]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
Merge remote-tracking branch 'remotes/kraxel/tags/sirius/ipxe-20200908-pull-request...
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
2c4da50d 24#include "hw/registerfields.h"
74433bf0
RH
25#include "cpu-qom.h"
26#include "exec/cpu-defs.h"
9042c0e2 27
ca759f9e
AB
28/* ARM processors have a weak memory model */
29#define TCG_GUEST_DEFAULT_MO (0)
30
e24fd076
DG
31#ifdef TARGET_AARCH64
32#define KVM_HAVE_MCE_INJECTION 1
33#endif
34
b8a9e8f1
FB
35#define EXCP_UDEF 1 /* undefined instruction */
36#define EXCP_SWI 2 /* software interrupt */
37#define EXCP_PREFETCH_ABORT 3
38#define EXCP_DATA_ABORT 4
b5ff1b31
FB
39#define EXCP_IRQ 5
40#define EXCP_FIQ 6
06c949e6 41#define EXCP_BKPT 7
9ee6e8bb 42#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 43#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 44#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 45#define EXCP_HYP_TRAP 12
e0d6e6a5 46#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
47#define EXCP_VIRQ 14
48#define EXCP_VFIQ 15
19a6e31c 49#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 50#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 51#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 52#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 53#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
54#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
55#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
2c4a7cc5 56/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
57
58#define ARMV7M_EXCP_RESET 1
59#define ARMV7M_EXCP_NMI 2
60#define ARMV7M_EXCP_HARD 3
61#define ARMV7M_EXCP_MEM 4
62#define ARMV7M_EXCP_BUS 5
63#define ARMV7M_EXCP_USAGE 6
1e577cc7 64#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
65#define ARMV7M_EXCP_SVC 11
66#define ARMV7M_EXCP_DEBUG 12
67#define ARMV7M_EXCP_PENDSV 14
68#define ARMV7M_EXCP_SYSTICK 15
2c0262af 69
acf94941
PM
70/* For M profile, some registers are banked secure vs non-secure;
71 * these are represented as a 2-element array where the first element
72 * is the non-secure copy and the second is the secure copy.
73 * When the CPU does not have implement the security extension then
74 * only the first element is used.
75 * This means that the copy for the current security state can be
76 * accessed via env->registerfield[env->v7m.secure] (whether the security
77 * extension is implemented or not).
78 */
4a16724f
PM
79enum {
80 M_REG_NS = 0,
81 M_REG_S = 1,
82 M_REG_NUM_BANKS = 2,
83};
acf94941 84
403946c0
RH
85/* ARM-specific interrupt pending bits. */
86#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
87#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
88#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 89
e4fe830b
PM
90/* The usual mapping for an AArch64 system register to its AArch32
91 * counterpart is for the 32 bit world to have access to the lower
92 * half only (with writes leaving the upper half untouched). It's
93 * therefore useful to be able to pass TCG the offset of the least
94 * significant half of a uint64_t struct member.
95 */
96#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 97#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 98#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
99#else
100#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 101#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
102#endif
103
136e67e9 104/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
105#define ARM_CPU_IRQ 0
106#define ARM_CPU_FIQ 1
136e67e9
EI
107#define ARM_CPU_VIRQ 2
108#define ARM_CPU_VFIQ 3
403946c0 109
aaa1f954
EI
110/* ARM-specific extra insn start words:
111 * 1: Conditional execution bits
112 * 2: Partial exception syndrome for data aborts
113 */
114#define TARGET_INSN_START_EXTRA_WORDS 2
115
116/* The 2nd extra word holding syndrome info for data aborts does not use
117 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
118 * help the sleb128 encoder do a better job.
119 * When restoring the CPU state, we shift it back up.
120 */
121#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
122#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 123
b7bcbe95
FB
124/* We currently assume float and double are IEEE single and double
125 precision respectively.
126 Doing runtime conversions is tricky because VFP registers may contain
127 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
128 s<2n> maps to the least significant half of d<n>
129 s<2n+1> maps to the most significant half of d<n>
130 */
b7bcbe95 131
200bf5b7
AB
132/**
133 * DynamicGDBXMLInfo:
134 * @desc: Contains the XML descriptions.
448d4d14
AB
135 * @num: Number of the registers in this XML seen by GDB.
136 * @data: A union with data specific to the set of registers
137 * @cpregs_keys: Array that contains the corresponding Key of
138 * a given cpreg with the same order of the cpreg
139 * in the XML description.
200bf5b7
AB
140 */
141typedef struct DynamicGDBXMLInfo {
142 char *desc;
448d4d14
AB
143 int num;
144 union {
145 struct {
146 uint32_t *keys;
147 } cpregs;
148 } data;
200bf5b7
AB
149} DynamicGDBXMLInfo;
150
55d284af
PM
151/* CPU state for each instance of a generic timer (in cp15 c14) */
152typedef struct ARMGenericTimer {
153 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 154 uint64_t ctl; /* Timer Control register */
55d284af
PM
155} ARMGenericTimer;
156
8c94b071
RH
157#define GTIMER_PHYS 0
158#define GTIMER_VIRT 1
159#define GTIMER_HYP 2
160#define GTIMER_SEC 3
161#define GTIMER_HYPVIRT 4
162#define NUM_GTIMERS 5
55d284af 163
11f136ee
FA
164typedef struct {
165 uint64_t raw_tcr;
166 uint32_t mask;
167 uint32_t base_mask;
168} TCR;
169
c39c2b90
RH
170/* Define a maximum sized vector register.
171 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
172 * For 64-bit, this is a 2048-bit SVE register.
173 *
174 * Note that the mapping between S, D, and Q views of the register bank
175 * differs between AArch64 and AArch32.
176 * In AArch32:
177 * Qn = regs[n].d[1]:regs[n].d[0]
178 * Dn = regs[n / 2].d[n & 1]
179 * Sn = regs[n / 4].d[n % 4 / 2],
180 * bits 31..0 for even n, and bits 63..32 for odd n
181 * (and regs[16] to regs[31] are inaccessible)
182 * In AArch64:
183 * Zn = regs[n].d[*]
184 * Qn = regs[n].d[1]:regs[n].d[0]
185 * Dn = regs[n].d[0]
186 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 187 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
188 *
189 * This corresponds to the architecturally defined mapping between
190 * the two execution states, and means we do not need to explicitly
191 * map these registers when changing states.
192 *
193 * Align the data for use with TCG host vector operations.
194 */
195
196#ifdef TARGET_AARCH64
197# define ARM_MAX_VQ 16
0df9142d 198void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
c39c2b90
RH
199#else
200# define ARM_MAX_VQ 1
0df9142d 201static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
c39c2b90
RH
202#endif
203
204typedef struct ARMVectorReg {
205 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
206} ARMVectorReg;
207
3c7d3086 208#ifdef TARGET_AARCH64
991ad91b 209/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 210typedef struct ARMPredicateReg {
46417784 211 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 212} ARMPredicateReg;
991ad91b
RH
213
214/* In AArch32 mode, PAC keys do not exist at all. */
215typedef struct ARMPACKey {
216 uint64_t lo, hi;
217} ARMPACKey;
3c7d3086
RH
218#endif
219
c39c2b90 220
2c0262af 221typedef struct CPUARMState {
b5ff1b31 222 /* Regs for current mode. */
2c0262af 223 uint32_t regs[16];
3926cc84
AG
224
225 /* 32/64 switch only happens when taking and returning from
226 * exceptions so the overlap semantics are taken care of then
227 * instead of having a complicated union.
228 */
229 /* Regs for A64 mode. */
230 uint64_t xregs[32];
231 uint64_t pc;
d356312f
PM
232 /* PSTATE isn't an architectural register for ARMv8. However, it is
233 * convenient for us to assemble the underlying state into a 32 bit format
234 * identical to the architectural format used for the SPSR. (This is also
235 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
236 * 'pstate' register are.) Of the PSTATE bits:
237 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
238 * semantics as for AArch32, as described in the comments on each field)
239 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 240 * DAIF (exception masks) are kept in env->daif
f6e52eaa 241 * BTYPE is kept in env->btype
d356312f 242 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
243 */
244 uint32_t pstate;
245 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
246
fdd1b228
RH
247 /* Cached TBFLAGS state. See below for which bits are included. */
248 uint32_t hflags;
249
b90372ad 250 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 251 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
252 the whole CPSR. */
253 uint32_t uncached_cpsr;
254 uint32_t spsr;
255
256 /* Banked registers. */
28c9457d 257 uint64_t banked_spsr[8];
0b7d409d
FA
258 uint32_t banked_r13[8];
259 uint32_t banked_r14[8];
3b46e624 260
b5ff1b31
FB
261 /* These hold r8-r12. */
262 uint32_t usr_regs[5];
263 uint32_t fiq_regs[5];
3b46e624 264
2c0262af
FB
265 /* cpsr flag cache for faster execution */
266 uint32_t CF; /* 0 or 1 */
267 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
268 uint32_t NF; /* N is bit 31. All other bits are undefined. */
269 uint32_t ZF; /* Z set if zero. */
99c475ab 270 uint32_t QF; /* 0 or 1 */
9ee6e8bb 271 uint32_t GE; /* cpsr[19:16] */
b26eefb6 272 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 273 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 274 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 275 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 276
1b174238 277 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 278 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 279
b5ff1b31
FB
280 /* System control coprocessor (cp15) */
281 struct {
40f137e1 282 uint32_t c0_cpuid;
b85a1fd6
FA
283 union { /* Cache size selection */
284 struct {
285 uint64_t _unused_csselr0;
286 uint64_t csselr_ns;
287 uint64_t _unused_csselr1;
288 uint64_t csselr_s;
289 };
290 uint64_t csselr_el[4];
291 };
137feaa9
FA
292 union { /* System control register. */
293 struct {
294 uint64_t _unused_sctlr;
295 uint64_t sctlr_ns;
296 uint64_t hsctlr;
297 uint64_t sctlr_s;
298 };
299 uint64_t sctlr_el[4];
300 };
7ebd5f2e 301 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 302 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 303 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 304 uint64_t sder; /* Secure debug enable register. */
77022576 305 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
306 union { /* MMU translation table base 0. */
307 struct {
308 uint64_t _unused_ttbr0_0;
309 uint64_t ttbr0_ns;
310 uint64_t _unused_ttbr0_1;
311 uint64_t ttbr0_s;
312 };
313 uint64_t ttbr0_el[4];
314 };
315 union { /* MMU translation table base 1. */
316 struct {
317 uint64_t _unused_ttbr1_0;
318 uint64_t ttbr1_ns;
319 uint64_t _unused_ttbr1_1;
320 uint64_t ttbr1_s;
321 };
322 uint64_t ttbr1_el[4];
323 };
b698e9cf 324 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
325 /* MMU translation table base control. */
326 TCR tcr_el[4];
68e9c2fe 327 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
328 uint32_t c2_data; /* MPU data cacheable bits. */
329 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
330 union { /* MMU domain access control register
331 * MPU write buffer control.
332 */
333 struct {
334 uint64_t dacr_ns;
335 uint64_t dacr_s;
336 };
337 struct {
338 uint64_t dacr32_el2;
339 };
340 };
7e09797c
PM
341 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
342 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 343 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 344 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
345 union { /* Fault status registers. */
346 struct {
347 uint64_t ifsr_ns;
348 uint64_t ifsr_s;
349 };
350 struct {
351 uint64_t ifsr32_el2;
352 };
353 };
4a7e2d73
FA
354 union {
355 struct {
356 uint64_t _unused_dfsr;
357 uint64_t dfsr_ns;
358 uint64_t hsr;
359 uint64_t dfsr_s;
360 };
361 uint64_t esr_el[4];
362 };
ce819861 363 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
364 union { /* Fault address registers. */
365 struct {
366 uint64_t _unused_far0;
367#ifdef HOST_WORDS_BIGENDIAN
368 uint32_t ifar_ns;
369 uint32_t dfar_ns;
370 uint32_t ifar_s;
371 uint32_t dfar_s;
372#else
373 uint32_t dfar_ns;
374 uint32_t ifar_ns;
375 uint32_t dfar_s;
376 uint32_t ifar_s;
377#endif
378 uint64_t _unused_far3;
379 };
380 uint64_t far_el[4];
381 };
59e05530 382 uint64_t hpfar_el2;
2a5a9abd 383 uint64_t hstr_el2;
01c097f7
FA
384 union { /* Translation result. */
385 struct {
386 uint64_t _unused_par_0;
387 uint64_t par_ns;
388 uint64_t _unused_par_1;
389 uint64_t par_s;
390 };
391 uint64_t par_el[4];
392 };
6cb0b013 393
b5ff1b31
FB
394 uint32_t c9_insn; /* Cache lockdown registers. */
395 uint32_t c9_data;
8521466b
AF
396 uint64_t c9_pmcr; /* performance monitor control register */
397 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
398 uint64_t c9_pmovsr; /* perf monitor overflow status */
399 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 400 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 401 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
402 union { /* Memory attribute redirection */
403 struct {
404#ifdef HOST_WORDS_BIGENDIAN
405 uint64_t _unused_mair_0;
406 uint32_t mair1_ns;
407 uint32_t mair0_ns;
408 uint64_t _unused_mair_1;
409 uint32_t mair1_s;
410 uint32_t mair0_s;
411#else
412 uint64_t _unused_mair_0;
413 uint32_t mair0_ns;
414 uint32_t mair1_ns;
415 uint64_t _unused_mair_1;
416 uint32_t mair0_s;
417 uint32_t mair1_s;
418#endif
419 };
420 uint64_t mair_el[4];
421 };
fb6c91ba
GB
422 union { /* vector base address register */
423 struct {
424 uint64_t _unused_vbar;
425 uint64_t vbar_ns;
426 uint64_t hvbar;
427 uint64_t vbar_s;
428 };
429 uint64_t vbar_el[4];
430 };
e89e51a1 431 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
432 struct { /* FCSE PID. */
433 uint32_t fcseidr_ns;
434 uint32_t fcseidr_s;
435 };
436 union { /* Context ID. */
437 struct {
438 uint64_t _unused_contextidr_0;
439 uint64_t contextidr_ns;
440 uint64_t _unused_contextidr_1;
441 uint64_t contextidr_s;
442 };
443 uint64_t contextidr_el[4];
444 };
445 union { /* User RW Thread register. */
446 struct {
447 uint64_t tpidrurw_ns;
448 uint64_t tpidrprw_ns;
449 uint64_t htpidr;
450 uint64_t _tpidr_el3;
451 };
452 uint64_t tpidr_el[4];
453 };
454 /* The secure banks of these registers don't map anywhere */
455 uint64_t tpidrurw_s;
456 uint64_t tpidrprw_s;
457 uint64_t tpidruro_s;
458
459 union { /* User RO Thread register. */
460 uint64_t tpidruro_ns;
461 uint64_t tpidrro_el[1];
462 };
a7adc4b7
PM
463 uint64_t c14_cntfrq; /* Counter Frequency register */
464 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 465 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 466 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 467 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 468 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
469 uint32_t c15_ticonfig; /* TI925T configuration byte. */
470 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
471 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
472 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
473 uint32_t c15_config_base_address; /* SCU base address. */
474 uint32_t c15_diagnostic; /* diagnostic register */
475 uint32_t c15_power_diagnostic;
476 uint32_t c15_power_control; /* power control */
0b45451e
PM
477 uint64_t dbgbvr[16]; /* breakpoint value registers */
478 uint64_t dbgbcr[16]; /* breakpoint control registers */
479 uint64_t dbgwvr[16]; /* watchpoint value registers */
480 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 481 uint64_t mdscr_el1;
1424ca8d 482 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 483 uint64_t mdcr_el2;
5513c3ab 484 uint64_t mdcr_el3;
5d05b9d4
AL
485 /* Stores the architectural value of the counter *the last time it was
486 * updated* by pmccntr_op_start. Accesses should always be surrounded
487 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
488 * architecturally-correct value is being read/set.
7c2cb42b 489 */
c92c0687 490 uint64_t c15_ccnt;
5d05b9d4
AL
491 /* Stores the delta between the architectural value and the underlying
492 * cycle count during normal operation. It is used to update c15_ccnt
493 * to be the correct architectural value before accesses. During
494 * accesses, c15_ccnt_delta contains the underlying count being used
495 * for the access, after which it reverts to the delta value in
496 * pmccntr_op_finish.
497 */
498 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
499 uint64_t c14_pmevcntr[31];
500 uint64_t c14_pmevcntr_delta[31];
501 uint64_t c14_pmevtyper[31];
8521466b 502 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 503 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 504 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
4b779ceb
RH
505 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
506 uint64_t gcr_el1;
507 uint64_t rgsr_el1;
b5ff1b31 508 } cp15;
40f137e1 509
9ee6e8bb 510 struct {
fb602cb7
PM
511 /* M profile has up to 4 stack pointers:
512 * a Main Stack Pointer and a Process Stack Pointer for each
513 * of the Secure and Non-Secure states. (If the CPU doesn't support
514 * the security extension then it has only two SPs.)
515 * In QEMU we always store the currently active SP in regs[13],
516 * and the non-active SP for the current security state in
517 * v7m.other_sp. The stack pointers for the inactive security state
518 * are stored in other_ss_msp and other_ss_psp.
519 * switch_v7m_security_state() is responsible for rearranging them
520 * when we change security state.
521 */
9ee6e8bb 522 uint32_t other_sp;
fb602cb7
PM
523 uint32_t other_ss_msp;
524 uint32_t other_ss_psp;
4a16724f
PM
525 uint32_t vecbase[M_REG_NUM_BANKS];
526 uint32_t basepri[M_REG_NUM_BANKS];
527 uint32_t control[M_REG_NUM_BANKS];
528 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
529 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
530 uint32_t hfsr; /* HardFault Status */
531 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 532 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 533 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 534 uint32_t bfar; /* BusFault Address */
bed079da 535 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 536 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 537 int exception;
4a16724f
PM
538 uint32_t primask[M_REG_NUM_BANKS];
539 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 540 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 541 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 542 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 543 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
544 uint32_t msplim[M_REG_NUM_BANKS];
545 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
546 uint32_t fpcar[M_REG_NUM_BANKS];
547 uint32_t fpccr[M_REG_NUM_BANKS];
548 uint32_t fpdscr[M_REG_NUM_BANKS];
549 uint32_t cpacr[M_REG_NUM_BANKS];
550 uint32_t nsacr;
9ee6e8bb
PB
551 } v7m;
552
abf1172f
PM
553 /* Information associated with an exception about to be taken:
554 * code which raises an exception must set cs->exception_index and
555 * the relevant parts of this structure; the cpu_do_interrupt function
556 * will then set the guest-visible registers as part of the exception
557 * entry process.
558 */
559 struct {
560 uint32_t syndrome; /* AArch64 format syndrome register */
561 uint32_t fsr; /* AArch32 format fault status register info */
562 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 563 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
564 /* If we implement EL2 we will also need to store information
565 * about the intermediate physical address for stage 2 faults.
566 */
567 } exception;
568
202ccb6b
DG
569 /* Information associated with an SError */
570 struct {
571 uint8_t pending;
572 uint8_t has_esr;
573 uint64_t esr;
574 } serror;
575
1711bfa5
BM
576 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
577
ed89f078
PM
578 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
579 uint32_t irq_line_state;
580
fe1479c3
PB
581 /* Thumb-2 EE state. */
582 uint32_t teecr;
583 uint32_t teehbr;
584
b7bcbe95
FB
585 /* VFP coprocessor state. */
586 struct {
c39c2b90 587 ARMVectorReg zregs[32];
b7bcbe95 588
3c7d3086
RH
589#ifdef TARGET_AARCH64
590 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 591#define FFR_PRED_NUM 16
3c7d3086 592 ARMPredicateReg pregs[17];
516e246a
RH
593 /* Scratch space for aa64 sve predicate temporary. */
594 ARMPredicateReg preg_tmp;
3c7d3086
RH
595#endif
596
b7bcbe95 597 /* We store these fpcsr fields separately for convenience. */
a4d58462 598 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
599 int vec_len;
600 int vec_stride;
601
a4d58462
RH
602 uint32_t xregs[16];
603
516e246a 604 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 605 uint32_t scratch[8];
3b46e624 606
d81ce0ef
AB
607 /* There are a number of distinct float control structures:
608 *
609 * fp_status: is the "normal" fp status.
610 * fp_status_fp16: used for half-precision calculations
611 * standard_fp_status : the ARM "Standard FPSCR Value"
aaae563b
PM
612 * standard_fp_status_fp16 : used for half-precision
613 * calculations with the ARM "Standard FPSCR Value"
d81ce0ef
AB
614 *
615 * Half-precision operations are governed by a separate
616 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
617 * status structure to control this.
618 *
619 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
620 * round-to-nearest and is used by any operations (generally
621 * Neon) which the architecture defines as controlled by the
622 * standard FPSCR value rather than the FPSCR.
3a492f3a 623 *
aaae563b
PM
624 * The "standard FPSCR but for fp16 ops" is needed because
625 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
626 * using a fixed value for it.
627 *
3a492f3a
PM
628 * To avoid having to transfer exception bits around, we simply
629 * say that the FPSCR cumulative exception flags are the logical
aaae563b 630 * OR of the flags in the four fp statuses. This relies on the
3a492f3a
PM
631 * only thing which needs to read the exception flags being
632 * an explicit FPSCR read.
633 */
53cd6637 634 float_status fp_status;
d81ce0ef 635 float_status fp_status_f16;
3a492f3a 636 float_status standard_fp_status;
aaae563b 637 float_status standard_fp_status_f16;
5be5e8ed
RH
638
639 /* ZCR_EL[1-3] */
640 uint64_t zcr_el[4];
b7bcbe95 641 } vfp;
03d05e2d
PM
642 uint64_t exclusive_addr;
643 uint64_t exclusive_val;
644 uint64_t exclusive_high;
b7bcbe95 645
18c9b560
AZ
646 /* iwMMXt coprocessor state. */
647 struct {
648 uint64_t regs[16];
649 uint64_t val;
650
651 uint32_t cregs[16];
652 } iwmmxt;
653
991ad91b 654#ifdef TARGET_AARCH64
108b3ba8
RH
655 struct {
656 ARMPACKey apia;
657 ARMPACKey apib;
658 ARMPACKey apda;
659 ARMPACKey apdb;
660 ARMPACKey apga;
661 } keys;
991ad91b
RH
662#endif
663
ce4defa0
PB
664#if defined(CONFIG_USER_ONLY)
665 /* For usermode syscall translation. */
666 int eabi;
667#endif
668
46747d15 669 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
670 struct CPUWatchpoint *cpu_watchpoint[16];
671
1f5c00cf
AB
672 /* Fields up to this point are cleared by a CPU reset */
673 struct {} end_reset_fields;
674
e8b5fae5 675 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 676
581be094 677 /* Internal CPU feature flags. */
918f5dca 678 uint64_t features;
581be094 679
6cb0b013
PC
680 /* PMSAv7 MPU */
681 struct {
682 uint32_t *drbar;
683 uint32_t *drsr;
684 uint32_t *dracr;
4a16724f 685 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
686 } pmsav7;
687
0e1a46bb
PM
688 /* PMSAv8 MPU */
689 struct {
690 /* The PMSAv8 implementation also shares some PMSAv7 config
691 * and state:
692 * pmsav7.rnr (region number register)
693 * pmsav7_dregion (number of configured regions)
694 */
4a16724f
PM
695 uint32_t *rbar[M_REG_NUM_BANKS];
696 uint32_t *rlar[M_REG_NUM_BANKS];
697 uint32_t mair0[M_REG_NUM_BANKS];
698 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
699 } pmsav8;
700
9901c576
PM
701 /* v8M SAU */
702 struct {
703 uint32_t *rbar;
704 uint32_t *rlar;
705 uint32_t rnr;
706 uint32_t ctrl;
707 } sau;
708
983fe826 709 void *nvic;
462a8bc6 710 const struct arm_boot_info *boot_info;
d3a3e529
VK
711 /* Store GICv3CPUState to access from this struct */
712 void *gicv3state;
2c0262af
FB
713} CPUARMState;
714
5fda9504
TH
715static inline void set_feature(CPUARMState *env, int feature)
716{
717 env->features |= 1ULL << feature;
718}
719
720static inline void unset_feature(CPUARMState *env, int feature)
721{
722 env->features &= ~(1ULL << feature);
723}
724
bd7d00fc 725/**
08267487 726 * ARMELChangeHookFn:
bd7d00fc
PM
727 * type of a function which can be registered via arm_register_el_change_hook()
728 * to get callbacks when the CPU changes its exception level or mode.
729 */
08267487
AL
730typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
731typedef struct ARMELChangeHook ARMELChangeHook;
732struct ARMELChangeHook {
733 ARMELChangeHookFn *hook;
734 void *opaque;
735 QLIST_ENTRY(ARMELChangeHook) node;
736};
062ba099
AB
737
738/* These values map onto the return values for
739 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
740typedef enum ARMPSCIState {
d5affb0d
AJ
741 PSCI_ON = 0,
742 PSCI_OFF = 1,
062ba099
AB
743 PSCI_ON_PENDING = 2
744} ARMPSCIState;
745
962fcbf2
RH
746typedef struct ARMISARegisters ARMISARegisters;
747
74e75564
PB
748/**
749 * ARMCPU:
750 * @env: #CPUARMState
751 *
752 * An ARM CPU core.
753 */
754struct ARMCPU {
755 /*< private >*/
756 CPUState parent_obj;
757 /*< public >*/
758
5b146dc7 759 CPUNegativeOffsetState neg;
74e75564
PB
760 CPUARMState env;
761
762 /* Coprocessor information */
763 GHashTable *cp_regs;
764 /* For marshalling (mostly coprocessor) register state between the
765 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
766 * we use these arrays.
767 */
768 /* List of register indexes managed via these arrays; (full KVM style
769 * 64 bit indexes, not CPRegInfo 32 bit indexes)
770 */
771 uint64_t *cpreg_indexes;
772 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
773 uint64_t *cpreg_values;
774 /* Length of the indexes, values, reset_values arrays */
775 int32_t cpreg_array_len;
776 /* These are used only for migration: incoming data arrives in
777 * these fields and is sanity checked in post_load before copying
778 * to the working data structures above.
779 */
780 uint64_t *cpreg_vmstate_indexes;
781 uint64_t *cpreg_vmstate_values;
782 int32_t cpreg_vmstate_array_len;
783
448d4d14 784 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 785 DynamicGDBXMLInfo dyn_svereg_xml;
200bf5b7 786
74e75564
PB
787 /* Timers used by the generic (architected) timer */
788 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
789 /*
790 * Timer used by the PMU. Its state is restored after migration by
791 * pmu_op_finish() - it does not need other handling during migration
792 */
793 QEMUTimer *pmu_timer;
74e75564
PB
794 /* GPIO outputs for generic timer */
795 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
796 /* GPIO output for GICv3 maintenance interrupt signal */
797 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
798 /* GPIO output for the PMU interrupt */
799 qemu_irq pmu_interrupt;
74e75564
PB
800
801 /* MemoryRegion to use for secure physical accesses */
802 MemoryRegion *secure_memory;
803
8bce44a2
RH
804 /* MemoryRegion to use for allocation tag accesses */
805 MemoryRegion *tag_memory;
806 MemoryRegion *secure_tag_memory;
807
181962fd
PM
808 /* For v8M, pointer to the IDAU interface provided by board/SoC */
809 Object *idau;
810
74e75564
PB
811 /* 'compatible' string for this CPU for Linux device trees */
812 const char *dtb_compatible;
813
814 /* PSCI version for this CPU
815 * Bits[31:16] = Major Version
816 * Bits[15:0] = Minor Version
817 */
818 uint32_t psci_version;
819
062ba099
AB
820 /* Current power state, access guarded by BQL */
821 ARMPSCIState power_state;
822
c25bd18a
PM
823 /* CPU has virtualization extension */
824 bool has_el2;
74e75564
PB
825 /* CPU has security extension */
826 bool has_el3;
5c0a3819
SZ
827 /* CPU has PMU (Performance Monitor Unit) */
828 bool has_pmu;
97a28b0e
PM
829 /* CPU has VFP */
830 bool has_vfp;
831 /* CPU has Neon */
832 bool has_neon;
ea90db0a
PM
833 /* CPU has M-profile DSP extension */
834 bool has_dsp;
74e75564
PB
835
836 /* CPU has memory protection unit */
837 bool has_mpu;
838 /* PMSAv7 MPU number of supported regions */
839 uint32_t pmsav7_dregion;
9901c576
PM
840 /* v8M SAU number of supported regions */
841 uint32_t sau_sregion;
74e75564
PB
842
843 /* PSCI conduit used to invoke PSCI methods
844 * 0 - disabled, 1 - smc, 2 - hvc
845 */
846 uint32_t psci_conduit;
847
38e2a77c
PM
848 /* For v8M, initial value of the Secure VTOR */
849 uint32_t init_svtor;
850
74e75564
PB
851 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
852 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
853 */
854 uint32_t kvm_target;
855
856 /* KVM init features for this CPU */
857 uint32_t kvm_init_features[7];
858
e5ac4200
AJ
859 /* KVM CPU state */
860
861 /* KVM virtual time adjustment */
862 bool kvm_adjvtime;
863 bool kvm_vtime_dirty;
864 uint64_t kvm_vtime;
865
74e75564
PB
866 /* Uniprocessor system with MP extensions */
867 bool mp_is_up;
868
c4487d76
PM
869 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
870 * and the probe failed (so we need to report the error in realize)
871 */
872 bool host_cpu_probe_failed;
873
f9a69711
AF
874 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
875 * register.
876 */
877 int32_t core_count;
878
74e75564
PB
879 /* The instance init functions for implementation-specific subclasses
880 * set these fields to specify the implementation-dependent values of
881 * various constant registers and reset values of non-constant
882 * registers.
883 * Some of these might become QOM properties eventually.
884 * Field names match the official register names as defined in the
885 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
886 * is used for reset values of non-constant registers; no reset_
887 * prefix means a constant register.
47576b94
RH
888 * Some of these registers are split out into a substructure that
889 * is shared with the translators to control the ISA.
1548a7b2
PM
890 *
891 * Note that if you add an ID register to the ARMISARegisters struct
892 * you need to also update the 32-bit and 64-bit versions of the
893 * kvm_arm_get_host_cpu_features() function to correctly populate the
894 * field by reading the value from the KVM vCPU.
74e75564 895 */
47576b94
RH
896 struct ARMISARegisters {
897 uint32_t id_isar0;
898 uint32_t id_isar1;
899 uint32_t id_isar2;
900 uint32_t id_isar3;
901 uint32_t id_isar4;
902 uint32_t id_isar5;
903 uint32_t id_isar6;
10054016
PM
904 uint32_t id_mmfr0;
905 uint32_t id_mmfr1;
906 uint32_t id_mmfr2;
907 uint32_t id_mmfr3;
908 uint32_t id_mmfr4;
47576b94
RH
909 uint32_t mvfr0;
910 uint32_t mvfr1;
911 uint32_t mvfr2;
a6179538 912 uint32_t id_dfr0;
4426d361 913 uint32_t dbgdidr;
47576b94
RH
914 uint64_t id_aa64isar0;
915 uint64_t id_aa64isar1;
916 uint64_t id_aa64pfr0;
917 uint64_t id_aa64pfr1;
3dc91ddb
PM
918 uint64_t id_aa64mmfr0;
919 uint64_t id_aa64mmfr1;
64761e10 920 uint64_t id_aa64mmfr2;
2a609df8
PM
921 uint64_t id_aa64dfr0;
922 uint64_t id_aa64dfr1;
47576b94 923 } isar;
e544f800 924 uint64_t midr;
74e75564
PB
925 uint32_t revidr;
926 uint32_t reset_fpsid;
74e75564
PB
927 uint32_t ctr;
928 uint32_t reset_sctlr;
929 uint32_t id_pfr0;
930 uint32_t id_pfr1;
cad86737
AL
931 uint64_t pmceid0;
932 uint64_t pmceid1;
74e75564 933 uint32_t id_afr0;
74e75564
PB
934 uint64_t id_aa64afr0;
935 uint64_t id_aa64afr1;
74e75564
PB
936 uint32_t clidr;
937 uint64_t mp_affinity; /* MP ID without feature bits */
938 /* The elements of this array are the CCSIDR values for each cache,
939 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
940 */
957e6155 941 uint64_t ccsidr[16];
74e75564
PB
942 uint64_t reset_cbar;
943 uint32_t reset_auxcr;
944 bool reset_hivecs;
945 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
946 uint32_t dcz_blocksize;
947 uint64_t rvbar;
bd7d00fc 948
e45868a3
PM
949 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
950 int gic_num_lrs; /* number of list registers */
951 int gic_vpribits; /* number of virtual priority bits */
952 int gic_vprebits; /* number of virtual preemption bits */
953
3a062d57
JB
954 /* Whether the cfgend input is high (i.e. this CPU should reset into
955 * big-endian mode). This setting isn't used directly: instead it modifies
956 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
957 * architecture version.
958 */
959 bool cfgend;
960
b5c53d1b 961 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 962 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
963
964 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
965
966 /* Used to synchronize KVM and QEMU in-kernel device levels */
967 uint8_t device_irq_level;
adf92eab
RH
968
969 /* Used to set the maximum vector length the cpu will support. */
970 uint32_t sve_max_vq;
0df9142d
AJ
971
972 /*
973 * In sve_vq_map each set bit is a supported vector length of
974 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
975 * length in quadwords.
976 *
977 * While processing properties during initialization, corresponding
978 * sve_vq_init bits are set for bits in sve_vq_map that have been
979 * set by properties.
980 */
981 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
982 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
7def8754
AJ
983
984 /* Generic timer counter frequency, in Hz */
985 uint64_t gt_cntfrq_hz;
74e75564
PB
986};
987
7def8754
AJ
988unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
989
51e5ef45
MAL
990void arm_cpu_post_init(Object *obj);
991
46de5913
IM
992uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
993
74e75564 994#ifndef CONFIG_USER_ONLY
8a9358cc 995extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
996#endif
997
998void arm_cpu_do_interrupt(CPUState *cpu);
999void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1000bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
1001
74e75564
PB
1002hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1003 MemTxAttrs *attrs);
1004
a010bdbe 1005int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
1006int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1007
d12379c5
AB
1008/*
1009 * Helpers to dynamically generates XML descriptions of the sysregs
1010 * and SVE registers. Returns the number of registers in each set.
200bf5b7 1011 */
32d6e32a 1012int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
d12379c5 1013int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
200bf5b7
AB
1014
1015/* Returns the dynamically generated XML for the gdb stub.
1016 * Returns a pointer to the XML contents for the specified XML file or NULL
1017 * if the XML name doesn't match the predefined one.
1018 */
1019const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1020
74e75564
PB
1021int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1022 int cpuid, void *opaque);
1023int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1024 int cpuid, void *opaque);
1025
1026#ifdef TARGET_AARCH64
a010bdbe 1027int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1028int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1029void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1030void aarch64_sve_change_el(CPUARMState *env, int old_el,
1031 int new_el, bool el0_a64);
87014c6b 1032void aarch64_add_sve_properties(Object *obj);
538baab2
AJ
1033
1034/*
1035 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1036 * The byte at offset i from the start of the in-memory representation contains
1037 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1038 * lowest offsets are stored in the lowest memory addresses, then that nearly
1039 * matches QEMU's representation, which is to use an array of host-endian
1040 * uint64_t's, where the lower offsets are at the lower indices. To complete
1041 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1042 */
1043static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1044{
1045#ifdef HOST_WORDS_BIGENDIAN
1046 int i;
1047
1048 for (i = 0; i < nr; ++i) {
1049 dst[i] = bswap64(src[i]);
1050 }
1051
1052 return dst;
1053#else
1054 return src;
1055#endif
1056}
1057
0ab5953b
RH
1058#else
1059static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1060static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1061 int n, bool a)
1062{ }
87014c6b 1063static inline void aarch64_add_sve_properties(Object *obj) { }
74e75564 1064#endif
778c3a06 1065
91f78c58
PMD
1066#if !defined(CONFIG_TCG)
1067static inline target_ulong do_arm_semihosting(CPUARMState *env)
1068{
1069 g_assert_not_reached();
1070}
1071#else
faacc041 1072target_ulong do_arm_semihosting(CPUARMState *env);
91f78c58 1073#endif
ce02049d
GB
1074void aarch64_sync_32_to_64(CPUARMState *env);
1075void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1076
ced31551
RH
1077int fp_exception_el(CPUARMState *env, int cur_el);
1078int sve_exception_el(CPUARMState *env, int cur_el);
1079uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1080
3926cc84
AG
1081static inline bool is_a64(CPUARMState *env)
1082{
1083 return env->aarch64;
1084}
1085
2c0262af
FB
1086/* you can call this signal handler from your SIGBUS and SIGSEGV
1087 signal handlers to inform the virtual CPU of exceptions. non zero
1088 is returned if the signal was handled by the virtual CPU. */
5fafdf24 1089int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
1090 void *puc);
1091
5d05b9d4
AL
1092/**
1093 * pmu_op_start/finish
ec7b4ce4
AF
1094 * @env: CPUARMState
1095 *
5d05b9d4
AL
1096 * Convert all PMU counters between their delta form (the typical mode when
1097 * they are enabled) and the guest-visible values. These two calls must
1098 * surround any action which might affect the counters.
ec7b4ce4 1099 */
5d05b9d4
AL
1100void pmu_op_start(CPUARMState *env);
1101void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1102
4e7beb0c
AL
1103/*
1104 * Called when a PMU counter is due to overflow
1105 */
1106void arm_pmu_timer_cb(void *opaque);
1107
033614c4
AL
1108/**
1109 * Functions to register as EL change hooks for PMU mode filtering
1110 */
1111void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1112void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1113
57a4a11b 1114/*
bf8d0969
AL
1115 * pmu_init
1116 * @cpu: ARMCPU
57a4a11b 1117 *
bf8d0969
AL
1118 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1119 * for the current configuration
57a4a11b 1120 */
bf8d0969 1121void pmu_init(ARMCPU *cpu);
57a4a11b 1122
76e3e1bc
PM
1123/* SCTLR bit meanings. Several bits have been reused in newer
1124 * versions of the architecture; in that case we define constants
1125 * for both old and new bit meanings. Code which tests against those
1126 * bits should probably check or otherwise arrange that the CPU
1127 * is the architectural version it expects.
1128 */
1129#define SCTLR_M (1U << 0)
1130#define SCTLR_A (1U << 1)
1131#define SCTLR_C (1U << 2)
1132#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1133#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1134#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1135#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1136#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1137#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1138#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1139#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1140#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1141#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1142#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1143#define SCTLR_ITD (1U << 7) /* v8 onward */
1144#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1145#define SCTLR_SED (1U << 8) /* v8 onward */
1146#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1147#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1148#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1149#define SCTLR_SW (1U << 10) /* v7 */
1150#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1151#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1152#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1153#define SCTLR_I (1U << 12)
b2af69d0
RH
1154#define SCTLR_V (1U << 13) /* AArch32 only */
1155#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1156#define SCTLR_RR (1U << 14) /* up to v7 */
1157#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1158#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1159#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1160#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1161#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1162#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1163#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1164#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1165#define SCTLR_nTWE (1U << 18) /* v8 onward */
1166#define SCTLR_WXN (1U << 19)
1167#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0
RH
1168#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1169#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1170#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1171#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1172#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1173#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1174#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1175#define SCTLR_VE (1U << 24) /* up to v7 */
1176#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1177#define SCTLR_EE (1U << 25)
1178#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1179#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1180#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1181#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1182#define SCTLR_TRE (1U << 28) /* AArch32 only */
1183#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1184#define SCTLR_AFE (1U << 29) /* AArch32 only */
1185#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1186#define SCTLR_TE (1U << 30) /* AArch32 only */
1187#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1188#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1189#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1190#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1191#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1192#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1193#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1194#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1195#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1196#define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
76e3e1bc 1197
c6f19164
GB
1198#define CPTR_TCPAC (1U << 31)
1199#define CPTR_TTA (1U << 20)
1200#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1201#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1202#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1203
187f678d
PM
1204#define MDCR_EPMAD (1U << 21)
1205#define MDCR_EDAD (1U << 20)
033614c4
AL
1206#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1207#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1208#define MDCR_SDD (1U << 16)
a8d64e73 1209#define MDCR_SPD (3U << 14)
187f678d
PM
1210#define MDCR_TDRA (1U << 11)
1211#define MDCR_TDOSA (1U << 10)
1212#define MDCR_TDA (1U << 9)
1213#define MDCR_TDE (1U << 8)
1214#define MDCR_HPME (1U << 7)
1215#define MDCR_TPM (1U << 6)
1216#define MDCR_TPMCR (1U << 5)
033614c4 1217#define MDCR_HPMN (0x1fU)
187f678d 1218
a8d64e73
PM
1219/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1220#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1221
78dbbbe4
PM
1222#define CPSR_M (0x1fU)
1223#define CPSR_T (1U << 5)
1224#define CPSR_F (1U << 6)
1225#define CPSR_I (1U << 7)
1226#define CPSR_A (1U << 8)
1227#define CPSR_E (1U << 9)
1228#define CPSR_IT_2_7 (0xfc00U)
1229#define CPSR_GE (0xfU << 16)
4051e12c 1230#define CPSR_IL (1U << 20)
220f508f 1231#define CPSR_PAN (1U << 22)
78dbbbe4
PM
1232#define CPSR_J (1U << 24)
1233#define CPSR_IT_0_1 (3U << 25)
1234#define CPSR_Q (1U << 27)
1235#define CPSR_V (1U << 28)
1236#define CPSR_C (1U << 29)
1237#define CPSR_Z (1U << 30)
1238#define CPSR_N (1U << 31)
9ee6e8bb 1239#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1240#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1241
1242#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1243#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1244 | CPSR_NZCV)
9ee6e8bb 1245/* Bits writable in user mode. */
268b1b3d 1246#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1247/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1248#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1249
987ab45e
PM
1250/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1251#define XPSR_EXCP 0x1ffU
1252#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1253#define XPSR_IT_2_7 CPSR_IT_2_7
1254#define XPSR_GE CPSR_GE
1255#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1256#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1257#define XPSR_IT_0_1 CPSR_IT_0_1
1258#define XPSR_Q CPSR_Q
1259#define XPSR_V CPSR_V
1260#define XPSR_C CPSR_C
1261#define XPSR_Z CPSR_Z
1262#define XPSR_N CPSR_N
1263#define XPSR_NZCV CPSR_NZCV
1264#define XPSR_IT CPSR_IT
1265
e389be16
FA
1266#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1267#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1268#define TTBCR_PD0 (1U << 4)
1269#define TTBCR_PD1 (1U << 5)
1270#define TTBCR_EPD0 (1U << 7)
1271#define TTBCR_IRGN0 (3U << 8)
1272#define TTBCR_ORGN0 (3U << 10)
1273#define TTBCR_SH0 (3U << 12)
1274#define TTBCR_T1SZ (3U << 16)
1275#define TTBCR_A1 (1U << 22)
1276#define TTBCR_EPD1 (1U << 23)
1277#define TTBCR_IRGN1 (3U << 24)
1278#define TTBCR_ORGN1 (3U << 26)
1279#define TTBCR_SH1 (1U << 28)
1280#define TTBCR_EAE (1U << 31)
1281
d356312f
PM
1282/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1283 * Only these are valid when in AArch64 mode; in
1284 * AArch32 mode SPSRs are basically CPSR-format.
1285 */
f502cfc2 1286#define PSTATE_SP (1U)
d356312f
PM
1287#define PSTATE_M (0xFU)
1288#define PSTATE_nRW (1U << 4)
1289#define PSTATE_F (1U << 6)
1290#define PSTATE_I (1U << 7)
1291#define PSTATE_A (1U << 8)
1292#define PSTATE_D (1U << 9)
f6e52eaa 1293#define PSTATE_BTYPE (3U << 10)
d356312f
PM
1294#define PSTATE_IL (1U << 20)
1295#define PSTATE_SS (1U << 21)
220f508f 1296#define PSTATE_PAN (1U << 22)
9eeb7a1c 1297#define PSTATE_UAO (1U << 23)
4b779ceb 1298#define PSTATE_TCO (1U << 25)
d356312f
PM
1299#define PSTATE_V (1U << 28)
1300#define PSTATE_C (1U << 29)
1301#define PSTATE_Z (1U << 30)
1302#define PSTATE_N (1U << 31)
1303#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1304#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1305#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1306/* Mode values for AArch64 */
1307#define PSTATE_MODE_EL3h 13
1308#define PSTATE_MODE_EL3t 12
1309#define PSTATE_MODE_EL2h 9
1310#define PSTATE_MODE_EL2t 8
1311#define PSTATE_MODE_EL1h 5
1312#define PSTATE_MODE_EL1t 4
1313#define PSTATE_MODE_EL0t 0
1314
de2db7ec
PM
1315/* Write a new value to v7m.exception, thus transitioning into or out
1316 * of Handler mode; this may result in a change of active stack pointer.
1317 */
1318void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1319
9e729b57
EI
1320/* Map EL and handler into a PSTATE_MODE. */
1321static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1322{
1323 return (el << 2) | handler;
1324}
1325
d356312f
PM
1326/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1327 * interprocessing, so we don't attempt to sync with the cpsr state used by
1328 * the 32 bit decoder.
1329 */
1330static inline uint32_t pstate_read(CPUARMState *env)
1331{
1332 int ZF;
1333
1334 ZF = (env->ZF == 0);
1335 return (env->NF & 0x80000000) | (ZF << 30)
1336 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1337 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1338}
1339
1340static inline void pstate_write(CPUARMState *env, uint32_t val)
1341{
1342 env->ZF = (~val) & PSTATE_Z;
1343 env->NF = val;
1344 env->CF = (val >> 29) & 1;
1345 env->VF = (val << 3) & 0x80000000;
4cc35614 1346 env->daif = val & PSTATE_DAIF;
f6e52eaa 1347 env->btype = (val >> 10) & 3;
d356312f
PM
1348 env->pstate = val & ~CACHED_PSTATE_BITS;
1349}
1350
b5ff1b31 1351/* Return the current CPSR value. */
2f4a40e5 1352uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1353
1354typedef enum CPSRWriteType {
1355 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1356 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1357 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1358 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1359} CPSRWriteType;
1360
1361/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1362void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1363 CPSRWriteType write_type);
9ee6e8bb
PB
1364
1365/* Return the current xPSR value. */
1366static inline uint32_t xpsr_read(CPUARMState *env)
1367{
1368 int ZF;
6fbe23d5
PB
1369 ZF = (env->ZF == 0);
1370 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1371 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1372 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1373 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1374 | (env->GE << 16)
9ee6e8bb 1375 | env->v7m.exception;
b5ff1b31
FB
1376}
1377
9ee6e8bb
PB
1378/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1379static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1380{
987ab45e
PM
1381 if (mask & XPSR_NZCV) {
1382 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1383 env->NF = val;
9ee6e8bb
PB
1384 env->CF = (val >> 29) & 1;
1385 env->VF = (val << 3) & 0x80000000;
1386 }
987ab45e
PM
1387 if (mask & XPSR_Q) {
1388 env->QF = ((val & XPSR_Q) != 0);
1389 }
f1e2598c
PM
1390 if (mask & XPSR_GE) {
1391 env->GE = (val & XPSR_GE) >> 16;
1392 }
04c9c81b 1393#ifndef CONFIG_USER_ONLY
987ab45e
PM
1394 if (mask & XPSR_T) {
1395 env->thumb = ((val & XPSR_T) != 0);
1396 }
1397 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1398 env->condexec_bits &= ~3;
1399 env->condexec_bits |= (val >> 25) & 3;
1400 }
987ab45e 1401 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1402 env->condexec_bits &= 3;
1403 env->condexec_bits |= (val >> 8) & 0xfc;
1404 }
987ab45e 1405 if (mask & XPSR_EXCP) {
de2db7ec
PM
1406 /* Note that this only happens on exception exit */
1407 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1408 }
04c9c81b 1409#endif
9ee6e8bb
PB
1410}
1411
f149e3e8
EI
1412#define HCR_VM (1ULL << 0)
1413#define HCR_SWIO (1ULL << 1)
1414#define HCR_PTW (1ULL << 2)
1415#define HCR_FMO (1ULL << 3)
1416#define HCR_IMO (1ULL << 4)
1417#define HCR_AMO (1ULL << 5)
1418#define HCR_VF (1ULL << 6)
1419#define HCR_VI (1ULL << 7)
1420#define HCR_VSE (1ULL << 8)
1421#define HCR_FB (1ULL << 9)
1422#define HCR_BSU_MASK (3ULL << 10)
1423#define HCR_DC (1ULL << 12)
1424#define HCR_TWI (1ULL << 13)
1425#define HCR_TWE (1ULL << 14)
1426#define HCR_TID0 (1ULL << 15)
1427#define HCR_TID1 (1ULL << 16)
1428#define HCR_TID2 (1ULL << 17)
1429#define HCR_TID3 (1ULL << 18)
1430#define HCR_TSC (1ULL << 19)
1431#define HCR_TIDCP (1ULL << 20)
1432#define HCR_TACR (1ULL << 21)
1433#define HCR_TSW (1ULL << 22)
099bf53b 1434#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1435#define HCR_TPU (1ULL << 24)
1436#define HCR_TTLB (1ULL << 25)
1437#define HCR_TVM (1ULL << 26)
1438#define HCR_TGE (1ULL << 27)
1439#define HCR_TDZ (1ULL << 28)
1440#define HCR_HCD (1ULL << 29)
1441#define HCR_TRVM (1ULL << 30)
1442#define HCR_RW (1ULL << 31)
1443#define HCR_CD (1ULL << 32)
1444#define HCR_ID (1ULL << 33)
ac656b16 1445#define HCR_E2H (1ULL << 34)
099bf53b
RH
1446#define HCR_TLOR (1ULL << 35)
1447#define HCR_TERR (1ULL << 36)
1448#define HCR_TEA (1ULL << 37)
1449#define HCR_MIOCNCE (1ULL << 38)
e0a38bb3 1450/* RES0 bit 39 */
099bf53b
RH
1451#define HCR_APK (1ULL << 40)
1452#define HCR_API (1ULL << 41)
1453#define HCR_NV (1ULL << 42)
1454#define HCR_NV1 (1ULL << 43)
1455#define HCR_AT (1ULL << 44)
1456#define HCR_NV2 (1ULL << 45)
1457#define HCR_FWB (1ULL << 46)
1458#define HCR_FIEN (1ULL << 47)
e0a38bb3 1459/* RES0 bit 48 */
099bf53b
RH
1460#define HCR_TID4 (1ULL << 49)
1461#define HCR_TICAB (1ULL << 50)
e0a38bb3 1462#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1463#define HCR_TOCU (1ULL << 52)
e0a38bb3 1464#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1465#define HCR_TTLBIS (1ULL << 54)
1466#define HCR_TTLBOS (1ULL << 55)
1467#define HCR_ATA (1ULL << 56)
1468#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1469#define HCR_TID5 (1ULL << 58)
1470#define HCR_TWEDEN (1ULL << 59)
1471#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1472
64e0e2de
EI
1473#define SCR_NS (1U << 0)
1474#define SCR_IRQ (1U << 1)
1475#define SCR_FIQ (1U << 2)
1476#define SCR_EA (1U << 3)
1477#define SCR_FW (1U << 4)
1478#define SCR_AW (1U << 5)
1479#define SCR_NET (1U << 6)
1480#define SCR_SMD (1U << 7)
1481#define SCR_HCE (1U << 8)
1482#define SCR_SIF (1U << 9)
1483#define SCR_RW (1U << 10)
1484#define SCR_ST (1U << 11)
1485#define SCR_TWI (1U << 12)
1486#define SCR_TWE (1U << 13)
99f8f86d
RH
1487#define SCR_TLOR (1U << 14)
1488#define SCR_TERR (1U << 15)
1489#define SCR_APK (1U << 16)
1490#define SCR_API (1U << 17)
1491#define SCR_EEL2 (1U << 18)
1492#define SCR_EASE (1U << 19)
1493#define SCR_NMEA (1U << 20)
1494#define SCR_FIEN (1U << 21)
1495#define SCR_ENSCXT (1U << 25)
1496#define SCR_ATA (1U << 26)
64e0e2de 1497
01653295
PM
1498/* Return the current FPSCR value. */
1499uint32_t vfp_get_fpscr(CPUARMState *env);
1500void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1501
d81ce0ef
AB
1502/* FPCR, Floating Point Control Register
1503 * FPSR, Floating Poiht Status Register
1504 *
1505 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1506 * FPCR and FPSR. However since they still use non-overlapping bits
1507 * we store the underlying state in fpscr and just mask on read/write.
1508 */
1509#define FPSR_MASK 0xf800009f
0b62159b 1510#define FPCR_MASK 0x07ff9f00
d81ce0ef 1511
a15945d9
PM
1512#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1513#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1514#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1515#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1516#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1517#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef
AB
1518#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1519#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1520#define FPCR_DN (1 << 25) /* Default NaN enable bit */
a4d58462 1521#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
d81ce0ef 1522
f903fa22
PM
1523static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1524{
1525 return vfp_get_fpscr(env) & FPSR_MASK;
1526}
1527
1528static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1529{
1530 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1531 vfp_set_fpscr(env, new_fpscr);
1532}
1533
1534static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1535{
1536 return vfp_get_fpscr(env) & FPCR_MASK;
1537}
1538
1539static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1540{
1541 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1542 vfp_set_fpscr(env, new_fpscr);
1543}
1544
b5ff1b31
FB
1545enum arm_cpu_mode {
1546 ARM_CPU_MODE_USR = 0x10,
1547 ARM_CPU_MODE_FIQ = 0x11,
1548 ARM_CPU_MODE_IRQ = 0x12,
1549 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1550 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1551 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1552 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1553 ARM_CPU_MODE_UND = 0x1b,
1554 ARM_CPU_MODE_SYS = 0x1f
1555};
1556
40f137e1
PB
1557/* VFP system registers. */
1558#define ARM_VFP_FPSID 0
1559#define ARM_VFP_FPSCR 1
a50c0f51 1560#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1561#define ARM_VFP_MVFR1 6
1562#define ARM_VFP_MVFR0 7
40f137e1
PB
1563#define ARM_VFP_FPEXC 8
1564#define ARM_VFP_FPINST 9
1565#define ARM_VFP_FPINST2 10
1566
18c9b560 1567/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1568#define ARM_IWMMXT_wCID 0
1569#define ARM_IWMMXT_wCon 1
1570#define ARM_IWMMXT_wCSSF 2
1571#define ARM_IWMMXT_wCASF 3
1572#define ARM_IWMMXT_wCGR0 8
1573#define ARM_IWMMXT_wCGR1 9
1574#define ARM_IWMMXT_wCGR2 10
1575#define ARM_IWMMXT_wCGR3 11
18c9b560 1576
2c4da50d
PM
1577/* V7M CCR bits */
1578FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1579FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1580FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1581FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1582FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1583FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1584FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1585FIELD(V7M_CCR, DC, 16, 1)
1586FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1587FIELD(V7M_CCR, BP, 18, 1)
2c4da50d 1588
24ac0fb1
PM
1589/* V7M SCR bits */
1590FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1591FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1592FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1593FIELD(V7M_SCR, SEVONPEND, 4, 1)
1594
3b2e9344
PM
1595/* V7M AIRCR bits */
1596FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1597FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1598FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1599FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1600FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1601FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1602FIELD(V7M_AIRCR, PRIS, 14, 1)
1603FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1604FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1605
2c4da50d
PM
1606/* V7M CFSR bits for MMFSR */
1607FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1608FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1609FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1610FIELD(V7M_CFSR, MSTKERR, 4, 1)
1611FIELD(V7M_CFSR, MLSPERR, 5, 1)
1612FIELD(V7M_CFSR, MMARVALID, 7, 1)
1613
1614/* V7M CFSR bits for BFSR */
1615FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1616FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1617FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1618FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1619FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1620FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1621FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1622
1623/* V7M CFSR bits for UFSR */
1624FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1625FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1626FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1627FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1628FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1629FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1630FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1631
334e8dad
PM
1632/* V7M CFSR bit masks covering all of the subregister bits */
1633FIELD(V7M_CFSR, MMFSR, 0, 8)
1634FIELD(V7M_CFSR, BFSR, 8, 8)
1635FIELD(V7M_CFSR, UFSR, 16, 16)
1636
2c4da50d
PM
1637/* V7M HFSR bits */
1638FIELD(V7M_HFSR, VECTTBL, 1, 1)
1639FIELD(V7M_HFSR, FORCED, 30, 1)
1640FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1641
1642/* V7M DFSR bits */
1643FIELD(V7M_DFSR, HALTED, 0, 1)
1644FIELD(V7M_DFSR, BKPT, 1, 1)
1645FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1646FIELD(V7M_DFSR, VCATCH, 3, 1)
1647FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1648
bed079da
PM
1649/* V7M SFSR bits */
1650FIELD(V7M_SFSR, INVEP, 0, 1)
1651FIELD(V7M_SFSR, INVIS, 1, 1)
1652FIELD(V7M_SFSR, INVER, 2, 1)
1653FIELD(V7M_SFSR, AUVIOL, 3, 1)
1654FIELD(V7M_SFSR, INVTRAN, 4, 1)
1655FIELD(V7M_SFSR, LSPERR, 5, 1)
1656FIELD(V7M_SFSR, SFARVALID, 6, 1)
1657FIELD(V7M_SFSR, LSERR, 7, 1)
1658
29c483a5
MD
1659/* v7M MPU_CTRL bits */
1660FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1661FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1662FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1663
43bbce7f
PM
1664/* v7M CLIDR bits */
1665FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1666FIELD(V7M_CLIDR, LOUIS, 21, 3)
1667FIELD(V7M_CLIDR, LOC, 24, 3)
1668FIELD(V7M_CLIDR, LOUU, 27, 3)
1669FIELD(V7M_CLIDR, ICB, 30, 2)
1670
1671FIELD(V7M_CSSELR, IND, 0, 1)
1672FIELD(V7M_CSSELR, LEVEL, 1, 3)
1673/* We use the combination of InD and Level to index into cpu->ccsidr[];
1674 * define a mask for this and check that it doesn't permit running off
1675 * the end of the array.
1676 */
1677FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1678
1679/* v7M FPCCR bits */
1680FIELD(V7M_FPCCR, LSPACT, 0, 1)
1681FIELD(V7M_FPCCR, USER, 1, 1)
1682FIELD(V7M_FPCCR, S, 2, 1)
1683FIELD(V7M_FPCCR, THREAD, 3, 1)
1684FIELD(V7M_FPCCR, HFRDY, 4, 1)
1685FIELD(V7M_FPCCR, MMRDY, 5, 1)
1686FIELD(V7M_FPCCR, BFRDY, 6, 1)
1687FIELD(V7M_FPCCR, SFRDY, 7, 1)
1688FIELD(V7M_FPCCR, MONRDY, 8, 1)
1689FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1690FIELD(V7M_FPCCR, UFRDY, 10, 1)
1691FIELD(V7M_FPCCR, RES0, 11, 15)
1692FIELD(V7M_FPCCR, TS, 26, 1)
1693FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1694FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1695FIELD(V7M_FPCCR, LSPENS, 29, 1)
1696FIELD(V7M_FPCCR, LSPEN, 30, 1)
1697FIELD(V7M_FPCCR, ASPEN, 31, 1)
1698/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1699#define R_V7M_FPCCR_BANKED_MASK \
1700 (R_V7M_FPCCR_LSPACT_MASK | \
1701 R_V7M_FPCCR_USER_MASK | \
1702 R_V7M_FPCCR_THREAD_MASK | \
1703 R_V7M_FPCCR_MMRDY_MASK | \
1704 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1705 R_V7M_FPCCR_UFRDY_MASK | \
1706 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1707
a62e62af
RH
1708/*
1709 * System register ID fields.
1710 */
2bd5f41c
AB
1711FIELD(MIDR_EL1, REVISION, 0, 4)
1712FIELD(MIDR_EL1, PARTNUM, 4, 12)
1713FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1714FIELD(MIDR_EL1, VARIANT, 20, 4)
1715FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1716
a62e62af
RH
1717FIELD(ID_ISAR0, SWAP, 0, 4)
1718FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1719FIELD(ID_ISAR0, BITFIELD, 8, 4)
1720FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1721FIELD(ID_ISAR0, COPROC, 16, 4)
1722FIELD(ID_ISAR0, DEBUG, 20, 4)
1723FIELD(ID_ISAR0, DIVIDE, 24, 4)
1724
1725FIELD(ID_ISAR1, ENDIAN, 0, 4)
1726FIELD(ID_ISAR1, EXCEPT, 4, 4)
1727FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1728FIELD(ID_ISAR1, EXTEND, 12, 4)
1729FIELD(ID_ISAR1, IFTHEN, 16, 4)
1730FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1731FIELD(ID_ISAR1, INTERWORK, 24, 4)
1732FIELD(ID_ISAR1, JAZELLE, 28, 4)
1733
1734FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1735FIELD(ID_ISAR2, MEMHINT, 4, 4)
1736FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1737FIELD(ID_ISAR2, MULT, 12, 4)
1738FIELD(ID_ISAR2, MULTS, 16, 4)
1739FIELD(ID_ISAR2, MULTU, 20, 4)
1740FIELD(ID_ISAR2, PSR_AR, 24, 4)
1741FIELD(ID_ISAR2, REVERSAL, 28, 4)
1742
1743FIELD(ID_ISAR3, SATURATE, 0, 4)
1744FIELD(ID_ISAR3, SIMD, 4, 4)
1745FIELD(ID_ISAR3, SVC, 8, 4)
1746FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1747FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1748FIELD(ID_ISAR3, T32COPY, 20, 4)
1749FIELD(ID_ISAR3, TRUENOP, 24, 4)
1750FIELD(ID_ISAR3, T32EE, 28, 4)
1751
1752FIELD(ID_ISAR4, UNPRIV, 0, 4)
1753FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1754FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1755FIELD(ID_ISAR4, SMC, 12, 4)
1756FIELD(ID_ISAR4, BARRIER, 16, 4)
1757FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1758FIELD(ID_ISAR4, PSR_M, 24, 4)
1759FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1760
1761FIELD(ID_ISAR5, SEVL, 0, 4)
1762FIELD(ID_ISAR5, AES, 4, 4)
1763FIELD(ID_ISAR5, SHA1, 8, 4)
1764FIELD(ID_ISAR5, SHA2, 12, 4)
1765FIELD(ID_ISAR5, CRC32, 16, 4)
1766FIELD(ID_ISAR5, RDM, 24, 4)
1767FIELD(ID_ISAR5, VCMA, 28, 4)
1768
1769FIELD(ID_ISAR6, JSCVT, 0, 4)
1770FIELD(ID_ISAR6, DP, 4, 4)
1771FIELD(ID_ISAR6, FHM, 8, 4)
1772FIELD(ID_ISAR6, SB, 12, 4)
1773FIELD(ID_ISAR6, SPECRES, 16, 4)
1774
3d6ad6bb
RH
1775FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1776FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1777FIELD(ID_MMFR3, BPMAINT, 8, 4)
1778FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1779FIELD(ID_MMFR3, PAN, 16, 4)
1780FIELD(ID_MMFR3, COHWALK, 20, 4)
1781FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1782FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1783
ab638a32
RH
1784FIELD(ID_MMFR4, SPECSEI, 0, 4)
1785FIELD(ID_MMFR4, AC2, 4, 4)
1786FIELD(ID_MMFR4, XNX, 8, 4)
1787FIELD(ID_MMFR4, CNP, 12, 4)
1788FIELD(ID_MMFR4, HPDS, 16, 4)
1789FIELD(ID_MMFR4, LSM, 20, 4)
1790FIELD(ID_MMFR4, CCIDX, 24, 4)
1791FIELD(ID_MMFR4, EVT, 28, 4)
1792
a62e62af
RH
1793FIELD(ID_AA64ISAR0, AES, 4, 4)
1794FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1795FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1796FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1797FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1798FIELD(ID_AA64ISAR0, RDM, 28, 4)
1799FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1800FIELD(ID_AA64ISAR0, SM3, 36, 4)
1801FIELD(ID_AA64ISAR0, SM4, 40, 4)
1802FIELD(ID_AA64ISAR0, DP, 44, 4)
1803FIELD(ID_AA64ISAR0, FHM, 48, 4)
1804FIELD(ID_AA64ISAR0, TS, 52, 4)
1805FIELD(ID_AA64ISAR0, TLB, 56, 4)
1806FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1807
1808FIELD(ID_AA64ISAR1, DPB, 0, 4)
1809FIELD(ID_AA64ISAR1, APA, 4, 4)
1810FIELD(ID_AA64ISAR1, API, 8, 4)
1811FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1812FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1813FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1814FIELD(ID_AA64ISAR1, GPA, 24, 4)
1815FIELD(ID_AA64ISAR1, GPI, 28, 4)
1816FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1817FIELD(ID_AA64ISAR1, SB, 36, 4)
1818FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1819
cd208a1c
RH
1820FIELD(ID_AA64PFR0, EL0, 0, 4)
1821FIELD(ID_AA64PFR0, EL1, 4, 4)
1822FIELD(ID_AA64PFR0, EL2, 8, 4)
1823FIELD(ID_AA64PFR0, EL3, 12, 4)
1824FIELD(ID_AA64PFR0, FP, 16, 4)
1825FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1826FIELD(ID_AA64PFR0, GIC, 24, 4)
1827FIELD(ID_AA64PFR0, RAS, 28, 4)
1828FIELD(ID_AA64PFR0, SVE, 32, 4)
1829
be53b6f4
RH
1830FIELD(ID_AA64PFR1, BT, 0, 4)
1831FIELD(ID_AA64PFR1, SBSS, 4, 4)
1832FIELD(ID_AA64PFR1, MTE, 8, 4)
1833FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1834
3dc91ddb
PM
1835FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1836FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1837FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1838FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1839FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1840FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1841FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1842FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1843FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1844FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1845FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1846FIELD(ID_AA64MMFR0, EXS, 44, 4)
1847
1848FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1849FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1850FIELD(ID_AA64MMFR1, VH, 8, 4)
1851FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1852FIELD(ID_AA64MMFR1, LO, 16, 4)
1853FIELD(ID_AA64MMFR1, PAN, 20, 4)
1854FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1855FIELD(ID_AA64MMFR1, XNX, 28, 4)
1856
64761e10
RH
1857FIELD(ID_AA64MMFR2, CNP, 0, 4)
1858FIELD(ID_AA64MMFR2, UAO, 4, 4)
1859FIELD(ID_AA64MMFR2, LSM, 8, 4)
1860FIELD(ID_AA64MMFR2, IESB, 12, 4)
1861FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
1862FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
1863FIELD(ID_AA64MMFR2, NV, 24, 4)
1864FIELD(ID_AA64MMFR2, ST, 28, 4)
1865FIELD(ID_AA64MMFR2, AT, 32, 4)
1866FIELD(ID_AA64MMFR2, IDS, 36, 4)
1867FIELD(ID_AA64MMFR2, FWB, 40, 4)
1868FIELD(ID_AA64MMFR2, TTL, 48, 4)
1869FIELD(ID_AA64MMFR2, BBM, 52, 4)
1870FIELD(ID_AA64MMFR2, EVT, 56, 4)
1871FIELD(ID_AA64MMFR2, E0PD, 60, 4)
1872
ceb2744b
PM
1873FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
1874FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
1875FIELD(ID_AA64DFR0, PMUVER, 8, 4)
1876FIELD(ID_AA64DFR0, BRPS, 12, 4)
1877FIELD(ID_AA64DFR0, WRPS, 20, 4)
1878FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
1879FIELD(ID_AA64DFR0, PMSVER, 32, 4)
1880FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
1881FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
1882
beceb99c
AL
1883FIELD(ID_DFR0, COPDBG, 0, 4)
1884FIELD(ID_DFR0, COPSDBG, 4, 4)
1885FIELD(ID_DFR0, MMAPDBG, 8, 4)
1886FIELD(ID_DFR0, COPTRC, 12, 4)
1887FIELD(ID_DFR0, MMAPTRC, 16, 4)
1888FIELD(ID_DFR0, MPROFDBG, 20, 4)
1889FIELD(ID_DFR0, PERFMON, 24, 4)
1890FIELD(ID_DFR0, TRACEFILT, 28, 4)
1891
88ce6c6e
PM
1892FIELD(DBGDIDR, SE_IMP, 12, 1)
1893FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
1894FIELD(DBGDIDR, VERSION, 16, 4)
1895FIELD(DBGDIDR, CTX_CMPS, 20, 4)
1896FIELD(DBGDIDR, BRPS, 24, 4)
1897FIELD(DBGDIDR, WRPS, 28, 4)
1898
602f6e42
PM
1899FIELD(MVFR0, SIMDREG, 0, 4)
1900FIELD(MVFR0, FPSP, 4, 4)
1901FIELD(MVFR0, FPDP, 8, 4)
1902FIELD(MVFR0, FPTRAP, 12, 4)
1903FIELD(MVFR0, FPDIVIDE, 16, 4)
1904FIELD(MVFR0, FPSQRT, 20, 4)
1905FIELD(MVFR0, FPSHVEC, 24, 4)
1906FIELD(MVFR0, FPROUND, 28, 4)
1907
1908FIELD(MVFR1, FPFTZ, 0, 4)
1909FIELD(MVFR1, FPDNAN, 4, 4)
1910FIELD(MVFR1, SIMDLS, 8, 4)
1911FIELD(MVFR1, SIMDINT, 12, 4)
1912FIELD(MVFR1, SIMDSP, 16, 4)
1913FIELD(MVFR1, SIMDHP, 20, 4)
1914FIELD(MVFR1, FPHP, 24, 4)
1915FIELD(MVFR1, SIMDFMAC, 28, 4)
1916
1917FIELD(MVFR2, SIMDMISC, 0, 4)
1918FIELD(MVFR2, FPMISC, 4, 4)
1919
43bbce7f
PM
1920QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1921
ce854d7c
BC
1922/* If adding a feature bit which corresponds to a Linux ELF
1923 * HWCAP bit, remember to update the feature-bit-to-hwcap
1924 * mapping in linux-user/elfload.c:get_elf_hwcap().
1925 */
40f137e1 1926enum arm_features {
c1713132
AZ
1927 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1928 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 1929 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
1930 ARM_FEATURE_V6,
1931 ARM_FEATURE_V6K,
1932 ARM_FEATURE_V7,
1933 ARM_FEATURE_THUMB2,
452a0955 1934 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 1935 ARM_FEATURE_NEON,
9ee6e8bb 1936 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 1937 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 1938 ARM_FEATURE_THUMB2EE,
be5e7a76 1939 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 1940 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
1941 ARM_FEATURE_V4T,
1942 ARM_FEATURE_V5,
5bc95aa2 1943 ARM_FEATURE_STRONGARM,
906879a9 1944 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 1945 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 1946 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 1947 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
1948 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1949 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1950 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 1951 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
1952 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1953 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 1954 ARM_FEATURE_V8,
3926cc84 1955 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 1956 ARM_FEATURE_CBAR, /* has cp15 CBAR */
f318cec6 1957 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 1958 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 1959 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 1960 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 1961 ARM_FEATURE_PMU, /* has PMU support */
91db4642 1962 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 1963 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 1964 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
40f137e1
PB
1965};
1966
1967static inline int arm_feature(CPUARMState *env, int feature)
1968{
918f5dca 1969 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
1970}
1971
0df9142d
AJ
1972void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
1973
19e0fefa
FA
1974#if !defined(CONFIG_USER_ONLY)
1975/* Return true if exception levels below EL3 are in secure state,
1976 * or would be following an exception return to that level.
1977 * Unlike arm_is_secure() (which is always a question about the
1978 * _current_ state of the CPU) this doesn't care about the current
1979 * EL or mode.
1980 */
1981static inline bool arm_is_secure_below_el3(CPUARMState *env)
1982{
1983 if (arm_feature(env, ARM_FEATURE_EL3)) {
1984 return !(env->cp15.scr_el3 & SCR_NS);
1985 } else {
6b7f0b61 1986 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
1987 * defined, in which case QEMU defaults to non-secure.
1988 */
1989 return false;
1990 }
1991}
1992
71205876
PM
1993/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1994static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
1995{
1996 if (arm_feature(env, ARM_FEATURE_EL3)) {
1997 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1998 /* CPU currently in AArch64 state and EL3 */
1999 return true;
2000 } else if (!is_a64(env) &&
2001 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2002 /* CPU currently in AArch32 state and monitor mode */
2003 return true;
2004 }
2005 }
71205876
PM
2006 return false;
2007}
2008
2009/* Return true if the processor is in secure state */
2010static inline bool arm_is_secure(CPUARMState *env)
2011{
2012 if (arm_is_el3_or_mon(env)) {
2013 return true;
2014 }
19e0fefa
FA
2015 return arm_is_secure_below_el3(env);
2016}
2017
2018#else
2019static inline bool arm_is_secure_below_el3(CPUARMState *env)
2020{
2021 return false;
2022}
2023
2024static inline bool arm_is_secure(CPUARMState *env)
2025{
2026 return false;
2027}
2028#endif
2029
f7778444
RH
2030/**
2031 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2032 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2033 * "for all purposes other than a direct read or write access of HCR_EL2."
2034 * Not included here is HCR_RW.
2035 */
2036uint64_t arm_hcr_el2_eff(CPUARMState *env);
2037
1f79ee32
PM
2038/* Return true if the specified exception level is running in AArch64 state. */
2039static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2040{
446c81ab
PM
2041 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2042 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2043 */
446c81ab
PM
2044 assert(el >= 1 && el <= 3);
2045 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2046
446c81ab
PM
2047 /* The highest exception level is always at the maximum supported
2048 * register width, and then lower levels have a register width controlled
2049 * by bits in the SCR or HCR registers.
1f79ee32 2050 */
446c81ab
PM
2051 if (el == 3) {
2052 return aa64;
2053 }
2054
2055 if (arm_feature(env, ARM_FEATURE_EL3)) {
2056 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2057 }
2058
2059 if (el == 2) {
2060 return aa64;
2061 }
2062
2063 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
2064 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2065 }
2066
2067 return aa64;
1f79ee32
PM
2068}
2069
3f342b9e
SF
2070/* Function for determing whether guest cp register reads and writes should
2071 * access the secure or non-secure bank of a cp register. When EL3 is
2072 * operating in AArch32 state, the NS-bit determines whether the secure
2073 * instance of a cp register should be used. When EL3 is AArch64 (or if
2074 * it doesn't exist at all) then there is no register banking, and all
2075 * accesses are to the non-secure version.
2076 */
2077static inline bool access_secure_reg(CPUARMState *env)
2078{
2079 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2080 !arm_el_is_aa64(env, 3) &&
2081 !(env->cp15.scr_el3 & SCR_NS));
2082
2083 return ret;
2084}
2085
ea30a4b8
FA
2086/* Macros for accessing a specified CP register bank */
2087#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2088 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2089
2090#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2091 do { \
2092 if (_secure) { \
2093 (_env)->cp15._regname##_s = (_val); \
2094 } else { \
2095 (_env)->cp15._regname##_ns = (_val); \
2096 } \
2097 } while (0)
2098
2099/* Macros for automatically accessing a specific CP register bank depending on
2100 * the current secure state of the system. These macros are not intended for
2101 * supporting instruction translation reads/writes as these are dependent
2102 * solely on the SCR.NS bit and not the mode.
2103 */
2104#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2105 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2106 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2107
2108#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2109 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2110 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2111 (_val))
2112
0442428a 2113void arm_cpu_list(void);
012a906b
GB
2114uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2115 uint32_t cur_el, bool secure);
40f137e1 2116
9ee6e8bb 2117/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
2118#ifndef CONFIG_USER_ONLY
2119bool armv7m_nvic_can_take_pending_exception(void *opaque);
2120#else
2121static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2122{
2123 return true;
2124}
2125#endif
2fb50a33
PM
2126/**
2127 * armv7m_nvic_set_pending: mark the specified exception as pending
2128 * @opaque: the NVIC
2129 * @irq: the exception number to mark pending
2130 * @secure: false for non-banked exceptions or for the nonsecure
2131 * version of a banked exception, true for the secure version of a banked
2132 * exception.
2133 *
2134 * Marks the specified exception as pending. Note that we will assert()
2135 * if @secure is true and @irq does not specify one of the fixed set
2136 * of architecturally banked exceptions.
2137 */
2138void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
2139/**
2140 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2141 * @opaque: the NVIC
2142 * @irq: the exception number to mark pending
2143 * @secure: false for non-banked exceptions or for the nonsecure
2144 * version of a banked exception, true for the secure version of a banked
2145 * exception.
2146 *
2147 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2148 * exceptions (exceptions generated in the course of trying to take
2149 * a different exception).
2150 */
2151void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
a99ba8ab
PM
2152/**
2153 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2154 * @opaque: the NVIC
2155 * @irq: the exception number to mark pending
2156 * @secure: false for non-banked exceptions or for the nonsecure
2157 * version of a banked exception, true for the secure version of a banked
2158 * exception.
2159 *
2160 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2161 * generated in the course of lazy stacking of FP registers.
2162 */
2163void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
6c948518
PM
2164/**
2165 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2166 * exception, and whether it targets Secure state
2167 * @opaque: the NVIC
2168 * @pirq: set to pending exception number
2169 * @ptargets_secure: set to whether pending exception targets Secure
2170 *
2171 * This function writes the number of the highest priority pending
2172 * exception (the one which would be made active by
2173 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2174 * to true if the current highest priority pending exception should
2175 * be taken to Secure state, false for NS.
2176 */
2177void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2178 bool *ptargets_secure);
5cb18069
PM
2179/**
2180 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2181 * @opaque: the NVIC
2182 *
2183 * Move the current highest priority pending exception from the pending
2184 * state to the active state, and update v7m.exception to indicate that
2185 * it is the exception currently being handled.
5cb18069 2186 */
6c948518 2187void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2188/**
2189 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2190 * @opaque: the NVIC
2191 * @irq: the exception number to complete
5cb18069 2192 * @secure: true if this exception was secure
aa488fe3
PM
2193 *
2194 * Returns: -1 if the irq was not active
2195 * 1 if completing this irq brought us back to base (no active irqs)
2196 * 0 if there is still an irq active after this one was completed
2197 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2198 */
5cb18069 2199int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
b593c2b8
PM
2200/**
2201 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2202 * @opaque: the NVIC
2203 * @irq: the exception number to mark pending
2204 * @secure: false for non-banked exceptions or for the nonsecure
2205 * version of a banked exception, true for the secure version of a banked
2206 * exception.
2207 *
2208 * Return whether an exception is "ready", i.e. whether the exception is
2209 * enabled and is configured at a priority which would allow it to
2210 * interrupt the current execution priority. This controls whether the
2211 * RDY bit for it in the FPCCR is set.
2212 */
2213bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
42a6686b
PM
2214/**
2215 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2216 * @opaque: the NVIC
2217 *
2218 * Returns: the raw execution priority as defined by the v8M architecture.
2219 * This is the execution priority minus the effects of AIRCR.PRIS,
2220 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2221 * (v8M ARM ARM I_PKLD.)
2222 */
2223int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2224/**
2225 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2226 * priority is negative for the specified security state.
2227 * @opaque: the NVIC
2228 * @secure: the security state to test
2229 * This corresponds to the pseudocode IsReqExecPriNeg().
2230 */
2231#ifndef CONFIG_USER_ONLY
2232bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2233#else
2234static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2235{
2236 return false;
2237}
2238#endif
9ee6e8bb 2239
4b6a83fb
PM
2240/* Interface for defining coprocessor registers.
2241 * Registers are defined in tables of arm_cp_reginfo structs
2242 * which are passed to define_arm_cp_regs().
2243 */
2244
2245/* When looking up a coprocessor register we look for it
2246 * via an integer which encodes all of:
2247 * coprocessor number
2248 * Crn, Crm, opc1, opc2 fields
2249 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2250 * or via MRRC/MCRR?)
51a79b03 2251 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2252 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2253 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2254 * For AArch64, there is no 32/64 bit size distinction;
2255 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2256 * and 4 bit CRn and CRm. The encoding patterns are chosen
2257 * to be easy to convert to and from the KVM encodings, and also
2258 * so that the hashtable can contain both AArch32 and AArch64
2259 * registers (to allow for interprocessing where we might run
2260 * 32 bit code on a 64 bit core).
4b6a83fb 2261 */
f5a0a5a5
PM
2262/* This bit is private to our hashtable cpreg; in KVM register
2263 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2264 * in the upper bits of the 64 bit ID.
2265 */
2266#define CP_REG_AA64_SHIFT 28
2267#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2268
51a79b03
PM
2269/* To enable banking of coprocessor registers depending on ns-bit we
2270 * add a bit to distinguish between secure and non-secure cpregs in the
2271 * hashtable.
2272 */
2273#define CP_REG_NS_SHIFT 29
2274#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2275
2276#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2277 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2278 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2279
f5a0a5a5
PM
2280#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2281 (CP_REG_AA64_MASK | \
2282 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2283 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2284 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2285 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2286 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2287 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2288
721fae12
PM
2289/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2290 * version used as a key for the coprocessor register hashtable
2291 */
2292static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2293{
2294 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2295 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2296 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2297 } else {
2298 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2299 cpregid |= (1 << 15);
2300 }
2301
2302 /* KVM is always non-secure so add the NS flag on AArch32 register
2303 * entries.
2304 */
2305 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2306 }
2307 return cpregid;
2308}
2309
2310/* Convert a truncated 32 bit hashtable key into the full
2311 * 64 bit KVM register ID.
2312 */
2313static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2314{
f5a0a5a5
PM
2315 uint64_t kvmid;
2316
2317 if (cpregid & CP_REG_AA64_MASK) {
2318 kvmid = cpregid & ~CP_REG_AA64_MASK;
2319 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2320 } else {
f5a0a5a5
PM
2321 kvmid = cpregid & ~(1 << 15);
2322 if (cpregid & (1 << 15)) {
2323 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2324 } else {
2325 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2326 }
721fae12
PM
2327 }
2328 return kvmid;
2329}
2330
4b6a83fb 2331/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
fe03d45f 2332 * special-behaviour cp reg and bits [11..8] indicate what behaviour
4b6a83fb
PM
2333 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2334 * TCG can assume the value to be constant (ie load at translate time)
2335 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2336 * indicates that the TB should not be ended after a write to this register
2337 * (the default is that the TB ends after cp writes). OVERRIDE permits
2338 * a register definition to override a previous definition for the
2339 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2340 * old must have the OVERRIDE bit set.
7a0e58fa
PM
2341 * ALIAS indicates that this register is an alias view of some underlying
2342 * state which is also visible via another register, and that the other
b061a82b
SF
2343 * register is handling migration and reset; registers marked ALIAS will not be
2344 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
2345 * NO_RAW indicates that this register has no underlying state and does not
2346 * support raw access for state saving/loading; it will not be used for either
2347 * migration or KVM state synchronization. (Typically this is for "registers"
2348 * which are actually used as instructions for cache maintenance and so on.)
2452731c 2349 * IO indicates that this register does I/O and therefore its accesses
55c812b7 2350 * need to be marked with gen_io_start() and also end the TB. In particular,
2452731c 2351 * registers which implement clocks or timers require this.
37ff584c
PM
2352 * RAISES_EXC is for when the read or write hook might raise an exception;
2353 * the generated code will synchronize the CPU state before calling the hook
2354 * so that it is safe for the hook to call raise_exception().
f80741d1
AB
2355 * NEWEL is for writes to registers that might change the exception
2356 * level - typically on older ARM chips. For those cases we need to
2357 * re-read the new el when recomputing the translation flags.
4b6a83fb 2358 */
fe03d45f
RH
2359#define ARM_CP_SPECIAL 0x0001
2360#define ARM_CP_CONST 0x0002
2361#define ARM_CP_64BIT 0x0004
2362#define ARM_CP_SUPPRESS_TB_END 0x0008
2363#define ARM_CP_OVERRIDE 0x0010
2364#define ARM_CP_ALIAS 0x0020
2365#define ARM_CP_IO 0x0040
2366#define ARM_CP_NO_RAW 0x0080
2367#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2368#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2369#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2370#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2371#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
eb821168
RH
2372#define ARM_CP_DC_GVA (ARM_CP_SPECIAL | 0x0600)
2373#define ARM_CP_DC_GZVA (ARM_CP_SPECIAL | 0x0700)
2374#define ARM_LAST_SPECIAL ARM_CP_DC_GZVA
fe03d45f 2375#define ARM_CP_FPU 0x1000
490aa7f1 2376#define ARM_CP_SVE 0x2000
1f163787 2377#define ARM_CP_NO_GDB 0x4000
37ff584c 2378#define ARM_CP_RAISES_EXC 0x8000
f80741d1 2379#define ARM_CP_NEWEL 0x10000
4b6a83fb 2380/* Used only as a terminator for ARMCPRegInfo lists */
f80741d1 2381#define ARM_CP_SENTINEL 0xfffff
4b6a83fb 2382/* Mask of only the flag bits in a type field */
f80741d1 2383#define ARM_CP_FLAG_MASK 0x1f0ff
4b6a83fb 2384
f5a0a5a5
PM
2385/* Valid values for ARMCPRegInfo state field, indicating which of
2386 * the AArch32 and AArch64 execution states this register is visible in.
2387 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2388 * If the reginfo is declared to be visible in both states then a second
2389 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2390 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2391 * Note that we rely on the values of these enums as we iterate through
2392 * the various states in some places.
2393 */
2394enum {
2395 ARM_CP_STATE_AA32 = 0,
2396 ARM_CP_STATE_AA64 = 1,
2397 ARM_CP_STATE_BOTH = 2,
2398};
2399
c3e30260
FA
2400/* ARM CP register secure state flags. These flags identify security state
2401 * attributes for a given CP register entry.
2402 * The existence of both or neither secure and non-secure flags indicates that
2403 * the register has both a secure and non-secure hash entry. A single one of
2404 * these flags causes the register to only be hashed for the specified
2405 * security state.
2406 * Although definitions may have any combination of the S/NS bits, each
2407 * registered entry will only have one to identify whether the entry is secure
2408 * or non-secure.
2409 */
2410enum {
2411 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2412 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2413};
2414
4b6a83fb
PM
2415/* Return true if cptype is a valid type field. This is used to try to
2416 * catch errors where the sentinel has been accidentally left off the end
2417 * of a list of registers.
2418 */
2419static inline bool cptype_valid(int cptype)
2420{
2421 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2422 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 2423 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
2424}
2425
2426/* Access rights:
2427 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2428 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2429 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2430 * (ie any of the privileged modes in Secure state, or Monitor mode).
2431 * If a register is accessible in one privilege level it's always accessible
2432 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2433 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2434 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2435 * terminology a little and call this PL3.
f5a0a5a5
PM
2436 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2437 * with the ELx exception levels.
4b6a83fb
PM
2438 *
2439 * If access permissions for a register are more complex than can be
2440 * described with these bits, then use a laxer set of restrictions, and
2441 * do the more restrictive/complex check inside a helper function.
2442 */
2443#define PL3_R 0x80
2444#define PL3_W 0x40
2445#define PL2_R (0x20 | PL3_R)
2446#define PL2_W (0x10 | PL3_W)
2447#define PL1_R (0x08 | PL2_R)
2448#define PL1_W (0x04 | PL2_W)
2449#define PL0_R (0x02 | PL1_R)
2450#define PL0_W (0x01 | PL1_W)
2451
b5bd7440
AB
2452/*
2453 * For user-mode some registers are accessible to EL0 via a kernel
2454 * trap-and-emulate ABI. In this case we define the read permissions
2455 * as actually being PL0_R. However some bits of any given register
2456 * may still be masked.
2457 */
2458#ifdef CONFIG_USER_ONLY
2459#define PL0U_R PL0_R
2460#else
2461#define PL0U_R PL1_R
2462#endif
2463
4b6a83fb
PM
2464#define PL3_RW (PL3_R | PL3_W)
2465#define PL2_RW (PL2_R | PL2_W)
2466#define PL1_RW (PL1_R | PL1_W)
2467#define PL0_RW (PL0_R | PL0_W)
2468
75502672
PM
2469/* Return the highest implemented Exception Level */
2470static inline int arm_highest_el(CPUARMState *env)
2471{
2472 if (arm_feature(env, ARM_FEATURE_EL3)) {
2473 return 3;
2474 }
2475 if (arm_feature(env, ARM_FEATURE_EL2)) {
2476 return 2;
2477 }
2478 return 1;
2479}
2480
15b3f556
PM
2481/* Return true if a v7M CPU is in Handler mode */
2482static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2483{
2484 return env->v7m.exception != 0;
2485}
2486
dcbff19b
GB
2487/* Return the current Exception Level (as per ARMv8; note that this differs
2488 * from the ARMv7 Privilege Level).
2489 */
2490static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2491{
6d54ed3c 2492 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2493 return arm_v7m_is_handler_mode(env) ||
2494 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2495 }
2496
592125f8 2497 if (is_a64(env)) {
f5a0a5a5
PM
2498 return extract32(env->pstate, 2, 2);
2499 }
2500
592125f8
FA
2501 switch (env->uncached_cpsr & 0x1f) {
2502 case ARM_CPU_MODE_USR:
4b6a83fb 2503 return 0;
592125f8
FA
2504 case ARM_CPU_MODE_HYP:
2505 return 2;
2506 case ARM_CPU_MODE_MON:
2507 return 3;
2508 default:
2509 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2510 /* If EL3 is 32-bit then all secure privileged modes run in
2511 * EL3
2512 */
2513 return 3;
2514 }
2515
2516 return 1;
4b6a83fb 2517 }
4b6a83fb
PM
2518}
2519
2520typedef struct ARMCPRegInfo ARMCPRegInfo;
2521
f59df3f2
PM
2522typedef enum CPAccessResult {
2523 /* Access is permitted */
2524 CP_ACCESS_OK = 0,
2525 /* Access fails due to a configurable trap or enable which would
2526 * result in a categorized exception syndrome giving information about
2527 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
2528 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2529 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
2530 */
2531 CP_ACCESS_TRAP = 1,
2532 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2533 * Note that this is not a catch-all case -- the set of cases which may
2534 * result in this failure is specifically defined by the architecture.
2535 */
2536 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
2537 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2538 CP_ACCESS_TRAP_EL2 = 3,
2539 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
2540 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2541 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2542 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f2cae609
PM
2543 /* Access fails and results in an exception syndrome for an FP access,
2544 * trapped directly to EL2 or EL3
2545 */
2546 CP_ACCESS_TRAP_FP_EL2 = 7,
2547 CP_ACCESS_TRAP_FP_EL3 = 8,
f59df3f2
PM
2548} CPAccessResult;
2549
c4241c7d
PM
2550/* Access functions for coprocessor registers. These cannot fail and
2551 * may not raise exceptions.
2552 */
2553typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2554typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2555 uint64_t value);
f59df3f2 2556/* Access permission check functions for coprocessor registers. */
3f208fd7
PM
2557typedef CPAccessResult CPAccessFn(CPUARMState *env,
2558 const ARMCPRegInfo *opaque,
2559 bool isread);
4b6a83fb
PM
2560/* Hook function for register reset */
2561typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2562
2563#define CP_ANY 0xff
2564
2565/* Definition of an ARM coprocessor register */
2566struct ARMCPRegInfo {
2567 /* Name of register (useful mainly for debugging, need not be unique) */
2568 const char *name;
2569 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2570 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2571 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2572 * will be decoded to this register. The register read and write
2573 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2574 * used by the program, so it is possible to register a wildcard and
2575 * then behave differently on read/write if necessary.
2576 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2577 * must both be zero.
f5a0a5a5
PM
2578 * For AArch64-visible registers, opc0 is also used.
2579 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2580 * way to distinguish (for KVM's benefit) guest-visible system registers
2581 * from demuxed ones provided to preserve the "no side effects on
2582 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2583 * visible (to match KVM's encoding); cp==0 will be converted to
2584 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
2585 */
2586 uint8_t cp;
2587 uint8_t crn;
2588 uint8_t crm;
f5a0a5a5 2589 uint8_t opc0;
4b6a83fb
PM
2590 uint8_t opc1;
2591 uint8_t opc2;
f5a0a5a5
PM
2592 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2593 int state;
4b6a83fb
PM
2594 /* Register type: ARM_CP_* bits/values */
2595 int type;
2596 /* Access rights: PL*_[RW] */
2597 int access;
c3e30260
FA
2598 /* Security state: ARM_CP_SECSTATE_* bits/values */
2599 int secure;
4b6a83fb
PM
2600 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2601 * this register was defined: can be used to hand data through to the
2602 * register read/write functions, since they are passed the ARMCPRegInfo*.
2603 */
2604 void *opaque;
2605 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2606 * fieldoffset is non-zero, the reset value of the register.
2607 */
2608 uint64_t resetvalue;
c3e30260
FA
2609 /* Offset of the field in CPUARMState for this register.
2610 *
2611 * This is not needed if either:
4b6a83fb
PM
2612 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2613 * 2. both readfn and writefn are specified
2614 */
2615 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
2616
2617 /* Offsets of the secure and non-secure fields in CPUARMState for the
2618 * register if it is banked. These fields are only used during the static
2619 * registration of a register. During hashing the bank associated
2620 * with a given security state is copied to fieldoffset which is used from
2621 * there on out.
2622 *
2623 * It is expected that register definitions use either fieldoffset or
2624 * bank_fieldoffsets in the definition but not both. It is also expected
2625 * that both bank offsets are set when defining a banked register. This
2626 * use indicates that a register is banked.
2627 */
2628 ptrdiff_t bank_fieldoffsets[2];
2629
f59df3f2
PM
2630 /* Function for making any access checks for this register in addition to
2631 * those specified by the 'access' permissions bits. If NULL, no extra
2632 * checks required. The access check is performed at runtime, not at
2633 * translate time.
2634 */
2635 CPAccessFn *accessfn;
4b6a83fb
PM
2636 /* Function for handling reads of this register. If NULL, then reads
2637 * will be done by loading from the offset into CPUARMState specified
2638 * by fieldoffset.
2639 */
2640 CPReadFn *readfn;
2641 /* Function for handling writes of this register. If NULL, then writes
2642 * will be done by writing to the offset into CPUARMState specified
2643 * by fieldoffset.
2644 */
2645 CPWriteFn *writefn;
7023ec7e
PM
2646 /* Function for doing a "raw" read; used when we need to copy
2647 * coprocessor state to the kernel for KVM or out for
2648 * migration. This only needs to be provided if there is also a
c4241c7d 2649 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
2650 */
2651 CPReadFn *raw_readfn;
2652 /* Function for doing a "raw" write; used when we need to copy KVM
2653 * kernel coprocessor state into userspace, or for inbound
2654 * migration. This only needs to be provided if there is also a
c4241c7d
PM
2655 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2656 * or similar behaviour.
7023ec7e
PM
2657 */
2658 CPWriteFn *raw_writefn;
4b6a83fb
PM
2659 /* Function for resetting the register. If NULL, then reset will be done
2660 * by writing resetvalue to the field specified in fieldoffset. If
2661 * fieldoffset is 0 then no reset will be done.
2662 */
2663 CPResetFn *resetfn;
e2cce18f
RH
2664
2665 /*
2666 * "Original" writefn and readfn.
2667 * For ARMv8.1-VHE register aliases, we overwrite the read/write
2668 * accessor functions of various EL1/EL0 to perform the runtime
2669 * check for which sysreg should actually be modified, and then
2670 * forwards the operation. Before overwriting the accessors,
2671 * the original function is copied here, so that accesses that
2672 * really do go to the EL1/EL0 version proceed normally.
2673 * (The corresponding EL2 register is linked via opaque.)
2674 */
2675 CPReadFn *orig_readfn;
2676 CPWriteFn *orig_writefn;
4b6a83fb
PM
2677};
2678
2679/* Macros which are lvalues for the field in CPUARMState for the
2680 * ARMCPRegInfo *ri.
2681 */
2682#define CPREG_FIELD32(env, ri) \
2683 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2684#define CPREG_FIELD64(env, ri) \
2685 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2686
2687#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2688
2689void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2690 const ARMCPRegInfo *regs, void *opaque);
2691void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2692 const ARMCPRegInfo *regs, void *opaque);
2693static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2694{
2695 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2696}
2697static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2698{
2699 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2700}
60322b39 2701const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb 2702
6c5c0fec
AB
2703/*
2704 * Definition of an ARM co-processor register as viewed from
2705 * userspace. This is used for presenting sanitised versions of
2706 * registers to userspace when emulating the Linux AArch64 CPU
2707 * ID/feature ABI (advertised as HWCAP_CPUID).
2708 */
2709typedef struct ARMCPRegUserSpaceInfo {
2710 /* Name of register */
2711 const char *name;
2712
d040242e
AB
2713 /* Is the name actually a glob pattern */
2714 bool is_glob;
2715
6c5c0fec
AB
2716 /* Only some bits are exported to user space */
2717 uint64_t exported_bits;
2718
2719 /* Fixed bits are applied after the mask */
2720 uint64_t fixed_bits;
2721} ARMCPRegUserSpaceInfo;
2722
2723#define REGUSERINFO_SENTINEL { .name = NULL }
2724
2725void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2726
4b6a83fb 2727/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
2728void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2729 uint64_t value);
4b6a83fb 2730/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 2731uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 2732
f5a0a5a5
PM
2733/* CPResetFn that does nothing, for use if no reset is required even
2734 * if fieldoffset is non zero.
2735 */
2736void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2737
67ed771d
PM
2738/* Return true if this reginfo struct's field in the cpu state struct
2739 * is 64 bits wide.
2740 */
2741static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2742{
2743 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2744}
2745
dcbff19b 2746static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
2747 const ARMCPRegInfo *ri, int isread)
2748{
dcbff19b 2749 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
2750}
2751
49a66191
PM
2752/* Raw read of a coprocessor register (as needed for migration, etc) */
2753uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2754
721fae12
PM
2755/**
2756 * write_list_to_cpustate
2757 * @cpu: ARMCPU
2758 *
2759 * For each register listed in the ARMCPU cpreg_indexes list, write
2760 * its value from the cpreg_values list into the ARMCPUState structure.
2761 * This updates TCG's working data structures from KVM data or
2762 * from incoming migration state.
2763 *
2764 * Returns: true if all register values were updated correctly,
2765 * false if some register was unknown or could not be written.
2766 * Note that we do not stop early on failure -- we will attempt
2767 * writing all registers in the list.
2768 */
2769bool write_list_to_cpustate(ARMCPU *cpu);
2770
2771/**
2772 * write_cpustate_to_list:
2773 * @cpu: ARMCPU
b698e4ee 2774 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2775 *
2776 * For each register listed in the ARMCPU cpreg_indexes list, write
2777 * its value from the ARMCPUState structure into the cpreg_values list.
2778 * This is used to copy info from TCG's working data structures into
2779 * KVM or for outbound migration.
2780 *
b698e4ee
PM
2781 * @kvm_sync is true if we are doing this in order to sync the
2782 * register state back to KVM. In this case we will only update
2783 * values in the list if the previous list->cpustate sync actually
2784 * successfully wrote the CPU state. Otherwise we will keep the value
2785 * that is in the list.
2786 *
721fae12
PM
2787 * Returns: true if all register values were read correctly,
2788 * false if some register was unknown or could not be read.
2789 * Note that we do not stop early on failure -- we will attempt
2790 * reading all registers in the list.
2791 */
b698e4ee 2792bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2793
9ee6e8bb
PB
2794#define ARM_CPUID_TI915T 0x54029152
2795#define ARM_CPUID_TI925T 0x54029252
40f137e1 2796
ba1ba5cc
IM
2797#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2798#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2799#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2800
9467d44c 2801#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 2802#define cpu_list arm_cpu_list
9467d44c 2803
c1e37810
PM
2804/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2805 *
2806 * If EL3 is 64-bit:
2807 * + NonSecure EL1 & 0 stage 1
2808 * + NonSecure EL1 & 0 stage 2
2809 * + NonSecure EL2
b9f6033c
RH
2810 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2811 * + Secure EL1 & 0
c1e37810
PM
2812 * + Secure EL3
2813 * If EL3 is 32-bit:
2814 * + NonSecure PL1 & 0 stage 1
2815 * + NonSecure PL1 & 0 stage 2
2816 * + NonSecure PL2
b9f6033c
RH
2817 * + Secure PL0
2818 * + Secure PL1
c1e37810
PM
2819 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2820 *
2821 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2822 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2823 * because they may differ in access permissions even if the VA->PA map is
2824 * the same
c1e37810
PM
2825 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2826 * translation, which means that we have one mmu_idx that deals with two
2827 * concatenated translation regimes [this sort of combined s1+2 TLB is
2828 * architecturally permitted]
2829 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2830 * handling via the TLB. The only way to do a stage 1 translation without
2831 * the immediate stage 2 translation is via the ATS or AT system insns,
2832 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
2833 * The only use of stage 2 translations is either as part of an s1+2
2834 * lookup or when loading the descriptors during a stage 1 page table walk,
2835 * and in both those cases we don't use the TLB.
c1e37810
PM
2836 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2837 * translation regimes, because they map reasonably well to each other
2838 * and they can't both be active at the same time.
b9f6033c
RH
2839 * 5. we want to be able to use the TLB for accesses done as part of a
2840 * stage1 page table walk, rather than having to walk the stage2 page
2841 * table over and over.
452ef8cb
RH
2842 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2843 * Never (PAN) bit within PSTATE.
c1e37810 2844 *
b9f6033c
RH
2845 * This gives us the following list of cases:
2846 *
2847 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2848 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
452ef8cb 2849 * NS EL1 EL1&0 stage 1+2 +PAN
b9f6033c 2850 * NS EL0 EL2&0
bf05340c 2851 * NS EL2 EL2&0
452ef8cb 2852 * NS EL2 EL2&0 +PAN
c1e37810 2853 * NS EL2 (aka NS PL2)
b9f6033c
RH
2854 * S EL0 EL1&0 (aka S PL0)
2855 * S EL1 EL1&0 (not used if EL3 is 32 bit)
452ef8cb 2856 * S EL1 EL1&0 +PAN
c1e37810 2857 * S EL3 (aka S PL1)
c1e37810 2858 *
bf05340c 2859 * for a total of 11 different mmu_idx.
c1e37810 2860 *
3bef7012
PM
2861 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2862 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2863 * NS EL2 if we ever model a Cortex-R52).
2864 *
2865 * M profile CPUs are rather different as they do not have a true MMU.
2866 * They have the following different MMU indexes:
2867 * User
2868 * Privileged
62593718
PM
2869 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2870 * Privileged, execution priority negative (ditto)
66787c78
PM
2871 * If the CPU supports the v8M Security Extension then there are also:
2872 * Secure User
2873 * Secure Privileged
62593718
PM
2874 * Secure User, execution priority negative
2875 * Secure Privileged, execution priority negative
3bef7012 2876 *
8bd5c820
PM
2877 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2878 * are not quite the same -- different CPU types (most notably M profile
2879 * vs A/R profile) would like to use MMU indexes with different semantics,
2880 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
2881 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2882 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
2883 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2884 * the same for any particular CPU.
2885 * Variables of type ARMMUIdx are always full values, and the core
2886 * index values are in variables of type 'int'.
2887 *
c1e37810
PM
2888 * Our enumeration includes at the end some entries which are not "true"
2889 * mmu_idx values in that they don't have corresponding TLBs and are only
2890 * valid for doing slow path page table walks.
2891 *
2892 * The constant names here are patterned after the general style of the names
2893 * of the AT/ATS operations.
2894 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2895 * For M profile we arrange them to have a bit for priv, a bit for negpri
2896 * and a bit for secure.
c1e37810 2897 */
b9f6033c
RH
2898#define ARM_MMU_IDX_A 0x10 /* A profile */
2899#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2900#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2901
b9f6033c
RH
2902/* Meanings of the bits for M profile mmu idx values */
2903#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2904#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2905#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2906
b9f6033c
RH
2907#define ARM_MMU_IDX_TYPE_MASK \
2908 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2909#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2910
c1e37810 2911typedef enum ARMMMUIdx {
b9f6033c
RH
2912 /*
2913 * A-profile.
2914 */
452ef8cb
RH
2915 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2916 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
b9f6033c 2917
452ef8cb
RH
2918 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2919 ARMMMUIdx_E10_1_PAN = 3 | ARM_MMU_IDX_A,
b9f6033c 2920
452ef8cb
RH
2921 ARMMMUIdx_E2 = 4 | ARM_MMU_IDX_A,
2922 ARMMMUIdx_E20_2 = 5 | ARM_MMU_IDX_A,
2923 ARMMMUIdx_E20_2_PAN = 6 | ARM_MMU_IDX_A,
b9f6033c 2924
452ef8cb
RH
2925 ARMMMUIdx_SE10_0 = 7 | ARM_MMU_IDX_A,
2926 ARMMMUIdx_SE10_1 = 8 | ARM_MMU_IDX_A,
2927 ARMMMUIdx_SE10_1_PAN = 9 | ARM_MMU_IDX_A,
2928 ARMMMUIdx_SE3 = 10 | ARM_MMU_IDX_A,
b9f6033c 2929
b9f6033c
RH
2930 /*
2931 * These are not allocated TLBs and are used only for AT system
2932 * instructions or for the first stage of an S12 page table walk.
2933 */
2934 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2935 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 2936 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
bf05340c
PM
2937 /*
2938 * Not allocated a TLB: used only for second stage of an S12 page
2939 * table walk, or for descriptor loads during first stage of an S1
2940 * page table walk. Note that if we ever want to have a TLB for this
2941 * then various TLB flush insns which currently are no-ops or flush
2942 * only stage 1 MMU indexes will need to change to flush stage 2.
2943 */
2944 ARMMMUIdx_Stage2 = 3 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
2945
2946 /*
2947 * M-profile.
2948 */
25568316
RH
2949 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2950 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2951 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2952 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2953 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2954 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2955 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2956 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
2957} ARMMMUIdx;
2958
5f09a6df
RH
2959/*
2960 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
2961 * for use when calling tlb_flush_by_mmuidx() and friends.
2962 */
5f09a6df
RH
2963#define TO_CORE_BIT(NAME) \
2964 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2965
8bd5c820 2966typedef enum ARMMMUIdxBit {
5f09a6df 2967 TO_CORE_BIT(E10_0),
b9f6033c 2968 TO_CORE_BIT(E20_0),
5f09a6df 2969 TO_CORE_BIT(E10_1),
452ef8cb 2970 TO_CORE_BIT(E10_1_PAN),
5f09a6df 2971 TO_CORE_BIT(E2),
b9f6033c 2972 TO_CORE_BIT(E20_2),
452ef8cb 2973 TO_CORE_BIT(E20_2_PAN),
5f09a6df
RH
2974 TO_CORE_BIT(SE10_0),
2975 TO_CORE_BIT(SE10_1),
452ef8cb 2976 TO_CORE_BIT(SE10_1_PAN),
5f09a6df 2977 TO_CORE_BIT(SE3),
5f09a6df
RH
2978
2979 TO_CORE_BIT(MUser),
2980 TO_CORE_BIT(MPriv),
2981 TO_CORE_BIT(MUserNegPri),
2982 TO_CORE_BIT(MPrivNegPri),
2983 TO_CORE_BIT(MSUser),
2984 TO_CORE_BIT(MSPriv),
2985 TO_CORE_BIT(MSUserNegPri),
2986 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
2987} ARMMMUIdxBit;
2988
5f09a6df
RH
2989#undef TO_CORE_BIT
2990
f79fbf39 2991#define MMU_USER_IDX 0
c1e37810 2992
9e273ef2
PM
2993/* Indexes used when registering address spaces with cpu_address_space_init */
2994typedef enum ARMASIdx {
2995 ARMASIdx_NS = 0,
2996 ARMASIdx_S = 1,
8bce44a2
RH
2997 ARMASIdx_TagNS = 2,
2998 ARMASIdx_TagS = 3,
9e273ef2
PM
2999} ARMASIdx;
3000
533e93f1 3001/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
3002static inline int arm_debug_target_el(CPUARMState *env)
3003{
81669b8b
SF
3004 bool secure = arm_is_secure(env);
3005 bool route_to_el2 = false;
3006
3007 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
3008 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 3009 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
3010 }
3011
3012 if (route_to_el2) {
3013 return 2;
3014 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3015 !arm_el_is_aa64(env, 3) && secure) {
3016 return 3;
3017 } else {
3018 return 1;
3019 }
3a298203
PM
3020}
3021
43bbce7f
PM
3022static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3023{
3024 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3025 * CSSELR is RAZ/WI.
3026 */
3027 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3028}
3029
22af9025 3030/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
3031static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3032{
22af9025
AB
3033 int cur_el = arm_current_el(env);
3034 int debug_el;
3035
3036 if (cur_el == 3) {
3037 return false;
533e93f1
PM
3038 }
3039
22af9025
AB
3040 /* MDCR_EL3.SDD disables debug events from Secure state */
3041 if (arm_is_secure_below_el3(env)
3042 && extract32(env->cp15.mdcr_el3, 16, 1)) {
3043 return false;
3a298203 3044 }
22af9025
AB
3045
3046 /*
3047 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3048 * while not masking the (D)ebug bit in DAIF.
3049 */
3050 debug_el = arm_debug_target_el(env);
3051
3052 if (cur_el == debug_el) {
3053 return extract32(env->cp15.mdscr_el1, 13, 1)
3054 && !(env->daif & PSTATE_D);
3055 }
3056
3057 /* Otherwise the debug target needs to be a higher EL */
3058 return debug_el > cur_el;
3a298203
PM
3059}
3060
3061static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3062{
533e93f1
PM
3063 int el = arm_current_el(env);
3064
3065 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
3066 return aa64_generate_debug_exceptions(env);
3067 }
533e93f1
PM
3068
3069 if (arm_is_secure(env)) {
3070 int spd;
3071
3072 if (el == 0 && (env->cp15.sder & 1)) {
3073 /* SDER.SUIDEN means debug exceptions from Secure EL0
3074 * are always enabled. Otherwise they are controlled by
3075 * SDCR.SPD like those from other Secure ELs.
3076 */
3077 return true;
3078 }
3079
3080 spd = extract32(env->cp15.mdcr_el3, 14, 2);
3081 switch (spd) {
3082 case 1:
3083 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3084 case 0:
3085 /* For 0b00 we return true if external secure invasive debug
3086 * is enabled. On real hardware this is controlled by external
3087 * signals to the core. QEMU always permits debug, and behaves
3088 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3089 */
3090 return true;
3091 case 2:
3092 return false;
3093 case 3:
3094 return true;
3095 }
3096 }
3097
3098 return el != 2;
3a298203
PM
3099}
3100
3101/* Return true if debugging exceptions are currently enabled.
3102 * This corresponds to what in ARM ARM pseudocode would be
3103 * if UsingAArch32() then
3104 * return AArch32.GenerateDebugExceptions()
3105 * else
3106 * return AArch64.GenerateDebugExceptions()
3107 * We choose to push the if() down into this function for clarity,
3108 * since the pseudocode has it at all callsites except for the one in
3109 * CheckSoftwareStep(), where it is elided because both branches would
3110 * always return the same value.
3a298203
PM
3111 */
3112static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3113{
3114 if (env->aarch64) {
3115 return aa64_generate_debug_exceptions(env);
3116 } else {
3117 return aa32_generate_debug_exceptions(env);
3118 }
3119}
3120
3121/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3122 * implicitly means this always returns false in pre-v8 CPUs.)
3123 */
3124static inline bool arm_singlestep_active(CPUARMState *env)
3125{
3126 return extract32(env->cp15.mdscr_el1, 0, 1)
3127 && arm_el_is_aa64(env, arm_debug_target_el(env))
3128 && arm_generate_debug_exceptions(env);
3129}
3130
f9fd40eb
PB
3131static inline bool arm_sctlr_b(CPUARMState *env)
3132{
3133 return
3134 /* We need not implement SCTLR.ITD in user-mode emulation, so
3135 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3136 * This lets people run BE32 binaries with "-cpu any".
3137 */
3138#ifndef CONFIG_USER_ONLY
3139 !arm_feature(env, ARM_FEATURE_V7) &&
3140#endif
3141 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3142}
3143
aaec1432 3144uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 3145
8061a649
RH
3146static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3147 bool sctlr_b)
3148{
3149#ifdef CONFIG_USER_ONLY
3150 /*
3151 * In system mode, BE32 is modelled in line with the
3152 * architecture (as word-invariant big-endianness), where loads
3153 * and stores are done little endian but from addresses which
3154 * are adjusted by XORing with the appropriate constant. So the
3155 * endianness to use for the raw data access is not affected by
3156 * SCTLR.B.
3157 * In user mode, however, we model BE32 as byte-invariant
3158 * big-endianness (because user-only code cannot tell the
3159 * difference), and so we need to use a data access endianness
3160 * that depends on SCTLR.B.
3161 */
3162 if (sctlr_b) {
3163 return true;
3164 }
3165#endif
3166 /* In 32bit endianness is determined by looking at CPSR's E bit */
3167 return env->uncached_cpsr & CPSR_E;
3168}
3169
3170static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3171{
3172 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3173}
64e40755 3174
ed50ff78
PC
3175/* Return true if the processor is in big-endian mode. */
3176static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3177{
ed50ff78 3178 if (!is_a64(env)) {
8061a649 3179 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3180 } else {
3181 int cur_el = arm_current_el(env);
3182 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3183 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3184 }
ed50ff78
PC
3185}
3186
4f7c64b3 3187typedef CPUARMState CPUArchState;
2161a612 3188typedef ARMCPU ArchCPU;
4f7c64b3 3189
022c62cb 3190#include "exec/cpu-all.h"
622ed360 3191
fdd1b228
RH
3192/*
3193 * Bit usage in the TB flags field: bit 31 indicates whether we are
3926cc84 3194 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
3195 * We put flags which are shared between 32 and 64 bit mode at the top
3196 * of the word, and flags which apply to only one mode at the bottom.
fdd1b228 3197 *
506f1498 3198 * 31 20 18 14 9 0
79cabf1f
RH
3199 * +--------------+-----+-----+----------+--------------+
3200 * | | | TBFLAG_A32 | |
3201 * | | +-----+----------+ TBFLAG_AM32 |
3202 * | TBFLAG_ANY | |TBFLAG_M32| |
81ae05fa
RH
3203 * | +-----------+----------+--------------|
3204 * | | TBFLAG_A64 |
3205 * +--------------+-------------------------------------+
3206 * 31 20 0
79cabf1f 3207 *
fdd1b228 3208 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3209 */
aad821ac 3210FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
506f1498
RH
3211FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
3212FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1) /* Not cached. */
3213FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
3214FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
9dbbc748 3215/* Target EL if we take a floating-point-disabled exception */
506f1498 3216FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
79cabf1f 3217/* For A-profile only, target EL for debug exceptions. */
506f1498 3218FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
79cabf1f 3219
8bd587c1 3220/*
79cabf1f 3221 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3222 */
79cabf1f
RH
3223FIELD(TBFLAG_AM32, CONDEXEC, 0, 8) /* Not cached. */
3224FIELD(TBFLAG_AM32, THUMB, 8, 1) /* Not cached. */
3926cc84 3225
79cabf1f
RH
3226/*
3227 * Bit usage when in AArch32 state, for A-profile only.
3228 */
3229FIELD(TBFLAG_A32, VECLEN, 9, 3) /* Not cached. */
3230FIELD(TBFLAG_A32, VECSTRIDE, 12, 2) /* Not cached. */
ea7ac69d
PM
3231/*
3232 * We store the bottom two bits of the CPAR as TB flags and handle
3233 * checks on the other bits at runtime. This shares the same bits as
3234 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3235 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3236 */
79cabf1f
RH
3237FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2)
3238FIELD(TBFLAG_A32, VFPEN, 14, 1) /* Partially cached, minus FPEXC. */
3239FIELD(TBFLAG_A32, SCTLR_B, 15, 1)
3240FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1)
7fbb535f
PM
3241/*
3242 * Indicates whether cp register reads and writes by guest code should access
3243 * the secure or nonsecure bank of banked registers; note that this is not
3244 * the same thing as the current security state of the processor!
3245 */
79cabf1f
RH
3246FIELD(TBFLAG_A32, NS, 17, 1)
3247
3248/*
3249 * Bit usage when in AArch32 state, for M-profile only.
3250 */
3251/* Handler (ie not Thread) mode */
3252FIELD(TBFLAG_M32, HANDLER, 9, 1)
3253/* Whether we should generate stack-limit checks */
3254FIELD(TBFLAG_M32, STACKCHECK, 10, 1)
3255/* Set if FPCCR.LSPACT is set */
3256FIELD(TBFLAG_M32, LSPACT, 11, 1) /* Not cached. */
3257/* Set if we must create a new FP context */
3258FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1) /* Not cached. */
3259/* Set if FPCCR.S does not match current security state */
3260FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1) /* Not cached. */
3261
3262/*
3263 * Bit usage when in AArch64 state
3264 */
476a4692 3265FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3266FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3267FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3268FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3269FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3270FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3271FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3272FIELD(TBFLAG_A64, UNPRIV, 14, 1)
81ae05fa
RH
3273FIELD(TBFLAG_A64, ATA, 15, 1)
3274FIELD(TBFLAG_A64, TCMA, 16, 2)
3275FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3276FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
a1705768 3277
fb901c90
RH
3278/**
3279 * cpu_mmu_index:
3280 * @env: The cpu environment
3281 * @ifetch: True for code access, false for data access.
3282 *
3283 * Return the core mmu index for the current translation regime.
3284 * This function is used by generic TCG code paths.
3285 */
3286static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3287{
3288 return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX);
3289}
3290
f9fd40eb
PB
3291static inline bool bswap_code(bool sctlr_b)
3292{
3293#ifdef CONFIG_USER_ONLY
3294 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3295 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3296 * would also end up as a mixed-endian mode with BE code, LE data.
3297 */
3298 return
3299#ifdef TARGET_WORDS_BIGENDIAN
3300 1 ^
3301#endif
3302 sctlr_b;
3303#else
e334bd31
PB
3304 /* All code access in ARM is little endian, and there are no loaders
3305 * doing swaps that need to be reversed
f9fd40eb
PB
3306 */
3307 return 0;
3308#endif
3309}
3310
c3ae85fc
PB
3311#ifdef CONFIG_USER_ONLY
3312static inline bool arm_cpu_bswap_data(CPUARMState *env)
3313{
3314 return
3315#ifdef TARGET_WORDS_BIGENDIAN
3316 1 ^
3317#endif
3318 arm_cpu_data_is_big_endian(env);
3319}
3320#endif
3321
a9e01311
RH
3322void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3323 target_ulong *cs_base, uint32_t *flags);
6b917547 3324
98128601
RH
3325enum {
3326 QEMU_PSCI_CONDUIT_DISABLED = 0,
3327 QEMU_PSCI_CONDUIT_SMC = 1,
3328 QEMU_PSCI_CONDUIT_HVC = 2,
3329};
3330
017518c1
PM
3331#ifndef CONFIG_USER_ONLY
3332/* Return the address space index to use for a memory access */
3333static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3334{
3335 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3336}
5ce4ff65
PM
3337
3338/* Return the AddressSpace to use for a memory access
3339 * (which depends on whether the access is S or NS, and whether
3340 * the board gave us a separate AddressSpace for S accesses).
3341 */
3342static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3343{
3344 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3345}
017518c1
PM
3346#endif
3347
bd7d00fc 3348/**
b5c53d1b
AL
3349 * arm_register_pre_el_change_hook:
3350 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3351 * CPU changes exception level or mode. The hook function will be
3352 * passed a pointer to the ARMCPU and the opaque data pointer passed
3353 * to this function when the hook was registered.
b5c53d1b
AL
3354 *
3355 * Note that if a pre-change hook is called, any registered post-change hooks
3356 * are guaranteed to subsequently be called.
bd7d00fc 3357 */
b5c53d1b 3358void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3359 void *opaque);
b5c53d1b
AL
3360/**
3361 * arm_register_el_change_hook:
3362 * Register a hook function which will be called immediately after this
3363 * CPU changes exception level or mode. The hook function will be
3364 * passed a pointer to the ARMCPU and the opaque data pointer passed
3365 * to this function when the hook was registered.
3366 *
3367 * Note that any registered hooks registered here are guaranteed to be called
3368 * if pre-change hooks have been.
3369 */
3370void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3371 *opaque);
bd7d00fc 3372
3d74e2e9
RH
3373/**
3374 * arm_rebuild_hflags:
3375 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3376 */
3377void arm_rebuild_hflags(CPUARMState *env);
3378
9a2b5256
RH
3379/**
3380 * aa32_vfp_dreg:
3381 * Return a pointer to the Dn register within env in 32-bit mode.
3382 */
3383static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3384{
c39c2b90 3385 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3386}
3387
3388/**
3389 * aa32_vfp_qreg:
3390 * Return a pointer to the Qn register within env in 32-bit mode.
3391 */
3392static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3393{
c39c2b90 3394 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3395}
3396
3397/**
3398 * aa64_vfp_qreg:
3399 * Return a pointer to the Qn register within env in 64-bit mode.
3400 */
3401static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3402{
c39c2b90 3403 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3404}
3405
028e2a7b
RH
3406/* Shared between translate-sve.c and sve_helper.c. */
3407extern const uint64_t pred_esz_masks[4];
3408
149d3b31
RH
3409/* Helper for the macros below, validating the argument type. */
3410static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3411{
3412 return x;
3413}
3414
3415/*
3416 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3417 * Using these should be a bit more self-documenting than using the
3418 * generic target bits directly.
3419 */
3420#define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
206adacf 3421#define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
149d3b31 3422
873b73c0
PM
3423/*
3424 * Naming convention for isar_feature functions:
3425 * Functions which test 32-bit ID registers should have _aa32_ in
3426 * their name. Functions which test 64-bit ID registers should have
6e61f839
PM
3427 * _aa64_ in their name. These must only be used in code where we
3428 * know for certain that the CPU has AArch32 or AArch64 respectively
3429 * or where the correct answer for a CPU which doesn't implement that
3430 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3431 * system registers that are specific to that CPU state, for "should
3432 * we let this system register bit be set" tests where the 32-bit
3433 * flavour of the register doesn't have the bit, and so on).
3434 * Functions which simply ask "does this feature exist at all" have
3435 * _any_ in their name, and always return the logical OR of the _aa64_
3436 * and the _aa32_ function.
873b73c0
PM
3437 */
3438
962fcbf2
RH
3439/*
3440 * 32-bit feature tests via id registers.
3441 */
873b73c0 3442static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
7e0cf8b4
RH
3443{
3444 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3445}
3446
873b73c0 3447static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
7e0cf8b4
RH
3448{
3449 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3450}
3451
873b73c0 3452static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
09cbd501
RH
3453{
3454 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3455}
3456
962fcbf2
RH
3457static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3458{
3459 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3460}
3461
3462static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3463{
3464 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3465}
3466
3467static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3468{
3469 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3470}
3471
3472static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3473{
3474 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3475}
3476
3477static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3478{
3479 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3480}
3481
3482static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3483{
3484 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3485}
3486
3487static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3488{
3489 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3490}
3491
6c1f6f27
RH
3492static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3493{
3494 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3495}
3496
962fcbf2
RH
3497static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3498{
3499 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3500}
3501
87732318
RH
3502static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3503{
3504 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3505}
3506
9888bd1e
RH
3507static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3508{
3509 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3510}
3511
cb570bd3
RH
3512static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3513{
3514 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3515}
3516
5763190f
RH
3517static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3518{
02bc236d 3519 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
5763190f
RH
3520}
3521
7fbc6a40
RH
3522static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3523{
3524 /*
3525 * Return true if either VFP or SIMD is implemented.
3526 * In this case, a minimum of VFP w/ D0-D15.
3527 */
3528 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3529}
3530
0e13ba78 3531static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
b3ff4b87
PM
3532{
3533 /* Return true if D16-D31 are implemented */
b3a816f6 3534 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
b3ff4b87
PM
3535}
3536
266bd25c
PM
3537static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3538{
b3a816f6 3539 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
266bd25c
PM
3540}
3541
f67957e1
RH
3542static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3543{
3544 /* Return true if CPU supports single precision floating point, VFPv2 */
3545 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3546}
3547
3548static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3549{
3550 /* Return true if CPU supports single precision floating point, VFPv3 */
3551 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3552}
3553
c4ff8735 3554static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
1120827f 3555{
c4ff8735 3556 /* Return true if CPU supports double precision floating point, VFPv2 */
b3a816f6 3557 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
1120827f
PM
3558}
3559
f67957e1
RH
3560static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3561{
3562 /* Return true if CPU supports double precision floating point, VFPv3 */
3563 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3564}
3565
7d63183f
RH
3566static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3567{
3568 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3569}
3570
602f6e42
PM
3571/*
3572 * We always set the FP and SIMD FP16 fields to indicate identical
3573 * levels of support (assuming SIMD is implemented at all), so
3574 * we only need one set of accessors.
3575 */
3576static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3577{
b3a816f6 3578 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
602f6e42
PM
3579}
3580
3581static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3582{
b3a816f6 3583 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
602f6e42
PM
3584}
3585
c52881bb
RH
3586/*
3587 * Note that this ID register field covers both VFP and Neon FMAC,
3588 * so should usually be tested in combination with some other
3589 * check that confirms the presence of whichever of VFP or Neon is
3590 * relevant, to avoid accidentally enabling a Neon feature on
3591 * a VFP-no-Neon core or vice-versa.
3592 */
3593static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3594{
3595 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3596}
3597
c0c760af
PM
3598static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3599{
b3a816f6 3600 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
c0c760af
PM
3601}
3602
3603static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3604{
b3a816f6 3605 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
c0c760af
PM
3606}
3607
3608static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3609{
b3a816f6 3610 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
c0c760af
PM
3611}
3612
3613static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3614{
b3a816f6 3615 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
c0c760af
PM
3616}
3617
3d6ad6bb
RH
3618static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3619{
10054016 3620 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3d6ad6bb
RH
3621}
3622
3623static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3624{
10054016 3625 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3d6ad6bb
RH
3626}
3627
a6179538
PM
3628static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3629{
3630 /* 0xf means "non-standard IMPDEF PMU" */
3631 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3632 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3633}
3634
15dd1ebd
PM
3635static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3636{
3637 /* 0xf means "non-standard IMPDEF PMU" */
3638 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3639 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3640}
3641
4036b7d1
PM
3642static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3643{
3644 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3645}
3646
f6287c24
PM
3647static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3648{
3649 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3650}
3651
957e6155
PM
3652static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3653{
3654 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3655}
3656
ce3125be
PM
3657static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3658{
3659 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3660}
3661
962fcbf2
RH
3662/*
3663 * 64-bit feature tests via id registers.
3664 */
3665static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3666{
3667 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3668}
3669
3670static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3671{
3672 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3673}
3674
3675static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3676{
3677 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3678}
3679
3680static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3681{
3682 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3683}
3684
3685static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3686{
3687 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3688}
3689
3690static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3691{
3692 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3693}
3694
3695static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3696{
3697 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3698}
3699
3700static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3701{
3702 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3703}
3704
3705static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3706{
3707 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3708}
3709
3710static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3711{
3712 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3713}
3714
3715static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3716{
3717 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3718}
3719
3720static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3721{
3722 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3723}
3724
0caa5af8
RH
3725static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3726{
3727 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3728}
3729
b89d9c98
RH
3730static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3731{
3732 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3733}
3734
5ef84f11
RH
3735static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3736{
3737 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3738}
3739
de390645
RH
3740static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3741{
3742 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3743}
3744
6c1f6f27
RH
3745static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3746{
3747 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3748}
3749
962fcbf2
RH
3750static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3751{
3752 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3753}
3754
991ad91b
RH
3755static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3756{
3757 /*
3758 * Note that while QEMU will only implement the architected algorithm
3759 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3760 * defined algorithms, and thus API+GPI, and this predicate controls
3761 * migration of the 128-bit keys.
3762 */
3763 return (id->id_aa64isar1 &
3764 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3765 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3766 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3767 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3768}
3769
9888bd1e
RH
3770static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3771{
3772 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3773}
3774
cb570bd3
RH
3775static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3776{
3777 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3778}
3779
6bea2563
RH
3780static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3781{
3782 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3783}
3784
0d57b499
BM
3785static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3786{
3787 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3788}
3789
3790static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3791{
3792 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3793}
3794
7d63183f
RH
3795static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3796{
3797 /* We always set the AdvSIMD and FP fields identically. */
3798 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3799}
3800
5763190f
RH
3801static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3802{
3803 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3804 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3805}
3806
0f8d06f1
RH
3807static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3808{
3809 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3810}
3811
cd208a1c
RH
3812static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3813{
3814 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3815}
3816
8fc2ea21
RH
3817static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3818{
3819 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3820}
3821
2d7137c1
RH
3822static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3823{
3824 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3825}
3826
3d6ad6bb
RH
3827static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3828{
3829 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3830}
3831
3832static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3833{
3834 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3835}
3836
9eeb7a1c
RH
3837static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3838{
3839 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3840}
3841
be53b6f4
RH
3842static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3843{
3844 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3845}
3846
c7fd0baa
RH
3847static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
3848{
3849 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
3850}
3851
3852static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
3853{
3854 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
3855}
3856
2a609df8
PM
3857static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
3858{
3859 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3860 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3861}
3862
15dd1ebd
PM
3863static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
3864{
54117b90
PM
3865 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3866 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
15dd1ebd
PM
3867}
3868
2677cf9f
PM
3869static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3870{
3871 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3872}
3873
a1229109
PM
3874static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3875{
3876 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3877}
3878
957e6155
PM
3879static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
3880{
3881 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
3882}
3883
ce3125be
PM
3884static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
3885{
3886 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
3887}
3888
6e61f839
PM
3889/*
3890 * Feature tests for "does this exist in either 32-bit or 64-bit?"
3891 */
3892static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
3893{
3894 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
3895}
3896
22e57073
PM
3897static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
3898{
3899 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
3900}
3901
2a609df8
PM
3902static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
3903{
3904 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
3905}
3906
15dd1ebd
PM
3907static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
3908{
3909 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
3910}
3911
957e6155
PM
3912static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
3913{
3914 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
3915}
3916
ce3125be
PM
3917static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
3918{
3919 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
3920}
3921
962fcbf2
RH
3922/*
3923 * Forward to the above feature tests given an ARMCPU pointer.
3924 */
3925#define cpu_isar_feature(name, cpu) \
3926 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3927
2c0262af 3928#endif