]> git.proxmox.com Git - mirror_qemu.git/blame - target-arm/helper.c
Merge remote-tracking branch 'remotes/armbru/tags/pull-qapi-2016-05-12' into staging
[mirror_qemu.git] / target-arm / helper.c
CommitLineData
74c21bd0 1#include "qemu/osdep.h"
b5ff1b31 2#include "cpu.h"
ccd38087 3#include "internals.h"
022c62cb 4#include "exec/gdbstub.h"
2ef6175a 5#include "exec/helper-proto.h"
1de7afc9 6#include "qemu/host-utils.h"
78027bb6 7#include "sysemu/arch_init.h"
9c17d615 8#include "sysemu/sysemu.h"
1de7afc9 9#include "qemu/bitops.h"
eb0ecd5a 10#include "qemu/crc32c.h"
f08b6170 11#include "exec/cpu_ldst.h"
1d854765 12#include "arm_ldst.h"
eb0ecd5a 13#include <zlib.h> /* For crc32 */
cfe67cef 14#include "exec/semihost.h"
f3a9b694 15#include "sysemu/kvm.h"
0b03bdfc 16
352c98e5
LV
17#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
18
4a501606 19#ifndef CONFIG_USER_ONLY
af51f566
EI
20static bool get_phys_addr(CPUARMState *env, target_ulong address,
21 int access_type, ARMMMUIdx mmu_idx,
22 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23
EI
23 target_ulong *page_size, uint32_t *fsr,
24 ARMMMUFaultInfo *fi);
7c2cb42b 25
37785977
EI
26static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
27 int access_type, ARMMMUIdx mmu_idx,
28 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
29 target_ulong *page_size_ptr, uint32_t *fsr,
30 ARMMMUFaultInfo *fi);
31
7c2cb42b
AF
32/* Definitions for the PMCCNTR and PMCR registers */
33#define PMCRD 0x8
34#define PMCRC 0x4
35#define PMCRE 0x1
4a501606
PM
36#endif
37
0ecb72a5 38static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
39{
40 int nregs;
41
42 /* VFP data registers are always little-endian. */
43 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
44 if (reg < nregs) {
45 stfq_le_p(buf, env->vfp.regs[reg]);
46 return 8;
47 }
48 if (arm_feature(env, ARM_FEATURE_NEON)) {
49 /* Aliases for Q regs. */
50 nregs += 16;
51 if (reg < nregs) {
52 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
53 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
54 return 16;
55 }
56 }
57 switch (reg - nregs) {
58 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
59 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
60 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
61 }
62 return 0;
63}
64
0ecb72a5 65static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
66{
67 int nregs;
68
69 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
70 if (reg < nregs) {
71 env->vfp.regs[reg] = ldfq_le_p(buf);
72 return 8;
73 }
74 if (arm_feature(env, ARM_FEATURE_NEON)) {
75 nregs += 16;
76 if (reg < nregs) {
77 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
78 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
79 return 16;
80 }
81 }
82 switch (reg - nregs) {
83 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
84 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
71b3c3de 85 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
56aebc89
PB
86 }
87 return 0;
88}
89
6a669427
PM
90static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
91{
92 switch (reg) {
93 case 0 ... 31:
94 /* 128 bit FP register */
95 stfq_le_p(buf, env->vfp.regs[reg * 2]);
96 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
97 return 16;
98 case 32:
99 /* FPSR */
100 stl_p(buf, vfp_get_fpsr(env));
101 return 4;
102 case 33:
103 /* FPCR */
104 stl_p(buf, vfp_get_fpcr(env));
105 return 4;
106 default:
107 return 0;
108 }
109}
110
111static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
112{
113 switch (reg) {
114 case 0 ... 31:
115 /* 128 bit FP register */
116 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
117 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
118 return 16;
119 case 32:
120 /* FPSR */
121 vfp_set_fpsr(env, ldl_p(buf));
122 return 4;
123 case 33:
124 /* FPCR */
125 vfp_set_fpcr(env, ldl_p(buf));
126 return 4;
127 default:
128 return 0;
129 }
130}
131
c4241c7d 132static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
d4e6df63 133{
375421cc 134 assert(ri->fieldoffset);
67ed771d 135 if (cpreg_field_is_64bit(ri)) {
c4241c7d 136 return CPREG_FIELD64(env, ri);
22d9e1a9 137 } else {
c4241c7d 138 return CPREG_FIELD32(env, ri);
22d9e1a9 139 }
d4e6df63
PM
140}
141
c4241c7d
PM
142static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
143 uint64_t value)
d4e6df63 144{
375421cc 145 assert(ri->fieldoffset);
67ed771d 146 if (cpreg_field_is_64bit(ri)) {
22d9e1a9
PM
147 CPREG_FIELD64(env, ri) = value;
148 } else {
149 CPREG_FIELD32(env, ri) = value;
150 }
d4e6df63
PM
151}
152
11f136ee
FA
153static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
154{
155 return (char *)env + ri->fieldoffset;
156}
157
49a66191 158uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
721fae12 159{
59a1c327 160 /* Raw read of a coprocessor register (as needed for migration, etc). */
721fae12 161 if (ri->type & ARM_CP_CONST) {
59a1c327 162 return ri->resetvalue;
721fae12 163 } else if (ri->raw_readfn) {
59a1c327 164 return ri->raw_readfn(env, ri);
721fae12 165 } else if (ri->readfn) {
59a1c327 166 return ri->readfn(env, ri);
721fae12 167 } else {
59a1c327 168 return raw_read(env, ri);
721fae12 169 }
721fae12
PM
170}
171
59a1c327 172static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
7900e9f1 173 uint64_t v)
721fae12
PM
174{
175 /* Raw write of a coprocessor register (as needed for migration, etc).
721fae12
PM
176 * Note that constant registers are treated as write-ignored; the
177 * caller should check for success by whether a readback gives the
178 * value written.
179 */
180 if (ri->type & ARM_CP_CONST) {
59a1c327 181 return;
721fae12 182 } else if (ri->raw_writefn) {
c4241c7d 183 ri->raw_writefn(env, ri, v);
721fae12 184 } else if (ri->writefn) {
c4241c7d 185 ri->writefn(env, ri, v);
721fae12 186 } else {
afb2530f 187 raw_write(env, ri, v);
721fae12 188 }
721fae12
PM
189}
190
375421cc
PM
191static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
192{
193 /* Return true if the regdef would cause an assertion if you called
194 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
195 * program bug for it not to have the NO_RAW flag).
196 * NB that returning false here doesn't necessarily mean that calling
197 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
198 * read/write access functions which are safe for raw use" from "has
199 * read/write access functions which have side effects but has forgotten
200 * to provide raw access functions".
201 * The tests here line up with the conditions in read/write_raw_cp_reg()
202 * and assertions in raw_read()/raw_write().
203 */
204 if ((ri->type & ARM_CP_CONST) ||
205 ri->fieldoffset ||
206 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
207 return false;
208 }
209 return true;
210}
211
721fae12
PM
212bool write_cpustate_to_list(ARMCPU *cpu)
213{
214 /* Write the coprocessor state from cpu->env to the (index,value) list. */
215 int i;
216 bool ok = true;
217
218 for (i = 0; i < cpu->cpreg_array_len; i++) {
219 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
220 const ARMCPRegInfo *ri;
59a1c327 221
60322b39 222 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
223 if (!ri) {
224 ok = false;
225 continue;
226 }
7a0e58fa 227 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
228 continue;
229 }
59a1c327 230 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
721fae12
PM
231 }
232 return ok;
233}
234
235bool write_list_to_cpustate(ARMCPU *cpu)
236{
237 int i;
238 bool ok = true;
239
240 for (i = 0; i < cpu->cpreg_array_len; i++) {
241 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
242 uint64_t v = cpu->cpreg_values[i];
721fae12
PM
243 const ARMCPRegInfo *ri;
244
60322b39 245 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
246 if (!ri) {
247 ok = false;
248 continue;
249 }
7a0e58fa 250 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
251 continue;
252 }
253 /* Write value and confirm it reads back as written
254 * (to catch read-only registers and partially read-only
255 * registers where the incoming migration value doesn't match)
256 */
59a1c327
PM
257 write_raw_cp_reg(&cpu->env, ri, v);
258 if (read_raw_cp_reg(&cpu->env, ri) != v) {
721fae12
PM
259 ok = false;
260 }
261 }
262 return ok;
263}
264
265static void add_cpreg_to_list(gpointer key, gpointer opaque)
266{
267 ARMCPU *cpu = opaque;
268 uint64_t regidx;
269 const ARMCPRegInfo *ri;
270
271 regidx = *(uint32_t *)key;
60322b39 272 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 273
7a0e58fa 274 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
275 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
276 /* The value array need not be initialized at this point */
277 cpu->cpreg_array_len++;
278 }
279}
280
281static void count_cpreg(gpointer key, gpointer opaque)
282{
283 ARMCPU *cpu = opaque;
284 uint64_t regidx;
285 const ARMCPRegInfo *ri;
286
287 regidx = *(uint32_t *)key;
60322b39 288 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 289
7a0e58fa 290 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
291 cpu->cpreg_array_len++;
292 }
293}
294
295static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
296{
cbf239b7
AR
297 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
298 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
721fae12 299
cbf239b7
AR
300 if (aidx > bidx) {
301 return 1;
302 }
303 if (aidx < bidx) {
304 return -1;
305 }
306 return 0;
721fae12
PM
307}
308
309void init_cpreg_list(ARMCPU *cpu)
310{
311 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
312 * Note that we require cpreg_tuples[] to be sorted by key ID.
313 */
57b6d95e 314 GList *keys;
721fae12
PM
315 int arraylen;
316
57b6d95e 317 keys = g_hash_table_get_keys(cpu->cp_regs);
721fae12
PM
318 keys = g_list_sort(keys, cpreg_key_compare);
319
320 cpu->cpreg_array_len = 0;
321
322 g_list_foreach(keys, count_cpreg, cpu);
323
324 arraylen = cpu->cpreg_array_len;
325 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
326 cpu->cpreg_values = g_new(uint64_t, arraylen);
327 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
328 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
329 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
330 cpu->cpreg_array_len = 0;
331
332 g_list_foreach(keys, add_cpreg_to_list, cpu);
333
334 assert(cpu->cpreg_array_len == arraylen);
335
336 g_list_free(keys);
337}
338
68e9c2fe
EI
339/*
340 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
341 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
342 *
343 * access_el3_aa32ns: Used to check AArch32 register views.
344 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
345 */
346static CPAccessResult access_el3_aa32ns(CPUARMState *env,
3f208fd7
PM
347 const ARMCPRegInfo *ri,
348 bool isread)
68e9c2fe
EI
349{
350 bool secure = arm_is_secure_below_el3(env);
351
352 assert(!arm_el_is_aa64(env, 3));
353 if (secure) {
354 return CP_ACCESS_TRAP_UNCATEGORIZED;
355 }
356 return CP_ACCESS_OK;
357}
358
359static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
3f208fd7
PM
360 const ARMCPRegInfo *ri,
361 bool isread)
68e9c2fe
EI
362{
363 if (!arm_el_is_aa64(env, 3)) {
3f208fd7 364 return access_el3_aa32ns(env, ri, isread);
68e9c2fe
EI
365 }
366 return CP_ACCESS_OK;
367}
368
5513c3ab
PM
369/* Some secure-only AArch32 registers trap to EL3 if used from
370 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
371 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
372 * We assume that the .access field is set to PL1_RW.
373 */
374static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
3f208fd7
PM
375 const ARMCPRegInfo *ri,
376 bool isread)
5513c3ab
PM
377{
378 if (arm_current_el(env) == 3) {
379 return CP_ACCESS_OK;
380 }
381 if (arm_is_secure_below_el3(env)) {
382 return CP_ACCESS_TRAP_EL3;
383 }
384 /* This will be EL1 NS and EL2 NS, which just UNDEF */
385 return CP_ACCESS_TRAP_UNCATEGORIZED;
386}
387
187f678d
PM
388/* Check for traps to "powerdown debug" registers, which are controlled
389 * by MDCR.TDOSA
390 */
391static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
392 bool isread)
393{
394 int el = arm_current_el(env);
395
396 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
397 && !arm_is_secure_below_el3(env)) {
398 return CP_ACCESS_TRAP_EL2;
399 }
400 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
401 return CP_ACCESS_TRAP_EL3;
402 }
403 return CP_ACCESS_OK;
404}
405
91b0a238
PM
406/* Check for traps to "debug ROM" registers, which are controlled
407 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
408 */
409static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
410 bool isread)
411{
412 int el = arm_current_el(env);
413
414 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
415 && !arm_is_secure_below_el3(env)) {
416 return CP_ACCESS_TRAP_EL2;
417 }
418 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
419 return CP_ACCESS_TRAP_EL3;
420 }
421 return CP_ACCESS_OK;
422}
423
d6c8cf81
PM
424/* Check for traps to general debug registers, which are controlled
425 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
426 */
427static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
428 bool isread)
429{
430 int el = arm_current_el(env);
431
432 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
433 && !arm_is_secure_below_el3(env)) {
434 return CP_ACCESS_TRAP_EL2;
435 }
436 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
437 return CP_ACCESS_TRAP_EL3;
438 }
439 return CP_ACCESS_OK;
440}
441
1fce1ba9
PM
442/* Check for traps to performance monitor registers, which are controlled
443 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
444 */
445static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
446 bool isread)
447{
448 int el = arm_current_el(env);
449
450 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
451 && !arm_is_secure_below_el3(env)) {
452 return CP_ACCESS_TRAP_EL2;
453 }
454 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
455 return CP_ACCESS_TRAP_EL3;
456 }
457 return CP_ACCESS_OK;
458}
459
c4241c7d 460static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
c983fe6c 461{
00c8cb0a
AF
462 ARMCPU *cpu = arm_env_get_cpu(env);
463
8d5c773e 464 raw_write(env, ri, value);
00c8cb0a 465 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
c983fe6c
PM
466}
467
c4241c7d 468static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
08de207b 469{
00c8cb0a
AF
470 ARMCPU *cpu = arm_env_get_cpu(env);
471
8d5c773e 472 if (raw_read(env, ri) != value) {
08de207b
PM
473 /* Unlike real hardware the qemu TLB uses virtual addresses,
474 * not modified virtual addresses, so this causes a TLB flush.
475 */
00c8cb0a 476 tlb_flush(CPU(cpu), 1);
8d5c773e 477 raw_write(env, ri, value);
08de207b 478 }
08de207b 479}
c4241c7d
PM
480
481static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
482 uint64_t value)
08de207b 483{
00c8cb0a
AF
484 ARMCPU *cpu = arm_env_get_cpu(env);
485
8d5c773e 486 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
014406b5 487 && !extended_addresses_enabled(env)) {
08de207b
PM
488 /* For VMSA (when not using the LPAE long descriptor page table
489 * format) this register includes the ASID, so do a TLB flush.
490 * For PMSA it is purely a process ID and no action is needed.
491 */
00c8cb0a 492 tlb_flush(CPU(cpu), 1);
08de207b 493 }
8d5c773e 494 raw_write(env, ri, value);
08de207b
PM
495}
496
c4241c7d
PM
497static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
498 uint64_t value)
d929823f
PM
499{
500 /* Invalidate all (TLBIALL) */
00c8cb0a
AF
501 ARMCPU *cpu = arm_env_get_cpu(env);
502
503 tlb_flush(CPU(cpu), 1);
d929823f
PM
504}
505
c4241c7d
PM
506static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
507 uint64_t value)
d929823f
PM
508{
509 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
31b030d4
AF
510 ARMCPU *cpu = arm_env_get_cpu(env);
511
512 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
513}
514
c4241c7d
PM
515static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
516 uint64_t value)
d929823f
PM
517{
518 /* Invalidate by ASID (TLBIASID) */
00c8cb0a
AF
519 ARMCPU *cpu = arm_env_get_cpu(env);
520
521 tlb_flush(CPU(cpu), value == 0);
d929823f
PM
522}
523
c4241c7d
PM
524static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
525 uint64_t value)
d929823f
PM
526{
527 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
31b030d4
AF
528 ARMCPU *cpu = arm_env_get_cpu(env);
529
530 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
531}
532
fa439fc5
PM
533/* IS variants of TLB operations must affect all cores */
534static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
535 uint64_t value)
536{
537 CPUState *other_cs;
538
539 CPU_FOREACH(other_cs) {
540 tlb_flush(other_cs, 1);
541 }
542}
543
544static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
545 uint64_t value)
546{
547 CPUState *other_cs;
548
549 CPU_FOREACH(other_cs) {
550 tlb_flush(other_cs, value == 0);
551 }
552}
553
554static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
555 uint64_t value)
556{
557 CPUState *other_cs;
558
559 CPU_FOREACH(other_cs) {
560 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
561 }
562}
563
564static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565 uint64_t value)
566{
567 CPUState *other_cs;
568
569 CPU_FOREACH(other_cs) {
570 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
571 }
572}
573
e9aa6c21 574static const ARMCPRegInfo cp_reginfo[] = {
54bf36ed
FA
575 /* Define the secure and non-secure FCSE identifier CP registers
576 * separately because there is no secure bank in V8 (no _EL3). This allows
577 * the secure register to be properly reset and migrated. There is also no
578 * v8 EL1 version of the register so the non-secure instance stands alone.
579 */
580 { .name = "FCSEIDR(NS)",
581 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
582 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
583 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
584 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
585 { .name = "FCSEIDR(S)",
586 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
587 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
588 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
d4e6df63 589 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
54bf36ed
FA
590 /* Define the secure and non-secure context identifier CP registers
591 * separately because there is no secure bank in V8 (no _EL3). This allows
592 * the secure register to be properly reset and migrated. In the
593 * non-secure case, the 32-bit register will have reset and migration
594 * disabled during registration as it is handled by the 64-bit instance.
595 */
596 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
014406b5 597 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
54bf36ed
FA
598 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
599 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
600 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
601 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
602 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
603 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
604 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
d4e6df63 605 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
9449fdf6
PM
606 REGINFO_SENTINEL
607};
608
609static const ARMCPRegInfo not_v8_cp_reginfo[] = {
610 /* NB: Some of these registers exist in v8 but with more precise
611 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
612 */
613 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
614 { .name = "DACR",
615 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
616 .access = PL1_RW, .resetvalue = 0,
617 .writefn = dacr_write, .raw_writefn = raw_write,
618 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
619 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a903c449
EI
620 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
621 * For v6 and v5, these mappings are overly broad.
4fdd17dd 622 */
a903c449
EI
623 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
624 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
625 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
626 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
627 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
628 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
629 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
4fdd17dd 630 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
c4804214
PM
631 /* Cache maintenance ops; some of this space may be overridden later. */
632 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
633 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
634 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
e9aa6c21
PM
635 REGINFO_SENTINEL
636};
637
7d57f408
PM
638static const ARMCPRegInfo not_v6_cp_reginfo[] = {
639 /* Not all pre-v6 cores implemented this WFI, so this is slightly
640 * over-broad.
641 */
642 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
643 .access = PL1_W, .type = ARM_CP_WFI },
644 REGINFO_SENTINEL
645};
646
647static const ARMCPRegInfo not_v7_cp_reginfo[] = {
648 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
649 * is UNPREDICTABLE; we choose to NOP as most implementations do).
650 */
651 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
652 .access = PL1_W, .type = ARM_CP_WFI },
34f90529
PM
653 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
654 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
655 * OMAPCP will override this space.
656 */
657 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
658 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
659 .resetvalue = 0 },
660 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
661 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
662 .resetvalue = 0 },
776d4e5c
PM
663 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
664 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
7a0e58fa 665 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 666 .resetvalue = 0 },
50300698
PM
667 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
668 * implementing it as RAZ means the "debug architecture version" bits
669 * will read as a reserved value, which should cause Linux to not try
670 * to use the debug hardware.
671 */
672 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
673 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
995939a6
PM
674 /* MMU TLB control. Note that the wildcarding means we cover not just
675 * the unified TLB ops but also the dside/iside/inner-shareable variants.
676 */
677 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
678 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
7a0e58fa 679 .type = ARM_CP_NO_RAW },
995939a6
PM
680 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
681 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
7a0e58fa 682 .type = ARM_CP_NO_RAW },
995939a6
PM
683 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
684 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
7a0e58fa 685 .type = ARM_CP_NO_RAW },
995939a6
PM
686 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
687 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
7a0e58fa 688 .type = ARM_CP_NO_RAW },
a903c449
EI
689 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
690 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
691 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
692 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
7d57f408
PM
693 REGINFO_SENTINEL
694};
695
c4241c7d
PM
696static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
697 uint64_t value)
2771db27 698{
f0aff255
FA
699 uint32_t mask = 0;
700
701 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
702 if (!arm_feature(env, ARM_FEATURE_V8)) {
703 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
704 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
705 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
706 */
707 if (arm_feature(env, ARM_FEATURE_VFP)) {
708 /* VFP coprocessor: cp10 & cp11 [23:20] */
709 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
710
711 if (!arm_feature(env, ARM_FEATURE_NEON)) {
712 /* ASEDIS [31] bit is RAO/WI */
713 value |= (1 << 31);
714 }
715
716 /* VFPv3 and upwards with NEON implement 32 double precision
717 * registers (D0-D31).
718 */
719 if (!arm_feature(env, ARM_FEATURE_NEON) ||
720 !arm_feature(env, ARM_FEATURE_VFP3)) {
721 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
722 value |= (1 << 30);
723 }
724 }
725 value &= mask;
2771db27 726 }
7ebd5f2e 727 env->cp15.cpacr_el1 = value;
2771db27
PM
728}
729
3f208fd7
PM
730static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
731 bool isread)
c6f19164
GB
732{
733 if (arm_feature(env, ARM_FEATURE_V8)) {
734 /* Check if CPACR accesses are to be trapped to EL2 */
735 if (arm_current_el(env) == 1 &&
736 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
737 return CP_ACCESS_TRAP_EL2;
738 /* Check if CPACR accesses are to be trapped to EL3 */
739 } else if (arm_current_el(env) < 3 &&
740 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
741 return CP_ACCESS_TRAP_EL3;
742 }
743 }
744
745 return CP_ACCESS_OK;
746}
747
3f208fd7
PM
748static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
749 bool isread)
c6f19164
GB
750{
751 /* Check if CPTR accesses are set to trap to EL3 */
752 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
753 return CP_ACCESS_TRAP_EL3;
754 }
755
756 return CP_ACCESS_OK;
757}
758
7d57f408
PM
759static const ARMCPRegInfo v6_cp_reginfo[] = {
760 /* prefetch by MVA in v6, NOP in v7 */
761 { .name = "MVA_prefetch",
762 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
763 .access = PL1_W, .type = ARM_CP_NOP },
6df99dec
SS
764 /* We need to break the TB after ISB to execute self-modifying code
765 * correctly and also to take any pending interrupts immediately.
766 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
767 */
7d57f408 768 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
6df99dec 769 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
091fd17c 770 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
7d57f408 771 .access = PL0_W, .type = ARM_CP_NOP },
091fd17c 772 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
7d57f408 773 .access = PL0_W, .type = ARM_CP_NOP },
06d76f31 774 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
6cd8a264 775 .access = PL1_RW,
b848ce2b
FA
776 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
777 offsetof(CPUARMState, cp15.ifar_ns) },
06d76f31
PM
778 .resetvalue = 0, },
779 /* Watchpoint Fault Address Register : should actually only be present
780 * for 1136, 1176, 11MPCore.
781 */
782 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
783 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
34222fb8 784 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
c6f19164 785 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
7ebd5f2e 786 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
2771db27 787 .resetvalue = 0, .writefn = cpacr_write },
7d57f408
PM
788 REGINFO_SENTINEL
789};
790
3f208fd7
PM
791static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
792 bool isread)
200ac0ef 793{
3b163b01 794 /* Performance monitor registers user accessibility is controlled
1fce1ba9
PM
795 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
796 * trapping to EL2 or EL3 for other accesses.
200ac0ef 797 */
1fce1ba9
PM
798 int el = arm_current_el(env);
799
800 if (el == 0 && !env->cp15.c9_pmuserenr) {
fcd25206 801 return CP_ACCESS_TRAP;
200ac0ef 802 }
1fce1ba9
PM
803 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
804 && !arm_is_secure_below_el3(env)) {
805 return CP_ACCESS_TRAP_EL2;
806 }
807 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
808 return CP_ACCESS_TRAP_EL3;
809 }
810
fcd25206 811 return CP_ACCESS_OK;
200ac0ef
PM
812}
813
7c2cb42b 814#ifndef CONFIG_USER_ONLY
87124fde
AF
815
816static inline bool arm_ccnt_enabled(CPUARMState *env)
817{
818 /* This does not support checking PMCCFILTR_EL0 register */
819
820 if (!(env->cp15.c9_pmcr & PMCRE)) {
821 return false;
822 }
823
824 return true;
825}
826
ec7b4ce4
AF
827void pmccntr_sync(CPUARMState *env)
828{
829 uint64_t temp_ticks;
830
352c98e5
LV
831 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
832 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
ec7b4ce4
AF
833
834 if (env->cp15.c9_pmcr & PMCRD) {
835 /* Increment once every 64 processor clock cycles */
836 temp_ticks /= 64;
837 }
838
839 if (arm_ccnt_enabled(env)) {
840 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
841 }
842}
843
c4241c7d
PM
844static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
845 uint64_t value)
200ac0ef 846{
942a155b 847 pmccntr_sync(env);
7c2cb42b
AF
848
849 if (value & PMCRC) {
850 /* The counter has been reset */
851 env->cp15.c15_ccnt = 0;
852 }
853
200ac0ef
PM
854 /* only the DP, X, D and E bits are writable */
855 env->cp15.c9_pmcr &= ~0x39;
856 env->cp15.c9_pmcr |= (value & 0x39);
7c2cb42b 857
942a155b 858 pmccntr_sync(env);
7c2cb42b
AF
859}
860
861static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
862{
c92c0687 863 uint64_t total_ticks;
7c2cb42b 864
942a155b 865 if (!arm_ccnt_enabled(env)) {
7c2cb42b
AF
866 /* Counter is disabled, do not change value */
867 return env->cp15.c15_ccnt;
868 }
869
352c98e5
LV
870 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
871 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
7c2cb42b
AF
872
873 if (env->cp15.c9_pmcr & PMCRD) {
874 /* Increment once every 64 processor clock cycles */
875 total_ticks /= 64;
876 }
877 return total_ticks - env->cp15.c15_ccnt;
878}
879
880static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
881 uint64_t value)
882{
c92c0687 883 uint64_t total_ticks;
7c2cb42b 884
942a155b 885 if (!arm_ccnt_enabled(env)) {
7c2cb42b
AF
886 /* Counter is disabled, set the absolute value */
887 env->cp15.c15_ccnt = value;
888 return;
889 }
890
352c98e5
LV
891 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
892 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
7c2cb42b
AF
893
894 if (env->cp15.c9_pmcr & PMCRD) {
895 /* Increment once every 64 processor clock cycles */
896 total_ticks /= 64;
897 }
898 env->cp15.c15_ccnt = total_ticks - value;
200ac0ef 899}
421c7ebd
PC
900
901static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
902 uint64_t value)
903{
904 uint64_t cur_val = pmccntr_read(env, NULL);
905
906 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
907}
908
ec7b4ce4
AF
909#else /* CONFIG_USER_ONLY */
910
911void pmccntr_sync(CPUARMState *env)
912{
913}
914
7c2cb42b 915#endif
200ac0ef 916
0614601c
AF
917static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
918 uint64_t value)
919{
920 pmccntr_sync(env);
921 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
922 pmccntr_sync(env);
923}
924
c4241c7d 925static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
926 uint64_t value)
927{
200ac0ef
PM
928 value &= (1 << 31);
929 env->cp15.c9_pmcnten |= value;
200ac0ef
PM
930}
931
c4241c7d
PM
932static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
933 uint64_t value)
200ac0ef 934{
200ac0ef
PM
935 value &= (1 << 31);
936 env->cp15.c9_pmcnten &= ~value;
200ac0ef
PM
937}
938
c4241c7d
PM
939static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
940 uint64_t value)
200ac0ef 941{
200ac0ef 942 env->cp15.c9_pmovsr &= ~value;
200ac0ef
PM
943}
944
c4241c7d
PM
945static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
946 uint64_t value)
200ac0ef 947{
200ac0ef 948 env->cp15.c9_pmxevtyper = value & 0xff;
200ac0ef
PM
949}
950
c4241c7d 951static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
952 uint64_t value)
953{
954 env->cp15.c9_pmuserenr = value & 1;
200ac0ef
PM
955}
956
c4241c7d
PM
957static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
958 uint64_t value)
200ac0ef
PM
959{
960 /* We have no event counters so only the C bit can be changed */
961 value &= (1 << 31);
962 env->cp15.c9_pminten |= value;
200ac0ef
PM
963}
964
c4241c7d
PM
965static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
966 uint64_t value)
200ac0ef
PM
967{
968 value &= (1 << 31);
969 env->cp15.c9_pminten &= ~value;
200ac0ef
PM
970}
971
c4241c7d
PM
972static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
973 uint64_t value)
8641136c 974{
a505d7fe
PM
975 /* Note that even though the AArch64 view of this register has bits
976 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
977 * architectural requirements for bits which are RES0 only in some
978 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
979 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
980 */
855ea66d 981 raw_write(env, ri, value & ~0x1FULL);
8641136c
NR
982}
983
64e0e2de
EI
984static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
985{
986 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
987 * For bits that vary between AArch32/64, code needs to check the
988 * current execution mode before directly using the feature bit.
989 */
990 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
991
992 if (!arm_feature(env, ARM_FEATURE_EL2)) {
993 valid_mask &= ~SCR_HCE;
994
995 /* On ARMv7, SMD (or SCD as it is called in v7) is only
996 * supported if EL2 exists. The bit is UNK/SBZP when
997 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
998 * when EL2 is unavailable.
4eb27640 999 * On ARMv8, this bit is always available.
64e0e2de 1000 */
4eb27640
GB
1001 if (arm_feature(env, ARM_FEATURE_V7) &&
1002 !arm_feature(env, ARM_FEATURE_V8)) {
64e0e2de
EI
1003 valid_mask &= ~SCR_SMD;
1004 }
1005 }
1006
1007 /* Clear all-context RES0 bits. */
1008 value &= valid_mask;
1009 raw_write(env, ri, value);
1010}
1011
c4241c7d 1012static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
776d4e5c
PM
1013{
1014 ARMCPU *cpu = arm_env_get_cpu(env);
b85a1fd6
FA
1015
1016 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1017 * bank
1018 */
1019 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1020 ri->secure & ARM_CP_SECSTATE_S);
1021
1022 return cpu->ccsidr[index];
776d4e5c
PM
1023}
1024
c4241c7d
PM
1025static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1026 uint64_t value)
776d4e5c 1027{
8d5c773e 1028 raw_write(env, ri, value & 0xf);
776d4e5c
PM
1029}
1030
1090b9c6
PM
1031static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1032{
1033 CPUState *cs = ENV_GET_CPU(env);
1034 uint64_t ret = 0;
1035
1036 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1037 ret |= CPSR_I;
1038 }
1039 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1040 ret |= CPSR_F;
1041 }
1042 /* External aborts are not possible in QEMU so A bit is always clear */
1043 return ret;
1044}
1045
e9aa6c21 1046static const ARMCPRegInfo v7_cp_reginfo[] = {
7d57f408
PM
1047 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1048 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1049 .access = PL1_W, .type = ARM_CP_NOP },
200ac0ef
PM
1050 /* Performance monitors are implementation defined in v7,
1051 * but with an ARM recommended set of registers, which we
1052 * follow (although we don't actually implement any counters)
1053 *
1054 * Performance registers fall into three categories:
1055 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1056 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1057 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1058 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1059 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1060 */
1061 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
7a0e58fa 1062 .access = PL0_RW, .type = ARM_CP_ALIAS,
8521466b 1063 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
1064 .writefn = pmcntenset_write,
1065 .accessfn = pmreg_access,
1066 .raw_writefn = raw_write },
8521466b
AF
1067 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1068 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1069 .access = PL0_RW, .accessfn = pmreg_access,
1070 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1071 .writefn = pmcntenset_write, .raw_writefn = raw_write },
200ac0ef 1072 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
8521466b
AF
1073 .access = PL0_RW,
1074 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
1075 .accessfn = pmreg_access,
1076 .writefn = pmcntenclr_write,
7a0e58fa 1077 .type = ARM_CP_ALIAS },
8521466b
AF
1078 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1079 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1080 .access = PL0_RW, .accessfn = pmreg_access,
7a0e58fa 1081 .type = ARM_CP_ALIAS,
8521466b
AF
1082 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1083 .writefn = pmcntenclr_write },
200ac0ef
PM
1084 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1085 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
fcd25206
PM
1086 .accessfn = pmreg_access,
1087 .writefn = pmovsr_write,
1088 .raw_writefn = raw_write },
978364f1
AF
1089 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1090 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1091 .access = PL0_RW, .accessfn = pmreg_access,
1092 .type = ARM_CP_ALIAS,
1093 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1094 .writefn = pmovsr_write,
1095 .raw_writefn = raw_write },
fcd25206 1096 /* Unimplemented so WI. */
200ac0ef 1097 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
fcd25206 1098 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
200ac0ef 1099 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
fcd25206 1100 * We choose to RAZ/WI.
200ac0ef
PM
1101 */
1102 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
fcd25206
PM
1103 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1104 .accessfn = pmreg_access },
7c2cb42b 1105#ifndef CONFIG_USER_ONLY
200ac0ef 1106 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
7c2cb42b 1107 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
421c7ebd 1108 .readfn = pmccntr_read, .writefn = pmccntr_write32,
fcd25206 1109 .accessfn = pmreg_access },
8521466b
AF
1110 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1111 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1112 .access = PL0_RW, .accessfn = pmreg_access,
1113 .type = ARM_CP_IO,
1114 .readfn = pmccntr_read, .writefn = pmccntr_write, },
7c2cb42b 1115#endif
8521466b
AF
1116 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1117 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
0614601c 1118 .writefn = pmccfiltr_write,
8521466b
AF
1119 .access = PL0_RW, .accessfn = pmreg_access,
1120 .type = ARM_CP_IO,
1121 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1122 .resetvalue = 0, },
200ac0ef
PM
1123 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1124 .access = PL0_RW,
1125 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
fcd25206
PM
1126 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
1127 .raw_writefn = raw_write },
1128 /* Unimplemented, RAZ/WI. */
200ac0ef 1129 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
fcd25206
PM
1130 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1131 .accessfn = pmreg_access },
200ac0ef 1132 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1fce1ba9 1133 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
200ac0ef
PM
1134 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1135 .resetvalue = 0,
d4e6df63 1136 .writefn = pmuserenr_write, .raw_writefn = raw_write },
8a83ffc2
AF
1137 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1138 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1fce1ba9 1139 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
8a83ffc2
AF
1140 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1141 .resetvalue = 0,
1142 .writefn = pmuserenr_write, .raw_writefn = raw_write },
200ac0ef 1143 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1fce1ba9 1144 .access = PL1_RW, .accessfn = access_tpm,
200ac0ef
PM
1145 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1146 .resetvalue = 0,
d4e6df63 1147 .writefn = pmintenset_write, .raw_writefn = raw_write },
200ac0ef 1148 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1fce1ba9 1149 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
200ac0ef 1150 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
b061a82b 1151 .writefn = pmintenclr_write, },
978364f1
AF
1152 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1153 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1fce1ba9 1154 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
978364f1
AF
1155 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1156 .writefn = pmintenclr_write },
a505d7fe
PM
1157 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
1158 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8641136c 1159 .access = PL1_RW, .writefn = vbar_write,
fb6c91ba
GB
1160 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
1161 offsetof(CPUARMState, cp15.vbar_ns) },
8641136c 1162 .resetvalue = 0 },
7da845b0
PM
1163 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1164 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
7a0e58fa 1165 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
7da845b0
PM
1166 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1167 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
b85a1fd6
FA
1168 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1169 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1170 offsetof(CPUARMState, cp15.csselr_ns) } },
776d4e5c
PM
1171 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1172 * just RAZ for all cores:
1173 */
0ff644a7
PM
1174 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1175 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
776d4e5c 1176 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
f32cdad5
PM
1177 /* Auxiliary fault status registers: these also are IMPDEF, and we
1178 * choose to RAZ/WI for all cores.
1179 */
1180 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1181 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1182 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1183 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1184 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1185 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b0fe2427
PM
1186 /* MAIR can just read-as-written because we don't implement caches
1187 * and so don't need to care about memory attributes.
1188 */
1189 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1190 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
be693c87 1191 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
b0fe2427 1192 .resetvalue = 0 },
4cfb8ad8
PM
1193 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1194 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1195 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1196 .resetvalue = 0 },
b0fe2427
PM
1197 /* For non-long-descriptor page tables these are PRRR and NMRR;
1198 * regardless they still act as reads-as-written for QEMU.
b0fe2427 1199 */
1281f8e3 1200 /* MAIR0/1 are defined separately from their 64-bit counterpart which
be693c87
GB
1201 * allows them to assign the correct fieldoffset based on the endianness
1202 * handled in the field definitions.
1203 */
a903c449 1204 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
b0fe2427 1205 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
be693c87
GB
1206 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1207 offsetof(CPUARMState, cp15.mair0_ns) },
b0fe2427 1208 .resetfn = arm_cp_reset_ignore },
a903c449 1209 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
b0fe2427 1210 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
be693c87
GB
1211 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1212 offsetof(CPUARMState, cp15.mair1_ns) },
b0fe2427 1213 .resetfn = arm_cp_reset_ignore },
1090b9c6
PM
1214 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1215 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
7a0e58fa 1216 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
995939a6
PM
1217 /* 32 bit ITLB invalidates */
1218 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
7a0e58fa 1219 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1220 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7a0e58fa 1221 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1222 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
7a0e58fa 1223 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
1224 /* 32 bit DTLB invalidates */
1225 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
7a0e58fa 1226 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1227 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7a0e58fa 1228 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1229 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
7a0e58fa 1230 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
1231 /* 32 bit TLB invalidates */
1232 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 1233 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1234 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 1235 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1236 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 1237 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6 1238 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 1239 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
995939a6
PM
1240 REGINFO_SENTINEL
1241};
1242
1243static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1244 /* 32 bit TLB invalidates, Inner Shareable */
1245 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 1246 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
995939a6 1247 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 1248 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
995939a6 1249 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 1250 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 1251 .writefn = tlbiasid_is_write },
995939a6 1252 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 1253 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 1254 .writefn = tlbimvaa_is_write },
e9aa6c21
PM
1255 REGINFO_SENTINEL
1256};
1257
c4241c7d
PM
1258static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1259 uint64_t value)
c326b979
PM
1260{
1261 value &= 1;
1262 env->teecr = value;
c326b979
PM
1263}
1264
3f208fd7
PM
1265static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1266 bool isread)
c326b979 1267{
dcbff19b 1268 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
92611c00 1269 return CP_ACCESS_TRAP;
c326b979 1270 }
92611c00 1271 return CP_ACCESS_OK;
c326b979
PM
1272}
1273
1274static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1275 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1276 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1277 .resetvalue = 0,
1278 .writefn = teecr_write },
1279 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1280 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
92611c00 1281 .accessfn = teehbr_access, .resetvalue = 0 },
c326b979
PM
1282 REGINFO_SENTINEL
1283};
1284
4d31c596 1285static const ARMCPRegInfo v6k_cp_reginfo[] = {
e4fe830b
PM
1286 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1287 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1288 .access = PL0_RW,
54bf36ed 1289 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
4d31c596
PM
1290 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1291 .access = PL0_RW,
54bf36ed
FA
1292 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1293 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
e4fe830b
PM
1294 .resetfn = arm_cp_reset_ignore },
1295 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1296 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1297 .access = PL0_R|PL1_W,
54bf36ed
FA
1298 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1299 .resetvalue = 0},
4d31c596
PM
1300 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1301 .access = PL0_R|PL1_W,
54bf36ed
FA
1302 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1303 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
e4fe830b 1304 .resetfn = arm_cp_reset_ignore },
54bf36ed 1305 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
e4fe830b 1306 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
4d31c596 1307 .access = PL1_RW,
54bf36ed
FA
1308 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1309 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1310 .access = PL1_RW,
1311 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1312 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1313 .resetvalue = 0 },
4d31c596
PM
1314 REGINFO_SENTINEL
1315};
1316
55d284af
PM
1317#ifndef CONFIG_USER_ONLY
1318
3f208fd7
PM
1319static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1320 bool isread)
00108f2d 1321{
75502672
PM
1322 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1323 * Writable only at the highest implemented exception level.
1324 */
1325 int el = arm_current_el(env);
1326
1327 switch (el) {
1328 case 0:
1329 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1330 return CP_ACCESS_TRAP;
1331 }
1332 break;
1333 case 1:
1334 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1335 arm_is_secure_below_el3(env)) {
1336 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1337 return CP_ACCESS_TRAP_UNCATEGORIZED;
1338 }
1339 break;
1340 case 2:
1341 case 3:
1342 break;
00108f2d 1343 }
75502672
PM
1344
1345 if (!isread && el < arm_highest_el(env)) {
1346 return CP_ACCESS_TRAP_UNCATEGORIZED;
1347 }
1348
00108f2d
PM
1349 return CP_ACCESS_OK;
1350}
1351
3f208fd7
PM
1352static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1353 bool isread)
00108f2d 1354{
0b6440af
EI
1355 unsigned int cur_el = arm_current_el(env);
1356 bool secure = arm_is_secure(env);
1357
00108f2d 1358 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
0b6440af 1359 if (cur_el == 0 &&
00108f2d
PM
1360 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1361 return CP_ACCESS_TRAP;
1362 }
0b6440af
EI
1363
1364 if (arm_feature(env, ARM_FEATURE_EL2) &&
1365 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1366 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1367 return CP_ACCESS_TRAP_EL2;
1368 }
00108f2d
PM
1369 return CP_ACCESS_OK;
1370}
1371
3f208fd7
PM
1372static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1373 bool isread)
00108f2d 1374{
0b6440af
EI
1375 unsigned int cur_el = arm_current_el(env);
1376 bool secure = arm_is_secure(env);
1377
00108f2d
PM
1378 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1379 * EL0[PV]TEN is zero.
1380 */
0b6440af 1381 if (cur_el == 0 &&
00108f2d
PM
1382 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1383 return CP_ACCESS_TRAP;
1384 }
0b6440af
EI
1385
1386 if (arm_feature(env, ARM_FEATURE_EL2) &&
1387 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1388 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1389 return CP_ACCESS_TRAP_EL2;
1390 }
00108f2d
PM
1391 return CP_ACCESS_OK;
1392}
1393
1394static CPAccessResult gt_pct_access(CPUARMState *env,
3f208fd7
PM
1395 const ARMCPRegInfo *ri,
1396 bool isread)
00108f2d 1397{
3f208fd7 1398 return gt_counter_access(env, GTIMER_PHYS, isread);
00108f2d
PM
1399}
1400
1401static CPAccessResult gt_vct_access(CPUARMState *env,
3f208fd7
PM
1402 const ARMCPRegInfo *ri,
1403 bool isread)
00108f2d 1404{
3f208fd7 1405 return gt_counter_access(env, GTIMER_VIRT, isread);
00108f2d
PM
1406}
1407
3f208fd7
PM
1408static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1409 bool isread)
00108f2d 1410{
3f208fd7 1411 return gt_timer_access(env, GTIMER_PHYS, isread);
00108f2d
PM
1412}
1413
3f208fd7
PM
1414static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1415 bool isread)
00108f2d 1416{
3f208fd7 1417 return gt_timer_access(env, GTIMER_VIRT, isread);
00108f2d
PM
1418}
1419
b4d3978c 1420static CPAccessResult gt_stimer_access(CPUARMState *env,
3f208fd7
PM
1421 const ARMCPRegInfo *ri,
1422 bool isread)
b4d3978c
PM
1423{
1424 /* The AArch64 register view of the secure physical timer is
1425 * always accessible from EL3, and configurably accessible from
1426 * Secure EL1.
1427 */
1428 switch (arm_current_el(env)) {
1429 case 1:
1430 if (!arm_is_secure(env)) {
1431 return CP_ACCESS_TRAP;
1432 }
1433 if (!(env->cp15.scr_el3 & SCR_ST)) {
1434 return CP_ACCESS_TRAP_EL3;
1435 }
1436 return CP_ACCESS_OK;
1437 case 0:
1438 case 2:
1439 return CP_ACCESS_TRAP;
1440 case 3:
1441 return CP_ACCESS_OK;
1442 default:
1443 g_assert_not_reached();
1444 }
1445}
1446
55d284af
PM
1447static uint64_t gt_get_countervalue(CPUARMState *env)
1448{
bc72ad67 1449 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
55d284af
PM
1450}
1451
1452static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1453{
1454 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1455
1456 if (gt->ctl & 1) {
1457 /* Timer enabled: calculate and set current ISTATUS, irq, and
1458 * reset timer to when ISTATUS next has to change
1459 */
edac4d8a
EI
1460 uint64_t offset = timeridx == GTIMER_VIRT ?
1461 cpu->env.cp15.cntvoff_el2 : 0;
55d284af
PM
1462 uint64_t count = gt_get_countervalue(&cpu->env);
1463 /* Note that this must be unsigned 64 bit arithmetic: */
edac4d8a 1464 int istatus = count - offset >= gt->cval;
55d284af
PM
1465 uint64_t nexttick;
1466
1467 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1468 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1469 (istatus && !(gt->ctl & 2)));
1470 if (istatus) {
1471 /* Next transition is when count rolls back over to zero */
1472 nexttick = UINT64_MAX;
1473 } else {
1474 /* Next transition is when we hit cval */
edac4d8a 1475 nexttick = gt->cval + offset;
55d284af
PM
1476 }
1477 /* Note that the desired next expiry time might be beyond the
1478 * signed-64-bit range of a QEMUTimer -- in this case we just
1479 * set the timer for as far in the future as possible. When the
1480 * timer expires we will reset the timer for any remaining period.
1481 */
1482 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1483 nexttick = INT64_MAX / GTIMER_SCALE;
1484 }
bc72ad67 1485 timer_mod(cpu->gt_timer[timeridx], nexttick);
55d284af
PM
1486 } else {
1487 /* Timer disabled: ISTATUS and timer output always clear */
1488 gt->ctl &= ~4;
1489 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
bc72ad67 1490 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
1491 }
1492}
1493
0e3eca4c
EI
1494static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1495 int timeridx)
55d284af
PM
1496{
1497 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af 1498
bc72ad67 1499 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
1500}
1501
c4241c7d 1502static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
55d284af 1503{
c4241c7d 1504 return gt_get_countervalue(env);
55d284af
PM
1505}
1506
edac4d8a
EI
1507static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1508{
1509 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1510}
1511
c4241c7d 1512static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1513 int timeridx,
c4241c7d 1514 uint64_t value)
55d284af 1515{
55d284af
PM
1516 env->cp15.c14_timer[timeridx].cval = value;
1517 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af 1518}
c4241c7d 1519
0e3eca4c
EI
1520static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1521 int timeridx)
55d284af 1522{
edac4d8a 1523 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 1524
c4241c7d 1525 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
edac4d8a 1526 (gt_get_countervalue(env) - offset));
55d284af
PM
1527}
1528
c4241c7d 1529static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1530 int timeridx,
c4241c7d 1531 uint64_t value)
55d284af 1532{
edac4d8a 1533 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 1534
edac4d8a 1535 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
18084b2f 1536 sextract64(value, 0, 32);
55d284af 1537 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af
PM
1538}
1539
c4241c7d 1540static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1541 int timeridx,
c4241c7d 1542 uint64_t value)
55d284af
PM
1543{
1544 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af
PM
1545 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1546
d3afacc7 1547 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
55d284af
PM
1548 if ((oldval ^ value) & 1) {
1549 /* Enable toggled */
1550 gt_recalc_timer(cpu, timeridx);
d3afacc7 1551 } else if ((oldval ^ value) & 2) {
55d284af
PM
1552 /* IMASK toggled: don't need to recalculate,
1553 * just set the interrupt line based on ISTATUS
1554 */
1555 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
d3afacc7 1556 (oldval & 4) && !(value & 2));
55d284af 1557 }
55d284af
PM
1558}
1559
0e3eca4c
EI
1560static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1561{
1562 gt_timer_reset(env, ri, GTIMER_PHYS);
1563}
1564
1565static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1566 uint64_t value)
1567{
1568 gt_cval_write(env, ri, GTIMER_PHYS, value);
1569}
1570
1571static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1572{
1573 return gt_tval_read(env, ri, GTIMER_PHYS);
1574}
1575
1576static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1577 uint64_t value)
1578{
1579 gt_tval_write(env, ri, GTIMER_PHYS, value);
1580}
1581
1582static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1583 uint64_t value)
1584{
1585 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1586}
1587
1588static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1589{
1590 gt_timer_reset(env, ri, GTIMER_VIRT);
1591}
1592
1593static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1594 uint64_t value)
1595{
1596 gt_cval_write(env, ri, GTIMER_VIRT, value);
1597}
1598
1599static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1600{
1601 return gt_tval_read(env, ri, GTIMER_VIRT);
1602}
1603
1604static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1605 uint64_t value)
1606{
1607 gt_tval_write(env, ri, GTIMER_VIRT, value);
1608}
1609
1610static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1611 uint64_t value)
1612{
1613 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1614}
1615
edac4d8a
EI
1616static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1617 uint64_t value)
1618{
1619 ARMCPU *cpu = arm_env_get_cpu(env);
1620
1621 raw_write(env, ri, value);
1622 gt_recalc_timer(cpu, GTIMER_VIRT);
1623}
1624
b0e66d95
EI
1625static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1626{
1627 gt_timer_reset(env, ri, GTIMER_HYP);
1628}
1629
1630static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1631 uint64_t value)
1632{
1633 gt_cval_write(env, ri, GTIMER_HYP, value);
1634}
1635
1636static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1637{
1638 return gt_tval_read(env, ri, GTIMER_HYP);
1639}
1640
1641static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1642 uint64_t value)
1643{
1644 gt_tval_write(env, ri, GTIMER_HYP, value);
1645}
1646
1647static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1648 uint64_t value)
1649{
1650 gt_ctl_write(env, ri, GTIMER_HYP, value);
1651}
1652
b4d3978c
PM
1653static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1654{
1655 gt_timer_reset(env, ri, GTIMER_SEC);
1656}
1657
1658static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1659 uint64_t value)
1660{
1661 gt_cval_write(env, ri, GTIMER_SEC, value);
1662}
1663
1664static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1665{
1666 return gt_tval_read(env, ri, GTIMER_SEC);
1667}
1668
1669static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1670 uint64_t value)
1671{
1672 gt_tval_write(env, ri, GTIMER_SEC, value);
1673}
1674
1675static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1676 uint64_t value)
1677{
1678 gt_ctl_write(env, ri, GTIMER_SEC, value);
1679}
1680
55d284af
PM
1681void arm_gt_ptimer_cb(void *opaque)
1682{
1683 ARMCPU *cpu = opaque;
1684
1685 gt_recalc_timer(cpu, GTIMER_PHYS);
1686}
1687
1688void arm_gt_vtimer_cb(void *opaque)
1689{
1690 ARMCPU *cpu = opaque;
1691
1692 gt_recalc_timer(cpu, GTIMER_VIRT);
1693}
1694
b0e66d95
EI
1695void arm_gt_htimer_cb(void *opaque)
1696{
1697 ARMCPU *cpu = opaque;
1698
1699 gt_recalc_timer(cpu, GTIMER_HYP);
1700}
1701
b4d3978c
PM
1702void arm_gt_stimer_cb(void *opaque)
1703{
1704 ARMCPU *cpu = opaque;
1705
1706 gt_recalc_timer(cpu, GTIMER_SEC);
1707}
1708
55d284af
PM
1709static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1710 /* Note that CNTFRQ is purely reads-as-written for the benefit
1711 * of software; writing it doesn't actually change the timer frequency.
1712 * Our reset value matches the fixed frequency we implement the timer at.
1713 */
1714 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 1715 .type = ARM_CP_ALIAS,
a7adc4b7
PM
1716 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1717 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
a7adc4b7
PM
1718 },
1719 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1720 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1721 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
55d284af
PM
1722 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1723 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
55d284af
PM
1724 },
1725 /* overall control: mostly access permissions */
a7adc4b7
PM
1726 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1727 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
55d284af
PM
1728 .access = PL1_RW,
1729 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1730 .resetvalue = 0,
1731 },
1732 /* per-timer control */
1733 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
9ff9dd3c 1734 .secure = ARM_CP_SECSTATE_NS,
7a0e58fa 1735 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
a7adc4b7
PM
1736 .accessfn = gt_ptimer_access,
1737 .fieldoffset = offsetoflow32(CPUARMState,
1738 cp15.c14_timer[GTIMER_PHYS].ctl),
0e3eca4c 1739 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
a7adc4b7 1740 },
9ff9dd3c
PM
1741 { .name = "CNTP_CTL(S)",
1742 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1743 .secure = ARM_CP_SECSTATE_S,
1744 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1745 .accessfn = gt_ptimer_access,
1746 .fieldoffset = offsetoflow32(CPUARMState,
1747 cp15.c14_timer[GTIMER_SEC].ctl),
1748 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1749 },
a7adc4b7
PM
1750 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1751 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
55d284af 1752 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1753 .accessfn = gt_ptimer_access,
55d284af
PM
1754 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1755 .resetvalue = 0,
0e3eca4c 1756 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1757 },
1758 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
7a0e58fa 1759 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
a7adc4b7
PM
1760 .accessfn = gt_vtimer_access,
1761 .fieldoffset = offsetoflow32(CPUARMState,
1762 cp15.c14_timer[GTIMER_VIRT].ctl),
0e3eca4c 1763 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
a7adc4b7
PM
1764 },
1765 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1766 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
55d284af 1767 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1768 .accessfn = gt_vtimer_access,
55d284af
PM
1769 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1770 .resetvalue = 0,
0e3eca4c 1771 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1772 },
1773 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1774 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
9ff9dd3c 1775 .secure = ARM_CP_SECSTATE_NS,
7a0e58fa 1776 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 1777 .accessfn = gt_ptimer_access,
0e3eca4c 1778 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
55d284af 1779 },
9ff9dd3c
PM
1780 { .name = "CNTP_TVAL(S)",
1781 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1782 .secure = ARM_CP_SECSTATE_S,
1783 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1784 .accessfn = gt_ptimer_access,
1785 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1786 },
a7adc4b7
PM
1787 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1788 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
7a0e58fa 1789 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
0e3eca4c
EI
1790 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1791 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
a7adc4b7 1792 },
55d284af 1793 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
7a0e58fa 1794 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 1795 .accessfn = gt_vtimer_access,
0e3eca4c 1796 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
55d284af 1797 },
a7adc4b7
PM
1798 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1799 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
7a0e58fa 1800 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
0e3eca4c
EI
1801 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
1802 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
a7adc4b7 1803 },
55d284af
PM
1804 /* The counter itself */
1805 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
7a0e58fa 1806 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 1807 .accessfn = gt_pct_access,
a7adc4b7
PM
1808 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1809 },
1810 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1811 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
7a0e58fa 1812 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 1813 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
55d284af
PM
1814 },
1815 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
7a0e58fa 1816 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 1817 .accessfn = gt_vct_access,
edac4d8a 1818 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
a7adc4b7
PM
1819 },
1820 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1821 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
7a0e58fa 1822 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 1823 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
55d284af
PM
1824 },
1825 /* Comparison value, indicating when the timer goes off */
1826 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
9ff9dd3c 1827 .secure = ARM_CP_SECSTATE_NS,
55d284af 1828 .access = PL1_RW | PL0_R,
7a0e58fa 1829 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 1830 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
b061a82b 1831 .accessfn = gt_ptimer_access,
0e3eca4c 1832 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
a7adc4b7 1833 },
9ff9dd3c
PM
1834 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
1835 .secure = ARM_CP_SECSTATE_S,
1836 .access = PL1_RW | PL0_R,
1837 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1838 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1839 .accessfn = gt_ptimer_access,
1840 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1841 },
a7adc4b7
PM
1842 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1843 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1844 .access = PL1_RW | PL0_R,
1845 .type = ARM_CP_IO,
1846 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
12cde08a 1847 .resetvalue = 0, .accessfn = gt_ptimer_access,
0e3eca4c 1848 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
55d284af
PM
1849 },
1850 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1851 .access = PL1_RW | PL0_R,
7a0e58fa 1852 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 1853 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
b061a82b 1854 .accessfn = gt_vtimer_access,
0e3eca4c 1855 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
a7adc4b7
PM
1856 },
1857 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1858 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1859 .access = PL1_RW | PL0_R,
1860 .type = ARM_CP_IO,
1861 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1862 .resetvalue = 0, .accessfn = gt_vtimer_access,
0e3eca4c 1863 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
55d284af 1864 },
b4d3978c
PM
1865 /* Secure timer -- this is actually restricted to only EL3
1866 * and configurably Secure-EL1 via the accessfn.
1867 */
1868 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
1869 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
1870 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
1871 .accessfn = gt_stimer_access,
1872 .readfn = gt_sec_tval_read,
1873 .writefn = gt_sec_tval_write,
1874 .resetfn = gt_sec_timer_reset,
1875 },
1876 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
1877 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
1878 .type = ARM_CP_IO, .access = PL1_RW,
1879 .accessfn = gt_stimer_access,
1880 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
1881 .resetvalue = 0,
1882 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1883 },
1884 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
1885 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
1886 .type = ARM_CP_IO, .access = PL1_RW,
1887 .accessfn = gt_stimer_access,
1888 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1889 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1890 },
55d284af
PM
1891 REGINFO_SENTINEL
1892};
1893
1894#else
1895/* In user-mode none of the generic timer registers are accessible,
bc72ad67 1896 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
55d284af
PM
1897 * so instead just don't register any of them.
1898 */
6cc7a3ae 1899static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
6cc7a3ae
PM
1900 REGINFO_SENTINEL
1901};
1902
55d284af
PM
1903#endif
1904
c4241c7d 1905static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4a501606 1906{
891a2fe7 1907 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8d5c773e 1908 raw_write(env, ri, value);
891a2fe7 1909 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8d5c773e 1910 raw_write(env, ri, value & 0xfffff6ff);
4a501606 1911 } else {
8d5c773e 1912 raw_write(env, ri, value & 0xfffff1ff);
4a501606 1913 }
4a501606
PM
1914}
1915
1916#ifndef CONFIG_USER_ONLY
1917/* get_phys_addr() isn't present for user-mode-only targets */
702a9357 1918
3f208fd7
PM
1919static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
1920 bool isread)
92611c00
PM
1921{
1922 if (ri->opc2 & 4) {
87562e4f
PM
1923 /* The ATS12NSO* operations must trap to EL3 if executed in
1924 * Secure EL1 (which can only happen if EL3 is AArch64).
1925 * They are simply UNDEF if executed from NS EL1.
1926 * They function normally from EL2 or EL3.
92611c00 1927 */
87562e4f
PM
1928 if (arm_current_el(env) == 1) {
1929 if (arm_is_secure_below_el3(env)) {
1930 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
1931 }
1932 return CP_ACCESS_TRAP_UNCATEGORIZED;
1933 }
92611c00
PM
1934 }
1935 return CP_ACCESS_OK;
1936}
1937
060e8a48 1938static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
d3649702 1939 int access_type, ARMMMUIdx mmu_idx)
4a501606 1940{
a8170e5e 1941 hwaddr phys_addr;
4a501606
PM
1942 target_ulong page_size;
1943 int prot;
b7cc4e82
PC
1944 uint32_t fsr;
1945 bool ret;
01c097f7 1946 uint64_t par64;
8bf5b6a9 1947 MemTxAttrs attrs = {};
e14b5a23 1948 ARMMMUFaultInfo fi = {};
4a501606 1949
d3649702 1950 ret = get_phys_addr(env, value, access_type, mmu_idx,
e14b5a23 1951 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
702a9357 1952 if (extended_addresses_enabled(env)) {
b7cc4e82 1953 /* fsr is a DFSR/IFSR value for the long descriptor
702a9357
PM
1954 * translation table format, but with WnR always clear.
1955 * Convert it to a 64-bit PAR.
1956 */
01c097f7 1957 par64 = (1 << 11); /* LPAE bit always set */
b7cc4e82 1958 if (!ret) {
702a9357 1959 par64 |= phys_addr & ~0xfffULL;
8bf5b6a9
PM
1960 if (!attrs.secure) {
1961 par64 |= (1 << 9); /* NS */
1962 }
702a9357 1963 /* We don't set the ATTR or SH fields in the PAR. */
4a501606 1964 } else {
702a9357 1965 par64 |= 1; /* F */
b7cc4e82 1966 par64 |= (fsr & 0x3f) << 1; /* FS */
702a9357
PM
1967 /* Note that S2WLK and FSTAGE are always zero, because we don't
1968 * implement virtualization and therefore there can't be a stage 2
1969 * fault.
1970 */
4a501606
PM
1971 }
1972 } else {
b7cc4e82 1973 /* fsr is a DFSR/IFSR value for the short descriptor
702a9357
PM
1974 * translation table format (with WnR always clear).
1975 * Convert it to a 32-bit PAR.
1976 */
b7cc4e82 1977 if (!ret) {
702a9357
PM
1978 /* We do not set any attribute bits in the PAR */
1979 if (page_size == (1 << 24)
1980 && arm_feature(env, ARM_FEATURE_V7)) {
01c097f7 1981 par64 = (phys_addr & 0xff000000) | (1 << 1);
702a9357 1982 } else {
01c097f7 1983 par64 = phys_addr & 0xfffff000;
702a9357 1984 }
8bf5b6a9
PM
1985 if (!attrs.secure) {
1986 par64 |= (1 << 9); /* NS */
1987 }
702a9357 1988 } else {
b7cc4e82
PC
1989 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
1990 ((fsr & 0xf) << 1) | 1;
702a9357 1991 }
4a501606 1992 }
060e8a48
PM
1993 return par64;
1994}
1995
1996static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1997{
060e8a48
PM
1998 int access_type = ri->opc2 & 1;
1999 uint64_t par64;
d3649702
PM
2000 ARMMMUIdx mmu_idx;
2001 int el = arm_current_el(env);
2002 bool secure = arm_is_secure_below_el3(env);
060e8a48 2003
d3649702
PM
2004 switch (ri->opc2 & 6) {
2005 case 0:
2006 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2007 switch (el) {
2008 case 3:
2009 mmu_idx = ARMMMUIdx_S1E3;
2010 break;
2011 case 2:
2012 mmu_idx = ARMMMUIdx_S1NSE1;
2013 break;
2014 case 1:
2015 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2016 break;
2017 default:
2018 g_assert_not_reached();
2019 }
2020 break;
2021 case 2:
2022 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2023 switch (el) {
2024 case 3:
2025 mmu_idx = ARMMMUIdx_S1SE0;
2026 break;
2027 case 2:
2028 mmu_idx = ARMMMUIdx_S1NSE0;
2029 break;
2030 case 1:
2031 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2032 break;
2033 default:
2034 g_assert_not_reached();
2035 }
2036 break;
2037 case 4:
2038 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2039 mmu_idx = ARMMMUIdx_S12NSE1;
2040 break;
2041 case 6:
2042 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2043 mmu_idx = ARMMMUIdx_S12NSE0;
2044 break;
2045 default:
2046 g_assert_not_reached();
2047 }
2048
2049 par64 = do_ats_write(env, value, access_type, mmu_idx);
01c097f7
FA
2050
2051 A32_BANKED_CURRENT_REG_SET(env, par, par64);
4a501606 2052}
060e8a48 2053
14db7fe0
PM
2054static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2055 uint64_t value)
2056{
2057 int access_type = ri->opc2 & 1;
2058 uint64_t par64;
2059
2060 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2061
2062 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2063}
2064
3f208fd7
PM
2065static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2066 bool isread)
2a47df95
PM
2067{
2068 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2069 return CP_ACCESS_TRAP;
2070 }
2071 return CP_ACCESS_OK;
2072}
2073
060e8a48
PM
2074static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2075 uint64_t value)
2076{
060e8a48 2077 int access_type = ri->opc2 & 1;
d3649702
PM
2078 ARMMMUIdx mmu_idx;
2079 int secure = arm_is_secure_below_el3(env);
2080
2081 switch (ri->opc2 & 6) {
2082 case 0:
2083 switch (ri->opc1) {
2084 case 0: /* AT S1E1R, AT S1E1W */
2085 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2086 break;
2087 case 4: /* AT S1E2R, AT S1E2W */
2088 mmu_idx = ARMMMUIdx_S1E2;
2089 break;
2090 case 6: /* AT S1E3R, AT S1E3W */
2091 mmu_idx = ARMMMUIdx_S1E3;
2092 break;
2093 default:
2094 g_assert_not_reached();
2095 }
2096 break;
2097 case 2: /* AT S1E0R, AT S1E0W */
2098 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2099 break;
2100 case 4: /* AT S12E1R, AT S12E1W */
2a47df95 2101 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
d3649702
PM
2102 break;
2103 case 6: /* AT S12E0R, AT S12E0W */
2a47df95 2104 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
d3649702
PM
2105 break;
2106 default:
2107 g_assert_not_reached();
2108 }
060e8a48 2109
d3649702 2110 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
060e8a48 2111}
4a501606
PM
2112#endif
2113
2114static const ARMCPRegInfo vapa_cp_reginfo[] = {
2115 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2116 .access = PL1_RW, .resetvalue = 0,
01c097f7
FA
2117 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2118 offsetoflow32(CPUARMState, cp15.par_ns) },
4a501606
PM
2119 .writefn = par_write },
2120#ifndef CONFIG_USER_ONLY
87562e4f 2121 /* This underdecoding is safe because the reginfo is NO_RAW. */
4a501606 2122 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
92611c00 2123 .access = PL1_W, .accessfn = ats_access,
7a0e58fa 2124 .writefn = ats_write, .type = ARM_CP_NO_RAW },
4a501606
PM
2125#endif
2126 REGINFO_SENTINEL
2127};
2128
18032bec
PM
2129/* Return basic MPU access permission bits. */
2130static uint32_t simple_mpu_ap_bits(uint32_t val)
2131{
2132 uint32_t ret;
2133 uint32_t mask;
2134 int i;
2135 ret = 0;
2136 mask = 3;
2137 for (i = 0; i < 16; i += 2) {
2138 ret |= (val >> i) & mask;
2139 mask <<= 2;
2140 }
2141 return ret;
2142}
2143
2144/* Pad basic MPU access permission bits to extended format. */
2145static uint32_t extended_mpu_ap_bits(uint32_t val)
2146{
2147 uint32_t ret;
2148 uint32_t mask;
2149 int i;
2150 ret = 0;
2151 mask = 3;
2152 for (i = 0; i < 16; i += 2) {
2153 ret |= (val & mask) << i;
2154 mask <<= 2;
2155 }
2156 return ret;
2157}
2158
c4241c7d
PM
2159static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2160 uint64_t value)
18032bec 2161{
7e09797c 2162 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
18032bec
PM
2163}
2164
c4241c7d 2165static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 2166{
7e09797c 2167 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
18032bec
PM
2168}
2169
c4241c7d
PM
2170static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2171 uint64_t value)
18032bec 2172{
7e09797c 2173 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
18032bec
PM
2174}
2175
c4241c7d 2176static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 2177{
7e09797c 2178 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
18032bec
PM
2179}
2180
6cb0b013
PC
2181static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2182{
2183 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2184
2185 if (!u32p) {
2186 return 0;
2187 }
2188
2189 u32p += env->cp15.c6_rgnr;
2190 return *u32p;
2191}
2192
2193static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2194 uint64_t value)
2195{
2196 ARMCPU *cpu = arm_env_get_cpu(env);
2197 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2198
2199 if (!u32p) {
2200 return;
2201 }
2202
2203 u32p += env->cp15.c6_rgnr;
2204 tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
2205 *u32p = value;
2206}
2207
2208static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2209{
2210 ARMCPU *cpu = arm_env_get_cpu(env);
2211 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2212
2213 if (!u32p) {
2214 return;
2215 }
2216
2217 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2218}
2219
2220static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2221 uint64_t value)
2222{
2223 ARMCPU *cpu = arm_env_get_cpu(env);
2224 uint32_t nrgs = cpu->pmsav7_dregion;
2225
2226 if (value >= nrgs) {
2227 qemu_log_mask(LOG_GUEST_ERROR,
2228 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2229 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2230 return;
2231 }
2232
2233 raw_write(env, ri, value);
2234}
2235
2236static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2237 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2238 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2239 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2240 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2241 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2242 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2243 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2244 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2245 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2246 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2247 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2248 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2249 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2250 .access = PL1_RW,
2251 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2252 .writefn = pmsav7_rgnr_write },
2253 REGINFO_SENTINEL
2254};
2255
18032bec
PM
2256static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2257 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 2258 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 2259 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
18032bec
PM
2260 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2261 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
7a0e58fa 2262 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 2263 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
18032bec
PM
2264 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2265 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2266 .access = PL1_RW,
7e09797c
PM
2267 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2268 .resetvalue = 0, },
18032bec
PM
2269 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2270 .access = PL1_RW,
7e09797c
PM
2271 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2272 .resetvalue = 0, },
ecce5c3c
PM
2273 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2274 .access = PL1_RW,
2275 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2276 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2277 .access = PL1_RW,
2278 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
06d76f31 2279 /* Protection region base and size registers */
e508a92b
PM
2280 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2281 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2282 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2283 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2284 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2285 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2286 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2287 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2288 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2289 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2290 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2291 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2292 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2293 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2294 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2295 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2296 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2297 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2298 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2299 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2300 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2301 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2302 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2303 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
18032bec
PM
2304 REGINFO_SENTINEL
2305};
2306
c4241c7d
PM
2307static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2308 uint64_t value)
ecce5c3c 2309{
11f136ee 2310 TCR *tcr = raw_ptr(env, ri);
2ebcebe2
PM
2311 int maskshift = extract32(value, 0, 3);
2312
e389be16
FA
2313 if (!arm_feature(env, ARM_FEATURE_V8)) {
2314 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2315 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2316 * using Long-desciptor translation table format */
2317 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2318 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2319 /* In an implementation that includes the Security Extensions
2320 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2321 * Short-descriptor translation table format.
2322 */
2323 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2324 } else {
2325 value &= TTBCR_N;
2326 }
e42c4db3 2327 }
e389be16 2328
b6af0975 2329 /* Update the masks corresponding to the TCR bank being written
11f136ee 2330 * Note that we always calculate mask and base_mask, but
e42c4db3 2331 * they are only used for short-descriptor tables (ie if EAE is 0);
11f136ee
FA
2332 * for long-descriptor tables the TCR fields are used differently
2333 * and the mask and base_mask values are meaningless.
e42c4db3 2334 */
11f136ee
FA
2335 tcr->raw_tcr = value;
2336 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2337 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
ecce5c3c
PM
2338}
2339
c4241c7d
PM
2340static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2341 uint64_t value)
d4e6df63 2342{
00c8cb0a
AF
2343 ARMCPU *cpu = arm_env_get_cpu(env);
2344
d4e6df63
PM
2345 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2346 /* With LPAE the TTBCR could result in a change of ASID
2347 * via the TTBCR.A1 bit, so do a TLB flush.
2348 */
00c8cb0a 2349 tlb_flush(CPU(cpu), 1);
d4e6df63 2350 }
c4241c7d 2351 vmsa_ttbcr_raw_write(env, ri, value);
d4e6df63
PM
2352}
2353
ecce5c3c
PM
2354static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2355{
11f136ee
FA
2356 TCR *tcr = raw_ptr(env, ri);
2357
2358 /* Reset both the TCR as well as the masks corresponding to the bank of
2359 * the TCR being reset.
2360 */
2361 tcr->raw_tcr = 0;
2362 tcr->mask = 0;
2363 tcr->base_mask = 0xffffc000u;
ecce5c3c
PM
2364}
2365
cb2e37df
PM
2366static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2367 uint64_t value)
2368{
00c8cb0a 2369 ARMCPU *cpu = arm_env_get_cpu(env);
11f136ee 2370 TCR *tcr = raw_ptr(env, ri);
00c8cb0a 2371
cb2e37df 2372 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
00c8cb0a 2373 tlb_flush(CPU(cpu), 1);
11f136ee 2374 tcr->raw_tcr = value;
cb2e37df
PM
2375}
2376
327ed10f
PM
2377static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2378 uint64_t value)
2379{
2380 /* 64 bit accesses to the TTBRs can change the ASID and so we
2381 * must flush the TLB.
2382 */
2383 if (cpreg_field_is_64bit(ri)) {
00c8cb0a
AF
2384 ARMCPU *cpu = arm_env_get_cpu(env);
2385
2386 tlb_flush(CPU(cpu), 1);
327ed10f
PM
2387 }
2388 raw_write(env, ri, value);
2389}
2390
b698e9cf
EI
2391static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2392 uint64_t value)
2393{
2394 ARMCPU *cpu = arm_env_get_cpu(env);
2395 CPUState *cs = CPU(cpu);
2396
2397 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2398 if (raw_read(env, ri) != value) {
2399 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2400 ARMMMUIdx_S2NS, -1);
2401 raw_write(env, ri, value);
2402 }
2403}
2404
8e5d75c9 2405static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
18032bec 2406 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 2407 .access = PL1_RW, .type = ARM_CP_ALIAS,
4a7e2d73 2408 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
b061a82b 2409 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
18032bec 2410 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
88ca1c2d
FA
2411 .access = PL1_RW, .resetvalue = 0,
2412 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2413 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
8e5d75c9
PC
2414 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2415 .access = PL1_RW, .resetvalue = 0,
2416 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2417 offsetof(CPUARMState, cp15.dfar_ns) } },
2418 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2419 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2420 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2421 .resetvalue = 0, },
2422 REGINFO_SENTINEL
2423};
2424
2425static const ARMCPRegInfo vmsa_cp_reginfo[] = {
6cd8a264
RH
2426 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2427 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2428 .access = PL1_RW,
d81c519c 2429 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
327ed10f 2430 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
2431 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2432 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2433 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2434 offsetof(CPUARMState, cp15.ttbr0_ns) } },
327ed10f 2435 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
2436 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2437 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2438 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2439 offsetof(CPUARMState, cp15.ttbr1_ns) } },
cb2e37df
PM
2440 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2441 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2442 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2443 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
11f136ee 2444 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
cb2e37df 2445 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
7a0e58fa 2446 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
b061a82b 2447 .raw_writefn = vmsa_ttbcr_raw_write,
11f136ee
FA
2448 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2449 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
18032bec
PM
2450 REGINFO_SENTINEL
2451};
2452
c4241c7d
PM
2453static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2454 uint64_t value)
1047b9d7
PM
2455{
2456 env->cp15.c15_ticonfig = value & 0xe7;
2457 /* The OS_TYPE bit in this register changes the reported CPUID! */
2458 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2459 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1047b9d7
PM
2460}
2461
c4241c7d
PM
2462static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2463 uint64_t value)
1047b9d7
PM
2464{
2465 env->cp15.c15_threadid = value & 0xffff;
1047b9d7
PM
2466}
2467
c4241c7d
PM
2468static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2469 uint64_t value)
1047b9d7
PM
2470{
2471 /* Wait-for-interrupt (deprecated) */
c3affe56 2472 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1047b9d7
PM
2473}
2474
c4241c7d
PM
2475static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2476 uint64_t value)
c4804214
PM
2477{
2478 /* On OMAP there are registers indicating the max/min index of dcache lines
2479 * containing a dirty line; cache flush operations have to reset these.
2480 */
2481 env->cp15.c15_i_max = 0x000;
2482 env->cp15.c15_i_min = 0xff0;
c4804214
PM
2483}
2484
18032bec
PM
2485static const ARMCPRegInfo omap_cp_reginfo[] = {
2486 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2487 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
d81c519c 2488 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
6cd8a264 2489 .resetvalue = 0, },
1047b9d7
PM
2490 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2491 .access = PL1_RW, .type = ARM_CP_NOP },
2492 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2493 .access = PL1_RW,
2494 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2495 .writefn = omap_ticonfig_write },
2496 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2497 .access = PL1_RW,
2498 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2499 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2500 .access = PL1_RW, .resetvalue = 0xff0,
2501 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2502 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2503 .access = PL1_RW,
2504 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2505 .writefn = omap_threadid_write },
2506 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2507 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
7a0e58fa 2508 .type = ARM_CP_NO_RAW,
1047b9d7
PM
2509 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2510 /* TODO: Peripheral port remap register:
2511 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2512 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2513 * when MMU is off.
2514 */
c4804214 2515 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
d4e6df63 2516 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
7a0e58fa 2517 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
c4804214 2518 .writefn = omap_cachemaint_write },
34f90529
PM
2519 { .name = "C9", .cp = 15, .crn = 9,
2520 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2521 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1047b9d7
PM
2522 REGINFO_SENTINEL
2523};
2524
c4241c7d
PM
2525static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2526 uint64_t value)
1047b9d7 2527{
c0f4af17 2528 env->cp15.c15_cpar = value & 0x3fff;
1047b9d7
PM
2529}
2530
2531static const ARMCPRegInfo xscale_cp_reginfo[] = {
2532 { .name = "XSCALE_CPAR",
2533 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2534 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2535 .writefn = xscale_cpar_write, },
2771db27
PM
2536 { .name = "XSCALE_AUXCR",
2537 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2538 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2539 .resetvalue = 0, },
3b771579
PM
2540 /* XScale specific cache-lockdown: since we have no cache we NOP these
2541 * and hope the guest does not really rely on cache behaviour.
2542 */
2543 { .name = "XSCALE_LOCK_ICACHE_LINE",
2544 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2545 .access = PL1_W, .type = ARM_CP_NOP },
2546 { .name = "XSCALE_UNLOCK_ICACHE",
2547 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2548 .access = PL1_W, .type = ARM_CP_NOP },
2549 { .name = "XSCALE_DCACHE_LOCK",
2550 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2551 .access = PL1_RW, .type = ARM_CP_NOP },
2552 { .name = "XSCALE_UNLOCK_DCACHE",
2553 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2554 .access = PL1_W, .type = ARM_CP_NOP },
1047b9d7
PM
2555 REGINFO_SENTINEL
2556};
2557
2558static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2559 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2560 * implementation of this implementation-defined space.
2561 * Ideally this should eventually disappear in favour of actually
2562 * implementing the correct behaviour for all cores.
2563 */
2564 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2565 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3671cd87 2566 .access = PL1_RW,
7a0e58fa 2567 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
d4e6df63 2568 .resetvalue = 0 },
18032bec
PM
2569 REGINFO_SENTINEL
2570};
2571
c4804214
PM
2572static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2573 /* Cache status: RAZ because we have no cache so it's always clean */
2574 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
7a0e58fa 2575 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2576 .resetvalue = 0 },
c4804214
PM
2577 REGINFO_SENTINEL
2578};
2579
2580static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2581 /* We never have a a block transfer operation in progress */
2582 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
7a0e58fa 2583 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2584 .resetvalue = 0 },
30b05bba
PM
2585 /* The cache ops themselves: these all NOP for QEMU */
2586 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2587 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2588 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2589 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2590 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2591 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2592 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2593 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2594 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2595 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2596 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2597 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
c4804214
PM
2598 REGINFO_SENTINEL
2599};
2600
2601static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2602 /* The cache test-and-clean instructions always return (1 << 30)
2603 * to indicate that there are no dirty cache lines.
2604 */
2605 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
7a0e58fa 2606 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2607 .resetvalue = (1 << 30) },
c4804214 2608 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
7a0e58fa 2609 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2610 .resetvalue = (1 << 30) },
c4804214
PM
2611 REGINFO_SENTINEL
2612};
2613
34f90529
PM
2614static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2615 /* Ignore ReadBuffer accesses */
2616 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2617 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
d4e6df63 2618 .access = PL1_RW, .resetvalue = 0,
7a0e58fa 2619 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
34f90529
PM
2620 REGINFO_SENTINEL
2621};
2622
731de9e6
EI
2623static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2624{
2625 ARMCPU *cpu = arm_env_get_cpu(env);
2626 unsigned int cur_el = arm_current_el(env);
2627 bool secure = arm_is_secure(env);
2628
2629 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2630 return env->cp15.vpidr_el2;
2631 }
2632 return raw_read(env, ri);
2633}
2634
06a7e647 2635static uint64_t mpidr_read_val(CPUARMState *env)
81bdde9d 2636{
eb5e1d3c
PF
2637 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2638 uint64_t mpidr = cpu->mp_affinity;
2639
81bdde9d 2640 if (arm_feature(env, ARM_FEATURE_V7MP)) {
78dbbbe4 2641 mpidr |= (1U << 31);
81bdde9d
PM
2642 /* Cores which are uniprocessor (non-coherent)
2643 * but still implement the MP extensions set
a8e81b31 2644 * bit 30. (For instance, Cortex-R5).
81bdde9d 2645 */
a8e81b31
PC
2646 if (cpu->mp_is_up) {
2647 mpidr |= (1u << 30);
2648 }
81bdde9d 2649 }
c4241c7d 2650 return mpidr;
81bdde9d
PM
2651}
2652
06a7e647
EI
2653static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2654{
f0d574d6
EI
2655 unsigned int cur_el = arm_current_el(env);
2656 bool secure = arm_is_secure(env);
2657
2658 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2659 return env->cp15.vmpidr_el2;
2660 }
06a7e647
EI
2661 return mpidr_read_val(env);
2662}
2663
81bdde9d 2664static const ARMCPRegInfo mpidr_cp_reginfo[] = {
4b7fff2f
PM
2665 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2666 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
7a0e58fa 2667 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
81bdde9d
PM
2668 REGINFO_SENTINEL
2669};
2670
7ac681cf 2671static const ARMCPRegInfo lpae_cp_reginfo[] = {
a903c449 2672 /* NOP AMAIR0/1 */
b0fe2427
PM
2673 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2674 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
a903c449 2675 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 2676 .resetvalue = 0 },
b0fe2427 2677 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
7ac681cf 2678 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
a903c449 2679 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 2680 .resetvalue = 0 },
891a2fe7 2681 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
01c097f7
FA
2682 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2683 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2684 offsetof(CPUARMState, cp15.par_ns)} },
891a2fe7 2685 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
7a0e58fa 2686 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
2687 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2688 offsetof(CPUARMState, cp15.ttbr0_ns) },
b061a82b 2689 .writefn = vmsa_ttbr_write, },
891a2fe7 2690 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
7a0e58fa 2691 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
2692 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2693 offsetof(CPUARMState, cp15.ttbr1_ns) },
b061a82b 2694 .writefn = vmsa_ttbr_write, },
7ac681cf
PM
2695 REGINFO_SENTINEL
2696};
2697
c4241c7d 2698static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 2699{
c4241c7d 2700 return vfp_get_fpcr(env);
b0d2b7d0
PM
2701}
2702
c4241c7d
PM
2703static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2704 uint64_t value)
b0d2b7d0
PM
2705{
2706 vfp_set_fpcr(env, value);
b0d2b7d0
PM
2707}
2708
c4241c7d 2709static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 2710{
c4241c7d 2711 return vfp_get_fpsr(env);
b0d2b7d0
PM
2712}
2713
c4241c7d
PM
2714static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2715 uint64_t value)
b0d2b7d0
PM
2716{
2717 vfp_set_fpsr(env, value);
b0d2b7d0
PM
2718}
2719
3f208fd7
PM
2720static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2721 bool isread)
c2b820fe 2722{
137feaa9 2723 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
c2b820fe
PM
2724 return CP_ACCESS_TRAP;
2725 }
2726 return CP_ACCESS_OK;
2727}
2728
2729static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2730 uint64_t value)
2731{
2732 env->daif = value & PSTATE_DAIF;
2733}
2734
8af35c37 2735static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3f208fd7
PM
2736 const ARMCPRegInfo *ri,
2737 bool isread)
8af35c37
PM
2738{
2739 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2740 * SCTLR_EL1.UCI is set.
2741 */
137feaa9 2742 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
8af35c37
PM
2743 return CP_ACCESS_TRAP;
2744 }
2745 return CP_ACCESS_OK;
2746}
2747
dbb1fb27
AB
2748/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2749 * Page D4-1736 (DDI0487A.b)
2750 */
2751
fd3ed969
PM
2752static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2753 uint64_t value)
168aa23b 2754{
31b030d4 2755 ARMCPU *cpu = arm_env_get_cpu(env);
fd3ed969 2756 CPUState *cs = CPU(cpu);
dbb1fb27 2757
fd3ed969
PM
2758 if (arm_is_secure_below_el3(env)) {
2759 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2760 } else {
2761 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2762 }
168aa23b
PM
2763}
2764
fd3ed969
PM
2765static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2766 uint64_t value)
168aa23b 2767{
fd3ed969
PM
2768 bool sec = arm_is_secure_below_el3(env);
2769 CPUState *other_cs;
dbb1fb27 2770
fd3ed969
PM
2771 CPU_FOREACH(other_cs) {
2772 if (sec) {
2773 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2774 } else {
2775 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2776 ARMMMUIdx_S12NSE0, -1);
2777 }
2778 }
168aa23b
PM
2779}
2780
fd3ed969
PM
2781static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2782 uint64_t value)
168aa23b 2783{
fd3ed969
PM
2784 /* Note that the 'ALL' scope must invalidate both stage 1 and
2785 * stage 2 translations, whereas most other scopes only invalidate
2786 * stage 1 translations.
2787 */
00c8cb0a 2788 ARMCPU *cpu = arm_env_get_cpu(env);
fd3ed969
PM
2789 CPUState *cs = CPU(cpu);
2790
2791 if (arm_is_secure_below_el3(env)) {
2792 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2793 } else {
2794 if (arm_feature(env, ARM_FEATURE_EL2)) {
2795 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2796 ARMMMUIdx_S2NS, -1);
2797 } else {
2798 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2799 }
2800 }
168aa23b
PM
2801}
2802
fd3ed969 2803static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
fa439fc5
PM
2804 uint64_t value)
2805{
fd3ed969
PM
2806 ARMCPU *cpu = arm_env_get_cpu(env);
2807 CPUState *cs = CPU(cpu);
2808
2809 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
2810}
2811
43efaa33
PM
2812static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2813 uint64_t value)
2814{
2815 ARMCPU *cpu = arm_env_get_cpu(env);
2816 CPUState *cs = CPU(cpu);
2817
2818 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1);
2819}
2820
fd3ed969
PM
2821static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2822 uint64_t value)
2823{
2824 /* Note that the 'ALL' scope must invalidate both stage 1 and
2825 * stage 2 translations, whereas most other scopes only invalidate
2826 * stage 1 translations.
2827 */
2828 bool sec = arm_is_secure_below_el3(env);
2829 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
fa439fc5 2830 CPUState *other_cs;
fa439fc5
PM
2831
2832 CPU_FOREACH(other_cs) {
fd3ed969
PM
2833 if (sec) {
2834 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2835 } else if (has_el2) {
2836 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2837 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
2838 } else {
2839 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2840 ARMMMUIdx_S12NSE0, -1);
2841 }
fa439fc5
PM
2842 }
2843}
2844
2bfb9d75
PM
2845static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2846 uint64_t value)
2847{
2848 CPUState *other_cs;
2849
2850 CPU_FOREACH(other_cs) {
2851 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
2852 }
2853}
2854
43efaa33
PM
2855static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856 uint64_t value)
2857{
2858 CPUState *other_cs;
2859
2860 CPU_FOREACH(other_cs) {
2861 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1);
2862 }
2863}
2864
fd3ed969
PM
2865static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2866 uint64_t value)
2867{
2868 /* Invalidate by VA, EL1&0 (AArch64 version).
2869 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2870 * since we don't support flush-for-specific-ASID-only or
2871 * flush-last-level-only.
2872 */
2873 ARMCPU *cpu = arm_env_get_cpu(env);
2874 CPUState *cs = CPU(cpu);
2875 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2876
2877 if (arm_is_secure_below_el3(env)) {
2878 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
2879 ARMMMUIdx_S1SE0, -1);
2880 } else {
2881 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
2882 ARMMMUIdx_S12NSE0, -1);
2883 }
2884}
2885
2886static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2887 uint64_t value)
fa439fc5 2888{
fd3ed969
PM
2889 /* Invalidate by VA, EL2
2890 * Currently handles both VAE2 and VALE2, since we don't support
2891 * flush-last-level-only.
2892 */
2893 ARMCPU *cpu = arm_env_get_cpu(env);
2894 CPUState *cs = CPU(cpu);
2895 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2896
2897 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
2898}
2899
43efaa33
PM
2900static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2901 uint64_t value)
2902{
2903 /* Invalidate by VA, EL3
2904 * Currently handles both VAE3 and VALE3, since we don't support
2905 * flush-last-level-only.
2906 */
2907 ARMCPU *cpu = arm_env_get_cpu(env);
2908 CPUState *cs = CPU(cpu);
2909 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2910
2911 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1);
2912}
2913
fd3ed969
PM
2914static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2915 uint64_t value)
2916{
2917 bool sec = arm_is_secure_below_el3(env);
fa439fc5
PM
2918 CPUState *other_cs;
2919 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2920
2921 CPU_FOREACH(other_cs) {
fd3ed969
PM
2922 if (sec) {
2923 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
2924 ARMMMUIdx_S1SE0, -1);
2925 } else {
2926 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
2927 ARMMMUIdx_S12NSE0, -1);
2928 }
fa439fc5
PM
2929 }
2930}
2931
fd3ed969
PM
2932static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2933 uint64_t value)
fa439fc5
PM
2934{
2935 CPUState *other_cs;
fd3ed969 2936 uint64_t pageaddr = sextract64(value << 12, 0, 56);
fa439fc5
PM
2937
2938 CPU_FOREACH(other_cs) {
fd3ed969 2939 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
fa439fc5
PM
2940 }
2941}
2942
43efaa33
PM
2943static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2944 uint64_t value)
2945{
2946 CPUState *other_cs;
2947 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2948
2949 CPU_FOREACH(other_cs) {
2950 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1);
2951 }
2952}
2953
cea66e91
PM
2954static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2955 uint64_t value)
2956{
2957 /* Invalidate by IPA. This has to invalidate any structures that
2958 * contain only stage 2 translation information, but does not need
2959 * to apply to structures that contain combined stage 1 and stage 2
2960 * translation information.
2961 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
2962 */
2963 ARMCPU *cpu = arm_env_get_cpu(env);
2964 CPUState *cs = CPU(cpu);
2965 uint64_t pageaddr;
2966
2967 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
2968 return;
2969 }
2970
2971 pageaddr = sextract64(value << 12, 0, 48);
2972
2973 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
2974}
2975
2976static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2977 uint64_t value)
2978{
2979 CPUState *other_cs;
2980 uint64_t pageaddr;
2981
2982 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
2983 return;
2984 }
2985
2986 pageaddr = sextract64(value << 12, 0, 48);
2987
2988 CPU_FOREACH(other_cs) {
2989 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
2990 }
2991}
2992
3f208fd7
PM
2993static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
2994 bool isread)
aca3f40b
PM
2995{
2996 /* We don't implement EL2, so the only control on DC ZVA is the
2997 * bit in the SCTLR which can prohibit access for EL0.
2998 */
137feaa9 2999 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
aca3f40b
PM
3000 return CP_ACCESS_TRAP;
3001 }
3002 return CP_ACCESS_OK;
3003}
3004
3005static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3006{
3007 ARMCPU *cpu = arm_env_get_cpu(env);
3008 int dzp_bit = 1 << 4;
3009
3010 /* DZP indicates whether DC ZVA access is allowed */
3f208fd7 3011 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
aca3f40b
PM
3012 dzp_bit = 0;
3013 }
3014 return cpu->dcz_blocksize | dzp_bit;
3015}
3016
3f208fd7
PM
3017static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3018 bool isread)
f502cfc2 3019{
cdcf1405 3020 if (!(env->pstate & PSTATE_SP)) {
f502cfc2
PM
3021 /* Access to SP_EL0 is undefined if it's being used as
3022 * the stack pointer.
3023 */
3024 return CP_ACCESS_TRAP_UNCATEGORIZED;
3025 }
3026 return CP_ACCESS_OK;
3027}
3028
3029static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3030{
3031 return env->pstate & PSTATE_SP;
3032}
3033
3034static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3035{
3036 update_spsel(env, val);
3037}
3038
137feaa9
FA
3039static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3040 uint64_t value)
3041{
3042 ARMCPU *cpu = arm_env_get_cpu(env);
3043
3044 if (raw_read(env, ri) == value) {
3045 /* Skip the TLB flush if nothing actually changed; Linux likes
3046 * to do a lot of pointless SCTLR writes.
3047 */
3048 return;
3049 }
3050
3051 raw_write(env, ri, value);
3052 /* ??? Lots of these bits are not implemented. */
3053 /* This may enable/disable the MMU, so do a TLB flush. */
3054 tlb_flush(CPU(cpu), 1);
3055}
3056
3f208fd7
PM
3057static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3058 bool isread)
03fbf20f
PM
3059{
3060 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
f2cae609 3061 return CP_ACCESS_TRAP_FP_EL2;
03fbf20f
PM
3062 }
3063 if (env->cp15.cptr_el[3] & CPTR_TFP) {
f2cae609 3064 return CP_ACCESS_TRAP_FP_EL3;
03fbf20f
PM
3065 }
3066 return CP_ACCESS_OK;
3067}
3068
a8d64e73
PM
3069static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3070 uint64_t value)
3071{
3072 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3073}
3074
b0d2b7d0
PM
3075static const ARMCPRegInfo v8_cp_reginfo[] = {
3076 /* Minimal set of EL0-visible registers. This will need to be expanded
3077 * significantly for system emulation of AArch64 CPUs.
3078 */
3079 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3080 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3081 .access = PL0_RW, .type = ARM_CP_NZCV },
c2b820fe
PM
3082 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3083 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
7a0e58fa 3084 .type = ARM_CP_NO_RAW,
c2b820fe
PM
3085 .access = PL0_RW, .accessfn = aa64_daif_access,
3086 .fieldoffset = offsetof(CPUARMState, daif),
3087 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
b0d2b7d0
PM
3088 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3089 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3090 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3091 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3092 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3093 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
b0d2b7d0
PM
3094 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3095 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
7a0e58fa 3096 .access = PL0_R, .type = ARM_CP_NO_RAW,
aca3f40b
PM
3097 .readfn = aa64_dczid_read },
3098 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3099 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3100 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3101#ifndef CONFIG_USER_ONLY
3102 /* Avoid overhead of an access check that always passes in user-mode */
3103 .accessfn = aa64_zva_access,
3104#endif
3105 },
0eef9d98
PM
3106 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3107 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3108 .access = PL1_R, .type = ARM_CP_CURRENTEL },
8af35c37
PM
3109 /* Cache ops: all NOPs since we don't emulate caches */
3110 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3111 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3112 .access = PL1_W, .type = ARM_CP_NOP },
3113 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3114 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3115 .access = PL1_W, .type = ARM_CP_NOP },
3116 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3117 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3118 .access = PL0_W, .type = ARM_CP_NOP,
3119 .accessfn = aa64_cacheop_access },
3120 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3121 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3122 .access = PL1_W, .type = ARM_CP_NOP },
3123 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3124 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3125 .access = PL1_W, .type = ARM_CP_NOP },
3126 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3127 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3128 .access = PL0_W, .type = ARM_CP_NOP,
3129 .accessfn = aa64_cacheop_access },
3130 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3131 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3132 .access = PL1_W, .type = ARM_CP_NOP },
3133 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3134 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3135 .access = PL0_W, .type = ARM_CP_NOP,
3136 .accessfn = aa64_cacheop_access },
3137 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3138 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3139 .access = PL0_W, .type = ARM_CP_NOP,
3140 .accessfn = aa64_cacheop_access },
3141 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3142 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3143 .access = PL1_W, .type = ARM_CP_NOP },
168aa23b
PM
3144 /* TLBI operations */
3145 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3146 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 3147 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3148 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 3149 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3150 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 3151 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3152 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3153 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3154 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 3155 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3156 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 3157 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3158 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 3159 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3160 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3161 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3162 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 3163 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3164 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3165 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3166 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 3167 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3168 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3169 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3170 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 3171 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3172 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 3173 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3174 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 3175 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3176 .writefn = tlbi_aa64_vae1_write },
168aa23b 3177 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3178 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 3179 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3180 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 3181 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3182 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 3183 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3184 .writefn = tlbi_aa64_vae1_write },
168aa23b 3185 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3186 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 3187 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3188 .writefn = tlbi_aa64_vae1_write },
168aa23b 3189 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3190 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 3191 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3192 .writefn = tlbi_aa64_vae1_write },
cea66e91
PM
3193 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3194 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3195 .access = PL2_W, .type = ARM_CP_NO_RAW,
3196 .writefn = tlbi_aa64_ipas2e1is_write },
3197 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3198 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3199 .access = PL2_W, .type = ARM_CP_NO_RAW,
3200 .writefn = tlbi_aa64_ipas2e1is_write },
83ddf975
PM
3201 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3202 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3203 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 3204 .writefn = tlbi_aa64_alle1is_write },
43efaa33
PM
3205 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3206 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3207 .access = PL2_W, .type = ARM_CP_NO_RAW,
3208 .writefn = tlbi_aa64_alle1is_write },
cea66e91
PM
3209 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3210 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3211 .access = PL2_W, .type = ARM_CP_NO_RAW,
3212 .writefn = tlbi_aa64_ipas2e1_write },
3213 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3214 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3215 .access = PL2_W, .type = ARM_CP_NO_RAW,
3216 .writefn = tlbi_aa64_ipas2e1_write },
83ddf975
PM
3217 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3218 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3219 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 3220 .writefn = tlbi_aa64_alle1_write },
43efaa33
PM
3221 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3222 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3223 .access = PL2_W, .type = ARM_CP_NO_RAW,
3224 .writefn = tlbi_aa64_alle1is_write },
19525524
PM
3225#ifndef CONFIG_USER_ONLY
3226 /* 64 bit address translation operations */
3227 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3228 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
060e8a48 3229 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3230 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3231 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
060e8a48 3232 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3233 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3234 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
060e8a48 3235 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3236 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3237 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
060e8a48 3238 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2a47df95 3239 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
7a379c7e 3240 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
2a47df95
PM
3241 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3242 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
7a379c7e 3243 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
2a47df95
PM
3244 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3245 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
7a379c7e 3246 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
2a47df95
PM
3247 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3248 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
7a379c7e 3249 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
2a47df95
PM
3250 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3251 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3252 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3253 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3254 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3255 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3256 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3257 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
c96fc9b5
EI
3258 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3259 .type = ARM_CP_ALIAS,
3260 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3261 .access = PL1_RW, .resetvalue = 0,
3262 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3263 .writefn = par_write },
19525524 3264#endif
995939a6 3265 /* TLB invalidate last level of translation table walk */
9449fdf6 3266 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 3267 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
9449fdf6 3268 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 3269 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 3270 .writefn = tlbimvaa_is_write },
9449fdf6 3271 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 3272 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
9449fdf6 3273 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 3274 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
9449fdf6
PM
3275 /* 32 bit cache operations */
3276 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3277 .type = ARM_CP_NOP, .access = PL1_W },
3278 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3279 .type = ARM_CP_NOP, .access = PL1_W },
3280 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3281 .type = ARM_CP_NOP, .access = PL1_W },
3282 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3283 .type = ARM_CP_NOP, .access = PL1_W },
3284 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3285 .type = ARM_CP_NOP, .access = PL1_W },
3286 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3287 .type = ARM_CP_NOP, .access = PL1_W },
3288 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3289 .type = ARM_CP_NOP, .access = PL1_W },
3290 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3291 .type = ARM_CP_NOP, .access = PL1_W },
3292 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3293 .type = ARM_CP_NOP, .access = PL1_W },
3294 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3295 .type = ARM_CP_NOP, .access = PL1_W },
3296 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3297 .type = ARM_CP_NOP, .access = PL1_W },
3298 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3299 .type = ARM_CP_NOP, .access = PL1_W },
3300 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3301 .type = ARM_CP_NOP, .access = PL1_W },
3302 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
3303 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3304 .access = PL1_RW, .resetvalue = 0,
3305 .writefn = dacr_write, .raw_writefn = raw_write,
3306 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3307 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a0618a19 3308 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 3309 .type = ARM_CP_ALIAS,
a0618a19 3310 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
6947f059
EI
3311 .access = PL1_RW,
3312 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
a65f1de9 3313 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 3314 .type = ARM_CP_ALIAS,
a65f1de9 3315 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
3316 .access = PL1_RW,
3317 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
f502cfc2
PM
3318 /* We rely on the access checks not allowing the guest to write to the
3319 * state field when SPSel indicates that it's being used as the stack
3320 * pointer.
3321 */
3322 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3323 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3324 .access = PL1_RW, .accessfn = sp_el0_access,
7a0e58fa 3325 .type = ARM_CP_ALIAS,
f502cfc2 3326 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
884b4dee
GB
3327 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3328 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 3329 .access = PL2_RW, .type = ARM_CP_ALIAS,
884b4dee 3330 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
f502cfc2
PM
3331 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3332 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
7a0e58fa 3333 .type = ARM_CP_NO_RAW,
f502cfc2 3334 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
03fbf20f
PM
3335 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3336 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3337 .type = ARM_CP_ALIAS,
3338 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3339 .access = PL2_RW, .accessfn = fpexc32_access },
6a43e0b6
PM
3340 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3341 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3342 .access = PL2_RW, .resetvalue = 0,
3343 .writefn = dacr_write, .raw_writefn = raw_write,
3344 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3345 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3346 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3347 .access = PL2_RW, .resetvalue = 0,
3348 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3349 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3350 .type = ARM_CP_ALIAS,
3351 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3352 .access = PL2_RW,
3353 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3354 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3355 .type = ARM_CP_ALIAS,
3356 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3357 .access = PL2_RW,
3358 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3359 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3360 .type = ARM_CP_ALIAS,
3361 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3362 .access = PL2_RW,
3363 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3364 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3365 .type = ARM_CP_ALIAS,
3366 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3367 .access = PL2_RW,
3368 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
a8d64e73
PM
3369 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3370 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3371 .resetvalue = 0,
3372 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3373 { .name = "SDCR", .type = ARM_CP_ALIAS,
3374 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3375 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3376 .writefn = sdcr_write,
3377 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
b0d2b7d0
PM
3378 REGINFO_SENTINEL
3379};
3380
d42e3c26 3381/* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4771cd01 3382static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
d42e3c26
EI
3383 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3384 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3385 .access = PL2_RW,
3386 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
f149e3e8 3387 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3388 .type = ARM_CP_NO_RAW,
f149e3e8
EI
3389 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3390 .access = PL2_RW,
3391 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
c6f19164
GB
3392 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3393 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3394 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
95f949ac
EI
3395 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3396 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3397 .access = PL2_RW, .type = ARM_CP_CONST,
3398 .resetvalue = 0 },
3399 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3400 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3401 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2179ef95
PM
3402 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3403 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3404 .access = PL2_RW, .type = ARM_CP_CONST,
3405 .resetvalue = 0 },
3406 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3407 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3408 .access = PL2_RW, .type = ARM_CP_CONST,
3409 .resetvalue = 0 },
37cd6c24
PM
3410 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3411 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3412 .access = PL2_RW, .type = ARM_CP_CONST,
3413 .resetvalue = 0 },
3414 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3415 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3416 .access = PL2_RW, .type = ARM_CP_CONST,
3417 .resetvalue = 0 },
06ec4c8c
EI
3418 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3419 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3420 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
68e9c2fe
EI
3421 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3422 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3423 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3424 .type = ARM_CP_CONST, .resetvalue = 0 },
b698e9cf
EI
3425 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3426 .cp = 15, .opc1 = 6, .crm = 2,
3427 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3428 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3429 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3430 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3431 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b9cb5323
EI
3432 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3433 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3434 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
ff05f37b
EI
3435 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3436 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3437 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
a57633c0
EI
3438 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3439 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3440 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3441 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3442 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3443 .resetvalue = 0 },
0b6440af
EI
3444 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3445 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3446 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
edac4d8a
EI
3447 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3448 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3449 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3450 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3451 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3452 .resetvalue = 0 },
b0e66d95
EI
3453 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3454 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3455 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3456 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3457 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3458 .resetvalue = 0 },
3459 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3460 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3461 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3462 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3463 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3464 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
14cc7b54
SF
3465 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3466 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
d6c8cf81
PM
3467 .access = PL2_RW, .accessfn = access_tda,
3468 .type = ARM_CP_CONST, .resetvalue = 0 },
59e05530
EI
3469 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3470 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3471 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3472 .type = ARM_CP_CONST, .resetvalue = 0 },
d42e3c26
EI
3473 REGINFO_SENTINEL
3474};
3475
f149e3e8
EI
3476static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3477{
3478 ARMCPU *cpu = arm_env_get_cpu(env);
3479 uint64_t valid_mask = HCR_MASK;
3480
3481 if (arm_feature(env, ARM_FEATURE_EL3)) {
3482 valid_mask &= ~HCR_HCD;
3483 } else {
3484 valid_mask &= ~HCR_TSC;
3485 }
3486
3487 /* Clear RES0 bits. */
3488 value &= valid_mask;
3489
3490 /* These bits change the MMU setup:
3491 * HCR_VM enables stage 2 translation
3492 * HCR_PTW forbids certain page-table setups
3493 * HCR_DC Disables stage1 and enables stage2 translation
3494 */
3495 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3496 tlb_flush(CPU(cpu), 1);
3497 }
3498 raw_write(env, ri, value);
3499}
3500
4771cd01 3501static const ARMCPRegInfo el2_cp_reginfo[] = {
f149e3e8
EI
3502 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3503 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3504 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3505 .writefn = hcr_write },
3b685ba7 3506 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3507 .type = ARM_CP_ALIAS,
3b685ba7
EI
3508 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3509 .access = PL2_RW,
3510 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
f2c30f42 3511 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
f2c30f42
EI
3512 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3513 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
63b60551
EI
3514 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3515 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3516 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3b685ba7 3517 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3518 .type = ARM_CP_ALIAS,
3b685ba7 3519 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
3520 .access = PL2_RW,
3521 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
d42e3c26
EI
3522 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3523 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3524 .access = PL2_RW, .writefn = vbar_write,
3525 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3526 .resetvalue = 0 },
884b4dee
GB
3527 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3528 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 3529 .access = PL3_RW, .type = ARM_CP_ALIAS,
884b4dee 3530 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
c6f19164
GB
3531 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3532 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3533 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3534 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
95f949ac
EI
3535 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3536 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3537 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3538 .resetvalue = 0 },
3539 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3540 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3541 .access = PL2_RW, .type = ARM_CP_ALIAS,
3542 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
2179ef95
PM
3543 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3544 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3545 .access = PL2_RW, .type = ARM_CP_CONST,
3546 .resetvalue = 0 },
3547 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3548 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3549 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3550 .access = PL2_RW, .type = ARM_CP_CONST,
3551 .resetvalue = 0 },
37cd6c24
PM
3552 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3553 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3554 .access = PL2_RW, .type = ARM_CP_CONST,
3555 .resetvalue = 0 },
3556 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3557 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3558 .access = PL2_RW, .type = ARM_CP_CONST,
3559 .resetvalue = 0 },
06ec4c8c
EI
3560 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3561 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3562 .access = PL2_RW, .writefn = vmsa_tcr_el1_write,
3563 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3564 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
68e9c2fe
EI
3565 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3566 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112 3567 .type = ARM_CP_ALIAS,
68e9c2fe
EI
3568 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3569 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3570 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3571 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112
PM
3572 .access = PL2_RW,
3573 /* no .writefn needed as this can't cause an ASID change;
3574 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3575 */
68e9c2fe 3576 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
b698e9cf
EI
3577 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3578 .cp = 15, .opc1 = 6, .crm = 2,
3579 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3580 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3581 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3582 .writefn = vttbr_write },
3583 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3584 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3585 .access = PL2_RW, .writefn = vttbr_write,
3586 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
b9cb5323
EI
3587 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3588 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3589 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3590 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
ff05f37b
EI
3591 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3592 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3593 .access = PL2_RW, .resetvalue = 0,
3594 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
a57633c0
EI
3595 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3596 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3597 .access = PL2_RW, .resetvalue = 0,
3598 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3599 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3600 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
a57633c0 3601 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
51da9014
EI
3602 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3603 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3604 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3605 .writefn = tlbi_aa64_alle2_write },
8742d49d
EI
3606 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3607 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3608 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3609 .writefn = tlbi_aa64_vae2_write },
2bfb9d75
PM
3610 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3611 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3612 .access = PL2_W, .type = ARM_CP_NO_RAW,
3613 .writefn = tlbi_aa64_vae2_write },
3614 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3615 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3616 .access = PL2_W, .type = ARM_CP_NO_RAW,
3617 .writefn = tlbi_aa64_alle2is_write },
8742d49d
EI
3618 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3619 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3620 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3621 .writefn = tlbi_aa64_vae2is_write },
2bfb9d75
PM
3622 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3623 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3624 .access = PL2_W, .type = ARM_CP_NO_RAW,
3625 .writefn = tlbi_aa64_vae2is_write },
edac4d8a 3626#ifndef CONFIG_USER_ONLY
2a47df95
PM
3627 /* Unlike the other EL2-related AT operations, these must
3628 * UNDEF from EL3 if EL2 is not implemented, which is why we
3629 * define them here rather than with the rest of the AT ops.
3630 */
3631 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3632 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3633 .access = PL2_W, .accessfn = at_s1e2_access,
3634 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3635 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3636 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3637 .access = PL2_W, .accessfn = at_s1e2_access,
3638 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
14db7fe0
PM
3639 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3640 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3641 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3642 * to behave as if SCR.NS was 1.
3643 */
3644 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3645 .access = PL2_W,
3646 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3647 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3648 .access = PL2_W,
3649 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
0b6440af
EI
3650 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3651 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3652 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3653 * reset values as IMPDEF. We choose to reset to 3 to comply with
3654 * both ARMv7 and ARMv8.
3655 */
3656 .access = PL2_RW, .resetvalue = 3,
3657 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
edac4d8a
EI
3658 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3659 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3660 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3661 .writefn = gt_cntvoff_write,
3662 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3663 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3664 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3665 .writefn = gt_cntvoff_write,
3666 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
b0e66d95
EI
3667 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3668 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3669 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3670 .type = ARM_CP_IO, .access = PL2_RW,
3671 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3672 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3673 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3674 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3675 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3676 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3677 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
d44ec156 3678 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
b0e66d95
EI
3679 .resetfn = gt_hyp_timer_reset,
3680 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3681 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3682 .type = ARM_CP_IO,
3683 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3684 .access = PL2_RW,
3685 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3686 .resetvalue = 0,
3687 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
edac4d8a 3688#endif
14cc7b54
SF
3689 /* The only field of MDCR_EL2 that has a defined architectural reset value
3690 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3691 * don't impelment any PMU event counters, so using zero as a reset
3692 * value for MDCR_EL2 is okay
3693 */
3694 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3695 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3696 .access = PL2_RW, .resetvalue = 0,
3697 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
59e05530
EI
3698 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3699 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3700 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3701 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3702 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3703 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3704 .access = PL2_RW,
3705 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3b685ba7
EI
3706 REGINFO_SENTINEL
3707};
3708
2f027fc5
PM
3709static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3710 bool isread)
3711{
3712 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3713 * At Secure EL1 it traps to EL3.
3714 */
3715 if (arm_current_el(env) == 3) {
3716 return CP_ACCESS_OK;
3717 }
3718 if (arm_is_secure_below_el3(env)) {
3719 return CP_ACCESS_TRAP_EL3;
3720 }
3721 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3722 if (isread) {
3723 return CP_ACCESS_OK;
3724 }
3725 return CP_ACCESS_TRAP_UNCATEGORIZED;
3726}
3727
60fb1a87
GB
3728static const ARMCPRegInfo el3_cp_reginfo[] = {
3729 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3730 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3731 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3732 .resetvalue = 0, .writefn = scr_write },
7a0e58fa 3733 { .name = "SCR", .type = ARM_CP_ALIAS,
60fb1a87 3734 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
efe4a274
PM
3735 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3736 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
b061a82b 3737 .writefn = scr_write },
60fb1a87
GB
3738 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
3739 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
3740 .access = PL3_RW, .resetvalue = 0,
3741 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
3742 { .name = "SDER",
3743 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
3744 .access = PL3_RW, .resetvalue = 0,
3745 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
60fb1a87 3746 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
efe4a274
PM
3747 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3748 .writefn = vbar_write, .resetvalue = 0,
60fb1a87 3749 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
7dd8c9af
FA
3750 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
3751 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
3752 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3753 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
11f136ee
FA
3754 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
3755 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
3756 .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
3757 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3758 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
81547d66 3759 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 3760 .type = ARM_CP_ALIAS,
81547d66
EI
3761 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
3762 .access = PL3_RW,
3763 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
f2c30f42 3764 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
f2c30f42
EI
3765 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
3766 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
63b60551
EI
3767 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
3768 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
3769 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
81547d66 3770 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 3771 .type = ARM_CP_ALIAS,
81547d66 3772 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
3773 .access = PL3_RW,
3774 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
a1ba125c
EI
3775 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
3776 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
3777 .access = PL3_RW, .writefn = vbar_write,
3778 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
3779 .resetvalue = 0 },
c6f19164
GB
3780 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
3781 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
3782 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
3783 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4cfb8ad8
PM
3784 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
3785 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
3786 .access = PL3_RW, .resetvalue = 0,
3787 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
2179ef95
PM
3788 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
3789 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
3790 .access = PL3_RW, .type = ARM_CP_CONST,
3791 .resetvalue = 0 },
37cd6c24
PM
3792 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
3793 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
3794 .access = PL3_RW, .type = ARM_CP_CONST,
3795 .resetvalue = 0 },
3796 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
3797 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
3798 .access = PL3_RW, .type = ARM_CP_CONST,
3799 .resetvalue = 0 },
43efaa33
PM
3800 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
3801 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
3802 .access = PL3_W, .type = ARM_CP_NO_RAW,
3803 .writefn = tlbi_aa64_alle3is_write },
3804 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
3805 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
3806 .access = PL3_W, .type = ARM_CP_NO_RAW,
3807 .writefn = tlbi_aa64_vae3is_write },
3808 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
3809 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
3810 .access = PL3_W, .type = ARM_CP_NO_RAW,
3811 .writefn = tlbi_aa64_vae3is_write },
3812 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
3813 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
3814 .access = PL3_W, .type = ARM_CP_NO_RAW,
3815 .writefn = tlbi_aa64_alle3_write },
3816 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
3817 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
3818 .access = PL3_W, .type = ARM_CP_NO_RAW,
3819 .writefn = tlbi_aa64_vae3_write },
3820 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
3821 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
3822 .access = PL3_W, .type = ARM_CP_NO_RAW,
3823 .writefn = tlbi_aa64_vae3_write },
0f1a3b24
FA
3824 REGINFO_SENTINEL
3825};
3826
3f208fd7
PM
3827static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3828 bool isread)
7da845b0
PM
3829{
3830 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3831 * but the AArch32 CTR has its own reginfo struct)
3832 */
137feaa9 3833 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
7da845b0
PM
3834 return CP_ACCESS_TRAP;
3835 }
3836 return CP_ACCESS_OK;
3837}
3838
1424ca8d
DM
3839static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3840 uint64_t value)
3841{
3842 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
3843 * read via a bit in OSLSR_EL1.
3844 */
3845 int oslock;
3846
3847 if (ri->state == ARM_CP_STATE_AA32) {
3848 oslock = (value == 0xC5ACCE55);
3849 } else {
3850 oslock = value & 1;
3851 }
3852
3853 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
3854}
3855
50300698 3856static const ARMCPRegInfo debug_cp_reginfo[] = {
50300698 3857 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
10aae104
PM
3858 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
3859 * unlike DBGDRAR it is never accessible from EL0.
3860 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
3861 * accessor.
50300698
PM
3862 */
3863 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
91b0a238
PM
3864 .access = PL0_R, .accessfn = access_tdra,
3865 .type = ARM_CP_CONST, .resetvalue = 0 },
10aae104
PM
3866 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
3867 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
91b0a238
PM
3868 .access = PL1_R, .accessfn = access_tdra,
3869 .type = ARM_CP_CONST, .resetvalue = 0 },
50300698 3870 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
91b0a238
PM
3871 .access = PL0_R, .accessfn = access_tdra,
3872 .type = ARM_CP_CONST, .resetvalue = 0 },
17a9eb53 3873 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
10aae104
PM
3874 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
3875 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
d6c8cf81 3876 .access = PL1_RW, .accessfn = access_tda,
0e5e8935
PM
3877 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
3878 .resetvalue = 0 },
5e8b12ff
PM
3879 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
3880 * We don't implement the configurable EL0 access.
3881 */
3882 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
3883 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7a0e58fa 3884 .type = ARM_CP_ALIAS,
d6c8cf81 3885 .access = PL1_R, .accessfn = access_tda,
b061a82b 3886 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
10aae104
PM
3887 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
3888 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
1424ca8d 3889 .access = PL1_W, .type = ARM_CP_NO_RAW,
187f678d 3890 .accessfn = access_tdosa,
1424ca8d
DM
3891 .writefn = oslar_write },
3892 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
3893 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
3894 .access = PL1_R, .resetvalue = 10,
187f678d 3895 .accessfn = access_tdosa,
1424ca8d 3896 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5e8b12ff
PM
3897 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
3898 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
3899 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
187f678d
PM
3900 .access = PL1_RW, .accessfn = access_tdosa,
3901 .type = ARM_CP_NOP },
5e8b12ff
PM
3902 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
3903 * implement vector catch debug events yet.
3904 */
3905 { .name = "DBGVCR",
3906 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
d6c8cf81
PM
3907 .access = PL1_RW, .accessfn = access_tda,
3908 .type = ARM_CP_NOP },
50300698
PM
3909 REGINFO_SENTINEL
3910};
3911
3912static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
3913 /* 64 bit access versions of the (dummy) debug registers */
3914 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
3915 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3916 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
3917 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3918 REGINFO_SENTINEL
3919};
3920
9ee98ce8
PM
3921void hw_watchpoint_update(ARMCPU *cpu, int n)
3922{
3923 CPUARMState *env = &cpu->env;
3924 vaddr len = 0;
3925 vaddr wvr = env->cp15.dbgwvr[n];
3926 uint64_t wcr = env->cp15.dbgwcr[n];
3927 int mask;
3928 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
3929
3930 if (env->cpu_watchpoint[n]) {
3931 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
3932 env->cpu_watchpoint[n] = NULL;
3933 }
3934
3935 if (!extract64(wcr, 0, 1)) {
3936 /* E bit clear : watchpoint disabled */
3937 return;
3938 }
3939
3940 switch (extract64(wcr, 3, 2)) {
3941 case 0:
3942 /* LSC 00 is reserved and must behave as if the wp is disabled */
3943 return;
3944 case 1:
3945 flags |= BP_MEM_READ;
3946 break;
3947 case 2:
3948 flags |= BP_MEM_WRITE;
3949 break;
3950 case 3:
3951 flags |= BP_MEM_ACCESS;
3952 break;
3953 }
3954
3955 /* Attempts to use both MASK and BAS fields simultaneously are
3956 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
3957 * thus generating a watchpoint for every byte in the masked region.
3958 */
3959 mask = extract64(wcr, 24, 4);
3960 if (mask == 1 || mask == 2) {
3961 /* Reserved values of MASK; we must act as if the mask value was
3962 * some non-reserved value, or as if the watchpoint were disabled.
3963 * We choose the latter.
3964 */
3965 return;
3966 } else if (mask) {
3967 /* Watchpoint covers an aligned area up to 2GB in size */
3968 len = 1ULL << mask;
3969 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
3970 * whether the watchpoint fires when the unmasked bits match; we opt
3971 * to generate the exceptions.
3972 */
3973 wvr &= ~(len - 1);
3974 } else {
3975 /* Watchpoint covers bytes defined by the byte address select bits */
3976 int bas = extract64(wcr, 5, 8);
3977 int basstart;
3978
3979 if (bas == 0) {
3980 /* This must act as if the watchpoint is disabled */
3981 return;
3982 }
3983
3984 if (extract64(wvr, 2, 1)) {
3985 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
3986 * ignored, and BAS[3:0] define which bytes to watch.
3987 */
3988 bas &= 0xf;
3989 }
3990 /* The BAS bits are supposed to be programmed to indicate a contiguous
3991 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
3992 * we fire for each byte in the word/doubleword addressed by the WVR.
3993 * We choose to ignore any non-zero bits after the first range of 1s.
3994 */
3995 basstart = ctz32(bas);
3996 len = cto32(bas >> basstart);
3997 wvr += basstart;
3998 }
3999
4000 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4001 &env->cpu_watchpoint[n]);
4002}
4003
4004void hw_watchpoint_update_all(ARMCPU *cpu)
4005{
4006 int i;
4007 CPUARMState *env = &cpu->env;
4008
4009 /* Completely clear out existing QEMU watchpoints and our array, to
4010 * avoid possible stale entries following migration load.
4011 */
4012 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4013 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4014
4015 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4016 hw_watchpoint_update(cpu, i);
4017 }
4018}
4019
4020static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4021 uint64_t value)
4022{
4023 ARMCPU *cpu = arm_env_get_cpu(env);
4024 int i = ri->crm;
4025
4026 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4027 * register reads and behaves as if values written are sign extended.
4028 * Bits [1:0] are RES0.
4029 */
4030 value = sextract64(value, 0, 49) & ~3ULL;
4031
4032 raw_write(env, ri, value);
4033 hw_watchpoint_update(cpu, i);
4034}
4035
4036static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4037 uint64_t value)
4038{
4039 ARMCPU *cpu = arm_env_get_cpu(env);
4040 int i = ri->crm;
4041
4042 raw_write(env, ri, value);
4043 hw_watchpoint_update(cpu, i);
4044}
4045
46747d15
PM
4046void hw_breakpoint_update(ARMCPU *cpu, int n)
4047{
4048 CPUARMState *env = &cpu->env;
4049 uint64_t bvr = env->cp15.dbgbvr[n];
4050 uint64_t bcr = env->cp15.dbgbcr[n];
4051 vaddr addr;
4052 int bt;
4053 int flags = BP_CPU;
4054
4055 if (env->cpu_breakpoint[n]) {
4056 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4057 env->cpu_breakpoint[n] = NULL;
4058 }
4059
4060 if (!extract64(bcr, 0, 1)) {
4061 /* E bit clear : watchpoint disabled */
4062 return;
4063 }
4064
4065 bt = extract64(bcr, 20, 4);
4066
4067 switch (bt) {
4068 case 4: /* unlinked address mismatch (reserved if AArch64) */
4069 case 5: /* linked address mismatch (reserved if AArch64) */
4070 qemu_log_mask(LOG_UNIMP,
4071 "arm: address mismatch breakpoint types not implemented");
4072 return;
4073 case 0: /* unlinked address match */
4074 case 1: /* linked address match */
4075 {
4076 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4077 * we behave as if the register was sign extended. Bits [1:0] are
4078 * RES0. The BAS field is used to allow setting breakpoints on 16
4079 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4080 * a bp will fire if the addresses covered by the bp and the addresses
4081 * covered by the insn overlap but the insn doesn't start at the
4082 * start of the bp address range. We choose to require the insn and
4083 * the bp to have the same address. The constraints on writing to
4084 * BAS enforced in dbgbcr_write mean we have only four cases:
4085 * 0b0000 => no breakpoint
4086 * 0b0011 => breakpoint on addr
4087 * 0b1100 => breakpoint on addr + 2
4088 * 0b1111 => breakpoint on addr
4089 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4090 */
4091 int bas = extract64(bcr, 5, 4);
4092 addr = sextract64(bvr, 0, 49) & ~3ULL;
4093 if (bas == 0) {
4094 return;
4095 }
4096 if (bas == 0xc) {
4097 addr += 2;
4098 }
4099 break;
4100 }
4101 case 2: /* unlinked context ID match */
4102 case 8: /* unlinked VMID match (reserved if no EL2) */
4103 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4104 qemu_log_mask(LOG_UNIMP,
4105 "arm: unlinked context breakpoint types not implemented");
4106 return;
4107 case 9: /* linked VMID match (reserved if no EL2) */
4108 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4109 case 3: /* linked context ID match */
4110 default:
4111 /* We must generate no events for Linked context matches (unless
4112 * they are linked to by some other bp/wp, which is handled in
4113 * updates for the linking bp/wp). We choose to also generate no events
4114 * for reserved values.
4115 */
4116 return;
4117 }
4118
4119 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4120}
4121
4122void hw_breakpoint_update_all(ARMCPU *cpu)
4123{
4124 int i;
4125 CPUARMState *env = &cpu->env;
4126
4127 /* Completely clear out existing QEMU breakpoints and our array, to
4128 * avoid possible stale entries following migration load.
4129 */
4130 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4131 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4132
4133 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4134 hw_breakpoint_update(cpu, i);
4135 }
4136}
4137
4138static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4139 uint64_t value)
4140{
4141 ARMCPU *cpu = arm_env_get_cpu(env);
4142 int i = ri->crm;
4143
4144 raw_write(env, ri, value);
4145 hw_breakpoint_update(cpu, i);
4146}
4147
4148static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4149 uint64_t value)
4150{
4151 ARMCPU *cpu = arm_env_get_cpu(env);
4152 int i = ri->crm;
4153
4154 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4155 * copy of BAS[0].
4156 */
4157 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4158 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4159
4160 raw_write(env, ri, value);
4161 hw_breakpoint_update(cpu, i);
4162}
4163
50300698 4164static void define_debug_regs(ARMCPU *cpu)
0b45451e 4165{
50300698
PM
4166 /* Define v7 and v8 architectural debug registers.
4167 * These are just dummy implementations for now.
0b45451e
PM
4168 */
4169 int i;
3ff6fc91 4170 int wrps, brps, ctx_cmps;
48eb3ae6
PM
4171 ARMCPRegInfo dbgdidr = {
4172 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
d6c8cf81
PM
4173 .access = PL0_R, .accessfn = access_tda,
4174 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
48eb3ae6
PM
4175 };
4176
3ff6fc91 4177 /* Note that all these register fields hold "number of Xs minus 1". */
48eb3ae6
PM
4178 brps = extract32(cpu->dbgdidr, 24, 4);
4179 wrps = extract32(cpu->dbgdidr, 28, 4);
3ff6fc91
PM
4180 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4181
4182 assert(ctx_cmps <= brps);
48eb3ae6
PM
4183
4184 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4185 * of the debug registers such as number of breakpoints;
4186 * check that if they both exist then they agree.
4187 */
4188 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4189 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4190 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3ff6fc91 4191 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
48eb3ae6 4192 }
0b45451e 4193
48eb3ae6 4194 define_one_arm_cp_reg(cpu, &dbgdidr);
50300698
PM
4195 define_arm_cp_regs(cpu, debug_cp_reginfo);
4196
4197 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4198 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4199 }
4200
48eb3ae6 4201 for (i = 0; i < brps + 1; i++) {
0b45451e 4202 ARMCPRegInfo dbgregs[] = {
10aae104
PM
4203 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4204 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
d6c8cf81 4205 .access = PL1_RW, .accessfn = access_tda,
46747d15
PM
4206 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4207 .writefn = dbgbvr_write, .raw_writefn = raw_write
4208 },
10aae104
PM
4209 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4210 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
d6c8cf81 4211 .access = PL1_RW, .accessfn = access_tda,
46747d15
PM
4212 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4213 .writefn = dbgbcr_write, .raw_writefn = raw_write
4214 },
48eb3ae6
PM
4215 REGINFO_SENTINEL
4216 };
4217 define_arm_cp_regs(cpu, dbgregs);
4218 }
4219
4220 for (i = 0; i < wrps + 1; i++) {
4221 ARMCPRegInfo dbgregs[] = {
10aae104
PM
4222 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4223 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
d6c8cf81 4224 .access = PL1_RW, .accessfn = access_tda,
9ee98ce8
PM
4225 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4226 .writefn = dbgwvr_write, .raw_writefn = raw_write
4227 },
10aae104
PM
4228 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4229 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
d6c8cf81 4230 .access = PL1_RW, .accessfn = access_tda,
9ee98ce8
PM
4231 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4232 .writefn = dbgwcr_write, .raw_writefn = raw_write
4233 },
4234 REGINFO_SENTINEL
0b45451e
PM
4235 };
4236 define_arm_cp_regs(cpu, dbgregs);
4237 }
4238}
4239
2ceb98c0
PM
4240void register_cp_regs_for_features(ARMCPU *cpu)
4241{
4242 /* Register all the coprocessor registers based on feature bits */
4243 CPUARMState *env = &cpu->env;
4244 if (arm_feature(env, ARM_FEATURE_M)) {
4245 /* M profile has no coprocessor registers */
4246 return;
4247 }
4248
e9aa6c21 4249 define_arm_cp_regs(cpu, cp_reginfo);
9449fdf6
PM
4250 if (!arm_feature(env, ARM_FEATURE_V8)) {
4251 /* Must go early as it is full of wildcards that may be
4252 * overridden by later definitions.
4253 */
4254 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4255 }
4256
7d57f408 4257 if (arm_feature(env, ARM_FEATURE_V6)) {
8515a092
PM
4258 /* The ID registers all have impdef reset values */
4259 ARMCPRegInfo v6_idregs[] = {
0ff644a7
PM
4260 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4261 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4262 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4263 .resetvalue = cpu->id_pfr0 },
0ff644a7
PM
4264 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4265 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4266 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4267 .resetvalue = cpu->id_pfr1 },
0ff644a7
PM
4268 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4269 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4270 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4271 .resetvalue = cpu->id_dfr0 },
0ff644a7
PM
4272 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4273 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4274 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4275 .resetvalue = cpu->id_afr0 },
0ff644a7
PM
4276 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4277 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4278 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4279 .resetvalue = cpu->id_mmfr0 },
0ff644a7
PM
4280 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4281 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4282 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4283 .resetvalue = cpu->id_mmfr1 },
0ff644a7
PM
4284 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4285 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4286 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4287 .resetvalue = cpu->id_mmfr2 },
0ff644a7
PM
4288 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4289 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4290 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4291 .resetvalue = cpu->id_mmfr3 },
0ff644a7
PM
4292 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4293 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4294 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4295 .resetvalue = cpu->id_isar0 },
0ff644a7
PM
4296 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4297 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4298 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4299 .resetvalue = cpu->id_isar1 },
0ff644a7
PM
4300 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4301 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4302 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4303 .resetvalue = cpu->id_isar2 },
0ff644a7
PM
4304 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4305 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4306 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4307 .resetvalue = cpu->id_isar3 },
0ff644a7
PM
4308 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4309 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4310 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4311 .resetvalue = cpu->id_isar4 },
0ff644a7
PM
4312 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4313 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4314 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4315 .resetvalue = cpu->id_isar5 },
e20d84c1
PM
4316 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4317 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4318 .access = PL1_R, .type = ARM_CP_CONST,
4319 .resetvalue = cpu->id_mmfr4 },
4320 /* 7 is as yet unallocated and must RAZ */
4321 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4322 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4323 .access = PL1_R, .type = ARM_CP_CONST,
8515a092
PM
4324 .resetvalue = 0 },
4325 REGINFO_SENTINEL
4326 };
4327 define_arm_cp_regs(cpu, v6_idregs);
7d57f408
PM
4328 define_arm_cp_regs(cpu, v6_cp_reginfo);
4329 } else {
4330 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4331 }
4d31c596
PM
4332 if (arm_feature(env, ARM_FEATURE_V6K)) {
4333 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4334 }
5e5cf9e3
PC
4335 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4336 !arm_feature(env, ARM_FEATURE_MPU)) {
995939a6
PM
4337 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4338 }
e9aa6c21 4339 if (arm_feature(env, ARM_FEATURE_V7)) {
200ac0ef 4340 /* v7 performance monitor control register: same implementor
7c2cb42b
AF
4341 * field as main ID register, and we implement only the cycle
4342 * count register.
200ac0ef 4343 */
7c2cb42b 4344#ifndef CONFIG_USER_ONLY
200ac0ef
PM
4345 ARMCPRegInfo pmcr = {
4346 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
8521466b 4347 .access = PL0_RW,
7a0e58fa 4348 .type = ARM_CP_IO | ARM_CP_ALIAS,
8521466b 4349 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
fcd25206
PM
4350 .accessfn = pmreg_access, .writefn = pmcr_write,
4351 .raw_writefn = raw_write,
200ac0ef 4352 };
8521466b
AF
4353 ARMCPRegInfo pmcr64 = {
4354 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4355 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4356 .access = PL0_RW, .accessfn = pmreg_access,
4357 .type = ARM_CP_IO,
4358 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4359 .resetvalue = cpu->midr & 0xff000000,
4360 .writefn = pmcr_write, .raw_writefn = raw_write,
4361 };
7c2cb42b 4362 define_one_arm_cp_reg(cpu, &pmcr);
8521466b 4363 define_one_arm_cp_reg(cpu, &pmcr64);
7c2cb42b 4364#endif
776d4e5c 4365 ARMCPRegInfo clidr = {
7da845b0
PM
4366 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4367 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
776d4e5c
PM
4368 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4369 };
776d4e5c 4370 define_one_arm_cp_reg(cpu, &clidr);
e9aa6c21 4371 define_arm_cp_regs(cpu, v7_cp_reginfo);
50300698 4372 define_debug_regs(cpu);
7d57f408
PM
4373 } else {
4374 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
e9aa6c21 4375 }
b0d2b7d0 4376 if (arm_feature(env, ARM_FEATURE_V8)) {
e20d84c1
PM
4377 /* AArch64 ID registers, which all have impdef reset values.
4378 * Note that within the ID register ranges the unused slots
4379 * must all RAZ, not UNDEF; future architecture versions may
4380 * define new registers here.
4381 */
e60cef86
PM
4382 ARMCPRegInfo v8_idregs[] = {
4383 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4384 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4385 .access = PL1_R, .type = ARM_CP_CONST,
4386 .resetvalue = cpu->id_aa64pfr0 },
4387 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4388 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4389 .access = PL1_R, .type = ARM_CP_CONST,
4390 .resetvalue = cpu->id_aa64pfr1},
e20d84c1
PM
4391 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4392 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4393 .access = PL1_R, .type = ARM_CP_CONST,
4394 .resetvalue = 0 },
4395 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4396 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4397 .access = PL1_R, .type = ARM_CP_CONST,
4398 .resetvalue = 0 },
4399 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4400 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4401 .access = PL1_R, .type = ARM_CP_CONST,
4402 .resetvalue = 0 },
4403 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4404 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4405 .access = PL1_R, .type = ARM_CP_CONST,
4406 .resetvalue = 0 },
4407 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4408 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4409 .access = PL1_R, .type = ARM_CP_CONST,
4410 .resetvalue = 0 },
4411 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4412 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4413 .access = PL1_R, .type = ARM_CP_CONST,
4414 .resetvalue = 0 },
e60cef86
PM
4415 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4416 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4417 .access = PL1_R, .type = ARM_CP_CONST,
5d831be2 4418 /* We mask out the PMUVer field, because we don't currently
9225d739
PM
4419 * implement the PMU. Not advertising it prevents the guest
4420 * from trying to use it and getting UNDEFs on registers we
4421 * don't implement.
4422 */
4423 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
e60cef86
PM
4424 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4425 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4426 .access = PL1_R, .type = ARM_CP_CONST,
4427 .resetvalue = cpu->id_aa64dfr1 },
e20d84c1
PM
4428 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4429 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4430 .access = PL1_R, .type = ARM_CP_CONST,
4431 .resetvalue = 0 },
4432 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4433 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4434 .access = PL1_R, .type = ARM_CP_CONST,
4435 .resetvalue = 0 },
e60cef86
PM
4436 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4437 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4438 .access = PL1_R, .type = ARM_CP_CONST,
4439 .resetvalue = cpu->id_aa64afr0 },
4440 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4441 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4442 .access = PL1_R, .type = ARM_CP_CONST,
4443 .resetvalue = cpu->id_aa64afr1 },
e20d84c1
PM
4444 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4445 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4446 .access = PL1_R, .type = ARM_CP_CONST,
4447 .resetvalue = 0 },
4448 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4449 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4450 .access = PL1_R, .type = ARM_CP_CONST,
4451 .resetvalue = 0 },
e60cef86
PM
4452 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4453 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4454 .access = PL1_R, .type = ARM_CP_CONST,
4455 .resetvalue = cpu->id_aa64isar0 },
4456 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4457 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4458 .access = PL1_R, .type = ARM_CP_CONST,
4459 .resetvalue = cpu->id_aa64isar1 },
e20d84c1
PM
4460 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4461 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4462 .access = PL1_R, .type = ARM_CP_CONST,
4463 .resetvalue = 0 },
4464 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4465 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4466 .access = PL1_R, .type = ARM_CP_CONST,
4467 .resetvalue = 0 },
4468 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4469 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4470 .access = PL1_R, .type = ARM_CP_CONST,
4471 .resetvalue = 0 },
4472 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4473 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4474 .access = PL1_R, .type = ARM_CP_CONST,
4475 .resetvalue = 0 },
4476 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4477 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4478 .access = PL1_R, .type = ARM_CP_CONST,
4479 .resetvalue = 0 },
4480 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4481 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4482 .access = PL1_R, .type = ARM_CP_CONST,
4483 .resetvalue = 0 },
e60cef86
PM
4484 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4485 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4486 .access = PL1_R, .type = ARM_CP_CONST,
4487 .resetvalue = cpu->id_aa64mmfr0 },
4488 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4489 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4490 .access = PL1_R, .type = ARM_CP_CONST,
4491 .resetvalue = cpu->id_aa64mmfr1 },
e20d84c1
PM
4492 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4493 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4494 .access = PL1_R, .type = ARM_CP_CONST,
4495 .resetvalue = 0 },
4496 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4497 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4498 .access = PL1_R, .type = ARM_CP_CONST,
4499 .resetvalue = 0 },
4500 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4501 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4502 .access = PL1_R, .type = ARM_CP_CONST,
4503 .resetvalue = 0 },
4504 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4505 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4506 .access = PL1_R, .type = ARM_CP_CONST,
4507 .resetvalue = 0 },
4508 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4509 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4510 .access = PL1_R, .type = ARM_CP_CONST,
4511 .resetvalue = 0 },
4512 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4513 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4514 .access = PL1_R, .type = ARM_CP_CONST,
4515 .resetvalue = 0 },
a50c0f51
PM
4516 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4517 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4518 .access = PL1_R, .type = ARM_CP_CONST,
4519 .resetvalue = cpu->mvfr0 },
4520 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4521 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4522 .access = PL1_R, .type = ARM_CP_CONST,
4523 .resetvalue = cpu->mvfr1 },
4524 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4525 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4526 .access = PL1_R, .type = ARM_CP_CONST,
4527 .resetvalue = cpu->mvfr2 },
e20d84c1
PM
4528 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4529 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4530 .access = PL1_R, .type = ARM_CP_CONST,
4531 .resetvalue = 0 },
4532 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4533 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4534 .access = PL1_R, .type = ARM_CP_CONST,
4535 .resetvalue = 0 },
4536 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4537 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4538 .access = PL1_R, .type = ARM_CP_CONST,
4539 .resetvalue = 0 },
4540 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4541 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4542 .access = PL1_R, .type = ARM_CP_CONST,
4543 .resetvalue = 0 },
4544 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4545 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4546 .access = PL1_R, .type = ARM_CP_CONST,
4547 .resetvalue = 0 },
4054bfa9
AF
4548 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4549 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4550 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4551 .resetvalue = cpu->pmceid0 },
4552 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4553 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4554 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4555 .resetvalue = cpu->pmceid0 },
4556 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4557 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4558 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4559 .resetvalue = cpu->pmceid1 },
4560 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4561 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4562 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4563 .resetvalue = cpu->pmceid1 },
e60cef86
PM
4564 REGINFO_SENTINEL
4565 };
be8e8128
GB
4566 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4567 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4568 !arm_feature(env, ARM_FEATURE_EL2)) {
4569 ARMCPRegInfo rvbar = {
4570 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4571 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4572 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4573 };
4574 define_one_arm_cp_reg(cpu, &rvbar);
4575 }
e60cef86 4576 define_arm_cp_regs(cpu, v8_idregs);
b0d2b7d0
PM
4577 define_arm_cp_regs(cpu, v8_cp_reginfo);
4578 }
3b685ba7 4579 if (arm_feature(env, ARM_FEATURE_EL2)) {
f0d574d6 4580 uint64_t vmpidr_def = mpidr_read_val(env);
731de9e6
EI
4581 ARMCPRegInfo vpidr_regs[] = {
4582 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4583 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4584 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4585 .resetvalue = cpu->midr,
4586 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4587 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4588 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4589 .access = PL2_RW, .resetvalue = cpu->midr,
4590 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
4591 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4592 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4593 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4594 .resetvalue = vmpidr_def,
4595 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4596 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4597 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4598 .access = PL2_RW,
4599 .resetvalue = vmpidr_def,
4600 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
731de9e6
EI
4601 REGINFO_SENTINEL
4602 };
4603 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 4604 define_arm_cp_regs(cpu, el2_cp_reginfo);
be8e8128
GB
4605 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4606 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4607 ARMCPRegInfo rvbar = {
4608 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4609 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4610 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4611 };
4612 define_one_arm_cp_reg(cpu, &rvbar);
4613 }
d42e3c26
EI
4614 } else {
4615 /* If EL2 is missing but higher ELs are enabled, we need to
4616 * register the no_el2 reginfos.
4617 */
4618 if (arm_feature(env, ARM_FEATURE_EL3)) {
f0d574d6
EI
4619 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4620 * of MIDR_EL1 and MPIDR_EL1.
731de9e6
EI
4621 */
4622 ARMCPRegInfo vpidr_regs[] = {
4623 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4624 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4625 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4626 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4627 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
4628 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4629 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4630 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4631 .type = ARM_CP_NO_RAW,
4632 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
731de9e6
EI
4633 REGINFO_SENTINEL
4634 };
4635 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 4636 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
d42e3c26 4637 }
3b685ba7 4638 }
81547d66 4639 if (arm_feature(env, ARM_FEATURE_EL3)) {
0f1a3b24 4640 define_arm_cp_regs(cpu, el3_cp_reginfo);
e24fdd23
PM
4641 ARMCPRegInfo el3_regs[] = {
4642 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4643 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4644 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4645 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4646 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4647 .access = PL3_RW,
4648 .raw_writefn = raw_write, .writefn = sctlr_write,
4649 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4650 .resetvalue = cpu->reset_sctlr },
4651 REGINFO_SENTINEL
be8e8128 4652 };
e24fdd23
PM
4653
4654 define_arm_cp_regs(cpu, el3_regs);
81547d66 4655 }
2f027fc5
PM
4656 /* The behaviour of NSACR is sufficiently various that we don't
4657 * try to describe it in a single reginfo:
4658 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4659 * reads as constant 0xc00 from NS EL1 and NS EL2
4660 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4661 * if v7 without EL3, register doesn't exist
4662 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4663 */
4664 if (arm_feature(env, ARM_FEATURE_EL3)) {
4665 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4666 ARMCPRegInfo nsacr = {
4667 .name = "NSACR", .type = ARM_CP_CONST,
4668 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4669 .access = PL1_RW, .accessfn = nsacr_access,
4670 .resetvalue = 0xc00
4671 };
4672 define_one_arm_cp_reg(cpu, &nsacr);
4673 } else {
4674 ARMCPRegInfo nsacr = {
4675 .name = "NSACR",
4676 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4677 .access = PL3_RW | PL1_R,
4678 .resetvalue = 0,
4679 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4680 };
4681 define_one_arm_cp_reg(cpu, &nsacr);
4682 }
4683 } else {
4684 if (arm_feature(env, ARM_FEATURE_V8)) {
4685 ARMCPRegInfo nsacr = {
4686 .name = "NSACR", .type = ARM_CP_CONST,
4687 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4688 .access = PL1_R,
4689 .resetvalue = 0xc00
4690 };
4691 define_one_arm_cp_reg(cpu, &nsacr);
4692 }
4693 }
4694
18032bec 4695 if (arm_feature(env, ARM_FEATURE_MPU)) {
6cb0b013
PC
4696 if (arm_feature(env, ARM_FEATURE_V6)) {
4697 /* PMSAv6 not implemented */
4698 assert(arm_feature(env, ARM_FEATURE_V7));
4699 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4700 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4701 } else {
4702 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4703 }
18032bec 4704 } else {
8e5d75c9 4705 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
18032bec
PM
4706 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4707 }
c326b979
PM
4708 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4709 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4710 }
6cc7a3ae
PM
4711 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4712 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4713 }
4a501606
PM
4714 if (arm_feature(env, ARM_FEATURE_VAPA)) {
4715 define_arm_cp_regs(cpu, vapa_cp_reginfo);
4716 }
c4804214
PM
4717 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
4718 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
4719 }
4720 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
4721 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
4722 }
4723 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
4724 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
4725 }
18032bec
PM
4726 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
4727 define_arm_cp_regs(cpu, omap_cp_reginfo);
4728 }
34f90529
PM
4729 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
4730 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
4731 }
1047b9d7
PM
4732 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4733 define_arm_cp_regs(cpu, xscale_cp_reginfo);
4734 }
4735 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
4736 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
4737 }
7ac681cf
PM
4738 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4739 define_arm_cp_regs(cpu, lpae_cp_reginfo);
4740 }
7884849c
PM
4741 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4742 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4743 * be read-only (ie write causes UNDEF exception).
4744 */
4745 {
00a29f3d
PM
4746 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
4747 /* Pre-v8 MIDR space.
4748 * Note that the MIDR isn't a simple constant register because
7884849c
PM
4749 * of the TI925 behaviour where writes to another register can
4750 * cause the MIDR value to change.
97ce8d61
PC
4751 *
4752 * Unimplemented registers in the c15 0 0 0 space default to
4753 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4754 * and friends override accordingly.
7884849c
PM
4755 */
4756 { .name = "MIDR",
97ce8d61 4757 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7884849c 4758 .access = PL1_R, .resetvalue = cpu->midr,
d4e6df63 4759 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
731de9e6 4760 .readfn = midr_read,
97ce8d61
PC
4761 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4762 .type = ARM_CP_OVERRIDE },
7884849c
PM
4763 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4764 { .name = "DUMMY",
4765 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
4766 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4767 { .name = "DUMMY",
4768 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
4769 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4770 { .name = "DUMMY",
4771 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
4772 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4773 { .name = "DUMMY",
4774 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
4775 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4776 { .name = "DUMMY",
4777 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
4778 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4779 REGINFO_SENTINEL
4780 };
00a29f3d 4781 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
00a29f3d
PM
4782 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
4783 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
731de9e6
EI
4784 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
4785 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4786 .readfn = midr_read },
ac00c79f
SF
4787 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4788 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4789 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4790 .access = PL1_R, .resetvalue = cpu->midr },
4791 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4792 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
4793 .access = PL1_R, .resetvalue = cpu->midr },
00a29f3d
PM
4794 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
4795 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
13b72b2b 4796 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
00a29f3d
PM
4797 REGINFO_SENTINEL
4798 };
4799 ARMCPRegInfo id_cp_reginfo[] = {
4800 /* These are common to v8 and pre-v8 */
4801 { .name = "CTR",
4802 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
4803 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4804 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
4805 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
4806 .access = PL0_R, .accessfn = ctr_el0_access,
4807 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4808 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4809 { .name = "TCMTR",
4810 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
4811 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
00a29f3d
PM
4812 REGINFO_SENTINEL
4813 };
8085ce63
PC
4814 /* TLBTR is specific to VMSA */
4815 ARMCPRegInfo id_tlbtr_reginfo = {
4816 .name = "TLBTR",
4817 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
4818 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
4819 };
3281af81
PC
4820 /* MPUIR is specific to PMSA V6+ */
4821 ARMCPRegInfo id_mpuir_reginfo = {
4822 .name = "MPUIR",
4823 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4824 .access = PL1_R, .type = ARM_CP_CONST,
4825 .resetvalue = cpu->pmsav7_dregion << 8
4826 };
7884849c
PM
4827 ARMCPRegInfo crn0_wi_reginfo = {
4828 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
4829 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
4830 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
4831 };
4832 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
4833 arm_feature(env, ARM_FEATURE_STRONGARM)) {
4834 ARMCPRegInfo *r;
4835 /* Register the blanket "writes ignored" value first to cover the
a703eda1
PC
4836 * whole space. Then update the specific ID registers to allow write
4837 * access, so that they ignore writes rather than causing them to
4838 * UNDEF.
7884849c
PM
4839 */
4840 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
00a29f3d
PM
4841 for (r = id_pre_v8_midr_cp_reginfo;
4842 r->type != ARM_CP_SENTINEL; r++) {
4843 r->access = PL1_RW;
4844 }
7884849c
PM
4845 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
4846 r->access = PL1_RW;
7884849c 4847 }
8085ce63 4848 id_tlbtr_reginfo.access = PL1_RW;
3281af81 4849 id_tlbtr_reginfo.access = PL1_RW;
7884849c 4850 }
00a29f3d
PM
4851 if (arm_feature(env, ARM_FEATURE_V8)) {
4852 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
4853 } else {
4854 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
4855 }
a703eda1 4856 define_arm_cp_regs(cpu, id_cp_reginfo);
8085ce63
PC
4857 if (!arm_feature(env, ARM_FEATURE_MPU)) {
4858 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
3281af81
PC
4859 } else if (arm_feature(env, ARM_FEATURE_V7)) {
4860 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8085ce63 4861 }
7884849c
PM
4862 }
4863
97ce8d61
PC
4864 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
4865 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
4866 }
4867
2771db27 4868 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
834a6c69
PM
4869 ARMCPRegInfo auxcr_reginfo[] = {
4870 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
4871 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
4872 .access = PL1_RW, .type = ARM_CP_CONST,
4873 .resetvalue = cpu->reset_auxcr },
4874 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
4875 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
4876 .access = PL2_RW, .type = ARM_CP_CONST,
4877 .resetvalue = 0 },
4878 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
4879 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
4880 .access = PL3_RW, .type = ARM_CP_CONST,
4881 .resetvalue = 0 },
4882 REGINFO_SENTINEL
2771db27 4883 };
834a6c69 4884 define_arm_cp_regs(cpu, auxcr_reginfo);
2771db27
PM
4885 }
4886
d8ba780b 4887 if (arm_feature(env, ARM_FEATURE_CBAR)) {
f318cec6
PM
4888 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4889 /* 32 bit view is [31:18] 0...0 [43:32]. */
4890 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
4891 | extract64(cpu->reset_cbar, 32, 12);
4892 ARMCPRegInfo cbar_reginfo[] = {
4893 { .name = "CBAR",
4894 .type = ARM_CP_CONST,
4895 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4896 .access = PL1_R, .resetvalue = cpu->reset_cbar },
4897 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
4898 .type = ARM_CP_CONST,
4899 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
4900 .access = PL1_R, .resetvalue = cbar32 },
4901 REGINFO_SENTINEL
4902 };
4903 /* We don't implement a r/w 64 bit CBAR currently */
4904 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
4905 define_arm_cp_regs(cpu, cbar_reginfo);
4906 } else {
4907 ARMCPRegInfo cbar = {
4908 .name = "CBAR",
4909 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4910 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
4911 .fieldoffset = offsetof(CPUARMState,
4912 cp15.c15_config_base_address)
4913 };
4914 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
4915 cbar.access = PL1_R;
4916 cbar.fieldoffset = 0;
4917 cbar.type = ARM_CP_CONST;
4918 }
4919 define_one_arm_cp_reg(cpu, &cbar);
4920 }
d8ba780b
PC
4921 }
4922
2771db27
PM
4923 /* Generic registers whose values depend on the implementation */
4924 {
4925 ARMCPRegInfo sctlr = {
5ebafdf3 4926 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
137feaa9
FA
4927 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4928 .access = PL1_RW,
4929 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
4930 offsetof(CPUARMState, cp15.sctlr_ns) },
d4e6df63
PM
4931 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
4932 .raw_writefn = raw_write,
2771db27
PM
4933 };
4934 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4935 /* Normally we would always end the TB on an SCTLR write, but Linux
4936 * arch/arm/mach-pxa/sleep.S expects two instructions following
4937 * an MMU enable to execute from cache. Imitate this behaviour.
4938 */
4939 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
4940 }
4941 define_one_arm_cp_reg(cpu, &sctlr);
4942 }
2ceb98c0
PM
4943}
4944
778c3a06 4945ARMCPU *cpu_arm_init(const char *cpu_model)
40f137e1 4946{
9262685b 4947 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
14969266
AF
4948}
4949
4950void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
4951{
22169d41 4952 CPUState *cs = CPU(cpu);
14969266
AF
4953 CPUARMState *env = &cpu->env;
4954
6a669427
PM
4955 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4956 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
4957 aarch64_fpu_gdb_set_reg,
4958 34, "aarch64-fpu.xml", 0);
4959 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
22169d41 4960 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
4961 51, "arm-neon.xml", 0);
4962 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
22169d41 4963 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
4964 35, "arm-vfp3.xml", 0);
4965 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
22169d41 4966 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
4967 19, "arm-vfp.xml", 0);
4968 }
40f137e1
PB
4969}
4970
777dc784
PM
4971/* Sort alphabetically by type name, except for "any". */
4972static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5adb4839 4973{
777dc784
PM
4974 ObjectClass *class_a = (ObjectClass *)a;
4975 ObjectClass *class_b = (ObjectClass *)b;
4976 const char *name_a, *name_b;
5adb4839 4977
777dc784
PM
4978 name_a = object_class_get_name(class_a);
4979 name_b = object_class_get_name(class_b);
51492fd1 4980 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
777dc784 4981 return 1;
51492fd1 4982 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
777dc784
PM
4983 return -1;
4984 } else {
4985 return strcmp(name_a, name_b);
5adb4839
PB
4986 }
4987}
4988
777dc784 4989static void arm_cpu_list_entry(gpointer data, gpointer user_data)
40f137e1 4990{
777dc784 4991 ObjectClass *oc = data;
92a31361 4992 CPUListState *s = user_data;
51492fd1
AF
4993 const char *typename;
4994 char *name;
3371d272 4995
51492fd1
AF
4996 typename = object_class_get_name(oc);
4997 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
777dc784 4998 (*s->cpu_fprintf)(s->file, " %s\n",
51492fd1
AF
4999 name);
5000 g_free(name);
777dc784
PM
5001}
5002
5003void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5004{
92a31361 5005 CPUListState s = {
777dc784
PM
5006 .file = f,
5007 .cpu_fprintf = cpu_fprintf,
5008 };
5009 GSList *list;
5010
5011 list = object_class_get_list(TYPE_ARM_CPU, false);
5012 list = g_slist_sort(list, arm_cpu_list_compare);
5013 (*cpu_fprintf)(f, "Available CPUs:\n");
5014 g_slist_foreach(list, arm_cpu_list_entry, &s);
5015 g_slist_free(list);
a96c0514
PM
5016#ifdef CONFIG_KVM
5017 /* The 'host' CPU type is dynamically registered only if KVM is
5018 * enabled, so we have to special-case it here:
5019 */
5020 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5021#endif
40f137e1
PB
5022}
5023
78027bb6
CR
5024static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5025{
5026 ObjectClass *oc = data;
5027 CpuDefinitionInfoList **cpu_list = user_data;
5028 CpuDefinitionInfoList *entry;
5029 CpuDefinitionInfo *info;
5030 const char *typename;
5031
5032 typename = object_class_get_name(oc);
5033 info = g_malloc0(sizeof(*info));
5034 info->name = g_strndup(typename,
5035 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5036
5037 entry = g_malloc0(sizeof(*entry));
5038 entry->value = info;
5039 entry->next = *cpu_list;
5040 *cpu_list = entry;
5041}
5042
5043CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5044{
5045 CpuDefinitionInfoList *cpu_list = NULL;
5046 GSList *list;
5047
5048 list = object_class_get_list(TYPE_ARM_CPU, false);
5049 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5050 g_slist_free(list);
5051
5052 return cpu_list;
5053}
5054
6e6efd61 5055static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
51a79b03 5056 void *opaque, int state, int secstate,
f5a0a5a5 5057 int crm, int opc1, int opc2)
6e6efd61
PM
5058{
5059 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5060 * add a single reginfo struct to the hash table.
5061 */
5062 uint32_t *key = g_new(uint32_t, 1);
5063 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5064 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
3f3c82a5
FA
5065 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5066
5067 /* Reset the secure state to the specific incoming state. This is
5068 * necessary as the register may have been defined with both states.
5069 */
5070 r2->secure = secstate;
5071
5072 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5073 /* Register is banked (using both entries in array).
5074 * Overwriting fieldoffset as the array is only used to define
5075 * banked registers but later only fieldoffset is used.
f5a0a5a5 5076 */
3f3c82a5
FA
5077 r2->fieldoffset = r->bank_fieldoffsets[ns];
5078 }
5079
5080 if (state == ARM_CP_STATE_AA32) {
5081 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5082 /* If the register is banked then we don't need to migrate or
5083 * reset the 32-bit instance in certain cases:
5084 *
5085 * 1) If the register has both 32-bit and 64-bit instances then we
5086 * can count on the 64-bit instance taking care of the
5087 * non-secure bank.
5088 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5089 * taking care of the secure bank. This requires that separate
5090 * 32 and 64-bit definitions are provided.
5091 */
5092 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5093 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
7a0e58fa 5094 r2->type |= ARM_CP_ALIAS;
3f3c82a5
FA
5095 }
5096 } else if ((secstate != r->secure) && !ns) {
5097 /* The register is not banked so we only want to allow migration of
5098 * the non-secure instance.
5099 */
7a0e58fa 5100 r2->type |= ARM_CP_ALIAS;
58a1d8ce 5101 }
3f3c82a5
FA
5102
5103 if (r->state == ARM_CP_STATE_BOTH) {
5104 /* We assume it is a cp15 register if the .cp field is left unset.
5105 */
5106 if (r2->cp == 0) {
5107 r2->cp = 15;
5108 }
5109
f5a0a5a5 5110#ifdef HOST_WORDS_BIGENDIAN
3f3c82a5
FA
5111 if (r2->fieldoffset) {
5112 r2->fieldoffset += sizeof(uint32_t);
5113 }
f5a0a5a5 5114#endif
3f3c82a5 5115 }
f5a0a5a5
PM
5116 }
5117 if (state == ARM_CP_STATE_AA64) {
5118 /* To allow abbreviation of ARMCPRegInfo
5119 * definitions, we treat cp == 0 as equivalent to
5120 * the value for "standard guest-visible sysreg".
58a1d8ce
PM
5121 * STATE_BOTH definitions are also always "standard
5122 * sysreg" in their AArch64 view (the .cp value may
5123 * be non-zero for the benefit of the AArch32 view).
f5a0a5a5 5124 */
58a1d8ce 5125 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
f5a0a5a5
PM
5126 r2->cp = CP_REG_ARM64_SYSREG_CP;
5127 }
5128 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5129 r2->opc0, opc1, opc2);
5130 } else {
51a79b03 5131 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
f5a0a5a5 5132 }
6e6efd61
PM
5133 if (opaque) {
5134 r2->opaque = opaque;
5135 }
67ed771d
PM
5136 /* reginfo passed to helpers is correct for the actual access,
5137 * and is never ARM_CP_STATE_BOTH:
5138 */
5139 r2->state = state;
6e6efd61
PM
5140 /* Make sure reginfo passed to helpers for wildcarded regs
5141 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5142 */
5143 r2->crm = crm;
5144 r2->opc1 = opc1;
5145 r2->opc2 = opc2;
5146 /* By convention, for wildcarded registers only the first
5147 * entry is used for migration; the others are marked as
7a0e58fa 5148 * ALIAS so we don't try to transfer the register
6e6efd61 5149 * multiple times. Special registers (ie NOP/WFI) are
7a0e58fa 5150 * never migratable and not even raw-accessible.
6e6efd61 5151 */
7a0e58fa
PM
5152 if ((r->type & ARM_CP_SPECIAL)) {
5153 r2->type |= ARM_CP_NO_RAW;
5154 }
5155 if (((r->crm == CP_ANY) && crm != 0) ||
6e6efd61
PM
5156 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5157 ((r->opc2 == CP_ANY) && opc2 != 0)) {
7a0e58fa 5158 r2->type |= ARM_CP_ALIAS;
6e6efd61
PM
5159 }
5160
375421cc
PM
5161 /* Check that raw accesses are either forbidden or handled. Note that
5162 * we can't assert this earlier because the setup of fieldoffset for
5163 * banked registers has to be done first.
5164 */
5165 if (!(r2->type & ARM_CP_NO_RAW)) {
5166 assert(!raw_accessors_invalid(r2));
5167 }
5168
6e6efd61
PM
5169 /* Overriding of an existing definition must be explicitly
5170 * requested.
5171 */
5172 if (!(r->type & ARM_CP_OVERRIDE)) {
5173 ARMCPRegInfo *oldreg;
5174 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5175 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5176 fprintf(stderr, "Register redefined: cp=%d %d bit "
5177 "crn=%d crm=%d opc1=%d opc2=%d, "
5178 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5179 r2->crn, r2->crm, r2->opc1, r2->opc2,
5180 oldreg->name, r2->name);
5181 g_assert_not_reached();
5182 }
5183 }
5184 g_hash_table_insert(cpu->cp_regs, key, r2);
5185}
5186
5187
4b6a83fb
PM
5188void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5189 const ARMCPRegInfo *r, void *opaque)
5190{
5191 /* Define implementations of coprocessor registers.
5192 * We store these in a hashtable because typically
5193 * there are less than 150 registers in a space which
5194 * is 16*16*16*8*8 = 262144 in size.
5195 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5196 * If a register is defined twice then the second definition is
5197 * used, so this can be used to define some generic registers and
5198 * then override them with implementation specific variations.
5199 * At least one of the original and the second definition should
5200 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5201 * against accidental use.
f5a0a5a5
PM
5202 *
5203 * The state field defines whether the register is to be
5204 * visible in the AArch32 or AArch64 execution state. If the
5205 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5206 * reginfo structure for the AArch32 view, which sees the lower
5207 * 32 bits of the 64 bit register.
5208 *
5209 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5210 * be wildcarded. AArch64 registers are always considered to be 64
5211 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5212 * the register, if any.
4b6a83fb 5213 */
f5a0a5a5 5214 int crm, opc1, opc2, state;
4b6a83fb
PM
5215 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5216 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5217 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5218 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5219 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5220 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5221 /* 64 bit registers have only CRm and Opc1 fields */
5222 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
f5a0a5a5
PM
5223 /* op0 only exists in the AArch64 encodings */
5224 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5225 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5226 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5227 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5228 * encodes a minimum access level for the register. We roll this
5229 * runtime check into our general permission check code, so check
5230 * here that the reginfo's specified permissions are strict enough
5231 * to encompass the generic architectural permission check.
5232 */
5233 if (r->state != ARM_CP_STATE_AA32) {
5234 int mask = 0;
5235 switch (r->opc1) {
5236 case 0: case 1: case 2:
5237 /* min_EL EL1 */
5238 mask = PL1_RW;
5239 break;
5240 case 3:
5241 /* min_EL EL0 */
5242 mask = PL0_RW;
5243 break;
5244 case 4:
5245 /* min_EL EL2 */
5246 mask = PL2_RW;
5247 break;
5248 case 5:
5249 /* unallocated encoding, so not possible */
5250 assert(false);
5251 break;
5252 case 6:
5253 /* min_EL EL3 */
5254 mask = PL3_RW;
5255 break;
5256 case 7:
5257 /* min_EL EL1, secure mode only (we don't check the latter) */
5258 mask = PL1_RW;
5259 break;
5260 default:
5261 /* broken reginfo with out-of-range opc1 */
5262 assert(false);
5263 break;
5264 }
5265 /* assert our permissions are not too lax (stricter is fine) */
5266 assert((r->access & ~mask) == 0);
5267 }
5268
4b6a83fb
PM
5269 /* Check that the register definition has enough info to handle
5270 * reads and writes if they are permitted.
5271 */
5272 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5273 if (r->access & PL3_R) {
3f3c82a5
FA
5274 assert((r->fieldoffset ||
5275 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5276 r->readfn);
4b6a83fb
PM
5277 }
5278 if (r->access & PL3_W) {
3f3c82a5
FA
5279 assert((r->fieldoffset ||
5280 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5281 r->writefn);
4b6a83fb
PM
5282 }
5283 }
5284 /* Bad type field probably means missing sentinel at end of reg list */
5285 assert(cptype_valid(r->type));
5286 for (crm = crmmin; crm <= crmmax; crm++) {
5287 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5288 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
f5a0a5a5
PM
5289 for (state = ARM_CP_STATE_AA32;
5290 state <= ARM_CP_STATE_AA64; state++) {
5291 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5292 continue;
5293 }
3f3c82a5
FA
5294 if (state == ARM_CP_STATE_AA32) {
5295 /* Under AArch32 CP registers can be common
5296 * (same for secure and non-secure world) or banked.
5297 */
5298 switch (r->secure) {
5299 case ARM_CP_SECSTATE_S:
5300 case ARM_CP_SECSTATE_NS:
5301 add_cpreg_to_hashtable(cpu, r, opaque, state,
5302 r->secure, crm, opc1, opc2);
5303 break;
5304 default:
5305 add_cpreg_to_hashtable(cpu, r, opaque, state,
5306 ARM_CP_SECSTATE_S,
5307 crm, opc1, opc2);
5308 add_cpreg_to_hashtable(cpu, r, opaque, state,
5309 ARM_CP_SECSTATE_NS,
5310 crm, opc1, opc2);
5311 break;
5312 }
5313 } else {
5314 /* AArch64 registers get mapped to non-secure instance
5315 * of AArch32 */
5316 add_cpreg_to_hashtable(cpu, r, opaque, state,
5317 ARM_CP_SECSTATE_NS,
5318 crm, opc1, opc2);
5319 }
f5a0a5a5 5320 }
4b6a83fb
PM
5321 }
5322 }
5323 }
5324}
5325
5326void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5327 const ARMCPRegInfo *regs, void *opaque)
5328{
5329 /* Define a whole list of registers */
5330 const ARMCPRegInfo *r;
5331 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5332 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5333 }
5334}
5335
60322b39 5336const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4b6a83fb 5337{
60322b39 5338 return g_hash_table_lookup(cpregs, &encoded_cp);
4b6a83fb
PM
5339}
5340
c4241c7d
PM
5341void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5342 uint64_t value)
4b6a83fb
PM
5343{
5344 /* Helper coprocessor write function for write-ignore registers */
4b6a83fb
PM
5345}
5346
c4241c7d 5347uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4b6a83fb
PM
5348{
5349 /* Helper coprocessor write function for read-as-zero registers */
4b6a83fb
PM
5350 return 0;
5351}
5352
f5a0a5a5
PM
5353void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5354{
5355 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5356}
5357
af393ffc 5358static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
37064a8b
PM
5359{
5360 /* Return true if it is not valid for us to switch to
5361 * this CPU mode (ie all the UNPREDICTABLE cases in
5362 * the ARM ARM CPSRWriteByInstr pseudocode).
5363 */
af393ffc
PM
5364
5365 /* Changes to or from Hyp via MSR and CPS are illegal. */
5366 if (write_type == CPSRWriteByInstr &&
5367 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5368 mode == ARM_CPU_MODE_HYP)) {
5369 return 1;
5370 }
5371
37064a8b
PM
5372 switch (mode) {
5373 case ARM_CPU_MODE_USR:
10eacda7 5374 return 0;
37064a8b
PM
5375 case ARM_CPU_MODE_SYS:
5376 case ARM_CPU_MODE_SVC:
5377 case ARM_CPU_MODE_ABT:
5378 case ARM_CPU_MODE_UND:
5379 case ARM_CPU_MODE_IRQ:
5380 case ARM_CPU_MODE_FIQ:
52ff951b
PM
5381 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5382 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5383 */
10eacda7
PM
5384 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5385 * and CPS are treated as illegal mode changes.
5386 */
5387 if (write_type == CPSRWriteByInstr &&
5388 (env->cp15.hcr_el2 & HCR_TGE) &&
5389 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5390 !arm_is_secure_below_el3(env)) {
5391 return 1;
5392 }
37064a8b 5393 return 0;
e6c8fc07
PM
5394 case ARM_CPU_MODE_HYP:
5395 return !arm_feature(env, ARM_FEATURE_EL2)
5396 || arm_current_el(env) < 2 || arm_is_secure(env);
027fc527 5397 case ARM_CPU_MODE_MON:
58ae2d1f 5398 return arm_current_el(env) < 3;
37064a8b
PM
5399 default:
5400 return 1;
5401 }
5402}
5403
2f4a40e5
AZ
5404uint32_t cpsr_read(CPUARMState *env)
5405{
5406 int ZF;
6fbe23d5
PB
5407 ZF = (env->ZF == 0);
5408 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
5409 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5410 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5411 | ((env->condexec_bits & 0xfc) << 8)
af519934 5412 | (env->GE << 16) | (env->daif & CPSR_AIF);
2f4a40e5
AZ
5413}
5414
50866ba5
PM
5415void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5416 CPSRWriteType write_type)
2f4a40e5 5417{
6e8801f9
FA
5418 uint32_t changed_daif;
5419
2f4a40e5 5420 if (mask & CPSR_NZCV) {
6fbe23d5
PB
5421 env->ZF = (~val) & CPSR_Z;
5422 env->NF = val;
2f4a40e5
AZ
5423 env->CF = (val >> 29) & 1;
5424 env->VF = (val << 3) & 0x80000000;
5425 }
5426 if (mask & CPSR_Q)
5427 env->QF = ((val & CPSR_Q) != 0);
5428 if (mask & CPSR_T)
5429 env->thumb = ((val & CPSR_T) != 0);
5430 if (mask & CPSR_IT_0_1) {
5431 env->condexec_bits &= ~3;
5432 env->condexec_bits |= (val >> 25) & 3;
5433 }
5434 if (mask & CPSR_IT_2_7) {
5435 env->condexec_bits &= 3;
5436 env->condexec_bits |= (val >> 8) & 0xfc;
5437 }
5438 if (mask & CPSR_GE) {
5439 env->GE = (val >> 16) & 0xf;
5440 }
5441
6e8801f9
FA
5442 /* In a V7 implementation that includes the security extensions but does
5443 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5444 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5445 * bits respectively.
5446 *
5447 * In a V8 implementation, it is permitted for privileged software to
5448 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5449 */
f8c88bbc 5450 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6e8801f9
FA
5451 arm_feature(env, ARM_FEATURE_EL3) &&
5452 !arm_feature(env, ARM_FEATURE_EL2) &&
5453 !arm_is_secure(env)) {
5454
5455 changed_daif = (env->daif ^ val) & mask;
5456
5457 if (changed_daif & CPSR_A) {
5458 /* Check to see if we are allowed to change the masking of async
5459 * abort exceptions from a non-secure state.
5460 */
5461 if (!(env->cp15.scr_el3 & SCR_AW)) {
5462 qemu_log_mask(LOG_GUEST_ERROR,
5463 "Ignoring attempt to switch CPSR_A flag from "
5464 "non-secure world with SCR.AW bit clear\n");
5465 mask &= ~CPSR_A;
5466 }
5467 }
5468
5469 if (changed_daif & CPSR_F) {
5470 /* Check to see if we are allowed to change the masking of FIQ
5471 * exceptions from a non-secure state.
5472 */
5473 if (!(env->cp15.scr_el3 & SCR_FW)) {
5474 qemu_log_mask(LOG_GUEST_ERROR,
5475 "Ignoring attempt to switch CPSR_F flag from "
5476 "non-secure world with SCR.FW bit clear\n");
5477 mask &= ~CPSR_F;
5478 }
5479
5480 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5481 * If this bit is set software is not allowed to mask
5482 * FIQs, but is allowed to set CPSR_F to 0.
5483 */
5484 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5485 (val & CPSR_F)) {
5486 qemu_log_mask(LOG_GUEST_ERROR,
5487 "Ignoring attempt to enable CPSR_F flag "
5488 "(non-maskable FIQ [NMFI] support enabled)\n");
5489 mask &= ~CPSR_F;
5490 }
5491 }
5492 }
5493
4cc35614
PM
5494 env->daif &= ~(CPSR_AIF & mask);
5495 env->daif |= val & CPSR_AIF & mask;
5496
f8c88bbc
PM
5497 if (write_type != CPSRWriteRaw &&
5498 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8c4f0eb9
PM
5499 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5500 /* Note that we can only get here in USR mode if this is a
5501 * gdb stub write; for this case we follow the architectural
5502 * behaviour for guest writes in USR mode of ignoring an attempt
5503 * to switch mode. (Those are caught by translate.c for writes
5504 * triggered by guest instructions.)
5505 */
5506 mask &= ~CPSR_M;
5507 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
81907a58
PM
5508 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5509 * v7, and has defined behaviour in v8:
5510 * + leave CPSR.M untouched
5511 * + allow changes to the other CPSR fields
5512 * + set PSTATE.IL
5513 * For user changes via the GDB stub, we don't set PSTATE.IL,
5514 * as this would be unnecessarily harsh for a user error.
37064a8b
PM
5515 */
5516 mask &= ~CPSR_M;
81907a58
PM
5517 if (write_type != CPSRWriteByGDBStub &&
5518 arm_feature(env, ARM_FEATURE_V8)) {
5519 mask |= CPSR_IL;
5520 val |= CPSR_IL;
5521 }
37064a8b
PM
5522 } else {
5523 switch_mode(env, val & CPSR_M);
5524 }
2f4a40e5
AZ
5525 }
5526 mask &= ~CACHED_CPSR_BITS;
5527 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5528}
5529
b26eefb6
PB
5530/* Sign/zero extend */
5531uint32_t HELPER(sxtb16)(uint32_t x)
5532{
5533 uint32_t res;
5534 res = (uint16_t)(int8_t)x;
5535 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5536 return res;
5537}
5538
5539uint32_t HELPER(uxtb16)(uint32_t x)
5540{
5541 uint32_t res;
5542 res = (uint16_t)(uint8_t)x;
5543 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5544 return res;
5545}
5546
f51bbbfe
PB
5547uint32_t HELPER(clz)(uint32_t x)
5548{
7bbcb0af 5549 return clz32(x);
f51bbbfe
PB
5550}
5551
3670669c
PB
5552int32_t HELPER(sdiv)(int32_t num, int32_t den)
5553{
5554 if (den == 0)
5555 return 0;
686eeb93
AJ
5556 if (num == INT_MIN && den == -1)
5557 return INT_MIN;
3670669c
PB
5558 return num / den;
5559}
5560
5561uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5562{
5563 if (den == 0)
5564 return 0;
5565 return num / den;
5566}
5567
5568uint32_t HELPER(rbit)(uint32_t x)
5569{
42fedbca 5570 return revbit32(x);
3670669c
PB
5571}
5572
5fafdf24 5573#if defined(CONFIG_USER_ONLY)
b5ff1b31 5574
9ee6e8bb 5575/* These should probably raise undefined insn exceptions. */
0ecb72a5 5576void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb 5577{
a47dddd7
AF
5578 ARMCPU *cpu = arm_env_get_cpu(env);
5579
5580 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
9ee6e8bb
PB
5581}
5582
0ecb72a5 5583uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 5584{
a47dddd7
AF
5585 ARMCPU *cpu = arm_env_get_cpu(env);
5586
5587 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
9ee6e8bb
PB
5588 return 0;
5589}
5590
0ecb72a5 5591void switch_mode(CPUARMState *env, int mode)
b5ff1b31 5592{
a47dddd7
AF
5593 ARMCPU *cpu = arm_env_get_cpu(env);
5594
5595 if (mode != ARM_CPU_MODE_USR) {
5596 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5597 }
b5ff1b31
FB
5598}
5599
012a906b
GB
5600uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5601 uint32_t cur_el, bool secure)
9e729b57
EI
5602{
5603 return 1;
5604}
5605
ce02049d
GB
5606void aarch64_sync_64_to_32(CPUARMState *env)
5607{
5608 g_assert_not_reached();
5609}
5610
b5ff1b31
FB
5611#else
5612
0ecb72a5 5613void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
5614{
5615 int old_mode;
5616 int i;
5617
5618 old_mode = env->uncached_cpsr & CPSR_M;
5619 if (mode == old_mode)
5620 return;
5621
5622 if (old_mode == ARM_CPU_MODE_FIQ) {
5623 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 5624 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
5625 } else if (mode == ARM_CPU_MODE_FIQ) {
5626 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 5627 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
5628 }
5629
f5206413 5630 i = bank_number(old_mode);
b5ff1b31
FB
5631 env->banked_r13[i] = env->regs[13];
5632 env->banked_r14[i] = env->regs[14];
5633 env->banked_spsr[i] = env->spsr;
5634
f5206413 5635 i = bank_number(mode);
b5ff1b31
FB
5636 env->regs[13] = env->banked_r13[i];
5637 env->regs[14] = env->banked_r14[i];
5638 env->spsr = env->banked_spsr[i];
5639}
5640
0eeb17d6
GB
5641/* Physical Interrupt Target EL Lookup Table
5642 *
5643 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5644 *
5645 * The below multi-dimensional table is used for looking up the target
5646 * exception level given numerous condition criteria. Specifically, the
5647 * target EL is based on SCR and HCR routing controls as well as the
5648 * currently executing EL and secure state.
5649 *
5650 * Dimensions:
5651 * target_el_table[2][2][2][2][2][4]
5652 * | | | | | +--- Current EL
5653 * | | | | +------ Non-secure(0)/Secure(1)
5654 * | | | +--------- HCR mask override
5655 * | | +------------ SCR exec state control
5656 * | +--------------- SCR mask override
5657 * +------------------ 32-bit(0)/64-bit(1) EL3
5658 *
5659 * The table values are as such:
5660 * 0-3 = EL0-EL3
5661 * -1 = Cannot occur
5662 *
5663 * The ARM ARM target EL table includes entries indicating that an "exception
5664 * is not taken". The two cases where this is applicable are:
5665 * 1) An exception is taken from EL3 but the SCR does not have the exception
5666 * routed to EL3.
5667 * 2) An exception is taken from EL2 but the HCR does not have the exception
5668 * routed to EL2.
5669 * In these two cases, the below table contain a target of EL1. This value is
5670 * returned as it is expected that the consumer of the table data will check
5671 * for "target EL >= current EL" to ensure the exception is not taken.
5672 *
5673 * SCR HCR
5674 * 64 EA AMO From
5675 * BIT IRQ IMO Non-secure Secure
5676 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5677 */
82c39f6a 5678static const int8_t target_el_table[2][2][2][2][2][4] = {
0eeb17d6
GB
5679 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5680 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5681 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5682 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5683 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5684 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5685 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5686 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5687 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5688 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5689 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5690 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5691 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5692 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5693 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5694 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5695};
5696
5697/*
5698 * Determine the target EL for physical exceptions
5699 */
012a906b
GB
5700uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5701 uint32_t cur_el, bool secure)
0eeb17d6
GB
5702{
5703 CPUARMState *env = cs->env_ptr;
2cde031f 5704 int rw;
0eeb17d6
GB
5705 int scr;
5706 int hcr;
5707 int target_el;
2cde031f
SS
5708 /* Is the highest EL AArch64? */
5709 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
5710
5711 if (arm_feature(env, ARM_FEATURE_EL3)) {
5712 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
5713 } else {
5714 /* Either EL2 is the highest EL (and so the EL2 register width
5715 * is given by is64); or there is no EL2 or EL3, in which case
5716 * the value of 'rw' does not affect the table lookup anyway.
5717 */
5718 rw = is64;
5719 }
0eeb17d6
GB
5720
5721 switch (excp_idx) {
5722 case EXCP_IRQ:
5723 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
5724 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
5725 break;
5726 case EXCP_FIQ:
5727 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
5728 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
5729 break;
5730 default:
5731 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
5732 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
5733 break;
5734 };
5735
5736 /* If HCR.TGE is set then HCR is treated as being 1 */
5737 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
5738
5739 /* Perform a table-lookup for the target EL given the current state */
5740 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
5741
5742 assert(target_el > 0);
5743
5744 return target_el;
5745}
5746
9ee6e8bb
PB
5747static void v7m_push(CPUARMState *env, uint32_t val)
5748{
70d74660
AF
5749 CPUState *cs = CPU(arm_env_get_cpu(env));
5750
9ee6e8bb 5751 env->regs[13] -= 4;
ab1da857 5752 stl_phys(cs->as, env->regs[13], val);
9ee6e8bb
PB
5753}
5754
5755static uint32_t v7m_pop(CPUARMState *env)
5756{
70d74660 5757 CPUState *cs = CPU(arm_env_get_cpu(env));
9ee6e8bb 5758 uint32_t val;
70d74660 5759
fdfba1a2 5760 val = ldl_phys(cs->as, env->regs[13]);
9ee6e8bb
PB
5761 env->regs[13] += 4;
5762 return val;
5763}
5764
5765/* Switch to V7M main or process stack pointer. */
5766static void switch_v7m_sp(CPUARMState *env, int process)
5767{
5768 uint32_t tmp;
5769 if (env->v7m.current_sp != process) {
5770 tmp = env->v7m.other_sp;
5771 env->v7m.other_sp = env->regs[13];
5772 env->regs[13] = tmp;
5773 env->v7m.current_sp = process;
5774 }
5775}
5776
5777static void do_v7m_exception_exit(CPUARMState *env)
5778{
5779 uint32_t type;
5780 uint32_t xpsr;
5781
5782 type = env->regs[15];
5783 if (env->v7m.exception != 0)
983fe826 5784 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
9ee6e8bb
PB
5785
5786 /* Switch to the target stack. */
5787 switch_v7m_sp(env, (type & 4) != 0);
5788 /* Pop registers. */
5789 env->regs[0] = v7m_pop(env);
5790 env->regs[1] = v7m_pop(env);
5791 env->regs[2] = v7m_pop(env);
5792 env->regs[3] = v7m_pop(env);
5793 env->regs[12] = v7m_pop(env);
5794 env->regs[14] = v7m_pop(env);
5795 env->regs[15] = v7m_pop(env);
fcf83ab1
PM
5796 if (env->regs[15] & 1) {
5797 qemu_log_mask(LOG_GUEST_ERROR,
5798 "M profile return from interrupt with misaligned "
5799 "PC is UNPREDICTABLE\n");
5800 /* Actual hardware seems to ignore the lsbit, and there are several
5801 * RTOSes out there which incorrectly assume the r15 in the stack
5802 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5803 */
5804 env->regs[15] &= ~1U;
5805 }
9ee6e8bb
PB
5806 xpsr = v7m_pop(env);
5807 xpsr_write(env, xpsr, 0xfffffdff);
5808 /* Undo stack alignment. */
5809 if (xpsr & 0x200)
5810 env->regs[13] |= 4;
5811 /* ??? The exception return type specifies Thread/Handler mode. However
5812 this is also implied by the xPSR value. Not sure what to do
5813 if there is a mismatch. */
5814 /* ??? Likewise for mismatches between the CONTROL register and the stack
5815 pointer. */
5816}
5817
e6f010cc 5818void arm_v7m_cpu_do_interrupt(CPUState *cs)
9ee6e8bb 5819{
e6f010cc
AF
5820 ARMCPU *cpu = ARM_CPU(cs);
5821 CPUARMState *env = &cpu->env;
9ee6e8bb
PB
5822 uint32_t xpsr = xpsr_read(env);
5823 uint32_t lr;
5824 uint32_t addr;
5825
27103424 5826 arm_log_exception(cs->exception_index);
3f1beaca 5827
9ee6e8bb
PB
5828 lr = 0xfffffff1;
5829 if (env->v7m.current_sp)
5830 lr |= 4;
5831 if (env->v7m.exception == 0)
5832 lr |= 8;
5833
5834 /* For exceptions we just mark as pending on the NVIC, and let that
5835 handle it. */
5836 /* TODO: Need to escalate if the current priority is higher than the
5837 one we're raising. */
27103424 5838 switch (cs->exception_index) {
9ee6e8bb 5839 case EXCP_UDEF:
983fe826 5840 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
9ee6e8bb
PB
5841 return;
5842 case EXCP_SWI:
314e2296 5843 /* The PC already points to the next instruction. */
983fe826 5844 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
9ee6e8bb
PB
5845 return;
5846 case EXCP_PREFETCH_ABORT:
5847 case EXCP_DATA_ABORT:
abf1172f
PM
5848 /* TODO: if we implemented the MPU registers, this is where we
5849 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
5850 */
983fe826 5851 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
9ee6e8bb
PB
5852 return;
5853 case EXCP_BKPT:
cfe67cef 5854 if (semihosting_enabled()) {
2ad207d4 5855 int nr;
f9fd40eb 5856 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
2ad207d4
PB
5857 if (nr == 0xab) {
5858 env->regs[15] += 2;
205ace55
CC
5859 qemu_log_mask(CPU_LOG_INT,
5860 "...handling as semihosting call 0x%x\n",
5861 env->regs[0]);
2ad207d4
PB
5862 env->regs[0] = do_arm_semihosting(env);
5863 return;
5864 }
5865 }
983fe826 5866 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
9ee6e8bb
PB
5867 return;
5868 case EXCP_IRQ:
983fe826 5869 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
9ee6e8bb
PB
5870 break;
5871 case EXCP_EXCEPTION_EXIT:
5872 do_v7m_exception_exit(env);
5873 return;
5874 default:
a47dddd7 5875 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9ee6e8bb
PB
5876 return; /* Never happens. Keep compiler happy. */
5877 }
5878
5879 /* Align stack pointer. */
5880 /* ??? Should only do this if Configuration Control Register
5881 STACKALIGN bit is set. */
5882 if (env->regs[13] & 4) {
ab19b0ec 5883 env->regs[13] -= 4;
9ee6e8bb
PB
5884 xpsr |= 0x200;
5885 }
6c95676b 5886 /* Switch to the handler mode. */
9ee6e8bb
PB
5887 v7m_push(env, xpsr);
5888 v7m_push(env, env->regs[15]);
5889 v7m_push(env, env->regs[14]);
5890 v7m_push(env, env->regs[12]);
5891 v7m_push(env, env->regs[3]);
5892 v7m_push(env, env->regs[2]);
5893 v7m_push(env, env->regs[1]);
5894 v7m_push(env, env->regs[0]);
5895 switch_v7m_sp(env, 0);
c98d174c
PM
5896 /* Clear IT bits */
5897 env->condexec_bits = 0;
9ee6e8bb 5898 env->regs[14] = lr;
fdfba1a2 5899 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
9ee6e8bb
PB
5900 env->regs[15] = addr & 0xfffffffe;
5901 env->thumb = addr & 1;
5902}
5903
ce02049d
GB
5904/* Function used to synchronize QEMU's AArch64 register set with AArch32
5905 * register set. This is necessary when switching between AArch32 and AArch64
5906 * execution state.
5907 */
5908void aarch64_sync_32_to_64(CPUARMState *env)
5909{
5910 int i;
5911 uint32_t mode = env->uncached_cpsr & CPSR_M;
5912
5913 /* We can blanket copy R[0:7] to X[0:7] */
5914 for (i = 0; i < 8; i++) {
5915 env->xregs[i] = env->regs[i];
5916 }
5917
5918 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
5919 * Otherwise, they come from the banked user regs.
5920 */
5921 if (mode == ARM_CPU_MODE_FIQ) {
5922 for (i = 8; i < 13; i++) {
5923 env->xregs[i] = env->usr_regs[i - 8];
5924 }
5925 } else {
5926 for (i = 8; i < 13; i++) {
5927 env->xregs[i] = env->regs[i];
5928 }
5929 }
5930
5931 /* Registers x13-x23 are the various mode SP and FP registers. Registers
5932 * r13 and r14 are only copied if we are in that mode, otherwise we copy
5933 * from the mode banked register.
5934 */
5935 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
5936 env->xregs[13] = env->regs[13];
5937 env->xregs[14] = env->regs[14];
5938 } else {
5939 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
5940 /* HYP is an exception in that it is copied from r14 */
5941 if (mode == ARM_CPU_MODE_HYP) {
5942 env->xregs[14] = env->regs[14];
5943 } else {
5944 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
5945 }
5946 }
5947
5948 if (mode == ARM_CPU_MODE_HYP) {
5949 env->xregs[15] = env->regs[13];
5950 } else {
5951 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
5952 }
5953
5954 if (mode == ARM_CPU_MODE_IRQ) {
3a9148d0
SS
5955 env->xregs[16] = env->regs[14];
5956 env->xregs[17] = env->regs[13];
ce02049d 5957 } else {
3a9148d0
SS
5958 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
5959 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
ce02049d
GB
5960 }
5961
5962 if (mode == ARM_CPU_MODE_SVC) {
3a9148d0
SS
5963 env->xregs[18] = env->regs[14];
5964 env->xregs[19] = env->regs[13];
ce02049d 5965 } else {
3a9148d0
SS
5966 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
5967 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
ce02049d
GB
5968 }
5969
5970 if (mode == ARM_CPU_MODE_ABT) {
3a9148d0
SS
5971 env->xregs[20] = env->regs[14];
5972 env->xregs[21] = env->regs[13];
ce02049d 5973 } else {
3a9148d0
SS
5974 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
5975 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
ce02049d
GB
5976 }
5977
5978 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
5979 env->xregs[22] = env->regs[14];
5980 env->xregs[23] = env->regs[13];
ce02049d 5981 } else {
3a9148d0
SS
5982 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
5983 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
ce02049d
GB
5984 }
5985
5986 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5987 * mode, then we can copy from r8-r14. Otherwise, we copy from the
5988 * FIQ bank for r8-r14.
5989 */
5990 if (mode == ARM_CPU_MODE_FIQ) {
5991 for (i = 24; i < 31; i++) {
5992 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
5993 }
5994 } else {
5995 for (i = 24; i < 29; i++) {
5996 env->xregs[i] = env->fiq_regs[i - 24];
5997 }
5998 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
5999 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
6000 }
6001
6002 env->pc = env->regs[15];
6003}
6004
6005/* Function used to synchronize QEMU's AArch32 register set with AArch64
6006 * register set. This is necessary when switching between AArch32 and AArch64
6007 * execution state.
6008 */
6009void aarch64_sync_64_to_32(CPUARMState *env)
6010{
6011 int i;
6012 uint32_t mode = env->uncached_cpsr & CPSR_M;
6013
6014 /* We can blanket copy X[0:7] to R[0:7] */
6015 for (i = 0; i < 8; i++) {
6016 env->regs[i] = env->xregs[i];
6017 }
6018
6019 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6020 * Otherwise, we copy x8-x12 into the banked user regs.
6021 */
6022 if (mode == ARM_CPU_MODE_FIQ) {
6023 for (i = 8; i < 13; i++) {
6024 env->usr_regs[i - 8] = env->xregs[i];
6025 }
6026 } else {
6027 for (i = 8; i < 13; i++) {
6028 env->regs[i] = env->xregs[i];
6029 }
6030 }
6031
6032 /* Registers r13 & r14 depend on the current mode.
6033 * If we are in a given mode, we copy the corresponding x registers to r13
6034 * and r14. Otherwise, we copy the x register to the banked r13 and r14
6035 * for the mode.
6036 */
6037 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6038 env->regs[13] = env->xregs[13];
6039 env->regs[14] = env->xregs[14];
6040 } else {
6041 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
6042
6043 /* HYP is an exception in that it does not have its own banked r14 but
6044 * shares the USR r14
6045 */
6046 if (mode == ARM_CPU_MODE_HYP) {
6047 env->regs[14] = env->xregs[14];
6048 } else {
6049 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
6050 }
6051 }
6052
6053 if (mode == ARM_CPU_MODE_HYP) {
6054 env->regs[13] = env->xregs[15];
6055 } else {
6056 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
6057 }
6058
6059 if (mode == ARM_CPU_MODE_IRQ) {
3a9148d0
SS
6060 env->regs[14] = env->xregs[16];
6061 env->regs[13] = env->xregs[17];
ce02049d 6062 } else {
3a9148d0
SS
6063 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
6064 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
ce02049d
GB
6065 }
6066
6067 if (mode == ARM_CPU_MODE_SVC) {
3a9148d0
SS
6068 env->regs[14] = env->xregs[18];
6069 env->regs[13] = env->xregs[19];
ce02049d 6070 } else {
3a9148d0
SS
6071 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
6072 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
ce02049d
GB
6073 }
6074
6075 if (mode == ARM_CPU_MODE_ABT) {
3a9148d0
SS
6076 env->regs[14] = env->xregs[20];
6077 env->regs[13] = env->xregs[21];
ce02049d 6078 } else {
3a9148d0
SS
6079 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
6080 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
ce02049d
GB
6081 }
6082
6083 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
6084 env->regs[14] = env->xregs[22];
6085 env->regs[13] = env->xregs[23];
ce02049d 6086 } else {
3a9148d0
SS
6087 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
6088 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
ce02049d
GB
6089 }
6090
6091 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6092 * mode, then we can copy to r8-r14. Otherwise, we copy to the
6093 * FIQ bank for r8-r14.
6094 */
6095 if (mode == ARM_CPU_MODE_FIQ) {
6096 for (i = 24; i < 31; i++) {
6097 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
6098 }
6099 } else {
6100 for (i = 24; i < 29; i++) {
6101 env->fiq_regs[i - 24] = env->xregs[i];
6102 }
6103 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
6104 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
6105 }
6106
6107 env->regs[15] = env->pc;
6108}
6109
966f758c 6110static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
b5ff1b31 6111{
97a8ea5a
AF
6112 ARMCPU *cpu = ARM_CPU(cs);
6113 CPUARMState *env = &cpu->env;
b5ff1b31
FB
6114 uint32_t addr;
6115 uint32_t mask;
6116 int new_mode;
6117 uint32_t offset;
16a906fd 6118 uint32_t moe;
b5ff1b31 6119
16a906fd
PM
6120 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6121 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
6122 case EC_BREAKPOINT:
6123 case EC_BREAKPOINT_SAME_EL:
6124 moe = 1;
6125 break;
6126 case EC_WATCHPOINT:
6127 case EC_WATCHPOINT_SAME_EL:
6128 moe = 10;
6129 break;
6130 case EC_AA32_BKPT:
6131 moe = 3;
6132 break;
6133 case EC_VECTORCATCH:
6134 moe = 5;
6135 break;
6136 default:
6137 moe = 0;
6138 break;
6139 }
6140
6141 if (moe) {
6142 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
6143 }
6144
b5ff1b31 6145 /* TODO: Vectored interrupt controller. */
27103424 6146 switch (cs->exception_index) {
b5ff1b31
FB
6147 case EXCP_UDEF:
6148 new_mode = ARM_CPU_MODE_UND;
6149 addr = 0x04;
6150 mask = CPSR_I;
6151 if (env->thumb)
6152 offset = 2;
6153 else
6154 offset = 4;
6155 break;
6156 case EXCP_SWI:
6157 new_mode = ARM_CPU_MODE_SVC;
6158 addr = 0x08;
6159 mask = CPSR_I;
601d70b9 6160 /* The PC already points to the next instruction. */
b5ff1b31
FB
6161 offset = 0;
6162 break;
06c949e6 6163 case EXCP_BKPT:
abf1172f 6164 env->exception.fsr = 2;
9ee6e8bb
PB
6165 /* Fall through to prefetch abort. */
6166 case EXCP_PREFETCH_ABORT:
88ca1c2d 6167 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
b848ce2b 6168 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
3f1beaca 6169 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
88ca1c2d 6170 env->exception.fsr, (uint32_t)env->exception.vaddress);
b5ff1b31
FB
6171 new_mode = ARM_CPU_MODE_ABT;
6172 addr = 0x0c;
6173 mask = CPSR_A | CPSR_I;
6174 offset = 4;
6175 break;
6176 case EXCP_DATA_ABORT:
4a7e2d73 6177 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
b848ce2b 6178 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
3f1beaca 6179 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
4a7e2d73 6180 env->exception.fsr,
6cd8a264 6181 (uint32_t)env->exception.vaddress);
b5ff1b31
FB
6182 new_mode = ARM_CPU_MODE_ABT;
6183 addr = 0x10;
6184 mask = CPSR_A | CPSR_I;
6185 offset = 8;
6186 break;
6187 case EXCP_IRQ:
6188 new_mode = ARM_CPU_MODE_IRQ;
6189 addr = 0x18;
6190 /* Disable IRQ and imprecise data aborts. */
6191 mask = CPSR_A | CPSR_I;
6192 offset = 4;
de38d23b
FA
6193 if (env->cp15.scr_el3 & SCR_IRQ) {
6194 /* IRQ routed to monitor mode */
6195 new_mode = ARM_CPU_MODE_MON;
6196 mask |= CPSR_F;
6197 }
b5ff1b31
FB
6198 break;
6199 case EXCP_FIQ:
6200 new_mode = ARM_CPU_MODE_FIQ;
6201 addr = 0x1c;
6202 /* Disable FIQ, IRQ and imprecise data aborts. */
6203 mask = CPSR_A | CPSR_I | CPSR_F;
de38d23b
FA
6204 if (env->cp15.scr_el3 & SCR_FIQ) {
6205 /* FIQ routed to monitor mode */
6206 new_mode = ARM_CPU_MODE_MON;
6207 }
b5ff1b31
FB
6208 offset = 4;
6209 break;
dbe9d163
FA
6210 case EXCP_SMC:
6211 new_mode = ARM_CPU_MODE_MON;
6212 addr = 0x08;
6213 mask = CPSR_A | CPSR_I | CPSR_F;
6214 offset = 0;
6215 break;
b5ff1b31 6216 default:
a47dddd7 6217 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
b5ff1b31
FB
6218 return; /* Never happens. Keep compiler happy. */
6219 }
e89e51a1
FA
6220
6221 if (new_mode == ARM_CPU_MODE_MON) {
6222 addr += env->cp15.mvbar;
137feaa9 6223 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
e89e51a1 6224 /* High vectors. When enabled, base address cannot be remapped. */
b5ff1b31 6225 addr += 0xffff0000;
8641136c
NR
6226 } else {
6227 /* ARM v7 architectures provide a vector base address register to remap
6228 * the interrupt vector table.
e89e51a1 6229 * This register is only followed in non-monitor mode, and is banked.
8641136c
NR
6230 * Note: only bits 31:5 are valid.
6231 */
fb6c91ba 6232 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
b5ff1b31 6233 }
dbe9d163
FA
6234
6235 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
6236 env->cp15.scr_el3 &= ~SCR_NS;
6237 }
6238
b5ff1b31 6239 switch_mode (env, new_mode);
662cefb7
PM
6240 /* For exceptions taken to AArch32 we must clear the SS bit in both
6241 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6242 */
6243 env->uncached_cpsr &= ~PSTATE_SS;
b5ff1b31 6244 env->spsr = cpsr_read(env);
9ee6e8bb
PB
6245 /* Clear IT bits. */
6246 env->condexec_bits = 0;
30a8cac1 6247 /* Switch to the new mode, and to the correct instruction set. */
6d7e6326 6248 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
73462ddd
PC
6249 /* Set new mode endianness */
6250 env->uncached_cpsr &= ~CPSR_E;
6251 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
6252 env->uncached_cpsr |= ~CPSR_E;
6253 }
4cc35614 6254 env->daif |= mask;
be5e7a76
DES
6255 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6256 * and we should just guard the thumb mode on V4 */
6257 if (arm_feature(env, ARM_FEATURE_V4T)) {
137feaa9 6258 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
be5e7a76 6259 }
b5ff1b31
FB
6260 env->regs[14] = env->regs[15] + offset;
6261 env->regs[15] = addr;
b5ff1b31
FB
6262}
6263
966f758c
PM
6264/* Handle exception entry to a target EL which is using AArch64 */
6265static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
f3a9b694
PM
6266{
6267 ARMCPU *cpu = ARM_CPU(cs);
6268 CPUARMState *env = &cpu->env;
6269 unsigned int new_el = env->exception.target_el;
6270 target_ulong addr = env->cp15.vbar_el[new_el];
6271 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
6272
6273 if (arm_current_el(env) < new_el) {
3d6f7617
PM
6274 /* Entry vector offset depends on whether the implemented EL
6275 * immediately lower than the target level is using AArch32 or AArch64
6276 */
6277 bool is_aa64;
6278
6279 switch (new_el) {
6280 case 3:
6281 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
6282 break;
6283 case 2:
6284 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
6285 break;
6286 case 1:
6287 is_aa64 = is_a64(env);
6288 break;
6289 default:
6290 g_assert_not_reached();
6291 }
6292
6293 if (is_aa64) {
f3a9b694
PM
6294 addr += 0x400;
6295 } else {
6296 addr += 0x600;
6297 }
6298 } else if (pstate_read(env) & PSTATE_SP) {
6299 addr += 0x200;
6300 }
6301
f3a9b694
PM
6302 switch (cs->exception_index) {
6303 case EXCP_PREFETCH_ABORT:
6304 case EXCP_DATA_ABORT:
6305 env->cp15.far_el[new_el] = env->exception.vaddress;
6306 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
6307 env->cp15.far_el[new_el]);
6308 /* fall through */
6309 case EXCP_BKPT:
6310 case EXCP_UDEF:
6311 case EXCP_SWI:
6312 case EXCP_HVC:
6313 case EXCP_HYP_TRAP:
6314 case EXCP_SMC:
6315 env->cp15.esr_el[new_el] = env->exception.syndrome;
6316 break;
6317 case EXCP_IRQ:
6318 case EXCP_VIRQ:
6319 addr += 0x80;
6320 break;
6321 case EXCP_FIQ:
6322 case EXCP_VFIQ:
6323 addr += 0x100;
6324 break;
6325 case EXCP_SEMIHOST:
6326 qemu_log_mask(CPU_LOG_INT,
6327 "...handling as semihosting call 0x%" PRIx64 "\n",
6328 env->xregs[0]);
6329 env->xregs[0] = do_arm_semihosting(env);
6330 return;
6331 default:
6332 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6333 }
6334
6335 if (is_a64(env)) {
6336 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
6337 aarch64_save_sp(env, arm_current_el(env));
6338 env->elr_el[new_el] = env->pc;
6339 } else {
6340 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
6341 if (!env->thumb) {
6342 env->cp15.esr_el[new_el] |= 1 << 25;
6343 }
6344 env->elr_el[new_el] = env->regs[15];
6345
6346 aarch64_sync_32_to_64(env);
6347
6348 env->condexec_bits = 0;
6349 }
6350 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
6351 env->elr_el[new_el]);
6352
6353 pstate_write(env, PSTATE_DAIF | new_mode);
6354 env->aarch64 = 1;
6355 aarch64_restore_sp(env, new_el);
6356
6357 env->pc = addr;
6358
6359 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
6360 new_el, env->pc, pstate_read(env));
966f758c
PM
6361}
6362
904c04de
PM
6363static inline bool check_for_semihosting(CPUState *cs)
6364{
6365 /* Check whether this exception is a semihosting call; if so
6366 * then handle it and return true; otherwise return false.
6367 */
6368 ARMCPU *cpu = ARM_CPU(cs);
6369 CPUARMState *env = &cpu->env;
6370
6371 if (is_a64(env)) {
6372 if (cs->exception_index == EXCP_SEMIHOST) {
6373 /* This is always the 64-bit semihosting exception.
6374 * The "is this usermode" and "is semihosting enabled"
6375 * checks have been done at translate time.
6376 */
6377 qemu_log_mask(CPU_LOG_INT,
6378 "...handling as semihosting call 0x%" PRIx64 "\n",
6379 env->xregs[0]);
6380 env->xregs[0] = do_arm_semihosting(env);
6381 return true;
6382 }
6383 return false;
6384 } else {
6385 uint32_t imm;
6386
6387 /* Only intercept calls from privileged modes, to provide some
6388 * semblance of security.
6389 */
6390 if (!semihosting_enabled() ||
6391 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR)) {
6392 return false;
6393 }
6394
6395 switch (cs->exception_index) {
6396 case EXCP_SWI:
6397 /* Check for semihosting interrupt. */
6398 if (env->thumb) {
f9fd40eb 6399 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
904c04de
PM
6400 & 0xff;
6401 if (imm == 0xab) {
6402 break;
6403 }
6404 } else {
f9fd40eb 6405 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
904c04de
PM
6406 & 0xffffff;
6407 if (imm == 0x123456) {
6408 break;
6409 }
6410 }
6411 return false;
6412 case EXCP_BKPT:
6413 /* See if this is a semihosting syscall. */
6414 if (env->thumb) {
f9fd40eb 6415 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
904c04de
PM
6416 & 0xff;
6417 if (imm == 0xab) {
6418 env->regs[15] += 2;
6419 break;
6420 }
6421 }
6422 return false;
6423 default:
6424 return false;
6425 }
6426
6427 qemu_log_mask(CPU_LOG_INT,
6428 "...handling as semihosting call 0x%x\n",
6429 env->regs[0]);
6430 env->regs[0] = do_arm_semihosting(env);
6431 return true;
6432 }
6433}
6434
966f758c
PM
6435/* Handle a CPU exception for A and R profile CPUs.
6436 * Do any appropriate logging, handle PSCI calls, and then hand off
6437 * to the AArch64-entry or AArch32-entry function depending on the
6438 * target exception level's register width.
6439 */
6440void arm_cpu_do_interrupt(CPUState *cs)
6441{
6442 ARMCPU *cpu = ARM_CPU(cs);
6443 CPUARMState *env = &cpu->env;
6444 unsigned int new_el = env->exception.target_el;
6445
6446 assert(!IS_M(env));
6447
6448 arm_log_exception(cs->exception_index);
6449 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
6450 new_el);
6451 if (qemu_loglevel_mask(CPU_LOG_INT)
6452 && !excp_is_internal(cs->exception_index)) {
6453 qemu_log_mask(CPU_LOG_INT, "...with ESR %x/0x%" PRIx32 "\n",
6454 env->exception.syndrome >> ARM_EL_EC_SHIFT,
6455 env->exception.syndrome);
6456 }
6457
6458 if (arm_is_psci_call(cpu, cs->exception_index)) {
6459 arm_handle_psci_call(cpu);
6460 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
6461 return;
6462 }
6463
904c04de
PM
6464 /* Semihosting semantics depend on the register width of the
6465 * code that caused the exception, not the target exception level,
6466 * so must be handled here.
966f758c 6467 */
904c04de
PM
6468 if (check_for_semihosting(cs)) {
6469 return;
6470 }
6471
6472 assert(!excp_is_internal(cs->exception_index));
6473 if (arm_el_is_aa64(env, new_el)) {
966f758c
PM
6474 arm_cpu_do_interrupt_aarch64(cs);
6475 } else {
6476 arm_cpu_do_interrupt_aarch32(cs);
6477 }
f3a9b694
PM
6478
6479 if (!kvm_enabled()) {
6480 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
6481 }
6482}
0480f69a
PM
6483
6484/* Return the exception level which controls this address translation regime */
6485static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
6486{
6487 switch (mmu_idx) {
6488 case ARMMMUIdx_S2NS:
6489 case ARMMMUIdx_S1E2:
6490 return 2;
6491 case ARMMMUIdx_S1E3:
6492 return 3;
6493 case ARMMMUIdx_S1SE0:
6494 return arm_el_is_aa64(env, 3) ? 1 : 3;
6495 case ARMMMUIdx_S1SE1:
6496 case ARMMMUIdx_S1NSE0:
6497 case ARMMMUIdx_S1NSE1:
6498 return 1;
6499 default:
6500 g_assert_not_reached();
6501 }
6502}
6503
8bf5b6a9
PM
6504/* Return true if this address translation regime is secure */
6505static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
6506{
6507 switch (mmu_idx) {
6508 case ARMMMUIdx_S12NSE0:
6509 case ARMMMUIdx_S12NSE1:
6510 case ARMMMUIdx_S1NSE0:
6511 case ARMMMUIdx_S1NSE1:
6512 case ARMMMUIdx_S1E2:
6513 case ARMMMUIdx_S2NS:
6514 return false;
6515 case ARMMMUIdx_S1E3:
6516 case ARMMMUIdx_S1SE0:
6517 case ARMMMUIdx_S1SE1:
6518 return true;
6519 default:
6520 g_assert_not_reached();
6521 }
6522}
6523
0480f69a
PM
6524/* Return the SCTLR value which controls this address translation regime */
6525static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
6526{
6527 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
6528}
6529
6530/* Return true if the specified stage of address translation is disabled */
6531static inline bool regime_translation_disabled(CPUARMState *env,
6532 ARMMMUIdx mmu_idx)
6533{
6534 if (mmu_idx == ARMMMUIdx_S2NS) {
6535 return (env->cp15.hcr_el2 & HCR_VM) == 0;
6536 }
6537 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
6538}
6539
73462ddd
PC
6540static inline bool regime_translation_big_endian(CPUARMState *env,
6541 ARMMMUIdx mmu_idx)
6542{
6543 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
6544}
6545
0480f69a
PM
6546/* Return the TCR controlling this translation regime */
6547static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
6548{
6549 if (mmu_idx == ARMMMUIdx_S2NS) {
68e9c2fe 6550 return &env->cp15.vtcr_el2;
0480f69a
PM
6551 }
6552 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
6553}
6554
aef878be
GB
6555/* Return the TTBR associated with this translation regime */
6556static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
6557 int ttbrn)
6558{
6559 if (mmu_idx == ARMMMUIdx_S2NS) {
b698e9cf 6560 return env->cp15.vttbr_el2;
aef878be
GB
6561 }
6562 if (ttbrn == 0) {
6563 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
6564 } else {
6565 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
6566 }
6567}
6568
0480f69a
PM
6569/* Return true if the translation regime is using LPAE format page tables */
6570static inline bool regime_using_lpae_format(CPUARMState *env,
6571 ARMMMUIdx mmu_idx)
6572{
6573 int el = regime_el(env, mmu_idx);
6574 if (el == 2 || arm_el_is_aa64(env, el)) {
6575 return true;
6576 }
6577 if (arm_feature(env, ARM_FEATURE_LPAE)
6578 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
6579 return true;
6580 }
6581 return false;
6582}
6583
deb2db99
AR
6584/* Returns true if the stage 1 translation regime is using LPAE format page
6585 * tables. Used when raising alignment exceptions, whose FSR changes depending
6586 * on whether the long or short descriptor format is in use. */
6587bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
30901475 6588{
deb2db99
AR
6589 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6590 mmu_idx += ARMMMUIdx_S1NSE0;
6591 }
6592
30901475
AB
6593 return regime_using_lpae_format(env, mmu_idx);
6594}
6595
0480f69a
PM
6596static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
6597{
6598 switch (mmu_idx) {
6599 case ARMMMUIdx_S1SE0:
6600 case ARMMMUIdx_S1NSE0:
6601 return true;
6602 default:
6603 return false;
6604 case ARMMMUIdx_S12NSE0:
6605 case ARMMMUIdx_S12NSE1:
6606 g_assert_not_reached();
6607 }
6608}
6609
0fbf5238
AJ
6610/* Translate section/page access permissions to page
6611 * R/W protection flags
d76951b6
AJ
6612 *
6613 * @env: CPUARMState
6614 * @mmu_idx: MMU index indicating required translation regime
6615 * @ap: The 3-bit access permissions (AP[2:0])
6616 * @domain_prot: The 2-bit domain access permissions
0fbf5238
AJ
6617 */
6618static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
6619 int ap, int domain_prot)
6620{
554b0b09
PM
6621 bool is_user = regime_is_user(env, mmu_idx);
6622
6623 if (domain_prot == 3) {
6624 return PAGE_READ | PAGE_WRITE;
6625 }
6626
554b0b09
PM
6627 switch (ap) {
6628 case 0:
6629 if (arm_feature(env, ARM_FEATURE_V7)) {
6630 return 0;
6631 }
554b0b09
PM
6632 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
6633 case SCTLR_S:
6634 return is_user ? 0 : PAGE_READ;
6635 case SCTLR_R:
6636 return PAGE_READ;
6637 default:
6638 return 0;
6639 }
6640 case 1:
6641 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6642 case 2:
87c3d486 6643 if (is_user) {
0fbf5238 6644 return PAGE_READ;
87c3d486 6645 } else {
554b0b09 6646 return PAGE_READ | PAGE_WRITE;
87c3d486 6647 }
554b0b09
PM
6648 case 3:
6649 return PAGE_READ | PAGE_WRITE;
6650 case 4: /* Reserved. */
6651 return 0;
6652 case 5:
0fbf5238 6653 return is_user ? 0 : PAGE_READ;
554b0b09 6654 case 6:
0fbf5238 6655 return PAGE_READ;
554b0b09 6656 case 7:
87c3d486 6657 if (!arm_feature(env, ARM_FEATURE_V6K)) {
554b0b09 6658 return 0;
87c3d486 6659 }
0fbf5238 6660 return PAGE_READ;
554b0b09 6661 default:
0fbf5238 6662 g_assert_not_reached();
554b0b09 6663 }
b5ff1b31
FB
6664}
6665
d76951b6
AJ
6666/* Translate section/page access permissions to page
6667 * R/W protection flags.
6668 *
d76951b6 6669 * @ap: The 2-bit simple AP (AP[2:1])
d8e052b3 6670 * @is_user: TRUE if accessing from PL0
d76951b6 6671 */
d8e052b3 6672static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
d76951b6 6673{
d76951b6
AJ
6674 switch (ap) {
6675 case 0:
6676 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6677 case 1:
6678 return PAGE_READ | PAGE_WRITE;
6679 case 2:
6680 return is_user ? 0 : PAGE_READ;
6681 case 3:
6682 return PAGE_READ;
6683 default:
6684 g_assert_not_reached();
6685 }
6686}
6687
d8e052b3
AJ
6688static inline int
6689simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
6690{
6691 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
6692}
6693
6ab1a5ee
EI
6694/* Translate S2 section/page access permissions to protection flags
6695 *
6696 * @env: CPUARMState
6697 * @s2ap: The 2-bit stage2 access permissions (S2AP)
6698 * @xn: XN (execute-never) bit
6699 */
6700static int get_S2prot(CPUARMState *env, int s2ap, int xn)
6701{
6702 int prot = 0;
6703
6704 if (s2ap & 1) {
6705 prot |= PAGE_READ;
6706 }
6707 if (s2ap & 2) {
6708 prot |= PAGE_WRITE;
6709 }
6710 if (!xn) {
6711 prot |= PAGE_EXEC;
6712 }
6713 return prot;
6714}
6715
d8e052b3
AJ
6716/* Translate section/page access permissions to protection flags
6717 *
6718 * @env: CPUARMState
6719 * @mmu_idx: MMU index indicating required translation regime
6720 * @is_aa64: TRUE if AArch64
6721 * @ap: The 2-bit simple AP (AP[2:1])
6722 * @ns: NS (non-secure) bit
6723 * @xn: XN (execute-never) bit
6724 * @pxn: PXN (privileged execute-never) bit
6725 */
6726static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
6727 int ap, int ns, int xn, int pxn)
6728{
6729 bool is_user = regime_is_user(env, mmu_idx);
6730 int prot_rw, user_rw;
6731 bool have_wxn;
6732 int wxn = 0;
6733
6734 assert(mmu_idx != ARMMMUIdx_S2NS);
6735
6736 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
6737 if (is_user) {
6738 prot_rw = user_rw;
6739 } else {
6740 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
6741 }
6742
6743 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
6744 return prot_rw;
6745 }
6746
6747 /* TODO have_wxn should be replaced with
6748 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
6749 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
6750 * compatible processors have EL2, which is required for [U]WXN.
6751 */
6752 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
6753
6754 if (have_wxn) {
6755 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
6756 }
6757
6758 if (is_aa64) {
6759 switch (regime_el(env, mmu_idx)) {
6760 case 1:
6761 if (!is_user) {
6762 xn = pxn || (user_rw & PAGE_WRITE);
6763 }
6764 break;
6765 case 2:
6766 case 3:
6767 break;
6768 }
6769 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6770 switch (regime_el(env, mmu_idx)) {
6771 case 1:
6772 case 3:
6773 if (is_user) {
6774 xn = xn || !(user_rw & PAGE_READ);
6775 } else {
6776 int uwxn = 0;
6777 if (have_wxn) {
6778 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
6779 }
6780 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
6781 (uwxn && (user_rw & PAGE_WRITE));
6782 }
6783 break;
6784 case 2:
6785 break;
6786 }
6787 } else {
6788 xn = wxn = 0;
6789 }
6790
6791 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
6792 return prot_rw;
6793 }
6794 return prot_rw | PAGE_EXEC;
6795}
6796
0480f69a
PM
6797static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
6798 uint32_t *table, uint32_t address)
b2fa1797 6799{
0480f69a 6800 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
0480f69a 6801 TCR *tcr = regime_tcr(env, mmu_idx);
11f136ee 6802
11f136ee
FA
6803 if (address & tcr->mask) {
6804 if (tcr->raw_tcr & TTBCR_PD1) {
e389be16
FA
6805 /* Translation table walk disabled for TTBR1 */
6806 return false;
6807 }
aef878be 6808 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
e389be16 6809 } else {
11f136ee 6810 if (tcr->raw_tcr & TTBCR_PD0) {
e389be16
FA
6811 /* Translation table walk disabled for TTBR0 */
6812 return false;
6813 }
aef878be 6814 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
e389be16
FA
6815 }
6816 *table |= (address >> 18) & 0x3ffc;
6817 return true;
b2fa1797
PB
6818}
6819
37785977
EI
6820/* Translate a S1 pagetable walk through S2 if needed. */
6821static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
6822 hwaddr addr, MemTxAttrs txattrs,
6823 uint32_t *fsr,
6824 ARMMMUFaultInfo *fi)
6825{
6826 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
6827 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
6828 target_ulong s2size;
6829 hwaddr s2pa;
6830 int s2prot;
6831 int ret;
6832
6833 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
6834 &txattrs, &s2prot, &s2size, fsr, fi);
6835 if (ret) {
6836 fi->s2addr = addr;
6837 fi->stage2 = true;
6838 fi->s1ptw = true;
6839 return ~0;
6840 }
6841 addr = s2pa;
6842 }
6843 return addr;
6844}
6845
ebca90e4
PM
6846/* All loads done in the course of a page table walk go through here.
6847 * TODO: rather than ignoring errors from physical memory reads (which
6848 * are external aborts in ARM terminology) we should propagate this
6849 * error out so that we can turn it into a Data Abort if this walk
6850 * was being done for a CPU load/store or an address translation instruction
6851 * (but not if it was for a debug access).
6852 */
a614e698
EI
6853static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
6854 ARMMMUIdx mmu_idx, uint32_t *fsr,
6855 ARMMMUFaultInfo *fi)
ebca90e4 6856{
a614e698
EI
6857 ARMCPU *cpu = ARM_CPU(cs);
6858 CPUARMState *env = &cpu->env;
ebca90e4 6859 MemTxAttrs attrs = {};
5ce4ff65 6860 AddressSpace *as;
ebca90e4
PM
6861
6862 attrs.secure = is_secure;
5ce4ff65 6863 as = arm_addressspace(cs, attrs);
a614e698
EI
6864 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
6865 if (fi->s1ptw) {
6866 return 0;
6867 }
73462ddd
PC
6868 if (regime_translation_big_endian(env, mmu_idx)) {
6869 return address_space_ldl_be(as, addr, attrs, NULL);
6870 } else {
6871 return address_space_ldl_le(as, addr, attrs, NULL);
6872 }
ebca90e4
PM
6873}
6874
37785977
EI
6875static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
6876 ARMMMUIdx mmu_idx, uint32_t *fsr,
6877 ARMMMUFaultInfo *fi)
ebca90e4 6878{
37785977
EI
6879 ARMCPU *cpu = ARM_CPU(cs);
6880 CPUARMState *env = &cpu->env;
ebca90e4 6881 MemTxAttrs attrs = {};
5ce4ff65 6882 AddressSpace *as;
ebca90e4
PM
6883
6884 attrs.secure = is_secure;
5ce4ff65 6885 as = arm_addressspace(cs, attrs);
37785977
EI
6886 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
6887 if (fi->s1ptw) {
6888 return 0;
6889 }
73462ddd
PC
6890 if (regime_translation_big_endian(env, mmu_idx)) {
6891 return address_space_ldq_be(as, addr, attrs, NULL);
6892 } else {
6893 return address_space_ldq_le(as, addr, attrs, NULL);
6894 }
ebca90e4
PM
6895}
6896
b7cc4e82
PC
6897static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
6898 int access_type, ARMMMUIdx mmu_idx,
6899 hwaddr *phys_ptr, int *prot,
e14b5a23
EI
6900 target_ulong *page_size, uint32_t *fsr,
6901 ARMMMUFaultInfo *fi)
b5ff1b31 6902{
70d74660 6903 CPUState *cs = CPU(arm_env_get_cpu(env));
b5ff1b31
FB
6904 int code;
6905 uint32_t table;
6906 uint32_t desc;
6907 int type;
6908 int ap;
e389be16 6909 int domain = 0;
dd4ebc2e 6910 int domain_prot;
a8170e5e 6911 hwaddr phys_addr;
0480f69a 6912 uint32_t dacr;
b5ff1b31 6913
9ee6e8bb
PB
6914 /* Pagetable walk. */
6915 /* Lookup l1 descriptor. */
0480f69a 6916 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16
FA
6917 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6918 code = 5;
6919 goto do_fault;
6920 }
a614e698
EI
6921 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
6922 mmu_idx, fsr, fi);
9ee6e8bb 6923 type = (desc & 3);
dd4ebc2e 6924 domain = (desc >> 5) & 0x0f;
0480f69a
PM
6925 if (regime_el(env, mmu_idx) == 1) {
6926 dacr = env->cp15.dacr_ns;
6927 } else {
6928 dacr = env->cp15.dacr_s;
6929 }
6930 domain_prot = (dacr >> (domain * 2)) & 3;
9ee6e8bb 6931 if (type == 0) {
601d70b9 6932 /* Section translation fault. */
9ee6e8bb
PB
6933 code = 5;
6934 goto do_fault;
6935 }
dd4ebc2e 6936 if (domain_prot == 0 || domain_prot == 2) {
9ee6e8bb
PB
6937 if (type == 2)
6938 code = 9; /* Section domain fault. */
6939 else
6940 code = 11; /* Page domain fault. */
6941 goto do_fault;
6942 }
6943 if (type == 2) {
6944 /* 1Mb section. */
6945 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
6946 ap = (desc >> 10) & 3;
6947 code = 13;
d4c430a8 6948 *page_size = 1024 * 1024;
9ee6e8bb
PB
6949 } else {
6950 /* Lookup l2 entry. */
554b0b09
PM
6951 if (type == 1) {
6952 /* Coarse pagetable. */
6953 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
6954 } else {
6955 /* Fine pagetable. */
6956 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
6957 }
a614e698
EI
6958 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
6959 mmu_idx, fsr, fi);
9ee6e8bb
PB
6960 switch (desc & 3) {
6961 case 0: /* Page translation fault. */
6962 code = 7;
6963 goto do_fault;
6964 case 1: /* 64k page. */
6965 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
6966 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 6967 *page_size = 0x10000;
ce819861 6968 break;
9ee6e8bb
PB
6969 case 2: /* 4k page. */
6970 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
c10f7fc3 6971 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
d4c430a8 6972 *page_size = 0x1000;
ce819861 6973 break;
fc1891c7 6974 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
554b0b09 6975 if (type == 1) {
fc1891c7
PM
6976 /* ARMv6/XScale extended small page format */
6977 if (arm_feature(env, ARM_FEATURE_XSCALE)
6978 || arm_feature(env, ARM_FEATURE_V6)) {
554b0b09 6979 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
fc1891c7 6980 *page_size = 0x1000;
554b0b09 6981 } else {
fc1891c7
PM
6982 /* UNPREDICTABLE in ARMv5; we choose to take a
6983 * page translation fault.
6984 */
554b0b09
PM
6985 code = 7;
6986 goto do_fault;
6987 }
6988 } else {
6989 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
fc1891c7 6990 *page_size = 0x400;
554b0b09 6991 }
9ee6e8bb 6992 ap = (desc >> 4) & 3;
ce819861
PB
6993 break;
6994 default:
9ee6e8bb
PB
6995 /* Never happens, but compiler isn't smart enough to tell. */
6996 abort();
ce819861 6997 }
9ee6e8bb
PB
6998 code = 15;
6999 }
0fbf5238
AJ
7000 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7001 *prot |= *prot ? PAGE_EXEC : 0;
7002 if (!(*prot & (1 << access_type))) {
9ee6e8bb
PB
7003 /* Access permission fault. */
7004 goto do_fault;
7005 }
7006 *phys_ptr = phys_addr;
b7cc4e82 7007 return false;
9ee6e8bb 7008do_fault:
b7cc4e82
PC
7009 *fsr = code | (domain << 4);
7010 return true;
9ee6e8bb
PB
7011}
7012
b7cc4e82
PC
7013static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
7014 int access_type, ARMMMUIdx mmu_idx,
7015 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23
EI
7016 target_ulong *page_size, uint32_t *fsr,
7017 ARMMMUFaultInfo *fi)
9ee6e8bb 7018{
70d74660 7019 CPUState *cs = CPU(arm_env_get_cpu(env));
9ee6e8bb
PB
7020 int code;
7021 uint32_t table;
7022 uint32_t desc;
7023 uint32_t xn;
de9b05b8 7024 uint32_t pxn = 0;
9ee6e8bb
PB
7025 int type;
7026 int ap;
de9b05b8 7027 int domain = 0;
dd4ebc2e 7028 int domain_prot;
a8170e5e 7029 hwaddr phys_addr;
0480f69a 7030 uint32_t dacr;
8bf5b6a9 7031 bool ns;
9ee6e8bb
PB
7032
7033 /* Pagetable walk. */
7034 /* Lookup l1 descriptor. */
0480f69a 7035 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16
FA
7036 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7037 code = 5;
7038 goto do_fault;
7039 }
a614e698
EI
7040 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7041 mmu_idx, fsr, fi);
9ee6e8bb 7042 type = (desc & 3);
de9b05b8
PM
7043 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
7044 /* Section translation fault, or attempt to use the encoding
7045 * which is Reserved on implementations without PXN.
7046 */
9ee6e8bb 7047 code = 5;
9ee6e8bb 7048 goto do_fault;
de9b05b8
PM
7049 }
7050 if ((type == 1) || !(desc & (1 << 18))) {
7051 /* Page or Section. */
dd4ebc2e 7052 domain = (desc >> 5) & 0x0f;
9ee6e8bb 7053 }
0480f69a
PM
7054 if (regime_el(env, mmu_idx) == 1) {
7055 dacr = env->cp15.dacr_ns;
7056 } else {
7057 dacr = env->cp15.dacr_s;
7058 }
7059 domain_prot = (dacr >> (domain * 2)) & 3;
dd4ebc2e 7060 if (domain_prot == 0 || domain_prot == 2) {
de9b05b8 7061 if (type != 1) {
9ee6e8bb 7062 code = 9; /* Section domain fault. */
de9b05b8 7063 } else {
9ee6e8bb 7064 code = 11; /* Page domain fault. */
de9b05b8 7065 }
9ee6e8bb
PB
7066 goto do_fault;
7067 }
de9b05b8 7068 if (type != 1) {
9ee6e8bb
PB
7069 if (desc & (1 << 18)) {
7070 /* Supersection. */
7071 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
4e42a6ca
SF
7072 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
7073 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
d4c430a8 7074 *page_size = 0x1000000;
b5ff1b31 7075 } else {
9ee6e8bb
PB
7076 /* Section. */
7077 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
d4c430a8 7078 *page_size = 0x100000;
b5ff1b31 7079 }
9ee6e8bb
PB
7080 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
7081 xn = desc & (1 << 4);
de9b05b8 7082 pxn = desc & 1;
9ee6e8bb 7083 code = 13;
8bf5b6a9 7084 ns = extract32(desc, 19, 1);
9ee6e8bb 7085 } else {
de9b05b8
PM
7086 if (arm_feature(env, ARM_FEATURE_PXN)) {
7087 pxn = (desc >> 2) & 1;
7088 }
8bf5b6a9 7089 ns = extract32(desc, 3, 1);
9ee6e8bb
PB
7090 /* Lookup l2 entry. */
7091 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
a614e698
EI
7092 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7093 mmu_idx, fsr, fi);
9ee6e8bb
PB
7094 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
7095 switch (desc & 3) {
7096 case 0: /* Page translation fault. */
7097 code = 7;
b5ff1b31 7098 goto do_fault;
9ee6e8bb
PB
7099 case 1: /* 64k page. */
7100 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7101 xn = desc & (1 << 15);
d4c430a8 7102 *page_size = 0x10000;
9ee6e8bb
PB
7103 break;
7104 case 2: case 3: /* 4k page. */
7105 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7106 xn = desc & 1;
d4c430a8 7107 *page_size = 0x1000;
9ee6e8bb
PB
7108 break;
7109 default:
7110 /* Never happens, but compiler isn't smart enough to tell. */
7111 abort();
b5ff1b31 7112 }
9ee6e8bb
PB
7113 code = 15;
7114 }
dd4ebc2e 7115 if (domain_prot == 3) {
c0034328
JR
7116 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7117 } else {
0480f69a 7118 if (pxn && !regime_is_user(env, mmu_idx)) {
de9b05b8
PM
7119 xn = 1;
7120 }
c0034328
JR
7121 if (xn && access_type == 2)
7122 goto do_fault;
9ee6e8bb 7123
d76951b6
AJ
7124 if (arm_feature(env, ARM_FEATURE_V6K) &&
7125 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
7126 /* The simplified model uses AP[0] as an access control bit. */
7127 if ((ap & 1) == 0) {
7128 /* Access flag fault. */
7129 code = (code == 15) ? 6 : 3;
7130 goto do_fault;
7131 }
7132 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
7133 } else {
7134 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
c0034328 7135 }
0fbf5238
AJ
7136 if (*prot && !xn) {
7137 *prot |= PAGE_EXEC;
7138 }
7139 if (!(*prot & (1 << access_type))) {
c0034328
JR
7140 /* Access permission fault. */
7141 goto do_fault;
7142 }
3ad493fc 7143 }
8bf5b6a9
PM
7144 if (ns) {
7145 /* The NS bit will (as required by the architecture) have no effect if
7146 * the CPU doesn't support TZ or this is a non-secure translation
7147 * regime, because the attribute will already be non-secure.
7148 */
7149 attrs->secure = false;
7150 }
9ee6e8bb 7151 *phys_ptr = phys_addr;
b7cc4e82 7152 return false;
b5ff1b31 7153do_fault:
b7cc4e82
PC
7154 *fsr = code | (domain << 4);
7155 return true;
b5ff1b31
FB
7156}
7157
3dde962f
PM
7158/* Fault type for long-descriptor MMU fault reporting; this corresponds
7159 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7160 */
7161typedef enum {
7162 translation_fault = 1,
7163 access_fault = 2,
7164 permission_fault = 3,
7165} MMUFaultType;
7166
1853d5a9 7167/*
a0e966c9 7168 * check_s2_mmu_setup
1853d5a9
EI
7169 * @cpu: ARMCPU
7170 * @is_aa64: True if the translation regime is in AArch64 state
7171 * @startlevel: Suggested starting level
7172 * @inputsize: Bitsize of IPAs
7173 * @stride: Page-table stride (See the ARM ARM)
7174 *
a0e966c9
EI
7175 * Returns true if the suggested S2 translation parameters are OK and
7176 * false otherwise.
1853d5a9 7177 */
a0e966c9
EI
7178static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
7179 int inputsize, int stride)
1853d5a9 7180{
98d68ec2
EI
7181 const int grainsize = stride + 3;
7182 int startsizecheck;
7183
1853d5a9
EI
7184 /* Negative levels are never allowed. */
7185 if (level < 0) {
7186 return false;
7187 }
7188
98d68ec2
EI
7189 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
7190 if (startsizecheck < 1 || startsizecheck > stride + 4) {
7191 return false;
7192 }
7193
1853d5a9 7194 if (is_aa64) {
3526423e 7195 CPUARMState *env = &cpu->env;
1853d5a9
EI
7196 unsigned int pamax = arm_pamax(cpu);
7197
7198 switch (stride) {
7199 case 13: /* 64KB Pages. */
7200 if (level == 0 || (level == 1 && pamax <= 42)) {
7201 return false;
7202 }
7203 break;
7204 case 11: /* 16KB Pages. */
7205 if (level == 0 || (level == 1 && pamax <= 40)) {
7206 return false;
7207 }
7208 break;
7209 case 9: /* 4KB Pages. */
7210 if (level == 0 && pamax <= 42) {
7211 return false;
7212 }
7213 break;
7214 default:
7215 g_assert_not_reached();
7216 }
3526423e
EI
7217
7218 /* Inputsize checks. */
7219 if (inputsize > pamax &&
7220 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
7221 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7222 return false;
7223 }
1853d5a9 7224 } else {
1853d5a9
EI
7225 /* AArch32 only supports 4KB pages. Assert on that. */
7226 assert(stride == 9);
7227
7228 if (level == 0) {
7229 return false;
7230 }
1853d5a9
EI
7231 }
7232 return true;
7233}
7234
b7cc4e82
PC
7235static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
7236 int access_type, ARMMMUIdx mmu_idx,
7237 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
e14b5a23
EI
7238 target_ulong *page_size_ptr, uint32_t *fsr,
7239 ARMMMUFaultInfo *fi)
3dde962f 7240{
1853d5a9
EI
7241 ARMCPU *cpu = arm_env_get_cpu(env);
7242 CPUState *cs = CPU(cpu);
3dde962f
PM
7243 /* Read an LPAE long-descriptor translation table. */
7244 MMUFaultType fault_type = translation_fault;
1b4093ea 7245 uint32_t level;
0c5fbf3b 7246 uint32_t epd = 0;
1f4c8c18 7247 int32_t t0sz, t1sz;
2c8dd318 7248 uint32_t tg;
3dde962f
PM
7249 uint64_t ttbr;
7250 int ttbr_select;
2c8dd318 7251 hwaddr descaddr, descmask;
3dde962f
PM
7252 uint32_t tableattrs;
7253 target_ulong page_size;
7254 uint32_t attrs;
973a5434 7255 int32_t stride = 9;
1b4093ea 7256 int32_t va_size;
4ca6a051 7257 int inputsize;
2c8dd318 7258 int32_t tbi = 0;
0480f69a 7259 TCR *tcr = regime_tcr(env, mmu_idx);
d8e052b3 7260 int ap, ns, xn, pxn;
88e8add8
GB
7261 uint32_t el = regime_el(env, mmu_idx);
7262 bool ttbr1_valid = true;
6109769a 7263 uint64_t descaddrmask;
0480f69a
PM
7264
7265 /* TODO:
88e8add8
GB
7266 * This code does not handle the different format TCR for VTCR_EL2.
7267 * This code also does not support shareability levels.
7268 * Attribute and permission bit handling should also be checked when adding
7269 * support for those page table walks.
0480f69a 7270 */
88e8add8 7271 if (arm_el_is_aa64(env, el)) {
1b4093ea 7272 level = 0;
2c8dd318 7273 va_size = 64;
88e8add8 7274 if (el > 1) {
1edee470
EI
7275 if (mmu_idx != ARMMMUIdx_S2NS) {
7276 tbi = extract64(tcr->raw_tcr, 20, 1);
7277 }
88e8add8
GB
7278 } else {
7279 if (extract64(address, 55, 1)) {
7280 tbi = extract64(tcr->raw_tcr, 38, 1);
7281 } else {
7282 tbi = extract64(tcr->raw_tcr, 37, 1);
7283 }
7284 }
2c8dd318 7285 tbi *= 8;
88e8add8
GB
7286
7287 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7288 * invalid.
7289 */
7290 if (el > 1) {
7291 ttbr1_valid = false;
7292 }
d0a2cbce 7293 } else {
1b4093ea
SS
7294 level = 1;
7295 va_size = 32;
d0a2cbce
PM
7296 /* There is no TTBR1 for EL2 */
7297 if (el == 2) {
7298 ttbr1_valid = false;
7299 }
2c8dd318 7300 }
3dde962f
PM
7301
7302 /* Determine whether this address is in the region controlled by
7303 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7304 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7305 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7306 */
0480f69a 7307 if (va_size == 64) {
4ee38098
EI
7308 /* AArch64 translation. */
7309 t0sz = extract32(tcr->raw_tcr, 0, 6);
2c8dd318
RH
7310 t0sz = MIN(t0sz, 39);
7311 t0sz = MAX(t0sz, 16);
4ee38098
EI
7312 } else if (mmu_idx != ARMMMUIdx_S2NS) {
7313 /* AArch32 stage 1 translation. */
7314 t0sz = extract32(tcr->raw_tcr, 0, 3);
7315 } else {
7316 /* AArch32 stage 2 translation. */
7317 bool sext = extract32(tcr->raw_tcr, 4, 1);
7318 bool sign = extract32(tcr->raw_tcr, 3, 1);
7319 t0sz = sextract32(tcr->raw_tcr, 0, 4);
7320
7321 /* If the sign-extend bit is not the same as t0sz[3], the result
7322 * is unpredictable. Flag this as a guest error. */
7323 if (sign != sext) {
7324 qemu_log_mask(LOG_GUEST_ERROR,
7325 "AArch32: VTCR.S / VTCR.T0SZ[3] missmatch\n");
7326 }
2c8dd318 7327 }
1f4c8c18 7328 t1sz = extract32(tcr->raw_tcr, 16, 6);
0480f69a 7329 if (va_size == 64) {
2c8dd318
RH
7330 t1sz = MIN(t1sz, 39);
7331 t1sz = MAX(t1sz, 16);
7332 }
7333 if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
3dde962f
PM
7334 /* there is a ttbr0 region and we are in it (high bits all zero) */
7335 ttbr_select = 0;
88e8add8
GB
7336 } else if (ttbr1_valid && t1sz &&
7337 !extract64(~address, va_size - t1sz, t1sz - tbi)) {
3dde962f
PM
7338 /* there is a ttbr1 region and we are in it (high bits all one) */
7339 ttbr_select = 1;
7340 } else if (!t0sz) {
7341 /* ttbr0 region is "everything not in the ttbr1 region" */
7342 ttbr_select = 0;
88e8add8 7343 } else if (!t1sz && ttbr1_valid) {
3dde962f
PM
7344 /* ttbr1 region is "everything not in the ttbr0 region" */
7345 ttbr_select = 1;
7346 } else {
7347 /* in the gap between the two regions, this is a Translation fault */
7348 fault_type = translation_fault;
7349 goto do_fault;
7350 }
7351
7352 /* Note that QEMU ignores shareability and cacheability attributes,
7353 * so we don't need to do anything with the SH, ORGN, IRGN fields
7354 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
7355 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7356 * implement any ASID-like capability so we can ignore it (instead
7357 * we will always flush the TLB any time the ASID is changed).
7358 */
7359 if (ttbr_select == 0) {
aef878be 7360 ttbr = regime_ttbr(env, mmu_idx, 0);
0c5fbf3b
EI
7361 if (el < 2) {
7362 epd = extract32(tcr->raw_tcr, 7, 1);
7363 }
4ca6a051 7364 inputsize = va_size - t0sz;
2c8dd318 7365
11f136ee 7366 tg = extract32(tcr->raw_tcr, 14, 2);
2c8dd318 7367 if (tg == 1) { /* 64KB pages */
973a5434 7368 stride = 13;
2c8dd318
RH
7369 }
7370 if (tg == 2) { /* 16KB pages */
973a5434 7371 stride = 11;
2c8dd318 7372 }
3dde962f 7373 } else {
88e8add8
GB
7374 /* We should only be here if TTBR1 is valid */
7375 assert(ttbr1_valid);
7376
aef878be 7377 ttbr = regime_ttbr(env, mmu_idx, 1);
11f136ee 7378 epd = extract32(tcr->raw_tcr, 23, 1);
4ca6a051 7379 inputsize = va_size - t1sz;
2c8dd318 7380
11f136ee 7381 tg = extract32(tcr->raw_tcr, 30, 2);
2c8dd318 7382 if (tg == 3) { /* 64KB pages */
973a5434 7383 stride = 13;
2c8dd318
RH
7384 }
7385 if (tg == 1) { /* 16KB pages */
973a5434 7386 stride = 11;
2c8dd318 7387 }
3dde962f
PM
7388 }
7389
0480f69a 7390 /* Here we should have set up all the parameters for the translation:
973a5434 7391 * va_size, inputsize, ttbr, epd, stride, tbi
0480f69a
PM
7392 */
7393
3dde962f 7394 if (epd) {
88e8add8
GB
7395 /* Translation table walk disabled => Translation fault on TLB miss
7396 * Note: This is always 0 on 64-bit EL2 and EL3.
7397 */
3dde962f
PM
7398 goto do_fault;
7399 }
7400
1853d5a9
EI
7401 if (mmu_idx != ARMMMUIdx_S2NS) {
7402 /* The starting level depends on the virtual address size (which can
7403 * be up to 48 bits) and the translation granule size. It indicates
7404 * the number of strides (stride bits at a time) needed to
7405 * consume the bits of the input address. In the pseudocode this is:
7406 * level = 4 - RoundUp((inputsize - grainsize) / stride)
7407 * where their 'inputsize' is our 'inputsize', 'grainsize' is
7408 * our 'stride + 3' and 'stride' is our 'stride'.
7409 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
7410 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
7411 * = 4 - (inputsize - 4) / stride;
7412 */
7413 level = 4 - (inputsize - 4) / stride;
7414 } else {
7415 /* For stage 2 translations the starting level is specified by the
7416 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
7417 */
1b4093ea
SS
7418 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
7419 uint32_t startlevel;
1853d5a9
EI
7420 bool ok;
7421
7422 if (va_size == 32 || stride == 9) {
7423 /* AArch32 or 4KB pages */
1b4093ea 7424 startlevel = 2 - sl0;
1853d5a9
EI
7425 } else {
7426 /* 16KB or 64KB pages */
1b4093ea 7427 startlevel = 3 - sl0;
1853d5a9
EI
7428 }
7429
7430 /* Check that the starting level is valid. */
1b4093ea
SS
7431 ok = check_s2_mmu_setup(cpu, va_size == 64, startlevel,
7432 inputsize, stride);
1853d5a9 7433 if (!ok) {
1853d5a9
EI
7434 fault_type = translation_fault;
7435 goto do_fault;
7436 }
1b4093ea 7437 level = startlevel;
1853d5a9 7438 }
3dde962f
PM
7439
7440 /* Clear the vaddr bits which aren't part of the within-region address,
7441 * so that we don't have to special case things when calculating the
7442 * first descriptor address.
7443 */
4ca6a051
EI
7444 if (va_size != inputsize) {
7445 address &= (1ULL << inputsize) - 1;
2c8dd318
RH
7446 }
7447
973a5434 7448 descmask = (1ULL << (stride + 3)) - 1;
3dde962f
PM
7449
7450 /* Now we can extract the actual base address from the TTBR */
2c8dd318 7451 descaddr = extract64(ttbr, 0, 48);
973a5434 7452 descaddr &= ~((1ULL << (inputsize - (stride * (4 - level)))) - 1);
3dde962f 7453
6109769a
PM
7454 /* The address field in the descriptor goes up to bit 39 for ARMv7
7455 * but up to bit 47 for ARMv8.
7456 */
7457 if (arm_feature(env, ARM_FEATURE_V8)) {
7458 descaddrmask = 0xfffffffff000ULL;
7459 } else {
7460 descaddrmask = 0xfffffff000ULL;
7461 }
7462
ebca90e4
PM
7463 /* Secure accesses start with the page table in secure memory and
7464 * can be downgraded to non-secure at any step. Non-secure accesses
7465 * remain non-secure. We implement this by just ORing in the NSTable/NS
7466 * bits at each step.
7467 */
7468 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
3dde962f
PM
7469 for (;;) {
7470 uint64_t descriptor;
ebca90e4 7471 bool nstable;
3dde962f 7472
973a5434 7473 descaddr |= (address >> (stride * (4 - level))) & descmask;
2c8dd318 7474 descaddr &= ~7ULL;
ebca90e4 7475 nstable = extract32(tableattrs, 4, 1);
37785977
EI
7476 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
7477 if (fi->s1ptw) {
7478 goto do_fault;
7479 }
7480
3dde962f
PM
7481 if (!(descriptor & 1) ||
7482 (!(descriptor & 2) && (level == 3))) {
7483 /* Invalid, or the Reserved level 3 encoding */
7484 goto do_fault;
7485 }
6109769a 7486 descaddr = descriptor & descaddrmask;
3dde962f
PM
7487
7488 if ((descriptor & 2) && (level < 3)) {
7489 /* Table entry. The top five bits are attributes which may
7490 * propagate down through lower levels of the table (and
7491 * which are all arranged so that 0 means "no effect", so
7492 * we can gather them up by ORing in the bits at each level).
7493 */
7494 tableattrs |= extract64(descriptor, 59, 5);
7495 level++;
7496 continue;
7497 }
7498 /* Block entry at level 1 or 2, or page entry at level 3.
7499 * These are basically the same thing, although the number
7500 * of bits we pull in from the vaddr varies.
7501 */
973a5434 7502 page_size = (1ULL << ((stride * (4 - level)) + 3));
3dde962f 7503 descaddr |= (address & (page_size - 1));
6ab1a5ee 7504 /* Extract attributes from the descriptor */
d615efac
IC
7505 attrs = extract64(descriptor, 2, 10)
7506 | (extract64(descriptor, 52, 12) << 10);
6ab1a5ee
EI
7507
7508 if (mmu_idx == ARMMMUIdx_S2NS) {
7509 /* Stage 2 table descriptors do not include any attribute fields */
7510 break;
7511 }
7512 /* Merge in attributes from table descriptors */
3dde962f
PM
7513 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
7514 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
7515 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
7516 * means "force PL1 access only", which means forcing AP[1] to 0.
7517 */
7518 if (extract32(tableattrs, 2, 1)) {
7519 attrs &= ~(1 << 4);
7520 }
ebca90e4 7521 attrs |= nstable << 3; /* NS */
3dde962f
PM
7522 break;
7523 }
7524 /* Here descaddr is the final physical address, and attributes
7525 * are all in attrs.
7526 */
7527 fault_type = access_fault;
7528 if ((attrs & (1 << 8)) == 0) {
7529 /* Access flag */
7530 goto do_fault;
7531 }
d8e052b3
AJ
7532
7533 ap = extract32(attrs, 4, 2);
d8e052b3 7534 xn = extract32(attrs, 12, 1);
d8e052b3 7535
6ab1a5ee
EI
7536 if (mmu_idx == ARMMMUIdx_S2NS) {
7537 ns = true;
7538 *prot = get_S2prot(env, ap, xn);
7539 } else {
7540 ns = extract32(attrs, 3, 1);
7541 pxn = extract32(attrs, 11, 1);
7542 *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);
7543 }
d8e052b3 7544
3dde962f 7545 fault_type = permission_fault;
d8e052b3 7546 if (!(*prot & (1 << access_type))) {
3dde962f
PM
7547 goto do_fault;
7548 }
3dde962f 7549
8bf5b6a9
PM
7550 if (ns) {
7551 /* The NS bit will (as required by the architecture) have no effect if
7552 * the CPU doesn't support TZ or this is a non-secure translation
7553 * regime, because the attribute will already be non-secure.
7554 */
7555 txattrs->secure = false;
7556 }
3dde962f
PM
7557 *phys_ptr = descaddr;
7558 *page_size_ptr = page_size;
b7cc4e82 7559 return false;
3dde962f
PM
7560
7561do_fault:
7562 /* Long-descriptor format IFSR/DFSR value */
b7cc4e82 7563 *fsr = (1 << 9) | (fault_type << 2) | level;
37785977
EI
7564 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
7565 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
b7cc4e82 7566 return true;
3dde962f
PM
7567}
7568
f6bda88f
PC
7569static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
7570 ARMMMUIdx mmu_idx,
7571 int32_t address, int *prot)
7572{
7573 *prot = PAGE_READ | PAGE_WRITE;
7574 switch (address) {
7575 case 0xF0000000 ... 0xFFFFFFFF:
7576 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
7577 *prot |= PAGE_EXEC;
7578 }
7579 break;
7580 case 0x00000000 ... 0x7FFFFFFF:
7581 *prot |= PAGE_EXEC;
7582 break;
7583 }
7584
7585}
7586
7587static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
7588 int access_type, ARMMMUIdx mmu_idx,
7589 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
7590{
7591 ARMCPU *cpu = arm_env_get_cpu(env);
7592 int n;
7593 bool is_user = regime_is_user(env, mmu_idx);
7594
7595 *phys_ptr = address;
7596 *prot = 0;
7597
7598 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
7599 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7600 } else { /* MPU enabled */
7601 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
7602 /* region search */
7603 uint32_t base = env->pmsav7.drbar[n];
7604 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
7605 uint32_t rmask;
7606 bool srdis = false;
7607
7608 if (!(env->pmsav7.drsr[n] & 0x1)) {
7609 continue;
7610 }
7611
7612 if (!rsize) {
7613 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
7614 continue;
7615 }
7616 rsize++;
7617 rmask = (1ull << rsize) - 1;
7618
7619 if (base & rmask) {
7620 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
7621 "to DRSR region size, mask = %" PRIx32,
7622 base, rmask);
7623 continue;
7624 }
7625
7626 if (address < base || address > base + rmask) {
7627 continue;
7628 }
7629
7630 /* Region matched */
7631
7632 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
7633 int i, snd;
7634 uint32_t srdis_mask;
7635
7636 rsize -= 3; /* sub region size (power of 2) */
7637 snd = ((address - base) >> rsize) & 0x7;
7638 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
7639
7640 srdis_mask = srdis ? 0x3 : 0x0;
7641 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
7642 /* This will check in groups of 2, 4 and then 8, whether
7643 * the subregion bits are consistent. rsize is incremented
7644 * back up to give the region size, considering consistent
7645 * adjacent subregions as one region. Stop testing if rsize
7646 * is already big enough for an entire QEMU page.
7647 */
7648 int snd_rounded = snd & ~(i - 1);
7649 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
7650 snd_rounded + 8, i);
7651 if (srdis_mask ^ srdis_multi) {
7652 break;
7653 }
7654 srdis_mask = (srdis_mask << i) | srdis_mask;
7655 rsize++;
7656 }
7657 }
7658 if (rsize < TARGET_PAGE_BITS) {
7659 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
7660 "alignment of %" PRIu32 " bits. Minimum is %d\n",
7661 rsize, TARGET_PAGE_BITS);
7662 continue;
7663 }
7664 if (srdis) {
7665 continue;
7666 }
7667 break;
7668 }
7669
7670 if (n == -1) { /* no hits */
7671 if (cpu->pmsav7_dregion &&
7672 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
7673 /* background fault */
7674 *fsr = 0;
7675 return true;
7676 }
7677 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7678 } else { /* a MPU hit! */
7679 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
7680
7681 if (is_user) { /* User mode AP bit decoding */
7682 switch (ap) {
7683 case 0:
7684 case 1:
7685 case 5:
7686 break; /* no access */
7687 case 3:
7688 *prot |= PAGE_WRITE;
7689 /* fall through */
7690 case 2:
7691 case 6:
7692 *prot |= PAGE_READ | PAGE_EXEC;
7693 break;
7694 default:
7695 qemu_log_mask(LOG_GUEST_ERROR,
7696 "Bad value for AP bits in DRACR %"
7697 PRIx32 "\n", ap);
7698 }
7699 } else { /* Priv. mode AP bits decoding */
7700 switch (ap) {
7701 case 0:
7702 break; /* no access */
7703 case 1:
7704 case 2:
7705 case 3:
7706 *prot |= PAGE_WRITE;
7707 /* fall through */
7708 case 5:
7709 case 6:
7710 *prot |= PAGE_READ | PAGE_EXEC;
7711 break;
7712 default:
7713 qemu_log_mask(LOG_GUEST_ERROR,
7714 "Bad value for AP bits in DRACR %"
7715 PRIx32 "\n", ap);
7716 }
7717 }
7718
7719 /* execute never */
7720 if (env->pmsav7.dracr[n] & (1 << 12)) {
7721 *prot &= ~PAGE_EXEC;
7722 }
7723 }
7724 }
7725
7726 *fsr = 0x00d; /* Permission fault */
7727 return !(*prot & (1 << access_type));
7728}
7729
13689d43
PC
7730static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
7731 int access_type, ARMMMUIdx mmu_idx,
7732 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
9ee6e8bb
PB
7733{
7734 int n;
7735 uint32_t mask;
7736 uint32_t base;
0480f69a 7737 bool is_user = regime_is_user(env, mmu_idx);
9ee6e8bb
PB
7738
7739 *phys_ptr = address;
7740 for (n = 7; n >= 0; n--) {
554b0b09 7741 base = env->cp15.c6_region[n];
87c3d486 7742 if ((base & 1) == 0) {
554b0b09 7743 continue;
87c3d486 7744 }
554b0b09
PM
7745 mask = 1 << ((base >> 1) & 0x1f);
7746 /* Keep this shift separate from the above to avoid an
7747 (undefined) << 32. */
7748 mask = (mask << 1) - 1;
87c3d486 7749 if (((base ^ address) & ~mask) == 0) {
554b0b09 7750 break;
87c3d486 7751 }
9ee6e8bb 7752 }
87c3d486 7753 if (n < 0) {
b7cc4e82
PC
7754 *fsr = 2;
7755 return true;
87c3d486 7756 }
9ee6e8bb
PB
7757
7758 if (access_type == 2) {
7e09797c 7759 mask = env->cp15.pmsav5_insn_ap;
9ee6e8bb 7760 } else {
7e09797c 7761 mask = env->cp15.pmsav5_data_ap;
9ee6e8bb
PB
7762 }
7763 mask = (mask >> (n * 4)) & 0xf;
7764 switch (mask) {
7765 case 0:
b7cc4e82
PC
7766 *fsr = 1;
7767 return true;
9ee6e8bb 7768 case 1:
87c3d486 7769 if (is_user) {
b7cc4e82
PC
7770 *fsr = 1;
7771 return true;
87c3d486 7772 }
554b0b09
PM
7773 *prot = PAGE_READ | PAGE_WRITE;
7774 break;
9ee6e8bb 7775 case 2:
554b0b09 7776 *prot = PAGE_READ;
87c3d486 7777 if (!is_user) {
554b0b09 7778 *prot |= PAGE_WRITE;
87c3d486 7779 }
554b0b09 7780 break;
9ee6e8bb 7781 case 3:
554b0b09
PM
7782 *prot = PAGE_READ | PAGE_WRITE;
7783 break;
9ee6e8bb 7784 case 5:
87c3d486 7785 if (is_user) {
b7cc4e82
PC
7786 *fsr = 1;
7787 return true;
87c3d486 7788 }
554b0b09
PM
7789 *prot = PAGE_READ;
7790 break;
9ee6e8bb 7791 case 6:
554b0b09
PM
7792 *prot = PAGE_READ;
7793 break;
9ee6e8bb 7794 default:
554b0b09 7795 /* Bad permission. */
b7cc4e82
PC
7796 *fsr = 1;
7797 return true;
9ee6e8bb 7798 }
3ad493fc 7799 *prot |= PAGE_EXEC;
b7cc4e82 7800 return false;
9ee6e8bb
PB
7801}
7802
702a9357
PM
7803/* get_phys_addr - get the physical address for this virtual address
7804 *
7805 * Find the physical address corresponding to the given virtual address,
7806 * by doing a translation table walk on MMU based systems or using the
7807 * MPU state on MPU based systems.
7808 *
b7cc4e82
PC
7809 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
7810 * prot and page_size may not be filled in, and the populated fsr value provides
702a9357
PM
7811 * information on why the translation aborted, in the format of a
7812 * DFSR/IFSR fault register, with the following caveats:
7813 * * we honour the short vs long DFSR format differences.
7814 * * the WnR bit is never set (the caller must do this).
f6bda88f 7815 * * for PSMAv5 based systems we don't bother to return a full FSR format
702a9357
PM
7816 * value.
7817 *
7818 * @env: CPUARMState
7819 * @address: virtual address to get physical address for
7820 * @access_type: 0 for read, 1 for write, 2 for execute
d3649702 7821 * @mmu_idx: MMU index indicating required translation regime
702a9357 7822 * @phys_ptr: set to the physical address corresponding to the virtual address
8bf5b6a9 7823 * @attrs: set to the memory transaction attributes to use
702a9357
PM
7824 * @prot: set to the permissions for the page containing phys_ptr
7825 * @page_size: set to the size of the page containing phys_ptr
b7cc4e82 7826 * @fsr: set to the DFSR/IFSR value on failure
702a9357 7827 */
af51f566
EI
7828static bool get_phys_addr(CPUARMState *env, target_ulong address,
7829 int access_type, ARMMMUIdx mmu_idx,
7830 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23
EI
7831 target_ulong *page_size, uint32_t *fsr,
7832 ARMMMUFaultInfo *fi)
9ee6e8bb 7833{
0480f69a 7834 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9b539263
EI
7835 /* Call ourselves recursively to do the stage 1 and then stage 2
7836 * translations.
0480f69a 7837 */
9b539263
EI
7838 if (arm_feature(env, ARM_FEATURE_EL2)) {
7839 hwaddr ipa;
7840 int s2_prot;
7841 int ret;
7842
7843 ret = get_phys_addr(env, address, access_type,
7844 mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs,
7845 prot, page_size, fsr, fi);
7846
7847 /* If S1 fails or S2 is disabled, return early. */
7848 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7849 *phys_ptr = ipa;
7850 return ret;
7851 }
7852
7853 /* S1 is done. Now do S2 translation. */
7854 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
7855 phys_ptr, attrs, &s2_prot,
7856 page_size, fsr, fi);
7857 fi->s2addr = ipa;
7858 /* Combine the S1 and S2 perms. */
7859 *prot &= s2_prot;
7860 return ret;
7861 } else {
7862 /*
7863 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
7864 */
7865 mmu_idx += ARMMMUIdx_S1NSE0;
7866 }
0480f69a 7867 }
d3649702 7868
8bf5b6a9
PM
7869 /* The page table entries may downgrade secure to non-secure, but
7870 * cannot upgrade an non-secure translation regime's attributes
7871 * to secure.
7872 */
7873 attrs->secure = regime_is_secure(env, mmu_idx);
0995bf8c 7874 attrs->user = regime_is_user(env, mmu_idx);
8bf5b6a9 7875
0480f69a
PM
7876 /* Fast Context Switch Extension. This doesn't exist at all in v8.
7877 * In v7 and earlier it affects all stage 1 translations.
7878 */
7879 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
7880 && !arm_feature(env, ARM_FEATURE_V8)) {
7881 if (regime_el(env, mmu_idx) == 3) {
7882 address += env->cp15.fcseidr_s;
7883 } else {
7884 address += env->cp15.fcseidr_ns;
7885 }
54bf36ed 7886 }
9ee6e8bb 7887
f6bda88f
PC
7888 /* pmsav7 has special handling for when MPU is disabled so call it before
7889 * the common MMU/MPU disabled check below.
7890 */
7891 if (arm_feature(env, ARM_FEATURE_MPU) &&
7892 arm_feature(env, ARM_FEATURE_V7)) {
7893 *page_size = TARGET_PAGE_SIZE;
7894 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
7895 phys_ptr, prot, fsr);
7896 }
7897
0480f69a 7898 if (regime_translation_disabled(env, mmu_idx)) {
9ee6e8bb
PB
7899 /* MMU/MPU disabled. */
7900 *phys_ptr = address;
3ad493fc 7901 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
d4c430a8 7902 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb 7903 return 0;
0480f69a
PM
7904 }
7905
7906 if (arm_feature(env, ARM_FEATURE_MPU)) {
f6bda88f 7907 /* Pre-v7 MPU */
d4c430a8 7908 *page_size = TARGET_PAGE_SIZE;
13689d43
PC
7909 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
7910 phys_ptr, prot, fsr);
0480f69a
PM
7911 }
7912
7913 if (regime_using_lpae_format(env, mmu_idx)) {
7914 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
e14b5a23 7915 attrs, prot, page_size, fsr, fi);
0480f69a
PM
7916 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
7917 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
e14b5a23 7918 attrs, prot, page_size, fsr, fi);
9ee6e8bb 7919 } else {
0480f69a 7920 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
e14b5a23 7921 prot, page_size, fsr, fi);
9ee6e8bb
PB
7922 }
7923}
7924
8c6084bf 7925/* Walk the page table and (if the mapping exists) add the page
b7cc4e82
PC
7926 * to the TLB. Return false on success, or true on failure. Populate
7927 * fsr with ARM DFSR/IFSR fault register format value on failure.
8c6084bf 7928 */
b7cc4e82 7929bool arm_tlb_fill(CPUState *cs, vaddr address,
e14b5a23
EI
7930 int access_type, int mmu_idx, uint32_t *fsr,
7931 ARMMMUFaultInfo *fi)
b5ff1b31 7932{
7510454e
AF
7933 ARMCPU *cpu = ARM_CPU(cs);
7934 CPUARMState *env = &cpu->env;
a8170e5e 7935 hwaddr phys_addr;
d4c430a8 7936 target_ulong page_size;
b5ff1b31 7937 int prot;
d3649702 7938 int ret;
8bf5b6a9 7939 MemTxAttrs attrs = {};
b5ff1b31 7940
8bf5b6a9 7941 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
e14b5a23 7942 &attrs, &prot, &page_size, fsr, fi);
b7cc4e82 7943 if (!ret) {
b5ff1b31 7944 /* Map a single [sub]page. */
dcd82c11
AB
7945 phys_addr &= TARGET_PAGE_MASK;
7946 address &= TARGET_PAGE_MASK;
8bf5b6a9
PM
7947 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
7948 prot, mmu_idx, page_size);
d4c430a8 7949 return 0;
b5ff1b31
FB
7950 }
7951
8c6084bf 7952 return ret;
b5ff1b31
FB
7953}
7954
0faea0c7
PM
7955hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
7956 MemTxAttrs *attrs)
b5ff1b31 7957{
00b941e5 7958 ARMCPU *cpu = ARM_CPU(cs);
d3649702 7959 CPUARMState *env = &cpu->env;
a8170e5e 7960 hwaddr phys_addr;
d4c430a8 7961 target_ulong page_size;
b5ff1b31 7962 int prot;
b7cc4e82
PC
7963 bool ret;
7964 uint32_t fsr;
e14b5a23 7965 ARMMMUFaultInfo fi = {};
b5ff1b31 7966
0faea0c7
PM
7967 *attrs = (MemTxAttrs) {};
7968
97ed5ccd 7969 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
0faea0c7 7970 attrs, &prot, &page_size, &fsr, &fi);
b5ff1b31 7971
b7cc4e82 7972 if (ret) {
b5ff1b31 7973 return -1;
00b941e5 7974 }
b5ff1b31
FB
7975 return phys_addr;
7976}
7977
0ecb72a5 7978uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 7979{
a47dddd7
AF
7980 ARMCPU *cpu = arm_env_get_cpu(env);
7981
9ee6e8bb
PB
7982 switch (reg) {
7983 case 0: /* APSR */
7984 return xpsr_read(env) & 0xf8000000;
7985 case 1: /* IAPSR */
7986 return xpsr_read(env) & 0xf80001ff;
7987 case 2: /* EAPSR */
7988 return xpsr_read(env) & 0xff00fc00;
7989 case 3: /* xPSR */
7990 return xpsr_read(env) & 0xff00fdff;
7991 case 5: /* IPSR */
7992 return xpsr_read(env) & 0x000001ff;
7993 case 6: /* EPSR */
7994 return xpsr_read(env) & 0x0700fc00;
7995 case 7: /* IEPSR */
7996 return xpsr_read(env) & 0x0700edff;
7997 case 8: /* MSP */
7998 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
7999 case 9: /* PSP */
8000 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
8001 case 16: /* PRIMASK */
4cc35614 8002 return (env->daif & PSTATE_I) != 0;
82845826
SH
8003 case 17: /* BASEPRI */
8004 case 18: /* BASEPRI_MAX */
9ee6e8bb 8005 return env->v7m.basepri;
82845826 8006 case 19: /* FAULTMASK */
4cc35614 8007 return (env->daif & PSTATE_F) != 0;
9ee6e8bb
PB
8008 case 20: /* CONTROL */
8009 return env->v7m.control;
8010 default:
8011 /* ??? For debugging only. */
a47dddd7 8012 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
9ee6e8bb
PB
8013 return 0;
8014 }
8015}
8016
0ecb72a5 8017void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb 8018{
a47dddd7
AF
8019 ARMCPU *cpu = arm_env_get_cpu(env);
8020
9ee6e8bb
PB
8021 switch (reg) {
8022 case 0: /* APSR */
8023 xpsr_write(env, val, 0xf8000000);
8024 break;
8025 case 1: /* IAPSR */
8026 xpsr_write(env, val, 0xf8000000);
8027 break;
8028 case 2: /* EAPSR */
8029 xpsr_write(env, val, 0xfe00fc00);
8030 break;
8031 case 3: /* xPSR */
8032 xpsr_write(env, val, 0xfe00fc00);
8033 break;
8034 case 5: /* IPSR */
8035 /* IPSR bits are readonly. */
8036 break;
8037 case 6: /* EPSR */
8038 xpsr_write(env, val, 0x0600fc00);
8039 break;
8040 case 7: /* IEPSR */
8041 xpsr_write(env, val, 0x0600fc00);
8042 break;
8043 case 8: /* MSP */
8044 if (env->v7m.current_sp)
8045 env->v7m.other_sp = val;
8046 else
8047 env->regs[13] = val;
8048 break;
8049 case 9: /* PSP */
8050 if (env->v7m.current_sp)
8051 env->regs[13] = val;
8052 else
8053 env->v7m.other_sp = val;
8054 break;
8055 case 16: /* PRIMASK */
4cc35614
PM
8056 if (val & 1) {
8057 env->daif |= PSTATE_I;
8058 } else {
8059 env->daif &= ~PSTATE_I;
8060 }
9ee6e8bb 8061 break;
82845826 8062 case 17: /* BASEPRI */
9ee6e8bb
PB
8063 env->v7m.basepri = val & 0xff;
8064 break;
82845826 8065 case 18: /* BASEPRI_MAX */
9ee6e8bb
PB
8066 val &= 0xff;
8067 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
8068 env->v7m.basepri = val;
8069 break;
82845826 8070 case 19: /* FAULTMASK */
4cc35614
PM
8071 if (val & 1) {
8072 env->daif |= PSTATE_F;
8073 } else {
8074 env->daif &= ~PSTATE_F;
8075 }
82845826 8076 break;
9ee6e8bb
PB
8077 case 20: /* CONTROL */
8078 env->v7m.control = val & 3;
8079 switch_v7m_sp(env, (val & 2) != 0);
8080 break;
8081 default:
8082 /* ??? For debugging only. */
a47dddd7 8083 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
9ee6e8bb
PB
8084 return;
8085 }
8086}
8087
b5ff1b31 8088#endif
6ddbc6e4 8089
aca3f40b
PM
8090void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
8091{
8092 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
8093 * Note that we do not implement the (architecturally mandated)
8094 * alignment fault for attempts to use this on Device memory
8095 * (which matches the usual QEMU behaviour of not implementing either
8096 * alignment faults or any memory attribute handling).
8097 */
8098
8099 ARMCPU *cpu = arm_env_get_cpu(env);
8100 uint64_t blocklen = 4 << cpu->dcz_blocksize;
8101 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
8102
8103#ifndef CONFIG_USER_ONLY
8104 {
8105 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
8106 * the block size so we might have to do more than one TLB lookup.
8107 * We know that in fact for any v8 CPU the page size is at least 4K
8108 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
8109 * 1K as an artefact of legacy v5 subpage support being present in the
8110 * same QEMU executable.
8111 */
8112 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
8113 void *hostaddr[maxidx];
8114 int try, i;
97ed5ccd 8115 unsigned mmu_idx = cpu_mmu_index(env, false);
3972ef6f 8116 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
aca3f40b
PM
8117
8118 for (try = 0; try < 2; try++) {
8119
8120 for (i = 0; i < maxidx; i++) {
8121 hostaddr[i] = tlb_vaddr_to_host(env,
8122 vaddr + TARGET_PAGE_SIZE * i,
3972ef6f 8123 1, mmu_idx);
aca3f40b
PM
8124 if (!hostaddr[i]) {
8125 break;
8126 }
8127 }
8128 if (i == maxidx) {
8129 /* If it's all in the TLB it's fair game for just writing to;
8130 * we know we don't need to update dirty status, etc.
8131 */
8132 for (i = 0; i < maxidx - 1; i++) {
8133 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
8134 }
8135 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
8136 return;
8137 }
8138 /* OK, try a store and see if we can populate the tlb. This
8139 * might cause an exception if the memory isn't writable,
8140 * in which case we will longjmp out of here. We must for
8141 * this purpose use the actual register value passed to us
8142 * so that we get the fault address right.
8143 */
3972ef6f 8144 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
aca3f40b
PM
8145 /* Now we can populate the other TLB entries, if any */
8146 for (i = 0; i < maxidx; i++) {
8147 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
8148 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
3972ef6f 8149 helper_ret_stb_mmu(env, va, 0, oi, GETRA());
aca3f40b
PM
8150 }
8151 }
8152 }
8153
8154 /* Slow path (probably attempt to do this to an I/O device or
8155 * similar, or clearing of a block of code we have translations
8156 * cached for). Just do a series of byte writes as the architecture
8157 * demands. It's not worth trying to use a cpu_physical_memory_map(),
8158 * memset(), unmap() sequence here because:
8159 * + we'd need to account for the blocksize being larger than a page
8160 * + the direct-RAM access case is almost always going to be dealt
8161 * with in the fastpath code above, so there's no speed benefit
8162 * + we would have to deal with the map returning NULL because the
8163 * bounce buffer was in use
8164 */
8165 for (i = 0; i < blocklen; i++) {
3972ef6f 8166 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
aca3f40b
PM
8167 }
8168 }
8169#else
8170 memset(g2h(vaddr), 0, blocklen);
8171#endif
8172}
8173
6ddbc6e4
PB
8174/* Note that signed overflow is undefined in C. The following routines are
8175 careful to use unsigned types where modulo arithmetic is required.
8176 Failure to do so _will_ break on newer gcc. */
8177
8178/* Signed saturating arithmetic. */
8179
1654b2d6 8180/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
8181static inline uint16_t add16_sat(uint16_t a, uint16_t b)
8182{
8183 uint16_t res;
8184
8185 res = a + b;
8186 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
8187 if (a & 0x8000)
8188 res = 0x8000;
8189 else
8190 res = 0x7fff;
8191 }
8192 return res;
8193}
8194
1654b2d6 8195/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
8196static inline uint8_t add8_sat(uint8_t a, uint8_t b)
8197{
8198 uint8_t res;
8199
8200 res = a + b;
8201 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
8202 if (a & 0x80)
8203 res = 0x80;
8204 else
8205 res = 0x7f;
8206 }
8207 return res;
8208}
8209
1654b2d6 8210/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
8211static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
8212{
8213 uint16_t res;
8214
8215 res = a - b;
8216 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
8217 if (a & 0x8000)
8218 res = 0x8000;
8219 else
8220 res = 0x7fff;
8221 }
8222 return res;
8223}
8224
1654b2d6 8225/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
8226static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
8227{
8228 uint8_t res;
8229
8230 res = a - b;
8231 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
8232 if (a & 0x80)
8233 res = 0x80;
8234 else
8235 res = 0x7f;
8236 }
8237 return res;
8238}
8239
8240#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
8241#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
8242#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
8243#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
8244#define PFX q
8245
8246#include "op_addsub.h"
8247
8248/* Unsigned saturating arithmetic. */
460a09c1 8249static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
8250{
8251 uint16_t res;
8252 res = a + b;
8253 if (res < a)
8254 res = 0xffff;
8255 return res;
8256}
8257
460a09c1 8258static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4 8259{
4c4fd3f8 8260 if (a > b)
6ddbc6e4
PB
8261 return a - b;
8262 else
8263 return 0;
8264}
8265
8266static inline uint8_t add8_usat(uint8_t a, uint8_t b)
8267{
8268 uint8_t res;
8269 res = a + b;
8270 if (res < a)
8271 res = 0xff;
8272 return res;
8273}
8274
8275static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
8276{
4c4fd3f8 8277 if (a > b)
6ddbc6e4
PB
8278 return a - b;
8279 else
8280 return 0;
8281}
8282
8283#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
8284#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
8285#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
8286#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
8287#define PFX uq
8288
8289#include "op_addsub.h"
8290
8291/* Signed modulo arithmetic. */
8292#define SARITH16(a, b, n, op) do { \
8293 int32_t sum; \
db6e2e65 8294 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6ddbc6e4
PB
8295 RESULT(sum, n, 16); \
8296 if (sum >= 0) \
8297 ge |= 3 << (n * 2); \
8298 } while(0)
8299
8300#define SARITH8(a, b, n, op) do { \
8301 int32_t sum; \
db6e2e65 8302 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6ddbc6e4
PB
8303 RESULT(sum, n, 8); \
8304 if (sum >= 0) \
8305 ge |= 1 << n; \
8306 } while(0)
8307
8308
8309#define ADD16(a, b, n) SARITH16(a, b, n, +)
8310#define SUB16(a, b, n) SARITH16(a, b, n, -)
8311#define ADD8(a, b, n) SARITH8(a, b, n, +)
8312#define SUB8(a, b, n) SARITH8(a, b, n, -)
8313#define PFX s
8314#define ARITH_GE
8315
8316#include "op_addsub.h"
8317
8318/* Unsigned modulo arithmetic. */
8319#define ADD16(a, b, n) do { \
8320 uint32_t sum; \
8321 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
8322 RESULT(sum, n, 16); \
a87aa10b 8323 if ((sum >> 16) == 1) \
6ddbc6e4
PB
8324 ge |= 3 << (n * 2); \
8325 } while(0)
8326
8327#define ADD8(a, b, n) do { \
8328 uint32_t sum; \
8329 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
8330 RESULT(sum, n, 8); \
a87aa10b
AZ
8331 if ((sum >> 8) == 1) \
8332 ge |= 1 << n; \
6ddbc6e4
PB
8333 } while(0)
8334
8335#define SUB16(a, b, n) do { \
8336 uint32_t sum; \
8337 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
8338 RESULT(sum, n, 16); \
8339 if ((sum >> 16) == 0) \
8340 ge |= 3 << (n * 2); \
8341 } while(0)
8342
8343#define SUB8(a, b, n) do { \
8344 uint32_t sum; \
8345 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
8346 RESULT(sum, n, 8); \
8347 if ((sum >> 8) == 0) \
a87aa10b 8348 ge |= 1 << n; \
6ddbc6e4
PB
8349 } while(0)
8350
8351#define PFX u
8352#define ARITH_GE
8353
8354#include "op_addsub.h"
8355
8356/* Halved signed arithmetic. */
8357#define ADD16(a, b, n) \
8358 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
8359#define SUB16(a, b, n) \
8360 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
8361#define ADD8(a, b, n) \
8362 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
8363#define SUB8(a, b, n) \
8364 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
8365#define PFX sh
8366
8367#include "op_addsub.h"
8368
8369/* Halved unsigned arithmetic. */
8370#define ADD16(a, b, n) \
8371 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8372#define SUB16(a, b, n) \
8373 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8374#define ADD8(a, b, n) \
8375 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8376#define SUB8(a, b, n) \
8377 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8378#define PFX uh
8379
8380#include "op_addsub.h"
8381
8382static inline uint8_t do_usad(uint8_t a, uint8_t b)
8383{
8384 if (a > b)
8385 return a - b;
8386 else
8387 return b - a;
8388}
8389
8390/* Unsigned sum of absolute byte differences. */
8391uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
8392{
8393 uint32_t sum;
8394 sum = do_usad(a, b);
8395 sum += do_usad(a >> 8, b >> 8);
8396 sum += do_usad(a >> 16, b >>16);
8397 sum += do_usad(a >> 24, b >> 24);
8398 return sum;
8399}
8400
8401/* For ARMv6 SEL instruction. */
8402uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
8403{
8404 uint32_t mask;
8405
8406 mask = 0;
8407 if (flags & 1)
8408 mask |= 0xff;
8409 if (flags & 2)
8410 mask |= 0xff00;
8411 if (flags & 4)
8412 mask |= 0xff0000;
8413 if (flags & 8)
8414 mask |= 0xff000000;
8415 return (a & mask) | (b & ~mask);
8416}
8417
b90372ad
PM
8418/* VFP support. We follow the convention used for VFP instructions:
8419 Single precision routines have a "s" suffix, double precision a
4373f3ce
PB
8420 "d" suffix. */
8421
8422/* Convert host exception flags to vfp form. */
8423static inline int vfp_exceptbits_from_host(int host_bits)
8424{
8425 int target_bits = 0;
8426
8427 if (host_bits & float_flag_invalid)
8428 target_bits |= 1;
8429 if (host_bits & float_flag_divbyzero)
8430 target_bits |= 2;
8431 if (host_bits & float_flag_overflow)
8432 target_bits |= 4;
36802b6b 8433 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
4373f3ce
PB
8434 target_bits |= 8;
8435 if (host_bits & float_flag_inexact)
8436 target_bits |= 0x10;
cecd8504
PM
8437 if (host_bits & float_flag_input_denormal)
8438 target_bits |= 0x80;
4373f3ce
PB
8439 return target_bits;
8440}
8441
0ecb72a5 8442uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
4373f3ce
PB
8443{
8444 int i;
8445 uint32_t fpscr;
8446
8447 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
8448 | (env->vfp.vec_len << 16)
8449 | (env->vfp.vec_stride << 20);
8450 i = get_float_exception_flags(&env->vfp.fp_status);
3a492f3a 8451 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4373f3ce
PB
8452 fpscr |= vfp_exceptbits_from_host(i);
8453 return fpscr;
8454}
8455
0ecb72a5 8456uint32_t vfp_get_fpscr(CPUARMState *env)
01653295
PM
8457{
8458 return HELPER(vfp_get_fpscr)(env);
8459}
8460
4373f3ce
PB
8461/* Convert vfp exception flags to target form. */
8462static inline int vfp_exceptbits_to_host(int target_bits)
8463{
8464 int host_bits = 0;
8465
8466 if (target_bits & 1)
8467 host_bits |= float_flag_invalid;
8468 if (target_bits & 2)
8469 host_bits |= float_flag_divbyzero;
8470 if (target_bits & 4)
8471 host_bits |= float_flag_overflow;
8472 if (target_bits & 8)
8473 host_bits |= float_flag_underflow;
8474 if (target_bits & 0x10)
8475 host_bits |= float_flag_inexact;
cecd8504
PM
8476 if (target_bits & 0x80)
8477 host_bits |= float_flag_input_denormal;
4373f3ce
PB
8478 return host_bits;
8479}
8480
0ecb72a5 8481void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4373f3ce
PB
8482{
8483 int i;
8484 uint32_t changed;
8485
8486 changed = env->vfp.xregs[ARM_VFP_FPSCR];
8487 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
8488 env->vfp.vec_len = (val >> 16) & 7;
8489 env->vfp.vec_stride = (val >> 20) & 3;
8490
8491 changed ^= val;
8492 if (changed & (3 << 22)) {
8493 i = (val >> 22) & 3;
8494 switch (i) {
4d3da0f3 8495 case FPROUNDING_TIEEVEN:
4373f3ce
PB
8496 i = float_round_nearest_even;
8497 break;
4d3da0f3 8498 case FPROUNDING_POSINF:
4373f3ce
PB
8499 i = float_round_up;
8500 break;
4d3da0f3 8501 case FPROUNDING_NEGINF:
4373f3ce
PB
8502 i = float_round_down;
8503 break;
4d3da0f3 8504 case FPROUNDING_ZERO:
4373f3ce
PB
8505 i = float_round_to_zero;
8506 break;
8507 }
8508 set_float_rounding_mode(i, &env->vfp.fp_status);
8509 }
cecd8504 8510 if (changed & (1 << 24)) {
fe76d976 8511 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
cecd8504
PM
8512 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8513 }
5c7908ed
PB
8514 if (changed & (1 << 25))
8515 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4373f3ce 8516
b12c390b 8517 i = vfp_exceptbits_to_host(val);
4373f3ce 8518 set_float_exception_flags(i, &env->vfp.fp_status);
3a492f3a 8519 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4373f3ce
PB
8520}
8521
0ecb72a5 8522void vfp_set_fpscr(CPUARMState *env, uint32_t val)
01653295
PM
8523{
8524 HELPER(vfp_set_fpscr)(env, val);
8525}
8526
4373f3ce
PB
8527#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
8528
8529#define VFP_BINOP(name) \
ae1857ec 8530float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4373f3ce 8531{ \
ae1857ec
PM
8532 float_status *fpst = fpstp; \
8533 return float32_ ## name(a, b, fpst); \
4373f3ce 8534} \
ae1857ec 8535float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4373f3ce 8536{ \
ae1857ec
PM
8537 float_status *fpst = fpstp; \
8538 return float64_ ## name(a, b, fpst); \
4373f3ce
PB
8539}
8540VFP_BINOP(add)
8541VFP_BINOP(sub)
8542VFP_BINOP(mul)
8543VFP_BINOP(div)
f71a2ae5
PM
8544VFP_BINOP(min)
8545VFP_BINOP(max)
8546VFP_BINOP(minnum)
8547VFP_BINOP(maxnum)
4373f3ce
PB
8548#undef VFP_BINOP
8549
8550float32 VFP_HELPER(neg, s)(float32 a)
8551{
8552 return float32_chs(a);
8553}
8554
8555float64 VFP_HELPER(neg, d)(float64 a)
8556{
66230e0d 8557 return float64_chs(a);
4373f3ce
PB
8558}
8559
8560float32 VFP_HELPER(abs, s)(float32 a)
8561{
8562 return float32_abs(a);
8563}
8564
8565float64 VFP_HELPER(abs, d)(float64 a)
8566{
66230e0d 8567 return float64_abs(a);
4373f3ce
PB
8568}
8569
0ecb72a5 8570float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4373f3ce
PB
8571{
8572 return float32_sqrt(a, &env->vfp.fp_status);
8573}
8574
0ecb72a5 8575float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4373f3ce
PB
8576{
8577 return float64_sqrt(a, &env->vfp.fp_status);
8578}
8579
8580/* XXX: check quiet/signaling case */
8581#define DO_VFP_cmp(p, type) \
0ecb72a5 8582void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
8583{ \
8584 uint32_t flags; \
8585 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
8586 case 0: flags = 0x6; break; \
8587 case -1: flags = 0x8; break; \
8588 case 1: flags = 0x2; break; \
8589 default: case 2: flags = 0x3; break; \
8590 } \
8591 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8592 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8593} \
0ecb72a5 8594void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
8595{ \
8596 uint32_t flags; \
8597 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
8598 case 0: flags = 0x6; break; \
8599 case -1: flags = 0x8; break; \
8600 case 1: flags = 0x2; break; \
8601 default: case 2: flags = 0x3; break; \
8602 } \
8603 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8604 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8605}
8606DO_VFP_cmp(s, float32)
8607DO_VFP_cmp(d, float64)
8608#undef DO_VFP_cmp
8609
5500b06c 8610/* Integer to float and float to integer conversions */
4373f3ce 8611
5500b06c
PM
8612#define CONV_ITOF(name, fsz, sign) \
8613 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
8614{ \
8615 float_status *fpst = fpstp; \
85836979 8616 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4373f3ce
PB
8617}
8618
5500b06c
PM
8619#define CONV_FTOI(name, fsz, sign, round) \
8620uint32_t HELPER(name)(float##fsz x, void *fpstp) \
8621{ \
8622 float_status *fpst = fpstp; \
8623 if (float##fsz##_is_any_nan(x)) { \
8624 float_raise(float_flag_invalid, fpst); \
8625 return 0; \
8626 } \
8627 return float##fsz##_to_##sign##int32##round(x, fpst); \
4373f3ce
PB
8628}
8629
5500b06c
PM
8630#define FLOAT_CONVS(name, p, fsz, sign) \
8631CONV_ITOF(vfp_##name##to##p, fsz, sign) \
8632CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
8633CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4373f3ce 8634
5500b06c
PM
8635FLOAT_CONVS(si, s, 32, )
8636FLOAT_CONVS(si, d, 64, )
8637FLOAT_CONVS(ui, s, 32, u)
8638FLOAT_CONVS(ui, d, 64, u)
4373f3ce 8639
5500b06c
PM
8640#undef CONV_ITOF
8641#undef CONV_FTOI
8642#undef FLOAT_CONVS
4373f3ce
PB
8643
8644/* floating point conversion */
0ecb72a5 8645float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4373f3ce 8646{
2d627737
PM
8647 float64 r = float32_to_float64(x, &env->vfp.fp_status);
8648 /* ARM requires that S<->D conversion of any kind of NaN generates
8649 * a quiet NaN by forcing the most significant frac bit to 1.
8650 */
8651 return float64_maybe_silence_nan(r);
4373f3ce
PB
8652}
8653
0ecb72a5 8654float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4373f3ce 8655{
2d627737
PM
8656 float32 r = float64_to_float32(x, &env->vfp.fp_status);
8657 /* ARM requires that S<->D conversion of any kind of NaN generates
8658 * a quiet NaN by forcing the most significant frac bit to 1.
8659 */
8660 return float32_maybe_silence_nan(r);
4373f3ce
PB
8661}
8662
8663/* VFP3 fixed point conversion. */
16d5b3ca 8664#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8ed697e8
WN
8665float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
8666 void *fpstp) \
4373f3ce 8667{ \
5500b06c 8668 float_status *fpst = fpstp; \
622465e1 8669 float##fsz tmp; \
8ed697e8 8670 tmp = itype##_to_##float##fsz(x, fpst); \
5500b06c 8671 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
16d5b3ca
WN
8672}
8673
abe66f70
PM
8674/* Notice that we want only input-denormal exception flags from the
8675 * scalbn operation: the other possible flags (overflow+inexact if
8676 * we overflow to infinity, output-denormal) aren't correct for the
8677 * complete scale-and-convert operation.
8678 */
16d5b3ca
WN
8679#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
8680uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
8681 uint32_t shift, \
8682 void *fpstp) \
4373f3ce 8683{ \
5500b06c 8684 float_status *fpst = fpstp; \
abe66f70 8685 int old_exc_flags = get_float_exception_flags(fpst); \
622465e1
PM
8686 float##fsz tmp; \
8687 if (float##fsz##_is_any_nan(x)) { \
5500b06c 8688 float_raise(float_flag_invalid, fpst); \
622465e1 8689 return 0; \
09d9487f 8690 } \
5500b06c 8691 tmp = float##fsz##_scalbn(x, shift, fpst); \
abe66f70
PM
8692 old_exc_flags |= get_float_exception_flags(fpst) \
8693 & float_flag_input_denormal; \
8694 set_float_exception_flags(old_exc_flags, fpst); \
16d5b3ca 8695 return float##fsz##_to_##itype##round(tmp, fpst); \
622465e1
PM
8696}
8697
16d5b3ca
WN
8698#define VFP_CONV_FIX(name, p, fsz, isz, itype) \
8699VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
3c6a074a
WN
8700VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
8701VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8702
8703#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
8704VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8705VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
16d5b3ca 8706
8ed697e8
WN
8707VFP_CONV_FIX(sh, d, 64, 64, int16)
8708VFP_CONV_FIX(sl, d, 64, 64, int32)
3c6a074a 8709VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
8ed697e8
WN
8710VFP_CONV_FIX(uh, d, 64, 64, uint16)
8711VFP_CONV_FIX(ul, d, 64, 64, uint32)
3c6a074a 8712VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
8ed697e8
WN
8713VFP_CONV_FIX(sh, s, 32, 32, int16)
8714VFP_CONV_FIX(sl, s, 32, 32, int32)
3c6a074a 8715VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
8ed697e8
WN
8716VFP_CONV_FIX(uh, s, 32, 32, uint16)
8717VFP_CONV_FIX(ul, s, 32, 32, uint32)
3c6a074a 8718VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
4373f3ce 8719#undef VFP_CONV_FIX
16d5b3ca
WN
8720#undef VFP_CONV_FIX_FLOAT
8721#undef VFP_CONV_FLOAT_FIX_ROUND
4373f3ce 8722
52a1f6a3
AG
8723/* Set the current fp rounding mode and return the old one.
8724 * The argument is a softfloat float_round_ value.
8725 */
8726uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
8727{
8728 float_status *fp_status = &env->vfp.fp_status;
8729
8730 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
8731 set_float_rounding_mode(rmode, fp_status);
8732
8733 return prev_rmode;
8734}
8735
43630e58
WN
8736/* Set the current fp rounding mode in the standard fp status and return
8737 * the old one. This is for NEON instructions that need to change the
8738 * rounding mode but wish to use the standard FPSCR values for everything
8739 * else. Always set the rounding mode back to the correct value after
8740 * modifying it.
8741 * The argument is a softfloat float_round_ value.
8742 */
8743uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
8744{
8745 float_status *fp_status = &env->vfp.standard_fp_status;
8746
8747 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
8748 set_float_rounding_mode(rmode, fp_status);
8749
8750 return prev_rmode;
8751}
8752
60011498 8753/* Half precision conversions. */
0ecb72a5 8754static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
60011498 8755{
60011498 8756 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
8757 float32 r = float16_to_float32(make_float16(a), ieee, s);
8758 if (ieee) {
8759 return float32_maybe_silence_nan(r);
8760 }
8761 return r;
60011498
PB
8762}
8763
0ecb72a5 8764static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
60011498 8765{
60011498 8766 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
8767 float16 r = float32_to_float16(a, ieee, s);
8768 if (ieee) {
8769 r = float16_maybe_silence_nan(r);
8770 }
8771 return float16_val(r);
60011498
PB
8772}
8773
0ecb72a5 8774float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
8775{
8776 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
8777}
8778
0ecb72a5 8779uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
8780{
8781 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
8782}
8783
0ecb72a5 8784float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
8785{
8786 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
8787}
8788
0ecb72a5 8789uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
8790{
8791 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
8792}
8793
8900aad2
PM
8794float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
8795{
8796 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8797 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
8798 if (ieee) {
8799 return float64_maybe_silence_nan(r);
8800 }
8801 return r;
8802}
8803
8804uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
8805{
8806 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8807 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
8808 if (ieee) {
8809 r = float16_maybe_silence_nan(r);
8810 }
8811 return float16_val(r);
8812}
8813
dda3ec49 8814#define float32_two make_float32(0x40000000)
6aae3df1
PM
8815#define float32_three make_float32(0x40400000)
8816#define float32_one_point_five make_float32(0x3fc00000)
dda3ec49 8817
0ecb72a5 8818float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 8819{
dda3ec49
PM
8820 float_status *s = &env->vfp.standard_fp_status;
8821 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
8822 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
8823 if (!(float32_is_zero(a) || float32_is_zero(b))) {
8824 float_raise(float_flag_input_denormal, s);
8825 }
dda3ec49
PM
8826 return float32_two;
8827 }
8828 return float32_sub(float32_two, float32_mul(a, b, s), s);
4373f3ce
PB
8829}
8830
0ecb72a5 8831float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 8832{
71826966 8833 float_status *s = &env->vfp.standard_fp_status;
9ea62f57
PM
8834 float32 product;
8835 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
8836 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
8837 if (!(float32_is_zero(a) || float32_is_zero(b))) {
8838 float_raise(float_flag_input_denormal, s);
8839 }
6aae3df1 8840 return float32_one_point_five;
9ea62f57 8841 }
6aae3df1
PM
8842 product = float32_mul(a, b, s);
8843 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4373f3ce
PB
8844}
8845
8f8e3aa4
PB
8846/* NEON helpers. */
8847
56bf4fe2
CL
8848/* Constants 256 and 512 are used in some helpers; we avoid relying on
8849 * int->float conversions at run-time. */
8850#define float64_256 make_float64(0x4070000000000000LL)
8851#define float64_512 make_float64(0x4080000000000000LL)
b6d4443a
AB
8852#define float32_maxnorm make_float32(0x7f7fffff)
8853#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
56bf4fe2 8854
b6d4443a
AB
8855/* Reciprocal functions
8856 *
8857 * The algorithm that must be used to calculate the estimate
8858 * is specified by the ARM ARM, see FPRecipEstimate()
fe0e4872 8859 */
b6d4443a
AB
8860
8861static float64 recip_estimate(float64 a, float_status *real_fp_status)
fe0e4872 8862{
1146a817
PM
8863 /* These calculations mustn't set any fp exception flags,
8864 * so we use a local copy of the fp_status.
8865 */
b6d4443a 8866 float_status dummy_status = *real_fp_status;
1146a817 8867 float_status *s = &dummy_status;
fe0e4872
CL
8868 /* q = (int)(a * 512.0) */
8869 float64 q = float64_mul(float64_512, a, s);
8870 int64_t q_int = float64_to_int64_round_to_zero(q, s);
8871
8872 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
8873 q = int64_to_float64(q_int, s);
8874 q = float64_add(q, float64_half, s);
8875 q = float64_div(q, float64_512, s);
8876 q = float64_div(float64_one, q, s);
8877
8878 /* s = (int)(256.0 * r + 0.5) */
8879 q = float64_mul(q, float64_256, s);
8880 q = float64_add(q, float64_half, s);
8881 q_int = float64_to_int64_round_to_zero(q, s);
8882
8883 /* return (double)s / 256.0 */
8884 return float64_div(int64_to_float64(q_int, s), float64_256, s);
8885}
8886
b6d4443a
AB
8887/* Common wrapper to call recip_estimate */
8888static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
4373f3ce 8889{
b6d4443a
AB
8890 uint64_t val64 = float64_val(num);
8891 uint64_t frac = extract64(val64, 0, 52);
8892 int64_t exp = extract64(val64, 52, 11);
8893 uint64_t sbit;
8894 float64 scaled, estimate;
fe0e4872 8895
b6d4443a
AB
8896 /* Generate the scaled number for the estimate function */
8897 if (exp == 0) {
8898 if (extract64(frac, 51, 1) == 0) {
8899 exp = -1;
8900 frac = extract64(frac, 0, 50) << 2;
8901 } else {
8902 frac = extract64(frac, 0, 51) << 1;
8903 }
8904 }
fe0e4872 8905
b6d4443a
AB
8906 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
8907 scaled = make_float64((0x3feULL << 52)
8908 | extract64(frac, 44, 8) << 44);
8909
8910 estimate = recip_estimate(scaled, fpst);
8911
8912 /* Build new result */
8913 val64 = float64_val(estimate);
8914 sbit = 0x8000000000000000ULL & val64;
8915 exp = off - exp;
8916 frac = extract64(val64, 0, 52);
8917
8918 if (exp == 0) {
8919 frac = 1ULL << 51 | extract64(frac, 1, 51);
8920 } else if (exp == -1) {
8921 frac = 1ULL << 50 | extract64(frac, 2, 50);
8922 exp = 0;
8923 }
8924
8925 return make_float64(sbit | (exp << 52) | frac);
8926}
8927
8928static bool round_to_inf(float_status *fpst, bool sign_bit)
8929{
8930 switch (fpst->float_rounding_mode) {
8931 case float_round_nearest_even: /* Round to Nearest */
8932 return true;
8933 case float_round_up: /* Round to +Inf */
8934 return !sign_bit;
8935 case float_round_down: /* Round to -Inf */
8936 return sign_bit;
8937 case float_round_to_zero: /* Round to Zero */
8938 return false;
8939 }
8940
8941 g_assert_not_reached();
8942}
8943
8944float32 HELPER(recpe_f32)(float32 input, void *fpstp)
8945{
8946 float_status *fpst = fpstp;
8947 float32 f32 = float32_squash_input_denormal(input, fpst);
8948 uint32_t f32_val = float32_val(f32);
8949 uint32_t f32_sbit = 0x80000000ULL & f32_val;
8950 int32_t f32_exp = extract32(f32_val, 23, 8);
8951 uint32_t f32_frac = extract32(f32_val, 0, 23);
8952 float64 f64, r64;
8953 uint64_t r64_val;
8954 int64_t r64_exp;
8955 uint64_t r64_frac;
8956
8957 if (float32_is_any_nan(f32)) {
8958 float32 nan = f32;
8959 if (float32_is_signaling_nan(f32)) {
8960 float_raise(float_flag_invalid, fpst);
8961 nan = float32_maybe_silence_nan(f32);
fe0e4872 8962 }
b6d4443a
AB
8963 if (fpst->default_nan_mode) {
8964 nan = float32_default_nan;
43fe9bdb 8965 }
b6d4443a
AB
8966 return nan;
8967 } else if (float32_is_infinity(f32)) {
8968 return float32_set_sign(float32_zero, float32_is_neg(f32));
8969 } else if (float32_is_zero(f32)) {
8970 float_raise(float_flag_divbyzero, fpst);
8971 return float32_set_sign(float32_infinity, float32_is_neg(f32));
8972 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
8973 /* Abs(value) < 2.0^-128 */
8974 float_raise(float_flag_overflow | float_flag_inexact, fpst);
8975 if (round_to_inf(fpst, f32_sbit)) {
8976 return float32_set_sign(float32_infinity, float32_is_neg(f32));
8977 } else {
8978 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
8979 }
8980 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
8981 float_raise(float_flag_underflow, fpst);
8982 return float32_set_sign(float32_zero, float32_is_neg(f32));
fe0e4872
CL
8983 }
8984
fe0e4872 8985
b6d4443a
AB
8986 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
8987 r64 = call_recip_estimate(f64, 253, fpst);
8988 r64_val = float64_val(r64);
8989 r64_exp = extract64(r64_val, 52, 11);
8990 r64_frac = extract64(r64_val, 0, 52);
8991
8992 /* result = sign : result_exp<7:0> : fraction<51:29>; */
8993 return make_float32(f32_sbit |
8994 (r64_exp & 0xff) << 23 |
8995 extract64(r64_frac, 29, 24));
8996}
8997
8998float64 HELPER(recpe_f64)(float64 input, void *fpstp)
8999{
9000 float_status *fpst = fpstp;
9001 float64 f64 = float64_squash_input_denormal(input, fpst);
9002 uint64_t f64_val = float64_val(f64);
9003 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
9004 int64_t f64_exp = extract64(f64_val, 52, 11);
9005 float64 r64;
9006 uint64_t r64_val;
9007 int64_t r64_exp;
9008 uint64_t r64_frac;
9009
9010 /* Deal with any special cases */
9011 if (float64_is_any_nan(f64)) {
9012 float64 nan = f64;
9013 if (float64_is_signaling_nan(f64)) {
9014 float_raise(float_flag_invalid, fpst);
9015 nan = float64_maybe_silence_nan(f64);
9016 }
9017 if (fpst->default_nan_mode) {
9018 nan = float64_default_nan;
9019 }
9020 return nan;
9021 } else if (float64_is_infinity(f64)) {
9022 return float64_set_sign(float64_zero, float64_is_neg(f64));
9023 } else if (float64_is_zero(f64)) {
9024 float_raise(float_flag_divbyzero, fpst);
9025 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9026 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
9027 /* Abs(value) < 2.0^-1024 */
9028 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9029 if (round_to_inf(fpst, f64_sbit)) {
9030 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9031 } else {
9032 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
9033 }
fc1792e9 9034 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
b6d4443a
AB
9035 float_raise(float_flag_underflow, fpst);
9036 return float64_set_sign(float64_zero, float64_is_neg(f64));
9037 }
fe0e4872 9038
b6d4443a
AB
9039 r64 = call_recip_estimate(f64, 2045, fpst);
9040 r64_val = float64_val(r64);
9041 r64_exp = extract64(r64_val, 52, 11);
9042 r64_frac = extract64(r64_val, 0, 52);
fe0e4872 9043
b6d4443a
AB
9044 /* result = sign : result_exp<10:0> : fraction<51:0> */
9045 return make_float64(f64_sbit |
9046 ((r64_exp & 0x7ff) << 52) |
9047 r64_frac);
4373f3ce
PB
9048}
9049
e07be5d2
CL
9050/* The algorithm that must be used to calculate the estimate
9051 * is specified by the ARM ARM.
9052 */
c2fb418e 9053static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
e07be5d2 9054{
1146a817
PM
9055 /* These calculations mustn't set any fp exception flags,
9056 * so we use a local copy of the fp_status.
9057 */
c2fb418e 9058 float_status dummy_status = *real_fp_status;
1146a817 9059 float_status *s = &dummy_status;
e07be5d2
CL
9060 float64 q;
9061 int64_t q_int;
9062
9063 if (float64_lt(a, float64_half, s)) {
9064 /* range 0.25 <= a < 0.5 */
9065
9066 /* a in units of 1/512 rounded down */
9067 /* q0 = (int)(a * 512.0); */
9068 q = float64_mul(float64_512, a, s);
9069 q_int = float64_to_int64_round_to_zero(q, s);
9070
9071 /* reciprocal root r */
9072 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
9073 q = int64_to_float64(q_int, s);
9074 q = float64_add(q, float64_half, s);
9075 q = float64_div(q, float64_512, s);
9076 q = float64_sqrt(q, s);
9077 q = float64_div(float64_one, q, s);
9078 } else {
9079 /* range 0.5 <= a < 1.0 */
9080
9081 /* a in units of 1/256 rounded down */
9082 /* q1 = (int)(a * 256.0); */
9083 q = float64_mul(float64_256, a, s);
9084 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9085
9086 /* reciprocal root r */
9087 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
9088 q = int64_to_float64(q_int, s);
9089 q = float64_add(q, float64_half, s);
9090 q = float64_div(q, float64_256, s);
9091 q = float64_sqrt(q, s);
9092 q = float64_div(float64_one, q, s);
9093 }
9094 /* r in units of 1/256 rounded to nearest */
9095 /* s = (int)(256.0 * r + 0.5); */
9096
9097 q = float64_mul(q, float64_256,s );
9098 q = float64_add(q, float64_half, s);
9099 q_int = float64_to_int64_round_to_zero(q, s);
9100
9101 /* return (double)s / 256.0;*/
9102 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9103}
9104
c2fb418e 9105float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
4373f3ce 9106{
c2fb418e
AB
9107 float_status *s = fpstp;
9108 float32 f32 = float32_squash_input_denormal(input, s);
9109 uint32_t val = float32_val(f32);
9110 uint32_t f32_sbit = 0x80000000 & val;
9111 int32_t f32_exp = extract32(val, 23, 8);
9112 uint32_t f32_frac = extract32(val, 0, 23);
9113 uint64_t f64_frac;
9114 uint64_t val64;
e07be5d2
CL
9115 int result_exp;
9116 float64 f64;
e07be5d2 9117
c2fb418e
AB
9118 if (float32_is_any_nan(f32)) {
9119 float32 nan = f32;
9120 if (float32_is_signaling_nan(f32)) {
e07be5d2 9121 float_raise(float_flag_invalid, s);
c2fb418e 9122 nan = float32_maybe_silence_nan(f32);
e07be5d2 9123 }
c2fb418e
AB
9124 if (s->default_nan_mode) {
9125 nan = float32_default_nan;
43fe9bdb 9126 }
c2fb418e
AB
9127 return nan;
9128 } else if (float32_is_zero(f32)) {
e07be5d2 9129 float_raise(float_flag_divbyzero, s);
c2fb418e
AB
9130 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9131 } else if (float32_is_neg(f32)) {
e07be5d2
CL
9132 float_raise(float_flag_invalid, s);
9133 return float32_default_nan;
c2fb418e 9134 } else if (float32_is_infinity(f32)) {
e07be5d2
CL
9135 return float32_zero;
9136 }
9137
c2fb418e 9138 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
e07be5d2 9139 * preserving the parity of the exponent. */
c2fb418e
AB
9140
9141 f64_frac = ((uint64_t) f32_frac) << 29;
9142 if (f32_exp == 0) {
9143 while (extract64(f64_frac, 51, 1) == 0) {
9144 f64_frac = f64_frac << 1;
9145 f32_exp = f32_exp-1;
9146 }
9147 f64_frac = extract64(f64_frac, 0, 51) << 1;
9148 }
9149
9150 if (extract64(f32_exp, 0, 1) == 0) {
9151 f64 = make_float64(((uint64_t) f32_sbit) << 32
e07be5d2 9152 | (0x3feULL << 52)
c2fb418e 9153 | f64_frac);
e07be5d2 9154 } else {
c2fb418e 9155 f64 = make_float64(((uint64_t) f32_sbit) << 32
e07be5d2 9156 | (0x3fdULL << 52)
c2fb418e 9157 | f64_frac);
e07be5d2
CL
9158 }
9159
c2fb418e 9160 result_exp = (380 - f32_exp) / 2;
e07be5d2 9161
c2fb418e 9162 f64 = recip_sqrt_estimate(f64, s);
e07be5d2
CL
9163
9164 val64 = float64_val(f64);
9165
26cc6abf 9166 val = ((result_exp & 0xff) << 23)
e07be5d2
CL
9167 | ((val64 >> 29) & 0x7fffff);
9168 return make_float32(val);
4373f3ce
PB
9169}
9170
c2fb418e
AB
9171float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
9172{
9173 float_status *s = fpstp;
9174 float64 f64 = float64_squash_input_denormal(input, s);
9175 uint64_t val = float64_val(f64);
9176 uint64_t f64_sbit = 0x8000000000000000ULL & val;
9177 int64_t f64_exp = extract64(val, 52, 11);
9178 uint64_t f64_frac = extract64(val, 0, 52);
9179 int64_t result_exp;
9180 uint64_t result_frac;
9181
9182 if (float64_is_any_nan(f64)) {
9183 float64 nan = f64;
9184 if (float64_is_signaling_nan(f64)) {
9185 float_raise(float_flag_invalid, s);
9186 nan = float64_maybe_silence_nan(f64);
9187 }
9188 if (s->default_nan_mode) {
9189 nan = float64_default_nan;
9190 }
9191 return nan;
9192 } else if (float64_is_zero(f64)) {
9193 float_raise(float_flag_divbyzero, s);
9194 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9195 } else if (float64_is_neg(f64)) {
9196 float_raise(float_flag_invalid, s);
9197 return float64_default_nan;
9198 } else if (float64_is_infinity(f64)) {
9199 return float64_zero;
9200 }
9201
9202 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9203 * preserving the parity of the exponent. */
9204
9205 if (f64_exp == 0) {
9206 while (extract64(f64_frac, 51, 1) == 0) {
9207 f64_frac = f64_frac << 1;
9208 f64_exp = f64_exp - 1;
9209 }
9210 f64_frac = extract64(f64_frac, 0, 51) << 1;
9211 }
9212
9213 if (extract64(f64_exp, 0, 1) == 0) {
9214 f64 = make_float64(f64_sbit
9215 | (0x3feULL << 52)
9216 | f64_frac);
9217 } else {
9218 f64 = make_float64(f64_sbit
9219 | (0x3fdULL << 52)
9220 | f64_frac);
9221 }
9222
9223 result_exp = (3068 - f64_exp) / 2;
9224
9225 f64 = recip_sqrt_estimate(f64, s);
9226
9227 result_frac = extract64(float64_val(f64), 0, 52);
9228
9229 return make_float64(f64_sbit |
9230 ((result_exp & 0x7ff) << 52) |
9231 result_frac);
9232}
9233
b6d4443a 9234uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
4373f3ce 9235{
b6d4443a 9236 float_status *s = fpstp;
fe0e4872
CL
9237 float64 f64;
9238
9239 if ((a & 0x80000000) == 0) {
9240 return 0xffffffff;
9241 }
9242
9243 f64 = make_float64((0x3feULL << 52)
9244 | ((int64_t)(a & 0x7fffffff) << 21));
9245
b6d4443a 9246 f64 = recip_estimate(f64, s);
fe0e4872
CL
9247
9248 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce
PB
9249}
9250
c2fb418e 9251uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
4373f3ce 9252{
c2fb418e 9253 float_status *fpst = fpstp;
e07be5d2
CL
9254 float64 f64;
9255
9256 if ((a & 0xc0000000) == 0) {
9257 return 0xffffffff;
9258 }
9259
9260 if (a & 0x80000000) {
9261 f64 = make_float64((0x3feULL << 52)
9262 | ((uint64_t)(a & 0x7fffffff) << 21));
9263 } else { /* bits 31-30 == '01' */
9264 f64 = make_float64((0x3fdULL << 52)
9265 | ((uint64_t)(a & 0x3fffffff) << 22));
9266 }
9267
c2fb418e 9268 f64 = recip_sqrt_estimate(f64, fpst);
e07be5d2
CL
9269
9270 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce 9271}
fe1479c3 9272
da97f52c
PM
9273/* VFPv4 fused multiply-accumulate */
9274float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
9275{
9276 float_status *fpst = fpstp;
9277 return float32_muladd(a, b, c, 0, fpst);
9278}
9279
9280float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
9281{
9282 float_status *fpst = fpstp;
9283 return float64_muladd(a, b, c, 0, fpst);
9284}
d9b0848d
PM
9285
9286/* ARMv8 round to integral */
9287float32 HELPER(rints_exact)(float32 x, void *fp_status)
9288{
9289 return float32_round_to_int(x, fp_status);
9290}
9291
9292float64 HELPER(rintd_exact)(float64 x, void *fp_status)
9293{
9294 return float64_round_to_int(x, fp_status);
9295}
9296
9297float32 HELPER(rints)(float32 x, void *fp_status)
9298{
9299 int old_flags = get_float_exception_flags(fp_status), new_flags;
9300 float32 ret;
9301
9302 ret = float32_round_to_int(x, fp_status);
9303
9304 /* Suppress any inexact exceptions the conversion produced */
9305 if (!(old_flags & float_flag_inexact)) {
9306 new_flags = get_float_exception_flags(fp_status);
9307 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9308 }
9309
9310 return ret;
9311}
9312
9313float64 HELPER(rintd)(float64 x, void *fp_status)
9314{
9315 int old_flags = get_float_exception_flags(fp_status), new_flags;
9316 float64 ret;
9317
9318 ret = float64_round_to_int(x, fp_status);
9319
9320 new_flags = get_float_exception_flags(fp_status);
9321
9322 /* Suppress any inexact exceptions the conversion produced */
9323 if (!(old_flags & float_flag_inexact)) {
9324 new_flags = get_float_exception_flags(fp_status);
9325 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9326 }
9327
9328 return ret;
9329}
9972da66
WN
9330
9331/* Convert ARM rounding mode to softfloat */
9332int arm_rmode_to_sf(int rmode)
9333{
9334 switch (rmode) {
9335 case FPROUNDING_TIEAWAY:
9336 rmode = float_round_ties_away;
9337 break;
9338 case FPROUNDING_ODD:
9339 /* FIXME: add support for TIEAWAY and ODD */
9340 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
9341 rmode);
9342 case FPROUNDING_TIEEVEN:
9343 default:
9344 rmode = float_round_nearest_even;
9345 break;
9346 case FPROUNDING_POSINF:
9347 rmode = float_round_up;
9348 break;
9349 case FPROUNDING_NEGINF:
9350 rmode = float_round_down;
9351 break;
9352 case FPROUNDING_ZERO:
9353 rmode = float_round_to_zero;
9354 break;
9355 }
9356 return rmode;
9357}
eb0ecd5a 9358
aa633469
PM
9359/* CRC helpers.
9360 * The upper bytes of val (above the number specified by 'bytes') must have
9361 * been zeroed out by the caller.
9362 */
eb0ecd5a
WN
9363uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
9364{
9365 uint8_t buf[4];
9366
aa633469 9367 stl_le_p(buf, val);
eb0ecd5a
WN
9368
9369 /* zlib crc32 converts the accumulator and output to one's complement. */
9370 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
9371}
9372
9373uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
9374{
9375 uint8_t buf[4];
9376
aa633469 9377 stl_le_p(buf, val);
eb0ecd5a
WN
9378
9379 /* Linux crc32c converts the output to one's complement. */
9380 return crc32c(acc, buf, bytes) ^ 0xffffffff;
9381}