewElts);
170 void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
171 SmallVector<AllocaInst*, 32> &NewElts);
172 void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
173 SmallVector<AllocaInst*, 32> &NewElts);
174 void RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
175 uint64_t Offset,
176 SmallVector<AllocaInst*, 32> &NewElts);
177 void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
178 AllocaInst *AI,
179 SmallVector<AllocaInst*, 32> &NewElts);
180 void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
181 SmallVector<AllocaInst*, 32> &NewElts);
182 void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
183 SmallVector<AllocaInst*, 32> &NewElts);
184 bool ShouldAttemptScalarRepl(AllocaInst *AI);
185 };
186
187 // SROA_DT - SROA that uses DominatorTree.
188 struct SROA_DT : public SROA {
189 static char ID;
190 public:
191 SROA_DT(int T = -1, int ST = -1, int AT = -1, int SLT = -1) :
192 SROA(T, true, ID, ST, AT, SLT) {
193 initializeSROA_DTPass(*PassRegistry::getPassRegistry());
194 }
195
196 // getAnalysisUsage - This pass does not require any passes, but we know it
197 // will not alter the CFG, so say so.
198 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
199 AU.addRequired<DominatorTree>();
200 AU.setPreservesCFG();
201 }
202 };
203
204 // SROA_SSAUp - SROA that uses SSAUpdater.
205 struct SROA_SSAUp : public SROA {
206 static char ID;
207 public:
208 SROA_SSAUp(int T = -1, int ST = -1, int AT = -1, int SLT = -1) :
209 SROA(T, false, ID, ST, AT, SLT) {
210 initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
211 }
212
213 // getAnalysisUsage - This pass does not require any passes, but we know it
214 // will not alter the CFG, so say so.
215 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
216 AU.setPreservesCFG();
217 }
218 };
219
220}
221
222char SROA_DT::ID = 0;
223char SROA_SSAUp::ID = 0;
224
225INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
226 "Scalar Replacement of Aggregates (DT)", false, false)
227INITIALIZE_PASS_DEPENDENCY(DominatorTree)
228INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
229 "Scalar Replacement of Aggregates (DT)", false, false)
230
231INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
232 "Scalar Replacement of Aggregates (SSAUp)", false, false)
233INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
234 "Scalar Replacement of Aggregates (SSAUp)", false, false)
235
236// Public interface to the ScalarReplAggregates pass
237FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
238 bool UseDomTree,
239 int StructMemberThreshold,
240 int ArrayElementThreshold,
241 int ScalarLoadThreshold) {
242 if (UseDomTree)
243 return new SROA_DT(Threshold, StructMemberThreshold, ArrayElementThreshold,
244 ScalarLoadThreshold);
245 return new SROA_SSAUp(Threshold, StructMemberThreshold,
246 ArrayElementThreshold, ScalarLoadThreshold);
247}
248
249
250//===----------------------------------------------------------------------===//
251// Convert To Scalar Optimization.
252//===----------------------------------------------------------------------===//
253
254namespace {
255/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
256/// optimization, which scans the uses of an alloca and determines if it can
257/// rewrite it in terms of a single new alloca that can be mem2reg'd.
258class ConvertToScalarInfo {
259 /// AllocaSize - The size of the alloca being considered in bytes.
260 unsigned AllocaSize;
970d7e83 261 const DataLayout &TD;
223e47cc
LB
262 unsigned ScalarLoadThreshold;
263
264 /// IsNotTrivial - This is set to true if there is some access to the object
265 /// which means that mem2reg can't promote it.
266 bool IsNotTrivial;
267
268 /// ScalarKind - Tracks the kind of alloca being considered for promotion,
269 /// computed based on the uses of the alloca rather than the LLVM type system.
270 enum {
271 Unknown,
272
273 // Accesses via GEPs that are consistent with element access of a vector
274 // type. This will not be converted into a vector unless there is a later
275 // access using an actual vector type.
276 ImplicitVector,
277
278 // Accesses via vector operations and GEPs that are consistent with the
279 // layout of a vector type.
280 Vector,
281
282 // An integer bag-of-bits with bitwise operations for insertion and
283 // extraction. Any combination of types can be converted into this kind
284 // of scalar.
285 Integer
286 } ScalarKind;
287
288 /// VectorTy - This tracks the type that we should promote the vector to if
289 /// it is possible to turn it into a vector. This starts out null, and if it
290 /// isn't possible to turn into a vector type, it gets set to VoidTy.
291 VectorType *VectorTy;
292
293 /// HadNonMemTransferAccess - True if there is at least one access to the
294 /// alloca that is not a MemTransferInst. We don't want to turn structs into
295 /// large integers unless there is some potential for optimization.
296 bool HadNonMemTransferAccess;
297
298 /// HadDynamicAccess - True if some element of this alloca was dynamic.
299 /// We don't yet have support for turning a dynamic access into a large
300 /// integer.
301 bool HadDynamicAccess;
302
303public:
970d7e83 304 explicit ConvertToScalarInfo(unsigned Size, const DataLayout &td,
223e47cc
LB
305 unsigned SLT)
306 : AllocaSize(Size), TD(td), ScalarLoadThreshold(SLT), IsNotTrivial(false),
307 ScalarKind(Unknown), VectorTy(0), HadNonMemTransferAccess(false),
308 HadDynamicAccess(false) { }
309
310 AllocaInst *TryConvert(AllocaInst *AI);
311
312private:
313 bool CanConvertToScalar(Value *V, uint64_t Offset, Value* NonConstantIdx);
314 void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset);
315 bool MergeInVectorType(VectorType *VInTy, uint64_t Offset);
316 void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset,
317 Value *NonConstantIdx);
318
319 Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType,
320 uint64_t Offset, Value* NonConstantIdx,
321 IRBuilder<> &Builder);
322 Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
323 uint64_t Offset, Value* NonConstantIdx,
324 IRBuilder<> &Builder);
325};
326} // end anonymous namespace.
327
328
329/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
330/// rewrite it to be a new alloca which is mem2reg'able. This returns the new
331/// alloca if possible or null if not.
332AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
333 // If we can't convert this scalar, or if mem2reg can trivially do it, bail
334 // out.
335 if (!CanConvertToScalar(AI, 0, 0) || !IsNotTrivial)
336 return 0;
337
338 // If an alloca has only memset / memcpy uses, it may still have an Unknown
339 // ScalarKind. Treat it as an Integer below.
340 if (ScalarKind == Unknown)
341 ScalarKind = Integer;
342
343 if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8)
344 ScalarKind = Integer;
345
346 // If we were able to find a vector type that can handle this with
347 // insert/extract elements, and if there was at least one use that had
348 // a vector type, promote this to a vector. We don't want to promote
349 // random stuff that doesn't use vectors (e.g. <9 x double>) because then
350 // we just get a lot of insert/extracts. If at least one vector is
351 // involved, then we probably really do have a union of vector/array.
352 Type *NewTy;
353 if (ScalarKind == Vector) {
354 assert(VectorTy && "Missing type for vector scalar.");
355 DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = "
356 << *VectorTy << '\n');
357 NewTy = VectorTy; // Use the vector type.
358 } else {
359 unsigned BitWidth = AllocaSize * 8;
360
361 // Do not convert to scalar integer if the alloca size exceeds the
362 // scalar load threshold.
363 if (BitWidth > ScalarLoadThreshold)
364 return 0;
365
366 if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
367 !HadNonMemTransferAccess && !TD.fitsInLegalInteger(BitWidth))
368 return 0;
369 // Dynamic accesses on integers aren't yet supported. They need us to shift
370 // by a dynamic amount which could be difficult to work out as we might not
371 // know whether to use a left or right shift.
372 if (ScalarKind == Integer && HadDynamicAccess)
373 return 0;
374
375 DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
376 // Create and insert the integer alloca.
377 NewTy = IntegerType::get(AI->getContext(), BitWidth);
378 }
379 AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
380 ConvertUsesToScalar(AI, NewAI, 0, 0);
381 return NewAI;
382}
383
384/// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
385/// (VectorTy) so far at the offset specified by Offset (which is specified in
386/// bytes).
387///
388/// There are two cases we handle here:
389/// 1) A union of vector types of the same size and potentially its elements.
390/// Here we turn element accesses into insert/extract element operations.
391/// This promotes a <4 x float> with a store of float to the third element
392/// into a <4 x float> that uses insert element.
393/// 2) A fully general blob of memory, which we turn into some (potentially
394/// large) integer type with extract and insert operations where the loads
395/// and stores would mutate the memory. We mark this by setting VectorTy
396/// to VoidTy.
397void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In,
398 uint64_t Offset) {
399 // If we already decided to turn this into a blob of integer memory, there is
400 // nothing to be done.
401 if (ScalarKind == Integer)
402 return;
403
404 // If this could be contributing to a vector, analyze it.
405
406 // If the In type is a vector that is the same size as the alloca, see if it
407 // matches the existing VecTy.
408 if (VectorType *VInTy = dyn_cast<VectorType>(In)) {
409 if (MergeInVectorType(VInTy, Offset))
410 return;
411 } else if (In->isFloatTy() || In->isDoubleTy() ||
412 (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
413 isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
414 // Full width accesses can be ignored, because they can always be turned
415 // into bitcasts.
416 unsigned EltSize = In->getPrimitiveSizeInBits()/8;
417 if (EltSize == AllocaSize)
418 return;
419
420 // If we're accessing something that could be an element of a vector, see
421 // if the implied vector agrees with what we already have and if Offset is
422 // compatible with it.
423 if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
424 (!VectorTy || EltSize == VectorTy->getElementType()
425 ->getPrimitiveSizeInBits()/8)) {
426 if (!VectorTy) {
427 ScalarKind = ImplicitVector;
428 VectorTy = VectorType::get(In, AllocaSize/EltSize);
429 }
430 return;
431 }
432 }
433
434 // Otherwise, we have a case that we can't handle with an optimized vector
435 // form. We can still turn this into a large integer.
436 ScalarKind = Integer;
437}
438
439/// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
440/// returning true if the type was successfully merged and false otherwise.
441bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy,
442 uint64_t Offset) {
443 if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
444 // If we're storing/loading a vector of the right size, allow it as a
445 // vector. If this the first vector we see, remember the type so that
446 // we know the element size. If this is a subsequent access, ignore it
447 // even if it is a differing type but the same size. Worst case we can
448 // bitcast the resultant vectors.
449 if (!VectorTy)
450 VectorTy = VInTy;
451 ScalarKind = Vector;
452 return true;
453 }
454
455 return false;
456}
457
458/// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
459/// its accesses to a single vector type, return true and set VecTy to
460/// the new type. If we could convert the alloca into a single promotable
461/// integer, return true but set VecTy to VoidTy. Further, if the use is not a
462/// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset
463/// is the current offset from the base of the alloca being analyzed.
464///
465/// If we see at least one access to the value that is as a vector type, set the
466/// SawVec flag.
467bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset,
468 Value* NonConstantIdx) {
469 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
470 Instruction *User = cast<Instruction>(*UI);
471
472 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
473 // Don't break volatile loads.
474 if (!LI->isSimple())
475 return false;
476 // Don't touch MMX operations.
477 if (LI->getType()->isX86_MMXTy())
478 return false;
479 HadNonMemTransferAccess = true;
480 MergeInTypeForLoadOrStore(LI->getType(), Offset);
481 continue;
482 }
483
484 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
485 // Storing the pointer, not into the value?
486 if (SI->getOperand(0) == V || !SI->isSimple()) return false;
487 // Don't touch MMX operations.
488 if (SI->getOperand(0)->getType()->isX86_MMXTy())
489 return false;
490 HadNonMemTransferAccess = true;
491 MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset);
492 continue;
493 }
494
495 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
496 if (!onlyUsedByLifetimeMarkers(BCI))
497 IsNotTrivial = true; // Can't be mem2reg'd.
498 if (!CanConvertToScalar(BCI, Offset, NonConstantIdx))
499 return false;
500 continue;
501 }
502
503 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
504 // If this is a GEP with a variable indices, we can't handle it.
505 PointerType* PtrTy = dyn_cast<PointerType>(GEP->getPointerOperandType());
506 if (!PtrTy)
507 return false;
508
509 // Compute the offset that this GEP adds to the pointer.
510 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
511 Value *GEPNonConstantIdx = 0;
512 if (!GEP->hasAllConstantIndices()) {
513 if (!isa<VectorType>(PtrTy->getElementType()))
514 return false;
515 if (NonConstantIdx)
516 return false;
517 GEPNonConstantIdx = Indices.pop_back_val();
518 if (!GEPNonConstantIdx->getType()->isIntegerTy(32))
519 return false;
520 HadDynamicAccess = true;
521 } else
522 GEPNonConstantIdx = NonConstantIdx;
523 uint64_t GEPOffset = TD.getIndexedOffset(PtrTy,
524 Indices);
525 // See if all uses can be converted.
526 if (!CanConvertToScalar(GEP, Offset+GEPOffset, GEPNonConstantIdx))
527 return false;
528 IsNotTrivial = true; // Can't be mem2reg'd.
529 HadNonMemTransferAccess = true;
530 continue;
531 }
532
533 // If this is a constant sized memset of a constant value (e.g. 0) we can
534 // handle it.
535 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
536 // Store to dynamic index.
537 if (NonConstantIdx)
538 return false;
539 // Store of constant value.
540 if (!isa<ConstantInt>(MSI->getValue()))
541 return false;
542
543 // Store of constant size.
544 ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength());
545 if (!Len)
546 return false;
547
548 // If the size differs from the alloca, we can only convert the alloca to
549 // an integer bag-of-bits.
550 // FIXME: This should handle all of the cases that are currently accepted
551 // as vector element insertions.
552 if (Len->getZExtValue() != AllocaSize || Offset != 0)
553 ScalarKind = Integer;
554
555 IsNotTrivial = true; // Can't be mem2reg'd.
556 HadNonMemTransferAccess = true;
557 continue;
558 }
559
560 // If this is a memcpy or memmove into or out of the whole allocation, we
561 // can handle it like a load or store of the scalar type.
562 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
563 // Store to dynamic index.
564 if (NonConstantIdx)
565 return false;
566 ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
567 if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
568 return false;
569
570 IsNotTrivial = true; // Can't be mem2reg'd.
571 continue;
572 }
573
574 // If this is a lifetime intrinsic, we can handle it.
575 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
576 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
577 II->getIntrinsicID() == Intrinsic::lifetime_end) {
578 continue;
579 }
580 }
581
582 // Otherwise, we cannot handle this!
583 return false;
584 }
585
586 return true;
587}
588
589/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
590/// directly. This happens when we are converting an "integer union" to a
591/// single integer scalar, or when we are converting a "vector union" to a
592/// vector with insert/extractelement instructions.
593///
594/// Offset is an offset from the original alloca, in bits that need to be
595/// shifted to the right. By the end of this, there should be no uses of Ptr.
596void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
597 uint64_t Offset,
598 Value* NonConstantIdx) {
599 while (!Ptr->use_empty()) {
600 Instruction *User = cast<Instruction>(Ptr->use_back());
601
602 if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
603 ConvertUsesToScalar(CI, NewAI, Offset, NonConstantIdx);
604 CI->eraseFromParent();
605 continue;
606 }
607
608 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
609 // Compute the offset that this GEP adds to the pointer.
610 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
611 Value* GEPNonConstantIdx = 0;
612 if (!GEP->hasAllConstantIndices()) {
613 assert(!NonConstantIdx &&
614 "Dynamic GEP reading from dynamic GEP unsupported");
615 GEPNonConstantIdx = Indices.pop_back_val();
616 } else
617 GEPNonConstantIdx = NonConstantIdx;
618 uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
619 Indices);
620 ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8, GEPNonConstantIdx);
621 GEP->eraseFromParent();
622 continue;
623 }
624
625 IRBuilder<> Builder(User);
626
627 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
628 // The load is a bit extract from NewAI shifted right by Offset bits.
629 Value *LoadedVal = Builder.CreateLoad(NewAI);
630 Value *NewLoadVal
631 = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset,
632 NonConstantIdx, Builder);
633 LI->replaceAllUsesWith(NewLoadVal);
634 LI->eraseFromParent();
635 continue;
636 }
637
638 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
639 assert(SI->getOperand(0) != Ptr && "Consistency error!");
640 Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
641 Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
642 NonConstantIdx, Builder);
643 Builder.CreateStore(New, NewAI);
644 SI->eraseFromParent();
645
646 // If the load we just inserted is now dead, then the inserted store
647 // overwrote the entire thing.
648 if (Old->use_empty())
649 Old->eraseFromParent();
650 continue;
651 }
652
653 // If this is a constant sized memset of a constant value (e.g. 0) we can
654 // transform it into a store of the expanded constant value.
655 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
656 assert(MSI->getRawDest() == Ptr && "Consistency error!");
657 assert(!NonConstantIdx && "Cannot replace dynamic memset with insert");
658 int64_t SNumBytes = cast<ConstantInt>(MSI->getLength())->getSExtValue();
659 if (SNumBytes > 0 && (SNumBytes >> 32) == 0) {
660 unsigned NumBytes = static_cast<unsigned>(SNumBytes);
661 unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
662
663 // Compute the value replicated the right number of times.
664 APInt APVal(NumBytes*8, Val);
665
666 // Splat the value if non-zero.
667 if (Val)
668 for (unsigned i = 1; i != NumBytes; ++i)
669 APVal |= APVal << 8;
670
671 Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
672 Value *New = ConvertScalar_InsertValue(
673 ConstantInt::get(User->getContext(), APVal),
674 Old, Offset, 0, Builder);
675 Builder.CreateStore(New, NewAI);
676
677 // If the load we just inserted is now dead, then the memset overwrote
678 // the entire thing.
679 if (Old->use_empty())
680 Old->eraseFromParent();
681 }
682 MSI->eraseFromParent();
683 continue;
684 }
685
686 // If this is a memcpy or memmove into or out of the whole allocation, we
687 // can handle it like a load or store of the scalar type.
688 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
689 assert(Offset == 0 && "must be store to start of alloca");
690 assert(!NonConstantIdx && "Cannot replace dynamic transfer with insert");
691
692 // If the source and destination are both to the same alloca, then this is
693 // a noop copy-to-self, just delete it. Otherwise, emit a load and store
694 // as appropriate.
695 AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
696
697 if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
698 // Dest must be OrigAI, change this to be a load from the original
699 // pointer (bitcasted), then a store to our new alloca.
700 assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
701 Value *SrcPtr = MTI->getSource();
702 PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
703 PointerType* AIPTy = cast<PointerType>(NewAI->getType());
704 if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
705 AIPTy = PointerType::get(AIPTy->getElementType(),
706 SPTy->getAddressSpace());
707 }
708 SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
709
710 LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
711 SrcVal->setAlignment(MTI->getAlignment());
712 Builder.CreateStore(SrcVal, NewAI);
713 } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
714 // Src must be OrigAI, change this to be a load from NewAI then a store
715 // through the original dest pointer (bitcasted).
716 assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
717 LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
718
719 PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
720 PointerType* AIPTy = cast<PointerType>(NewAI->getType());
721 if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
722 AIPTy = PointerType::get(AIPTy->getElementType(),
723 DPTy->getAddressSpace());
724 }
725 Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
726
727 StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
728 NewStore->setAlignment(MTI->getAlignment());
729 } else {
730 // Noop transfer. Src == Dst
731 }
732
733 MTI->eraseFromParent();
734 continue;
735 }
736
737 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
738 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
739 II->getIntrinsicID() == Intrinsic::lifetime_end) {
740 // There's no need to preserve these, as the resulting alloca will be
741 // converted to a register anyways.
742 II->eraseFromParent();
743 continue;
744 }
745 }
746
747 llvm_unreachable("Unsupported operation!");
748 }
749}
750
751/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
752/// or vector value FromVal, extracting the bits from the offset specified by
753/// Offset. This returns the value, which is of type ToType.
754///
755/// This happens when we are converting an "integer union" to a single
756/// integer scalar, or when we are converting a "vector union" to a vector with
757/// insert/extractelement instructions.
758///
759/// Offset is an offset from the original alloca, in bits that need to be
760/// shifted to the right.
761Value *ConvertToScalarInfo::
762ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
763 uint64_t Offset, Value* NonConstantIdx,
764 IRBuilder<> &Builder) {
765 // If the load is of the whole new alloca, no conversion is needed.
766 Type *FromType = FromVal->getType();
767 if (FromType == ToType && Offset == 0)
768 return FromVal;
769
770 // If the result alloca is a vector type, this is either an element
771 // access or a bitcast to another vector type of the same size.
772 if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
773 unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
774 unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
775 if (FromTypeSize == ToTypeSize)
776 return Builder.CreateBitCast(FromVal, ToType);
777
778 // Otherwise it must be an element access.
779 unsigned Elt = 0;
780 if (Offset) {
781 unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
782 Elt = Offset/EltSize;
783 assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
784 }
785 // Return the element extracted out of it.
786 Value *Idx;
787 if (NonConstantIdx) {
788 if (Elt)
789 Idx = Builder.CreateAdd(NonConstantIdx,
790 Builder.getInt32(Elt),
791 "dyn.offset");
792 else
793 Idx = NonConstantIdx;
794 } else
795 Idx = Builder.getInt32(Elt);
796 Value *V = Builder.CreateExtractElement(FromVal, Idx);
797 if (V->getType() != ToType)
798 V = Builder.CreateBitCast(V, ToType);
799 return V;
800 }
801
802 // If ToType is a first class aggregate, extract out each of the pieces and
803 // use insertvalue's to form the FCA.
804 if (StructType *ST = dyn_cast<StructType>(ToType)) {
805 assert(!NonConstantIdx &&
806 "Dynamic indexing into struct types not supported");
807 const StructLayout &Layout = *TD.getStructLayout(ST);
808 Value *Res = UndefValue::get(ST);
809 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
810 Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
811 Offset+Layout.getElementOffsetInBits(i),
812 0, Builder);
813 Res = Builder.CreateInsertValue(Res, Elt, i);
814 }
815 return Res;
816 }
817
818 if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
819 assert(!NonConstantIdx &&
820 "Dynamic indexing into array types not supported");
821 uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
822 Value *Res = UndefValue::get(AT);
823 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
824 Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
825 Offset+i*EltSize, 0, Builder);
826 Res = Builder.CreateInsertValue(Res, Elt, i);
827 }
828 return Res;
829 }
830
831 // Otherwise, this must be a union that was converted to an integer value.
832 IntegerType *NTy = cast<IntegerType>(FromVal->getType());
833
834 // If this is a big-endian system and the load is narrower than the
835 // full alloca type, we need to do a shift to get the right bits.
836 int ShAmt = 0;
837 if (TD.isBigEndian()) {
838 // On big-endian machines, the lowest bit is stored at the bit offset
839 // from the pointer given by getTypeStoreSizeInBits. This matters for
840 // integers with a bitwidth that is not a multiple of 8.
841 ShAmt = TD.getTypeStoreSizeInBits(NTy) -
842 TD.getTypeStoreSizeInBits(ToType) - Offset;
843 } else {
844 ShAmt = Offset;
845 }
846
847 // Note: we support negative bitwidths (with shl) which are not defined.
848 // We do this to support (f.e.) loads off the end of a structure where
849 // only some bits are used.
850 if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
851 FromVal = Builder.CreateLShr(FromVal,
852 ConstantInt::get(FromVal->getType(), ShAmt));
853 else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
854 FromVal = Builder.CreateShl(FromVal,
855 ConstantInt::get(FromVal->getType(), -ShAmt));
856
857 // Finally, unconditionally truncate the integer to the right width.
858 unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
859 if (LIBitWidth < NTy->getBitWidth())
860 FromVal =
861 Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
862 LIBitWidth));
863 else if (LIBitWidth > NTy->getBitWidth())
864 FromVal =
865 Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
866 LIBitWidth));
867
868 // If the result is an integer, this is a trunc or bitcast.
869 if (ToType->isIntegerTy()) {
870 // Should be done.
871 } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
872 // Just do a bitcast, we know the sizes match up.
873 FromVal = Builder.CreateBitCast(FromVal, ToType);
874 } else {
875 // Otherwise must be a pointer.
876 FromVal = Builder.CreateIntToPtr(FromVal, ToType);
877 }
878 assert(FromVal->getType() == ToType && "Didn't convert right?");
879 return FromVal;
880}
881
882/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
883/// or vector value "Old" at the offset specified by Offset.
884///
885/// This happens when we are converting an "integer union" to a
886/// single integer scalar, or when we are converting a "vector union" to a
887/// vector with insert/extractelement instructions.
888///
889/// Offset is an offset from the original alloca, in bits that need to be
890/// shifted to the right.
891///
892/// NonConstantIdx is an index value if there was a GEP with a non-constant
893/// index value. If this is 0 then all GEPs used to find this insert address
894/// are constant.
895Value *ConvertToScalarInfo::
896ConvertScalar_InsertValue(Value *SV, Value *Old,
897 uint64_t Offset, Value* NonConstantIdx,
898 IRBuilder<> &Builder) {
899 // Convert the stored type to the actual type, shift it left to insert
900 // then 'or' into place.
901 Type *AllocaType = Old->getType();
902 LLVMContext &Context = Old->getContext();
903
904 if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
905 uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
906 uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
907
908 // Changing the whole vector with memset or with an access of a different
909 // vector type?
910 if (ValSize == VecSize)
911 return Builder.CreateBitCast(SV, AllocaType);
912
913 // Must be an element insertion.
914 Type *EltTy = VTy->getElementType();
915 if (SV->getType() != EltTy)
916 SV = Builder.CreateBitCast(SV, EltTy);
917 uint64_t EltSize = TD.getTypeAllocSizeInBits(EltTy);
918 unsigned Elt = Offset/EltSize;
919 Value *Idx;
920 if (NonConstantIdx) {
921 if (Elt)
922 Idx = Builder.CreateAdd(NonConstantIdx,
923 Builder.getInt32(Elt),
924 "dyn.offset");
925 else
926 Idx = NonConstantIdx;
927 } else
928 Idx = Builder.getInt32(Elt);
929 return Builder.CreateInsertElement(Old, SV, Idx);
930 }
931
932 // If SV is a first-class aggregate value, insert each value recursively.
933 if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
934 assert(!NonConstantIdx &&
935 "Dynamic indexing into struct types not supported");
936 const StructLayout &Layout = *TD.getStructLayout(ST);
937 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
938 Value *Elt = Builder.CreateExtractValue(SV, i);
939 Old = ConvertScalar_InsertValue(Elt, Old,
940 Offset+Layout.getElementOffsetInBits(i),
941 0, Builder);
942 }
943 return Old;
944 }
945
946 if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
947 assert(!NonConstantIdx &&
948 "Dynamic indexing into array types not supported");
949 uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
950 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
951 Value *Elt = Builder.CreateExtractValue(SV, i);
952 Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, 0, Builder);
953 }
954 return Old;
955 }
956
957 // If SV is a float, convert it to the appropriate integer type.
958 // If it is a pointer, do the same.
959 unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
960 unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
961 unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
962 unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
963 if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
964 SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth));
965 else if (SV->getType()->isPointerTy())
966 SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()));
967
968 // Zero extend or truncate the value if needed.
969 if (SV->getType() != AllocaType) {
970 if (SV->getType()->getPrimitiveSizeInBits() <
971 AllocaType->getPrimitiveSizeInBits())
972 SV = Builder.CreateZExt(SV, AllocaType);
973 else {
974 // Truncation may be needed if storing more than the alloca can hold
975 // (undefined behavior).
976 SV = Builder.CreateTrunc(SV, AllocaType);
977 SrcWidth = DestWidth;
978 SrcStoreWidth = DestStoreWidth;
979 }
980 }
981
982 // If this is a big-endian system and the store is narrower than the
983 // full alloca type, we need to do a shift to get the right bits.
984 int ShAmt = 0;
985 if (TD.isBigEndian()) {
986 // On big-endian machines, the lowest bit is stored at the bit offset
987 // from the pointer given by getTypeStoreSizeInBits. This matters for
988 // integers with a bitwidth that is not a multiple of 8.
989 ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
990 } else {
991 ShAmt = Offset;
992 }
993
994 // Note: we support negative bitwidths (with shr) which are not defined.
995 // We do this to support (f.e.) stores off the end of a structure where
996 // only some bits in the structure are set.
997 APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
998 if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
999 SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt));
1000 Mask <<= ShAmt;
1001 } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1002 SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt));
1003 Mask = Mask.lshr(-ShAmt);
1004 }
1005
1006 // Mask out the bits we are about to insert from the old value, and or
1007 // in the new bits.
1008 if (SrcWidth != DestWidth) {
1009 assert(DestWidth > SrcWidth);
1010 Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1011 SV = Builder.CreateOr(Old, SV, "ins");
1012 }
1013 return SV;
1014}
1015
1016
1017//===----------------------------------------------------------------------===//
1018// SRoA Driver
1019//===----------------------------------------------------------------------===//
1020
1021
1022bool SROA::runOnFunction(Function &F) {
970d7e83 1023 TD = getAnalysisIfAvailable<DataLayout>();
223e47cc
LB
1024
1025 bool Changed = performPromotion(F);
1026
970d7e83 1027 // FIXME: ScalarRepl currently depends on DataLayout more than it
223e47cc
LB
1028 // theoretically needs to. It should be refactored in order to support
1029 // target-independent IR. Until this is done, just skip the actual
1030 // scalar-replacement portion of this pass.
1031 if (!TD) return Changed;
1032
1033 while (1) {
1034 bool LocalChange = performScalarRepl(F);
1035 if (!LocalChange) break; // No need to repromote if no scalarrepl
1036 Changed = true;
1037 LocalChange = performPromotion(F);
1038 if (!LocalChange) break; // No need to re-scalarrepl if no promotion
1039 }
1040
1041 return Changed;
1042}
1043
1044namespace {
1045class AllocaPromoter : public LoadAndStorePromoter {
1046 AllocaInst *AI;
1047 DIBuilder *DIB;
1048 SmallVector<DbgDeclareInst *, 4> DDIs;
1049 SmallVector<DbgValueInst *, 4> DVIs;
1050public:
1051 AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1052 DIBuilder *DB)
1053 : LoadAndStorePromoter(Insts, S), AI(0), DIB(DB) {}
1054
1055 void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
1056 // Remember which alloca we're promoting (for isInstInList).
1057 this->AI = AI;
1058 if (MDNode *DebugNode = MDNode::getIfExists(AI->getContext(), AI)) {
1059 for (Value::use_iterator UI = DebugNode->use_begin(),
1060 E = DebugNode->use_end(); UI != E; ++UI)
1061 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
1062 DDIs.push_back(DDI);
1063 else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
1064 DVIs.push_back(DVI);
1065 }
1066
1067 LoadAndStorePromoter::run(Insts);
1068 AI->eraseFromParent();
1069 for (SmallVector<DbgDeclareInst *, 4>::iterator I = DDIs.begin(),
1070 E = DDIs.end(); I != E; ++I) {
1071 DbgDeclareInst *DDI = *I;
1072 DDI->eraseFromParent();
1073 }
1074 for (SmallVector<DbgValueInst *, 4>::iterator I = DVIs.begin(),
1075 E = DVIs.end(); I != E; ++I) {
1076 DbgValueInst *DVI = *I;
1077 DVI->eraseFromParent();
1078 }
1079 }
1080
1081 virtual bool isInstInList(Instruction *I,
1082 const SmallVectorImpl<Instruction*> &Insts) const {
1083 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1084 return LI->getOperand(0) == AI;
1085 return cast<StoreInst>(I)->getPointerOperand() == AI;
1086 }
1087
1088 virtual void updateDebugInfo(Instruction *Inst) const {
1089 for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
1090 E = DDIs.end(); I != E; ++I) {
1091 DbgDeclareInst *DDI = *I;
1092 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
1093 ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
1094 else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
1095 ConvertDebugDeclareToDebugValue(DDI, LI, *DIB);
1096 }
1097 for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
1098 E = DVIs.end(); I != E; ++I) {
1099 DbgValueInst *DVI = *I;
1100 Value *Arg = NULL;
1101 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1102 // If an argument is zero extended then use argument directly. The ZExt
1103 // may be zapped by an optimization pass in future.
1104 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1105 Arg = dyn_cast<Argument>(ZExt->getOperand(0));
1106 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1107 Arg = dyn_cast<Argument>(SExt->getOperand(0));
1108 if (!Arg)
1109 Arg = SI->getOperand(0);
1110 } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1111 Arg = LI->getOperand(0);
1112 } else {
1113 continue;
1114 }
1115 Instruction *DbgVal =
1116 DIB->insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
1117 Inst);
1118 DbgVal->setDebugLoc(DVI->getDebugLoc());
1119 }
1120 }
1121};
1122} // end anon namespace
1123
1124/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1125/// subsequently loaded can be rewritten to load both input pointers and then
1126/// select between the result, allowing the load of the alloca to be promoted.
1127/// From this:
1128/// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1129/// %V = load i32* %P2
1130/// to:
1131/// %V1 = load i32* %Alloca -> will be mem2reg'd
1132/// %V2 = load i32* %Other
1133/// %V = select i1 %cond, i32 %V1, i32 %V2
1134///
1135/// We can do this to a select if its only uses are loads and if the operand to
1136/// the select can be loaded unconditionally.
970d7e83 1137static bool isSafeSelectToSpeculate(SelectInst *SI, const DataLayout *TD) {
223e47cc
LB
1138 bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1139 bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1140
1141 for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1142 UI != UE; ++UI) {
1143 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1144 if (LI == 0 || !LI->isSimple()) return false;
1145
1146 // Both operands to the select need to be dereferencable, either absolutely
1147 // (e.g. allocas) or at this point because we can see other accesses to it.
1148 if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1149 LI->getAlignment(), TD))
1150 return false;
1151 if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1152 LI->getAlignment(), TD))
1153 return false;
1154 }
1155
1156 return true;
1157}
1158
1159/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1160/// subsequently loaded can be rewritten to load both input pointers in the pred
1161/// blocks and then PHI the results, allowing the load of the alloca to be
1162/// promoted.
1163/// From this:
1164/// %P2 = phi [i32* %Alloca, i32* %Other]
1165/// %V = load i32* %P2
1166/// to:
1167/// %V1 = load i32* %Alloca -> will be mem2reg'd
1168/// ...
1169/// %V2 = load i32* %Other
1170/// ...
1171/// %V = phi [i32 %V1, i32 %V2]
1172///
1173/// We can do this to a select if its only uses are loads and if the operand to
1174/// the select can be loaded unconditionally.
970d7e83 1175static bool isSafePHIToSpeculate(PHINode *PN, const DataLayout *TD) {
223e47cc
LB
1176 // For now, we can only do this promotion if the load is in the same block as
1177 // the PHI, and if there are no stores between the phi and load.
1178 // TODO: Allow recursive phi users.
1179 // TODO: Allow stores.
1180 BasicBlock *BB = PN->getParent();
1181 unsigned MaxAlign = 0;
1182 for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1183 UI != UE; ++UI) {
1184 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1185 if (LI == 0 || !LI->isSimple()) return false;
1186
1187 // For now we only allow loads in the same block as the PHI. This is a
1188 // common case that happens when instcombine merges two loads through a PHI.
1189 if (LI->getParent() != BB) return false;
1190
1191 // Ensure that there are no instructions between the PHI and the load that
1192 // could store.
1193 for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1194 if (BBI->mayWriteToMemory())
1195 return false;
1196
1197 MaxAlign = std::max(MaxAlign, LI->getAlignment());
1198 }
1199
1200 // Okay, we know that we have one or more loads in the same block as the PHI.
1201 // We can transform this if it is safe to push the loads into the predecessor
1202 // blocks. The only thing to watch out for is that we can't put a possibly
1203 // trapping load in the predecessor if it is a critical edge.
1204 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1205 BasicBlock *Pred = PN->getIncomingBlock(i);
1206 Value *InVal = PN->getIncomingValue(i);
1207
1208 // If the terminator of the predecessor has side-effects (an invoke),
1209 // there is no safe place to put a load in the predecessor.
1210 if (Pred->getTerminator()->mayHaveSideEffects())
1211 return false;
1212
1213 // If the value is produced by the terminator of the predecessor
1214 // (an invoke), there is no valid place to put a load in the predecessor.
1215 if (Pred->getTerminator() == InVal)
1216 return false;
1217
1218 // If the predecessor has a single successor, then the edge isn't critical.
1219 if (Pred->getTerminator()->getNumSuccessors() == 1)
1220 continue;
1221
1222 // If this pointer is always safe to load, or if we can prove that there is
1223 // already a load in the block, then we can move the load to the pred block.
1224 if (InVal->isDereferenceablePointer() ||
1225 isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1226 continue;
1227
1228 return false;
1229 }
1230
1231 return true;
1232}
1233
1234
1235/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1236/// direct (non-volatile) loads and stores to it. If the alloca is close but
1237/// not quite there, this will transform the code to allow promotion. As such,
1238/// it is a non-pure predicate.
970d7e83 1239static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *TD) {
223e47cc
LB
1240 SetVector<Instruction*, SmallVector<Instruction*, 4>,
1241 SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1242
1243 for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1244 UI != UE; ++UI) {
1245 User *U = *UI;
1246 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1247 if (!LI->isSimple())
1248 return false;
1249 continue;
1250 }
1251
1252 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1253 if (SI->getOperand(0) == AI || !SI->isSimple())
1254 return false; // Don't allow a store OF the AI, only INTO the AI.
1255 continue;
1256 }
1257
1258 if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1259 // If the condition being selected on is a constant, fold the select, yes
1260 // this does (rarely) happen early on.
1261 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1262 Value *Result = SI->getOperand(1+CI->isZero());
1263 SI->replaceAllUsesWith(Result);
1264 SI->eraseFromParent();
1265
1266 // This is very rare and we just scrambled the use list of AI, start
1267 // over completely.
1268 return tryToMakeAllocaBePromotable(AI, TD);
1269 }
1270
1271 // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1272 // loads, then we can transform this by rewriting the select.
1273 if (!isSafeSelectToSpeculate(SI, TD))
1274 return false;
1275
1276 InstsToRewrite.insert(SI);
1277 continue;
1278 }
1279
1280 if (PHINode *PN = dyn_cast<PHINode>(U)) {
1281 if (PN->use_empty()) { // Dead PHIs can be stripped.
1282 InstsToRewrite.insert(PN);
1283 continue;
1284 }
1285
1286 // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1287 // in the pred blocks, then we can transform this by rewriting the PHI.
1288 if (!isSafePHIToSpeculate(PN, TD))
1289 return false;
1290
1291 InstsToRewrite.insert(PN);
1292 continue;
1293 }
1294
1295 if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1296 if (onlyUsedByLifetimeMarkers(BCI)) {
1297 InstsToRewrite.insert(BCI);
1298 continue;
1299 }
1300 }
1301
1302 return false;
1303 }
1304
1305 // If there are no instructions to rewrite, then all uses are load/stores and
1306 // we're done!
1307 if (InstsToRewrite.empty())
1308 return true;
1309
1310 // If we have instructions that need to be rewritten for this to be promotable
1311 // take care of it now.
1312 for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1313 if (BitCastInst *BCI = dyn_cast<BitCastInst>(InstsToRewrite[i])) {
1314 // This could only be a bitcast used by nothing but lifetime intrinsics.
1315 for (BitCastInst::use_iterator I = BCI->use_begin(), E = BCI->use_end();
1316 I != E;) {
1317 Use &U = I.getUse();
1318 ++I;
1319 cast<Instruction>(U.getUser())->eraseFromParent();
1320 }
1321 BCI->eraseFromParent();
1322 continue;
1323 }
1324
1325 if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1326 // Selects in InstsToRewrite only have load uses. Rewrite each as two
1327 // loads with a new select.
1328 while (!SI->use_empty()) {
1329 LoadInst *LI = cast<LoadInst>(SI->use_back());
1330
1331 IRBuilder<> Builder(LI);
1332 LoadInst *TrueLoad =
1333 Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1334 LoadInst *FalseLoad =
1335 Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f");
1336
1337 // Transfer alignment and TBAA info if present.
1338 TrueLoad->setAlignment(LI->getAlignment());
1339 FalseLoad->setAlignment(LI->getAlignment());
1340 if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1341 TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1342 FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1343 }
1344
1345 Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1346 V->takeName(LI);
1347 LI->replaceAllUsesWith(V);
1348 LI->eraseFromParent();
1349 }
1350
1351 // Now that all the loads are gone, the select is gone too.
1352 SI->eraseFromParent();
1353 continue;
1354 }
1355
1356 // Otherwise, we have a PHI node which allows us to push the loads into the
1357 // predecessors.
1358 PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1359 if (PN->use_empty()) {
1360 PN->eraseFromParent();
1361 continue;
1362 }
1363
1364 Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1365 PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1366 PN->getName()+".ld", PN);
1367
1368 // Get the TBAA tag and alignment to use from one of the loads. It doesn't
1369 // matter which one we get and if any differ, it doesn't matter.
1370 LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1371 MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1372 unsigned Align = SomeLoad->getAlignment();
1373
1374 // Rewrite all loads of the PN to use the new PHI.
1375 while (!PN->use_empty()) {
1376 LoadInst *LI = cast<LoadInst>(PN->use_back());
1377 LI->replaceAllUsesWith(NewPN);
1378 LI->eraseFromParent();
1379 }
1380
1381 // Inject loads into all of the pred blocks. Keep track of which blocks we
1382 // insert them into in case we have multiple edges from the same block.
1383 DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1384
1385 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1386 BasicBlock *Pred = PN->getIncomingBlock(i);
1387 LoadInst *&Load = InsertedLoads[Pred];
1388 if (Load == 0) {
1389 Load = new LoadInst(PN->getIncomingValue(i),
1390 PN->getName() + "." + Pred->getName(),
1391 Pred->getTerminator());
1392 Load->setAlignment(Align);
1393 if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1394 }
1395
1396 NewPN->addIncoming(Load, Pred);
1397 }
1398
1399 PN->eraseFromParent();
1400 }
1401
1402 ++NumAdjusted;
1403 return true;
1404}
1405
1406bool SROA::performPromotion(Function &F) {
1407 std::vector<AllocaInst*> Allocas;
1408 DominatorTree *DT = 0;
1409 if (HasDomTree)
1410 DT = &getAnalysis<DominatorTree>();
1411
1412 BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
1413 DIBuilder DIB(*F.getParent());
1414 bool Changed = false;
1415 SmallVector<Instruction*, 64> Insts;
1416 while (1) {
1417 Allocas.clear();
1418
1419 // Find allocas that are safe to promote, by looking at all instructions in
1420 // the entry node
1421 for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1422 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
1423 if (tryToMakeAllocaBePromotable(AI, TD))
1424 Allocas.push_back(AI);
1425
1426 if (Allocas.empty()) break;
1427
1428 if (HasDomTree)
1429 PromoteMemToReg(Allocas, *DT);
1430 else {
1431 SSAUpdater SSA;
1432 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1433 AllocaInst *AI = Allocas[i];
1434
1435 // Build list of instructions to promote.
1436 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1437 UI != E; ++UI)
1438 Insts.push_back(cast<Instruction>(*UI));
1439 AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts);
1440 Insts.clear();
1441 }
1442 }
1443 NumPromoted += Allocas.size();
1444 Changed = true;
1445 }
1446
1447 return Changed;
1448}
1449
1450
1451/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1452/// SROA. It must be a struct or array type with a small number of elements.
1453bool SROA::ShouldAttemptScalarRepl(AllocaInst *AI) {
1454 Type *T = AI->getAllocatedType();
1455 // Do not promote any struct that has too many members.
1456 if (StructType *ST = dyn_cast<StructType>(T))
1457 return ST->getNumElements() <= StructMemberThreshold;
1458 // Do not promote any array that has too many elements.
1459 if (ArrayType *AT = dyn_cast<ArrayType>(T))
1460 return AT->getNumElements() <= ArrayElementThreshold;
1461 return false;
1462}
1463
1464// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1465// which runs on all of the alloca instructions in the function, removing them
1466// if they are only used by getelementptr instructions.
1467//
1468bool SROA::performScalarRepl(Function &F) {
1469 std::vector<AllocaInst*> WorkList;
1470
1471 // Scan the entry basic block, adding allocas to the worklist.
1472 BasicBlock &BB = F.getEntryBlock();
1473 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1474 if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1475 WorkList.push_back(A);
1476
1477 // Process the worklist
1478 bool Changed = false;
1479 while (!WorkList.empty()) {
1480 AllocaInst *AI = WorkList.back();
1481 WorkList.pop_back();
1482
1483 // Handle dead allocas trivially. These can be formed by SROA'ing arrays
1484 // with unused elements.
1485 if (AI->use_empty()) {
1486 AI->eraseFromParent();
1487 Changed = true;
1488 continue;
1489 }
1490
1491 // If this alloca is impossible for us to promote, reject it early.
1492 if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1493 continue;
1494
1495 // Check to see if we can perform the core SROA transformation. We cannot
1496 // transform the allocation instruction if it is an array allocation
1497 // (allocations OF arrays are ok though), and an allocation of a scalar
1498 // value cannot be decomposed at all.
1499 uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1500
1501 // Do not promote [0 x %struct].
1502 if (AllocaSize == 0) continue;
1503
1504 // Do not promote any struct whose size is too big.
1505 if (AllocaSize > SRThreshold) continue;
1506
1507 // If the alloca looks like a good candidate for scalar replacement, and if
1508 // all its users can be transformed, then split up the aggregate into its
1509 // separate elements.
1510 if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1511 DoScalarReplacement(AI, WorkList);
1512 Changed = true;
1513 continue;
1514 }
1515
1516 // If we can turn this aggregate value (potentially with casts) into a
1517 // simple scalar value that can be mem2reg'd into a register value.
1518 // IsNotTrivial tracks whether this is something that mem2reg could have
1519 // promoted itself. If so, we don't want to transform it needlessly. Note
1520 // that we can't just check based on the type: the alloca may be of an i32
1521 // but that has pointer arithmetic to set byte 3 of it or something.
1522 if (AllocaInst *NewAI = ConvertToScalarInfo(
1523 (unsigned)AllocaSize, *TD, ScalarLoadThreshold).TryConvert(AI)) {
1524 NewAI->takeName(AI);
1525 AI->eraseFromParent();
1526 ++NumConverted;
1527 Changed = true;
1528 continue;
1529 }
1530
1531 // Otherwise, couldn't process this alloca.
1532 }
1533
1534 return Changed;
1535}
1536
1537/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1538/// predicate, do SROA now.
1539void SROA::DoScalarReplacement(AllocaInst *AI,
1540 std::vector<AllocaInst*> &WorkList) {
1541 DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1542 SmallVector<AllocaInst*, 32> ElementAllocas;
1543 if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1544 ElementAllocas.reserve(ST->getNumContainedTypes());
1545 for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1546 AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1547 AI->getAlignment(),
1548 AI->getName() + "." + Twine(i), AI);
1549 ElementAllocas.push_back(NA);
1550 WorkList.push_back(NA); // Add to worklist for recursive processing
1551 }
1552 } else {
1553 ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1554 ElementAllocas.reserve(AT->getNumElements());
1555 Type *ElTy = AT->getElementType();
1556 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1557 AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1558 AI->getName() + "." + Twine(i), AI);
1559 ElementAllocas.push_back(NA);
1560 WorkList.push_back(NA); // Add to worklist for recursive processing
1561 }
1562 }
1563
1564 // Now that we have created the new alloca instructions, rewrite all the
1565 // uses of the old alloca.
1566 RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1567
1568 // Now erase any instructions that were made dead while rewriting the alloca.
1569 DeleteDeadInstructions();
1570 AI->eraseFromParent();
1571
1572 ++NumReplaced;
1573}
1574
1575/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1576/// recursively including all their operands that become trivially dead.
1577void SROA::DeleteDeadInstructions() {
1578 while (!DeadInsts.empty()) {
1579 Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1580
1581 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1582 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1583 // Zero out the operand and see if it becomes trivially dead.
1584 // (But, don't add allocas to the dead instruction list -- they are
1585 // already on the worklist and will be deleted separately.)
1586 *OI = 0;
1587 if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1588 DeadInsts.push_back(U);
1589 }
1590
1591 I->eraseFromParent();
1592 }
1593}
1594
1595/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1596/// performing scalar replacement of alloca AI. The results are flagged in
1597/// the Info parameter. Offset indicates the position within AI that is
1598/// referenced by this instruction.
1599void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1600 AllocaInfo &Info) {
1601 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1602 Instruction *User = cast<Instruction>(*UI);
1603
1604 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1605 isSafeForScalarRepl(BC, Offset, Info);
1606 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1607 uint64_t GEPOffset = Offset;
1608 isSafeGEP(GEPI, GEPOffset, Info);
1609 if (!Info.isUnsafe)
1610 isSafeForScalarRepl(GEPI, GEPOffset, Info);
1611 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1612 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1613 if (Length == 0)
1614 return MarkUnsafe(Info, User);
1615 if (Length->isNegative())
1616 return MarkUnsafe(Info, User);
1617
1618 isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1619 UI.getOperandNo() == 0, Info, MI,
1620 true /*AllowWholeAccess*/);
1621 } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1622 if (!LI->isSimple())
1623 return MarkUnsafe(Info, User);
1624 Type *LIType = LI->getType();
1625 isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1626 LIType, false, Info, LI, true /*AllowWholeAccess*/);
1627 Info.hasALoadOrStore = true;
1628
1629 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1630 // Store is ok if storing INTO the pointer, not storing the pointer
1631 if (!SI->isSimple() || SI->getOperand(0) == I)
1632 return MarkUnsafe(Info, User);
1633
1634 Type *SIType = SI->getOperand(0)->getType();
1635 isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1636 SIType, true, Info, SI, true /*AllowWholeAccess*/);
1637 Info.hasALoadOrStore = true;
1638 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1639 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1640 II->getIntrinsicID() != Intrinsic::lifetime_end)
1641 return MarkUnsafe(Info, User);
1642 } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1643 isSafePHISelectUseForScalarRepl(User, Offset, Info);
1644 } else {
1645 return MarkUnsafe(Info, User);
1646 }
1647 if (Info.isUnsafe) return;
1648 }
1649}
1650
1651
1652/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1653/// derived from the alloca, we can often still split the alloca into elements.
1654/// This is useful if we have a large alloca where one element is phi'd
1655/// together somewhere: we can SRoA and promote all the other elements even if
1656/// we end up not being able to promote this one.
1657///
1658/// All we require is that the uses of the PHI do not index into other parts of
1659/// the alloca. The most important use case for this is single load and stores
1660/// that are PHI'd together, which can happen due to code sinking.
1661void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1662 AllocaInfo &Info) {
1663 // If we've already checked this PHI, don't do it again.
1664 if (PHINode *PN = dyn_cast<PHINode>(I))
1665 if (!Info.CheckedPHIs.insert(PN))
1666 return;
1667
1668 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1669 Instruction *User = cast<Instruction>(*UI);
1670
1671 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1672 isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1673 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1674 // Only allow "bitcast" GEPs for simplicity. We could generalize this,
1675 // but would have to prove that we're staying inside of an element being
1676 // promoted.
1677 if (!GEPI->hasAllZeroIndices())
1678 return MarkUnsafe(Info, User);
1679 isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1680 } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1681 if (!LI->isSimple())
1682 return MarkUnsafe(Info, User);
1683 Type *LIType = LI->getType();
1684 isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1685 LIType, false, Info, LI, false /*AllowWholeAccess*/);
1686 Info.hasALoadOrStore = true;
1687
1688 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1689 // Store is ok if storing INTO the pointer, not storing the pointer
1690 if (!SI->isSimple() || SI->getOperand(0) == I)
1691 return MarkUnsafe(Info, User);
1692
1693 Type *SIType = SI->getOperand(0)->getType();
1694 isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1695 SIType, true, Info, SI, false /*AllowWholeAccess*/);
1696 Info.hasALoadOrStore = true;
1697 } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1698 isSafePHISelectUseForScalarRepl(User, Offset, Info);
1699 } else {
1700 return MarkUnsafe(Info, User);
1701 }
1702 if (Info.isUnsafe) return;
1703 }
1704}
1705
1706/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1707/// replacement. It is safe when all the indices are constant, in-bounds
1708/// references, and when the resulting offset corresponds to an element within
1709/// the alloca type. The results are flagged in the Info parameter. Upon
1710/// return, Offset is adjusted as specified by the GEP indices.
1711void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1712 uint64_t &Offset, AllocaInfo &Info) {
1713 gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1714 if (GEPIt == E)
1715 return;
1716 bool NonConstant = false;
1717 unsigned NonConstantIdxSize = 0;
1718
1719 // Walk through the GEP type indices, checking the types that this indexes
1720 // into.
1721 for (; GEPIt != E; ++GEPIt) {
1722 // Ignore struct elements, no extra checking needed for these.
1723 if ((*GEPIt)->isStructTy())
1724 continue;
1725
1726 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1727 if (!IdxVal) {
1728 // Non constant GEPs are only a problem on arrays, structs, and pointers
1729 // Vectors can be dynamically indexed.
1730 // FIXME: Add support for dynamic indexing on arrays. This should be
1731 // ok on any subarrays of the alloca array, eg, a[0][i] is ok, but a[i][0]
1732 // isn't.
1733 if (!(*GEPIt)->isVectorTy())
1734 return MarkUnsafe(Info, GEPI);
1735 NonConstant = true;
1736 NonConstantIdxSize = TD->getTypeAllocSize(*GEPIt);
1737 }
1738 }
1739
1740 // Compute the offset due to this GEP and check if the alloca has a
1741 // component element at that offset.
1742 SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1743 // If this GEP is non constant then the last operand must have been a
1744 // dynamic index into a vector. Pop this now as it has no impact on the
1745 // constant part of the offset.
1746 if (NonConstant)
1747 Indices.pop_back();
1748 Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
1749 if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset,
1750 NonConstantIdxSize))
1751 MarkUnsafe(Info, GEPI);
1752}
1753
1754/// isHomogeneousAggregate - Check if type T is a struct or array containing
1755/// elements of the same type (which is always true for arrays). If so,
1756/// return true with NumElts and EltTy set to the number of elements and the
1757/// element type, respectively.
1758static bool isHomogeneousAggregate(Type *T, unsigned &NumElts,
1759 Type *&EltTy) {
1760 if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1761 NumElts = AT->getNumElements();
1762 EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1763 return true;
1764 }
1765 if (StructType *ST = dyn_cast<StructType>(T)) {
1766 NumElts = ST->getNumContainedTypes();
1767 EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1768 for (unsigned n = 1; n < NumElts; ++n) {
1769 if (ST->getContainedType(n) != EltTy)
1770 return false;
1771 }
1772 return true;
1773 }
1774 return false;
1775}
1776
1777/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1778/// "homogeneous" aggregates with the same element type and number of elements.
1779static bool isCompatibleAggregate(Type *T1, Type *T2) {
1780 if (T1 == T2)
1781 return true;
1782
1783 unsigned NumElts1, NumElts2;
1784 Type *EltTy1, *EltTy2;
1785 if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1786 isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1787 NumElts1 == NumElts2 &&
1788 EltTy1 == EltTy2)
1789 return true;
1790
1791 return false;
1792}
1793
1794/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1795/// alloca or has an offset and size that corresponds to a component element
1796/// within it. The offset checked here may have been formed from a GEP with a
1797/// pointer bitcasted to a different type.
1798///
1799/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1800/// unit. If false, it only allows accesses known to be in a single element.
1801void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1802 Type *MemOpType, bool isStore,
1803 AllocaInfo &Info, Instruction *TheAccess,
1804 bool AllowWholeAccess) {
1805 // Check if this is a load/store of the entire alloca.
1806 if (Offset == 0 && AllowWholeAccess &&
1807 MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1808 // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1809 // loads/stores (which are essentially the same as the MemIntrinsics with
1810 // regard to copying padding between elements). But, if an alloca is
1811 // flagged as both a source and destination of such operations, we'll need
1812 // to check later for padding between elements.
1813 if (!MemOpType || MemOpType->isIntegerTy()) {
1814 if (isStore)
1815 Info.isMemCpyDst = true;
1816 else
1817 Info.isMemCpySrc = true;
1818 return;
1819 }
1820 // This is also safe for references using a type that is compatible with
1821 // the type of the alloca, so that loads/stores can be rewritten using
1822 // insertvalue/extractvalue.
1823 if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1824 Info.hasSubelementAccess = true;
1825 return;
1826 }
1827 }
1828 // Check if the offset/size correspond to a component within the alloca type.
1829 Type *T = Info.AI->getAllocatedType();
1830 if (TypeHasComponent(T, Offset, MemSize)) {
1831 Info.hasSubelementAccess = true;
1832 return;
1833 }
1834
1835 return MarkUnsafe(Info, TheAccess);
1836}
1837
1838/// TypeHasComponent - Return true if T has a component type with the
1839/// specified offset and size. If Size is zero, do not check the size.
1840bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
1841 Type *EltTy;
1842 uint64_t EltSize;
1843 if (StructType *ST = dyn_cast<StructType>(T)) {
1844 const StructLayout *Layout = TD->getStructLayout(ST);
1845 unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1846 EltTy = ST->getContainedType(EltIdx);
1847 EltSize = TD->getTypeAllocSize(EltTy);
1848 Offset -= Layout->getElementOffset(EltIdx);
1849 } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1850 EltTy = AT->getElementType();
1851 EltSize = TD->getTypeAllocSize(EltTy);
1852 if (Offset >= AT->getNumElements() * EltSize)
1853 return false;
1854 Offset %= EltSize;
1855 } else if (VectorType *VT = dyn_cast<VectorType>(T)) {
1856 EltTy = VT->getElementType();
1857 EltSize = TD->getTypeAllocSize(EltTy);
1858 if (Offset >= VT->getNumElements() * EltSize)
1859 return false;
1860 Offset %= EltSize;
1861 } else {
1862 return false;
1863 }
1864 if (Offset == 0 && (Size == 0 || EltSize == Size))
1865 return true;
1866 // Check if the component spans multiple elements.
1867 if (Offset + Size > EltSize)
1868 return false;
1869 return TypeHasComponent(EltTy, Offset, Size);
1870}
1871
1872/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1873/// the instruction I, which references it, to use the separate elements.
1874/// Offset indicates the position within AI that is referenced by this
1875/// instruction.
1876void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1877 SmallVector<AllocaInst*, 32> &NewElts) {
1878 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1879 Use &TheUse = UI.getUse();
1880 Instruction *User = cast<Instruction>(*UI++);
1881
1882 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1883 RewriteBitCast(BC, AI, Offset, NewElts);
1884 continue;
1885 }
1886
1887 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1888 RewriteGEP(GEPI, AI, Offset, NewElts);
1889 continue;
1890 }
1891
1892 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1893 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1894 uint64_t MemSize = Length->getZExtValue();
1895 if (Offset == 0 &&
1896 MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1897 RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1898 // Otherwise the intrinsic can only touch a single element and the
1899 // address operand will be updated, so nothing else needs to be done.
1900 continue;
1901 }
1902
1903 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1904 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
1905 II->getIntrinsicID() == Intrinsic::lifetime_end) {
1906 RewriteLifetimeIntrinsic(II, AI, Offset, NewElts);
1907 }
1908 continue;
1909 }
1910
1911 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1912 Type *LIType = LI->getType();
1913
1914 if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1915 // Replace:
1916 // %res = load { i32, i32 }* %alloc
1917 // with:
1918 // %load.0 = load i32* %alloc.0
1919 // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1920 // %load.1 = load i32* %alloc.1
1921 // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1922 // (Also works for arrays instead of structs)
1923 Value *Insert = UndefValue::get(LIType);
1924 IRBuilder<> Builder(LI);
1925 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1926 Value *Load = Builder.CreateLoad(NewElts[i], "load");
1927 Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
1928 }
1929 LI->replaceAllUsesWith(Insert);
1930 DeadInsts.push_back(LI);
1931 } else if (LIType->isIntegerTy() &&
1932 TD->getTypeAllocSize(LIType) ==
1933 TD->getTypeAllocSize(AI->getAllocatedType())) {
1934 // If this is a load of the entire alloca to an integer, rewrite it.
1935 RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1936 }
1937 continue;
1938 }
1939
1940 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1941 Value *Val = SI->getOperand(0);
1942 Type *SIType = Val->getType();
1943 if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1944 // Replace:
1945 // store { i32, i32 } %val, { i32, i32 }* %alloc
1946 // with:
1947 // %val.0 = extractvalue { i32, i32 } %val, 0
1948 // store i32 %val.0, i32* %alloc.0
1949 // %val.1 = extractvalue { i32, i32 } %val, 1
1950 // store i32 %val.1, i32* %alloc.1
1951 // (Also works for arrays instead of structs)
1952 IRBuilder<> Builder(SI);
1953 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1954 Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
1955 Builder.CreateStore(Extract, NewElts[i]);
1956 }
1957 DeadInsts.push_back(SI);
1958 } else if (SIType->isIntegerTy() &&
1959 TD->getTypeAllocSize(SIType) ==
1960 TD->getTypeAllocSize(AI->getAllocatedType())) {
1961 // If this is a store of the entire alloca from an integer, rewrite it.
1962 RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1963 }
1964 continue;
1965 }
1966
1967 if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1968 // If we have a PHI user of the alloca itself (as opposed to a GEP or
1969 // bitcast) we have to rewrite it. GEP and bitcast uses will be RAUW'd to
1970 // the new pointer.
1971 if (!isa<AllocaInst>(I)) continue;
1972
1973 assert(Offset == 0 && NewElts[0] &&
1974 "Direct alloca use should have a zero offset");
1975
1976 // If we have a use of the alloca, we know the derived uses will be
1977 // utilizing just the first element of the scalarized result. Insert a
1978 // bitcast of the first alloca before the user as required.
1979 AllocaInst *NewAI = NewElts[0];
1980 BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1981 NewAI->moveBefore(BCI);
1982 TheUse = BCI;
1983 continue;
1984 }
1985 }
1986}
1987
1988/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1989/// and recursively continue updating all of its uses.
1990void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1991 SmallVector<AllocaInst*, 32> &NewElts) {
1992 RewriteForScalarRepl(BC, AI, Offset, NewElts);
1993 if (BC->getOperand(0) != AI)
1994 return;
1995
1996 // The bitcast references the original alloca. Replace its uses with
1997 // references to the alloca containing offset zero (which is normally at
1998 // index zero, but might not be in cases involving structs with elements
1999 // of size zero).
2000 Type *T = AI->getAllocatedType();
2001 uint64_t EltOffset = 0;
2002 Type *IdxTy;
2003 uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
2004 Instruction *Val = NewElts[Idx];
2005 if (Val->getType() != BC->getDestTy()) {
2006 Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
2007 Val->takeName(BC);
2008 }
2009 BC->replaceAllUsesWith(Val);
2010 DeadInsts.push_back(BC);
2011}
2012
2013/// FindElementAndOffset - Return the index of the element containing Offset
2014/// within the specified type, which must be either a struct or an array.
2015/// Sets T to the type of the element and Offset to the offset within that
2016/// element. IdxTy is set to the type of the index result to be used in a
2017/// GEP instruction.
2018uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
2019 Type *&IdxTy) {
2020 uint64_t Idx = 0;
2021 if (StructType *ST = dyn_cast<StructType>(T)) {
2022 const StructLayout *Layout = TD->getStructLayout(ST);
2023 Idx = Layout->getElementContainingOffset(Offset);
2024 T = ST->getContainedType(Idx);
2025 Offset -= Layout->getElementOffset(Idx);
2026 IdxTy = Type::getInt32Ty(T->getContext());
2027 return Idx;
2028 } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
2029 T = AT->getElementType();
2030 uint64_t EltSize = TD->getTypeAllocSize(T);
2031 Idx = Offset / EltSize;
2032 Offset -= Idx * EltSize;
2033 IdxTy = Type::getInt64Ty(T->getContext());
2034 return Idx;
2035 }
2036 VectorType *VT = cast<VectorType>(T);
2037 T = VT->getElementType();
2038 uint64_t EltSize = TD->getTypeAllocSize(T);
2039 Idx = Offset / EltSize;
2040 Offset -= Idx * EltSize;
2041 IdxTy = Type::getInt64Ty(T->getContext());
2042 return Idx;
2043}
2044
2045/// RewriteGEP - Check if this GEP instruction moves the pointer across
2046/// elements of the alloca that are being split apart, and if so, rewrite
2047/// the GEP to be relative to the new element.
2048void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
2049 SmallVector<AllocaInst*, 32> &NewElts) {
2050 uint64_t OldOffset = Offset;
2051 SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
2052 // If the GEP was dynamic then it must have been a dynamic vector lookup.
2053 // In this case, it must be the last GEP operand which is dynamic so keep that
2054 // aside until we've found the constant GEP offset then add it back in at the
2055 // end.
2056 Value* NonConstantIdx = 0;
2057 if (!GEPI->hasAllConstantIndices())
2058 NonConstantIdx = Indices.pop_back_val();
2059 Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
2060
2061 RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
2062
2063 Type *T = AI->getAllocatedType();
2064 Type *IdxTy;
2065 uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
2066 if (GEPI->getOperand(0) == AI)
2067 OldIdx = ~0ULL; // Force the GEP to be rewritten.
2068
2069 T = AI->getAllocatedType();
2070 uint64_t EltOffset = Offset;
2071 uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
2072
2073 // If this GEP does not move the pointer across elements of the alloca
2074 // being split, then it does not needs to be rewritten.
2075 if (Idx == OldIdx)
2076 return;
2077
2078 Type *i32Ty = Type::getInt32Ty(AI->getContext());
2079 SmallVector<Value*, 8> NewArgs;
2080 NewArgs.push_back(Constant::getNullValue(i32Ty));
2081 while (EltOffset != 0) {
2082 uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
2083 NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
2084 }
2085 if (NonConstantIdx) {
2086 Type* GepTy = T;
2087 // This GEP has a dynamic index. We need to add "i32 0" to index through
2088 // any structs or arrays in the original type until we get to the vector
2089 // to index.
2090 while (!isa<VectorType>(GepTy)) {
2091 NewArgs.push_back(Constant::getNullValue(i32Ty));
2092 GepTy = cast<CompositeType>(GepTy)->getTypeAtIndex(0U);
2093 }
2094 NewArgs.push_back(NonConstantIdx);
2095 }
2096 Instruction *Val = NewElts[Idx];
2097 if (NewArgs.size() > 1) {
2098 Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI);
2099 Val->takeName(GEPI);
2100 }
2101 if (Val->getType() != GEPI->getType())
2102 Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
2103 GEPI->replaceAllUsesWith(Val);
2104 DeadInsts.push_back(GEPI);
2105}
2106
2107/// RewriteLifetimeIntrinsic - II is a lifetime.start/lifetime.end. Rewrite it
2108/// to mark the lifetime of the scalarized memory.
2109void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
2110 uint64_t Offset,
2111 SmallVector<AllocaInst*, 32> &NewElts) {
2112 ConstantInt *OldSize = cast<ConstantInt>(II->getArgOperand(0));
2113 // Put matching lifetime markers on everything from Offset up to
2114 // Offset+OldSize.
2115 Type *AIType = AI->getAllocatedType();
2116 uint64_t NewOffset = Offset;
2117 Type *IdxTy;
2118 uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy);
2119
2120 IRBuilder<> Builder(II);
2121 uint64_t Size = OldSize->getLimitedValue();
2122
2123 if (NewOffset) {
2124 // Splice the first element and index 'NewOffset' bytes in. SROA will
2125 // split the alloca again later.
2126 Value *V = Builder.CreateBitCast(NewElts[Idx], Builder.getInt8PtrTy());
2127 V = Builder.CreateGEP(V, Builder.getInt64(NewOffset));
2128
2129 IdxTy = NewElts[Idx]->getAllocatedType();
2130 uint64_t EltSize = TD->getTypeAllocSize(IdxTy) - NewOffset;
2131 if (EltSize > Size) {
2132 EltSize = Size;
2133 Size = 0;
2134 } else {
2135 Size -= EltSize;
2136 }
2137 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
2138 Builder.CreateLifetimeStart(V, Builder.getInt64(EltSize));
2139 else
2140 Builder.CreateLifetimeEnd(V, Builder.getInt64(EltSize));
2141 ++Idx;
2142 }
2143
2144 for (; Idx != NewElts.size() && Size; ++Idx) {
2145 IdxTy = NewElts[Idx]->getAllocatedType();
2146 uint64_t EltSize = TD->getTypeAllocSize(IdxTy);
2147 if (EltSize > Size) {
2148 EltSize = Size;
2149 Size = 0;
2150 } else {
2151 Size -= EltSize;
2152 }
2153 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
2154 Builder.CreateLifetimeStart(NewElts[Idx],
2155 Builder.getInt64(EltSize));
2156 else
2157 Builder.CreateLifetimeEnd(NewElts[Idx],
2158 Builder.getInt64(EltSize));
2159 }
2160 DeadInsts.push_back(II);
2161}
2162
2163/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
2164/// Rewrite it to copy or set the elements of the scalarized memory.
2165void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
2166 AllocaInst *AI,
2167 SmallVector<AllocaInst*, 32> &NewElts) {
2168 // If this is a memcpy/memmove, construct the other pointer as the
2169 // appropriate type. The "Other" pointer is the pointer that goes to memory
2170 // that doesn't have anything to do with the alloca that we are promoting. For
2171 // memset, this Value* stays null.
2172 Value *OtherPtr = 0;
2173 unsigned MemAlignment = MI->getAlignment();
2174 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
2175 if (Inst == MTI->getRawDest())
2176 OtherPtr = MTI->getRawSource();
2177 else {
2178 assert(Inst == MTI->getRawSource());
2179 OtherPtr = MTI->getRawDest();
2180 }
2181 }
2182
2183 // If there is an other pointer, we want to convert it to the same pointer
2184 // type as AI has, so we can GEP through it safely.
2185 if (OtherPtr) {
2186 unsigned AddrSpace =
2187 cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2188
2189 // Remove bitcasts and all-zero GEPs from OtherPtr. This is an
2190 // optimization, but it's also required to detect the corner case where
2191 // both pointer operands are referencing the same memory, and where
2192 // OtherPtr may be a bitcast or GEP that currently being rewritten. (This
2193 // function is only called for mem intrinsics that access the whole
2194 // aggregate, so non-zero GEPs are not an issue here.)
2195 OtherPtr = OtherPtr->stripPointerCasts();
2196
2197 // Copying the alloca to itself is a no-op: just delete it.
2198 if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2199 // This code will run twice for a no-op memcpy -- once for each operand.
2200 // Put only one reference to MI on the DeadInsts list.
2201 for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
2202 E = DeadInsts.end(); I != E; ++I)
2203 if (*I == MI) return;
2204 DeadInsts.push_back(MI);
2205 return;
2206 }
2207
2208 // If the pointer is not the right type, insert a bitcast to the right
2209 // type.
2210 Type *NewTy =
2211 PointerType::get(AI->getType()->getElementType(), AddrSpace);
2212
2213 if (OtherPtr->getType() != NewTy)
2214 OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2215 }
2216
2217 // Process each element of the aggregate.
2218 bool SROADest = MI->getRawDest() == Inst;
2219
2220 Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
2221
2222 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2223 // If this is a memcpy/memmove, emit a GEP of the other element address.
2224 Value *OtherElt = 0;
2225 unsigned OtherEltAlign = MemAlignment;
2226
2227 if (OtherPtr) {
2228 Value *Idx[2] = { Zero,
2229 ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
2230 OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx,
2231 OtherPtr->getName()+"."+Twine(i),
2232 MI);
2233 uint64_t EltOffset;
2234 PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2235 Type *OtherTy = OtherPtrTy->getElementType();
2236 if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
2237 EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2238 } else {
2239 Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2240 EltOffset = TD->getTypeAllocSize(EltTy)*i;
2241 }
2242
2243 // The alignment of the other pointer is the guaranteed alignment of the
2244 // element, which is affected by both the known alignment of the whole
2245 // mem intrinsic and the alignment of the element. If the alignment of
2246 // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2247 // known alignment is just 4 bytes.
2248 OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2249 }
2250
2251 Value *EltPtr = NewElts[i];
2252 Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2253
2254 // If we got down to a scalar, insert a load or store as appropriate.
2255 if (EltTy->isSingleValueType()) {
2256 if (isa<MemTransferInst>(MI)) {
2257 if (SROADest) {
2258 // From Other to Alloca.
2259 Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2260 new StoreInst(Elt, EltPtr, MI);
2261 } else {
2262 // From Alloca to Other.
2263 Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2264 new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2265 }
2266 continue;
2267 }
2268 assert(isa<MemSetInst>(MI));
2269
2270 // If the stored element is zero (common case), just store a null
2271 // constant.
2272 Constant *StoreVal;
2273 if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2274 if (CI->isZero()) {
2275 StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
2276 } else {
2277 // If EltTy is a vector type, get the element type.
2278 Type *ValTy = EltTy->getScalarType();
2279
2280 // Construct an integer with the right value.
2281 unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2282 APInt OneVal(EltSize, CI->getZExtValue());
2283 APInt TotalVal(OneVal);
2284 // Set each byte.
2285 for (unsigned i = 0; 8*i < EltSize; ++i) {
2286 TotalVal = TotalVal.shl(8);
2287 TotalVal |= OneVal;
2288 }
2289
2290 // Convert the integer value to the appropriate type.
2291 StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2292 if (ValTy->isPointerTy())
2293 StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2294 else if (ValTy->isFloatingPointTy())
2295 StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2296 assert(StoreVal->getType() == ValTy && "Type mismatch!");
2297
2298 // If the requested value was a vector constant, create it.
2299 if (EltTy->isVectorTy()) {
2300 unsigned NumElts = cast<VectorType>(EltTy)->getNumElements();
2301 StoreVal = ConstantVector::getSplat(NumElts, StoreVal);
2302 }
2303 }
2304 new StoreInst(StoreVal, EltPtr, MI);
2305 continue;
2306 }
2307 // Otherwise, if we're storing a byte variable, use a memset call for
2308 // this element.
2309 }
2310
2311 unsigned EltSize = TD->getTypeAllocSize(EltTy);
2312 if (!EltSize)
2313 continue;
2314
2315 IRBuilder<> Builder(MI);
2316
2317 // Finally, insert the meminst for this element.
2318 if (isa<MemSetInst>(MI)) {
2319 Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2320 MI->isVolatile());
2321 } else {
2322 assert(isa<MemTransferInst>(MI));
2323 Value *Dst = SROADest ? EltPtr : OtherElt; // Dest ptr
2324 Value *Src = SROADest ? OtherElt : EltPtr; // Src ptr
2325
2326 if (isa<MemCpyInst>(MI))
2327 Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2328 else
2329 Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2330 }
2331 }
2332 DeadInsts.push_back(MI);
2333}
2334
2335/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2336/// overwrites the entire allocation. Extract out the pieces of the stored
2337/// integer and store them individually.
2338void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2339 SmallVector<AllocaInst*, 32> &NewElts){
2340 // Extract each element out of the integer according to its structure offset
2341 // and store the element value to the individual alloca.
2342 Value *SrcVal = SI->getOperand(0);
2343 Type *AllocaEltTy = AI->getAllocatedType();
2344 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2345
2346 IRBuilder<> Builder(SI);
2347
2348 // Handle tail padding by extending the operand
2349 if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2350 SrcVal = Builder.CreateZExt(SrcVal,
2351 IntegerType::get(SI->getContext(), AllocaSizeBits));
2352
2353 DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2354 << '\n');
2355
2356 // There are two forms here: AI could be an array or struct. Both cases
2357 // have different ways to compute the element offset.
2358 if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2359 const StructLayout *Layout = TD->getStructLayout(EltSTy);
2360
2361 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2362 // Get the number of bits to shift SrcVal to get the value.
2363 Type *FieldTy = EltSTy->getElementType(i);
2364 uint64_t Shift = Layout->getElementOffsetInBits(i);
2365
2366 if (TD->isBigEndian())
2367 Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2368
2369 Value *EltVal = SrcVal;
2370 if (Shift) {
2371 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2372 EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2373 }
2374
2375 // Truncate down to an integer of the right size.
2376 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2377
2378 // Ignore zero sized fields like {}, they obviously contain no data.
2379 if (FieldSizeBits == 0) continue;
2380
2381 if (FieldSizeBits != AllocaSizeBits)
2382 EltVal = Builder.CreateTrunc(EltVal,
2383 IntegerType::get(SI->getContext(), FieldSizeBits));
2384 Value *DestField = NewElts[i];
2385 if (EltVal->getType() == FieldTy) {
2386 // Storing to an integer field of this size, just do it.
2387 } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2388 // Bitcast to the right element type (for fp/vector values).
2389 EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2390 } else {
2391 // Otherwise, bitcast the dest pointer (for aggregates).
2392 DestField = Builder.CreateBitCast(DestField,
2393 PointerType::getUnqual(EltVal->getType()));
2394 }
2395 new StoreInst(EltVal, DestField, SI);
2396 }
2397
2398 } else {
2399 ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2400 Type *ArrayEltTy = ATy->getElementType();
2401 uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2402 uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2403
2404 uint64_t Shift;
2405
2406 if (TD->isBigEndian())
2407 Shift = AllocaSizeBits-ElementOffset;
2408 else
2409 Shift = 0;
2410
2411 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2412 // Ignore zero sized fields like {}, they obviously contain no data.
2413 if (ElementSizeBits == 0) continue;
2414
2415 Value *EltVal = SrcVal;
2416 if (Shift) {
2417 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2418 EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2419 }
2420
2421 // Truncate down to an integer of the right size.
2422 if (ElementSizeBits != AllocaSizeBits)
2423 EltVal = Builder.CreateTrunc(EltVal,
2424 IntegerType::get(SI->getContext(),
2425 ElementSizeBits));
2426 Value *DestField = NewElts[i];
2427 if (EltVal->getType() == ArrayEltTy) {
2428 // Storing to an integer field of this size, just do it.
2429 } else if (ArrayEltTy->isFloatingPointTy() ||
2430 ArrayEltTy->isVectorTy()) {
2431 // Bitcast to the right element type (for fp/vector values).
2432 EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2433 } else {
2434 // Otherwise, bitcast the dest pointer (for aggregates).
2435 DestField = Builder.CreateBitCast(DestField,
2436 PointerType::getUnqual(EltVal->getType()));
2437 }
2438 new StoreInst(EltVal, DestField, SI);
2439
2440 if (TD->isBigEndian())
2441 Shift -= ElementOffset;
2442 else
2443 Shift += ElementOffset;
2444 }
2445 }
2446
2447 DeadInsts.push_back(SI);
2448}
2449
2450/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2451/// an integer. Load the individual pieces to form the aggregate value.
2452void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2453 SmallVector<AllocaInst*, 32> &NewElts) {
2454 // Extract each element out of the NewElts according to its structure offset
2455 // and form the result value.
2456 Type *AllocaEltTy = AI->getAllocatedType();
2457 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2458
2459 DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2460 << '\n');
2461
2462 // There are two forms here: AI could be an array or struct. Both cases
2463 // have different ways to compute the element offset.
2464 const StructLayout *Layout = 0;
2465 uint64_t ArrayEltBitOffset = 0;
2466 if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2467 Layout = TD->getStructLayout(EltSTy);
2468 } else {
2469 Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2470 ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2471 }
2472
2473 Value *ResultVal =
2474 Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2475
2476 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2477 // Load the value from the alloca. If the NewElt is an aggregate, cast
2478 // the pointer to an integer of the same size before doing the load.
2479 Value *SrcField = NewElts[i];
2480 Type *FieldTy =
2481 cast<PointerType>(SrcField->getType())->getElementType();
2482 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2483
2484 // Ignore zero sized fields like {}, they obviously contain no data.
2485 if (FieldSizeBits == 0) continue;
2486
2487 IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2488 FieldSizeBits);
2489 if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2490 !FieldTy->isVectorTy())
2491 SrcField = new BitCastInst(SrcField,
2492 PointerType::getUnqual(FieldIntTy),
2493 "", LI);
2494 SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2495
2496 // If SrcField is a fp or vector of the right size but that isn't an
2497 // integer type, bitcast to an integer so we can shift it.
2498 if (SrcField->getType() != FieldIntTy)
2499 SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2500
2501 // Zero extend the field to be the same size as the final alloca so that
2502 // we can shift and insert it.
2503 if (SrcField->getType() != ResultVal->getType())
2504 SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2505
2506 // Determine the number of bits to shift SrcField.
2507 uint64_t Shift;
2508 if (Layout) // Struct case.
2509 Shift = Layout->getElementOffsetInBits(i);
2510 else // Array case.
2511 Shift = i*ArrayEltBitOffset;
2512
2513 if (TD->isBigEndian())
2514 Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2515
2516 if (Shift) {
2517 Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2518 SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2519 }
2520
2521 // Don't create an 'or x, 0' on the first iteration.
2522 if (!isa<Constant>(ResultVal) ||
2523 !cast<Constant>(ResultVal)->isNullValue())
2524 ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2525 else
2526 ResultVal = SrcField;
2527 }
2528
2529 // Handle tail padding by truncating the result
2530 if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2531 ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2532
2533 LI->replaceAllUsesWith(ResultVal);
2534 DeadInsts.push_back(LI);
2535}
2536
2537/// HasPadding - Return true if the specified type has any structure or
2538/// alignment padding in between the elements that would be split apart
2539/// by SROA; return false otherwise.
970d7e83 2540static bool HasPadding(Type *Ty, const DataLayout &TD) {
223e47cc
LB
2541 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2542 Ty = ATy->getElementType();
2543 return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2544 }
2545
2546 // SROA currently handles only Arrays and Structs.
2547 StructType *STy = cast<StructType>(Ty);
2548 const StructLayout *SL = TD.getStructLayout(STy);
2549 unsigned PrevFieldBitOffset = 0;
2550 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2551 unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2552
2553 // Check to see if there is any padding between this element and the
2554 // previous one.
2555 if (i) {
2556 unsigned PrevFieldEnd =
2557 PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2558 if (PrevFieldEnd < FieldBitOffset)
2559 return true;
2560 }
2561 PrevFieldBitOffset = FieldBitOffset;
2562 }
2563 // Check for tail padding.
2564 if (unsigned EltCount = STy->getNumElements()) {
2565 unsigned PrevFieldEnd = PrevFieldBitOffset +
2566 TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2567 if (PrevFieldEnd < SL->getSizeInBits())
2568 return true;
2569 }
2570 return false;
2571}
2572
2573/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2574/// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
2575/// or 1 if safe after canonicalization has been performed.
2576bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2577 // Loop over the use list of the alloca. We can only transform it if all of
2578 // the users are safe to transform.
2579 AllocaInfo Info(AI);
2580
2581 isSafeForScalarRepl(AI, 0, Info);
2582 if (Info.isUnsafe) {
2583 DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2584 return false;
2585 }
2586
2587 // Okay, we know all the users are promotable. If the aggregate is a memcpy
2588 // source and destination, we have to be careful. In particular, the memcpy
2589 // could be moving around elements that live in structure padding of the LLVM
2590 // types, but may actually be used. In these cases, we refuse to promote the
2591 // struct.
2592 if (Info.isMemCpySrc && Info.isMemCpyDst &&
2593 HasPadding(AI->getAllocatedType(), *TD))
2594 return false;
2595
2596 // If the alloca never has an access to just *part* of it, but is accessed
2597 // via loads and stores, then we should use ConvertToScalarInfo to promote
2598 // the alloca instead of promoting each piece at a time and inserting fission
2599 // and fusion code.
2600 if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2601 // If the struct/array just has one element, use basic SRoA.
2602 if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2603 if (ST->getNumElements() > 1) return false;
2604 } else {
2605 if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2606 return false;
2607 }
2608 }
2609
2610 return true;
2611}