]> git.proxmox.com Git - mirror_qemu.git/blame - target/arm/cpu.h
target/arm: Enable FEAT_S2FWB for -cpu max
[mirror_qemu.git] / target / arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
50f57e09 9 * version 2.1 of the License, or (at your option) any later version.
2c0262af
FB
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af 18 */
2c0262af 19
07f5a258
MA
20#ifndef ARM_CPU_H
21#define ARM_CPU_H
3cf1e035 22
72b0cd35 23#include "kvm-consts.h"
69242e7e 24#include "qemu/cpu-float.h"
2c4da50d 25#include "hw/registerfields.h"
74433bf0
RH
26#include "cpu-qom.h"
27#include "exec/cpu-defs.h"
68970d1e 28#include "qapi/qapi-types-common.h"
9042c0e2 29
ca759f9e
AB
30/* ARM processors have a weak memory model */
31#define TCG_GUEST_DEFAULT_MO (0)
32
e24fd076
DG
33#ifdef TARGET_AARCH64
34#define KVM_HAVE_MCE_INJECTION 1
35#endif
36
b8a9e8f1
FB
37#define EXCP_UDEF 1 /* undefined instruction */
38#define EXCP_SWI 2 /* software interrupt */
39#define EXCP_PREFETCH_ABORT 3
40#define EXCP_DATA_ABORT 4
b5ff1b31
FB
41#define EXCP_IRQ 5
42#define EXCP_FIQ 6
06c949e6 43#define EXCP_BKPT 7
9ee6e8bb 44#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 45#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
35979d71 46#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 47#define EXCP_HYP_TRAP 12
e0d6e6a5 48#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
49#define EXCP_VIRQ 14
50#define EXCP_VFIQ 15
19a6e31c 51#define EXCP_SEMIHOST 16 /* semihosting call */
7517748e 52#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
e13886e3 53#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
86f026de 54#define EXCP_STKOF 19 /* v8M STKOF UsageFault */
e33cf0f8 55#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
019076b0
PM
56#define EXCP_LSERR 21 /* v8M LSERR SecureFault */
57#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
e5346292 58#define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
3c29632f 59#define EXCP_VSERR 24
2c4a7cc5 60/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
9ee6e8bb
PB
61
62#define ARMV7M_EXCP_RESET 1
63#define ARMV7M_EXCP_NMI 2
64#define ARMV7M_EXCP_HARD 3
65#define ARMV7M_EXCP_MEM 4
66#define ARMV7M_EXCP_BUS 5
67#define ARMV7M_EXCP_USAGE 6
1e577cc7 68#define ARMV7M_EXCP_SECURE 7
9ee6e8bb
PB
69#define ARMV7M_EXCP_SVC 11
70#define ARMV7M_EXCP_DEBUG 12
71#define ARMV7M_EXCP_PENDSV 14
72#define ARMV7M_EXCP_SYSTICK 15
2c0262af 73
acf94941
PM
74/* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
82 */
4a16724f
PM
83enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
87};
acf94941 88
403946c0
RH
89/* ARM-specific interrupt pending bits. */
90#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
91#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
3c29632f 93#define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
403946c0 94
e4fe830b
PM
95/* The usual mapping for an AArch64 system register to its AArch32
96 * counterpart is for the 32 bit world to have access to the lower
97 * half only (with writes leaving the upper half untouched). It's
98 * therefore useful to be able to pass TCG the offset of the least
99 * significant half of a uint64_t struct member.
100 */
e03b5686 101#if HOST_BIG_ENDIAN
5cd8a118 102#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 103#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
104#else
105#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 106#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
107#endif
108
136e67e9 109/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
110#define ARM_CPU_IRQ 0
111#define ARM_CPU_FIQ 1
136e67e9
EI
112#define ARM_CPU_VIRQ 2
113#define ARM_CPU_VFIQ 3
403946c0 114
aaa1f954
EI
115/* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
118 */
119#define TARGET_INSN_START_EXTRA_WORDS 2
120
121/* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
125 */
126#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127#define ARM_INSN_START_WORD2_SHIFT 14
6ebbf390 128
b7bcbe95
FB
129/* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
135 */
b7bcbe95 136
200bf5b7
AB
137/**
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
448d4d14
AB
140 * @num: Number of the registers in this XML seen by GDB.
141 * @data: A union with data specific to the set of registers
142 * @cpregs_keys: Array that contains the corresponding Key of
143 * a given cpreg with the same order of the cpreg
144 * in the XML description.
200bf5b7
AB
145 */
146typedef struct DynamicGDBXMLInfo {
147 char *desc;
448d4d14
AB
148 int num;
149 union {
150 struct {
151 uint32_t *keys;
152 } cpregs;
153 } data;
200bf5b7
AB
154} DynamicGDBXMLInfo;
155
55d284af
PM
156/* CPU state for each instance of a generic timer (in cp15 c14) */
157typedef struct ARMGenericTimer {
158 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 159 uint64_t ctl; /* Timer Control register */
55d284af
PM
160} ARMGenericTimer;
161
8c94b071
RH
162#define GTIMER_PHYS 0
163#define GTIMER_VIRT 1
164#define GTIMER_HYP 2
165#define GTIMER_SEC 3
166#define GTIMER_HYPVIRT 4
167#define NUM_GTIMERS 5
55d284af 168
11f136ee
FA
169typedef struct {
170 uint64_t raw_tcr;
171 uint32_t mask;
172 uint32_t base_mask;
173} TCR;
174
e9152ee9
RDC
175#define VTCR_NSW (1u << 29)
176#define VTCR_NSA (1u << 30)
177#define VSTCR_SW VTCR_NSW
178#define VSTCR_SA VTCR_NSA
179
c39c2b90
RH
180/* Define a maximum sized vector register.
181 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
182 * For 64-bit, this is a 2048-bit SVE register.
183 *
184 * Note that the mapping between S, D, and Q views of the register bank
185 * differs between AArch64 and AArch32.
186 * In AArch32:
187 * Qn = regs[n].d[1]:regs[n].d[0]
188 * Dn = regs[n / 2].d[n & 1]
189 * Sn = regs[n / 4].d[n % 4 / 2],
190 * bits 31..0 for even n, and bits 63..32 for odd n
191 * (and regs[16] to regs[31] are inaccessible)
192 * In AArch64:
193 * Zn = regs[n].d[*]
194 * Qn = regs[n].d[1]:regs[n].d[0]
195 * Dn = regs[n].d[0]
196 * Sn = regs[n].d[0] bits 31..0
d0e69ea8 197 * Hn = regs[n].d[0] bits 15..0
c39c2b90
RH
198 *
199 * This corresponds to the architecturally defined mapping between
200 * the two execution states, and means we do not need to explicitly
201 * map these registers when changing states.
202 *
203 * Align the data for use with TCG host vector operations.
204 */
205
206#ifdef TARGET_AARCH64
207# define ARM_MAX_VQ 16
0df9142d 208void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
eb94284d 209void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
69b2265d 210void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
c39c2b90
RH
211#else
212# define ARM_MAX_VQ 1
0df9142d 213static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
eb94284d 214static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
69b2265d 215static inline void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp) { }
c39c2b90
RH
216#endif
217
218typedef struct ARMVectorReg {
219 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
220} ARMVectorReg;
221
3c7d3086 222#ifdef TARGET_AARCH64
991ad91b 223/* In AArch32 mode, predicate registers do not exist at all. */
3c7d3086 224typedef struct ARMPredicateReg {
46417784 225 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
3c7d3086 226} ARMPredicateReg;
991ad91b
RH
227
228/* In AArch32 mode, PAC keys do not exist at all. */
229typedef struct ARMPACKey {
230 uint64_t lo, hi;
231} ARMPACKey;
3c7d3086
RH
232#endif
233
3902bfc6
RH
234/* See the commentary above the TBFLAG field definitions. */
235typedef struct CPUARMTBFlags {
236 uint32_t flags;
a378206a 237 target_ulong flags2;
3902bfc6 238} CPUARMTBFlags;
c39c2b90 239
1ea4a06a 240typedef struct CPUArchState {
b5ff1b31 241 /* Regs for current mode. */
2c0262af 242 uint32_t regs[16];
3926cc84
AG
243
244 /* 32/64 switch only happens when taking and returning from
245 * exceptions so the overlap semantics are taken care of then
246 * instead of having a complicated union.
247 */
248 /* Regs for A64 mode. */
249 uint64_t xregs[32];
250 uint64_t pc;
d356312f
PM
251 /* PSTATE isn't an architectural register for ARMv8. However, it is
252 * convenient for us to assemble the underlying state into a 32 bit format
253 * identical to the architectural format used for the SPSR. (This is also
254 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
255 * 'pstate' register are.) Of the PSTATE bits:
256 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
257 * semantics as for AArch32, as described in the comments on each field)
258 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 259 * DAIF (exception masks) are kept in env->daif
f6e52eaa 260 * BTYPE is kept in env->btype
d356312f 261 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
262 */
263 uint32_t pstate;
53221552 264 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
063bbd80 265 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
3926cc84 266
fdd1b228 267 /* Cached TBFLAGS state. See below for which bits are included. */
3902bfc6 268 CPUARMTBFlags hflags;
fdd1b228 269
b90372ad 270 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 271 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
272 the whole CPSR. */
273 uint32_t uncached_cpsr;
274 uint32_t spsr;
275
276 /* Banked registers. */
28c9457d 277 uint64_t banked_spsr[8];
0b7d409d
FA
278 uint32_t banked_r13[8];
279 uint32_t banked_r14[8];
3b46e624 280
b5ff1b31
FB
281 /* These hold r8-r12. */
282 uint32_t usr_regs[5];
283 uint32_t fiq_regs[5];
3b46e624 284
2c0262af
FB
285 /* cpsr flag cache for faster execution */
286 uint32_t CF; /* 0 or 1 */
287 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
288 uint32_t NF; /* N is bit 31. All other bits are undefined. */
289 uint32_t ZF; /* Z set if zero. */
99c475ab 290 uint32_t QF; /* 0 or 1 */
9ee6e8bb 291 uint32_t GE; /* cpsr[19:16] */
9ee6e8bb 292 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
f6e52eaa 293 uint32_t btype; /* BTI branch type. spsr[11:10]. */
b6af0975 294 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 295
1b174238 296 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 297 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 298
b5ff1b31
FB
299 /* System control coprocessor (cp15) */
300 struct {
40f137e1 301 uint32_t c0_cpuid;
b85a1fd6
FA
302 union { /* Cache size selection */
303 struct {
304 uint64_t _unused_csselr0;
305 uint64_t csselr_ns;
306 uint64_t _unused_csselr1;
307 uint64_t csselr_s;
308 };
309 uint64_t csselr_el[4];
310 };
137feaa9
FA
311 union { /* System control register. */
312 struct {
313 uint64_t _unused_sctlr;
314 uint64_t sctlr_ns;
315 uint64_t hsctlr;
316 uint64_t sctlr_s;
317 };
318 uint64_t sctlr_el[4];
319 };
7ebd5f2e 320 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 321 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 322 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 323 uint64_t sder; /* Secure debug enable register. */
77022576 324 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
325 union { /* MMU translation table base 0. */
326 struct {
327 uint64_t _unused_ttbr0_0;
328 uint64_t ttbr0_ns;
329 uint64_t _unused_ttbr0_1;
330 uint64_t ttbr0_s;
331 };
332 uint64_t ttbr0_el[4];
333 };
334 union { /* MMU translation table base 1. */
335 struct {
336 uint64_t _unused_ttbr1_0;
337 uint64_t ttbr1_ns;
338 uint64_t _unused_ttbr1_1;
339 uint64_t ttbr1_s;
340 };
341 uint64_t ttbr1_el[4];
342 };
b698e9cf 343 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
e9152ee9 344 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
11f136ee
FA
345 /* MMU translation table base control. */
346 TCR tcr_el[4];
68e9c2fe 347 TCR vtcr_el2; /* Virtualization Translation Control. */
e9152ee9 348 TCR vstcr_el2; /* Secure Virtualization Translation Control. */
67cc32eb
VL
349 uint32_t c2_data; /* MPU data cacheable bits. */
350 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
351 union { /* MMU domain access control register
352 * MPU write buffer control.
353 */
354 struct {
355 uint64_t dacr_ns;
356 uint64_t dacr_s;
357 };
358 struct {
359 uint64_t dacr32_el2;
360 };
361 };
7e09797c
PM
362 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
363 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 364 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 365 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
366 union { /* Fault status registers. */
367 struct {
368 uint64_t ifsr_ns;
369 uint64_t ifsr_s;
370 };
371 struct {
372 uint64_t ifsr32_el2;
373 };
374 };
4a7e2d73
FA
375 union {
376 struct {
377 uint64_t _unused_dfsr;
378 uint64_t dfsr_ns;
379 uint64_t hsr;
380 uint64_t dfsr_s;
381 };
382 uint64_t esr_el[4];
383 };
ce819861 384 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
385 union { /* Fault address registers. */
386 struct {
387 uint64_t _unused_far0;
e03b5686 388#if HOST_BIG_ENDIAN
b848ce2b
FA
389 uint32_t ifar_ns;
390 uint32_t dfar_ns;
391 uint32_t ifar_s;
392 uint32_t dfar_s;
393#else
394 uint32_t dfar_ns;
395 uint32_t ifar_ns;
396 uint32_t dfar_s;
397 uint32_t ifar_s;
398#endif
399 uint64_t _unused_far3;
400 };
401 uint64_t far_el[4];
402 };
59e05530 403 uint64_t hpfar_el2;
2a5a9abd 404 uint64_t hstr_el2;
01c097f7
FA
405 union { /* Translation result. */
406 struct {
407 uint64_t _unused_par_0;
408 uint64_t par_ns;
409 uint64_t _unused_par_1;
410 uint64_t par_s;
411 };
412 uint64_t par_el[4];
413 };
6cb0b013 414
b5ff1b31
FB
415 uint32_t c9_insn; /* Cache lockdown registers. */
416 uint32_t c9_data;
8521466b
AF
417 uint64_t c9_pmcr; /* performance monitor control register */
418 uint64_t c9_pmcnten; /* perf monitor counter enables */
e4e91a21
AL
419 uint64_t c9_pmovsr; /* perf monitor overflow status */
420 uint64_t c9_pmuserenr; /* perf monitor user enable */
6b040780 421 uint64_t c9_pmselr; /* perf monitor counter selection register */
e6ec5457 422 uint64_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
423 union { /* Memory attribute redirection */
424 struct {
e03b5686 425#if HOST_BIG_ENDIAN
be693c87
GB
426 uint64_t _unused_mair_0;
427 uint32_t mair1_ns;
428 uint32_t mair0_ns;
429 uint64_t _unused_mair_1;
430 uint32_t mair1_s;
431 uint32_t mair0_s;
432#else
433 uint64_t _unused_mair_0;
434 uint32_t mair0_ns;
435 uint32_t mair1_ns;
436 uint64_t _unused_mair_1;
437 uint32_t mair0_s;
438 uint32_t mair1_s;
439#endif
440 };
441 uint64_t mair_el[4];
442 };
fb6c91ba
GB
443 union { /* vector base address register */
444 struct {
445 uint64_t _unused_vbar;
446 uint64_t vbar_ns;
447 uint64_t hvbar;
448 uint64_t vbar_s;
449 };
450 uint64_t vbar_el[4];
451 };
e89e51a1 452 uint32_t mvbar; /* (monitor) vector base address register */
4a7319b7 453 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
54bf36ed
FA
454 struct { /* FCSE PID. */
455 uint32_t fcseidr_ns;
456 uint32_t fcseidr_s;
457 };
458 union { /* Context ID. */
459 struct {
460 uint64_t _unused_contextidr_0;
461 uint64_t contextidr_ns;
462 uint64_t _unused_contextidr_1;
463 uint64_t contextidr_s;
464 };
465 uint64_t contextidr_el[4];
466 };
467 union { /* User RW Thread register. */
468 struct {
469 uint64_t tpidrurw_ns;
470 uint64_t tpidrprw_ns;
471 uint64_t htpidr;
472 uint64_t _tpidr_el3;
473 };
474 uint64_t tpidr_el[4];
475 };
476 /* The secure banks of these registers don't map anywhere */
477 uint64_t tpidrurw_s;
478 uint64_t tpidrprw_s;
479 uint64_t tpidruro_s;
480
481 union { /* User RO Thread register. */
482 uint64_t tpidruro_ns;
483 uint64_t tpidrro_el[1];
484 };
a7adc4b7
PM
485 uint64_t c14_cntfrq; /* Counter Frequency register */
486 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 487 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 488 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 489 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 490 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
491 uint32_t c15_ticonfig; /* TI925T configuration byte. */
492 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
493 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
494 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
495 uint32_t c15_config_base_address; /* SCU base address. */
496 uint32_t c15_diagnostic; /* diagnostic register */
497 uint32_t c15_power_diagnostic;
498 uint32_t c15_power_control; /* power control */
0b45451e
PM
499 uint64_t dbgbvr[16]; /* breakpoint value registers */
500 uint64_t dbgbcr[16]; /* breakpoint control registers */
501 uint64_t dbgwvr[16]; /* watchpoint value registers */
502 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 503 uint64_t mdscr_el1;
1424ca8d 504 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 505 uint64_t mdcr_el2;
5513c3ab 506 uint64_t mdcr_el3;
5d05b9d4
AL
507 /* Stores the architectural value of the counter *the last time it was
508 * updated* by pmccntr_op_start. Accesses should always be surrounded
509 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
510 * architecturally-correct value is being read/set.
7c2cb42b 511 */
c92c0687 512 uint64_t c15_ccnt;
5d05b9d4
AL
513 /* Stores the delta between the architectural value and the underlying
514 * cycle count during normal operation. It is used to update c15_ccnt
515 * to be the correct architectural value before accesses. During
516 * accesses, c15_ccnt_delta contains the underlying count being used
517 * for the access, after which it reverts to the delta value in
518 * pmccntr_op_finish.
519 */
520 uint64_t c15_ccnt_delta;
5ecdd3e4
AL
521 uint64_t c14_pmevcntr[31];
522 uint64_t c14_pmevcntr_delta[31];
523 uint64_t c14_pmevtyper[31];
8521466b 524 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 525 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 526 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
4b779ceb
RH
527 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
528 uint64_t gcr_el1;
529 uint64_t rgsr_el1;
58e93b48
RH
530
531 /* Minimal RAS registers */
532 uint64_t disr_el1;
533 uint64_t vdisr_el2;
534 uint64_t vsesr_el2;
b5ff1b31 535 } cp15;
40f137e1 536
9ee6e8bb 537 struct {
fb602cb7
PM
538 /* M profile has up to 4 stack pointers:
539 * a Main Stack Pointer and a Process Stack Pointer for each
540 * of the Secure and Non-Secure states. (If the CPU doesn't support
541 * the security extension then it has only two SPs.)
542 * In QEMU we always store the currently active SP in regs[13],
543 * and the non-active SP for the current security state in
544 * v7m.other_sp. The stack pointers for the inactive security state
545 * are stored in other_ss_msp and other_ss_psp.
546 * switch_v7m_security_state() is responsible for rearranging them
547 * when we change security state.
548 */
9ee6e8bb 549 uint32_t other_sp;
fb602cb7
PM
550 uint32_t other_ss_msp;
551 uint32_t other_ss_psp;
4a16724f
PM
552 uint32_t vecbase[M_REG_NUM_BANKS];
553 uint32_t basepri[M_REG_NUM_BANKS];
554 uint32_t control[M_REG_NUM_BANKS];
555 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
556 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
2c4da50d
PM
557 uint32_t hfsr; /* HardFault Status */
558 uint32_t dfsr; /* Debug Fault Status Register */
bed079da 559 uint32_t sfsr; /* Secure Fault Status Register */
4a16724f 560 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
2c4da50d 561 uint32_t bfar; /* BusFault Address */
bed079da 562 uint32_t sfar; /* Secure Fault Address Register */
4a16724f 563 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
9ee6e8bb 564 int exception;
4a16724f
PM
565 uint32_t primask[M_REG_NUM_BANKS];
566 uint32_t faultmask[M_REG_NUM_BANKS];
3b2e9344 567 uint32_t aircr; /* only holds r/w state if security extn implemented */
1e577cc7 568 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
43bbce7f 569 uint32_t csselr[M_REG_NUM_BANKS];
24ac0fb1 570 uint32_t scr[M_REG_NUM_BANKS];
57bb3156
PM
571 uint32_t msplim[M_REG_NUM_BANKS];
572 uint32_t psplim[M_REG_NUM_BANKS];
d33abe82
PM
573 uint32_t fpcar[M_REG_NUM_BANKS];
574 uint32_t fpccr[M_REG_NUM_BANKS];
575 uint32_t fpdscr[M_REG_NUM_BANKS];
576 uint32_t cpacr[M_REG_NUM_BANKS];
577 uint32_t nsacr;
b26b5629 578 uint32_t ltpsize;
7c3d47da 579 uint32_t vpr;
9ee6e8bb
PB
580 } v7m;
581
abf1172f
PM
582 /* Information associated with an exception about to be taken:
583 * code which raises an exception must set cs->exception_index and
584 * the relevant parts of this structure; the cpu_do_interrupt function
585 * will then set the guest-visible registers as part of the exception
586 * entry process.
587 */
588 struct {
589 uint32_t syndrome; /* AArch64 format syndrome register */
590 uint32_t fsr; /* AArch32 format fault status register info */
591 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 592 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
593 /* If we implement EL2 we will also need to store information
594 * about the intermediate physical address for stage 2 faults.
595 */
596 } exception;
597
202ccb6b
DG
598 /* Information associated with an SError */
599 struct {
600 uint8_t pending;
601 uint8_t has_esr;
602 uint64_t esr;
603 } serror;
604
1711bfa5
BM
605 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
606
ed89f078
PM
607 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
608 uint32_t irq_line_state;
609
fe1479c3
PB
610 /* Thumb-2 EE state. */
611 uint32_t teecr;
612 uint32_t teehbr;
613
b7bcbe95
FB
614 /* VFP coprocessor state. */
615 struct {
c39c2b90 616 ARMVectorReg zregs[32];
b7bcbe95 617
3c7d3086
RH
618#ifdef TARGET_AARCH64
619 /* Store FFR as pregs[16] to make it easier to treat as any other. */
028e2a7b 620#define FFR_PRED_NUM 16
3c7d3086 621 ARMPredicateReg pregs[17];
516e246a
RH
622 /* Scratch space for aa64 sve predicate temporary. */
623 ARMPredicateReg preg_tmp;
3c7d3086
RH
624#endif
625
b7bcbe95 626 /* We store these fpcsr fields separately for convenience. */
a4d58462 627 uint32_t qc[4] QEMU_ALIGNED(16);
b7bcbe95
FB
628 int vec_len;
629 int vec_stride;
630
a4d58462
RH
631 uint32_t xregs[16];
632
516e246a 633 /* Scratch space for aa32 neon expansion. */
9ee6e8bb 634 uint32_t scratch[8];
3b46e624 635
d81ce0ef
AB
636 /* There are a number of distinct float control structures:
637 *
638 * fp_status: is the "normal" fp status.
639 * fp_status_fp16: used for half-precision calculations
640 * standard_fp_status : the ARM "Standard FPSCR Value"
aaae563b
PM
641 * standard_fp_status_fp16 : used for half-precision
642 * calculations with the ARM "Standard FPSCR Value"
d81ce0ef
AB
643 *
644 * Half-precision operations are governed by a separate
645 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
646 * status structure to control this.
647 *
648 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
649 * round-to-nearest and is used by any operations (generally
650 * Neon) which the architecture defines as controlled by the
651 * standard FPSCR value rather than the FPSCR.
3a492f3a 652 *
aaae563b
PM
653 * The "standard FPSCR but for fp16 ops" is needed because
654 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
655 * using a fixed value for it.
656 *
3a492f3a
PM
657 * To avoid having to transfer exception bits around, we simply
658 * say that the FPSCR cumulative exception flags are the logical
aaae563b 659 * OR of the flags in the four fp statuses. This relies on the
3a492f3a
PM
660 * only thing which needs to read the exception flags being
661 * an explicit FPSCR read.
662 */
53cd6637 663 float_status fp_status;
d81ce0ef 664 float_status fp_status_f16;
3a492f3a 665 float_status standard_fp_status;
aaae563b 666 float_status standard_fp_status_f16;
5be5e8ed
RH
667
668 /* ZCR_EL[1-3] */
669 uint64_t zcr_el[4];
b7bcbe95 670 } vfp;
03d05e2d
PM
671 uint64_t exclusive_addr;
672 uint64_t exclusive_val;
673 uint64_t exclusive_high;
b7bcbe95 674
18c9b560
AZ
675 /* iwMMXt coprocessor state. */
676 struct {
677 uint64_t regs[16];
678 uint64_t val;
679
680 uint32_t cregs[16];
681 } iwmmxt;
682
991ad91b 683#ifdef TARGET_AARCH64
108b3ba8
RH
684 struct {
685 ARMPACKey apia;
686 ARMPACKey apib;
687 ARMPACKey apda;
688 ARMPACKey apdb;
689 ARMPACKey apga;
690 } keys;
7cb1e618
RH
691
692 uint64_t scxtnum_el[4];
991ad91b
RH
693#endif
694
ce4defa0
PB
695#if defined(CONFIG_USER_ONLY)
696 /* For usermode syscall translation. */
697 int eabi;
698#endif
699
46747d15 700 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
701 struct CPUWatchpoint *cpu_watchpoint[16];
702
1f5c00cf
AB
703 /* Fields up to this point are cleared by a CPU reset */
704 struct {} end_reset_fields;
705
e8b5fae5 706 /* Fields after this point are preserved across CPU reset. */
9ba8c3f4 707
581be094 708 /* Internal CPU feature flags. */
918f5dca 709 uint64_t features;
581be094 710
6cb0b013
PC
711 /* PMSAv7 MPU */
712 struct {
713 uint32_t *drbar;
714 uint32_t *drsr;
715 uint32_t *dracr;
4a16724f 716 uint32_t rnr[M_REG_NUM_BANKS];
6cb0b013
PC
717 } pmsav7;
718
0e1a46bb
PM
719 /* PMSAv8 MPU */
720 struct {
721 /* The PMSAv8 implementation also shares some PMSAv7 config
722 * and state:
723 * pmsav7.rnr (region number register)
724 * pmsav7_dregion (number of configured regions)
725 */
4a16724f
PM
726 uint32_t *rbar[M_REG_NUM_BANKS];
727 uint32_t *rlar[M_REG_NUM_BANKS];
728 uint32_t mair0[M_REG_NUM_BANKS];
729 uint32_t mair1[M_REG_NUM_BANKS];
0e1a46bb
PM
730 } pmsav8;
731
9901c576
PM
732 /* v8M SAU */
733 struct {
734 uint32_t *rbar;
735 uint32_t *rlar;
736 uint32_t rnr;
737 uint32_t ctrl;
738 } sau;
739
983fe826 740 void *nvic;
462a8bc6 741 const struct arm_boot_info *boot_info;
d3a3e529
VK
742 /* Store GICv3CPUState to access from this struct */
743 void *gicv3state;
0e0c030c
RH
744
745#ifdef TARGET_TAGGED_ADDRESSES
746 /* Linux syscall tagged address support */
747 bool tagged_addr_enable;
748#endif
2c0262af
FB
749} CPUARMState;
750
5fda9504
TH
751static inline void set_feature(CPUARMState *env, int feature)
752{
753 env->features |= 1ULL << feature;
754}
755
756static inline void unset_feature(CPUARMState *env, int feature)
757{
758 env->features &= ~(1ULL << feature);
759}
760
bd7d00fc 761/**
08267487 762 * ARMELChangeHookFn:
bd7d00fc
PM
763 * type of a function which can be registered via arm_register_el_change_hook()
764 * to get callbacks when the CPU changes its exception level or mode.
765 */
08267487
AL
766typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
767typedef struct ARMELChangeHook ARMELChangeHook;
768struct ARMELChangeHook {
769 ARMELChangeHookFn *hook;
770 void *opaque;
771 QLIST_ENTRY(ARMELChangeHook) node;
772};
062ba099
AB
773
774/* These values map onto the return values for
775 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
776typedef enum ARMPSCIState {
d5affb0d
AJ
777 PSCI_ON = 0,
778 PSCI_OFF = 1,
062ba099
AB
779 PSCI_ON_PENDING = 2
780} ARMPSCIState;
781
962fcbf2
RH
782typedef struct ARMISARegisters ARMISARegisters;
783
74e75564
PB
784/**
785 * ARMCPU:
786 * @env: #CPUARMState
787 *
788 * An ARM CPU core.
789 */
b36e239e 790struct ArchCPU {
74e75564
PB
791 /*< private >*/
792 CPUState parent_obj;
793 /*< public >*/
794
5b146dc7 795 CPUNegativeOffsetState neg;
74e75564
PB
796 CPUARMState env;
797
798 /* Coprocessor information */
799 GHashTable *cp_regs;
800 /* For marshalling (mostly coprocessor) register state between the
801 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
802 * we use these arrays.
803 */
804 /* List of register indexes managed via these arrays; (full KVM style
805 * 64 bit indexes, not CPRegInfo 32 bit indexes)
806 */
807 uint64_t *cpreg_indexes;
808 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
809 uint64_t *cpreg_values;
810 /* Length of the indexes, values, reset_values arrays */
811 int32_t cpreg_array_len;
812 /* These are used only for migration: incoming data arrives in
813 * these fields and is sanity checked in post_load before copying
814 * to the working data structures above.
815 */
816 uint64_t *cpreg_vmstate_indexes;
817 uint64_t *cpreg_vmstate_values;
818 int32_t cpreg_vmstate_array_len;
819
448d4d14 820 DynamicGDBXMLInfo dyn_sysreg_xml;
d12379c5 821 DynamicGDBXMLInfo dyn_svereg_xml;
200bf5b7 822
74e75564
PB
823 /* Timers used by the generic (architected) timer */
824 QEMUTimer *gt_timer[NUM_GTIMERS];
4e7beb0c
AL
825 /*
826 * Timer used by the PMU. Its state is restored after migration by
827 * pmu_op_finish() - it does not need other handling during migration
828 */
829 QEMUTimer *pmu_timer;
74e75564
PB
830 /* GPIO outputs for generic timer */
831 qemu_irq gt_timer_outputs[NUM_GTIMERS];
aa1b3111
PM
832 /* GPIO output for GICv3 maintenance interrupt signal */
833 qemu_irq gicv3_maintenance_interrupt;
07f48730
AJ
834 /* GPIO output for the PMU interrupt */
835 qemu_irq pmu_interrupt;
74e75564
PB
836
837 /* MemoryRegion to use for secure physical accesses */
838 MemoryRegion *secure_memory;
839
8bce44a2
RH
840 /* MemoryRegion to use for allocation tag accesses */
841 MemoryRegion *tag_memory;
842 MemoryRegion *secure_tag_memory;
843
181962fd
PM
844 /* For v8M, pointer to the IDAU interface provided by board/SoC */
845 Object *idau;
846
74e75564
PB
847 /* 'compatible' string for this CPU for Linux device trees */
848 const char *dtb_compatible;
849
850 /* PSCI version for this CPU
851 * Bits[31:16] = Major Version
852 * Bits[15:0] = Minor Version
853 */
854 uint32_t psci_version;
855
062ba099
AB
856 /* Current power state, access guarded by BQL */
857 ARMPSCIState power_state;
858
c25bd18a
PM
859 /* CPU has virtualization extension */
860 bool has_el2;
74e75564
PB
861 /* CPU has security extension */
862 bool has_el3;
5c0a3819
SZ
863 /* CPU has PMU (Performance Monitor Unit) */
864 bool has_pmu;
97a28b0e
PM
865 /* CPU has VFP */
866 bool has_vfp;
867 /* CPU has Neon */
868 bool has_neon;
ea90db0a
PM
869 /* CPU has M-profile DSP extension */
870 bool has_dsp;
74e75564
PB
871
872 /* CPU has memory protection unit */
873 bool has_mpu;
874 /* PMSAv7 MPU number of supported regions */
875 uint32_t pmsav7_dregion;
9901c576
PM
876 /* v8M SAU number of supported regions */
877 uint32_t sau_sregion;
74e75564
PB
878
879 /* PSCI conduit used to invoke PSCI methods
880 * 0 - disabled, 1 - smc, 2 - hvc
881 */
882 uint32_t psci_conduit;
883
38e2a77c
PM
884 /* For v8M, initial value of the Secure VTOR */
885 uint32_t init_svtor;
7cda2149
PM
886 /* For v8M, initial value of the Non-secure VTOR */
887 uint32_t init_nsvtor;
38e2a77c 888
74e75564
PB
889 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
890 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
891 */
892 uint32_t kvm_target;
893
894 /* KVM init features for this CPU */
895 uint32_t kvm_init_features[7];
896
e5ac4200
AJ
897 /* KVM CPU state */
898
899 /* KVM virtual time adjustment */
900 bool kvm_adjvtime;
901 bool kvm_vtime_dirty;
902 uint64_t kvm_vtime;
903
68970d1e
AJ
904 /* KVM steal time */
905 OnOffAuto kvm_steal_time;
906
74e75564
PB
907 /* Uniprocessor system with MP extensions */
908 bool mp_is_up;
909
c4487d76
PM
910 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
911 * and the probe failed (so we need to report the error in realize)
912 */
913 bool host_cpu_probe_failed;
914
f9a69711
AF
915 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
916 * register.
917 */
918 int32_t core_count;
919
74e75564
PB
920 /* The instance init functions for implementation-specific subclasses
921 * set these fields to specify the implementation-dependent values of
922 * various constant registers and reset values of non-constant
923 * registers.
924 * Some of these might become QOM properties eventually.
925 * Field names match the official register names as defined in the
926 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
927 * is used for reset values of non-constant registers; no reset_
928 * prefix means a constant register.
47576b94
RH
929 * Some of these registers are split out into a substructure that
930 * is shared with the translators to control the ISA.
1548a7b2
PM
931 *
932 * Note that if you add an ID register to the ARMISARegisters struct
933 * you need to also update the 32-bit and 64-bit versions of the
934 * kvm_arm_get_host_cpu_features() function to correctly populate the
935 * field by reading the value from the KVM vCPU.
74e75564 936 */
47576b94
RH
937 struct ARMISARegisters {
938 uint32_t id_isar0;
939 uint32_t id_isar1;
940 uint32_t id_isar2;
941 uint32_t id_isar3;
942 uint32_t id_isar4;
943 uint32_t id_isar5;
944 uint32_t id_isar6;
10054016
PM
945 uint32_t id_mmfr0;
946 uint32_t id_mmfr1;
947 uint32_t id_mmfr2;
948 uint32_t id_mmfr3;
949 uint32_t id_mmfr4;
8a130a7b
PM
950 uint32_t id_pfr0;
951 uint32_t id_pfr1;
1d51bc96 952 uint32_t id_pfr2;
47576b94
RH
953 uint32_t mvfr0;
954 uint32_t mvfr1;
955 uint32_t mvfr2;
a6179538 956 uint32_t id_dfr0;
4426d361 957 uint32_t dbgdidr;
47576b94
RH
958 uint64_t id_aa64isar0;
959 uint64_t id_aa64isar1;
960 uint64_t id_aa64pfr0;
961 uint64_t id_aa64pfr1;
3dc91ddb
PM
962 uint64_t id_aa64mmfr0;
963 uint64_t id_aa64mmfr1;
64761e10 964 uint64_t id_aa64mmfr2;
2a609df8
PM
965 uint64_t id_aa64dfr0;
966 uint64_t id_aa64dfr1;
2dc10fa2 967 uint64_t id_aa64zfr0;
47576b94 968 } isar;
e544f800 969 uint64_t midr;
74e75564
PB
970 uint32_t revidr;
971 uint32_t reset_fpsid;
a5fd319a 972 uint64_t ctr;
74e75564 973 uint32_t reset_sctlr;
cad86737
AL
974 uint64_t pmceid0;
975 uint64_t pmceid1;
74e75564 976 uint32_t id_afr0;
74e75564
PB
977 uint64_t id_aa64afr0;
978 uint64_t id_aa64afr1;
f6450bcb 979 uint64_t clidr;
74e75564
PB
980 uint64_t mp_affinity; /* MP ID without feature bits */
981 /* The elements of this array are the CCSIDR values for each cache,
982 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
983 */
957e6155 984 uint64_t ccsidr[16];
74e75564
PB
985 uint64_t reset_cbar;
986 uint32_t reset_auxcr;
987 bool reset_hivecs;
eb94284d
RH
988
989 /*
990 * Intermediate values used during property parsing.
69b2265d 991 * Once finalized, the values should be read from ID_AA64*.
eb94284d
RH
992 */
993 bool prop_pauth;
994 bool prop_pauth_impdef;
69b2265d 995 bool prop_lpa2;
eb94284d 996
74e75564
PB
997 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
998 uint32_t dcz_blocksize;
4a7319b7 999 uint64_t rvbar_prop; /* Property/input signals. */
bd7d00fc 1000
e45868a3
PM
1001 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1002 int gic_num_lrs; /* number of list registers */
1003 int gic_vpribits; /* number of virtual priority bits */
1004 int gic_vprebits; /* number of virtual preemption bits */
1005
3a062d57
JB
1006 /* Whether the cfgend input is high (i.e. this CPU should reset into
1007 * big-endian mode). This setting isn't used directly: instead it modifies
1008 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1009 * architecture version.
1010 */
1011 bool cfgend;
1012
b5c53d1b 1013 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
08267487 1014 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
15f8b142
IM
1015
1016 int32_t node_id; /* NUMA node this CPU belongs to */
5d721b78
AG
1017
1018 /* Used to synchronize KVM and QEMU in-kernel device levels */
1019 uint8_t device_irq_level;
adf92eab
RH
1020
1021 /* Used to set the maximum vector length the cpu will support. */
1022 uint32_t sve_max_vq;
0df9142d 1023
b3d52804
RH
1024#ifdef CONFIG_USER_ONLY
1025 /* Used to set the default vector length at process start. */
1026 uint32_t sve_default_vq;
1027#endif
1028
0df9142d
AJ
1029 /*
1030 * In sve_vq_map each set bit is a supported vector length of
1031 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
1032 * length in quadwords.
1033 *
1034 * While processing properties during initialization, corresponding
1035 * sve_vq_init bits are set for bits in sve_vq_map that have been
1036 * set by properties.
5401b1e0
AJ
1037 *
1038 * Bits set in sve_vq_supported represent valid vector lengths for
1039 * the CPU type.
0df9142d
AJ
1040 */
1041 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
1042 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
5401b1e0 1043 DECLARE_BITMAP(sve_vq_supported, ARM_MAX_VQ);
7def8754
AJ
1044
1045 /* Generic timer counter frequency, in Hz */
1046 uint64_t gt_cntfrq_hz;
74e75564
PB
1047};
1048
7def8754
AJ
1049unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1050
51e5ef45
MAL
1051void arm_cpu_post_init(Object *obj);
1052
46de5913
IM
1053uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1054
74e75564 1055#ifndef CONFIG_USER_ONLY
8a9358cc 1056extern const VMStateDescription vmstate_arm_cpu;
74e75564
PB
1057
1058void arm_cpu_do_interrupt(CPUState *cpu);
1059void arm_v7m_cpu_do_interrupt(CPUState *cpu);
083afd18 1060#endif /* !CONFIG_USER_ONLY */
74e75564 1061
74e75564
PB
1062hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1063 MemTxAttrs *attrs);
1064
a010bdbe 1065int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564
PB
1066int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1067
d12379c5
AB
1068/*
1069 * Helpers to dynamically generates XML descriptions of the sysregs
1070 * and SVE registers. Returns the number of registers in each set.
200bf5b7 1071 */
32d6e32a 1072int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
d12379c5 1073int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
200bf5b7
AB
1074
1075/* Returns the dynamically generated XML for the gdb stub.
1076 * Returns a pointer to the XML contents for the specified XML file or NULL
1077 * if the XML name doesn't match the predefined one.
1078 */
1079const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1080
74e75564
PB
1081int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1082 int cpuid, void *opaque);
1083int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1084 int cpuid, void *opaque);
1085
1086#ifdef TARGET_AARCH64
a010bdbe 1087int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
74e75564 1088int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85fc7167 1089void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
9a05f7b6
RH
1090void aarch64_sve_change_el(CPUARMState *env, int old_el,
1091 int new_el, bool el0_a64);
87014c6b 1092void aarch64_add_sve_properties(Object *obj);
95ea96e8 1093void aarch64_add_pauth_properties(Object *obj);
538baab2
AJ
1094
1095/*
1096 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1097 * The byte at offset i from the start of the in-memory representation contains
1098 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1099 * lowest offsets are stored in the lowest memory addresses, then that nearly
1100 * matches QEMU's representation, which is to use an array of host-endian
1101 * uint64_t's, where the lower offsets are at the lower indices. To complete
1102 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1103 */
1104static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1105{
e03b5686 1106#if HOST_BIG_ENDIAN
538baab2
AJ
1107 int i;
1108
1109 for (i = 0; i < nr; ++i) {
1110 dst[i] = bswap64(src[i]);
1111 }
1112
1113 return dst;
1114#else
1115 return src;
1116#endif
1117}
1118
0ab5953b
RH
1119#else
1120static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
9a05f7b6
RH
1121static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1122 int n, bool a)
1123{ }
87014c6b 1124static inline void aarch64_add_sve_properties(Object *obj) { }
74e75564 1125#endif
778c3a06 1126
ce02049d
GB
1127void aarch64_sync_32_to_64(CPUARMState *env);
1128void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 1129
ced31551
RH
1130int fp_exception_el(CPUARMState *env, int cur_el);
1131int sve_exception_el(CPUARMState *env, int cur_el);
1132uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1133
3926cc84
AG
1134static inline bool is_a64(CPUARMState *env)
1135{
1136 return env->aarch64;
1137}
1138
5d05b9d4
AL
1139/**
1140 * pmu_op_start/finish
ec7b4ce4
AF
1141 * @env: CPUARMState
1142 *
5d05b9d4
AL
1143 * Convert all PMU counters between their delta form (the typical mode when
1144 * they are enabled) and the guest-visible values. These two calls must
1145 * surround any action which might affect the counters.
ec7b4ce4 1146 */
5d05b9d4
AL
1147void pmu_op_start(CPUARMState *env);
1148void pmu_op_finish(CPUARMState *env);
ec7b4ce4 1149
4e7beb0c
AL
1150/*
1151 * Called when a PMU counter is due to overflow
1152 */
1153void arm_pmu_timer_cb(void *opaque);
1154
033614c4
AL
1155/**
1156 * Functions to register as EL change hooks for PMU mode filtering
1157 */
1158void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1159void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1160
57a4a11b 1161/*
bf8d0969
AL
1162 * pmu_init
1163 * @cpu: ARMCPU
57a4a11b 1164 *
bf8d0969
AL
1165 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1166 * for the current configuration
57a4a11b 1167 */
bf8d0969 1168void pmu_init(ARMCPU *cpu);
57a4a11b 1169
76e3e1bc
PM
1170/* SCTLR bit meanings. Several bits have been reused in newer
1171 * versions of the architecture; in that case we define constants
1172 * for both old and new bit meanings. Code which tests against those
1173 * bits should probably check or otherwise arrange that the CPU
1174 * is the architectural version it expects.
1175 */
1176#define SCTLR_M (1U << 0)
1177#define SCTLR_A (1U << 1)
1178#define SCTLR_C (1U << 2)
1179#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
b2af69d0
RH
1180#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1181#define SCTLR_SA (1U << 3) /* AArch64 only */
76e3e1bc 1182#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
b2af69d0 1183#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
76e3e1bc
PM
1184#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1185#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1186#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1187#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
b2af69d0 1188#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
76e3e1bc
PM
1189#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1190#define SCTLR_ITD (1U << 7) /* v8 onward */
1191#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1192#define SCTLR_SED (1U << 8) /* v8 onward */
1193#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1194#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1195#define SCTLR_F (1U << 10) /* up to v6 */
cb570bd3
RH
1196#define SCTLR_SW (1U << 10) /* v7 */
1197#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
b2af69d0
RH
1198#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1199#define SCTLR_EOS (1U << 11) /* v8.5-ExS */
76e3e1bc 1200#define SCTLR_I (1U << 12)
b2af69d0
RH
1201#define SCTLR_V (1U << 13) /* AArch32 only */
1202#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
76e3e1bc
PM
1203#define SCTLR_RR (1U << 14) /* up to v7 */
1204#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1205#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1206#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1207#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1208#define SCTLR_nTWI (1U << 16) /* v8 onward */
b2af69d0 1209#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
f6bda88f 1210#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
1211#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1212#define SCTLR_nTWE (1U << 18) /* v8 onward */
1213#define SCTLR_WXN (1U << 19)
1214#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
b2af69d0 1215#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
7cb1e618 1216#define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
b2af69d0
RH
1217#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1218#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1219#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1220#define SCTLR_EIS (1U << 22) /* v8.5-ExS */
76e3e1bc 1221#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
b2af69d0 1222#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
76e3e1bc
PM
1223#define SCTLR_VE (1U << 24) /* up to v7 */
1224#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1225#define SCTLR_EE (1U << 25)
1226#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1227#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
b2af69d0
RH
1228#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1229#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1230#define SCTLR_TRE (1U << 28) /* AArch32 only */
1231#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1232#define SCTLR_AFE (1U << 29) /* AArch32 only */
1233#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1234#define SCTLR_TE (1U << 30) /* AArch32 only */
1235#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1236#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
f2f68a78 1237#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
b2af69d0
RH
1238#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1239#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1240#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1241#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1242#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1243#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1244#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
f2f68a78 1245#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
ad1e6018
RH
1246#define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1247#define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1248#define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1249#define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1250#define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1251#define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1252#define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1253#define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1254#define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1255#define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1256#define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1257#define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1258#define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1259#define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
76e3e1bc 1260
c6f19164
GB
1261#define CPTR_TCPAC (1U << 31)
1262#define CPTR_TTA (1U << 20)
1263#define CPTR_TFP (1U << 10)
5be5e8ed
RH
1264#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1265#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
c6f19164 1266
187f678d
PM
1267#define MDCR_EPMAD (1U << 21)
1268#define MDCR_EDAD (1U << 20)
033614c4
AL
1269#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1270#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
187f678d 1271#define MDCR_SDD (1U << 16)
a8d64e73 1272#define MDCR_SPD (3U << 14)
187f678d
PM
1273#define MDCR_TDRA (1U << 11)
1274#define MDCR_TDOSA (1U << 10)
1275#define MDCR_TDA (1U << 9)
1276#define MDCR_TDE (1U << 8)
1277#define MDCR_HPME (1U << 7)
1278#define MDCR_TPM (1U << 6)
1279#define MDCR_TPMCR (1U << 5)
033614c4 1280#define MDCR_HPMN (0x1fU)
187f678d 1281
a8d64e73
PM
1282/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1283#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1284
78dbbbe4
PM
1285#define CPSR_M (0x1fU)
1286#define CPSR_T (1U << 5)
1287#define CPSR_F (1U << 6)
1288#define CPSR_I (1U << 7)
1289#define CPSR_A (1U << 8)
1290#define CPSR_E (1U << 9)
1291#define CPSR_IT_2_7 (0xfc00U)
1292#define CPSR_GE (0xfU << 16)
4051e12c 1293#define CPSR_IL (1U << 20)
dc8b1853 1294#define CPSR_DIT (1U << 21)
220f508f 1295#define CPSR_PAN (1U << 22)
f2f68a78 1296#define CPSR_SSBS (1U << 23)
78dbbbe4
PM
1297#define CPSR_J (1U << 24)
1298#define CPSR_IT_0_1 (3U << 25)
1299#define CPSR_Q (1U << 27)
1300#define CPSR_V (1U << 28)
1301#define CPSR_C (1U << 29)
1302#define CPSR_Z (1U << 30)
1303#define CPSR_N (1U << 31)
9ee6e8bb 1304#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 1305#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
1306
1307#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
1308#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1309 | CPSR_NZCV)
9ee6e8bb 1310/* Bits writable in user mode. */
268b1b3d 1311#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
9ee6e8bb 1312/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c 1313#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
b5ff1b31 1314
987ab45e
PM
1315/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1316#define XPSR_EXCP 0x1ffU
1317#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1318#define XPSR_IT_2_7 CPSR_IT_2_7
1319#define XPSR_GE CPSR_GE
1320#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1321#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1322#define XPSR_IT_0_1 CPSR_IT_0_1
1323#define XPSR_Q CPSR_Q
1324#define XPSR_V CPSR_V
1325#define XPSR_C CPSR_C
1326#define XPSR_Z CPSR_Z
1327#define XPSR_N CPSR_N
1328#define XPSR_NZCV CPSR_NZCV
1329#define XPSR_IT CPSR_IT
1330
e389be16
FA
1331#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1332#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1333#define TTBCR_PD0 (1U << 4)
1334#define TTBCR_PD1 (1U << 5)
1335#define TTBCR_EPD0 (1U << 7)
1336#define TTBCR_IRGN0 (3U << 8)
1337#define TTBCR_ORGN0 (3U << 10)
1338#define TTBCR_SH0 (3U << 12)
1339#define TTBCR_T1SZ (3U << 16)
1340#define TTBCR_A1 (1U << 22)
1341#define TTBCR_EPD1 (1U << 23)
1342#define TTBCR_IRGN1 (3U << 24)
1343#define TTBCR_ORGN1 (3U << 26)
1344#define TTBCR_SH1 (1U << 28)
1345#define TTBCR_EAE (1U << 31)
1346
d356312f
PM
1347/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1348 * Only these are valid when in AArch64 mode; in
1349 * AArch32 mode SPSRs are basically CPSR-format.
1350 */
f502cfc2 1351#define PSTATE_SP (1U)
d356312f
PM
1352#define PSTATE_M (0xFU)
1353#define PSTATE_nRW (1U << 4)
1354#define PSTATE_F (1U << 6)
1355#define PSTATE_I (1U << 7)
1356#define PSTATE_A (1U << 8)
1357#define PSTATE_D (1U << 9)
f6e52eaa 1358#define PSTATE_BTYPE (3U << 10)
f2f68a78 1359#define PSTATE_SSBS (1U << 12)
d356312f
PM
1360#define PSTATE_IL (1U << 20)
1361#define PSTATE_SS (1U << 21)
220f508f 1362#define PSTATE_PAN (1U << 22)
9eeb7a1c 1363#define PSTATE_UAO (1U << 23)
dc8b1853 1364#define PSTATE_DIT (1U << 24)
4b779ceb 1365#define PSTATE_TCO (1U << 25)
d356312f
PM
1366#define PSTATE_V (1U << 28)
1367#define PSTATE_C (1U << 29)
1368#define PSTATE_Z (1U << 30)
1369#define PSTATE_N (1U << 31)
1370#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614 1371#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
f6e52eaa 1372#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
d356312f
PM
1373/* Mode values for AArch64 */
1374#define PSTATE_MODE_EL3h 13
1375#define PSTATE_MODE_EL3t 12
1376#define PSTATE_MODE_EL2h 9
1377#define PSTATE_MODE_EL2t 8
1378#define PSTATE_MODE_EL1h 5
1379#define PSTATE_MODE_EL1t 4
1380#define PSTATE_MODE_EL0t 0
1381
de2db7ec
PM
1382/* Write a new value to v7m.exception, thus transitioning into or out
1383 * of Handler mode; this may result in a change of active stack pointer.
1384 */
1385void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1386
9e729b57
EI
1387/* Map EL and handler into a PSTATE_MODE. */
1388static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1389{
1390 return (el << 2) | handler;
1391}
1392
d356312f
PM
1393/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1394 * interprocessing, so we don't attempt to sync with the cpsr state used by
1395 * the 32 bit decoder.
1396 */
1397static inline uint32_t pstate_read(CPUARMState *env)
1398{
1399 int ZF;
1400
1401 ZF = (env->ZF == 0);
1402 return (env->NF & 0x80000000) | (ZF << 30)
1403 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
f6e52eaa 1404 | env->pstate | env->daif | (env->btype << 10);
d356312f
PM
1405}
1406
1407static inline void pstate_write(CPUARMState *env, uint32_t val)
1408{
1409 env->ZF = (~val) & PSTATE_Z;
1410 env->NF = val;
1411 env->CF = (val >> 29) & 1;
1412 env->VF = (val << 3) & 0x80000000;
4cc35614 1413 env->daif = val & PSTATE_DAIF;
f6e52eaa 1414 env->btype = (val >> 10) & 3;
d356312f
PM
1415 env->pstate = val & ~CACHED_PSTATE_BITS;
1416}
1417
b5ff1b31 1418/* Return the current CPSR value. */
2f4a40e5 1419uint32_t cpsr_read(CPUARMState *env);
50866ba5
PM
1420
1421typedef enum CPSRWriteType {
1422 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1423 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
e784807c
PM
1424 CPSRWriteRaw = 2,
1425 /* trust values, no reg bank switch, no hflags rebuild */
50866ba5
PM
1426 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1427} CPSRWriteType;
1428
e784807c
PM
1429/*
1430 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1431 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1432 * correspond to TB flags bits cached in the hflags, unless @write_type
1433 * is CPSRWriteRaw.
1434 */
50866ba5
PM
1435void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1436 CPSRWriteType write_type);
9ee6e8bb
PB
1437
1438/* Return the current xPSR value. */
1439static inline uint32_t xpsr_read(CPUARMState *env)
1440{
1441 int ZF;
6fbe23d5
PB
1442 ZF = (env->ZF == 0);
1443 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
1444 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1445 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1446 | ((env->condexec_bits & 0xfc) << 8)
f1e2598c 1447 | (env->GE << 16)
9ee6e8bb 1448 | env->v7m.exception;
b5ff1b31
FB
1449}
1450
9ee6e8bb
PB
1451/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1452static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1453{
987ab45e
PM
1454 if (mask & XPSR_NZCV) {
1455 env->ZF = (~val) & XPSR_Z;
6fbe23d5 1456 env->NF = val;
9ee6e8bb
PB
1457 env->CF = (val >> 29) & 1;
1458 env->VF = (val << 3) & 0x80000000;
1459 }
987ab45e
PM
1460 if (mask & XPSR_Q) {
1461 env->QF = ((val & XPSR_Q) != 0);
1462 }
f1e2598c
PM
1463 if (mask & XPSR_GE) {
1464 env->GE = (val & XPSR_GE) >> 16;
1465 }
04c9c81b 1466#ifndef CONFIG_USER_ONLY
987ab45e
PM
1467 if (mask & XPSR_T) {
1468 env->thumb = ((val & XPSR_T) != 0);
1469 }
1470 if (mask & XPSR_IT_0_1) {
9ee6e8bb
PB
1471 env->condexec_bits &= ~3;
1472 env->condexec_bits |= (val >> 25) & 3;
1473 }
987ab45e 1474 if (mask & XPSR_IT_2_7) {
9ee6e8bb
PB
1475 env->condexec_bits &= 3;
1476 env->condexec_bits |= (val >> 8) & 0xfc;
1477 }
987ab45e 1478 if (mask & XPSR_EXCP) {
de2db7ec
PM
1479 /* Note that this only happens on exception exit */
1480 write_v7m_exception(env, val & XPSR_EXCP);
9ee6e8bb 1481 }
04c9c81b 1482#endif
9ee6e8bb
PB
1483}
1484
f149e3e8
EI
1485#define HCR_VM (1ULL << 0)
1486#define HCR_SWIO (1ULL << 1)
1487#define HCR_PTW (1ULL << 2)
1488#define HCR_FMO (1ULL << 3)
1489#define HCR_IMO (1ULL << 4)
1490#define HCR_AMO (1ULL << 5)
1491#define HCR_VF (1ULL << 6)
1492#define HCR_VI (1ULL << 7)
1493#define HCR_VSE (1ULL << 8)
1494#define HCR_FB (1ULL << 9)
1495#define HCR_BSU_MASK (3ULL << 10)
1496#define HCR_DC (1ULL << 12)
1497#define HCR_TWI (1ULL << 13)
1498#define HCR_TWE (1ULL << 14)
1499#define HCR_TID0 (1ULL << 15)
1500#define HCR_TID1 (1ULL << 16)
1501#define HCR_TID2 (1ULL << 17)
1502#define HCR_TID3 (1ULL << 18)
1503#define HCR_TSC (1ULL << 19)
1504#define HCR_TIDCP (1ULL << 20)
1505#define HCR_TACR (1ULL << 21)
1506#define HCR_TSW (1ULL << 22)
099bf53b 1507#define HCR_TPCP (1ULL << 23)
f149e3e8
EI
1508#define HCR_TPU (1ULL << 24)
1509#define HCR_TTLB (1ULL << 25)
1510#define HCR_TVM (1ULL << 26)
1511#define HCR_TGE (1ULL << 27)
1512#define HCR_TDZ (1ULL << 28)
1513#define HCR_HCD (1ULL << 29)
1514#define HCR_TRVM (1ULL << 30)
1515#define HCR_RW (1ULL << 31)
1516#define HCR_CD (1ULL << 32)
1517#define HCR_ID (1ULL << 33)
ac656b16 1518#define HCR_E2H (1ULL << 34)
099bf53b
RH
1519#define HCR_TLOR (1ULL << 35)
1520#define HCR_TERR (1ULL << 36)
1521#define HCR_TEA (1ULL << 37)
1522#define HCR_MIOCNCE (1ULL << 38)
e0a38bb3 1523/* RES0 bit 39 */
099bf53b
RH
1524#define HCR_APK (1ULL << 40)
1525#define HCR_API (1ULL << 41)
1526#define HCR_NV (1ULL << 42)
1527#define HCR_NV1 (1ULL << 43)
1528#define HCR_AT (1ULL << 44)
1529#define HCR_NV2 (1ULL << 45)
1530#define HCR_FWB (1ULL << 46)
1531#define HCR_FIEN (1ULL << 47)
e0a38bb3 1532/* RES0 bit 48 */
099bf53b
RH
1533#define HCR_TID4 (1ULL << 49)
1534#define HCR_TICAB (1ULL << 50)
e0a38bb3 1535#define HCR_AMVOFFEN (1ULL << 51)
099bf53b 1536#define HCR_TOCU (1ULL << 52)
e0a38bb3 1537#define HCR_ENSCXT (1ULL << 53)
099bf53b
RH
1538#define HCR_TTLBIS (1ULL << 54)
1539#define HCR_TTLBOS (1ULL << 55)
1540#define HCR_ATA (1ULL << 56)
1541#define HCR_DCT (1ULL << 57)
e0a38bb3
RH
1542#define HCR_TID5 (1ULL << 58)
1543#define HCR_TWEDEN (1ULL << 59)
1544#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
099bf53b 1545
9861248f
RDC
1546#define HPFAR_NS (1ULL << 63)
1547
64e0e2de
EI
1548#define SCR_NS (1U << 0)
1549#define SCR_IRQ (1U << 1)
1550#define SCR_FIQ (1U << 2)
1551#define SCR_EA (1U << 3)
1552#define SCR_FW (1U << 4)
1553#define SCR_AW (1U << 5)
1554#define SCR_NET (1U << 6)
1555#define SCR_SMD (1U << 7)
1556#define SCR_HCE (1U << 8)
1557#define SCR_SIF (1U << 9)
1558#define SCR_RW (1U << 10)
1559#define SCR_ST (1U << 11)
1560#define SCR_TWI (1U << 12)
1561#define SCR_TWE (1U << 13)
99f8f86d
RH
1562#define SCR_TLOR (1U << 14)
1563#define SCR_TERR (1U << 15)
1564#define SCR_APK (1U << 16)
1565#define SCR_API (1U << 17)
1566#define SCR_EEL2 (1U << 18)
1567#define SCR_EASE (1U << 19)
1568#define SCR_NMEA (1U << 20)
1569#define SCR_FIEN (1U << 21)
1570#define SCR_ENSCXT (1U << 25)
1571#define SCR_ATA (1U << 26)
f527d661
RH
1572#define SCR_FGTEN (1U << 27)
1573#define SCR_ECVEN (1U << 28)
1574#define SCR_TWEDEN (1U << 29)
1575#define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1576#define SCR_TME (1ULL << 34)
1577#define SCR_AMVOFFEN (1ULL << 35)
1578#define SCR_ENAS0 (1ULL << 36)
1579#define SCR_ADEN (1ULL << 37)
1580#define SCR_HXEN (1ULL << 38)
1581#define SCR_TRNDR (1ULL << 40)
1582#define SCR_ENTP2 (1ULL << 41)
1583#define SCR_GPF (1ULL << 48)
64e0e2de 1584
cc7613bf 1585#define HSTR_TTEE (1 << 16)
8e228c9e 1586#define HSTR_TJDBX (1 << 17)
cc7613bf 1587
01653295
PM
1588/* Return the current FPSCR value. */
1589uint32_t vfp_get_fpscr(CPUARMState *env);
1590void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1591
d81ce0ef
AB
1592/* FPCR, Floating Point Control Register
1593 * FPSR, Floating Poiht Status Register
1594 *
1595 * For A64 the FPSCR is split into two logically distinct registers,
f903fa22
PM
1596 * FPCR and FPSR. However since they still use non-overlapping bits
1597 * we store the underlying state in fpscr and just mask on read/write.
1598 */
1599#define FPSR_MASK 0xf800009f
0b62159b 1600#define FPCR_MASK 0x07ff9f00
d81ce0ef 1601
a15945d9
PM
1602#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1603#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1604#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1605#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1606#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1607#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
d81ce0ef 1608#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
99c7834f 1609#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
d81ce0ef
AB
1610#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1611#define FPCR_DN (1 << 25) /* Default NaN enable bit */
99c7834f 1612#define FPCR_AHP (1 << 26) /* Alternative half-precision */
a4d58462 1613#define FPCR_QC (1 << 27) /* Cumulative saturation bit */
9542c30b
PM
1614#define FPCR_V (1 << 28) /* FP overflow flag */
1615#define FPCR_C (1 << 29) /* FP carry flag */
1616#define FPCR_Z (1 << 30) /* FP zero flag */
1617#define FPCR_N (1 << 31) /* FP negative flag */
1618
99c7834f
PM
1619#define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1620#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
b26b5629 1621#define FPCR_LTPSIZE_LENGTH 3
99c7834f 1622
9542c30b
PM
1623#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1624#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
d81ce0ef 1625
f903fa22
PM
1626static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1627{
1628 return vfp_get_fpscr(env) & FPSR_MASK;
1629}
1630
1631static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1632{
1633 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1634 vfp_set_fpscr(env, new_fpscr);
1635}
1636
1637static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1638{
1639 return vfp_get_fpscr(env) & FPCR_MASK;
1640}
1641
1642static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1643{
1644 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1645 vfp_set_fpscr(env, new_fpscr);
1646}
1647
b5ff1b31
FB
1648enum arm_cpu_mode {
1649 ARM_CPU_MODE_USR = 0x10,
1650 ARM_CPU_MODE_FIQ = 0x11,
1651 ARM_CPU_MODE_IRQ = 0x12,
1652 ARM_CPU_MODE_SVC = 0x13,
28c9457d 1653 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 1654 ARM_CPU_MODE_ABT = 0x17,
28c9457d 1655 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
1656 ARM_CPU_MODE_UND = 0x1b,
1657 ARM_CPU_MODE_SYS = 0x1f
1658};
1659
40f137e1
PB
1660/* VFP system registers. */
1661#define ARM_VFP_FPSID 0
1662#define ARM_VFP_FPSCR 1
a50c0f51 1663#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
1664#define ARM_VFP_MVFR1 6
1665#define ARM_VFP_MVFR0 7
40f137e1
PB
1666#define ARM_VFP_FPEXC 8
1667#define ARM_VFP_FPINST 9
1668#define ARM_VFP_FPINST2 10
9542c30b
PM
1669/* These ones are M-profile only */
1670#define ARM_VFP_FPSCR_NZCVQC 2
1671#define ARM_VFP_VPR 12
1672#define ARM_VFP_P0 13
1673#define ARM_VFP_FPCXT_NS 14
1674#define ARM_VFP_FPCXT_S 15
40f137e1 1675
32a290b8
PM
1676/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1677#define QEMU_VFP_FPSCR_NZCV 0xffff
1678
18c9b560 1679/* iwMMXt coprocessor control registers. */
6e0fafe2
PM
1680#define ARM_IWMMXT_wCID 0
1681#define ARM_IWMMXT_wCon 1
1682#define ARM_IWMMXT_wCSSF 2
1683#define ARM_IWMMXT_wCASF 3
1684#define ARM_IWMMXT_wCGR0 8
1685#define ARM_IWMMXT_wCGR1 9
1686#define ARM_IWMMXT_wCGR2 10
1687#define ARM_IWMMXT_wCGR3 11
18c9b560 1688
2c4da50d
PM
1689/* V7M CCR bits */
1690FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1691FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1692FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1693FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1694FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1695FIELD(V7M_CCR, STKALIGN, 9, 1)
4730fb85 1696FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
2c4da50d
PM
1697FIELD(V7M_CCR, DC, 16, 1)
1698FIELD(V7M_CCR, IC, 17, 1)
4730fb85 1699FIELD(V7M_CCR, BP, 18, 1)
0e83f905
PM
1700FIELD(V7M_CCR, LOB, 19, 1)
1701FIELD(V7M_CCR, TRD, 20, 1)
2c4da50d 1702
24ac0fb1
PM
1703/* V7M SCR bits */
1704FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1705FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1706FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1707FIELD(V7M_SCR, SEVONPEND, 4, 1)
1708
3b2e9344
PM
1709/* V7M AIRCR bits */
1710FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1711FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1712FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1713FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1714FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1715FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1716FIELD(V7M_AIRCR, PRIS, 14, 1)
1717FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1718FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1719
2c4da50d
PM
1720/* V7M CFSR bits for MMFSR */
1721FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1722FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1723FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1724FIELD(V7M_CFSR, MSTKERR, 4, 1)
1725FIELD(V7M_CFSR, MLSPERR, 5, 1)
1726FIELD(V7M_CFSR, MMARVALID, 7, 1)
1727
1728/* V7M CFSR bits for BFSR */
1729FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1730FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1731FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1732FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1733FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1734FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1735FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1736
1737/* V7M CFSR bits for UFSR */
1738FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1739FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1740FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1741FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
86f026de 1742FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
2c4da50d
PM
1743FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1744FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1745
334e8dad
PM
1746/* V7M CFSR bit masks covering all of the subregister bits */
1747FIELD(V7M_CFSR, MMFSR, 0, 8)
1748FIELD(V7M_CFSR, BFSR, 8, 8)
1749FIELD(V7M_CFSR, UFSR, 16, 16)
1750
2c4da50d
PM
1751/* V7M HFSR bits */
1752FIELD(V7M_HFSR, VECTTBL, 1, 1)
1753FIELD(V7M_HFSR, FORCED, 30, 1)
1754FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1755
1756/* V7M DFSR bits */
1757FIELD(V7M_DFSR, HALTED, 0, 1)
1758FIELD(V7M_DFSR, BKPT, 1, 1)
1759FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1760FIELD(V7M_DFSR, VCATCH, 3, 1)
1761FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1762
bed079da
PM
1763/* V7M SFSR bits */
1764FIELD(V7M_SFSR, INVEP, 0, 1)
1765FIELD(V7M_SFSR, INVIS, 1, 1)
1766FIELD(V7M_SFSR, INVER, 2, 1)
1767FIELD(V7M_SFSR, AUVIOL, 3, 1)
1768FIELD(V7M_SFSR, INVTRAN, 4, 1)
1769FIELD(V7M_SFSR, LSPERR, 5, 1)
1770FIELD(V7M_SFSR, SFARVALID, 6, 1)
1771FIELD(V7M_SFSR, LSERR, 7, 1)
1772
29c483a5
MD
1773/* v7M MPU_CTRL bits */
1774FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1775FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1776FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1777
43bbce7f
PM
1778/* v7M CLIDR bits */
1779FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1780FIELD(V7M_CLIDR, LOUIS, 21, 3)
1781FIELD(V7M_CLIDR, LOC, 24, 3)
1782FIELD(V7M_CLIDR, LOUU, 27, 3)
1783FIELD(V7M_CLIDR, ICB, 30, 2)
1784
1785FIELD(V7M_CSSELR, IND, 0, 1)
1786FIELD(V7M_CSSELR, LEVEL, 1, 3)
1787/* We use the combination of InD and Level to index into cpu->ccsidr[];
1788 * define a mask for this and check that it doesn't permit running off
1789 * the end of the array.
1790 */
1791FIELD(V7M_CSSELR, INDEX, 0, 4)
d33abe82
PM
1792
1793/* v7M FPCCR bits */
1794FIELD(V7M_FPCCR, LSPACT, 0, 1)
1795FIELD(V7M_FPCCR, USER, 1, 1)
1796FIELD(V7M_FPCCR, S, 2, 1)
1797FIELD(V7M_FPCCR, THREAD, 3, 1)
1798FIELD(V7M_FPCCR, HFRDY, 4, 1)
1799FIELD(V7M_FPCCR, MMRDY, 5, 1)
1800FIELD(V7M_FPCCR, BFRDY, 6, 1)
1801FIELD(V7M_FPCCR, SFRDY, 7, 1)
1802FIELD(V7M_FPCCR, MONRDY, 8, 1)
1803FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1804FIELD(V7M_FPCCR, UFRDY, 10, 1)
1805FIELD(V7M_FPCCR, RES0, 11, 15)
1806FIELD(V7M_FPCCR, TS, 26, 1)
1807FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1808FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1809FIELD(V7M_FPCCR, LSPENS, 29, 1)
1810FIELD(V7M_FPCCR, LSPEN, 30, 1)
1811FIELD(V7M_FPCCR, ASPEN, 31, 1)
1812/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1813#define R_V7M_FPCCR_BANKED_MASK \
1814 (R_V7M_FPCCR_LSPACT_MASK | \
1815 R_V7M_FPCCR_USER_MASK | \
1816 R_V7M_FPCCR_THREAD_MASK | \
1817 R_V7M_FPCCR_MMRDY_MASK | \
1818 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1819 R_V7M_FPCCR_UFRDY_MASK | \
1820 R_V7M_FPCCR_ASPEN_MASK)
43bbce7f 1821
7c3d47da
PM
1822/* v7M VPR bits */
1823FIELD(V7M_VPR, P0, 0, 16)
1824FIELD(V7M_VPR, MASK01, 16, 4)
1825FIELD(V7M_VPR, MASK23, 20, 4)
1826
a62e62af
RH
1827/*
1828 * System register ID fields.
1829 */
2a14526a
LL
1830FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1831FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1832FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1833FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1834FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1835FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1836FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1837FIELD(CLIDR_EL1, LOUIS, 21, 3)
1838FIELD(CLIDR_EL1, LOC, 24, 3)
1839FIELD(CLIDR_EL1, LOUU, 27, 3)
1840FIELD(CLIDR_EL1, ICB, 30, 3)
1841
1842/* When FEAT_CCIDX is implemented */
1843FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1844FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1845FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1846
1847/* When FEAT_CCIDX is not implemented */
1848FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1849FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1850FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1851
1852FIELD(CTR_EL0, IMINLINE, 0, 4)
1853FIELD(CTR_EL0, L1IP, 14, 2)
1854FIELD(CTR_EL0, DMINLINE, 16, 4)
1855FIELD(CTR_EL0, ERG, 20, 4)
1856FIELD(CTR_EL0, CWG, 24, 4)
1857FIELD(CTR_EL0, IDC, 28, 1)
1858FIELD(CTR_EL0, DIC, 29, 1)
1859FIELD(CTR_EL0, TMINLINE, 32, 6)
1860
2bd5f41c
AB
1861FIELD(MIDR_EL1, REVISION, 0, 4)
1862FIELD(MIDR_EL1, PARTNUM, 4, 12)
1863FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1864FIELD(MIDR_EL1, VARIANT, 20, 4)
1865FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1866
a62e62af
RH
1867FIELD(ID_ISAR0, SWAP, 0, 4)
1868FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1869FIELD(ID_ISAR0, BITFIELD, 8, 4)
1870FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1871FIELD(ID_ISAR0, COPROC, 16, 4)
1872FIELD(ID_ISAR0, DEBUG, 20, 4)
1873FIELD(ID_ISAR0, DIVIDE, 24, 4)
1874
1875FIELD(ID_ISAR1, ENDIAN, 0, 4)
1876FIELD(ID_ISAR1, EXCEPT, 4, 4)
1877FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1878FIELD(ID_ISAR1, EXTEND, 12, 4)
1879FIELD(ID_ISAR1, IFTHEN, 16, 4)
1880FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1881FIELD(ID_ISAR1, INTERWORK, 24, 4)
1882FIELD(ID_ISAR1, JAZELLE, 28, 4)
1883
1884FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1885FIELD(ID_ISAR2, MEMHINT, 4, 4)
1886FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1887FIELD(ID_ISAR2, MULT, 12, 4)
1888FIELD(ID_ISAR2, MULTS, 16, 4)
1889FIELD(ID_ISAR2, MULTU, 20, 4)
1890FIELD(ID_ISAR2, PSR_AR, 24, 4)
1891FIELD(ID_ISAR2, REVERSAL, 28, 4)
1892
1893FIELD(ID_ISAR3, SATURATE, 0, 4)
1894FIELD(ID_ISAR3, SIMD, 4, 4)
1895FIELD(ID_ISAR3, SVC, 8, 4)
1896FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1897FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1898FIELD(ID_ISAR3, T32COPY, 20, 4)
1899FIELD(ID_ISAR3, TRUENOP, 24, 4)
1900FIELD(ID_ISAR3, T32EE, 28, 4)
1901
1902FIELD(ID_ISAR4, UNPRIV, 0, 4)
1903FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1904FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1905FIELD(ID_ISAR4, SMC, 12, 4)
1906FIELD(ID_ISAR4, BARRIER, 16, 4)
1907FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1908FIELD(ID_ISAR4, PSR_M, 24, 4)
1909FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1910
1911FIELD(ID_ISAR5, SEVL, 0, 4)
1912FIELD(ID_ISAR5, AES, 4, 4)
1913FIELD(ID_ISAR5, SHA1, 8, 4)
1914FIELD(ID_ISAR5, SHA2, 12, 4)
1915FIELD(ID_ISAR5, CRC32, 16, 4)
1916FIELD(ID_ISAR5, RDM, 24, 4)
1917FIELD(ID_ISAR5, VCMA, 28, 4)
1918
1919FIELD(ID_ISAR6, JSCVT, 0, 4)
1920FIELD(ID_ISAR6, DP, 4, 4)
1921FIELD(ID_ISAR6, FHM, 8, 4)
1922FIELD(ID_ISAR6, SB, 12, 4)
1923FIELD(ID_ISAR6, SPECRES, 16, 4)
bd78b6be
LL
1924FIELD(ID_ISAR6, BF16, 20, 4)
1925FIELD(ID_ISAR6, I8MM, 24, 4)
a62e62af 1926
0ae0326b
PM
1927FIELD(ID_MMFR0, VMSA, 0, 4)
1928FIELD(ID_MMFR0, PMSA, 4, 4)
1929FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1930FIELD(ID_MMFR0, SHARELVL, 12, 4)
1931FIELD(ID_MMFR0, TCM, 16, 4)
1932FIELD(ID_MMFR0, AUXREG, 20, 4)
1933FIELD(ID_MMFR0, FCSE, 24, 4)
1934FIELD(ID_MMFR0, INNERSHR, 28, 4)
1935
bd78b6be
LL
1936FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1937FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1938FIELD(ID_MMFR1, L1HVDSW, 8, 4)
1939FIELD(ID_MMFR1, L1UNISW, 12, 4)
1940FIELD(ID_MMFR1, L1HVD, 16, 4)
1941FIELD(ID_MMFR1, L1UNI, 20, 4)
1942FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
1943FIELD(ID_MMFR1, BPRED, 28, 4)
1944
1945FIELD(ID_MMFR2, L1HVDFG, 0, 4)
1946FIELD(ID_MMFR2, L1HVDBG, 4, 4)
1947FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
1948FIELD(ID_MMFR2, HVDTLB, 12, 4)
1949FIELD(ID_MMFR2, UNITLB, 16, 4)
1950FIELD(ID_MMFR2, MEMBARR, 20, 4)
1951FIELD(ID_MMFR2, WFISTALL, 24, 4)
1952FIELD(ID_MMFR2, HWACCFLG, 28, 4)
1953
3d6ad6bb
RH
1954FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1955FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1956FIELD(ID_MMFR3, BPMAINT, 8, 4)
1957FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1958FIELD(ID_MMFR3, PAN, 16, 4)
1959FIELD(ID_MMFR3, COHWALK, 20, 4)
1960FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1961FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1962
ab638a32
RH
1963FIELD(ID_MMFR4, SPECSEI, 0, 4)
1964FIELD(ID_MMFR4, AC2, 4, 4)
1965FIELD(ID_MMFR4, XNX, 8, 4)
1966FIELD(ID_MMFR4, CNP, 12, 4)
1967FIELD(ID_MMFR4, HPDS, 16, 4)
1968FIELD(ID_MMFR4, LSM, 20, 4)
1969FIELD(ID_MMFR4, CCIDX, 24, 4)
1970FIELD(ID_MMFR4, EVT, 28, 4)
1971
bd78b6be 1972FIELD(ID_MMFR5, ETS, 0, 4)
c42fb26b 1973FIELD(ID_MMFR5, NTLBPA, 4, 4)
bd78b6be 1974
46f4976f
PM
1975FIELD(ID_PFR0, STATE0, 0, 4)
1976FIELD(ID_PFR0, STATE1, 4, 4)
1977FIELD(ID_PFR0, STATE2, 8, 4)
1978FIELD(ID_PFR0, STATE3, 12, 4)
1979FIELD(ID_PFR0, CSV2, 16, 4)
1980FIELD(ID_PFR0, AMU, 20, 4)
1981FIELD(ID_PFR0, DIT, 24, 4)
1982FIELD(ID_PFR0, RAS, 28, 4)
1983
dfc523a8
PM
1984FIELD(ID_PFR1, PROGMOD, 0, 4)
1985FIELD(ID_PFR1, SECURITY, 4, 4)
1986FIELD(ID_PFR1, MPROGMOD, 8, 4)
1987FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
1988FIELD(ID_PFR1, GENTIMER, 16, 4)
1989FIELD(ID_PFR1, SEC_FRAC, 20, 4)
1990FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
1991FIELD(ID_PFR1, GIC, 28, 4)
1992
bd78b6be
LL
1993FIELD(ID_PFR2, CSV3, 0, 4)
1994FIELD(ID_PFR2, SSBS, 4, 4)
1995FIELD(ID_PFR2, RAS_FRAC, 8, 4)
1996
a62e62af
RH
1997FIELD(ID_AA64ISAR0, AES, 4, 4)
1998FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1999FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2000FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2001FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2002FIELD(ID_AA64ISAR0, RDM, 28, 4)
2003FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2004FIELD(ID_AA64ISAR0, SM3, 36, 4)
2005FIELD(ID_AA64ISAR0, SM4, 40, 4)
2006FIELD(ID_AA64ISAR0, DP, 44, 4)
2007FIELD(ID_AA64ISAR0, FHM, 48, 4)
2008FIELD(ID_AA64ISAR0, TS, 52, 4)
2009FIELD(ID_AA64ISAR0, TLB, 56, 4)
2010FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2011
2012FIELD(ID_AA64ISAR1, DPB, 0, 4)
2013FIELD(ID_AA64ISAR1, APA, 4, 4)
2014FIELD(ID_AA64ISAR1, API, 8, 4)
2015FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2016FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2017FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2018FIELD(ID_AA64ISAR1, GPA, 24, 4)
2019FIELD(ID_AA64ISAR1, GPI, 28, 4)
2020FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2021FIELD(ID_AA64ISAR1, SB, 36, 4)
2022FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
00a92832
LL
2023FIELD(ID_AA64ISAR1, BF16, 44, 4)
2024FIELD(ID_AA64ISAR1, DGH, 48, 4)
2025FIELD(ID_AA64ISAR1, I8MM, 52, 4)
c42fb26b
RH
2026FIELD(ID_AA64ISAR1, XS, 56, 4)
2027FIELD(ID_AA64ISAR1, LS64, 60, 4)
2028
2029FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2030FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2031FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2032FIELD(ID_AA64ISAR2, APA3, 12, 4)
2033FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2034FIELD(ID_AA64ISAR2, BC, 20, 4)
2035FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
a62e62af 2036
cd208a1c
RH
2037FIELD(ID_AA64PFR0, EL0, 0, 4)
2038FIELD(ID_AA64PFR0, EL1, 4, 4)
2039FIELD(ID_AA64PFR0, EL2, 8, 4)
2040FIELD(ID_AA64PFR0, EL3, 12, 4)
2041FIELD(ID_AA64PFR0, FP, 16, 4)
2042FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2043FIELD(ID_AA64PFR0, GIC, 24, 4)
2044FIELD(ID_AA64PFR0, RAS, 28, 4)
2045FIELD(ID_AA64PFR0, SVE, 32, 4)
00a92832
LL
2046FIELD(ID_AA64PFR0, SEL2, 36, 4)
2047FIELD(ID_AA64PFR0, MPAM, 40, 4)
2048FIELD(ID_AA64PFR0, AMU, 44, 4)
2049FIELD(ID_AA64PFR0, DIT, 48, 4)
2050FIELD(ID_AA64PFR0, CSV2, 56, 4)
2051FIELD(ID_AA64PFR0, CSV3, 60, 4)
cd208a1c 2052
be53b6f4 2053FIELD(ID_AA64PFR1, BT, 0, 4)
9a286bcd 2054FIELD(ID_AA64PFR1, SSBS, 4, 4)
be53b6f4
RH
2055FIELD(ID_AA64PFR1, MTE, 8, 4)
2056FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
00a92832 2057FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
c42fb26b
RH
2058FIELD(ID_AA64PFR1, SME, 24, 4)
2059FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2060FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2061FIELD(ID_AA64PFR1, NMI, 36, 4)
be53b6f4 2062
3dc91ddb
PM
2063FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2064FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2065FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2066FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2067FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2068FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2069FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2070FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2071FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2072FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2073FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2074FIELD(ID_AA64MMFR0, EXS, 44, 4)
00a92832
LL
2075FIELD(ID_AA64MMFR0, FGT, 56, 4)
2076FIELD(ID_AA64MMFR0, ECV, 60, 4)
3dc91ddb
PM
2077
2078FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2079FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2080FIELD(ID_AA64MMFR1, VH, 8, 4)
2081FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2082FIELD(ID_AA64MMFR1, LO, 16, 4)
2083FIELD(ID_AA64MMFR1, PAN, 20, 4)
2084FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2085FIELD(ID_AA64MMFR1, XNX, 28, 4)
00a92832
LL
2086FIELD(ID_AA64MMFR1, TWED, 32, 4)
2087FIELD(ID_AA64MMFR1, ETS, 36, 4)
c42fb26b
RH
2088FIELD(ID_AA64MMFR1, HCX, 40, 4)
2089FIELD(ID_AA64MMFR1, AFP, 44, 4)
2090FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2091FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2092FIELD(ID_AA64MMFR1, CMOW, 56, 4)
3dc91ddb 2093
64761e10
RH
2094FIELD(ID_AA64MMFR2, CNP, 0, 4)
2095FIELD(ID_AA64MMFR2, UAO, 4, 4)
2096FIELD(ID_AA64MMFR2, LSM, 8, 4)
2097FIELD(ID_AA64MMFR2, IESB, 12, 4)
2098FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2099FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2100FIELD(ID_AA64MMFR2, NV, 24, 4)
2101FIELD(ID_AA64MMFR2, ST, 28, 4)
2102FIELD(ID_AA64MMFR2, AT, 32, 4)
2103FIELD(ID_AA64MMFR2, IDS, 36, 4)
2104FIELD(ID_AA64MMFR2, FWB, 40, 4)
2105FIELD(ID_AA64MMFR2, TTL, 48, 4)
2106FIELD(ID_AA64MMFR2, BBM, 52, 4)
2107FIELD(ID_AA64MMFR2, EVT, 56, 4)
2108FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2109
ceb2744b
PM
2110FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2111FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2112FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2113FIELD(ID_AA64DFR0, BRPS, 12, 4)
2114FIELD(ID_AA64DFR0, WRPS, 20, 4)
2115FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2116FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2117FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2118FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
c42fb26b 2119FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
00a92832 2120FIELD(ID_AA64DFR0, MTPMU, 48, 4)
c42fb26b
RH
2121FIELD(ID_AA64DFR0, BRBE, 52, 4)
2122FIELD(ID_AA64DFR0, HPMN0, 60, 4)
ceb2744b 2123
2dc10fa2
RH
2124FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2125FIELD(ID_AA64ZFR0, AES, 4, 4)
2126FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2127FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2128FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2129FIELD(ID_AA64ZFR0, SM4, 40, 4)
2130FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2131FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2132FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2133
beceb99c
AL
2134FIELD(ID_DFR0, COPDBG, 0, 4)
2135FIELD(ID_DFR0, COPSDBG, 4, 4)
2136FIELD(ID_DFR0, MMAPDBG, 8, 4)
2137FIELD(ID_DFR0, COPTRC, 12, 4)
2138FIELD(ID_DFR0, MMAPTRC, 16, 4)
2139FIELD(ID_DFR0, MPROFDBG, 20, 4)
2140FIELD(ID_DFR0, PERFMON, 24, 4)
2141FIELD(ID_DFR0, TRACEFILT, 28, 4)
2142
bd78b6be 2143FIELD(ID_DFR1, MTPMU, 0, 4)
c42fb26b 2144FIELD(ID_DFR1, HPMN0, 4, 4)
bd78b6be 2145
88ce6c6e
PM
2146FIELD(DBGDIDR, SE_IMP, 12, 1)
2147FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2148FIELD(DBGDIDR, VERSION, 16, 4)
2149FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2150FIELD(DBGDIDR, BRPS, 24, 4)
2151FIELD(DBGDIDR, WRPS, 28, 4)
2152
602f6e42
PM
2153FIELD(MVFR0, SIMDREG, 0, 4)
2154FIELD(MVFR0, FPSP, 4, 4)
2155FIELD(MVFR0, FPDP, 8, 4)
2156FIELD(MVFR0, FPTRAP, 12, 4)
2157FIELD(MVFR0, FPDIVIDE, 16, 4)
2158FIELD(MVFR0, FPSQRT, 20, 4)
2159FIELD(MVFR0, FPSHVEC, 24, 4)
2160FIELD(MVFR0, FPROUND, 28, 4)
2161
2162FIELD(MVFR1, FPFTZ, 0, 4)
2163FIELD(MVFR1, FPDNAN, 4, 4)
dfc523a8
PM
2164FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2165FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2166FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2167FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2168FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2169FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
602f6e42
PM
2170FIELD(MVFR1, FPHP, 24, 4)
2171FIELD(MVFR1, SIMDFMAC, 28, 4)
2172
2173FIELD(MVFR2, SIMDMISC, 0, 4)
2174FIELD(MVFR2, FPMISC, 4, 4)
2175
43bbce7f
PM
2176QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2177
ce854d7c
BC
2178/* If adding a feature bit which corresponds to a Linux ELF
2179 * HWCAP bit, remember to update the feature-bit-to-hwcap
2180 * mapping in linux-user/elfload.c:get_elf_hwcap().
2181 */
40f137e1 2182enum arm_features {
c1713132
AZ
2183 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2184 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 2185 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
2186 ARM_FEATURE_V6,
2187 ARM_FEATURE_V6K,
2188 ARM_FEATURE_V7,
2189 ARM_FEATURE_THUMB2,
452a0955 2190 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
9ee6e8bb 2191 ARM_FEATURE_NEON,
9ee6e8bb 2192 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 2193 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 2194 ARM_FEATURE_THUMB2EE,
be5e7a76 2195 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
5110e683 2196 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
be5e7a76
DES
2197 ARM_FEATURE_V4T,
2198 ARM_FEATURE_V5,
5bc95aa2 2199 ARM_FEATURE_STRONGARM,
906879a9 2200 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
0383ac00 2201 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 2202 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 2203 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
2204 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2205 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2206 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 2207 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8 2208 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 2209 ARM_FEATURE_V8,
3926cc84 2210 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
d8ba780b 2211 ARM_FEATURE_CBAR, /* has cp15 CBAR */
f318cec6 2212 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 2213 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 2214 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
62b44f05 2215 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
929e754d 2216 ARM_FEATURE_PMU, /* has PMU support */
91db4642 2217 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1e577cc7 2218 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
cc2ae7c9 2219 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
5d2555a1 2220 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
40f137e1
PB
2221};
2222
2223static inline int arm_feature(CPUARMState *env, int feature)
2224{
918f5dca 2225 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
2226}
2227
0df9142d
AJ
2228void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2229
19e0fefa
FA
2230#if !defined(CONFIG_USER_ONLY)
2231/* Return true if exception levels below EL3 are in secure state,
2232 * or would be following an exception return to that level.
2233 * Unlike arm_is_secure() (which is always a question about the
2234 * _current_ state of the CPU) this doesn't care about the current
2235 * EL or mode.
2236 */
2237static inline bool arm_is_secure_below_el3(CPUARMState *env)
2238{
2239 if (arm_feature(env, ARM_FEATURE_EL3)) {
2240 return !(env->cp15.scr_el3 & SCR_NS);
2241 } else {
6b7f0b61 2242 /* If EL3 is not supported then the secure state is implementation
19e0fefa
FA
2243 * defined, in which case QEMU defaults to non-secure.
2244 */
2245 return false;
2246 }
2247}
2248
71205876
PM
2249/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2250static inline bool arm_is_el3_or_mon(CPUARMState *env)
19e0fefa
FA
2251{
2252 if (arm_feature(env, ARM_FEATURE_EL3)) {
2253 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2254 /* CPU currently in AArch64 state and EL3 */
2255 return true;
2256 } else if (!is_a64(env) &&
2257 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2258 /* CPU currently in AArch32 state and monitor mode */
2259 return true;
2260 }
2261 }
71205876
PM
2262 return false;
2263}
2264
2265/* Return true if the processor is in secure state */
2266static inline bool arm_is_secure(CPUARMState *env)
2267{
2268 if (arm_is_el3_or_mon(env)) {
2269 return true;
2270 }
19e0fefa
FA
2271 return arm_is_secure_below_el3(env);
2272}
2273
f3ee5160
RDC
2274/*
2275 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2276 * This corresponds to the pseudocode EL2Enabled()
2277 */
2278static inline bool arm_is_el2_enabled(CPUARMState *env)
2279{
2280 if (arm_feature(env, ARM_FEATURE_EL2)) {
926c1b97
RDC
2281 if (arm_is_secure_below_el3(env)) {
2282 return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2283 }
2284 return true;
f3ee5160
RDC
2285 }
2286 return false;
2287}
2288
19e0fefa
FA
2289#else
2290static inline bool arm_is_secure_below_el3(CPUARMState *env)
2291{
2292 return false;
2293}
2294
2295static inline bool arm_is_secure(CPUARMState *env)
2296{
2297 return false;
2298}
f3ee5160
RDC
2299
2300static inline bool arm_is_el2_enabled(CPUARMState *env)
2301{
2302 return false;
2303}
19e0fefa
FA
2304#endif
2305
f7778444
RH
2306/**
2307 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2308 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2309 * "for all purposes other than a direct read or write access of HCR_EL2."
2310 * Not included here is HCR_RW.
2311 */
2312uint64_t arm_hcr_el2_eff(CPUARMState *env);
2313
1f79ee32
PM
2314/* Return true if the specified exception level is running in AArch64 state. */
2315static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2316{
446c81ab
PM
2317 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2318 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 2319 */
446c81ab
PM
2320 assert(el >= 1 && el <= 3);
2321 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 2322
446c81ab
PM
2323 /* The highest exception level is always at the maximum supported
2324 * register width, and then lower levels have a register width controlled
2325 * by bits in the SCR or HCR registers.
1f79ee32 2326 */
446c81ab
PM
2327 if (el == 3) {
2328 return aa64;
2329 }
2330
926c1b97
RDC
2331 if (arm_feature(env, ARM_FEATURE_EL3) &&
2332 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
446c81ab
PM
2333 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2334 }
2335
2336 if (el == 2) {
2337 return aa64;
2338 }
2339
e6ef0169 2340 if (arm_is_el2_enabled(env)) {
446c81ab
PM
2341 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2342 }
2343
2344 return aa64;
1f79ee32
PM
2345}
2346
3f342b9e
SF
2347/* Function for determing whether guest cp register reads and writes should
2348 * access the secure or non-secure bank of a cp register. When EL3 is
2349 * operating in AArch32 state, the NS-bit determines whether the secure
2350 * instance of a cp register should be used. When EL3 is AArch64 (or if
2351 * it doesn't exist at all) then there is no register banking, and all
2352 * accesses are to the non-secure version.
2353 */
2354static inline bool access_secure_reg(CPUARMState *env)
2355{
2356 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2357 !arm_el_is_aa64(env, 3) &&
2358 !(env->cp15.scr_el3 & SCR_NS));
2359
2360 return ret;
2361}
2362
ea30a4b8
FA
2363/* Macros for accessing a specified CP register bank */
2364#define A32_BANKED_REG_GET(_env, _regname, _secure) \
2365 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2366
2367#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2368 do { \
2369 if (_secure) { \
2370 (_env)->cp15._regname##_s = (_val); \
2371 } else { \
2372 (_env)->cp15._regname##_ns = (_val); \
2373 } \
2374 } while (0)
2375
2376/* Macros for automatically accessing a specific CP register bank depending on
2377 * the current secure state of the system. These macros are not intended for
2378 * supporting instruction translation reads/writes as these are dependent
2379 * solely on the SCR.NS bit and not the mode.
2380 */
2381#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2382 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 2383 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
2384
2385#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2386 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 2387 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
2388 (_val))
2389
0442428a 2390void arm_cpu_list(void);
012a906b
GB
2391uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2392 uint32_t cur_el, bool secure);
40f137e1 2393
9ee6e8bb 2394/* Interface between CPU and Interrupt controller. */
7ecdaa4a
PM
2395#ifndef CONFIG_USER_ONLY
2396bool armv7m_nvic_can_take_pending_exception(void *opaque);
2397#else
2398static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2399{
2400 return true;
2401}
2402#endif
2fb50a33
PM
2403/**
2404 * armv7m_nvic_set_pending: mark the specified exception as pending
2405 * @opaque: the NVIC
2406 * @irq: the exception number to mark pending
2407 * @secure: false for non-banked exceptions or for the nonsecure
2408 * version of a banked exception, true for the secure version of a banked
2409 * exception.
2410 *
2411 * Marks the specified exception as pending. Note that we will assert()
2412 * if @secure is true and @irq does not specify one of the fixed set
2413 * of architecturally banked exceptions.
2414 */
2415void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
5ede82b8
PM
2416/**
2417 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2418 * @opaque: the NVIC
2419 * @irq: the exception number to mark pending
2420 * @secure: false for non-banked exceptions or for the nonsecure
2421 * version of a banked exception, true for the secure version of a banked
2422 * exception.
2423 *
2424 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2425 * exceptions (exceptions generated in the course of trying to take
2426 * a different exception).
2427 */
2428void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
a99ba8ab
PM
2429/**
2430 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2431 * @opaque: the NVIC
2432 * @irq: the exception number to mark pending
2433 * @secure: false for non-banked exceptions or for the nonsecure
2434 * version of a banked exception, true for the secure version of a banked
2435 * exception.
2436 *
2437 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2438 * generated in the course of lazy stacking of FP registers.
2439 */
2440void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
6c948518
PM
2441/**
2442 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2443 * exception, and whether it targets Secure state
2444 * @opaque: the NVIC
2445 * @pirq: set to pending exception number
2446 * @ptargets_secure: set to whether pending exception targets Secure
2447 *
2448 * This function writes the number of the highest priority pending
2449 * exception (the one which would be made active by
2450 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2451 * to true if the current highest priority pending exception should
2452 * be taken to Secure state, false for NS.
2453 */
2454void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2455 bool *ptargets_secure);
5cb18069
PM
2456/**
2457 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2458 * @opaque: the NVIC
2459 *
2460 * Move the current highest priority pending exception from the pending
2461 * state to the active state, and update v7m.exception to indicate that
2462 * it is the exception currently being handled.
5cb18069 2463 */
6c948518 2464void armv7m_nvic_acknowledge_irq(void *opaque);
aa488fe3
PM
2465/**
2466 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2467 * @opaque: the NVIC
2468 * @irq: the exception number to complete
5cb18069 2469 * @secure: true if this exception was secure
aa488fe3
PM
2470 *
2471 * Returns: -1 if the irq was not active
2472 * 1 if completing this irq brought us back to base (no active irqs)
2473 * 0 if there is still an irq active after this one was completed
2474 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2475 */
5cb18069 2476int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
b593c2b8
PM
2477/**
2478 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2479 * @opaque: the NVIC
2480 * @irq: the exception number to mark pending
2481 * @secure: false for non-banked exceptions or for the nonsecure
2482 * version of a banked exception, true for the secure version of a banked
2483 * exception.
2484 *
2485 * Return whether an exception is "ready", i.e. whether the exception is
2486 * enabled and is configured at a priority which would allow it to
2487 * interrupt the current execution priority. This controls whether the
2488 * RDY bit for it in the FPCCR is set.
2489 */
2490bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
42a6686b
PM
2491/**
2492 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2493 * @opaque: the NVIC
2494 *
2495 * Returns: the raw execution priority as defined by the v8M architecture.
2496 * This is the execution priority minus the effects of AIRCR.PRIS,
2497 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2498 * (v8M ARM ARM I_PKLD.)
2499 */
2500int armv7m_nvic_raw_execution_priority(void *opaque);
5d479199
PM
2501/**
2502 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2503 * priority is negative for the specified security state.
2504 * @opaque: the NVIC
2505 * @secure: the security state to test
2506 * This corresponds to the pseudocode IsReqExecPriNeg().
2507 */
2508#ifndef CONFIG_USER_ONLY
2509bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2510#else
2511static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2512{
2513 return false;
2514}
2515#endif
9ee6e8bb 2516
4b6a83fb
PM
2517/* Interface for defining coprocessor registers.
2518 * Registers are defined in tables of arm_cp_reginfo structs
2519 * which are passed to define_arm_cp_regs().
2520 */
2521
2522/* When looking up a coprocessor register we look for it
2523 * via an integer which encodes all of:
2524 * coprocessor number
2525 * Crn, Crm, opc1, opc2 fields
2526 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2527 * or via MRRC/MCRR?)
51a79b03 2528 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
2529 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2530 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
2531 * For AArch64, there is no 32/64 bit size distinction;
2532 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2533 * and 4 bit CRn and CRm. The encoding patterns are chosen
2534 * to be easy to convert to and from the KVM encodings, and also
2535 * so that the hashtable can contain both AArch32 and AArch64
2536 * registers (to allow for interprocessing where we might run
2537 * 32 bit code on a 64 bit core).
4b6a83fb 2538 */
f5a0a5a5
PM
2539/* This bit is private to our hashtable cpreg; in KVM register
2540 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2541 * in the upper bits of the 64 bit ID.
2542 */
2543#define CP_REG_AA64_SHIFT 28
2544#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2545
51a79b03
PM
2546/* To enable banking of coprocessor registers depending on ns-bit we
2547 * add a bit to distinguish between secure and non-secure cpregs in the
2548 * hashtable.
2549 */
2550#define CP_REG_NS_SHIFT 29
2551#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2552
2553#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2554 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2555 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 2556
f5a0a5a5
PM
2557#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2558 (CP_REG_AA64_MASK | \
2559 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2560 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2561 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2562 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2563 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2564 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2565
721fae12
PM
2566/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2567 * version used as a key for the coprocessor register hashtable
2568 */
2569static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2570{
2571 uint32_t cpregid = kvmid;
f5a0a5a5
PM
2572 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2573 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
2574 } else {
2575 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2576 cpregid |= (1 << 15);
2577 }
2578
2579 /* KVM is always non-secure so add the NS flag on AArch32 register
2580 * entries.
2581 */
2582 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
2583 }
2584 return cpregid;
2585}
2586
2587/* Convert a truncated 32 bit hashtable key into the full
2588 * 64 bit KVM register ID.
2589 */
2590static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2591{
f5a0a5a5
PM
2592 uint64_t kvmid;
2593
2594 if (cpregid & CP_REG_AA64_MASK) {
2595 kvmid = cpregid & ~CP_REG_AA64_MASK;
2596 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 2597 } else {
f5a0a5a5
PM
2598 kvmid = cpregid & ~(1 << 15);
2599 if (cpregid & (1 << 15)) {
2600 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2601 } else {
2602 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2603 }
721fae12
PM
2604 }
2605 return kvmid;
2606}
2607
75502672
PM
2608/* Return the highest implemented Exception Level */
2609static inline int arm_highest_el(CPUARMState *env)
2610{
2611 if (arm_feature(env, ARM_FEATURE_EL3)) {
2612 return 3;
2613 }
2614 if (arm_feature(env, ARM_FEATURE_EL2)) {
2615 return 2;
2616 }
2617 return 1;
2618}
2619
15b3f556
PM
2620/* Return true if a v7M CPU is in Handler mode */
2621static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2622{
2623 return env->v7m.exception != 0;
2624}
2625
dcbff19b
GB
2626/* Return the current Exception Level (as per ARMv8; note that this differs
2627 * from the ARMv7 Privilege Level).
2628 */
2629static inline int arm_current_el(CPUARMState *env)
4b6a83fb 2630{
6d54ed3c 2631 if (arm_feature(env, ARM_FEATURE_M)) {
8bfc26ea
PM
2632 return arm_v7m_is_handler_mode(env) ||
2633 !(env->v7m.control[env->v7m.secure] & 1);
6d54ed3c
PM
2634 }
2635
592125f8 2636 if (is_a64(env)) {
f5a0a5a5
PM
2637 return extract32(env->pstate, 2, 2);
2638 }
2639
592125f8
FA
2640 switch (env->uncached_cpsr & 0x1f) {
2641 case ARM_CPU_MODE_USR:
4b6a83fb 2642 return 0;
592125f8
FA
2643 case ARM_CPU_MODE_HYP:
2644 return 2;
2645 case ARM_CPU_MODE_MON:
2646 return 3;
2647 default:
2648 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2649 /* If EL3 is 32-bit then all secure privileged modes run in
2650 * EL3
2651 */
2652 return 3;
2653 }
2654
2655 return 1;
4b6a83fb 2656 }
4b6a83fb
PM
2657}
2658
721fae12
PM
2659/**
2660 * write_list_to_cpustate
2661 * @cpu: ARMCPU
2662 *
2663 * For each register listed in the ARMCPU cpreg_indexes list, write
2664 * its value from the cpreg_values list into the ARMCPUState structure.
2665 * This updates TCG's working data structures from KVM data or
2666 * from incoming migration state.
2667 *
2668 * Returns: true if all register values were updated correctly,
2669 * false if some register was unknown or could not be written.
2670 * Note that we do not stop early on failure -- we will attempt
2671 * writing all registers in the list.
2672 */
2673bool write_list_to_cpustate(ARMCPU *cpu);
2674
2675/**
2676 * write_cpustate_to_list:
2677 * @cpu: ARMCPU
b698e4ee 2678 * @kvm_sync: true if this is for syncing back to KVM
721fae12
PM
2679 *
2680 * For each register listed in the ARMCPU cpreg_indexes list, write
2681 * its value from the ARMCPUState structure into the cpreg_values list.
2682 * This is used to copy info from TCG's working data structures into
2683 * KVM or for outbound migration.
2684 *
b698e4ee
PM
2685 * @kvm_sync is true if we are doing this in order to sync the
2686 * register state back to KVM. In this case we will only update
2687 * values in the list if the previous list->cpustate sync actually
2688 * successfully wrote the CPU state. Otherwise we will keep the value
2689 * that is in the list.
2690 *
721fae12
PM
2691 * Returns: true if all register values were read correctly,
2692 * false if some register was unknown or could not be read.
2693 * Note that we do not stop early on failure -- we will attempt
2694 * reading all registers in the list.
2695 */
b698e4ee 2696bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
721fae12 2697
9ee6e8bb
PB
2698#define ARM_CPUID_TI915T 0x54029152
2699#define ARM_CPUID_TI925T 0x54029252
40f137e1 2700
ba1ba5cc
IM
2701#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2702#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
0dacec87 2703#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
ba1ba5cc 2704
585df85e
PM
2705#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2706
c732abe2 2707#define cpu_list arm_cpu_list
9467d44c 2708
c1e37810
PM
2709/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2710 *
2711 * If EL3 is 64-bit:
2712 * + NonSecure EL1 & 0 stage 1
2713 * + NonSecure EL1 & 0 stage 2
2714 * + NonSecure EL2
b9f6033c
RH
2715 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2716 * + Secure EL1 & 0
c1e37810
PM
2717 * + Secure EL3
2718 * If EL3 is 32-bit:
2719 * + NonSecure PL1 & 0 stage 1
2720 * + NonSecure PL1 & 0 stage 2
2721 * + NonSecure PL2
b9f6033c
RH
2722 * + Secure PL0
2723 * + Secure PL1
c1e37810
PM
2724 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2725 *
2726 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
b9f6033c
RH
2727 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2728 * because they may differ in access permissions even if the VA->PA map is
2729 * the same
c1e37810
PM
2730 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2731 * translation, which means that we have one mmu_idx that deals with two
2732 * concatenated translation regimes [this sort of combined s1+2 TLB is
2733 * architecturally permitted]
2734 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2735 * handling via the TLB. The only way to do a stage 1 translation without
2736 * the immediate stage 2 translation is via the ATS or AT system insns,
2737 * which can be slow-pathed and always do a page table walk.
bf05340c
PM
2738 * The only use of stage 2 translations is either as part of an s1+2
2739 * lookup or when loading the descriptors during a stage 1 page table walk,
2740 * and in both those cases we don't use the TLB.
c1e37810
PM
2741 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2742 * translation regimes, because they map reasonably well to each other
2743 * and they can't both be active at the same time.
b9f6033c
RH
2744 * 5. we want to be able to use the TLB for accesses done as part of a
2745 * stage1 page table walk, rather than having to walk the stage2 page
2746 * table over and over.
452ef8cb
RH
2747 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2748 * Never (PAN) bit within PSTATE.
c1e37810 2749 *
b9f6033c
RH
2750 * This gives us the following list of cases:
2751 *
2752 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2753 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
452ef8cb 2754 * NS EL1 EL1&0 stage 1+2 +PAN
b9f6033c 2755 * NS EL0 EL2&0
bf05340c 2756 * NS EL2 EL2&0
452ef8cb 2757 * NS EL2 EL2&0 +PAN
c1e37810 2758 * NS EL2 (aka NS PL2)
b9f6033c
RH
2759 * S EL0 EL1&0 (aka S PL0)
2760 * S EL1 EL1&0 (not used if EL3 is 32 bit)
452ef8cb 2761 * S EL1 EL1&0 +PAN
c1e37810 2762 * S EL3 (aka S PL1)
c1e37810 2763 *
bf05340c 2764 * for a total of 11 different mmu_idx.
c1e37810 2765 *
3bef7012
PM
2766 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2767 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2768 * NS EL2 if we ever model a Cortex-R52).
2769 *
2770 * M profile CPUs are rather different as they do not have a true MMU.
2771 * They have the following different MMU indexes:
2772 * User
2773 * Privileged
62593718
PM
2774 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2775 * Privileged, execution priority negative (ditto)
66787c78
PM
2776 * If the CPU supports the v8M Security Extension then there are also:
2777 * Secure User
2778 * Secure Privileged
62593718
PM
2779 * Secure User, execution priority negative
2780 * Secure Privileged, execution priority negative
3bef7012 2781 *
8bd5c820
PM
2782 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2783 * are not quite the same -- different CPU types (most notably M profile
2784 * vs A/R profile) would like to use MMU indexes with different semantics,
2785 * but since we don't ever need to use all of those in a single CPU we
bf05340c
PM
2786 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2787 * modes + total number of M profile MMU modes". The lower bits of
8bd5c820
PM
2788 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2789 * the same for any particular CPU.
2790 * Variables of type ARMMUIdx are always full values, and the core
2791 * index values are in variables of type 'int'.
2792 *
c1e37810
PM
2793 * Our enumeration includes at the end some entries which are not "true"
2794 * mmu_idx values in that they don't have corresponding TLBs and are only
2795 * valid for doing slow path page table walks.
2796 *
2797 * The constant names here are patterned after the general style of the names
2798 * of the AT/ATS operations.
2799 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
62593718
PM
2800 * For M profile we arrange them to have a bit for priv, a bit for negpri
2801 * and a bit for secure.
c1e37810 2802 */
b9f6033c
RH
2803#define ARM_MMU_IDX_A 0x10 /* A profile */
2804#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2805#define ARM_MMU_IDX_M 0x40 /* M profile */
8bd5c820 2806
b6ad6062
RDC
2807/* Meanings of the bits for A profile mmu idx values */
2808#define ARM_MMU_IDX_A_NS 0x8
2809
b9f6033c
RH
2810/* Meanings of the bits for M profile mmu idx values */
2811#define ARM_MMU_IDX_M_PRIV 0x1
62593718 2812#define ARM_MMU_IDX_M_NEGPRI 0x2
b9f6033c 2813#define ARM_MMU_IDX_M_S 0x4 /* Secure */
62593718 2814
b9f6033c
RH
2815#define ARM_MMU_IDX_TYPE_MASK \
2816 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2817#define ARM_MMU_IDX_COREIDX_MASK 0xf
8bd5c820 2818
c1e37810 2819typedef enum ARMMMUIdx {
b9f6033c
RH
2820 /*
2821 * A-profile.
2822 */
b6ad6062
RDC
2823 ARMMMUIdx_SE10_0 = 0 | ARM_MMU_IDX_A,
2824 ARMMMUIdx_SE20_0 = 1 | ARM_MMU_IDX_A,
2825 ARMMMUIdx_SE10_1 = 2 | ARM_MMU_IDX_A,
2826 ARMMMUIdx_SE20_2 = 3 | ARM_MMU_IDX_A,
2827 ARMMMUIdx_SE10_1_PAN = 4 | ARM_MMU_IDX_A,
2828 ARMMMUIdx_SE20_2_PAN = 5 | ARM_MMU_IDX_A,
2829 ARMMMUIdx_SE2 = 6 | ARM_MMU_IDX_A,
2830 ARMMMUIdx_SE3 = 7 | ARM_MMU_IDX_A,
2831
2832 ARMMMUIdx_E10_0 = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
2833 ARMMMUIdx_E20_0 = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
2834 ARMMMUIdx_E10_1 = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
2835 ARMMMUIdx_E20_2 = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
2836 ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
2837 ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
2838 ARMMMUIdx_E2 = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
b9f6033c 2839
b9f6033c
RH
2840 /*
2841 * These are not allocated TLBs and are used only for AT system
2842 * instructions or for the first stage of an S12 page table walk.
2843 */
2844 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2845 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
452ef8cb 2846 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
b1a10c86
RDC
2847 ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
2848 ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
2849 ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
bf05340c
PM
2850 /*
2851 * Not allocated a TLB: used only for second stage of an S12 page
2852 * table walk, or for descriptor loads during first stage of an S1
2853 * page table walk. Note that if we ever want to have a TLB for this
2854 * then various TLB flush insns which currently are no-ops or flush
2855 * only stage 1 MMU indexes will need to change to flush stage 2.
2856 */
b1a10c86
RDC
2857 ARMMMUIdx_Stage2 = 6 | ARM_MMU_IDX_NOTLB,
2858 ARMMMUIdx_Stage2_S = 7 | ARM_MMU_IDX_NOTLB,
b9f6033c
RH
2859
2860 /*
2861 * M-profile.
2862 */
25568316
RH
2863 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2864 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2865 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2866 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2867 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2868 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2869 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2870 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
c1e37810
PM
2871} ARMMMUIdx;
2872
5f09a6df
RH
2873/*
2874 * Bit macros for the core-mmu-index values for each index,
8bd5c820
PM
2875 * for use when calling tlb_flush_by_mmuidx() and friends.
2876 */
5f09a6df
RH
2877#define TO_CORE_BIT(NAME) \
2878 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2879
8bd5c820 2880typedef enum ARMMMUIdxBit {
5f09a6df 2881 TO_CORE_BIT(E10_0),
b9f6033c 2882 TO_CORE_BIT(E20_0),
5f09a6df 2883 TO_CORE_BIT(E10_1),
452ef8cb 2884 TO_CORE_BIT(E10_1_PAN),
5f09a6df 2885 TO_CORE_BIT(E2),
b9f6033c 2886 TO_CORE_BIT(E20_2),
452ef8cb 2887 TO_CORE_BIT(E20_2_PAN),
5f09a6df 2888 TO_CORE_BIT(SE10_0),
b6ad6062 2889 TO_CORE_BIT(SE20_0),
5f09a6df 2890 TO_CORE_BIT(SE10_1),
b6ad6062 2891 TO_CORE_BIT(SE20_2),
452ef8cb 2892 TO_CORE_BIT(SE10_1_PAN),
b6ad6062
RDC
2893 TO_CORE_BIT(SE20_2_PAN),
2894 TO_CORE_BIT(SE2),
5f09a6df 2895 TO_CORE_BIT(SE3),
5f09a6df
RH
2896
2897 TO_CORE_BIT(MUser),
2898 TO_CORE_BIT(MPriv),
2899 TO_CORE_BIT(MUserNegPri),
2900 TO_CORE_BIT(MPrivNegPri),
2901 TO_CORE_BIT(MSUser),
2902 TO_CORE_BIT(MSPriv),
2903 TO_CORE_BIT(MSUserNegPri),
2904 TO_CORE_BIT(MSPrivNegPri),
8bd5c820
PM
2905} ARMMMUIdxBit;
2906
5f09a6df
RH
2907#undef TO_CORE_BIT
2908
f79fbf39 2909#define MMU_USER_IDX 0
c1e37810 2910
9e273ef2
PM
2911/* Indexes used when registering address spaces with cpu_address_space_init */
2912typedef enum ARMASIdx {
2913 ARMASIdx_NS = 0,
2914 ARMASIdx_S = 1,
8bce44a2
RH
2915 ARMASIdx_TagNS = 2,
2916 ARMASIdx_TagS = 3,
9e273ef2
PM
2917} ARMASIdx;
2918
533e93f1 2919/* Return the Exception Level targeted by debug exceptions. */
3a298203
PM
2920static inline int arm_debug_target_el(CPUARMState *env)
2921{
81669b8b
SF
2922 bool secure = arm_is_secure(env);
2923 bool route_to_el2 = false;
2924
e6ef0169 2925 if (arm_is_el2_enabled(env)) {
81669b8b 2926 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
b281ba42 2927 env->cp15.mdcr_el2 & MDCR_TDE;
81669b8b
SF
2928 }
2929
2930 if (route_to_el2) {
2931 return 2;
2932 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2933 !arm_el_is_aa64(env, 3) && secure) {
2934 return 3;
2935 } else {
2936 return 1;
2937 }
3a298203
PM
2938}
2939
43bbce7f
PM
2940static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2941{
2942 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2943 * CSSELR is RAZ/WI.
2944 */
2945 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2946}
2947
22af9025 2948/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3a298203
PM
2949static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2950{
22af9025
AB
2951 int cur_el = arm_current_el(env);
2952 int debug_el;
2953
2954 if (cur_el == 3) {
2955 return false;
533e93f1
PM
2956 }
2957
22af9025
AB
2958 /* MDCR_EL3.SDD disables debug events from Secure state */
2959 if (arm_is_secure_below_el3(env)
2960 && extract32(env->cp15.mdcr_el3, 16, 1)) {
2961 return false;
3a298203 2962 }
22af9025
AB
2963
2964 /*
2965 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2966 * while not masking the (D)ebug bit in DAIF.
2967 */
2968 debug_el = arm_debug_target_el(env);
2969
2970 if (cur_el == debug_el) {
2971 return extract32(env->cp15.mdscr_el1, 13, 1)
2972 && !(env->daif & PSTATE_D);
2973 }
2974
2975 /* Otherwise the debug target needs to be a higher EL */
2976 return debug_el > cur_el;
3a298203
PM
2977}
2978
2979static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2980{
533e93f1
PM
2981 int el = arm_current_el(env);
2982
2983 if (el == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
2984 return aa64_generate_debug_exceptions(env);
2985 }
533e93f1
PM
2986
2987 if (arm_is_secure(env)) {
2988 int spd;
2989
2990 if (el == 0 && (env->cp15.sder & 1)) {
2991 /* SDER.SUIDEN means debug exceptions from Secure EL0
2992 * are always enabled. Otherwise they are controlled by
2993 * SDCR.SPD like those from other Secure ELs.
2994 */
2995 return true;
2996 }
2997
2998 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2999 switch (spd) {
3000 case 1:
3001 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3002 case 0:
3003 /* For 0b00 we return true if external secure invasive debug
3004 * is enabled. On real hardware this is controlled by external
3005 * signals to the core. QEMU always permits debug, and behaves
3006 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3007 */
3008 return true;
3009 case 2:
3010 return false;
3011 case 3:
3012 return true;
3013 }
3014 }
3015
3016 return el != 2;
3a298203
PM
3017}
3018
3019/* Return true if debugging exceptions are currently enabled.
3020 * This corresponds to what in ARM ARM pseudocode would be
3021 * if UsingAArch32() then
3022 * return AArch32.GenerateDebugExceptions()
3023 * else
3024 * return AArch64.GenerateDebugExceptions()
3025 * We choose to push the if() down into this function for clarity,
3026 * since the pseudocode has it at all callsites except for the one in
3027 * CheckSoftwareStep(), where it is elided because both branches would
3028 * always return the same value.
3a298203
PM
3029 */
3030static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3031{
3032 if (env->aarch64) {
3033 return aa64_generate_debug_exceptions(env);
3034 } else {
3035 return aa32_generate_debug_exceptions(env);
3036 }
3037}
3038
3039/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3040 * implicitly means this always returns false in pre-v8 CPUs.)
3041 */
3042static inline bool arm_singlestep_active(CPUARMState *env)
3043{
3044 return extract32(env->cp15.mdscr_el1, 0, 1)
3045 && arm_el_is_aa64(env, arm_debug_target_el(env))
3046 && arm_generate_debug_exceptions(env);
3047}
3048
f9fd40eb
PB
3049static inline bool arm_sctlr_b(CPUARMState *env)
3050{
3051 return
3052 /* We need not implement SCTLR.ITD in user-mode emulation, so
3053 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3054 * This lets people run BE32 binaries with "-cpu any".
3055 */
3056#ifndef CONFIG_USER_ONLY
3057 !arm_feature(env, ARM_FEATURE_V7) &&
3058#endif
3059 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3060}
3061
aaec1432 3062uint64_t arm_sctlr(CPUARMState *env, int el);
64e40755 3063
8061a649
RH
3064static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3065 bool sctlr_b)
3066{
3067#ifdef CONFIG_USER_ONLY
3068 /*
3069 * In system mode, BE32 is modelled in line with the
3070 * architecture (as word-invariant big-endianness), where loads
3071 * and stores are done little endian but from addresses which
3072 * are adjusted by XORing with the appropriate constant. So the
3073 * endianness to use for the raw data access is not affected by
3074 * SCTLR.B.
3075 * In user mode, however, we model BE32 as byte-invariant
3076 * big-endianness (because user-only code cannot tell the
3077 * difference), and so we need to use a data access endianness
3078 * that depends on SCTLR.B.
3079 */
3080 if (sctlr_b) {
3081 return true;
3082 }
3083#endif
3084 /* In 32bit endianness is determined by looking at CPSR's E bit */
3085 return env->uncached_cpsr & CPSR_E;
3086}
3087
3088static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3089{
3090 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3091}
64e40755 3092
ed50ff78
PC
3093/* Return true if the processor is in big-endian mode. */
3094static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3095{
ed50ff78 3096 if (!is_a64(env)) {
8061a649 3097 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
64e40755
RH
3098 } else {
3099 int cur_el = arm_current_el(env);
3100 uint64_t sctlr = arm_sctlr(env, cur_el);
8061a649 3101 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
ed50ff78 3102 }
ed50ff78
PC
3103}
3104
022c62cb 3105#include "exec/cpu-all.h"
622ed360 3106
fdd1b228 3107/*
a378206a
RH
3108 * We have more than 32-bits worth of state per TB, so we split the data
3109 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3110 * We collect these two parts in CPUARMTBFlags where they are named
3111 * flags and flags2 respectively.
fdd1b228 3112 *
a378206a
RH
3113 * The flags that are shared between all execution modes, TBFLAG_ANY,
3114 * are stored in flags. The flags that are specific to a given mode
3115 * are stores in flags2. Since cs_base is sized on the configured
3116 * address size, flags2 always has 64-bits for A64, and a minimum of
3117 * 32-bits for A32 and M32.
3118 *
3119 * The bits for 32-bit A-profile and M-profile partially overlap:
3120 *
5896f392
RH
3121 * 31 23 11 10 0
3122 * +-------------+----------+----------------+
3123 * | | | TBFLAG_A32 |
3124 * | TBFLAG_AM32 | +-----+----------+
3125 * | | |TBFLAG_M32|
3126 * +-------------+----------------+----------+
26702213 3127 * 31 23 6 5 0
79cabf1f 3128 *
fdd1b228 3129 * Unless otherwise noted, these bits are cached in env->hflags.
3926cc84 3130 */
eee81d41
RH
3131FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3132FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3133FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3134FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3135FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
9dbbc748 3136/* Target EL if we take a floating-point-disabled exception */
eee81d41 3137FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
79cabf1f 3138/* For A-profile only, target EL for debug exceptions. */
eee81d41 3139FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 10, 2)
4479ec30
RH
3140/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3141FIELD(TBFLAG_ANY, ALIGN_MEM, 12, 1)
520d1621 3142FIELD(TBFLAG_ANY, PSTATE__IL, 13, 1)
79cabf1f 3143
8bd587c1 3144/*
79cabf1f 3145 * Bit usage when in AArch32 state, both A- and M-profile.
8bd587c1 3146 */
5896f392
RH
3147FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3148FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3926cc84 3149
79cabf1f
RH
3150/*
3151 * Bit usage when in AArch32 state, for A-profile only.
3152 */
5896f392
RH
3153FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3154FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
ea7ac69d
PM
3155/*
3156 * We store the bottom two bits of the CPAR as TB flags and handle
3157 * checks on the other bits at runtime. This shares the same bits as
3158 * VECSTRIDE, which is OK as no XScale CPU has VFP.
fdd1b228 3159 * Not cached, because VECLEN+VECSTRIDE are not cached.
ea7ac69d 3160 */
5896f392
RH
3161FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3162FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3163FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3164FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
7fbb535f
PM
3165/*
3166 * Indicates whether cp register reads and writes by guest code should access
3167 * the secure or nonsecure bank of banked registers; note that this is not
3168 * the same thing as the current security state of the processor!
3169 */
5896f392 3170FIELD(TBFLAG_A32, NS, 10, 1)
79cabf1f
RH
3171
3172/*
3173 * Bit usage when in AArch32 state, for M-profile only.
3174 */
3175/* Handler (ie not Thread) mode */
5896f392 3176FIELD(TBFLAG_M32, HANDLER, 0, 1)
79cabf1f 3177/* Whether we should generate stack-limit checks */
5896f392 3178FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
79cabf1f 3179/* Set if FPCCR.LSPACT is set */
5896f392 3180FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
79cabf1f 3181/* Set if we must create a new FP context */
5896f392 3182FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
79cabf1f 3183/* Set if FPCCR.S does not match current security state */
5896f392 3184FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
26702213
PM
3185/* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3186FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
79cabf1f
RH
3187
3188/*
3189 * Bit usage when in AArch64 state
3190 */
476a4692 3191FIELD(TBFLAG_A64, TBII, 0, 2)
aad821ac
RH
3192FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3193FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
0816ef1b 3194FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
08f1434a 3195FIELD(TBFLAG_A64, BT, 9, 1)
fdd1b228 3196FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
4a9ee99d 3197FIELD(TBFLAG_A64, TBID, 12, 2)
cc28fc30 3198FIELD(TBFLAG_A64, UNPRIV, 14, 1)
81ae05fa
RH
3199FIELD(TBFLAG_A64, ATA, 15, 1)
3200FIELD(TBFLAG_A64, TCMA, 16, 2)
3201FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3202FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
a1705768 3203
a729a46b
RH
3204/*
3205 * Helpers for using the above.
3206 */
3207#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3902bfc6 3208 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
a729a46b 3209#define DP_TBFLAG_A64(DST, WHICH, VAL) \
a378206a 3210 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
a729a46b 3211#define DP_TBFLAG_A32(DST, WHICH, VAL) \
a378206a 3212 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
a729a46b 3213#define DP_TBFLAG_M32(DST, WHICH, VAL) \
a378206a 3214 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
a729a46b 3215#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
a378206a 3216 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
a729a46b 3217
3902bfc6 3218#define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
a378206a
RH
3219#define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3220#define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3221#define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3222#define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
a729a46b 3223
fb901c90
RH
3224/**
3225 * cpu_mmu_index:
3226 * @env: The cpu environment
3227 * @ifetch: True for code access, false for data access.
3228 *
3229 * Return the core mmu index for the current translation regime.
3230 * This function is used by generic TCG code paths.
3231 */
3232static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3233{
a729a46b 3234 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
fb901c90
RH
3235}
3236
f9fd40eb
PB
3237static inline bool bswap_code(bool sctlr_b)
3238{
3239#ifdef CONFIG_USER_ONLY
ee3eb3a7
MAL
3240 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3241 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
f9fd40eb
PB
3242 * would also end up as a mixed-endian mode with BE code, LE data.
3243 */
3244 return
ee3eb3a7 3245#if TARGET_BIG_ENDIAN
f9fd40eb
PB
3246 1 ^
3247#endif
3248 sctlr_b;
3249#else
e334bd31
PB
3250 /* All code access in ARM is little endian, and there are no loaders
3251 * doing swaps that need to be reversed
f9fd40eb
PB
3252 */
3253 return 0;
3254#endif
3255}
3256
c3ae85fc
PB
3257#ifdef CONFIG_USER_ONLY
3258static inline bool arm_cpu_bswap_data(CPUARMState *env)
3259{
3260 return
ee3eb3a7 3261#if TARGET_BIG_ENDIAN
c3ae85fc
PB
3262 1 ^
3263#endif
3264 arm_cpu_data_is_big_endian(env);
3265}
3266#endif
3267
a9e01311
RH
3268void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3269 target_ulong *cs_base, uint32_t *flags);
6b917547 3270
98128601
RH
3271enum {
3272 QEMU_PSCI_CONDUIT_DISABLED = 0,
3273 QEMU_PSCI_CONDUIT_SMC = 1,
3274 QEMU_PSCI_CONDUIT_HVC = 2,
3275};
3276
017518c1
PM
3277#ifndef CONFIG_USER_ONLY
3278/* Return the address space index to use for a memory access */
3279static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3280{
3281 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3282}
5ce4ff65
PM
3283
3284/* Return the AddressSpace to use for a memory access
3285 * (which depends on whether the access is S or NS, and whether
3286 * the board gave us a separate AddressSpace for S accesses).
3287 */
3288static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3289{
3290 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3291}
017518c1
PM
3292#endif
3293
bd7d00fc 3294/**
b5c53d1b
AL
3295 * arm_register_pre_el_change_hook:
3296 * Register a hook function which will be called immediately before this
bd7d00fc
PM
3297 * CPU changes exception level or mode. The hook function will be
3298 * passed a pointer to the ARMCPU and the opaque data pointer passed
3299 * to this function when the hook was registered.
b5c53d1b
AL
3300 *
3301 * Note that if a pre-change hook is called, any registered post-change hooks
3302 * are guaranteed to subsequently be called.
bd7d00fc 3303 */
b5c53d1b 3304void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
bd7d00fc 3305 void *opaque);
b5c53d1b
AL
3306/**
3307 * arm_register_el_change_hook:
3308 * Register a hook function which will be called immediately after this
3309 * CPU changes exception level or mode. The hook function will be
3310 * passed a pointer to the ARMCPU and the opaque data pointer passed
3311 * to this function when the hook was registered.
3312 *
3313 * Note that any registered hooks registered here are guaranteed to be called
3314 * if pre-change hooks have been.
3315 */
3316void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3317 *opaque);
bd7d00fc 3318
3d74e2e9
RH
3319/**
3320 * arm_rebuild_hflags:
3321 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3322 */
3323void arm_rebuild_hflags(CPUARMState *env);
3324
9a2b5256
RH
3325/**
3326 * aa32_vfp_dreg:
3327 * Return a pointer to the Dn register within env in 32-bit mode.
3328 */
3329static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3330{
c39c2b90 3331 return &env->vfp.zregs[regno >> 1].d[regno & 1];
9a2b5256
RH
3332}
3333
3334/**
3335 * aa32_vfp_qreg:
3336 * Return a pointer to the Qn register within env in 32-bit mode.
3337 */
3338static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3339{
c39c2b90 3340 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3341}
3342
3343/**
3344 * aa64_vfp_qreg:
3345 * Return a pointer to the Qn register within env in 64-bit mode.
3346 */
3347static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3348{
c39c2b90 3349 return &env->vfp.zregs[regno].d[0];
9a2b5256
RH
3350}
3351
028e2a7b
RH
3352/* Shared between translate-sve.c and sve_helper.c. */
3353extern const uint64_t pred_esz_masks[4];
3354
149d3b31
RH
3355/* Helper for the macros below, validating the argument type. */
3356static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3357{
3358 return x;
3359}
3360
3361/*
3362 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3363 * Using these should be a bit more self-documenting than using the
3364 * generic target bits directly.
3365 */
3366#define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
206adacf 3367#define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
149d3b31 3368
be5d6f48
RH
3369/*
3370 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3371 */
3372#define PAGE_BTI PAGE_TARGET_1
d109b46d 3373#define PAGE_MTE PAGE_TARGET_2
be5d6f48 3374
0e0c030c
RH
3375#ifdef TARGET_TAGGED_ADDRESSES
3376/**
3377 * cpu_untagged_addr:
3378 * @cs: CPU context
3379 * @x: tagged address
3380 *
3381 * Remove any address tag from @x. This is explicitly related to the
3382 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3383 *
3384 * There should be a better place to put this, but we need this in
3385 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3386 */
3387static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3388{
3389 ARMCPU *cpu = ARM_CPU(cs);
3390 if (cpu->env.tagged_addr_enable) {
3391 /*
3392 * TBI is enabled for userspace but not kernelspace addresses.
3393 * Only clear the tag if bit 55 is clear.
3394 */
3395 x &= sextract64(x, 0, 56);
3396 }
3397 return x;
3398}
3399#endif
3400
873b73c0
PM
3401/*
3402 * Naming convention for isar_feature functions:
3403 * Functions which test 32-bit ID registers should have _aa32_ in
3404 * their name. Functions which test 64-bit ID registers should have
6e61f839
PM
3405 * _aa64_ in their name. These must only be used in code where we
3406 * know for certain that the CPU has AArch32 or AArch64 respectively
3407 * or where the correct answer for a CPU which doesn't implement that
3408 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3409 * system registers that are specific to that CPU state, for "should
3410 * we let this system register bit be set" tests where the 32-bit
3411 * flavour of the register doesn't have the bit, and so on).
3412 * Functions which simply ask "does this feature exist at all" have
3413 * _any_ in their name, and always return the logical OR of the _aa64_
3414 * and the _aa32_ function.
873b73c0
PM
3415 */
3416
962fcbf2
RH
3417/*
3418 * 32-bit feature tests via id registers.
3419 */
873b73c0 3420static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
7e0cf8b4
RH
3421{
3422 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3423}
3424
873b73c0 3425static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
7e0cf8b4
RH
3426{
3427 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3428}
05903f03
PM
3429
3430static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3431{
3432 /* (M-profile) low-overhead loops and branch future */
3433 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3434}
7e0cf8b4 3435
873b73c0 3436static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
09cbd501
RH
3437{
3438 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3439}
3440
962fcbf2
RH
3441static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3442{
3443 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3444}
3445
3446static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3447{
3448 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3449}
3450
3451static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3452{
3453 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3454}
3455
3456static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3457{
3458 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3459}
3460
3461static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3462{
3463 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3464}
3465
3466static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3467{
3468 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3469}
3470
3471static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3472{
3473 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3474}
3475
6c1f6f27
RH
3476static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3477{
3478 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3479}
3480
962fcbf2
RH
3481static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3482{
3483 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3484}
3485
87732318
RH
3486static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3487{
3488 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3489}
3490
9888bd1e
RH
3491static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3492{
3493 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3494}
3495
cb570bd3
RH
3496static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3497{
3498 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3499}
3500
c0b9e8a4
RH
3501static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3502{
3503 return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3504}
3505
51879c67
RH
3506static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3507{
3508 return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3509}
3510
46f4976f
PM
3511static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3512{
3513 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3514}
3515
dfc523a8
PM
3516static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3517{
3518 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3519}
3520
83ff3d6a
PM
3521static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3522{
3523 /*
3524 * Return true if M-profile state handling insns
3525 * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3526 */
3527 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3528}
3529
5763190f
RH
3530static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3531{
dfc523a8
PM
3532 /* Sadly this is encoded differently for A-profile and M-profile */
3533 if (isar_feature_aa32_mprofile(id)) {
3534 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3535 } else {
3536 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3537 }
5763190f
RH
3538}
3539
7df6a1ff
PM
3540static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3541{
3542 /*
3543 * Return true if MVE is supported (either integer or floating point).
3544 * We must check for M-profile as the MVFR1 field means something
3545 * else for A-profile.
3546 */
3547 return isar_feature_aa32_mprofile(id) &&
3548 FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3549}
3550
3551static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3552{
3553 /*
3554 * Return true if MVE is supported (either integer or floating point).
3555 * We must check for M-profile as the MVFR1 field means something
3556 * else for A-profile.
3557 */
3558 return isar_feature_aa32_mprofile(id) &&
3559 FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3560}
3561
7fbc6a40
RH
3562static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3563{
3564 /*
3565 * Return true if either VFP or SIMD is implemented.
3566 * In this case, a minimum of VFP w/ D0-D15.
3567 */
3568 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3569}
3570
0e13ba78 3571static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
b3ff4b87
PM
3572{
3573 /* Return true if D16-D31 are implemented */
b3a816f6 3574 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
b3ff4b87
PM
3575}
3576
266bd25c
PM
3577static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3578{
b3a816f6 3579 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
266bd25c
PM
3580}
3581
f67957e1
RH
3582static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3583{
3584 /* Return true if CPU supports single precision floating point, VFPv2 */
3585 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3586}
3587
3588static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3589{
3590 /* Return true if CPU supports single precision floating point, VFPv3 */
3591 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3592}
3593
c4ff8735 3594static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
1120827f 3595{
c4ff8735 3596 /* Return true if CPU supports double precision floating point, VFPv2 */
b3a816f6 3597 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
1120827f
PM
3598}
3599
f67957e1
RH
3600static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3601{
3602 /* Return true if CPU supports double precision floating point, VFPv3 */
3603 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3604}
3605
7d63183f
RH
3606static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3607{
3608 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3609}
3610
602f6e42
PM
3611/*
3612 * We always set the FP and SIMD FP16 fields to indicate identical
3613 * levels of support (assuming SIMD is implemented at all), so
3614 * we only need one set of accessors.
3615 */
3616static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3617{
b3a816f6 3618 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
602f6e42
PM
3619}
3620
3621static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3622{
b3a816f6 3623 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
602f6e42
PM
3624}
3625
c52881bb
RH
3626/*
3627 * Note that this ID register field covers both VFP and Neon FMAC,
3628 * so should usually be tested in combination with some other
3629 * check that confirms the presence of whichever of VFP or Neon is
3630 * relevant, to avoid accidentally enabling a Neon feature on
3631 * a VFP-no-Neon core or vice-versa.
3632 */
3633static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3634{
3635 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3636}
3637
c0c760af
PM
3638static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3639{
b3a816f6 3640 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
c0c760af
PM
3641}
3642
3643static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3644{
b3a816f6 3645 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
c0c760af
PM
3646}
3647
3648static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3649{
b3a816f6 3650 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
c0c760af
PM
3651}
3652
3653static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3654{
b3a816f6 3655 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
c0c760af
PM
3656}
3657
0ae0326b
PM
3658static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3659{
3660 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3661}
3662
3d6ad6bb
RH
3663static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3664{
10054016 3665 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3d6ad6bb
RH
3666}
3667
3668static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3669{
10054016 3670 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3d6ad6bb
RH
3671}
3672
a6179538
PM
3673static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3674{
3675 /* 0xf means "non-standard IMPDEF PMU" */
3676 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3677 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3678}
3679
15dd1ebd
PM
3680static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3681{
3682 /* 0xf means "non-standard IMPDEF PMU" */
3683 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3684 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3685}
3686
4036b7d1
PM
3687static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3688{
3689 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3690}
3691
f6287c24
PM
3692static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3693{
3694 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3695}
3696
957e6155
PM
3697static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3698{
3699 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3700}
3701
ce3125be
PM
3702static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3703{
3704 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3705}
3706
dc8b1853
RC
3707static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3708{
3709 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3710}
3711
f2f68a78
RC
3712static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3713{
3714 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3715}
3716
ca56aac5
RH
3717static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3718{
3719 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3720}
3721
962fcbf2
RH
3722/*
3723 * 64-bit feature tests via id registers.
3724 */
3725static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3726{
3727 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3728}
3729
3730static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3731{
3732 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3733}
3734
3735static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3736{
3737 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3738}
3739
3740static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3741{
3742 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3743}
3744
3745static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3746{
3747 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3748}
3749
3750static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3751{
3752 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3753}
3754
3755static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3756{
3757 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3758}
3759
3760static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3761{
3762 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3763}
3764
3765static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3766{
3767 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3768}
3769
3770static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3771{
3772 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3773}
3774
3775static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3776{
3777 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3778}
3779
3780static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3781{
3782 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3783}
3784
0caa5af8
RH
3785static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3786{
3787 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3788}
3789
b89d9c98
RH
3790static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3791{
3792 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3793}
3794
5ef84f11
RH
3795static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3796{
3797 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3798}
3799
de390645
RH
3800static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3801{
3802 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3803}
3804
6c1f6f27
RH
3805static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3806{
3807 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3808}
3809
962fcbf2
RH
3810static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3811{
3812 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3813}
3814
991ad91b
RH
3815static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3816{
3817 /*
283fc52a
RH
3818 * Return true if any form of pauth is enabled, as this
3819 * predicate controls migration of the 128-bit keys.
991ad91b
RH
3820 */
3821 return (id->id_aa64isar1 &
3822 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3823 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3824 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3825 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3826}
3827
283fc52a
RH
3828static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3829{
3830 /*
3831 * Return true if pauth is enabled with the architected QARMA algorithm.
3832 * QEMU will always set APA+GPA to the same value.
3833 */
3834 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3835}
3836
84940ed8
RC
3837static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3838{
3839 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3840}
3841
7113d618
RC
3842static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3843{
3844 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3845}
3846
9888bd1e
RH
3847static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3848{
3849 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3850}
3851
cb570bd3
RH
3852static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3853{
3854 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3855}
3856
6bea2563
RH
3857static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3858{
3859 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3860}
3861
0d57b499
BM
3862static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3863{
3864 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3865}
3866
3867static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3868{
3869 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3870}
3871
c0b9e8a4
RH
3872static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3873{
3874 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3875}
3876
7d63183f
RH
3877static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3878{
3879 /* We always set the AdvSIMD and FP fields identically. */
3880 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3881}
3882
5763190f
RH
3883static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3884{
3885 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3886 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3887}
3888
0f8d06f1
RH
3889static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3890{
3891 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3892}
3893
10d0ef3e
MN
3894static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3895{
3896 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3897}
3898
25e168ab
RH
3899static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3900{
3901 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3902}
3903
cd208a1c
RH
3904static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3905{
3906 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3907}
3908
5ca192df
RDC
3909static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3910{
3911 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3912}
3913
8fc2ea21
RH
3914static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3915{
3916 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3917}
3918
2d7137c1
RH
3919static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3920{
3921 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3922}
3923
3d6ad6bb
RH
3924static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3925{
3926 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3927}
3928
3929static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3930{
3931 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3932}
3933
9eeb7a1c
RH
3934static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3935{
3936 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3937}
3938
c36c65ea
RDC
3939static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
3940{
3941 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
3942}
3943
8c7e17ef
PM
3944static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
3945{
3946 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
3947}
3948
be53b6f4
RH
3949static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3950{
3951 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3952}
3953
c7fd0baa
RH
3954static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
3955{
3956 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
3957}
3958
3959static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
3960{
3961 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
3962}
3963
2a609df8
PM
3964static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
3965{
3966 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3967 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3968}
3969
15dd1ebd
PM
3970static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
3971{
54117b90
PM
3972 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3973 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
15dd1ebd
PM
3974}
3975
2677cf9f
PM
3976static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3977{
3978 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3979}
3980
a1229109
PM
3981static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3982{
3983 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3984}
3985
f7da051f
RH
3986static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
3987{
3988 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
3989}
3990
ef56c242
RH
3991static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
3992{
3993 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
3994}
3995
3996static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
3997{
3998 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
3999 return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4000}
4001
4002static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4003{
4004 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4005}
4006
4007static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4008{
4009 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4010 return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4011}
4012
957e6155
PM
4013static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4014{
4015 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4016}
4017
0af312b6
RH
4018static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4019{
4020 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4021}
4022
ce3125be
PM
4023static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4024{
4025 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4026}
4027
dc8b1853
RC
4028static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4029{
4030 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4031}
4032
7cb1e618
RH
4033static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4034{
4035 int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4036 if (key >= 2) {
4037 return true; /* FEAT_CSV2_2 */
4038 }
4039 if (key == 1) {
4040 key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4041 return key >= 2; /* FEAT_CSV2_1p2 */
4042 }
4043 return false;
4044}
4045
f2f68a78
RC
4046static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4047{
4048 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4049}
4050
ca56aac5
RH
4051static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4052{
4053 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4054}
4055
2dc10fa2
RH
4056static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4057{
4058 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4059}
4060
e3a56131
RH
4061static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4062{
4063 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4064}
4065
4066static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4067{
4068 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4069}
4070
cb9c33b8
RH
4071static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4072{
4073 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4074}
4075
c0b9e8a4
RH
4076static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4077{
4078 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4079}
4080
3358eb3f
RH
4081static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4082{
4083 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4084}
4085
3cc7a88e
RH
4086static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4087{
4088 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4089}
4090
2867039a
RH
4091static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4092{
4093 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4094}
4095
4f26756b
SL
4096static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4097{
4098 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4099}
4100
4101static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4102{
4103 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4104}
4105
6e61f839
PM
4106/*
4107 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4108 */
4109static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4110{
4111 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4112}
4113
22e57073
PM
4114static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4115{
4116 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4117}
4118
2a609df8
PM
4119static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4120{
4121 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4122}
4123
15dd1ebd
PM
4124static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4125{
4126 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4127}
4128
957e6155
PM
4129static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4130{
4131 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4132}
4133
ce3125be
PM
4134static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4135{
4136 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4137}
4138
ca56aac5
RH
4139static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4140{
4141 return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4142}
4143
25e168ab
RH
4144static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4145{
4146 return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4147}
4148
962fcbf2
RH
4149/*
4150 * Forward to the above feature tests given an ARMCPU pointer.
4151 */
4152#define cpu_isar_feature(name, cpu) \
4153 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4154
2c0262af 4155#endif