]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
Merge tag 'dump-pull-request' of https://gitlab.com/marcandre.lureau/qemu into staging
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
50f57e09 9 * version 2.1 of the License, or (at your option) any later version.
2c0262af
FB
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
69242e7e 24#include "qemu/cpu-float.h"
2c4da50d 25#include "hw/registerfields.h"
74433bf0
RH
26#include "cpu-qom.h"
27#include "exec/cpu-defs.h"
68970d1e 28#include "qapi/qapi-types-common.h"
9042c0e2 29
ca759f9e
AB
30/* ARM processors have a weak memory model */
31#define TCG_GUEST_DEFAULT_MO (0)
32
e24fd076
DG
33#ifdef TARGET_AARCH64
34#define KVM_HAVE_MCE_INJECTION 1
35#endif
36
b8a9e8f1
FB
37#define EXCP_UDEF 1 /* undefined instruction */
38#define EXCP_SWI 2 /* software interrupt */
39#define EXCP_PREFETCH_ABORT 3
40#define EXCP_DATA_ABORT 4
b5ff1b31
FB
41#define EXCP_IRQ 5
42#define EXCP_FIQ 6
06c949e6 43#define EXCP_BKPT 7
9ee6e8bb 44#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 45#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 46#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 47#define EXCP_HYP_TRAP 12
e0d6e6a5 48#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
49#define EXCP_VIRQ 14
50#define EXCP_VFIQ 15
19a6e31c 51#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 52#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 53#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 54#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 55#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
56#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
57#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
e5346292 58#define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
3c29632f 59#define EXCP_VSERR 24
2c4a7cc5 60/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
61
62#define ARMV7M_EXCP_RESET 1
63#define ARMV7M_EXCP_NMI 2
64#define ARMV7M_EXCP_HARD 3
65#define ARMV7M_EXCP_MEM 4
66#define ARMV7M_EXCP_BUS 5
67#define ARMV7M_EXCP_USAGE 6
1e577cc7 68#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
69#define ARMV7M_EXCP_SVC 11
70#define ARMV7M_EXCP_DEBUG 12
71#define ARMV7M_EXCP_PENDSV 14
72#define ARMV7M_EXCP_SYSTICK 15
2c0262af 73
acf94941
PM
74/* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
82 */
4a16724f
PM
83enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
87};
acf94941 88
403946c0
RH
89/* ARM-specific interrupt pending bits. */
90#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
91#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
3c29632f 93#define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
403946c0 94
e4fe830b
PM
95/* The usual mapping for an AArch64 system register to its AArch32
96 * counterpart is for the 32 bit world to have access to the lower
97 * half only (with writes leaving the upper half untouched). It's
98 * therefore useful to be able to pass TCG the offset of the least
99 * significant half of a uint64_t struct member.
100 */
e03b5686 101#if HOST_BIG_ENDIAN
5cd8a118 102#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 103#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
104#else
105#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 106#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
107#endif
108
136e67e9 109/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
110#define ARM_CPU_IRQ 0
111#define ARM_CPU_FIQ 1
136e67e9
EI
112#define ARM_CPU_VIRQ 2
113#define ARM_CPU_VFIQ 3
403946c0 114
aaa1f954
EI
115/* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
118 */
119#define TARGET_INSN_START_EXTRA_WORDS 2
120
121/* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
125 */
126#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 128
b7bcbe95
FB
129/* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
135 */
b7bcbe95 136
200bf5b7
AB
137/**
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
448d4d14
AB
140 * @num: Number of the registers in this XML seen by GDB.
141 * @data: A union with data specific to the set of registers
142 * @cpregs_keys: Array that contains the corresponding Key of
143 * a given cpreg with the same order of the cpreg
144 * in the XML description.
200bf5b7
AB
145 */
146typedef struct DynamicGDBXMLInfo {
147 char *desc;
448d4d14
AB
148 int num;
149 union {
150 struct {
151 uint32_t *keys;
152 } cpregs;
153 } data;
200bf5b7
AB
154} DynamicGDBXMLInfo;
155
55d284af
PM
156/* CPU state for each instance of a generic timer (in cp15 c14) */
157typedef struct ARMGenericTimer {
158 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 159 uint64_t ctl; /* Timer Control register */
55d284af
PM
160} ARMGenericTimer;
161
8c94b071
RH
162#define GTIMER_PHYS 0
163#define GTIMER_VIRT 1
164#define GTIMER_HYP 2
165#define GTIMER_SEC 3
166#define GTIMER_HYPVIRT 4
167#define NUM_GTIMERS 5
55d284af 168
e9152ee9
RDC
169#define VTCR_NSW (1u << 29)
170#define VTCR_NSA (1u << 30)
171#define VSTCR_SW VTCR_NSW
172#define VSTCR_SA VTCR_NSA
173
c39c2b90
RH
174/* Define a maximum sized vector register.
175 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
176 * For 64-bit, this is a 2048-bit SVE register.
177 *
178 * Note that the mapping between S, D, and Q views of the register bank
179 * differs between AArch64 and AArch32.
180 * In AArch32:
181 * Qn = regs[n].d[1]:regs[n].d[0]
182 * Dn = regs[n / 2].d[n & 1]
183 * Sn = regs[n / 4].d[n % 4 / 2],
184 * bits 31..0 for even n, and bits 63..32 for odd n
185 * (and regs[16] to regs[31] are inaccessible)
186 * In AArch64:
187 * Zn = regs[n].d[*]
188 * Qn = regs[n].d[1]:regs[n].d[0]
189 * Dn = regs[n].d[0]
190 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 191 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
192 *
193 * This corresponds to the architecturally defined mapping between
194 * the two execution states, and means we do not need to explicitly
195 * map these registers when changing states.
196 *
197 * Align the data for use with TCG host vector operations.
198 */
199
200#ifdef TARGET_AARCH64
201# define ARM_MAX_VQ 16
202#else
203# define ARM_MAX_VQ 1
204#endif
205
206typedef struct ARMVectorReg {
207 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
208} ARMVectorReg;
209
3c7d3086 210#ifdef TARGET_AARCH64
991ad91b 211/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 212typedef struct ARMPredicateReg {
46417784 213 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 214} ARMPredicateReg;
991ad91b
RH
215
216/* In AArch32 mode, PAC keys do not exist at all. */
217typedef struct ARMPACKey {
218 uint64_t lo, hi;
219} ARMPACKey;
3c7d3086
RH
220#endif
221
3902bfc6
RH
222/* See the commentary above the TBFLAG field definitions. */
223typedef struct CPUARMTBFlags {
224 uint32_t flags;
a378206a 225 target_ulong flags2;
3902bfc6 226} CPUARMTBFlags;
c39c2b90 227
f3639a64
RH
228typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
229
1ea4a06a 230typedef struct CPUArchState {
b5ff1b31 231 /* Regs for current mode. */
2c0262af 232 uint32_t regs[16];
3926cc84
AG
233
234 /* 32/64 switch only happens when taking and returning from
235 * exceptions so the overlap semantics are taken care of then
236 * instead of having a complicated union.
237 */
238 /* Regs for A64 mode. */
239 uint64_t xregs[32];
240 uint64_t pc;
d356312f
PM
241 /* PSTATE isn't an architectural register for ARMv8. However, it is
242 * convenient for us to assemble the underlying state into a 32 bit format
243 * identical to the architectural format used for the SPSR. (This is also
244 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
245 * 'pstate' register are.) Of the PSTATE bits:
246 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
247 * semantics as for AArch32, as described in the comments on each field)
248 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 249 * DAIF (exception masks) are kept in env->daif
f6e52eaa 250 * BTYPE is kept in env->btype
c37e6ac9 251 * SM and ZA are kept in env->svcr
d356312f 252 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
253 */
254 uint32_t pstate;
53221552 255 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
063bbd80 256 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
3926cc84 257
fdd1b228 258 /* Cached TBFLAGS state. See below for which bits are included. */
3902bfc6 259 CPUARMTBFlags hflags;
fdd1b228 260
b90372ad 261 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 262 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
263 the whole CPSR. */
264 uint32_t uncached_cpsr;
265 uint32_t spsr;
266
267 /* Banked registers. */
28c9457d 268 uint64_t banked_spsr[8];
0b7d409d
FA
269 uint32_t banked_r13[8];
270 uint32_t banked_r14[8];
3b46e624 271
b5ff1b31
FB
272 /* These hold r8-r12. */
273 uint32_t usr_regs[5];
274 uint32_t fiq_regs[5];
3b46e624 275
2c0262af
FB
276 /* cpsr flag cache for faster execution */
277 uint32_t CF; /* 0 or 1 */
278 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
279 uint32_t NF; /* N is bit 31. All other bits are undefined. */
280 uint32_t ZF; /* Z set if zero. */
99c475ab 281 uint32_t QF; /* 0 or 1 */
9ee6e8bb 282 uint32_t GE; /* cpsr[19:16] */
9ee6e8bb 283 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 284 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 285 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
c37e6ac9 286 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
2c0262af 287
1b174238 288 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 289 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 290
b5ff1b31
FB
291 /* System control coprocessor (cp15) */
292 struct {
40f137e1 293 uint32_t c0_cpuid;
b85a1fd6
FA
294 union { /* Cache size selection */
295 struct {
296 uint64_t _unused_csselr0;
297 uint64_t csselr_ns;
298 uint64_t _unused_csselr1;
299 uint64_t csselr_s;
300 };
301 uint64_t csselr_el[4];
302 };
137feaa9
FA
303 union { /* System control register. */
304 struct {
305 uint64_t _unused_sctlr;
306 uint64_t sctlr_ns;
307 uint64_t hsctlr;
308 uint64_t sctlr_s;
309 };
310 uint64_t sctlr_el[4];
311 };
7ebd5f2e 312 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 313 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 314 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 315 uint64_t sder; /* Secure debug enable register. */
77022576 316 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
317 union { /* MMU translation table base 0. */
318 struct {
319 uint64_t _unused_ttbr0_0;
320 uint64_t ttbr0_ns;
321 uint64_t _unused_ttbr0_1;
322 uint64_t ttbr0_s;
323 };
324 uint64_t ttbr0_el[4];
325 };
326 union { /* MMU translation table base 1. */
327 struct {
328 uint64_t _unused_ttbr1_0;
329 uint64_t ttbr1_ns;
330 uint64_t _unused_ttbr1_1;
331 uint64_t ttbr1_s;
332 };
333 uint64_t ttbr1_el[4];
334 };
b698e9cf 335 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
e9152ee9 336 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
11f136ee 337 /* MMU translation table base control. */
cb4a0a34 338 uint64_t tcr_el[4];
988cc190
PM
339 uint64_t vtcr_el2; /* Virtualization Translation Control. */
340 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
67cc32eb
VL
341 uint32_t c2_data; /* MPU data cacheable bits. */
342 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
343 union { /* MMU domain access control register
344 * MPU write buffer control.
345 */
346 struct {
347 uint64_t dacr_ns;
348 uint64_t dacr_s;
349 };
350 struct {
351 uint64_t dacr32_el2;
352 };
353 };
7e09797c
PM
354 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
355 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 356 uint64_t hcr_el2; /* Hypervisor configuration register */
5814d587 357 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
64e0e2de 358 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
359 union { /* Fault status registers. */
360 struct {
361 uint64_t ifsr_ns;
362 uint64_t ifsr_s;
363 };
364 struct {
365 uint64_t ifsr32_el2;
366 };
367 };
4a7e2d73
FA
368 union {
369 struct {
370 uint64_t _unused_dfsr;
371 uint64_t dfsr_ns;
372 uint64_t hsr;
373 uint64_t dfsr_s;
374 };
375 uint64_t esr_el[4];
376 };
ce819861 377 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
378 union { /* Fault address registers. */
379 struct {
380 uint64_t _unused_far0;
e03b5686 381#if HOST_BIG_ENDIAN
b848ce2b
FA
382 uint32_t ifar_ns;
383 uint32_t dfar_ns;
384 uint32_t ifar_s;
385 uint32_t dfar_s;
386#else
387 uint32_t dfar_ns;
388 uint32_t ifar_ns;
389 uint32_t dfar_s;
390 uint32_t ifar_s;
391#endif
392 uint64_t _unused_far3;
393 };
394 uint64_t far_el[4];
395 };
59e05530 396 uint64_t hpfar_el2;
2a5a9abd 397 uint64_t hstr_el2;
01c097f7
FA
398 union { /* Translation result. */
399 struct {
400 uint64_t _unused_par_0;
401 uint64_t par_ns;
402 uint64_t _unused_par_1;
403 uint64_t par_s;
404 };
405 uint64_t par_el[4];
406 };
6cb0b013 407
b5ff1b31
FB
408 uint32_t c9_insn; /* Cache lockdown registers. */
409 uint32_t c9_data;
8521466b
AF
410 uint64_t c9_pmcr; /* performance monitor control register */
411 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
412 uint64_t c9_pmovsr; /* perf monitor overflow status */
413 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 414 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 415 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
416 union { /* Memory attribute redirection */
417 struct {
e03b5686 418#if HOST_BIG_ENDIAN
be693c87
GB
419 uint64_t _unused_mair_0;
420 uint32_t mair1_ns;
421 uint32_t mair0_ns;
422 uint64_t _unused_mair_1;
423 uint32_t mair1_s;
424 uint32_t mair0_s;
425#else
426 uint64_t _unused_mair_0;
427 uint32_t mair0_ns;
428 uint32_t mair1_ns;
429 uint64_t _unused_mair_1;
430 uint32_t mair0_s;
431 uint32_t mair1_s;
432#endif
433 };
434 uint64_t mair_el[4];
435 };
fb6c91ba
GB
436 union { /* vector base address register */
437 struct {
438 uint64_t _unused_vbar;
439 uint64_t vbar_ns;
440 uint64_t hvbar;
441 uint64_t vbar_s;
442 };
443 uint64_t vbar_el[4];
444 };
e89e51a1 445 uint32_t mvbar; /* (monitor) vector base address register */
4a7319b7 446 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
54bf36ed
FA
447 struct { /* FCSE PID. */
448 uint32_t fcseidr_ns;
449 uint32_t fcseidr_s;
450 };
451 union { /* Context ID. */
452 struct {
453 uint64_t _unused_contextidr_0;
454 uint64_t contextidr_ns;
455 uint64_t _unused_contextidr_1;
456 uint64_t contextidr_s;
457 };
458 uint64_t contextidr_el[4];
459 };
460 union { /* User RW Thread register. */
461 struct {
462 uint64_t tpidrurw_ns;
463 uint64_t tpidrprw_ns;
464 uint64_t htpidr;
465 uint64_t _tpidr_el3;
466 };
467 uint64_t tpidr_el[4];
468 };
9e5ec745 469 uint64_t tpidr2_el0;
54bf36ed
FA
470 /* The secure banks of these registers don't map anywhere */
471 uint64_t tpidrurw_s;
472 uint64_t tpidrprw_s;
473 uint64_t tpidruro_s;
474
475 union { /* User RO Thread register. */
476 uint64_t tpidruro_ns;
477 uint64_t tpidrro_el[1];
478 };
a7adc4b7
PM
479 uint64_t c14_cntfrq; /* Counter Frequency register */
480 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 481 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 482 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 483 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 484 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
485 uint32_t c15_ticonfig; /* TI925T configuration byte. */
486 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
487 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
488 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
489 uint32_t c15_config_base_address; /* SCU base address. */
490 uint32_t c15_diagnostic; /* diagnostic register */
491 uint32_t c15_power_diagnostic;
492 uint32_t c15_power_control; /* power control */
0b45451e
PM
493 uint64_t dbgbvr[16]; /* breakpoint value registers */
494 uint64_t dbgbcr[16]; /* breakpoint control registers */
495 uint64_t dbgwvr[16]; /* watchpoint value registers */
496 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 497 uint64_t mdscr_el1;
1424ca8d 498 uint64_t oslsr_el1; /* OS Lock Status */
f94a6df5 499 uint64_t osdlr_el1; /* OS DoubleLock status */
14cc7b54 500 uint64_t mdcr_el2;
5513c3ab 501 uint64_t mdcr_el3;
5d05b9d4
AL
502 /* Stores the architectural value of the counter *the last time it was
503 * updated* by pmccntr_op_start. Accesses should always be surrounded
504 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
505 * architecturally-correct value is being read/set.
7c2cb42b 506 */
c92c0687 507 uint64_t c15_ccnt;
5d05b9d4
AL
508 /* Stores the delta between the architectural value and the underlying
509 * cycle count during normal operation. It is used to update c15_ccnt
510 * to be the correct architectural value before accesses. During
511 * accesses, c15_ccnt_delta contains the underlying count being used
512 * for the access, after which it reverts to the delta value in
513 * pmccntr_op_finish.
514 */
515 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
516 uint64_t c14_pmevcntr[31];
517 uint64_t c14_pmevcntr_delta[31];
518 uint64_t c14_pmevtyper[31];
8521466b 519 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 520 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 521 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
4b779ceb
RH
522 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
523 uint64_t gcr_el1;
524 uint64_t rgsr_el1;
58e93b48
RH
525
526 /* Minimal RAS registers */
527 uint64_t disr_el1;
528 uint64_t vdisr_el2;
529 uint64_t vsesr_el2;
b5ff1b31 530 } cp15;
40f137e1 531
9ee6e8bb 532 struct {
fb602cb7
PM
533 /* M profile has up to 4 stack pointers:
534 * a Main Stack Pointer and a Process Stack Pointer for each
535 * of the Secure and Non-Secure states. (If the CPU doesn't support
536 * the security extension then it has only two SPs.)
537 * In QEMU we always store the currently active SP in regs[13],
538 * and the non-active SP for the current security state in
539 * v7m.other_sp. The stack pointers for the inactive security state
540 * are stored in other_ss_msp and other_ss_psp.
541 * switch_v7m_security_state() is responsible for rearranging them
542 * when we change security state.
543 */
9ee6e8bb 544 uint32_t other_sp;
fb602cb7
PM
545 uint32_t other_ss_msp;
546 uint32_t other_ss_psp;
4a16724f
PM
547 uint32_t vecbase[M_REG_NUM_BANKS];
548 uint32_t basepri[M_REG_NUM_BANKS];
549 uint32_t control[M_REG_NUM_BANKS];
550 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
551 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
552 uint32_t hfsr; /* HardFault Status */
553 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 554 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 555 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 556 uint32_t bfar; /* BusFault Address */
bed079da 557 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 558 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 559 int exception;
4a16724f
PM
560 uint32_t primask[M_REG_NUM_BANKS];
561 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 562 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 563 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 564 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 565 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
566 uint32_t msplim[M_REG_NUM_BANKS];
567 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
568 uint32_t fpcar[M_REG_NUM_BANKS];
569 uint32_t fpccr[M_REG_NUM_BANKS];
570 uint32_t fpdscr[M_REG_NUM_BANKS];
571 uint32_t cpacr[M_REG_NUM_BANKS];
572 uint32_t nsacr;
b26b5629 573 uint32_t ltpsize;
7c3d47da 574 uint32_t vpr;
9ee6e8bb
PB
575 } v7m;
576
abf1172f
PM
577 /* Information associated with an exception about to be taken:
578 * code which raises an exception must set cs->exception_index and
579 * the relevant parts of this structure; the cpu_do_interrupt function
580 * will then set the guest-visible registers as part of the exception
581 * entry process.
582 */
583 struct {
584 uint32_t syndrome; /* AArch64 format syndrome register */
585 uint32_t fsr; /* AArch32 format fault status register info */
586 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 587 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
588 /* If we implement EL2 we will also need to store information
589 * about the intermediate physical address for stage 2 faults.
590 */
591 } exception;
592
202ccb6b
DG
593 /* Information associated with an SError */
594 struct {
595 uint8_t pending;
596 uint8_t has_esr;
597 uint64_t esr;
598 } serror;
599
1711bfa5
BM
600 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
601
ed89f078
PM
602 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
603 uint32_t irq_line_state;
604
fe1479c3
PB
605 /* Thumb-2 EE state. */
606 uint32_t teecr;
607 uint32_t teehbr;
608
b7bcbe95
FB
609 /* VFP coprocessor state. */
610 struct {
c39c2b90 611 ARMVectorReg zregs[32];
b7bcbe95 612
3c7d3086
RH
613#ifdef TARGET_AARCH64
614 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 615#define FFR_PRED_NUM 16
3c7d3086 616 ARMPredicateReg pregs[17];
516e246a
RH
617 /* Scratch space for aa64 sve predicate temporary. */
618 ARMPredicateReg preg_tmp;
3c7d3086
RH
619#endif
620
b7bcbe95 621 /* We store these fpcsr fields separately for convenience. */
a4d58462 622 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
623 int vec_len;
624 int vec_stride;
625
a4d58462
RH
626 uint32_t xregs[16];
627
516e246a 628 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 629 uint32_t scratch[8];
3b46e624 630
d81ce0ef
AB
631 /* There are a number of distinct float control structures:
632 *
633 * fp_status: is the "normal" fp status.
634 * fp_status_fp16: used for half-precision calculations
635 * standard_fp_status : the ARM "Standard FPSCR Value"
aaae563b
PM
636 * standard_fp_status_fp16 : used for half-precision
637 * calculations with the ARM "Standard FPSCR Value"
d81ce0ef
AB
638 *
639 * Half-precision operations are governed by a separate
640 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
641 * status structure to control this.
642 *
643 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
644 * round-to-nearest and is used by any operations (generally
645 * Neon) which the architecture defines as controlled by the
646 * standard FPSCR value rather than the FPSCR.
3a492f3a 647 *
aaae563b
PM
648 * The "standard FPSCR but for fp16 ops" is needed because
649 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
650 * using a fixed value for it.
651 *
3a492f3a
PM
652 * To avoid having to transfer exception bits around, we simply
653 * say that the FPSCR cumulative exception flags are the logical
aaae563b 654 * OR of the flags in the four fp statuses. This relies on the
3a492f3a
PM
655 * only thing which needs to read the exception flags being
656 * an explicit FPSCR read.
657 */
53cd6637 658 float_status fp_status;
d81ce0ef 659 float_status fp_status_f16;
3a492f3a 660 float_status standard_fp_status;
aaae563b 661 float_status standard_fp_status_f16;
5be5e8ed 662
de561988
RH
663 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */
664 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */
b7bcbe95 665 } vfp;
03d05e2d
PM
666 uint64_t exclusive_addr;
667 uint64_t exclusive_val;
668 uint64_t exclusive_high;
b7bcbe95 669
18c9b560
AZ
670 /* iwMMXt coprocessor state. */
671 struct {
672 uint64_t regs[16];
673 uint64_t val;
674
675 uint32_t cregs[16];
676 } iwmmxt;
677
991ad91b 678#ifdef TARGET_AARCH64
108b3ba8
RH
679 struct {
680 ARMPACKey apia;
681 ARMPACKey apib;
682 ARMPACKey apda;
683 ARMPACKey apdb;
684 ARMPACKey apga;
685 } keys;
7cb1e618
RH
686
687 uint64_t scxtnum_el[4];
dc993a01
RH
688
689 /*
690 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
691 * as we do with vfp.zregs[]. This corresponds to the architectural ZA
692 * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
693 * When SVL is less than the architectural maximum, the accessible
694 * storage is restricted, such that if the SVL is X bytes the guest can
695 * see only the bottom X elements of zarray[], and only the least
696 * significant X bytes of each element of the array. (In other words,
697 * the observable part is always square.)
698 *
699 * The ZA storage can also be considered as a set of square tiles of
700 * elements of different sizes. The mapping from tiles to the ZA array
701 * is architecturally defined, such that for tiles of elements of esz
702 * bytes, the Nth row (or "horizontal slice") of tile T is in
703 * ZA[T + N * esz]. Note that this means that each tile is not contiguous
704 * in the ZA storage, because its rows are striped through the ZA array.
705 *
706 * Because this is so large, keep this toward the end of the reset area,
707 * to keep the offsets into the rest of the structure smaller.
708 */
709 ARMVectorReg zarray[ARM_MAX_VQ * 16];
991ad91b
RH
710#endif
711
ce4defa0
PB
712#if defined(CONFIG_USER_ONLY)
713 /* For usermode syscall translation. */
714 int eabi;
715#endif
716
46747d15 717 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
718 struct CPUWatchpoint *cpu_watchpoint[16];
719
f3639a64
RH
720 /* Optional fault info across tlb lookup. */
721 ARMMMUFaultInfo *tlb_fi;
722
1f5c00cf
AB
723 /* Fields up to this point are cleared by a CPU reset */
724 struct {} end_reset_fields;
725
e8b5fae5 726 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 727
581be094 728 /* Internal CPU feature flags. */
918f5dca 729 uint64_t features;
581be094 730
6cb0b013
PC
731 /* PMSAv7 MPU */
732 struct {
733 uint32_t *drbar;
734 uint32_t *drsr;
735 uint32_t *dracr;
4a16724f 736 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
737 } pmsav7;
738
0e1a46bb
PM
739 /* PMSAv8 MPU */
740 struct {
741 /* The PMSAv8 implementation also shares some PMSAv7 config
742 * and state:
743 * pmsav7.rnr (region number register)
744 * pmsav7_dregion (number of configured regions)
745 */
4a16724f
PM
746 uint32_t *rbar[M_REG_NUM_BANKS];
747 uint32_t *rlar[M_REG_NUM_BANKS];
748 uint32_t mair0[M_REG_NUM_BANKS];
749 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
750 } pmsav8;
751
9901c576
PM
752 /* v8M SAU */
753 struct {
754 uint32_t *rbar;
755 uint32_t *rlar;
756 uint32_t rnr;
757 uint32_t ctrl;
758 } sau;
759
983fe826 760 void *nvic;
462a8bc6 761 const struct arm_boot_info *boot_info;
d3a3e529
VK
762 /* Store GICv3CPUState to access from this struct */
763 void *gicv3state;
0e0c030c
RH
764
765#ifdef TARGET_TAGGED_ADDRESSES
766 /* Linux syscall tagged address support */
767 bool tagged_addr_enable;
768#endif
2c0262af
FB
769} CPUARMState;
770
5fda9504
TH
771static inline void set_feature(CPUARMState *env, int feature)
772{
773 env->features |= 1ULL << feature;
774}
775
776static inline void unset_feature(CPUARMState *env, int feature)
777{
778 env->features &= ~(1ULL << feature);
779}
780
bd7d00fc 781/**
08267487 782 * ARMELChangeHookFn:
bd7d00fc
PM
783 * type of a function which can be registered via arm_register_el_change_hook()
784 * to get callbacks when the CPU changes its exception level or mode.
785 */
08267487
AL
786typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
787typedef struct ARMELChangeHook ARMELChangeHook;
788struct ARMELChangeHook {
789 ARMELChangeHookFn *hook;
790 void *opaque;
791 QLIST_ENTRY(ARMELChangeHook) node;
792};
062ba099
AB
793
794/* These values map onto the return values for
795 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
796typedef enum ARMPSCIState {
d5affb0d
AJ
797 PSCI_ON = 0,
798 PSCI_OFF = 1,
062ba099
AB
799 PSCI_ON_PENDING = 2
800} ARMPSCIState;
801
962fcbf2
RH
802typedef struct ARMISARegisters ARMISARegisters;
803
7f9e25a6
RH
804/*
805 * In map, each set bit is a supported vector length of (bit-number + 1) * 16
806 * bytes, i.e. each bit number + 1 is the vector length in quadwords.
807 *
808 * While processing properties during initialization, corresponding init bits
809 * are set for bits in sve_vq_map that have been set by properties.
810 *
811 * Bits set in supported represent valid vector lengths for the CPU type.
812 */
813typedef struct {
814 uint32_t map, init, supported;
815} ARMVQMap;
816
74e75564
PB
817/**
818 * ARMCPU:
819 * @env: #CPUARMState
820 *
821 * An ARM CPU core.
822 */
b36e239e 823struct ArchCPU {
74e75564
PB
824 /*< private >*/
825 CPUState parent_obj;
826 /*< public >*/
827
5b146dc7 828 CPUNegativeOffsetState neg;
74e75564
PB
829 CPUARMState env;
830
831 /* Coprocessor information */
832 GHashTable *cp_regs;
833 /* For marshalling (mostly coprocessor) register state between the
834 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
835 * we use these arrays.
836 */
837 /* List of register indexes managed via these arrays; (full KVM style
838 * 64 bit indexes, not CPRegInfo 32 bit indexes)
839 */
840 uint64_t *cpreg_indexes;
841 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
842 uint64_t *cpreg_values;
843 /* Length of the indexes, values, reset_values arrays */
844 int32_t cpreg_array_len;
845 /* These are used only for migration: incoming data arrives in
846 * these fields and is sanity checked in post_load before copying
847 * to the working data structures above.
848 */
849 uint64_t *cpreg_vmstate_indexes;
850 uint64_t *cpreg_vmstate_values;
851 int32_t cpreg_vmstate_array_len;
852
448d4d14 853 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 854 DynamicGDBXMLInfo dyn_svereg_xml;
200bf5b7 855
74e75564
PB
856 /* Timers used by the generic (architected) timer */
857 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
858 /*
859 * Timer used by the PMU. Its state is restored after migration by
860 * pmu_op_finish() - it does not need other handling during migration
861 */
862 QEMUTimer *pmu_timer;
74e75564
PB
863 /* GPIO outputs for generic timer */
864 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
865 /* GPIO output for GICv3 maintenance interrupt signal */
866 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
867 /* GPIO output for the PMU interrupt */
868 qemu_irq pmu_interrupt;
74e75564
PB
869
870 /* MemoryRegion to use for secure physical accesses */
871 MemoryRegion *secure_memory;
872
8bce44a2
RH
873 /* MemoryRegion to use for allocation tag accesses */
874 MemoryRegion *tag_memory;
875 MemoryRegion *secure_tag_memory;
876
181962fd
PM
877 /* For v8M, pointer to the IDAU interface provided by board/SoC */
878 Object *idau;
879
74e75564
PB
880 /* 'compatible' string for this CPU for Linux device trees */
881 const char *dtb_compatible;
882
883 /* PSCI version for this CPU
884 * Bits[31:16] = Major Version
885 * Bits[15:0] = Minor Version
886 */
887 uint32_t psci_version;
888
062ba099
AB
889 /* Current power state, access guarded by BQL */
890 ARMPSCIState power_state;
891
c25bd18a
PM
892 /* CPU has virtualization extension */
893 bool has_el2;
74e75564
PB
894 /* CPU has security extension */
895 bool has_el3;
5c0a3819
SZ
896 /* CPU has PMU (Performance Monitor Unit) */
897 bool has_pmu;
97a28b0e
PM
898 /* CPU has VFP */
899 bool has_vfp;
900 /* CPU has Neon */
901 bool has_neon;
ea90db0a
PM
902 /* CPU has M-profile DSP extension */
903 bool has_dsp;
74e75564
PB
904
905 /* CPU has memory protection unit */
906 bool has_mpu;
907 /* PMSAv7 MPU number of supported regions */
908 uint32_t pmsav7_dregion;
9901c576
PM
909 /* v8M SAU number of supported regions */
910 uint32_t sau_sregion;
74e75564
PB
911
912 /* PSCI conduit used to invoke PSCI methods
913 * 0 - disabled, 1 - smc, 2 - hvc
914 */
915 uint32_t psci_conduit;
916
38e2a77c
PM
917 /* For v8M, initial value of the Secure VTOR */
918 uint32_t init_svtor;
7cda2149
PM
919 /* For v8M, initial value of the Non-secure VTOR */
920 uint32_t init_nsvtor;
38e2a77c 921
74e75564
PB
922 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
923 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
924 */
925 uint32_t kvm_target;
926
927 /* KVM init features for this CPU */
928 uint32_t kvm_init_features[7];
929
e5ac4200
AJ
930 /* KVM CPU state */
931
932 /* KVM virtual time adjustment */
933 bool kvm_adjvtime;
934 bool kvm_vtime_dirty;
935 uint64_t kvm_vtime;
936
68970d1e
AJ
937 /* KVM steal time */
938 OnOffAuto kvm_steal_time;
939
74e75564
PB
940 /* Uniprocessor system with MP extensions */
941 bool mp_is_up;
942
c4487d76
PM
943 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
944 * and the probe failed (so we need to report the error in realize)
945 */
946 bool host_cpu_probe_failed;
947
f9a69711
AF
948 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
949 * register.
950 */
951 int32_t core_count;
952
74e75564
PB
953 /* The instance init functions for implementation-specific subclasses
954 * set these fields to specify the implementation-dependent values of
955 * various constant registers and reset values of non-constant
956 * registers.
957 * Some of these might become QOM properties eventually.
958 * Field names match the official register names as defined in the
959 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
960 * is used for reset values of non-constant registers; no reset_
961 * prefix means a constant register.
47576b94
RH
962 * Some of these registers are split out into a substructure that
963 * is shared with the translators to control the ISA.
1548a7b2
PM
964 *
965 * Note that if you add an ID register to the ARMISARegisters struct
966 * you need to also update the 32-bit and 64-bit versions of the
967 * kvm_arm_get_host_cpu_features() function to correctly populate the
968 * field by reading the value from the KVM vCPU.
74e75564 969 */
47576b94
RH
970 struct ARMISARegisters {
971 uint32_t id_isar0;
972 uint32_t id_isar1;
973 uint32_t id_isar2;
974 uint32_t id_isar3;
975 uint32_t id_isar4;
976 uint32_t id_isar5;
977 uint32_t id_isar6;
10054016
PM
978 uint32_t id_mmfr0;
979 uint32_t id_mmfr1;
980 uint32_t id_mmfr2;
981 uint32_t id_mmfr3;
982 uint32_t id_mmfr4;
32957aad 983 uint32_t id_mmfr5;
8a130a7b
PM
984 uint32_t id_pfr0;
985 uint32_t id_pfr1;
1d51bc96 986 uint32_t id_pfr2;
47576b94
RH
987 uint32_t mvfr0;
988 uint32_t mvfr1;
989 uint32_t mvfr2;
a6179538 990 uint32_t id_dfr0;
d22c5649 991 uint32_t id_dfr1;
4426d361 992 uint32_t dbgdidr;
09754ca8
PM
993 uint32_t dbgdevid;
994 uint32_t dbgdevid1;
47576b94
RH
995 uint64_t id_aa64isar0;
996 uint64_t id_aa64isar1;
997 uint64_t id_aa64pfr0;
998 uint64_t id_aa64pfr1;
3dc91ddb
PM
999 uint64_t id_aa64mmfr0;
1000 uint64_t id_aa64mmfr1;
64761e10 1001 uint64_t id_aa64mmfr2;
2a609df8
PM
1002 uint64_t id_aa64dfr0;
1003 uint64_t id_aa64dfr1;
2dc10fa2 1004 uint64_t id_aa64zfr0;
414c54d5 1005 uint64_t id_aa64smfr0;
24526bb9 1006 uint64_t reset_pmcr_el0;
47576b94 1007 } isar;
e544f800 1008 uint64_t midr;
74e75564
PB
1009 uint32_t revidr;
1010 uint32_t reset_fpsid;
a5fd319a 1011 uint64_t ctr;
74e75564 1012 uint32_t reset_sctlr;
cad86737
AL
1013 uint64_t pmceid0;
1014 uint64_t pmceid1;
74e75564 1015 uint32_t id_afr0;
74e75564
PB
1016 uint64_t id_aa64afr0;
1017 uint64_t id_aa64afr1;
f6450bcb 1018 uint64_t clidr;
74e75564
PB
1019 uint64_t mp_affinity; /* MP ID without feature bits */
1020 /* The elements of this array are the CCSIDR values for each cache,
1021 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1022 */
957e6155 1023 uint64_t ccsidr[16];
74e75564
PB
1024 uint64_t reset_cbar;
1025 uint32_t reset_auxcr;
1026 bool reset_hivecs;
eb94284d
RH
1027
1028 /*
1029 * Intermediate values used during property parsing.
69b2265d 1030 * Once finalized, the values should be read from ID_AA64*.
eb94284d
RH
1031 */
1032 bool prop_pauth;
1033 bool prop_pauth_impdef;
69b2265d 1034 bool prop_lpa2;
eb94284d 1035
74e75564
PB
1036 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1037 uint32_t dcz_blocksize;
4a7319b7 1038 uint64_t rvbar_prop; /* Property/input signals. */
bd7d00fc 1039
e45868a3
PM
1040 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1041 int gic_num_lrs; /* number of list registers */
1042 int gic_vpribits; /* number of virtual priority bits */
1043 int gic_vprebits; /* number of virtual preemption bits */
39f29e59 1044 int gic_pribits; /* number of physical priority bits */
e45868a3 1045
3a062d57
JB
1046 /* Whether the cfgend input is high (i.e. this CPU should reset into
1047 * big-endian mode). This setting isn't used directly: instead it modifies
1048 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1049 * architecture version.
1050 */
1051 bool cfgend;
1052
b5c53d1b 1053 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 1054 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
1055
1056 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
1057
1058 /* Used to synchronize KVM and QEMU in-kernel device levels */
1059 uint8_t device_irq_level;
adf92eab
RH
1060
1061 /* Used to set the maximum vector length the cpu will support. */
1062 uint32_t sve_max_vq;
0df9142d 1063
b3d52804
RH
1064#ifdef CONFIG_USER_ONLY
1065 /* Used to set the default vector length at process start. */
1066 uint32_t sve_default_vq;
e74c0976 1067 uint32_t sme_default_vq;
b3d52804
RH
1068#endif
1069
7f9e25a6 1070 ARMVQMap sve_vq;
e74c0976 1071 ARMVQMap sme_vq;
7def8754
AJ
1072
1073 /* Generic timer counter frequency, in Hz */
1074 uint64_t gt_cntfrq_hz;
74e75564
PB
1075};
1076
7def8754
AJ
1077unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1078
51e5ef45
MAL
1079void arm_cpu_post_init(Object *obj);
1080
46de5913
IM
1081uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1082
74e75564 1083#ifndef CONFIG_USER_ONLY
8a9358cc 1084extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
1085
1086void arm_cpu_do_interrupt(CPUState *cpu);
1087void arm_v7m_cpu_do_interrupt(CPUState *cpu);
083afd18 1088#endif /* !CONFIG_USER_ONLY */
74e75564 1089
74e75564
PB
1090hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1091 MemTxAttrs *attrs);
1092
a010bdbe 1093int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
1094int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1095
d12379c5
AB
1096/*
1097 * Helpers to dynamically generates XML descriptions of the sysregs
1098 * and SVE registers. Returns the number of registers in each set.
200bf5b7 1099 */
32d6e32a 1100int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
d12379c5 1101int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
200bf5b7
AB
1102
1103/* Returns the dynamically generated XML for the gdb stub.
1104 * Returns a pointer to the XML contents for the specified XML file or NULL
1105 * if the XML name doesn't match the predefined one.
1106 */
1107const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1108
74e75564 1109int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1110 int cpuid, DumpState *s);
74e75564 1111int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1af0006a 1112 int cpuid, DumpState *s);
74e75564
PB
1113
1114#ifdef TARGET_AARCH64
a010bdbe 1115int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1116int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1117void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1118void aarch64_sve_change_el(CPUARMState *env, int old_el,
1119 int new_el, bool el0_a64);
f84734b8 1120void arm_reset_sve_state(CPUARMState *env);
538baab2
AJ
1121
1122/*
1123 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1124 * The byte at offset i from the start of the in-memory representation contains
1125 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1126 * lowest offsets are stored in the lowest memory addresses, then that nearly
1127 * matches QEMU's representation, which is to use an array of host-endian
1128 * uint64_t's, where the lower offsets are at the lower indices. To complete
1129 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1130 */
1131static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1132{
e03b5686 1133#if HOST_BIG_ENDIAN
538baab2
AJ
1134 int i;
1135
1136 for (i = 0; i < nr; ++i) {
1137 dst[i] = bswap64(src[i]);
1138 }
1139
1140 return dst;
1141#else
1142 return src;
1143#endif
1144}
1145
0ab5953b
RH
1146#else
1147static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1148static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1149 int n, bool a)
1150{ }
74e75564 1151#endif
778c3a06 1152
ce02049d
GB
1153void aarch64_sync_32_to_64(CPUARMState *env);
1154void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1155
ced31551
RH
1156int fp_exception_el(CPUARMState *env, int cur_el);
1157int sve_exception_el(CPUARMState *env, int cur_el);
6b2ca83e 1158int sme_exception_el(CPUARMState *env, int cur_el);
5ef3cc56
RH
1159
1160/**
6ca54aa9 1161 * sve_vqm1_for_el_sm:
5ef3cc56
RH
1162 * @env: CPUARMState
1163 * @el: exception level
6ca54aa9 1164 * @sm: streaming mode
5ef3cc56 1165 *
6ca54aa9 1166 * Compute the current vector length for @el & @sm, in units of
5ef3cc56 1167 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
6ca54aa9 1168 * If @sm, compute for SVL, otherwise NVL.
5ef3cc56 1169 */
6ca54aa9
RH
1170uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1171
1172/* Likewise, but using @sm = PSTATE.SM. */
5ef3cc56 1173uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
ced31551 1174
3926cc84
AG
1175static inline bool is_a64(CPUARMState *env)
1176{
1177 return env->aarch64;
1178}
1179
5d05b9d4
AL
1180/**
1181 * pmu_op_start/finish
ec7b4ce4
AF
1182 * @env: CPUARMState
1183 *
5d05b9d4
AL
1184 * Convert all PMU counters between their delta form (the typical mode when
1185 * they are enabled) and the guest-visible values. These two calls must
1186 * surround any action which might affect the counters.
ec7b4ce4 1187 */
5d05b9d4
AL
1188void pmu_op_start(CPUARMState *env);
1189void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1190
4e7beb0c
AL
1191/*
1192 * Called when a PMU counter is due to overflow
1193 */
1194void arm_pmu_timer_cb(void *opaque);
1195
033614c4
AL
1196/**
1197 * Functions to register as EL change hooks for PMU mode filtering
1198 */
1199void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1200void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1201
57a4a11b 1202/*
bf8d0969
AL
1203 * pmu_init
1204 * @cpu: ARMCPU
57a4a11b 1205 *
bf8d0969
AL
1206 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1207 * for the current configuration
57a4a11b 1208 */
bf8d0969 1209void pmu_init(ARMCPU *cpu);
57a4a11b 1210
76e3e1bc
PM
1211/* SCTLR bit meanings. Several bits have been reused in newer
1212 * versions of the architecture; in that case we define constants
1213 * for both old and new bit meanings. Code which tests against those
1214 * bits should probably check or otherwise arrange that the CPU
1215 * is the architectural version it expects.
1216 */
1217#define SCTLR_M (1U << 0)
1218#define SCTLR_A (1U << 1)
1219#define SCTLR_C (1U << 2)
1220#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1221#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1222#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1223#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1224#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1225#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1226#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1227#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1228#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1229#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1230#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1231#define SCTLR_ITD (1U << 7) /* v8 onward */
1232#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1233#define SCTLR_SED (1U << 8) /* v8 onward */
1234#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1235#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1236#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1237#define SCTLR_SW (1U << 10) /* v7 */
1238#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1239#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1240#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1241#define SCTLR_I (1U << 12)
b2af69d0
RH
1242#define SCTLR_V (1U << 13) /* AArch32 only */
1243#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1244#define SCTLR_RR (1U << 14) /* up to v7 */
1245#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1246#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1247#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1248#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1249#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1250#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1251#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1252#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1253#define SCTLR_nTWE (1U << 18) /* v8 onward */
1254#define SCTLR_WXN (1U << 19)
1255#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0 1256#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
7cb1e618 1257#define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
b2af69d0
RH
1258#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1259#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1260#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1261#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1262#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1263#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1264#define SCTLR_VE (1U << 24) /* up to v7 */
1265#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1266#define SCTLR_EE (1U << 25)
1267#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1268#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1269#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1270#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1271#define SCTLR_TRE (1U << 28) /* AArch32 only */
1272#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1273#define SCTLR_AFE (1U << 29) /* AArch32 only */
1274#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1275#define SCTLR_TE (1U << 30) /* AArch32 only */
1276#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1277#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
f2f68a78 1278#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
b2af69d0
RH
1279#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1280#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1281#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1282#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1283#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1284#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1285#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
f2f68a78 1286#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
ad1e6018
RH
1287#define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1288#define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1289#define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1290#define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1291#define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1292#define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1293#define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1294#define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1295#define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1296#define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1297#define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1298#define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1299#define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1300#define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
76e3e1bc 1301
fab8ad39
RH
1302/* Bit definitions for CPACR (AArch32 only) */
1303FIELD(CPACR, CP10, 20, 2)
1304FIELD(CPACR, CP11, 22, 2)
1305FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */
1306FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */
1307FIELD(CPACR, ASEDIS, 31, 1)
1308
1309/* Bit definitions for CPACR_EL1 (AArch64 only) */
1310FIELD(CPACR_EL1, ZEN, 16, 2)
1311FIELD(CPACR_EL1, FPEN, 20, 2)
1312FIELD(CPACR_EL1, SMEN, 24, 2)
1313FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */
1314
1315/* Bit definitions for HCPTR (AArch32 only) */
1316FIELD(HCPTR, TCP10, 10, 1)
1317FIELD(HCPTR, TCP11, 11, 1)
1318FIELD(HCPTR, TASE, 15, 1)
1319FIELD(HCPTR, TTA, 20, 1)
1320FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */
1321FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */
1322
1323/* Bit definitions for CPTR_EL2 (AArch64 only) */
1324FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */
1325FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */
1326FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */
1327FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */
1328FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */
1329FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */
1330FIELD(CPTR_EL2, TTA, 28, 1)
1331FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */
1332FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */
1333
1334/* Bit definitions for CPTR_EL3 (AArch64 only) */
1335FIELD(CPTR_EL3, EZ, 8, 1)
1336FIELD(CPTR_EL3, TFP, 10, 1)
1337FIELD(CPTR_EL3, ESM, 12, 1)
1338FIELD(CPTR_EL3, TTA, 20, 1)
1339FIELD(CPTR_EL3, TAM, 30, 1)
1340FIELD(CPTR_EL3, TCPAC, 31, 1)
c6f19164 1341
f190bd1d
PM
1342#define MDCR_MTPME (1U << 28)
1343#define MDCR_TDCC (1U << 27)
47b385da 1344#define MDCR_HLP (1U << 26) /* MDCR_EL2 */
0b42f4fa
PM
1345#define MDCR_SCCD (1U << 23) /* MDCR_EL3 */
1346#define MDCR_HCCD (1U << 23) /* MDCR_EL2 */
187f678d
PM
1347#define MDCR_EPMAD (1U << 21)
1348#define MDCR_EDAD (1U << 20)
f190bd1d
PM
1349#define MDCR_TTRF (1U << 19)
1350#define MDCR_STE (1U << 18) /* MDCR_EL3 */
033614c4
AL
1351#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1352#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1353#define MDCR_SDD (1U << 16)
a8d64e73 1354#define MDCR_SPD (3U << 14)
187f678d
PM
1355#define MDCR_TDRA (1U << 11)
1356#define MDCR_TDOSA (1U << 10)
1357#define MDCR_TDA (1U << 9)
1358#define MDCR_TDE (1U << 8)
1359#define MDCR_HPME (1U << 7)
1360#define MDCR_TPM (1U << 6)
1361#define MDCR_TPMCR (1U << 5)
033614c4 1362#define MDCR_HPMN (0x1fU)
187f678d 1363
a8d64e73 1364/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
f190bd1d
PM
1365#define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
1366 MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
1367 MDCR_STE | MDCR_SPME | MDCR_SPD)
a8d64e73 1368
78dbbbe4
PM
1369#define CPSR_M (0x1fU)
1370#define CPSR_T (1U << 5)
1371#define CPSR_F (1U << 6)
1372#define CPSR_I (1U << 7)
1373#define CPSR_A (1U << 8)
1374#define CPSR_E (1U << 9)
1375#define CPSR_IT_2_7 (0xfc00U)
1376#define CPSR_GE (0xfU << 16)
4051e12c 1377#define CPSR_IL (1U << 20)
dc8b1853 1378#define CPSR_DIT (1U << 21)
220f508f 1379#define CPSR_PAN (1U << 22)
f2f68a78 1380#define CPSR_SSBS (1U << 23)
78dbbbe4
PM
1381#define CPSR_J (1U << 24)
1382#define CPSR_IT_0_1 (3U << 25)
1383#define CPSR_Q (1U << 27)
1384#define CPSR_V (1U << 28)
1385#define CPSR_C (1U << 29)
1386#define CPSR_Z (1U << 30)
1387#define CPSR_N (1U << 31)
9ee6e8bb 1388#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1389#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1390
1391#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1392#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1393 | CPSR_NZCV)
9ee6e8bb 1394/* Bits writable in user mode. */
268b1b3d 1395#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1396/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1397#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1398
987ab45e
PM
1399/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1400#define XPSR_EXCP 0x1ffU
1401#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1402#define XPSR_IT_2_7 CPSR_IT_2_7
1403#define XPSR_GE CPSR_GE
1404#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1405#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1406#define XPSR_IT_0_1 CPSR_IT_0_1
1407#define XPSR_Q CPSR_Q
1408#define XPSR_V CPSR_V
1409#define XPSR_C CPSR_C
1410#define XPSR_Z CPSR_Z
1411#define XPSR_N CPSR_N
1412#define XPSR_NZCV CPSR_NZCV
1413#define XPSR_IT CPSR_IT
1414
e389be16
FA
1415#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1416#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1417#define TTBCR_PD0 (1U << 4)
1418#define TTBCR_PD1 (1U << 5)
1419#define TTBCR_EPD0 (1U << 7)
1420#define TTBCR_IRGN0 (3U << 8)
1421#define TTBCR_ORGN0 (3U << 10)
1422#define TTBCR_SH0 (3U << 12)
1423#define TTBCR_T1SZ (3U << 16)
1424#define TTBCR_A1 (1U << 22)
1425#define TTBCR_EPD1 (1U << 23)
1426#define TTBCR_IRGN1 (3U << 24)
1427#define TTBCR_ORGN1 (3U << 26)
1428#define TTBCR_SH1 (1U << 28)
1429#define TTBCR_EAE (1U << 31)
1430
f04383e7
PM
1431FIELD(VTCR, T0SZ, 0, 6)
1432FIELD(VTCR, SL0, 6, 2)
1433FIELD(VTCR, IRGN0, 8, 2)
1434FIELD(VTCR, ORGN0, 10, 2)
1435FIELD(VTCR, SH0, 12, 2)
1436FIELD(VTCR, TG0, 14, 2)
1437FIELD(VTCR, PS, 16, 3)
1438FIELD(VTCR, VS, 19, 1)
1439FIELD(VTCR, HA, 21, 1)
1440FIELD(VTCR, HD, 22, 1)
1441FIELD(VTCR, HWU59, 25, 1)
1442FIELD(VTCR, HWU60, 26, 1)
1443FIELD(VTCR, HWU61, 27, 1)
1444FIELD(VTCR, HWU62, 28, 1)
1445FIELD(VTCR, NSW, 29, 1)
1446FIELD(VTCR, NSA, 30, 1)
1447FIELD(VTCR, DS, 32, 1)
1448FIELD(VTCR, SL2, 33, 1)
1449
d356312f
PM
1450/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1451 * Only these are valid when in AArch64 mode; in
1452 * AArch32 mode SPSRs are basically CPSR-format.
1453 */
f502cfc2 1454#define PSTATE_SP (1U)
d356312f
PM
1455#define PSTATE_M (0xFU)
1456#define PSTATE_nRW (1U << 4)
1457#define PSTATE_F (1U << 6)
1458#define PSTATE_I (1U << 7)
1459#define PSTATE_A (1U << 8)
1460#define PSTATE_D (1U << 9)
f6e52eaa 1461#define PSTATE_BTYPE (3U << 10)
f2f68a78 1462#define PSTATE_SSBS (1U << 12)
d356312f
PM
1463#define PSTATE_IL (1U << 20)
1464#define PSTATE_SS (1U << 21)
220f508f 1465#define PSTATE_PAN (1U << 22)
9eeb7a1c 1466#define PSTATE_UAO (1U << 23)
dc8b1853 1467#define PSTATE_DIT (1U << 24)
4b779ceb 1468#define PSTATE_TCO (1U << 25)
d356312f
PM
1469#define PSTATE_V (1U << 28)
1470#define PSTATE_C (1U << 29)
1471#define PSTATE_Z (1U << 30)
1472#define PSTATE_N (1U << 31)
1473#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1474#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1475#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1476/* Mode values for AArch64 */
1477#define PSTATE_MODE_EL3h 13
1478#define PSTATE_MODE_EL3t 12
1479#define PSTATE_MODE_EL2h 9
1480#define PSTATE_MODE_EL2t 8
1481#define PSTATE_MODE_EL1h 5
1482#define PSTATE_MODE_EL1t 4
1483#define PSTATE_MODE_EL0t 0
1484
c37e6ac9
RH
1485/* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1486FIELD(SVCR, SM, 0, 1)
1487FIELD(SVCR, ZA, 1, 1)
1488
de561988
RH
1489/* Fields for SMCR_ELx. */
1490FIELD(SMCR, LEN, 0, 4)
1491FIELD(SMCR, FA64, 31, 1)
1492
de2db7ec
PM
1493/* Write a new value to v7m.exception, thus transitioning into or out
1494 * of Handler mode; this may result in a change of active stack pointer.
1495 */
1496void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1497
9e729b57
EI
1498/* Map EL and handler into a PSTATE_MODE. */
1499static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1500{
1501 return (el << 2) | handler;
1502}
1503
d356312f
PM
1504/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1505 * interprocessing, so we don't attempt to sync with the cpsr state used by
1506 * the 32 bit decoder.
1507 */
1508static inline uint32_t pstate_read(CPUARMState *env)
1509{
1510 int ZF;
1511
1512 ZF = (env->ZF == 0);
1513 return (env->NF & 0x80000000) | (ZF << 30)
1514 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1515 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1516}
1517
1518static inline void pstate_write(CPUARMState *env, uint32_t val)
1519{
1520 env->ZF = (~val) & PSTATE_Z;
1521 env->NF = val;
1522 env->CF = (val >> 29) & 1;
1523 env->VF = (val << 3) & 0x80000000;
4cc35614 1524 env->daif = val & PSTATE_DAIF;
f6e52eaa 1525 env->btype = (val >> 10) & 3;
d356312f
PM
1526 env->pstate = val & ~CACHED_PSTATE_BITS;
1527}
1528
b5ff1b31 1529/* Return the current CPSR value. */
2f4a40e5 1530uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1531
1532typedef enum CPSRWriteType {
1533 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1534 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
e784807c
PM
1535 CPSRWriteRaw = 2,
1536 /* trust values, no reg bank switch, no hflags rebuild */
50866ba5
PM
1537 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1538} CPSRWriteType;
1539
e784807c
PM
1540/*
1541 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1542 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1543 * correspond to TB flags bits cached in the hflags, unless @write_type
1544 * is CPSRWriteRaw.
1545 */
50866ba5
PM
1546void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1547 CPSRWriteType write_type);
9ee6e8bb
PB
1548
1549/* Return the current xPSR value. */
1550static inline uint32_t xpsr_read(CPUARMState *env)
1551{
1552 int ZF;
6fbe23d5
PB
1553 ZF = (env->ZF == 0);
1554 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1555 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1556 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1557 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1558 | (env->GE << 16)
9ee6e8bb 1559 | env->v7m.exception;
b5ff1b31
FB
1560}
1561
9ee6e8bb
PB
1562/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1563static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1564{
987ab45e
PM
1565 if (mask & XPSR_NZCV) {
1566 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1567 env->NF = val;
9ee6e8bb
PB
1568 env->CF = (val >> 29) & 1;
1569 env->VF = (val << 3) & 0x80000000;
1570 }
987ab45e
PM
1571 if (mask & XPSR_Q) {
1572 env->QF = ((val & XPSR_Q) != 0);
1573 }
f1e2598c
PM
1574 if (mask & XPSR_GE) {
1575 env->GE = (val & XPSR_GE) >> 16;
1576 }
04c9c81b 1577#ifndef CONFIG_USER_ONLY
987ab45e
PM
1578 if (mask & XPSR_T) {
1579 env->thumb = ((val & XPSR_T) != 0);
1580 }
1581 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1582 env->condexec_bits &= ~3;
1583 env->condexec_bits |= (val >> 25) & 3;
1584 }
987ab45e 1585 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1586 env->condexec_bits &= 3;
1587 env->condexec_bits |= (val >> 8) & 0xfc;
1588 }
987ab45e 1589 if (mask & XPSR_EXCP) {
de2db7ec
PM
1590 /* Note that this only happens on exception exit */
1591 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1592 }
04c9c81b 1593#endif
9ee6e8bb
PB
1594}
1595
f149e3e8
EI
1596#define HCR_VM (1ULL << 0)
1597#define HCR_SWIO (1ULL << 1)
1598#define HCR_PTW (1ULL << 2)
1599#define HCR_FMO (1ULL << 3)
1600#define HCR_IMO (1ULL << 4)
1601#define HCR_AMO (1ULL << 5)
1602#define HCR_VF (1ULL << 6)
1603#define HCR_VI (1ULL << 7)
1604#define HCR_VSE (1ULL << 8)
1605#define HCR_FB (1ULL << 9)
1606#define HCR_BSU_MASK (3ULL << 10)
1607#define HCR_DC (1ULL << 12)
1608#define HCR_TWI (1ULL << 13)
1609#define HCR_TWE (1ULL << 14)
1610#define HCR_TID0 (1ULL << 15)
1611#define HCR_TID1 (1ULL << 16)
1612#define HCR_TID2 (1ULL << 17)
1613#define HCR_TID3 (1ULL << 18)
1614#define HCR_TSC (1ULL << 19)
1615#define HCR_TIDCP (1ULL << 20)
1616#define HCR_TACR (1ULL << 21)
1617#define HCR_TSW (1ULL << 22)
099bf53b 1618#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1619#define HCR_TPU (1ULL << 24)
1620#define HCR_TTLB (1ULL << 25)
1621#define HCR_TVM (1ULL << 26)
1622#define HCR_TGE (1ULL << 27)
1623#define HCR_TDZ (1ULL << 28)
1624#define HCR_HCD (1ULL << 29)
1625#define HCR_TRVM (1ULL << 30)
1626#define HCR_RW (1ULL << 31)
1627#define HCR_CD (1ULL << 32)
1628#define HCR_ID (1ULL << 33)
ac656b16 1629#define HCR_E2H (1ULL << 34)
099bf53b
RH
1630#define HCR_TLOR (1ULL << 35)
1631#define HCR_TERR (1ULL << 36)
1632#define HCR_TEA (1ULL << 37)
1633#define HCR_MIOCNCE (1ULL << 38)
e0a38bb3 1634/* RES0 bit 39 */
099bf53b
RH
1635#define HCR_APK (1ULL << 40)
1636#define HCR_API (1ULL << 41)
1637#define HCR_NV (1ULL << 42)
1638#define HCR_NV1 (1ULL << 43)
1639#define HCR_AT (1ULL << 44)
1640#define HCR_NV2 (1ULL << 45)
1641#define HCR_FWB (1ULL << 46)
1642#define HCR_FIEN (1ULL << 47)
e0a38bb3 1643/* RES0 bit 48 */
099bf53b
RH
1644#define HCR_TID4 (1ULL << 49)
1645#define HCR_TICAB (1ULL << 50)
e0a38bb3 1646#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1647#define HCR_TOCU (1ULL << 52)
e0a38bb3 1648#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1649#define HCR_TTLBIS (1ULL << 54)
1650#define HCR_TTLBOS (1ULL << 55)
1651#define HCR_ATA (1ULL << 56)
1652#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1653#define HCR_TID5 (1ULL << 58)
1654#define HCR_TWEDEN (1ULL << 59)
1655#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1656
5814d587
RH
1657#define HCRX_ENAS0 (1ULL << 0)
1658#define HCRX_ENALS (1ULL << 1)
1659#define HCRX_ENASR (1ULL << 2)
1660#define HCRX_FNXS (1ULL << 3)
1661#define HCRX_FGTNXS (1ULL << 4)
1662#define HCRX_SMPME (1ULL << 5)
1663#define HCRX_TALLINT (1ULL << 6)
1664#define HCRX_VINMI (1ULL << 7)
1665#define HCRX_VFNMI (1ULL << 8)
1666#define HCRX_CMOW (1ULL << 9)
1667#define HCRX_MCE2 (1ULL << 10)
1668#define HCRX_MSCEN (1ULL << 11)
1669
9861248f
RDC
1670#define HPFAR_NS (1ULL << 63)
1671
06f2adcc
JF
1672#define SCR_NS (1ULL << 0)
1673#define SCR_IRQ (1ULL << 1)
1674#define SCR_FIQ (1ULL << 2)
1675#define SCR_EA (1ULL << 3)
1676#define SCR_FW (1ULL << 4)
1677#define SCR_AW (1ULL << 5)
1678#define SCR_NET (1ULL << 6)
1679#define SCR_SMD (1ULL << 7)
1680#define SCR_HCE (1ULL << 8)
1681#define SCR_SIF (1ULL << 9)
1682#define SCR_RW (1ULL << 10)
1683#define SCR_ST (1ULL << 11)
1684#define SCR_TWI (1ULL << 12)
1685#define SCR_TWE (1ULL << 13)
1686#define SCR_TLOR (1ULL << 14)
1687#define SCR_TERR (1ULL << 15)
1688#define SCR_APK (1ULL << 16)
1689#define SCR_API (1ULL << 17)
1690#define SCR_EEL2 (1ULL << 18)
1691#define SCR_EASE (1ULL << 19)
1692#define SCR_NMEA (1ULL << 20)
1693#define SCR_FIEN (1ULL << 21)
1694#define SCR_ENSCXT (1ULL << 25)
1695#define SCR_ATA (1ULL << 26)
1696#define SCR_FGTEN (1ULL << 27)
1697#define SCR_ECVEN (1ULL << 28)
1698#define SCR_TWEDEN (1ULL << 29)
f527d661
RH
1699#define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1700#define SCR_TME (1ULL << 34)
1701#define SCR_AMVOFFEN (1ULL << 35)
1702#define SCR_ENAS0 (1ULL << 36)
1703#define SCR_ADEN (1ULL << 37)
1704#define SCR_HXEN (1ULL << 38)
1705#define SCR_TRNDR (1ULL << 40)
1706#define SCR_ENTP2 (1ULL << 41)
1707#define SCR_GPF (1ULL << 48)
64e0e2de 1708
cc7613bf 1709#define HSTR_TTEE (1 << 16)
8e228c9e 1710#define HSTR_TJDBX (1 << 17)
cc7613bf 1711
01653295
PM
1712/* Return the current FPSCR value. */
1713uint32_t vfp_get_fpscr(CPUARMState *env);
1714void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1715
d81ce0ef
AB
1716/* FPCR, Floating Point Control Register
1717 * FPSR, Floating Poiht Status Register
1718 *
1719 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1720 * FPCR and FPSR. However since they still use non-overlapping bits
1721 * we store the underlying state in fpscr and just mask on read/write.
1722 */
1723#define FPSR_MASK 0xf800009f
0b62159b 1724#define FPCR_MASK 0x07ff9f00
d81ce0ef 1725
a15945d9
PM
1726#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1727#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1728#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1729#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1730#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1731#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef 1732#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
99c7834f 1733#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
d81ce0ef
AB
1734#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1735#define FPCR_DN (1 << 25) /* Default NaN enable bit */
99c7834f 1736#define FPCR_AHP (1 << 26) /* Alternative half-precision */
a4d58462 1737#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
9542c30b
PM
1738#define FPCR_V (1 << 28) /* FP overflow flag */
1739#define FPCR_C (1 << 29) /* FP carry flag */
1740#define FPCR_Z (1 << 30) /* FP zero flag */
1741#define FPCR_N (1 << 31) /* FP negative flag */
1742
99c7834f
PM
1743#define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1744#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
b26b5629 1745#define FPCR_LTPSIZE_LENGTH 3
99c7834f 1746
9542c30b
PM
1747#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1748#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
d81ce0ef 1749
f903fa22
PM
1750static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1751{
1752 return vfp_get_fpscr(env) & FPSR_MASK;
1753}
1754
1755static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1756{
1757 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1758 vfp_set_fpscr(env, new_fpscr);
1759}
1760
1761static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1762{
1763 return vfp_get_fpscr(env) & FPCR_MASK;
1764}
1765
1766static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1767{
1768 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1769 vfp_set_fpscr(env, new_fpscr);
1770}
1771
b5ff1b31
FB
1772enum arm_cpu_mode {
1773 ARM_CPU_MODE_USR = 0x10,
1774 ARM_CPU_MODE_FIQ = 0x11,
1775 ARM_CPU_MODE_IRQ = 0x12,
1776 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1777 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1778 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1779 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1780 ARM_CPU_MODE_UND = 0x1b,
1781 ARM_CPU_MODE_SYS = 0x1f
1782};
1783
40f137e1
PB
1784/* VFP system registers. */
1785#define ARM_VFP_FPSID 0
1786#define ARM_VFP_FPSCR 1
a50c0f51 1787#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1788#define ARM_VFP_MVFR1 6
1789#define ARM_VFP_MVFR0 7
40f137e1
PB
1790#define ARM_VFP_FPEXC 8
1791#define ARM_VFP_FPINST 9
1792#define ARM_VFP_FPINST2 10
9542c30b
PM
1793/* These ones are M-profile only */
1794#define ARM_VFP_FPSCR_NZCVQC 2
1795#define ARM_VFP_VPR 12
1796#define ARM_VFP_P0 13
1797#define ARM_VFP_FPCXT_NS 14
1798#define ARM_VFP_FPCXT_S 15
40f137e1 1799
32a290b8
PM
1800/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1801#define QEMU_VFP_FPSCR_NZCV 0xffff
1802
18c9b560 1803/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1804#define ARM_IWMMXT_wCID 0
1805#define ARM_IWMMXT_wCon 1
1806#define ARM_IWMMXT_wCSSF 2
1807#define ARM_IWMMXT_wCASF 3
1808#define ARM_IWMMXT_wCGR0 8
1809#define ARM_IWMMXT_wCGR1 9
1810#define ARM_IWMMXT_wCGR2 10
1811#define ARM_IWMMXT_wCGR3 11
18c9b560 1812
2c4da50d
PM
1813/* V7M CCR bits */
1814FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1815FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1816FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1817FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1818FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1819FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1820FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1821FIELD(V7M_CCR, DC, 16, 1)
1822FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1823FIELD(V7M_CCR, BP, 18, 1)
0e83f905
PM
1824FIELD(V7M_CCR, LOB, 19, 1)
1825FIELD(V7M_CCR, TRD, 20, 1)
2c4da50d 1826
24ac0fb1
PM
1827/* V7M SCR bits */
1828FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1829FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1830FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1831FIELD(V7M_SCR, SEVONPEND, 4, 1)
1832
3b2e9344
PM
1833/* V7M AIRCR bits */
1834FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1835FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1836FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1837FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1838FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1839FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1840FIELD(V7M_AIRCR, PRIS, 14, 1)
1841FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1842FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1843
2c4da50d
PM
1844/* V7M CFSR bits for MMFSR */
1845FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1846FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1847FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1848FIELD(V7M_CFSR, MSTKERR, 4, 1)
1849FIELD(V7M_CFSR, MLSPERR, 5, 1)
1850FIELD(V7M_CFSR, MMARVALID, 7, 1)
1851
1852/* V7M CFSR bits for BFSR */
1853FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1854FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1855FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1856FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1857FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1858FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1859FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1860
1861/* V7M CFSR bits for UFSR */
1862FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1863FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1864FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1865FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1866FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1867FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1868FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1869
334e8dad
PM
1870/* V7M CFSR bit masks covering all of the subregister bits */
1871FIELD(V7M_CFSR, MMFSR, 0, 8)
1872FIELD(V7M_CFSR, BFSR, 8, 8)
1873FIELD(V7M_CFSR, UFSR, 16, 16)
1874
2c4da50d
PM
1875/* V7M HFSR bits */
1876FIELD(V7M_HFSR, VECTTBL, 1, 1)
1877FIELD(V7M_HFSR, FORCED, 30, 1)
1878FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1879
1880/* V7M DFSR bits */
1881FIELD(V7M_DFSR, HALTED, 0, 1)
1882FIELD(V7M_DFSR, BKPT, 1, 1)
1883FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1884FIELD(V7M_DFSR, VCATCH, 3, 1)
1885FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1886
bed079da
PM
1887/* V7M SFSR bits */
1888FIELD(V7M_SFSR, INVEP, 0, 1)
1889FIELD(V7M_SFSR, INVIS, 1, 1)
1890FIELD(V7M_SFSR, INVER, 2, 1)
1891FIELD(V7M_SFSR, AUVIOL, 3, 1)
1892FIELD(V7M_SFSR, INVTRAN, 4, 1)
1893FIELD(V7M_SFSR, LSPERR, 5, 1)
1894FIELD(V7M_SFSR, SFARVALID, 6, 1)
1895FIELD(V7M_SFSR, LSERR, 7, 1)
1896
29c483a5
MD
1897/* v7M MPU_CTRL bits */
1898FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1899FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1900FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1901
43bbce7f
PM
1902/* v7M CLIDR bits */
1903FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1904FIELD(V7M_CLIDR, LOUIS, 21, 3)
1905FIELD(V7M_CLIDR, LOC, 24, 3)
1906FIELD(V7M_CLIDR, LOUU, 27, 3)
1907FIELD(V7M_CLIDR, ICB, 30, 2)
1908
1909FIELD(V7M_CSSELR, IND, 0, 1)
1910FIELD(V7M_CSSELR, LEVEL, 1, 3)
1911/* We use the combination of InD and Level to index into cpu->ccsidr[];
1912 * define a mask for this and check that it doesn't permit running off
1913 * the end of the array.
1914 */
1915FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1916
1917/* v7M FPCCR bits */
1918FIELD(V7M_FPCCR, LSPACT, 0, 1)
1919FIELD(V7M_FPCCR, USER, 1, 1)
1920FIELD(V7M_FPCCR, S, 2, 1)
1921FIELD(V7M_FPCCR, THREAD, 3, 1)
1922FIELD(V7M_FPCCR, HFRDY, 4, 1)
1923FIELD(V7M_FPCCR, MMRDY, 5, 1)
1924FIELD(V7M_FPCCR, BFRDY, 6, 1)
1925FIELD(V7M_FPCCR, SFRDY, 7, 1)
1926FIELD(V7M_FPCCR, MONRDY, 8, 1)
1927FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1928FIELD(V7M_FPCCR, UFRDY, 10, 1)
1929FIELD(V7M_FPCCR, RES0, 11, 15)
1930FIELD(V7M_FPCCR, TS, 26, 1)
1931FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1932FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1933FIELD(V7M_FPCCR, LSPENS, 29, 1)
1934FIELD(V7M_FPCCR, LSPEN, 30, 1)
1935FIELD(V7M_FPCCR, ASPEN, 31, 1)
1936/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1937#define R_V7M_FPCCR_BANKED_MASK \
1938 (R_V7M_FPCCR_LSPACT_MASK | \
1939 R_V7M_FPCCR_USER_MASK | \
1940 R_V7M_FPCCR_THREAD_MASK | \
1941 R_V7M_FPCCR_MMRDY_MASK | \
1942 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1943 R_V7M_FPCCR_UFRDY_MASK | \
1944 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1945
7c3d47da
PM
1946/* v7M VPR bits */
1947FIELD(V7M_VPR, P0, 0, 16)
1948FIELD(V7M_VPR, MASK01, 16, 4)
1949FIELD(V7M_VPR, MASK23, 20, 4)
1950
a62e62af
RH
1951/*
1952 * System register ID fields.
1953 */
2a14526a
LL
1954FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1955FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1956FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1957FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1958FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1959FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1960FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1961FIELD(CLIDR_EL1, LOUIS, 21, 3)
1962FIELD(CLIDR_EL1, LOC, 24, 3)
1963FIELD(CLIDR_EL1, LOUU, 27, 3)
1964FIELD(CLIDR_EL1, ICB, 30, 3)
1965
1966/* When FEAT_CCIDX is implemented */
1967FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1968FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1969FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1970
1971/* When FEAT_CCIDX is not implemented */
1972FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1973FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1974FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1975
1976FIELD(CTR_EL0, IMINLINE, 0, 4)
1977FIELD(CTR_EL0, L1IP, 14, 2)
1978FIELD(CTR_EL0, DMINLINE, 16, 4)
1979FIELD(CTR_EL0, ERG, 20, 4)
1980FIELD(CTR_EL0, CWG, 24, 4)
1981FIELD(CTR_EL0, IDC, 28, 1)
1982FIELD(CTR_EL0, DIC, 29, 1)
1983FIELD(CTR_EL0, TMINLINE, 32, 6)
1984
2bd5f41c
AB
1985FIELD(MIDR_EL1, REVISION, 0, 4)
1986FIELD(MIDR_EL1, PARTNUM, 4, 12)
1987FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1988FIELD(MIDR_EL1, VARIANT, 20, 4)
1989FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1990
a62e62af
RH
1991FIELD(ID_ISAR0, SWAP, 0, 4)
1992FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1993FIELD(ID_ISAR0, BITFIELD, 8, 4)
1994FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1995FIELD(ID_ISAR0, COPROC, 16, 4)
1996FIELD(ID_ISAR0, DEBUG, 20, 4)
1997FIELD(ID_ISAR0, DIVIDE, 24, 4)
1998
1999FIELD(ID_ISAR1, ENDIAN, 0, 4)
2000FIELD(ID_ISAR1, EXCEPT, 4, 4)
2001FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2002FIELD(ID_ISAR1, EXTEND, 12, 4)
2003FIELD(ID_ISAR1, IFTHEN, 16, 4)
2004FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2005FIELD(ID_ISAR1, INTERWORK, 24, 4)
2006FIELD(ID_ISAR1, JAZELLE, 28, 4)
2007
2008FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2009FIELD(ID_ISAR2, MEMHINT, 4, 4)
2010FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2011FIELD(ID_ISAR2, MULT, 12, 4)
2012FIELD(ID_ISAR2, MULTS, 16, 4)
2013FIELD(ID_ISAR2, MULTU, 20, 4)
2014FIELD(ID_ISAR2, PSR_AR, 24, 4)
2015FIELD(ID_ISAR2, REVERSAL, 28, 4)
2016
2017FIELD(ID_ISAR3, SATURATE, 0, 4)
2018FIELD(ID_ISAR3, SIMD, 4, 4)
2019FIELD(ID_ISAR3, SVC, 8, 4)
2020FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2021FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2022FIELD(ID_ISAR3, T32COPY, 20, 4)
2023FIELD(ID_ISAR3, TRUENOP, 24, 4)
2024FIELD(ID_ISAR3, T32EE, 28, 4)
2025
2026FIELD(ID_ISAR4, UNPRIV, 0, 4)
2027FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2028FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2029FIELD(ID_ISAR4, SMC, 12, 4)
2030FIELD(ID_ISAR4, BARRIER, 16, 4)
2031FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2032FIELD(ID_ISAR4, PSR_M, 24, 4)
2033FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2034
2035FIELD(ID_ISAR5, SEVL, 0, 4)
2036FIELD(ID_ISAR5, AES, 4, 4)
2037FIELD(ID_ISAR5, SHA1, 8, 4)
2038FIELD(ID_ISAR5, SHA2, 12, 4)
2039FIELD(ID_ISAR5, CRC32, 16, 4)
2040FIELD(ID_ISAR5, RDM, 24, 4)
2041FIELD(ID_ISAR5, VCMA, 28, 4)
2042
2043FIELD(ID_ISAR6, JSCVT, 0, 4)
2044FIELD(ID_ISAR6, DP, 4, 4)
2045FIELD(ID_ISAR6, FHM, 8, 4)
2046FIELD(ID_ISAR6, SB, 12, 4)
2047FIELD(ID_ISAR6, SPECRES, 16, 4)
bd78b6be
LL
2048FIELD(ID_ISAR6, BF16, 20, 4)
2049FIELD(ID_ISAR6, I8MM, 24, 4)
a62e62af 2050
0ae0326b
PM
2051FIELD(ID_MMFR0, VMSA, 0, 4)
2052FIELD(ID_MMFR0, PMSA, 4, 4)
2053FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2054FIELD(ID_MMFR0, SHARELVL, 12, 4)
2055FIELD(ID_MMFR0, TCM, 16, 4)
2056FIELD(ID_MMFR0, AUXREG, 20, 4)
2057FIELD(ID_MMFR0, FCSE, 24, 4)
2058FIELD(ID_MMFR0, INNERSHR, 28, 4)
2059
bd78b6be
LL
2060FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2061FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2062FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2063FIELD(ID_MMFR1, L1UNISW, 12, 4)
2064FIELD(ID_MMFR1, L1HVD, 16, 4)
2065FIELD(ID_MMFR1, L1UNI, 20, 4)
2066FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2067FIELD(ID_MMFR1, BPRED, 28, 4)
2068
2069FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2070FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2071FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2072FIELD(ID_MMFR2, HVDTLB, 12, 4)
2073FIELD(ID_MMFR2, UNITLB, 16, 4)
2074FIELD(ID_MMFR2, MEMBARR, 20, 4)
2075FIELD(ID_MMFR2, WFISTALL, 24, 4)
2076FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2077
3d6ad6bb
RH
2078FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2079FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2080FIELD(ID_MMFR3, BPMAINT, 8, 4)
2081FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2082FIELD(ID_MMFR3, PAN, 16, 4)
2083FIELD(ID_MMFR3, COHWALK, 20, 4)
2084FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2085FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2086
ab638a32
RH
2087FIELD(ID_MMFR4, SPECSEI, 0, 4)
2088FIELD(ID_MMFR4, AC2, 4, 4)
2089FIELD(ID_MMFR4, XNX, 8, 4)
2090FIELD(ID_MMFR4, CNP, 12, 4)
2091FIELD(ID_MMFR4, HPDS, 16, 4)
2092FIELD(ID_MMFR4, LSM, 20, 4)
2093FIELD(ID_MMFR4, CCIDX, 24, 4)
2094FIELD(ID_MMFR4, EVT, 28, 4)
2095
bd78b6be 2096FIELD(ID_MMFR5, ETS, 0, 4)
c42fb26b 2097FIELD(ID_MMFR5, NTLBPA, 4, 4)
bd78b6be 2098
46f4976f
PM
2099FIELD(ID_PFR0, STATE0, 0, 4)
2100FIELD(ID_PFR0, STATE1, 4, 4)
2101FIELD(ID_PFR0, STATE2, 8, 4)
2102FIELD(ID_PFR0, STATE3, 12, 4)
2103FIELD(ID_PFR0, CSV2, 16, 4)
2104FIELD(ID_PFR0, AMU, 20, 4)
2105FIELD(ID_PFR0, DIT, 24, 4)
2106FIELD(ID_PFR0, RAS, 28, 4)
2107
dfc523a8
PM
2108FIELD(ID_PFR1, PROGMOD, 0, 4)
2109FIELD(ID_PFR1, SECURITY, 4, 4)
2110FIELD(ID_PFR1, MPROGMOD, 8, 4)
2111FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2112FIELD(ID_PFR1, GENTIMER, 16, 4)
2113FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2114FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2115FIELD(ID_PFR1, GIC, 28, 4)
2116
bd78b6be
LL
2117FIELD(ID_PFR2, CSV3, 0, 4)
2118FIELD(ID_PFR2, SSBS, 4, 4)
2119FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2120
a62e62af
RH
2121FIELD(ID_AA64ISAR0, AES, 4, 4)
2122FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2123FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2124FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2125FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2126FIELD(ID_AA64ISAR0, RDM, 28, 4)
2127FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2128FIELD(ID_AA64ISAR0, SM3, 36, 4)
2129FIELD(ID_AA64ISAR0, SM4, 40, 4)
2130FIELD(ID_AA64ISAR0, DP, 44, 4)
2131FIELD(ID_AA64ISAR0, FHM, 48, 4)
2132FIELD(ID_AA64ISAR0, TS, 52, 4)
2133FIELD(ID_AA64ISAR0, TLB, 56, 4)
2134FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2135
2136FIELD(ID_AA64ISAR1, DPB, 0, 4)
2137FIELD(ID_AA64ISAR1, APA, 4, 4)
2138FIELD(ID_AA64ISAR1, API, 8, 4)
2139FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2140FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2141FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2142FIELD(ID_AA64ISAR1, GPA, 24, 4)
2143FIELD(ID_AA64ISAR1, GPI, 28, 4)
2144FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2145FIELD(ID_AA64ISAR1, SB, 36, 4)
2146FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
00a92832
LL
2147FIELD(ID_AA64ISAR1, BF16, 44, 4)
2148FIELD(ID_AA64ISAR1, DGH, 48, 4)
2149FIELD(ID_AA64ISAR1, I8MM, 52, 4)
c42fb26b
RH
2150FIELD(ID_AA64ISAR1, XS, 56, 4)
2151FIELD(ID_AA64ISAR1, LS64, 60, 4)
2152
2153FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2154FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2155FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2156FIELD(ID_AA64ISAR2, APA3, 12, 4)
2157FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2158FIELD(ID_AA64ISAR2, BC, 20, 4)
2159FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
a62e62af 2160
cd208a1c
RH
2161FIELD(ID_AA64PFR0, EL0, 0, 4)
2162FIELD(ID_AA64PFR0, EL1, 4, 4)
2163FIELD(ID_AA64PFR0, EL2, 8, 4)
2164FIELD(ID_AA64PFR0, EL3, 12, 4)
2165FIELD(ID_AA64PFR0, FP, 16, 4)
2166FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2167FIELD(ID_AA64PFR0, GIC, 24, 4)
2168FIELD(ID_AA64PFR0, RAS, 28, 4)
2169FIELD(ID_AA64PFR0, SVE, 32, 4)
00a92832
LL
2170FIELD(ID_AA64PFR0, SEL2, 36, 4)
2171FIELD(ID_AA64PFR0, MPAM, 40, 4)
2172FIELD(ID_AA64PFR0, AMU, 44, 4)
2173FIELD(ID_AA64PFR0, DIT, 48, 4)
2174FIELD(ID_AA64PFR0, CSV2, 56, 4)
2175FIELD(ID_AA64PFR0, CSV3, 60, 4)
cd208a1c 2176
be53b6f4 2177FIELD(ID_AA64PFR1, BT, 0, 4)
9a286bcd 2178FIELD(ID_AA64PFR1, SSBS, 4, 4)
be53b6f4
RH
2179FIELD(ID_AA64PFR1, MTE, 8, 4)
2180FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
00a92832 2181FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
c42fb26b
RH
2182FIELD(ID_AA64PFR1, SME, 24, 4)
2183FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2184FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2185FIELD(ID_AA64PFR1, NMI, 36, 4)
be53b6f4 2186
3dc91ddb
PM
2187FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2188FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2189FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2190FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2191FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2192FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2193FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2194FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2195FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2196FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2197FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2198FIELD(ID_AA64MMFR0, EXS, 44, 4)
00a92832
LL
2199FIELD(ID_AA64MMFR0, FGT, 56, 4)
2200FIELD(ID_AA64MMFR0, ECV, 60, 4)
3dc91ddb
PM
2201
2202FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2203FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2204FIELD(ID_AA64MMFR1, VH, 8, 4)
2205FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2206FIELD(ID_AA64MMFR1, LO, 16, 4)
2207FIELD(ID_AA64MMFR1, PAN, 20, 4)
2208FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2209FIELD(ID_AA64MMFR1, XNX, 28, 4)
00a92832
LL
2210FIELD(ID_AA64MMFR1, TWED, 32, 4)
2211FIELD(ID_AA64MMFR1, ETS, 36, 4)
c42fb26b
RH
2212FIELD(ID_AA64MMFR1, HCX, 40, 4)
2213FIELD(ID_AA64MMFR1, AFP, 44, 4)
2214FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2215FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2216FIELD(ID_AA64MMFR1, CMOW, 56, 4)
3dc91ddb 2217
64761e10
RH
2218FIELD(ID_AA64MMFR2, CNP, 0, 4)
2219FIELD(ID_AA64MMFR2, UAO, 4, 4)
2220FIELD(ID_AA64MMFR2, LSM, 8, 4)
2221FIELD(ID_AA64MMFR2, IESB, 12, 4)
2222FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2223FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2224FIELD(ID_AA64MMFR2, NV, 24, 4)
2225FIELD(ID_AA64MMFR2, ST, 28, 4)
2226FIELD(ID_AA64MMFR2, AT, 32, 4)
2227FIELD(ID_AA64MMFR2, IDS, 36, 4)
2228FIELD(ID_AA64MMFR2, FWB, 40, 4)
2229FIELD(ID_AA64MMFR2, TTL, 48, 4)
2230FIELD(ID_AA64MMFR2, BBM, 52, 4)
2231FIELD(ID_AA64MMFR2, EVT, 56, 4)
2232FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2233
ceb2744b
PM
2234FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2235FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2236FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2237FIELD(ID_AA64DFR0, BRPS, 12, 4)
2238FIELD(ID_AA64DFR0, WRPS, 20, 4)
2239FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2240FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2241FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2242FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
c42fb26b 2243FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
00a92832 2244FIELD(ID_AA64DFR0, MTPMU, 48, 4)
c42fb26b
RH
2245FIELD(ID_AA64DFR0, BRBE, 52, 4)
2246FIELD(ID_AA64DFR0, HPMN0, 60, 4)
ceb2744b 2247
2dc10fa2
RH
2248FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2249FIELD(ID_AA64ZFR0, AES, 4, 4)
2250FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2251FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2252FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2253FIELD(ID_AA64ZFR0, SM4, 40, 4)
2254FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2255FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2256FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2257
414c54d5
RH
2258FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2259FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2260FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2261FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2262FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2263FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2264FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2265FIELD(ID_AA64SMFR0, FA64, 63, 1)
2266
beceb99c
AL
2267FIELD(ID_DFR0, COPDBG, 0, 4)
2268FIELD(ID_DFR0, COPSDBG, 4, 4)
2269FIELD(ID_DFR0, MMAPDBG, 8, 4)
2270FIELD(ID_DFR0, COPTRC, 12, 4)
2271FIELD(ID_DFR0, MMAPTRC, 16, 4)
2272FIELD(ID_DFR0, MPROFDBG, 20, 4)
2273FIELD(ID_DFR0, PERFMON, 24, 4)
2274FIELD(ID_DFR0, TRACEFILT, 28, 4)
2275
bd78b6be 2276FIELD(ID_DFR1, MTPMU, 0, 4)
c42fb26b 2277FIELD(ID_DFR1, HPMN0, 4, 4)
bd78b6be 2278
88ce6c6e
PM
2279FIELD(DBGDIDR, SE_IMP, 12, 1)
2280FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2281FIELD(DBGDIDR, VERSION, 16, 4)
2282FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2283FIELD(DBGDIDR, BRPS, 24, 4)
2284FIELD(DBGDIDR, WRPS, 28, 4)
2285
f94a6df5
PM
2286FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2287FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2288FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2289FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2290FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2291FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2292FIELD(DBGDEVID, AUXREGS, 24, 4)
2293FIELD(DBGDEVID, CIDMASK, 28, 4)
2294
602f6e42
PM
2295FIELD(MVFR0, SIMDREG, 0, 4)
2296FIELD(MVFR0, FPSP, 4, 4)
2297FIELD(MVFR0, FPDP, 8, 4)
2298FIELD(MVFR0, FPTRAP, 12, 4)
2299FIELD(MVFR0, FPDIVIDE, 16, 4)
2300FIELD(MVFR0, FPSQRT, 20, 4)
2301FIELD(MVFR0, FPSHVEC, 24, 4)
2302FIELD(MVFR0, FPROUND, 28, 4)
2303
2304FIELD(MVFR1, FPFTZ, 0, 4)
2305FIELD(MVFR1, FPDNAN, 4, 4)
dfc523a8
PM
2306FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2307FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2308FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2309FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2310FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2311FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
602f6e42
PM
2312FIELD(MVFR1, FPHP, 24, 4)
2313FIELD(MVFR1, SIMDFMAC, 28, 4)
2314
2315FIELD(MVFR2, SIMDMISC, 0, 4)
2316FIELD(MVFR2, FPMISC, 4, 4)
2317
43bbce7f
PM
2318QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2319
ce854d7c
BC
2320/* If adding a feature bit which corresponds to a Linux ELF
2321 * HWCAP bit, remember to update the feature-bit-to-hwcap
2322 * mapping in linux-user/elfload.c:get_elf_hwcap().
2323 */
40f137e1 2324enum arm_features {
c1713132
AZ
2325 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2326 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 2327 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
2328 ARM_FEATURE_V6,
2329 ARM_FEATURE_V6K,
2330 ARM_FEATURE_V7,
2331 ARM_FEATURE_THUMB2,
452a0955 2332 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 2333 ARM_FEATURE_NEON,
9ee6e8bb 2334 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 2335 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 2336 ARM_FEATURE_THUMB2EE,
be5e7a76 2337 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 2338 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
2339 ARM_FEATURE_V4T,
2340 ARM_FEATURE_V5,
5bc95aa2 2341 ARM_FEATURE_STRONGARM,
906879a9 2342 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 2343 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 2344 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 2345 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
2346 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2347 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2348 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 2349 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8 2350 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 2351 ARM_FEATURE_V8,
3926cc84 2352 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 2353 ARM_FEATURE_CBAR, /* has cp15 CBAR */
f318cec6 2354 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 2355 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 2356 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 2357 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 2358 ARM_FEATURE_PMU, /* has PMU support */
91db4642 2359 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 2360 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 2361 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
5d2555a1 2362 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
40f137e1
PB
2363};
2364
2365static inline int arm_feature(CPUARMState *env, int feature)
2366{
918f5dca 2367 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
2368}
2369
0df9142d
AJ
2370void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2371
19e0fefa
FA
2372#if !defined(CONFIG_USER_ONLY)
2373/* Return true if exception levels below EL3 are in secure state,
2374 * or would be following an exception return to that level.
2375 * Unlike arm_is_secure() (which is always a question about the
2376 * _current_ state of the CPU) this doesn't care about the current
2377 * EL or mode.
2378 */
2379static inline bool arm_is_secure_below_el3(CPUARMState *env)
2380{
2381 if (arm_feature(env, ARM_FEATURE_EL3)) {
2382 return !(env->cp15.scr_el3 & SCR_NS);
2383 } else {
6b7f0b61 2384 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
2385 * defined, in which case QEMU defaults to non-secure.
2386 */
2387 return false;
2388 }
2389}
2390
71205876
PM
2391/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2392static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
2393{
2394 if (arm_feature(env, ARM_FEATURE_EL3)) {
2395 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2396 /* CPU currently in AArch64 state and EL3 */
2397 return true;
2398 } else if (!is_a64(env) &&
2399 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2400 /* CPU currently in AArch32 state and monitor mode */
2401 return true;
2402 }
2403 }
71205876
PM
2404 return false;
2405}
2406
2407/* Return true if the processor is in secure state */
2408static inline bool arm_is_secure(CPUARMState *env)
2409{
2410 if (arm_is_el3_or_mon(env)) {
2411 return true;
2412 }
19e0fefa
FA
2413 return arm_is_secure_below_el3(env);
2414}
2415
f3ee5160
RDC
2416/*
2417 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2418 * This corresponds to the pseudocode EL2Enabled()
2419 */
b74c0443
RH
2420static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure)
2421{
2422 return arm_feature(env, ARM_FEATURE_EL2)
2423 && (!secure || (env->cp15.scr_el3 & SCR_EEL2));
2424}
2425
f3ee5160
RDC
2426static inline bool arm_is_el2_enabled(CPUARMState *env)
2427{
b74c0443 2428 return arm_is_el2_enabled_secstate(env, arm_is_secure_below_el3(env));
f3ee5160
RDC
2429}
2430
19e0fefa
FA
2431#else
2432static inline bool arm_is_secure_below_el3(CPUARMState *env)
2433{
2434 return false;
2435}
2436
2437static inline bool arm_is_secure(CPUARMState *env)
2438{
2439 return false;
2440}
f3ee5160 2441
b74c0443
RH
2442static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure)
2443{
2444 return false;
2445}
2446
f3ee5160
RDC
2447static inline bool arm_is_el2_enabled(CPUARMState *env)
2448{
2449 return false;
2450}
19e0fefa
FA
2451#endif
2452
f7778444
RH
2453/**
2454 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2455 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2456 * "for all purposes other than a direct read or write access of HCR_EL2."
2457 * Not included here is HCR_RW.
2458 */
b74c0443 2459uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure);
f7778444 2460uint64_t arm_hcr_el2_eff(CPUARMState *env);
5814d587 2461uint64_t arm_hcrx_el2_eff(CPUARMState *env);
f7778444 2462
1f79ee32
PM
2463/* Return true if the specified exception level is running in AArch64 state. */
2464static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2465{
446c81ab
PM
2466 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2467 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2468 */
446c81ab
PM
2469 assert(el >= 1 && el <= 3);
2470 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2471
446c81ab
PM
2472 /* The highest exception level is always at the maximum supported
2473 * register width, and then lower levels have a register width controlled
2474 * by bits in the SCR or HCR registers.
1f79ee32 2475 */
446c81ab
PM
2476 if (el == 3) {
2477 return aa64;
2478 }
2479
926c1b97
RDC
2480 if (arm_feature(env, ARM_FEATURE_EL3) &&
2481 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
446c81ab
PM
2482 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2483 }
2484
2485 if (el == 2) {
2486 return aa64;
2487 }
2488
e6ef0169 2489 if (arm_is_el2_enabled(env)) {
446c81ab
PM
2490 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2491 }
2492
2493 return aa64;
1f79ee32
PM
2494}
2495
3f342b9e
SF
2496/* Function for determing whether guest cp register reads and writes should
2497 * access the secure or non-secure bank of a cp register. When EL3 is
2498 * operating in AArch32 state, the NS-bit determines whether the secure
2499 * instance of a cp register should be used. When EL3 is AArch64 (or if
2500 * it doesn't exist at all) then there is no register banking, and all
2501 * accesses are to the non-secure version.
2502 */
2503static inline bool access_secure_reg(CPUARMState *env)
2504{
2505 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2506 !arm_el_is_aa64(env, 3) &&
2507 !(env->cp15.scr_el3 & SCR_NS));
2508
2509 return ret;
2510}
2511
ea30a4b8
FA
2512/* Macros for accessing a specified CP register bank */
2513#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2514 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2515
2516#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2517 do { \
2518 if (_secure) { \
2519 (_env)->cp15._regname##_s = (_val); \
2520 } else { \
2521 (_env)->cp15._regname##_ns = (_val); \
2522 } \
2523 } while (0)
2524
2525/* Macros for automatically accessing a specific CP register bank depending on
2526 * the current secure state of the system. These macros are not intended for
2527 * supporting instruction translation reads/writes as these are dependent
2528 * solely on the SCR.NS bit and not the mode.
2529 */
2530#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2531 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2532 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2533
2534#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2535 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2536 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2537 (_val))
2538
0442428a 2539void arm_cpu_list(void);
012a906b
GB
2540uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2541 uint32_t cur_el, bool secure);
40f137e1 2542
9ee6e8bb 2543/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
2544#ifndef CONFIG_USER_ONLY
2545bool armv7m_nvic_can_take_pending_exception(void *opaque);
2546#else
2547static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2548{
2549 return true;
2550}
2551#endif
2fb50a33
PM
2552/**
2553 * armv7m_nvic_set_pending: mark the specified exception as pending
2554 * @opaque: the NVIC
2555 * @irq: the exception number to mark pending
2556 * @secure: false for non-banked exceptions or for the nonsecure
2557 * version of a banked exception, true for the secure version of a banked
2558 * exception.
2559 *
2560 * Marks the specified exception as pending. Note that we will assert()
2561 * if @secure is true and @irq does not specify one of the fixed set
2562 * of architecturally banked exceptions.
2563 */
2564void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
2565/**
2566 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2567 * @opaque: the NVIC
2568 * @irq: the exception number to mark pending
2569 * @secure: false for non-banked exceptions or for the nonsecure
2570 * version of a banked exception, true for the secure version of a banked
2571 * exception.
2572 *
2573 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2574 * exceptions (exceptions generated in the course of trying to take
2575 * a different exception).
2576 */
2577void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
a99ba8ab
PM
2578/**
2579 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2580 * @opaque: the NVIC
2581 * @irq: the exception number to mark pending
2582 * @secure: false for non-banked exceptions or for the nonsecure
2583 * version of a banked exception, true for the secure version of a banked
2584 * exception.
2585 *
2586 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2587 * generated in the course of lazy stacking of FP registers.
2588 */
2589void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
6c948518
PM
2590/**
2591 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2592 * exception, and whether it targets Secure state
2593 * @opaque: the NVIC
2594 * @pirq: set to pending exception number
2595 * @ptargets_secure: set to whether pending exception targets Secure
2596 *
2597 * This function writes the number of the highest priority pending
2598 * exception (the one which would be made active by
2599 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2600 * to true if the current highest priority pending exception should
2601 * be taken to Secure state, false for NS.
2602 */
2603void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2604 bool *ptargets_secure);
5cb18069
PM
2605/**
2606 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2607 * @opaque: the NVIC
2608 *
2609 * Move the current highest priority pending exception from the pending
2610 * state to the active state, and update v7m.exception to indicate that
2611 * it is the exception currently being handled.
5cb18069 2612 */
6c948518 2613void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2614/**
2615 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2616 * @opaque: the NVIC
2617 * @irq: the exception number to complete
5cb18069 2618 * @secure: true if this exception was secure
aa488fe3
PM
2619 *
2620 * Returns: -1 if the irq was not active
2621 * 1 if completing this irq brought us back to base (no active irqs)
2622 * 0 if there is still an irq active after this one was completed
2623 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2624 */
5cb18069 2625int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
b593c2b8
PM
2626/**
2627 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2628 * @opaque: the NVIC
2629 * @irq: the exception number to mark pending
2630 * @secure: false for non-banked exceptions or for the nonsecure
2631 * version of a banked exception, true for the secure version of a banked
2632 * exception.
2633 *
2634 * Return whether an exception is "ready", i.e. whether the exception is
2635 * enabled and is configured at a priority which would allow it to
2636 * interrupt the current execution priority. This controls whether the
2637 * RDY bit for it in the FPCCR is set.
2638 */
2639bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
42a6686b
PM
2640/**
2641 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2642 * @opaque: the NVIC
2643 *
2644 * Returns: the raw execution priority as defined by the v8M architecture.
2645 * This is the execution priority minus the effects of AIRCR.PRIS,
2646 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2647 * (v8M ARM ARM I_PKLD.)
2648 */
2649int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2650/**
2651 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2652 * priority is negative for the specified security state.
2653 * @opaque: the NVIC
2654 * @secure: the security state to test
2655 * This corresponds to the pseudocode IsReqExecPriNeg().
2656 */
2657#ifndef CONFIG_USER_ONLY
2658bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2659#else
2660static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2661{
2662 return false;
2663}
2664#endif
9ee6e8bb 2665
4b6a83fb
PM
2666/* Interface for defining coprocessor registers.
2667 * Registers are defined in tables of arm_cp_reginfo structs
2668 * which are passed to define_arm_cp_regs().
2669 */
2670
2671/* When looking up a coprocessor register we look for it
2672 * via an integer which encodes all of:
2673 * coprocessor number
2674 * Crn, Crm, opc1, opc2 fields
2675 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2676 * or via MRRC/MCRR?)
51a79b03 2677 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2678 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2679 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2680 * For AArch64, there is no 32/64 bit size distinction;
2681 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2682 * and 4 bit CRn and CRm. The encoding patterns are chosen
2683 * to be easy to convert to and from the KVM encodings, and also
2684 * so that the hashtable can contain both AArch32 and AArch64
2685 * registers (to allow for interprocessing where we might run
2686 * 32 bit code on a 64 bit core).
4b6a83fb 2687 */
f5a0a5a5
PM
2688/* This bit is private to our hashtable cpreg; in KVM register
2689 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2690 * in the upper bits of the 64 bit ID.
2691 */
2692#define CP_REG_AA64_SHIFT 28
2693#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2694
51a79b03
PM
2695/* To enable banking of coprocessor registers depending on ns-bit we
2696 * add a bit to distinguish between secure and non-secure cpregs in the
2697 * hashtable.
2698 */
2699#define CP_REG_NS_SHIFT 29
2700#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2701
2702#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2703 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2704 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2705
f5a0a5a5
PM
2706#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2707 (CP_REG_AA64_MASK | \
2708 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2709 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2710 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2711 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2712 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2713 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2714
721fae12
PM
2715/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2716 * version used as a key for the coprocessor register hashtable
2717 */
2718static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2719{
2720 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2721 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2722 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2723 } else {
2724 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2725 cpregid |= (1 << 15);
2726 }
2727
2728 /* KVM is always non-secure so add the NS flag on AArch32 register
2729 * entries.
2730 */
2731 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2732 }
2733 return cpregid;
2734}
2735
2736/* Convert a truncated 32 bit hashtable key into the full
2737 * 64 bit KVM register ID.
2738 */
2739static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2740{
f5a0a5a5
PM
2741 uint64_t kvmid;
2742
2743 if (cpregid & CP_REG_AA64_MASK) {
2744 kvmid = cpregid & ~CP_REG_AA64_MASK;
2745 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2746 } else {
f5a0a5a5
PM
2747 kvmid = cpregid & ~(1 << 15);
2748 if (cpregid & (1 << 15)) {
2749 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2750 } else {
2751 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2752 }
721fae12
PM
2753 }
2754 return kvmid;
2755}
2756
75502672
PM
2757/* Return the highest implemented Exception Level */
2758static inline int arm_highest_el(CPUARMState *env)
2759{
2760 if (arm_feature(env, ARM_FEATURE_EL3)) {
2761 return 3;
2762 }
2763 if (arm_feature(env, ARM_FEATURE_EL2)) {
2764 return 2;
2765 }
2766 return 1;
2767}
2768
15b3f556
PM
2769/* Return true if a v7M CPU is in Handler mode */
2770static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2771{
2772 return env->v7m.exception != 0;
2773}
2774
dcbff19b
GB
2775/* Return the current Exception Level (as per ARMv8; note that this differs
2776 * from the ARMv7 Privilege Level).
2777 */
2778static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2779{
6d54ed3c 2780 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2781 return arm_v7m_is_handler_mode(env) ||
2782 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2783 }
2784
592125f8 2785 if (is_a64(env)) {
f5a0a5a5
PM
2786 return extract32(env->pstate, 2, 2);
2787 }
2788
592125f8
FA
2789 switch (env->uncached_cpsr & 0x1f) {
2790 case ARM_CPU_MODE_USR:
4b6a83fb 2791 return 0;
592125f8
FA
2792 case ARM_CPU_MODE_HYP:
2793 return 2;
2794 case ARM_CPU_MODE_MON:
2795 return 3;
2796 default:
2797 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2798 /* If EL3 is 32-bit then all secure privileged modes run in
2799 * EL3
2800 */
2801 return 3;
2802 }
2803
2804 return 1;
4b6a83fb 2805 }
4b6a83fb
PM
2806}
2807
721fae12
PM
2808/**
2809 * write_list_to_cpustate
2810 * @cpu: ARMCPU
2811 *
2812 * For each register listed in the ARMCPU cpreg_indexes list, write
2813 * its value from the cpreg_values list into the ARMCPUState structure.
2814 * This updates TCG's working data structures from KVM data or
2815 * from incoming migration state.
2816 *
2817 * Returns: true if all register values were updated correctly,
2818 * false if some register was unknown or could not be written.
2819 * Note that we do not stop early on failure -- we will attempt
2820 * writing all registers in the list.
2821 */
2822bool write_list_to_cpustate(ARMCPU *cpu);
2823
2824/**
2825 * write_cpustate_to_list:
2826 * @cpu: ARMCPU
b698e4ee 2827 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2828 *
2829 * For each register listed in the ARMCPU cpreg_indexes list, write
2830 * its value from the ARMCPUState structure into the cpreg_values list.
2831 * This is used to copy info from TCG's working data structures into
2832 * KVM or for outbound migration.
2833 *
b698e4ee
PM
2834 * @kvm_sync is true if we are doing this in order to sync the
2835 * register state back to KVM. In this case we will only update
2836 * values in the list if the previous list->cpustate sync actually
2837 * successfully wrote the CPU state. Otherwise we will keep the value
2838 * that is in the list.
2839 *
721fae12
PM
2840 * Returns: true if all register values were read correctly,
2841 * false if some register was unknown or could not be read.
2842 * Note that we do not stop early on failure -- we will attempt
2843 * reading all registers in the list.
2844 */
b698e4ee 2845bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2846
9ee6e8bb
PB
2847#define ARM_CPUID_TI915T 0x54029152
2848#define ARM_CPUID_TI925T 0x54029252
40f137e1 2849
ba1ba5cc
IM
2850#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2851#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2852#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2853
585df85e
PM
2854#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2855
c732abe2 2856#define cpu_list arm_cpu_list
9467d44c 2857
c1e37810
PM
2858/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2859 *
2860 * If EL3 is 64-bit:
2861 * + NonSecure EL1 & 0 stage 1
2862 * + NonSecure EL1 & 0 stage 2
2863 * + NonSecure EL2
b9f6033c
RH
2864 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2865 * + Secure EL1 & 0
c1e37810
PM
2866 * + Secure EL3
2867 * If EL3 is 32-bit:
2868 * + NonSecure PL1 & 0 stage 1
2869 * + NonSecure PL1 & 0 stage 2
2870 * + NonSecure PL2
b9f6033c
RH
2871 * + Secure PL0
2872 * + Secure PL1
c1e37810
PM
2873 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2874 *
2875 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2876 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2877 * because they may differ in access permissions even if the VA->PA map is
2878 * the same
c1e37810
PM
2879 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2880 * translation, which means that we have one mmu_idx that deals with two
2881 * concatenated translation regimes [this sort of combined s1+2 TLB is
2882 * architecturally permitted]
2883 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2884 * handling via the TLB. The only way to do a stage 1 translation without
2885 * the immediate stage 2 translation is via the ATS or AT system insns,
2886 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
2887 * The only use of stage 2 translations is either as part of an s1+2
2888 * lookup or when loading the descriptors during a stage 1 page table walk,
2889 * and in both those cases we don't use the TLB.
c1e37810
PM
2890 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2891 * translation regimes, because they map reasonably well to each other
2892 * and they can't both be active at the same time.
b9f6033c
RH
2893 * 5. we want to be able to use the TLB for accesses done as part of a
2894 * stage1 page table walk, rather than having to walk the stage2 page
2895 * table over and over.
452ef8cb
RH
2896 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2897 * Never (PAN) bit within PSTATE.
d902ae75
RH
2898 * 7. we fold together the secure and non-secure regimes for A-profile,
2899 * because there are no banked system registers for aarch64, so the
2900 * process of switching between secure and non-secure is
2901 * already heavyweight.
c1e37810 2902 *
b9f6033c
RH
2903 * This gives us the following list of cases:
2904 *
d902ae75
RH
2905 * EL0 EL1&0 stage 1+2 (aka NS PL0)
2906 * EL1 EL1&0 stage 1+2 (aka NS PL1)
2907 * EL1 EL1&0 stage 1+2 +PAN
2908 * EL0 EL2&0
2909 * EL2 EL2&0
2910 * EL2 EL2&0 +PAN
2911 * EL2 (aka NS PL2)
2912 * EL3 (aka S PL1)
a1ce3084 2913 * Physical (NS & S)
575a94af 2914 * Stage2 (NS & S)
c1e37810 2915 *
575a94af 2916 * for a total of 12 different mmu_idx.
c1e37810 2917 *
3bef7012 2918 * R profile CPUs have an MPU, but can use the same set of MMU indexes
d902ae75
RH
2919 * as A profile. They only need to distinguish EL0 and EL1 (and
2920 * EL2 if we ever model a Cortex-R52).
3bef7012
PM
2921 *
2922 * M profile CPUs are rather different as they do not have a true MMU.
2923 * They have the following different MMU indexes:
2924 * User
2925 * Privileged
62593718
PM
2926 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2927 * Privileged, execution priority negative (ditto)
66787c78
PM
2928 * If the CPU supports the v8M Security Extension then there are also:
2929 * Secure User
2930 * Secure Privileged
62593718
PM
2931 * Secure User, execution priority negative
2932 * Secure Privileged, execution priority negative
3bef7012 2933 *
8bd5c820
PM
2934 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2935 * are not quite the same -- different CPU types (most notably M profile
2936 * vs A/R profile) would like to use MMU indexes with different semantics,
2937 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
2938 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2939 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
2940 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2941 * the same for any particular CPU.
2942 * Variables of type ARMMUIdx are always full values, and the core
2943 * index values are in variables of type 'int'.
2944 *
c1e37810
PM
2945 * Our enumeration includes at the end some entries which are not "true"
2946 * mmu_idx values in that they don't have corresponding TLBs and are only
2947 * valid for doing slow path page table walks.
2948 *
2949 * The constant names here are patterned after the general style of the names
2950 * of the AT/ATS operations.
2951 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2952 * For M profile we arrange them to have a bit for priv, a bit for negpri
2953 * and a bit for secure.
c1e37810 2954 */
b9f6033c
RH
2955#define ARM_MMU_IDX_A 0x10 /* A profile */
2956#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2957#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2958
b9f6033c
RH
2959/* Meanings of the bits for M profile mmu idx values */
2960#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2961#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2962#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2963
b9f6033c
RH
2964#define ARM_MMU_IDX_TYPE_MASK \
2965 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2966#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2967
c1e37810 2968typedef enum ARMMMUIdx {
b9f6033c
RH
2969 /*
2970 * A-profile.
2971 */
d902ae75
RH
2972 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2973 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
2974 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2975 ARMMMUIdx_E20_2 = 3 | ARM_MMU_IDX_A,
2976 ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2977 ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2978 ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A,
2979 ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A,
b9f6033c 2980
a1ce3084
RH
2981 /* TLBs with 1-1 mapping to the physical address spaces. */
2982 ARMMMUIdx_Phys_NS = 8 | ARM_MMU_IDX_A,
2983 ARMMMUIdx_Phys_S = 9 | ARM_MMU_IDX_A,
2984
575a94af
RH
2985 /*
2986 * Used for second stage of an S12 page table walk, or for descriptor
2987 * loads during first stage of an S1 page table walk. Note that both
2988 * are in use simultaneously for SecureEL2: the security state for
2989 * the S2 ptw is selected by the NS bit from the S1 ptw.
2990 */
2991 ARMMMUIdx_Stage2 = 10 | ARM_MMU_IDX_A,
2992 ARMMMUIdx_Stage2_S = 11 | ARM_MMU_IDX_A,
2993
b9f6033c
RH
2994 /*
2995 * These are not allocated TLBs and are used only for AT system
2996 * instructions or for the first stage of an S12 page table walk.
2997 */
2998 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2999 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 3000 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
3001
3002 /*
3003 * M-profile.
3004 */
25568316
RH
3005 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
3006 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
3007 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
3008 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
3009 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
3010 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3011 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3012 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
3013} ARMMMUIdx;
3014
5f09a6df
RH
3015/*
3016 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
3017 * for use when calling tlb_flush_by_mmuidx() and friends.
3018 */
5f09a6df
RH
3019#define TO_CORE_BIT(NAME) \
3020 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3021
8bd5c820 3022typedef enum ARMMMUIdxBit {
5f09a6df 3023 TO_CORE_BIT(E10_0),
b9f6033c 3024 TO_CORE_BIT(E20_0),
5f09a6df 3025 TO_CORE_BIT(E10_1),
452ef8cb 3026 TO_CORE_BIT(E10_1_PAN),
5f09a6df 3027 TO_CORE_BIT(E2),
b9f6033c 3028 TO_CORE_BIT(E20_2),
452ef8cb 3029 TO_CORE_BIT(E20_2_PAN),
d902ae75 3030 TO_CORE_BIT(E3),
575a94af
RH
3031 TO_CORE_BIT(Stage2),
3032 TO_CORE_BIT(Stage2_S),
5f09a6df
RH
3033
3034 TO_CORE_BIT(MUser),
3035 TO_CORE_BIT(MPriv),
3036 TO_CORE_BIT(MUserNegPri),
3037 TO_CORE_BIT(MPrivNegPri),
3038 TO_CORE_BIT(MSUser),
3039 TO_CORE_BIT(MSPriv),
3040 TO_CORE_BIT(MSUserNegPri),
3041 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
3042} ARMMMUIdxBit;
3043
5f09a6df
RH
3044#undef TO_CORE_BIT
3045
f79fbf39 3046#define MMU_USER_IDX 0
c1e37810 3047
9e273ef2
PM
3048/* Indexes used when registering address spaces with cpu_address_space_init */
3049typedef enum ARMASIdx {
3050 ARMASIdx_NS = 0,
3051 ARMASIdx_S = 1,
8bce44a2
RH
3052 ARMASIdx_TagNS = 2,
3053 ARMASIdx_TagS = 3,
9e273ef2
PM
3054} ARMASIdx;
3055
43bbce7f
PM
3056static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3057{
3058 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3059 * CSSELR is RAZ/WI.
3060 */
3061 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3062}
3063
f9fd40eb
PB
3064static inline bool arm_sctlr_b(CPUARMState *env)
3065{
3066 return
3067 /* We need not implement SCTLR.ITD in user-mode emulation, so
3068 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3069 * This lets people run BE32 binaries with "-cpu any".
3070 */
3071#ifndef CONFIG_USER_ONLY
3072 !arm_feature(env, ARM_FEATURE_V7) &&
3073#endif
3074 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3075}
3076
aaec1432 3077uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 3078
8061a649
RH
3079static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3080 bool sctlr_b)
3081{
3082#ifdef CONFIG_USER_ONLY
3083 /*
3084 * In system mode, BE32 is modelled in line with the
3085 * architecture (as word-invariant big-endianness), where loads
3086 * and stores are done little endian but from addresses which
3087 * are adjusted by XORing with the appropriate constant. So the
3088 * endianness to use for the raw data access is not affected by
3089 * SCTLR.B.
3090 * In user mode, however, we model BE32 as byte-invariant
3091 * big-endianness (because user-only code cannot tell the
3092 * difference), and so we need to use a data access endianness
3093 * that depends on SCTLR.B.
3094 */
3095 if (sctlr_b) {
3096 return true;
3097 }
3098#endif
3099 /* In 32bit endianness is determined by looking at CPSR's E bit */
3100 return env->uncached_cpsr & CPSR_E;
3101}
3102
3103static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3104{
3105 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3106}
64e40755 3107
ed50ff78
PC
3108/* Return true if the processor is in big-endian mode. */
3109static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3110{
ed50ff78 3111 if (!is_a64(env)) {
8061a649 3112 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3113 } else {
3114 int cur_el = arm_current_el(env);
3115 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3116 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3117 }
ed50ff78
PC
3118}
3119
022c62cb 3120#include "exec/cpu-all.h"
622ed360 3121
fdd1b228 3122/*
a378206a
RH
3123 * We have more than 32-bits worth of state per TB, so we split the data
3124 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3125 * We collect these two parts in CPUARMTBFlags where they are named
3126 * flags and flags2 respectively.
fdd1b228 3127 *
a378206a
RH
3128 * The flags that are shared between all execution modes, TBFLAG_ANY,
3129 * are stored in flags. The flags that are specific to a given mode
3130 * are stores in flags2. Since cs_base is sized on the configured
3131 * address size, flags2 always has 64-bits for A64, and a minimum of
3132 * 32-bits for A32 and M32.
3133 *
3134 * The bits for 32-bit A-profile and M-profile partially overlap:
3135 *
5896f392
RH
3136 * 31 23 11 10 0
3137 * +-------------+----------+----------------+
3138 * | | | TBFLAG_A32 |
3139 * | TBFLAG_AM32 | +-----+----------+
3140 * | | |TBFLAG_M32|
3141 * +-------------+----------------+----------+
26702213 3142 * 31 23 6 5 0
79cabf1f 3143 *
fdd1b228 3144 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3145 */
eee81d41
RH
3146FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3147FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3148FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3149FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3150FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
9dbbc748 3151/* Target EL if we take a floating-point-disabled exception */
eee81d41 3152FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
4479ec30 3153/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
8480e933
RH
3154FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3155FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
79cabf1f 3156
8bd587c1 3157/*
79cabf1f 3158 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3159 */
5896f392
RH
3160FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3161FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3926cc84 3162
79cabf1f
RH
3163/*
3164 * Bit usage when in AArch32 state, for A-profile only.
3165 */
5896f392
RH
3166FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3167FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
ea7ac69d
PM
3168/*
3169 * We store the bottom two bits of the CPAR as TB flags and handle
3170 * checks on the other bits at runtime. This shares the same bits as
3171 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3172 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3173 */
5896f392
RH
3174FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3175FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3176FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3177FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
7fbb535f
PM
3178/*
3179 * Indicates whether cp register reads and writes by guest code should access
3180 * the secure or nonsecure bank of banked registers; note that this is not
3181 * the same thing as the current security state of the processor!
3182 */
5896f392 3183FIELD(TBFLAG_A32, NS, 10, 1)
75fe8356
RH
3184/*
3185 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3186 * This requires an SME trap from AArch32 mode when using NEON.
3187 */
3188FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
79cabf1f
RH
3189
3190/*
3191 * Bit usage when in AArch32 state, for M-profile only.
3192 */
3193/* Handler (ie not Thread) mode */
5896f392 3194FIELD(TBFLAG_M32, HANDLER, 0, 1)
79cabf1f 3195/* Whether we should generate stack-limit checks */
5896f392 3196FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
79cabf1f 3197/* Set if FPCCR.LSPACT is set */
5896f392 3198FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
79cabf1f 3199/* Set if we must create a new FP context */
5896f392 3200FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
79cabf1f 3201/* Set if FPCCR.S does not match current security state */
5896f392 3202FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
26702213
PM
3203/* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3204FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
a393dee0
RH
3205/* Set if in secure mode */
3206FIELD(TBFLAG_M32, SECURE, 6, 1)
79cabf1f
RH
3207
3208/*
3209 * Bit usage when in AArch64 state
3210 */
476a4692 3211FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac 3212FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
f45ce4c3
RH
3213/* The current vector length, either NVL or SVL. */
3214FIELD(TBFLAG_A64, VL, 4, 4)
0816ef1b 3215FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3216FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3217FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3218FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3219FIELD(TBFLAG_A64, UNPRIV, 14, 1)
81ae05fa
RH
3220FIELD(TBFLAG_A64, ATA, 15, 1)
3221FIELD(TBFLAG_A64, TCMA, 16, 2)
3222FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3223FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
6b2ca83e 3224FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
a3637e88
RH
3225FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3226FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
5d7953ad 3227FIELD(TBFLAG_A64, SVL, 24, 4)
75fe8356
RH
3228/* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3229FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
a1705768 3230
a729a46b
RH
3231/*
3232 * Helpers for using the above.
3233 */
3234#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3902bfc6 3235 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
a729a46b 3236#define DP_TBFLAG_A64(DST, WHICH, VAL) \
a378206a 3237 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
a729a46b 3238#define DP_TBFLAG_A32(DST, WHICH, VAL) \
a378206a 3239 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
a729a46b 3240#define DP_TBFLAG_M32(DST, WHICH, VAL) \
a378206a 3241 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
a729a46b 3242#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
a378206a 3243 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
a729a46b 3244
3902bfc6 3245#define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
a378206a
RH
3246#define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3247#define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3248#define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3249#define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
a729a46b 3250
fb901c90
RH
3251/**
3252 * cpu_mmu_index:
3253 * @env: The cpu environment
3254 * @ifetch: True for code access, false for data access.
3255 *
3256 * Return the core mmu index for the current translation regime.
3257 * This function is used by generic TCG code paths.
3258 */
3259static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3260{
a729a46b 3261 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
fb901c90
RH
3262}
3263
8b599e5c
RH
3264/**
3265 * sve_vq
3266 * @env: the cpu context
3267 *
3268 * Return the VL cached within env->hflags, in units of quadwords.
3269 */
3270static inline int sve_vq(CPUARMState *env)
3271{
3272 return EX_TBFLAG_A64(env->hflags, VL) + 1;
3273}
3274
5d7953ad
RH
3275/**
3276 * sme_vq
3277 * @env: the cpu context
3278 *
3279 * Return the SVL cached within env->hflags, in units of quadwords.
3280 */
3281static inline int sme_vq(CPUARMState *env)
3282{
3283 return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3284}
3285
f9fd40eb
PB
3286static inline bool bswap_code(bool sctlr_b)
3287{
3288#ifdef CONFIG_USER_ONLY
ee3eb3a7
MAL
3289 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3290 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
f9fd40eb
PB
3291 * would also end up as a mixed-endian mode with BE code, LE data.
3292 */
3293 return
ee3eb3a7 3294#if TARGET_BIG_ENDIAN
f9fd40eb
PB
3295 1 ^
3296#endif
3297 sctlr_b;
3298#else
e334bd31
PB
3299 /* All code access in ARM is little endian, and there are no loaders
3300 * doing swaps that need to be reversed
f9fd40eb
PB
3301 */
3302 return 0;
3303#endif
3304}
3305
c3ae85fc
PB
3306#ifdef CONFIG_USER_ONLY
3307static inline bool arm_cpu_bswap_data(CPUARMState *env)
3308{
3309 return
ee3eb3a7 3310#if TARGET_BIG_ENDIAN
c3ae85fc
PB
3311 1 ^
3312#endif
3313 arm_cpu_data_is_big_endian(env);
3314}
3315#endif
3316
a9e01311
RH
3317void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3318 target_ulong *cs_base, uint32_t *flags);
6b917547 3319
98128601
RH
3320enum {
3321 QEMU_PSCI_CONDUIT_DISABLED = 0,
3322 QEMU_PSCI_CONDUIT_SMC = 1,
3323 QEMU_PSCI_CONDUIT_HVC = 2,
3324};
3325
017518c1
PM
3326#ifndef CONFIG_USER_ONLY
3327/* Return the address space index to use for a memory access */
3328static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3329{
3330 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3331}
5ce4ff65
PM
3332
3333/* Return the AddressSpace to use for a memory access
3334 * (which depends on whether the access is S or NS, and whether
3335 * the board gave us a separate AddressSpace for S accesses).
3336 */
3337static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3338{
3339 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3340}
017518c1
PM
3341#endif
3342
bd7d00fc 3343/**
b5c53d1b
AL
3344 * arm_register_pre_el_change_hook:
3345 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3346 * CPU changes exception level or mode. The hook function will be
3347 * passed a pointer to the ARMCPU and the opaque data pointer passed
3348 * to this function when the hook was registered.
b5c53d1b
AL
3349 *
3350 * Note that if a pre-change hook is called, any registered post-change hooks
3351 * are guaranteed to subsequently be called.
bd7d00fc 3352 */
b5c53d1b 3353void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3354 void *opaque);
b5c53d1b
AL
3355/**
3356 * arm_register_el_change_hook:
3357 * Register a hook function which will be called immediately after this
3358 * CPU changes exception level or mode. The hook function will be
3359 * passed a pointer to the ARMCPU and the opaque data pointer passed
3360 * to this function when the hook was registered.
3361 *
3362 * Note that any registered hooks registered here are guaranteed to be called
3363 * if pre-change hooks have been.
3364 */
3365void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3366 *opaque);
bd7d00fc 3367
3d74e2e9
RH
3368/**
3369 * arm_rebuild_hflags:
3370 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3371 */
3372void arm_rebuild_hflags(CPUARMState *env);
3373
9a2b5256
RH
3374/**
3375 * aa32_vfp_dreg:
3376 * Return a pointer to the Dn register within env in 32-bit mode.
3377 */
3378static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3379{
c39c2b90 3380 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3381}
3382
3383/**
3384 * aa32_vfp_qreg:
3385 * Return a pointer to the Qn register within env in 32-bit mode.
3386 */
3387static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3388{
c39c2b90 3389 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3390}
3391
3392/**
3393 * aa64_vfp_qreg:
3394 * Return a pointer to the Qn register within env in 64-bit mode.
3395 */
3396static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3397{
c39c2b90 3398 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3399}
3400
028e2a7b 3401/* Shared between translate-sve.c and sve_helper.c. */
fca75f60 3402extern const uint64_t pred_esz_masks[5];
028e2a7b 3403
be5d6f48
RH
3404/*
3405 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
7f2cf760
RH
3406 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3407 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR.
be5d6f48 3408 */
7f2cf760
RH
3409#define PAGE_BTI PAGE_TARGET_1
3410#define PAGE_MTE PAGE_TARGET_2
3411#define PAGE_TARGET_STICKY PAGE_MTE
be5d6f48 3412
50d4c8c1
RH
3413/* We associate one allocation tag per 16 bytes, the minimum. */
3414#define LOG2_TAG_GRANULE 4
3415#define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
3416
3417#ifdef CONFIG_USER_ONLY
3418#define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3419#endif
3420
0e0c030c
RH
3421#ifdef TARGET_TAGGED_ADDRESSES
3422/**
3423 * cpu_untagged_addr:
3424 * @cs: CPU context
3425 * @x: tagged address
3426 *
3427 * Remove any address tag from @x. This is explicitly related to the
3428 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3429 *
3430 * There should be a better place to put this, but we need this in
3431 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3432 */
3433static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3434{
3435 ARMCPU *cpu = ARM_CPU(cs);
3436 if (cpu->env.tagged_addr_enable) {
3437 /*
3438 * TBI is enabled for userspace but not kernelspace addresses.
3439 * Only clear the tag if bit 55 is clear.
3440 */
3441 x &= sextract64(x, 0, 56);
3442 }
3443 return x;
3444}
3445#endif
3446
873b73c0
PM
3447/*
3448 * Naming convention for isar_feature functions:
3449 * Functions which test 32-bit ID registers should have _aa32_ in
3450 * their name. Functions which test 64-bit ID registers should have
6e61f839
PM
3451 * _aa64_ in their name. These must only be used in code where we
3452 * know for certain that the CPU has AArch32 or AArch64 respectively
3453 * or where the correct answer for a CPU which doesn't implement that
3454 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3455 * system registers that are specific to that CPU state, for "should
3456 * we let this system register bit be set" tests where the 32-bit
3457 * flavour of the register doesn't have the bit, and so on).
3458 * Functions which simply ask "does this feature exist at all" have
3459 * _any_ in their name, and always return the logical OR of the _aa64_
3460 * and the _aa32_ function.
873b73c0
PM
3461 */
3462
962fcbf2
RH
3463/*
3464 * 32-bit feature tests via id registers.
3465 */
873b73c0 3466static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
7e0cf8b4
RH
3467{
3468 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3469}
3470
873b73c0 3471static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
7e0cf8b4
RH
3472{
3473 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3474}
05903f03
PM
3475
3476static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3477{
3478 /* (M-profile) low-overhead loops and branch future */
3479 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3480}
7e0cf8b4 3481
873b73c0 3482static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
09cbd501
RH
3483{
3484 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3485}
3486
962fcbf2
RH
3487static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3488{
3489 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3490}
3491
3492static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3493{
3494 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3495}
3496
3497static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3498{
3499 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3500}
3501
3502static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3503{
3504 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3505}
3506
3507static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3508{
3509 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3510}
3511
3512static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3513{
3514 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3515}
3516
3517static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3518{
3519 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3520}
3521
6c1f6f27
RH
3522static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3523{
3524 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3525}
3526
962fcbf2
RH
3527static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3528{
3529 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3530}
3531
87732318
RH
3532static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3533{
3534 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3535}
3536
9888bd1e
RH
3537static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3538{
3539 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3540}
3541
cb570bd3
RH
3542static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3543{
3544 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3545}
3546
c0b9e8a4
RH
3547static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3548{
3549 return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3550}
3551
51879c67
RH
3552static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3553{
3554 return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3555}
3556
46f4976f
PM
3557static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3558{
3559 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3560}
3561
dfc523a8
PM
3562static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3563{
3564 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3565}
3566
83ff3d6a
PM
3567static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3568{
3569 /*
3570 * Return true if M-profile state handling insns
3571 * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3572 */
3573 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3574}
3575
5763190f
RH
3576static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3577{
dfc523a8
PM
3578 /* Sadly this is encoded differently for A-profile and M-profile */
3579 if (isar_feature_aa32_mprofile(id)) {
3580 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3581 } else {
3582 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3583 }
5763190f
RH
3584}
3585
7df6a1ff
PM
3586static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3587{
3588 /*
3589 * Return true if MVE is supported (either integer or floating point).
3590 * We must check for M-profile as the MVFR1 field means something
3591 * else for A-profile.
3592 */
3593 return isar_feature_aa32_mprofile(id) &&
3594 FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3595}
3596
3597static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3598{
3599 /*
3600 * Return true if MVE is supported (either integer or floating point).
3601 * We must check for M-profile as the MVFR1 field means something
3602 * else for A-profile.
3603 */
3604 return isar_feature_aa32_mprofile(id) &&
3605 FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3606}
3607
7fbc6a40
RH
3608static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3609{
3610 /*
3611 * Return true if either VFP or SIMD is implemented.
3612 * In this case, a minimum of VFP w/ D0-D15.
3613 */
3614 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3615}
3616
0e13ba78 3617static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
b3ff4b87
PM
3618{
3619 /* Return true if D16-D31 are implemented */
b3a816f6 3620 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
b3ff4b87
PM
3621}
3622
266bd25c
PM
3623static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3624{
b3a816f6 3625 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
266bd25c
PM
3626}
3627
f67957e1
RH
3628static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3629{
3630 /* Return true if CPU supports single precision floating point, VFPv2 */
3631 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3632}
3633
3634static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3635{
3636 /* Return true if CPU supports single precision floating point, VFPv3 */
3637 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3638}
3639
c4ff8735 3640static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
1120827f 3641{
c4ff8735 3642 /* Return true if CPU supports double precision floating point, VFPv2 */
b3a816f6 3643 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
1120827f
PM
3644}
3645
f67957e1
RH
3646static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3647{
3648 /* Return true if CPU supports double precision floating point, VFPv3 */
3649 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3650}
3651
7d63183f
RH
3652static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3653{
3654 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3655}
3656
602f6e42
PM
3657/*
3658 * We always set the FP and SIMD FP16 fields to indicate identical
3659 * levels of support (assuming SIMD is implemented at all), so
3660 * we only need one set of accessors.
3661 */
3662static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3663{
b3a816f6 3664 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
602f6e42
PM
3665}
3666
3667static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3668{
b3a816f6 3669 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
602f6e42
PM
3670}
3671
c52881bb
RH
3672/*
3673 * Note that this ID register field covers both VFP and Neon FMAC,
3674 * so should usually be tested in combination with some other
3675 * check that confirms the presence of whichever of VFP or Neon is
3676 * relevant, to avoid accidentally enabling a Neon feature on
3677 * a VFP-no-Neon core or vice-versa.
3678 */
3679static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3680{
3681 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3682}
3683
c0c760af
PM
3684static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3685{
b3a816f6 3686 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
c0c760af
PM
3687}
3688
3689static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3690{
b3a816f6 3691 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
c0c760af
PM
3692}
3693
3694static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3695{
b3a816f6 3696 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
c0c760af
PM
3697}
3698
3699static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3700{
b3a816f6 3701 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
c0c760af
PM
3702}
3703
0ae0326b
PM
3704static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3705{
3706 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3707}
3708
3d6ad6bb
RH
3709static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3710{
10054016 3711 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3d6ad6bb
RH
3712}
3713
3714static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3715{
10054016 3716 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3d6ad6bb
RH
3717}
3718
a793bcd0 3719static inline bool isar_feature_aa32_pmuv3p1(const ARMISARegisters *id)
a6179538
PM
3720{
3721 /* 0xf means "non-standard IMPDEF PMU" */
3722 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3723 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3724}
3725
a793bcd0 3726static inline bool isar_feature_aa32_pmuv3p4(const ARMISARegisters *id)
15dd1ebd
PM
3727{
3728 /* 0xf means "non-standard IMPDEF PMU" */
3729 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3730 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3731}
3732
0b42f4fa
PM
3733static inline bool isar_feature_aa32_pmuv3p5(const ARMISARegisters *id)
3734{
3735 /* 0xf means "non-standard IMPDEF PMU" */
3736 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 6 &&
3737 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3738}
3739
4036b7d1
PM
3740static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3741{
3742 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3743}
3744
f6287c24
PM
3745static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3746{
3747 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3748}
3749
957e6155
PM
3750static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3751{
3752 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3753}
3754
ce3125be
PM
3755static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3756{
3757 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3758}
3759
dc8b1853
RC
3760static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3761{
3762 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3763}
3764
f2f68a78
RC
3765static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3766{
3767 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3768}
3769
09754ca8
PM
3770static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id)
3771{
3772 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5;
3773}
3774
ca56aac5
RH
3775static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3776{
3777 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3778}
3779
f94a6df5
PM
3780static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id)
3781{
3782 return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0;
3783}
3784
962fcbf2
RH
3785/*
3786 * 64-bit feature tests via id registers.
3787 */
3788static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3789{
3790 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3791}
3792
3793static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3794{
3795 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3796}
3797
3798static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3799{
3800 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3801}
3802
3803static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3804{
3805 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3806}
3807
3808static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3809{
3810 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3811}
3812
3813static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3814{
3815 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3816}
3817
3818static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3819{
3820 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3821}
3822
3823static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3824{
3825 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3826}
3827
3828static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3829{
3830 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3831}
3832
3833static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3834{
3835 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3836}
3837
3838static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3839{
3840 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3841}
3842
3843static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3844{
3845 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3846}
3847
0caa5af8
RH
3848static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3849{
3850 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3851}
3852
b89d9c98
RH
3853static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3854{
3855 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3856}
3857
5ef84f11
RH
3858static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3859{
3860 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3861}
3862
de390645
RH
3863static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3864{
3865 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3866}
3867
6c1f6f27
RH
3868static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3869{
3870 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3871}
3872
962fcbf2
RH
3873static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3874{
3875 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3876}
3877
991ad91b
RH
3878static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3879{
3880 /*
283fc52a
RH
3881 * Return true if any form of pauth is enabled, as this
3882 * predicate controls migration of the 128-bit keys.
991ad91b
RH
3883 */
3884 return (id->id_aa64isar1 &
3885 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3886 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3887 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3888 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3889}
3890
283fc52a
RH
3891static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3892{
3893 /*
3894 * Return true if pauth is enabled with the architected QARMA algorithm.
3895 * QEMU will always set APA+GPA to the same value.
3896 */
3897 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3898}
3899
84940ed8
RC
3900static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3901{
3902 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3903}
3904
7113d618
RC
3905static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3906{
3907 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3908}
3909
9888bd1e
RH
3910static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3911{
3912 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3913}
3914
cb570bd3
RH
3915static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3916{
3917 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3918}
3919
6bea2563
RH
3920static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3921{
3922 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3923}
3924
0d57b499
BM
3925static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3926{
3927 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3928}
3929
3930static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3931{
3932 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3933}
3934
c0b9e8a4
RH
3935static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3936{
3937 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3938}
3939
7d63183f
RH
3940static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3941{
3942 /* We always set the AdvSIMD and FP fields identically. */
3943 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3944}
3945
5763190f
RH
3946static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3947{
3948 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3949 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3950}
3951
0f8d06f1
RH
3952static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3953{
3954 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3955}
3956
10d0ef3e
MN
3957static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3958{
3959 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3960}
3961
6bcbb07a
RH
3962static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id)
3963{
3964 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2;
3965}
3966
25e168ab
RH
3967static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3968{
3969 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3970}
3971
7ac61020
PM
3972static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
3973{
3974 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
3975}
3976
cd208a1c
RH
3977static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3978{
3979 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3980}
3981
5ca192df
RDC
3982static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3983{
3984 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3985}
3986
8fc2ea21
RH
3987static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3988{
3989 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3990}
3991
2d7137c1
RH
3992static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3993{
3994 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3995}
3996
3d6ad6bb
RH
3997static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3998{
3999 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
4000}
4001
4002static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
4003{
4004 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
4005}
4006
5814d587
RH
4007static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
4008{
4009 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
4010}
4011
9eeb7a1c
RH
4012static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4013{
4014 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4015}
4016
c36c65ea
RDC
4017static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4018{
4019 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4020}
4021
8c7e17ef
PM
4022static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
4023{
4024 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
4025}
4026
75662f36
PM
4027static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
4028{
4029 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
4030}
4031
be53b6f4
RH
4032static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4033{
4034 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4035}
4036
c7fd0baa
RH
4037static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4038{
4039 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4040}
4041
4042static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4043{
4044 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4045}
4046
f305bf94
RH
4047static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
4048{
4049 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
4050}
4051
a793bcd0 4052static inline bool isar_feature_aa64_pmuv3p1(const ARMISARegisters *id)
2a609df8
PM
4053{
4054 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4055 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4056}
4057
a793bcd0 4058static inline bool isar_feature_aa64_pmuv3p4(const ARMISARegisters *id)
15dd1ebd 4059{
54117b90
PM
4060 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4061 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
15dd1ebd
PM
4062}
4063
0b42f4fa
PM
4064static inline bool isar_feature_aa64_pmuv3p5(const ARMISARegisters *id)
4065{
4066 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 6 &&
4067 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4068}
4069
2677cf9f
PM
4070static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4071{
4072 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4073}
4074
a1229109
PM
4075static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4076{
4077 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4078}
4079
f7da051f
RH
4080static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4081{
4082 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4083}
4084
ef56c242
RH
4085static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4086{
4087 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4088}
4089
4090static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4091{
4092 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4093 return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4094}
4095
4096static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4097{
4098 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4099}
4100
4101static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4102{
4103 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4104 return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4105}
4106
104f703d
PM
4107static inline bool isar_feature_aa64_tgran4(const ARMISARegisters *id)
4108{
4109 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 0;
4110}
4111
4112static inline bool isar_feature_aa64_tgran16(const ARMISARegisters *id)
4113{
4114 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 1;
4115}
4116
4117static inline bool isar_feature_aa64_tgran64(const ARMISARegisters *id)
4118{
4119 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64) >= 0;
4120}
4121
4122static inline bool isar_feature_aa64_tgran4_2(const ARMISARegisters *id)
4123{
4124 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4125 return t >= 2 || (t == 0 && isar_feature_aa64_tgran4(id));
4126}
4127
4128static inline bool isar_feature_aa64_tgran16_2(const ARMISARegisters *id)
4129{
4130 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4131 return t >= 2 || (t == 0 && isar_feature_aa64_tgran16(id));
4132}
4133
4134static inline bool isar_feature_aa64_tgran64_2(const ARMISARegisters *id)
4135{
4136 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64_2);
4137 return t >= 2 || (t == 0 && isar_feature_aa64_tgran64(id));
4138}
4139
957e6155
PM
4140static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4141{
4142 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4143}
4144
0af312b6
RH
4145static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4146{
4147 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4148}
4149
ce3125be
PM
4150static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4151{
4152 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4153}
4154
dc8b1853
RC
4155static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4156{
4157 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4158}
4159
7cb1e618
RH
4160static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4161{
4162 int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4163 if (key >= 2) {
4164 return true; /* FEAT_CSV2_2 */
4165 }
4166 if (key == 1) {
4167 key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4168 return key >= 2; /* FEAT_CSV2_1p2 */
4169 }
4170 return false;
4171}
4172
f2f68a78
RC
4173static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4174{
4175 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4176}
4177
ca56aac5
RH
4178static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4179{
4180 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4181}
4182
2dc10fa2
RH
4183static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4184{
4185 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4186}
4187
e3a56131
RH
4188static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4189{
4190 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4191}
4192
4193static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4194{
4195 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4196}
4197
cb9c33b8
RH
4198static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4199{
4200 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4201}
4202
c0b9e8a4
RH
4203static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4204{
4205 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4206}
4207
3358eb3f
RH
4208static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4209{
4210 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4211}
4212
3cc7a88e
RH
4213static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4214{
4215 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4216}
4217
2867039a
RH
4218static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4219{
4220 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4221}
4222
4f26756b
SL
4223static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4224{
4225 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4226}
4227
4228static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4229{
4230 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4231}
4232
414c54d5
RH
4233static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4234{
4235 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4236}
4237
4238static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4239{
4240 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4241}
4242
4243static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4244{
4245 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4246}
4247
f94a6df5
PM
4248static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id)
4249{
4250 return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0;
4251}
4252
6e61f839
PM
4253/*
4254 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4255 */
4256static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4257{
4258 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4259}
4260
22e57073
PM
4261static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4262{
4263 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4264}
4265
a793bcd0 4266static inline bool isar_feature_any_pmuv3p1(const ARMISARegisters *id)
2a609df8 4267{
a793bcd0 4268 return isar_feature_aa64_pmuv3p1(id) || isar_feature_aa32_pmuv3p1(id);
2a609df8
PM
4269}
4270
a793bcd0 4271static inline bool isar_feature_any_pmuv3p4(const ARMISARegisters *id)
15dd1ebd 4272{
a793bcd0 4273 return isar_feature_aa64_pmuv3p4(id) || isar_feature_aa32_pmuv3p4(id);
15dd1ebd
PM
4274}
4275
0b42f4fa
PM
4276static inline bool isar_feature_any_pmuv3p5(const ARMISARegisters *id)
4277{
4278 return isar_feature_aa64_pmuv3p5(id) || isar_feature_aa32_pmuv3p5(id);
4279}
4280
957e6155
PM
4281static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4282{
4283 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4284}
4285
ce3125be
PM
4286static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4287{
4288 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4289}
4290
ca56aac5
RH
4291static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4292{
4293 return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4294}
4295
25e168ab
RH
4296static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4297{
4298 return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4299}
4300
962fcbf2
RH
4301/*
4302 * Forward to the above feature tests given an ARMCPU pointer.
4303 */
4304#define cpu_isar_feature(name, cpu) \
4305 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4306
2c0262af 4307#endif