]> git.proxmox.com Git - qemu.git/blame - target-ppc/op_helper.c
Revert revisions r4168 and r4169. That's work in progress, not ready for trunk yet.
[qemu.git] / target-ppc / op_helper.c
CommitLineData
9a64fbe4 1/*
3fc6c082 2 * PowerPC emulation helpers for qemu.
5fafdf24 3 *
76a66253 4 * Copyright (c) 2003-2007 Jocelyn Mayer
9a64fbe4
FB
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
9a64fbe4 20#include "exec.h"
603fccce 21#include "host-utils.h"
9a64fbe4 22
0411a972 23#include "helper_regs.h"
0487d6a8
JM
24#include "op_helper.h"
25
9a64fbe4 26#define MEMSUFFIX _raw
0487d6a8 27#include "op_helper.h"
9a64fbe4 28#include "op_helper_mem.h"
a541f297 29#if !defined(CONFIG_USER_ONLY)
9a64fbe4 30#define MEMSUFFIX _user
0487d6a8 31#include "op_helper.h"
9a64fbe4
FB
32#include "op_helper_mem.h"
33#define MEMSUFFIX _kernel
0487d6a8 34#include "op_helper.h"
9a64fbe4 35#include "op_helper_mem.h"
1e42b8f0
JM
36#define MEMSUFFIX _hypv
37#include "op_helper.h"
38#include "op_helper_mem.h"
39#endif
9a64fbe4 40
fdabc366
FB
41//#define DEBUG_OP
42//#define DEBUG_EXCEPTIONS
76a66253 43//#define DEBUG_SOFTWARE_TLB
fdabc366 44
9a64fbe4
FB
45/*****************************************************************************/
46/* Exceptions processing helpers */
9a64fbe4 47
9fddaa0c 48void do_raise_exception_err (uint32_t exception, int error_code)
9a64fbe4 49{
9fddaa0c
FB
50#if 0
51 printf("Raise exception %3x code : %d\n", exception, error_code);
52#endif
9fddaa0c
FB
53 env->exception_index = exception;
54 env->error_code = error_code;
76a66253
JM
55 cpu_loop_exit();
56}
9fddaa0c
FB
57
58void do_raise_exception (uint32_t exception)
59{
60 do_raise_exception_err(exception, 0);
9a64fbe4
FB
61}
62
a496775f
JM
63void cpu_dump_EA (target_ulong EA);
64void do_print_mem_EA (target_ulong EA)
65{
66 cpu_dump_EA(EA);
67}
68
76a66253
JM
69/*****************************************************************************/
70/* Registers load and stores */
71void do_load_cr (void)
72{
73 T0 = (env->crf[0] << 28) |
74 (env->crf[1] << 24) |
75 (env->crf[2] << 20) |
76 (env->crf[3] << 16) |
77 (env->crf[4] << 12) |
78 (env->crf[5] << 8) |
79 (env->crf[6] << 4) |
80 (env->crf[7] << 0);
81}
82
83void do_store_cr (uint32_t mask)
84{
85 int i, sh;
86
36081602 87 for (i = 0, sh = 7; i < 8; i++, sh--) {
76a66253
JM
88 if (mask & (1 << sh))
89 env->crf[i] = (T0 >> (sh * 4)) & 0xFUL;
90 }
91}
92
c80f84e3
JM
93#if defined(TARGET_PPC64)
94void do_store_pri (int prio)
95{
96 env->spr[SPR_PPR] &= ~0x001C000000000000ULL;
97 env->spr[SPR_PPR] |= ((uint64_t)prio & 0x7) << 50;
98}
99#endif
100
a496775f
JM
101target_ulong ppc_load_dump_spr (int sprn)
102{
6b80055d 103 if (loglevel != 0) {
a496775f
JM
104 fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
105 sprn, sprn, env->spr[sprn]);
106 }
107
108 return env->spr[sprn];
109}
110
111void ppc_store_dump_spr (int sprn, target_ulong val)
112{
6b80055d 113 if (loglevel != 0) {
a496775f
JM
114 fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n",
115 sprn, sprn, env->spr[sprn], val);
116 }
117 env->spr[sprn] = val;
118}
119
9a64fbe4 120/*****************************************************************************/
fdabc366 121/* Fixed point operations helpers */
fdabc366
FB
122void do_adde (void)
123{
124 T2 = T0;
125 T0 += T1 + xer_ca;
d9bce9d9
JM
126 if (likely(!((uint32_t)T0 < (uint32_t)T2 ||
127 (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) {
fdabc366
FB
128 xer_ca = 0;
129 } else {
130 xer_ca = 1;
131 }
132}
133
d9bce9d9
JM
134#if defined(TARGET_PPC64)
135void do_adde_64 (void)
fdabc366
FB
136{
137 T2 = T0;
138 T0 += T1 + xer_ca;
d9bce9d9
JM
139 if (likely(!((uint64_t)T0 < (uint64_t)T2 ||
140 (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) {
fdabc366
FB
141 xer_ca = 0;
142 } else {
143 xer_ca = 1;
144 }
fdabc366 145}
d9bce9d9 146#endif
fdabc366
FB
147
148void do_addmeo (void)
149{
150 T1 = T0;
151 T0 += xer_ca + (-1);
c3e10c7b
JM
152 xer_ov = ((uint32_t)T1 & ((uint32_t)T1 ^ (uint32_t)T0)) >> 31;
153 xer_so |= xer_ov;
fdabc366
FB
154 if (likely(T1 != 0))
155 xer_ca = 1;
c3e10c7b
JM
156 else
157 xer_ca = 0;
fdabc366
FB
158}
159
d9bce9d9
JM
160#if defined(TARGET_PPC64)
161void do_addmeo_64 (void)
fdabc366
FB
162{
163 T1 = T0;
d9bce9d9 164 T0 += xer_ca + (-1);
c3e10c7b
JM
165 xer_ov = ((uint64_t)T1 & ((uint64_t)T1 ^ (uint64_t)T0)) >> 63;
166 xer_so |= xer_ov;
d9bce9d9 167 if (likely(T1 != 0))
fdabc366 168 xer_ca = 1;
c3e10c7b
JM
169 else
170 xer_ca = 0;
fdabc366 171}
d9bce9d9 172#endif
fdabc366
FB
173
174void do_divwo (void)
175{
6f2d8978 176 if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
d9bce9d9 177 (int32_t)T1 == 0))) {
fdabc366 178 xer_ov = 0;
d9bce9d9 179 T0 = (int32_t)T0 / (int32_t)T1;
fdabc366 180 } else {
fdabc366 181 xer_ov = 1;
6f2d8978 182 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
fdabc366 183 }
6f2d8978 184 xer_so |= xer_ov;
fdabc366
FB
185}
186
d9bce9d9
JM
187#if defined(TARGET_PPC64)
188void do_divdo (void)
189{
6f2d8978 190 if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == (int64_t)-1LL) ||
d9bce9d9
JM
191 (int64_t)T1 == 0))) {
192 xer_ov = 0;
193 T0 = (int64_t)T0 / (int64_t)T1;
194 } else {
d9bce9d9 195 xer_ov = 1;
6f2d8978 196 T0 = UINT64_MAX * ((uint64_t)T0 >> 63);
d9bce9d9 197 }
6f2d8978 198 xer_so |= xer_ov;
d9bce9d9
JM
199}
200#endif
201
fdabc366
FB
202void do_divwuo (void)
203{
204 if (likely((uint32_t)T1 != 0)) {
205 xer_ov = 0;
206 T0 = (uint32_t)T0 / (uint32_t)T1;
207 } else {
fdabc366 208 xer_ov = 1;
966439a6 209 xer_so = 1;
fdabc366
FB
210 T0 = 0;
211 }
212}
213
d9bce9d9
JM
214#if defined(TARGET_PPC64)
215void do_divduo (void)
216{
217 if (likely((uint64_t)T1 != 0)) {
218 xer_ov = 0;
219 T0 = (uint64_t)T0 / (uint64_t)T1;
220 } else {
d9bce9d9 221 xer_ov = 1;
966439a6 222 xer_so = 1;
d9bce9d9
JM
223 T0 = 0;
224 }
225}
226#endif
227
fdabc366
FB
228void do_mullwo (void)
229{
d9bce9d9 230 int64_t res = (int64_t)T0 * (int64_t)T1;
fdabc366
FB
231
232 if (likely((int32_t)res == res)) {
233 xer_ov = 0;
234 } else {
235 xer_ov = 1;
236 xer_so = 1;
237 }
238 T0 = (int32_t)res;
239}
240
d9bce9d9
JM
241#if defined(TARGET_PPC64)
242void do_mulldo (void)
fdabc366 243{
d9bce9d9
JM
244 int64_t th;
245 uint64_t tl;
246
9d901a20 247 muls64(&tl, &th, T0, T1);
6f2d8978 248 T0 = (int64_t)tl;
88ad920b 249 /* If th != 0 && th != -1, then we had an overflow */
6f2d8978 250 if (likely((uint64_t)(th + 1) <= 1)) {
fdabc366 251 xer_ov = 0;
fdabc366
FB
252 } else {
253 xer_ov = 1;
fdabc366 254 }
6f2d8978 255 xer_so |= xer_ov;
fdabc366 256}
d9bce9d9 257#endif
fdabc366 258
d9bce9d9 259void do_nego (void)
fdabc366 260{
d9bce9d9 261 if (likely((int32_t)T0 != INT32_MIN)) {
fdabc366 262 xer_ov = 0;
d9bce9d9 263 T0 = -(int32_t)T0;
fdabc366 264 } else {
fdabc366 265 xer_ov = 1;
d9bce9d9 266 xer_so = 1;
fdabc366 267 }
fdabc366
FB
268}
269
d9bce9d9
JM
270#if defined(TARGET_PPC64)
271void do_nego_64 (void)
fdabc366 272{
d9bce9d9 273 if (likely((int64_t)T0 != INT64_MIN)) {
fdabc366 274 xer_ov = 0;
d9bce9d9 275 T0 = -(int64_t)T0;
fdabc366 276 } else {
fdabc366 277 xer_ov = 1;
d9bce9d9 278 xer_so = 1;
fdabc366
FB
279 }
280}
d9bce9d9 281#endif
fdabc366
FB
282
283void do_subfe (void)
284{
285 T0 = T1 + ~T0 + xer_ca;
d9bce9d9
JM
286 if (likely((uint32_t)T0 >= (uint32_t)T1 &&
287 (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) {
fdabc366
FB
288 xer_ca = 0;
289 } else {
290 xer_ca = 1;
291 }
292}
293
d9bce9d9
JM
294#if defined(TARGET_PPC64)
295void do_subfe_64 (void)
fdabc366 296{
fdabc366 297 T0 = T1 + ~T0 + xer_ca;
d9bce9d9
JM
298 if (likely((uint64_t)T0 >= (uint64_t)T1 &&
299 (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) {
300 xer_ca = 0;
301 } else {
302 xer_ca = 1;
303 }
304}
305#endif
306
307void do_subfmeo (void)
308{
309 T1 = T0;
310 T0 = ~T0 + xer_ca - 1;
c3e10c7b
JM
311 xer_ov = ((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0)) >> 31;
312 xer_so |= xer_ov;
d9bce9d9 313 if (likely((uint32_t)T1 != UINT32_MAX))
fdabc366 314 xer_ca = 1;
c3e10c7b
JM
315 else
316 xer_ca = 0;
fdabc366
FB
317}
318
d9bce9d9
JM
319#if defined(TARGET_PPC64)
320void do_subfmeo_64 (void)
fdabc366
FB
321{
322 T1 = T0;
323 T0 = ~T0 + xer_ca - 1;
c3e10c7b
JM
324 xer_ov = ((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0)) >> 63;
325 xer_so |= xer_ov;
d9bce9d9 326 if (likely((uint64_t)T1 != UINT64_MAX))
fdabc366 327 xer_ca = 1;
c3e10c7b
JM
328 else
329 xer_ca = 0;
fdabc366 330}
d9bce9d9 331#endif
fdabc366
FB
332
333void do_subfzeo (void)
334{
335 T1 = T0;
336 T0 = ~T0 + xer_ca;
c3e10c7b
JM
337 xer_ov = (((uint32_t)~T1 ^ UINT32_MAX) &
338 ((uint32_t)(~T1) ^ (uint32_t)T0)) >> 31;
339 xer_so |= xer_ov;
d9bce9d9 340 if (likely((uint32_t)T0 >= (uint32_t)~T1)) {
fdabc366
FB
341 xer_ca = 0;
342 } else {
343 xer_ca = 1;
344 }
345}
346
d9bce9d9
JM
347#if defined(TARGET_PPC64)
348void do_subfzeo_64 (void)
349{
350 T1 = T0;
351 T0 = ~T0 + xer_ca;
c3e10c7b
JM
352 xer_ov = (((uint64_t)~T1 ^ UINT64_MAX) &
353 ((uint64_t)(~T1) ^ (uint64_t)T0)) >> 63;
354 xer_so |= xer_ov;
d9bce9d9
JM
355 if (likely((uint64_t)T0 >= (uint64_t)~T1)) {
356 xer_ca = 0;
357 } else {
358 xer_ca = 1;
359 }
360}
361#endif
362
603fccce
JM
363void do_cntlzw (void)
364{
365 T0 = clz32(T0);
366}
367
368#if defined(TARGET_PPC64)
369void do_cntlzd (void)
370{
371 T0 = clz64(T0);
372}
373#endif
374
9a64fbe4
FB
375/* shift right arithmetic helper */
376void do_sraw (void)
377{
378 int32_t ret;
379
fdabc366 380 if (likely(!(T1 & 0x20UL))) {
d9bce9d9 381 if (likely((uint32_t)T1 != 0)) {
fdabc366
FB
382 ret = (int32_t)T0 >> (T1 & 0x1fUL);
383 if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) {
76a66253 384 xer_ca = 0;
fdabc366 385 } else {
76a66253 386 xer_ca = 1;
fdabc366
FB
387 }
388 } else {
76a66253 389 ret = T0;
fdabc366
FB
390 xer_ca = 0;
391 }
392 } else {
6f2d8978 393 ret = UINT32_MAX * ((uint32_t)T0 >> 31);
fdabc366
FB
394 if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) {
395 xer_ca = 0;
76a66253 396 } else {
9a64fbe4 397 xer_ca = 1;
76a66253 398 }
fdabc366 399 }
4b3686fa 400 T0 = ret;
9a64fbe4
FB
401}
402
d9bce9d9
JM
403#if defined(TARGET_PPC64)
404void do_srad (void)
405{
406 int64_t ret;
407
408 if (likely(!(T1 & 0x40UL))) {
409 if (likely((uint64_t)T1 != 0)) {
410 ret = (int64_t)T0 >> (T1 & 0x3FUL);
411 if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) {
412 xer_ca = 0;
413 } else {
414 xer_ca = 1;
415 }
416 } else {
417 ret = T0;
418 xer_ca = 0;
419 }
420 } else {
6f2d8978 421 ret = UINT64_MAX * ((uint64_t)T0 >> 63);
d9bce9d9
JM
422 if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) {
423 xer_ca = 0;
424 } else {
425 xer_ca = 1;
426 }
427 }
428 T0 = ret;
429}
430#endif
431
d9bce9d9
JM
432void do_popcntb (void)
433{
434 uint32_t ret;
435 int i;
436
437 ret = 0;
438 for (i = 0; i < 32; i += 8)
603fccce 439 ret |= ctpop8((T0 >> i) & 0xFF) << i;
d9bce9d9
JM
440 T0 = ret;
441}
442
443#if defined(TARGET_PPC64)
444void do_popcntb_64 (void)
445{
446 uint64_t ret;
447 int i;
448
449 ret = 0;
450 for (i = 0; i < 64; i += 8)
603fccce 451 ret |= ctpop8((T0 >> i) & 0xFF) << i;
d9bce9d9
JM
452 T0 = ret;
453}
454#endif
455
fdabc366 456/*****************************************************************************/
9a64fbe4 457/* Floating point operations helpers */
0ca9d380 458static always_inline int fpisneg (float64 d)
7c58044c 459{
0ca9d380 460 CPU_DoubleU u;
7c58044c 461
0ca9d380 462 u.d = d;
7c58044c 463
0ca9d380 464 return u.ll >> 63 != 0;
7c58044c
JM
465}
466
0ca9d380 467static always_inline int isden (float64 d)
7c58044c 468{
0ca9d380 469 CPU_DoubleU u;
7c58044c 470
0ca9d380 471 u.d = d;
7c58044c 472
0ca9d380 473 return ((u.ll >> 52) & 0x7FF) == 0;
7c58044c
JM
474}
475
0ca9d380 476static always_inline int iszero (float64 d)
7c58044c 477{
0ca9d380 478 CPU_DoubleU u;
7c58044c 479
0ca9d380 480 u.d = d;
7c58044c 481
0ca9d380 482 return (u.ll & ~0x8000000000000000ULL) == 0;
7c58044c
JM
483}
484
0ca9d380 485static always_inline int isinfinity (float64 d)
7c58044c 486{
0ca9d380 487 CPU_DoubleU u;
7c58044c 488
0ca9d380 489 u.d = d;
7c58044c 490
0ca9d380
AJ
491 return ((u.ll >> 52) & 0x7FF) == 0x7FF &&
492 (u.ll & 0x000FFFFFFFFFFFFFULL) == 0;
7c58044c
JM
493}
494
80621676
AJ
495#ifdef CONFIG_SOFTFLOAT
496static always_inline int isfinite (float64 d)
497{
498 CPU_DoubleU u;
499
500 u.d = d;
501
502 return (((u.ll >> 52) & 0x7FF) != 0x7FF);
503}
504
505static always_inline int isnormal (float64 d)
506{
507 CPU_DoubleU u;
508
509 u.d = d;
510
511 uint32_t exp = (u.ll >> 52) & 0x7FF;
512 return ((0 < exp) && (exp < 0x7FF));
513}
514#endif
515
7c58044c
JM
516void do_compute_fprf (int set_fprf)
517{
518 int isneg;
519
520 isneg = fpisneg(FT0);
521 if (unlikely(float64_is_nan(FT0))) {
522 if (float64_is_signaling_nan(FT0)) {
523 /* Signaling NaN: flags are undefined */
524 T0 = 0x00;
525 } else {
526 /* Quiet NaN */
527 T0 = 0x11;
528 }
529 } else if (unlikely(isinfinity(FT0))) {
530 /* +/- infinity */
531 if (isneg)
532 T0 = 0x09;
533 else
534 T0 = 0x05;
535 } else {
536 if (iszero(FT0)) {
537 /* +/- zero */
538 if (isneg)
539 T0 = 0x12;
540 else
541 T0 = 0x02;
542 } else {
543 if (isden(FT0)) {
544 /* Denormalized numbers */
545 T0 = 0x10;
546 } else {
547 /* Normalized numbers */
548 T0 = 0x00;
549 }
550 if (isneg) {
551 T0 |= 0x08;
552 } else {
553 T0 |= 0x04;
554 }
555 }
556 }
557 if (set_fprf) {
558 /* We update FPSCR_FPRF */
559 env->fpscr &= ~(0x1F << FPSCR_FPRF);
560 env->fpscr |= T0 << FPSCR_FPRF;
561 }
562 /* We just need fpcc to update Rc1 */
563 T0 &= 0xF;
564}
565
566/* Floating-point invalid operations exception */
567static always_inline void fload_invalid_op_excp (int op)
568{
569 int ve;
570
571 ve = fpscr_ve;
572 if (op & POWERPC_EXCP_FP_VXSNAN) {
573 /* Operation on signaling NaN */
574 env->fpscr |= 1 << FPSCR_VXSNAN;
575 }
576 if (op & POWERPC_EXCP_FP_VXSOFT) {
577 /* Software-defined condition */
578 env->fpscr |= 1 << FPSCR_VXSOFT;
579 }
580 switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) {
581 case POWERPC_EXCP_FP_VXISI:
582 /* Magnitude subtraction of infinities */
583 env->fpscr |= 1 << FPSCR_VXISI;
584 goto update_arith;
585 case POWERPC_EXCP_FP_VXIDI:
586 /* Division of infinity by infinity */
587 env->fpscr |= 1 << FPSCR_VXIDI;
588 goto update_arith;
589 case POWERPC_EXCP_FP_VXZDZ:
590 /* Division of zero by zero */
591 env->fpscr |= 1 << FPSCR_VXZDZ;
592 goto update_arith;
593 case POWERPC_EXCP_FP_VXIMZ:
594 /* Multiplication of zero by infinity */
595 env->fpscr |= 1 << FPSCR_VXIMZ;
596 goto update_arith;
597 case POWERPC_EXCP_FP_VXVC:
598 /* Ordered comparison of NaN */
599 env->fpscr |= 1 << FPSCR_VXVC;
600 env->fpscr &= ~(0xF << FPSCR_FPCC);
601 env->fpscr |= 0x11 << FPSCR_FPCC;
602 /* We must update the target FPR before raising the exception */
603 if (ve != 0) {
604 env->exception_index = POWERPC_EXCP_PROGRAM;
605 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
606 /* Update the floating-point enabled exception summary */
607 env->fpscr |= 1 << FPSCR_FEX;
608 /* Exception is differed */
609 ve = 0;
610 }
611 break;
612 case POWERPC_EXCP_FP_VXSQRT:
613 /* Square root of a negative number */
614 env->fpscr |= 1 << FPSCR_VXSQRT;
615 update_arith:
616 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
617 if (ve == 0) {
618 /* Set the result to quiet NaN */
6f2d8978 619 FT0 = UINT64_MAX;
7c58044c
JM
620 env->fpscr &= ~(0xF << FPSCR_FPCC);
621 env->fpscr |= 0x11 << FPSCR_FPCC;
622 }
623 break;
624 case POWERPC_EXCP_FP_VXCVI:
625 /* Invalid conversion */
626 env->fpscr |= 1 << FPSCR_VXCVI;
627 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
628 if (ve == 0) {
629 /* Set the result to quiet NaN */
6f2d8978 630 FT0 = UINT64_MAX;
7c58044c
JM
631 env->fpscr &= ~(0xF << FPSCR_FPCC);
632 env->fpscr |= 0x11 << FPSCR_FPCC;
633 }
634 break;
635 }
636 /* Update the floating-point invalid operation summary */
637 env->fpscr |= 1 << FPSCR_VX;
638 /* Update the floating-point exception summary */
639 env->fpscr |= 1 << FPSCR_FX;
640 if (ve != 0) {
641 /* Update the floating-point enabled exception summary */
642 env->fpscr |= 1 << FPSCR_FEX;
643 if (msr_fe0 != 0 || msr_fe1 != 0)
644 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
645 }
646}
647
648static always_inline void float_zero_divide_excp (void)
649{
0ca9d380 650 CPU_DoubleU u0, u1;
7c58044c
JM
651
652 env->fpscr |= 1 << FPSCR_ZX;
653 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
654 /* Update the floating-point exception summary */
655 env->fpscr |= 1 << FPSCR_FX;
656 if (fpscr_ze != 0) {
657 /* Update the floating-point enabled exception summary */
658 env->fpscr |= 1 << FPSCR_FEX;
659 if (msr_fe0 != 0 || msr_fe1 != 0) {
660 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
661 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
662 }
663 } else {
664 /* Set the result to infinity */
0ca9d380
AJ
665 u0.d = FT0;
666 u1.d = FT1;
667 u0.ll = ((u0.ll ^ u1.ll) & 0x8000000000000000ULL);
668 u0.ll |= 0x7FFULL << 52;
669 FT0 = u0.d;
7c58044c
JM
670 }
671}
672
673static always_inline void float_overflow_excp (void)
674{
675 env->fpscr |= 1 << FPSCR_OX;
676 /* Update the floating-point exception summary */
677 env->fpscr |= 1 << FPSCR_FX;
678 if (fpscr_oe != 0) {
679 /* XXX: should adjust the result */
680 /* Update the floating-point enabled exception summary */
681 env->fpscr |= 1 << FPSCR_FEX;
682 /* We must update the target FPR before raising the exception */
683 env->exception_index = POWERPC_EXCP_PROGRAM;
684 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
685 } else {
686 env->fpscr |= 1 << FPSCR_XX;
687 env->fpscr |= 1 << FPSCR_FI;
688 }
689}
690
691static always_inline void float_underflow_excp (void)
692{
693 env->fpscr |= 1 << FPSCR_UX;
694 /* Update the floating-point exception summary */
695 env->fpscr |= 1 << FPSCR_FX;
696 if (fpscr_ue != 0) {
697 /* XXX: should adjust the result */
698 /* Update the floating-point enabled exception summary */
699 env->fpscr |= 1 << FPSCR_FEX;
700 /* We must update the target FPR before raising the exception */
701 env->exception_index = POWERPC_EXCP_PROGRAM;
702 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
703 }
704}
705
706static always_inline void float_inexact_excp (void)
707{
708 env->fpscr |= 1 << FPSCR_XX;
709 /* Update the floating-point exception summary */
710 env->fpscr |= 1 << FPSCR_FX;
711 if (fpscr_xe != 0) {
712 /* Update the floating-point enabled exception summary */
713 env->fpscr |= 1 << FPSCR_FEX;
714 /* We must update the target FPR before raising the exception */
715 env->exception_index = POWERPC_EXCP_PROGRAM;
716 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
717 }
718}
719
720static always_inline void fpscr_set_rounding_mode (void)
721{
722 int rnd_type;
723
724 /* Set rounding mode */
725 switch (fpscr_rn) {
726 case 0:
727 /* Best approximation (round to nearest) */
728 rnd_type = float_round_nearest_even;
729 break;
730 case 1:
731 /* Smaller magnitude (round toward zero) */
732 rnd_type = float_round_to_zero;
733 break;
734 case 2:
735 /* Round toward +infinite */
736 rnd_type = float_round_up;
737 break;
738 default:
739 case 3:
740 /* Round toward -infinite */
741 rnd_type = float_round_down;
742 break;
743 }
744 set_float_rounding_mode(rnd_type, &env->fp_status);
745}
746
747void do_fpscr_setbit (int bit)
748{
749 int prev;
750
751 prev = (env->fpscr >> bit) & 1;
752 env->fpscr |= 1 << bit;
753 if (prev == 0) {
754 switch (bit) {
755 case FPSCR_VX:
756 env->fpscr |= 1 << FPSCR_FX;
757 if (fpscr_ve)
758 goto raise_ve;
759 case FPSCR_OX:
760 env->fpscr |= 1 << FPSCR_FX;
761 if (fpscr_oe)
762 goto raise_oe;
763 break;
764 case FPSCR_UX:
765 env->fpscr |= 1 << FPSCR_FX;
766 if (fpscr_ue)
767 goto raise_ue;
768 break;
769 case FPSCR_ZX:
770 env->fpscr |= 1 << FPSCR_FX;
771 if (fpscr_ze)
772 goto raise_ze;
773 break;
774 case FPSCR_XX:
775 env->fpscr |= 1 << FPSCR_FX;
776 if (fpscr_xe)
777 goto raise_xe;
778 break;
779 case FPSCR_VXSNAN:
780 case FPSCR_VXISI:
781 case FPSCR_VXIDI:
782 case FPSCR_VXZDZ:
783 case FPSCR_VXIMZ:
784 case FPSCR_VXVC:
785 case FPSCR_VXSOFT:
786 case FPSCR_VXSQRT:
787 case FPSCR_VXCVI:
788 env->fpscr |= 1 << FPSCR_VX;
789 env->fpscr |= 1 << FPSCR_FX;
790 if (fpscr_ve != 0)
791 goto raise_ve;
792 break;
793 case FPSCR_VE:
794 if (fpscr_vx != 0) {
795 raise_ve:
796 env->error_code = POWERPC_EXCP_FP;
797 if (fpscr_vxsnan)
798 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
799 if (fpscr_vxisi)
800 env->error_code |= POWERPC_EXCP_FP_VXISI;
801 if (fpscr_vxidi)
802 env->error_code |= POWERPC_EXCP_FP_VXIDI;
803 if (fpscr_vxzdz)
804 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
805 if (fpscr_vximz)
806 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
807 if (fpscr_vxvc)
808 env->error_code |= POWERPC_EXCP_FP_VXVC;
809 if (fpscr_vxsoft)
810 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
811 if (fpscr_vxsqrt)
812 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
813 if (fpscr_vxcvi)
814 env->error_code |= POWERPC_EXCP_FP_VXCVI;
815 goto raise_excp;
816 }
817 break;
818 case FPSCR_OE:
819 if (fpscr_ox != 0) {
820 raise_oe:
821 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
822 goto raise_excp;
823 }
824 break;
825 case FPSCR_UE:
826 if (fpscr_ux != 0) {
827 raise_ue:
828 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
829 goto raise_excp;
830 }
831 break;
832 case FPSCR_ZE:
833 if (fpscr_zx != 0) {
834 raise_ze:
835 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
836 goto raise_excp;
837 }
838 break;
839 case FPSCR_XE:
840 if (fpscr_xx != 0) {
841 raise_xe:
842 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
843 goto raise_excp;
844 }
845 break;
846 case FPSCR_RN1:
847 case FPSCR_RN:
848 fpscr_set_rounding_mode();
849 break;
850 default:
851 break;
852 raise_excp:
853 /* Update the floating-point enabled exception summary */
854 env->fpscr |= 1 << FPSCR_FEX;
855 /* We have to update Rc1 before raising the exception */
856 env->exception_index = POWERPC_EXCP_PROGRAM;
857 break;
858 }
859 }
860}
861
862#if defined(WORDS_BIGENDIAN)
863#define WORD0 0
864#define WORD1 1
865#else
866#define WORD0 1
867#define WORD1 0
868#endif
869void do_store_fpscr (uint32_t mask)
870{
871 /*
872 * We use only the 32 LSB of the incoming fpr
873 */
0ca9d380 874 CPU_DoubleU u;
7c58044c
JM
875 uint32_t prev, new;
876 int i;
877
878 u.d = FT0;
879 prev = env->fpscr;
0ca9d380 880 new = u.l.lower;
7c58044c
JM
881 new &= ~0x90000000;
882 new |= prev & 0x90000000;
883 for (i = 0; i < 7; i++) {
884 if (mask & (1 << i)) {
885 env->fpscr &= ~(0xF << (4 * i));
886 env->fpscr |= new & (0xF << (4 * i));
887 }
888 }
889 /* Update VX and FEX */
890 if (fpscr_ix != 0)
891 env->fpscr |= 1 << FPSCR_VX;
5567025f
AJ
892 else
893 env->fpscr &= ~(1 << FPSCR_VX);
7c58044c
JM
894 if ((fpscr_ex & fpscr_eex) != 0) {
895 env->fpscr |= 1 << FPSCR_FEX;
896 env->exception_index = POWERPC_EXCP_PROGRAM;
897 /* XXX: we should compute it properly */
898 env->error_code = POWERPC_EXCP_FP;
899 }
5567025f
AJ
900 else
901 env->fpscr &= ~(1 << FPSCR_FEX);
7c58044c
JM
902 fpscr_set_rounding_mode();
903}
904#undef WORD0
905#undef WORD1
906
907#ifdef CONFIG_SOFTFLOAT
908void do_float_check_status (void)
909{
910 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
911 (env->error_code & POWERPC_EXCP_FP)) {
912 /* Differred floating-point exception after target FPR update */
913 if (msr_fe0 != 0 || msr_fe1 != 0)
914 do_raise_exception_err(env->exception_index, env->error_code);
915 } else if (env->fp_status.float_exception_flags & float_flag_overflow) {
916 float_overflow_excp();
917 } else if (env->fp_status.float_exception_flags & float_flag_underflow) {
918 float_underflow_excp();
919 } else if (env->fp_status.float_exception_flags & float_flag_inexact) {
920 float_inexact_excp();
921 }
922}
923#endif
924
1cdb9c3d 925#if USE_PRECISE_EMULATION
7c58044c
JM
926void do_fadd (void)
927{
928 if (unlikely(float64_is_signaling_nan(FT0) ||
929 float64_is_signaling_nan(FT1))) {
930 /* sNaN addition */
931 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
932 } else if (likely(isfinite(FT0) || isfinite(FT1) ||
933 fpisneg(FT0) == fpisneg(FT1))) {
934 FT0 = float64_add(FT0, FT1, &env->fp_status);
935 } else {
936 /* Magnitude subtraction of infinities */
937 fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
938 }
939}
940
941void do_fsub (void)
942{
943 if (unlikely(float64_is_signaling_nan(FT0) ||
944 float64_is_signaling_nan(FT1))) {
945 /* sNaN subtraction */
946 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
947 } else if (likely(isfinite(FT0) || isfinite(FT1) ||
948 fpisneg(FT0) != fpisneg(FT1))) {
949 FT0 = float64_sub(FT0, FT1, &env->fp_status);
950 } else {
951 /* Magnitude subtraction of infinities */
952 fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
953 }
954}
955
956void do_fmul (void)
957{
958 if (unlikely(float64_is_signaling_nan(FT0) ||
959 float64_is_signaling_nan(FT1))) {
960 /* sNaN multiplication */
961 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
5bda2843
JM
962 } else if (unlikely((isinfinity(FT0) && iszero(FT1)) ||
963 (iszero(FT0) && isinfinity(FT1)))) {
7c58044c
JM
964 /* Multiplication of zero by infinity */
965 fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
966 } else {
967 FT0 = float64_mul(FT0, FT1, &env->fp_status);
968 }
969}
970
971void do_fdiv (void)
972{
973 if (unlikely(float64_is_signaling_nan(FT0) ||
974 float64_is_signaling_nan(FT1))) {
975 /* sNaN division */
976 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
977 } else if (unlikely(isinfinity(FT0) && isinfinity(FT1))) {
978 /* Division of infinity by infinity */
979 fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
980 } else if (unlikely(iszero(FT1))) {
981 if (iszero(FT0)) {
982 /* Division of zero by zero */
983 fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
984 } else {
985 /* Division by zero */
986 float_zero_divide_excp();
987 }
988 } else {
989 FT0 = float64_div(FT0, FT1, &env->fp_status);
990 }
991}
1cdb9c3d 992#endif /* USE_PRECISE_EMULATION */
7c58044c 993
9a64fbe4
FB
994void do_fctiw (void)
995{
0ca9d380 996 CPU_DoubleU p;
9a64fbe4 997
7c58044c
JM
998 if (unlikely(float64_is_signaling_nan(FT0))) {
999 /* sNaN conversion */
1000 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1001 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1002 /* qNan / infinity conversion */
1003 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1004 } else {
0ca9d380 1005 p.ll = float64_to_int32(FT0, &env->fp_status);
1cdb9c3d 1006#if USE_PRECISE_EMULATION
7c58044c
JM
1007 /* XXX: higher bits are not supposed to be significant.
1008 * to make tests easier, return the same as a real PowerPC 750
1009 */
0ca9d380 1010 p.ll |= 0xFFF80000ULL << 32;
e864cabd 1011#endif
7c58044c
JM
1012 FT0 = p.d;
1013 }
9a64fbe4
FB
1014}
1015
1016void do_fctiwz (void)
1017{
0ca9d380 1018 CPU_DoubleU p;
4ecc3190 1019
7c58044c
JM
1020 if (unlikely(float64_is_signaling_nan(FT0))) {
1021 /* sNaN conversion */
1022 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1023 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1024 /* qNan / infinity conversion */
1025 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1026 } else {
0ca9d380 1027 p.ll = float64_to_int32_round_to_zero(FT0, &env->fp_status);
1cdb9c3d 1028#if USE_PRECISE_EMULATION
7c58044c
JM
1029 /* XXX: higher bits are not supposed to be significant.
1030 * to make tests easier, return the same as a real PowerPC 750
1031 */
0ca9d380 1032 p.ll |= 0xFFF80000ULL << 32;
e864cabd 1033#endif
7c58044c
JM
1034 FT0 = p.d;
1035 }
9a64fbe4
FB
1036}
1037
426613db
JM
1038#if defined(TARGET_PPC64)
1039void do_fcfid (void)
1040{
0ca9d380 1041 CPU_DoubleU p;
426613db
JM
1042
1043 p.d = FT0;
0ca9d380 1044 FT0 = int64_to_float64(p.ll, &env->fp_status);
426613db
JM
1045}
1046
1047void do_fctid (void)
1048{
0ca9d380 1049 CPU_DoubleU p;
426613db 1050
7c58044c
JM
1051 if (unlikely(float64_is_signaling_nan(FT0))) {
1052 /* sNaN conversion */
1053 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1054 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1055 /* qNan / infinity conversion */
1056 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1057 } else {
0ca9d380 1058 p.ll = float64_to_int64(FT0, &env->fp_status);
7c58044c
JM
1059 FT0 = p.d;
1060 }
426613db
JM
1061}
1062
1063void do_fctidz (void)
1064{
0ca9d380 1065 CPU_DoubleU p;
426613db 1066
7c58044c
JM
1067 if (unlikely(float64_is_signaling_nan(FT0))) {
1068 /* sNaN conversion */
1069 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1070 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1071 /* qNan / infinity conversion */
1072 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1073 } else {
0ca9d380 1074 p.ll = float64_to_int64_round_to_zero(FT0, &env->fp_status);
7c58044c
JM
1075 FT0 = p.d;
1076 }
426613db
JM
1077}
1078
1079#endif
1080
b068d6a7 1081static always_inline void do_fri (int rounding_mode)
d7e4b87e 1082{
7c58044c
JM
1083 if (unlikely(float64_is_signaling_nan(FT0))) {
1084 /* sNaN round */
1085 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1086 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1087 /* qNan / infinity round */
1088 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1089 } else {
1090 set_float_rounding_mode(rounding_mode, &env->fp_status);
1091 FT0 = float64_round_to_int(FT0, &env->fp_status);
1092 /* Restore rounding mode from FPSCR */
1093 fpscr_set_rounding_mode();
1094 }
d7e4b87e
JM
1095}
1096
1097void do_frin (void)
1098{
1099 do_fri(float_round_nearest_even);
1100}
1101
1102void do_friz (void)
1103{
1104 do_fri(float_round_to_zero);
1105}
1106
1107void do_frip (void)
1108{
1109 do_fri(float_round_up);
1110}
1111
1112void do_frim (void)
1113{
1114 do_fri(float_round_down);
1115}
1116
1cdb9c3d 1117#if USE_PRECISE_EMULATION
e864cabd
JM
1118void do_fmadd (void)
1119{
7c58044c
JM
1120 if (unlikely(float64_is_signaling_nan(FT0) ||
1121 float64_is_signaling_nan(FT1) ||
1122 float64_is_signaling_nan(FT2))) {
1123 /* sNaN operation */
1124 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1125 } else {
e864cabd 1126#ifdef FLOAT128
7c58044c
JM
1127 /* This is the way the PowerPC specification defines it */
1128 float128 ft0_128, ft1_128;
1129
1130 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1131 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1132 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1133 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1134 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1135 FT0 = float128_to_float64(ft0_128, &env->fp_status);
e864cabd 1136#else
7c58044c
JM
1137 /* This is OK on x86 hosts */
1138 FT0 = (FT0 * FT1) + FT2;
e864cabd 1139#endif
7c58044c 1140 }
e864cabd
JM
1141}
1142
1143void do_fmsub (void)
1144{
7c58044c
JM
1145 if (unlikely(float64_is_signaling_nan(FT0) ||
1146 float64_is_signaling_nan(FT1) ||
1147 float64_is_signaling_nan(FT2))) {
1148 /* sNaN operation */
1149 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1150 } else {
e864cabd 1151#ifdef FLOAT128
7c58044c
JM
1152 /* This is the way the PowerPC specification defines it */
1153 float128 ft0_128, ft1_128;
1154
1155 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1156 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1157 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1158 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1159 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1160 FT0 = float128_to_float64(ft0_128, &env->fp_status);
e864cabd 1161#else
7c58044c
JM
1162 /* This is OK on x86 hosts */
1163 FT0 = (FT0 * FT1) - FT2;
e864cabd 1164#endif
7c58044c 1165 }
e864cabd 1166}
1cdb9c3d 1167#endif /* USE_PRECISE_EMULATION */
e864cabd 1168
4b3686fa
FB
1169void do_fnmadd (void)
1170{
7c58044c
JM
1171 if (unlikely(float64_is_signaling_nan(FT0) ||
1172 float64_is_signaling_nan(FT1) ||
1173 float64_is_signaling_nan(FT2))) {
1174 /* sNaN operation */
1175 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1176 } else {
1cdb9c3d 1177#if USE_PRECISE_EMULATION
e864cabd 1178#ifdef FLOAT128
7c58044c
JM
1179 /* This is the way the PowerPC specification defines it */
1180 float128 ft0_128, ft1_128;
1181
1182 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1183 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1184 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1185 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1186 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1187 FT0 = float128_to_float64(ft0_128, &env->fp_status);
e864cabd 1188#else
7c58044c
JM
1189 /* This is OK on x86 hosts */
1190 FT0 = (FT0 * FT1) + FT2;
e864cabd
JM
1191#endif
1192#else
7c58044c
JM
1193 FT0 = float64_mul(FT0, FT1, &env->fp_status);
1194 FT0 = float64_add(FT0, FT2, &env->fp_status);
e864cabd 1195#endif
7c58044c
JM
1196 if (likely(!isnan(FT0)))
1197 FT0 = float64_chs(FT0);
1198 }
4b3686fa
FB
1199}
1200
1201void do_fnmsub (void)
1202{
7c58044c
JM
1203 if (unlikely(float64_is_signaling_nan(FT0) ||
1204 float64_is_signaling_nan(FT1) ||
1205 float64_is_signaling_nan(FT2))) {
1206 /* sNaN operation */
1207 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1208 } else {
1cdb9c3d 1209#if USE_PRECISE_EMULATION
e864cabd 1210#ifdef FLOAT128
7c58044c
JM
1211 /* This is the way the PowerPC specification defines it */
1212 float128 ft0_128, ft1_128;
1213
1214 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1215 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1216 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1217 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1218 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1219 FT0 = float128_to_float64(ft0_128, &env->fp_status);
e864cabd 1220#else
7c58044c
JM
1221 /* This is OK on x86 hosts */
1222 FT0 = (FT0 * FT1) - FT2;
e864cabd
JM
1223#endif
1224#else
7c58044c
JM
1225 FT0 = float64_mul(FT0, FT1, &env->fp_status);
1226 FT0 = float64_sub(FT0, FT2, &env->fp_status);
e864cabd 1227#endif
7c58044c
JM
1228 if (likely(!isnan(FT0)))
1229 FT0 = float64_chs(FT0);
1230 }
1ef59d0a
FB
1231}
1232
1cdb9c3d 1233#if USE_PRECISE_EMULATION
7c58044c
JM
1234void do_frsp (void)
1235{
1236 if (unlikely(float64_is_signaling_nan(FT0))) {
1237 /* sNaN square root */
1238 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1239 } else {
1240 FT0 = float64_to_float32(FT0, &env->fp_status);
1241 }
1242}
1cdb9c3d 1243#endif /* USE_PRECISE_EMULATION */
7c58044c 1244
9a64fbe4
FB
1245void do_fsqrt (void)
1246{
7c58044c
JM
1247 if (unlikely(float64_is_signaling_nan(FT0))) {
1248 /* sNaN square root */
1249 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1250 } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
1251 /* Square root of a negative nonzero number */
1252 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1253 } else {
1254 FT0 = float64_sqrt(FT0, &env->fp_status);
1255 }
9a64fbe4
FB
1256}
1257
d7e4b87e
JM
1258void do_fre (void)
1259{
0ca9d380 1260 CPU_DoubleU p;
d7e4b87e 1261
7c58044c
JM
1262 if (unlikely(float64_is_signaling_nan(FT0))) {
1263 /* sNaN reciprocal */
1264 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1265 } else if (unlikely(iszero(FT0))) {
1266 /* Zero reciprocal */
1267 float_zero_divide_excp();
1268 } else if (likely(isnormal(FT0))) {
d7e4b87e
JM
1269 FT0 = float64_div(1.0, FT0, &env->fp_status);
1270 } else {
1271 p.d = FT0;
0ca9d380
AJ
1272 if (p.ll == 0x8000000000000000ULL) {
1273 p.ll = 0xFFF0000000000000ULL;
1274 } else if (p.ll == 0x0000000000000000ULL) {
1275 p.ll = 0x7FF0000000000000ULL;
d7e4b87e 1276 } else if (isnan(FT0)) {
0ca9d380 1277 p.ll = 0x7FF8000000000000ULL;
7c58044c 1278 } else if (fpisneg(FT0)) {
0ca9d380 1279 p.ll = 0x8000000000000000ULL;
d7e4b87e 1280 } else {
0ca9d380 1281 p.ll = 0x0000000000000000ULL;
d7e4b87e
JM
1282 }
1283 FT0 = p.d;
1284 }
1285}
1286
9a64fbe4
FB
1287void do_fres (void)
1288{
0ca9d380 1289 CPU_DoubleU p;
4ecc3190 1290
7c58044c
JM
1291 if (unlikely(float64_is_signaling_nan(FT0))) {
1292 /* sNaN reciprocal */
1293 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1294 } else if (unlikely(iszero(FT0))) {
1295 /* Zero reciprocal */
1296 float_zero_divide_excp();
1297 } else if (likely(isnormal(FT0))) {
1cdb9c3d 1298#if USE_PRECISE_EMULATION
e864cabd
JM
1299 FT0 = float64_div(1.0, FT0, &env->fp_status);
1300 FT0 = float64_to_float32(FT0, &env->fp_status);
1301#else
76a66253 1302 FT0 = float32_div(1.0, FT0, &env->fp_status);
e864cabd 1303#endif
4ecc3190
FB
1304 } else {
1305 p.d = FT0;
0ca9d380
AJ
1306 if (p.ll == 0x8000000000000000ULL) {
1307 p.ll = 0xFFF0000000000000ULL;
1308 } else if (p.ll == 0x0000000000000000ULL) {
1309 p.ll = 0x7FF0000000000000ULL;
4ecc3190 1310 } else if (isnan(FT0)) {
0ca9d380 1311 p.ll = 0x7FF8000000000000ULL;
7c58044c 1312 } else if (fpisneg(FT0)) {
0ca9d380 1313 p.ll = 0x8000000000000000ULL;
4ecc3190 1314 } else {
0ca9d380 1315 p.ll = 0x0000000000000000ULL;
4ecc3190
FB
1316 }
1317 FT0 = p.d;
1318 }
9a64fbe4
FB
1319}
1320
4ecc3190 1321void do_frsqrte (void)
9a64fbe4 1322{
0ca9d380 1323 CPU_DoubleU p;
4ecc3190 1324
7c58044c
JM
1325 if (unlikely(float64_is_signaling_nan(FT0))) {
1326 /* sNaN reciprocal square root */
1327 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1328 } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
1329 /* Reciprocal square root of a negative nonzero number */
1330 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1331 } else if (likely(isnormal(FT0))) {
fdabc366
FB
1332 FT0 = float64_sqrt(FT0, &env->fp_status);
1333 FT0 = float32_div(1.0, FT0, &env->fp_status);
4ecc3190
FB
1334 } else {
1335 p.d = FT0;
0ca9d380
AJ
1336 if (p.ll == 0x8000000000000000ULL) {
1337 p.ll = 0xFFF0000000000000ULL;
1338 } else if (p.ll == 0x0000000000000000ULL) {
1339 p.ll = 0x7FF0000000000000ULL;
4ecc3190 1340 } else if (isnan(FT0)) {
0ca9d380 1341 p.ll |= 0x000FFFFFFFFFFFFFULL;
7c58044c 1342 } else if (fpisneg(FT0)) {
0ca9d380 1343 p.ll = 0x7FF8000000000000ULL;
4ecc3190 1344 } else {
0ca9d380 1345 p.ll = 0x0000000000000000ULL;
4ecc3190
FB
1346 }
1347 FT0 = p.d;
1348 }
9a64fbe4
FB
1349}
1350
1351void do_fsel (void)
1352{
7c58044c 1353 if (!fpisneg(FT0) || iszero(FT0))
9a64fbe4 1354 FT0 = FT1;
4ecc3190
FB
1355 else
1356 FT0 = FT2;
9a64fbe4
FB
1357}
1358
1359void do_fcmpu (void)
1360{
7c58044c
JM
1361 if (unlikely(float64_is_signaling_nan(FT0) ||
1362 float64_is_signaling_nan(FT1))) {
1363 /* sNaN comparison */
1364 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1365 } else {
fdabc366
FB
1366 if (float64_lt(FT0, FT1, &env->fp_status)) {
1367 T0 = 0x08UL;
1368 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
1369 T0 = 0x04UL;
1370 } else {
1371 T0 = 0x02UL;
1372 }
9a64fbe4 1373 }
7c58044c
JM
1374 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1375 env->fpscr |= T0 << FPSCR_FPRF;
9a64fbe4
FB
1376}
1377
1378void do_fcmpo (void)
1379{
7c58044c
JM
1380 if (unlikely(float64_is_nan(FT0) ||
1381 float64_is_nan(FT1))) {
1382 if (float64_is_signaling_nan(FT0) ||
1383 float64_is_signaling_nan(FT1)) {
1384 /* sNaN comparison */
1385 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
1386 POWERPC_EXCP_FP_VXVC);
1387 } else {
1388 /* qNaN comparison */
1389 fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
1390 }
1391 } else {
fdabc366
FB
1392 if (float64_lt(FT0, FT1, &env->fp_status)) {
1393 T0 = 0x08UL;
1394 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
1395 T0 = 0x04UL;
1396 } else {
1397 T0 = 0x02UL;
1398 }
9a64fbe4 1399 }
7c58044c
JM
1400 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1401 env->fpscr |= T0 << FPSCR_FPRF;
9a64fbe4
FB
1402}
1403
76a66253 1404#if !defined (CONFIG_USER_ONLY)
6b80055d 1405void cpu_dump_rfi (target_ulong RA, target_ulong msr);
0411a972
JM
1406
1407void do_store_msr (void)
1408{
a4f30719 1409 T0 = hreg_store_msr(env, T0, 0);
0411a972
JM
1410 if (T0 != 0) {
1411 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1412 do_raise_exception(T0);
1413 }
1414}
1415
1416static always_inline void __do_rfi (target_ulong nip, target_ulong msr,
1417 target_ulong msrm, int keep_msrh)
9a64fbe4 1418{
426613db 1419#if defined(TARGET_PPC64)
0411a972
JM
1420 if (msr & (1ULL << MSR_SF)) {
1421 nip = (uint64_t)nip;
1422 msr &= (uint64_t)msrm;
a42bd6cc 1423 } else {
0411a972
JM
1424 nip = (uint32_t)nip;
1425 msr = (uint32_t)(msr & msrm);
1426 if (keep_msrh)
1427 msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
a42bd6cc 1428 }
426613db 1429#else
0411a972
JM
1430 nip = (uint32_t)nip;
1431 msr &= (uint32_t)msrm;
426613db 1432#endif
0411a972
JM
1433 /* XXX: beware: this is false if VLE is supported */
1434 env->nip = nip & ~((target_ulong)0x00000003);
a4f30719 1435 hreg_store_msr(env, msr, 1);
fdabc366 1436#if defined (DEBUG_OP)
0411a972 1437 cpu_dump_rfi(env->nip, env->msr);
fdabc366 1438#endif
0411a972
JM
1439 /* No need to raise an exception here,
1440 * as rfi is always the last insn of a TB
1441 */
fdabc366 1442 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
9a64fbe4 1443}
d9bce9d9 1444
0411a972
JM
1445void do_rfi (void)
1446{
1447 __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1448 ~((target_ulong)0xFFFF0000), 1);
1449}
1450
d9bce9d9 1451#if defined(TARGET_PPC64)
426613db
JM
1452void do_rfid (void)
1453{
0411a972
JM
1454 __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1455 ~((target_ulong)0xFFFF0000), 0);
d9bce9d9 1456}
7863667f 1457
be147d08
JM
1458void do_hrfid (void)
1459{
0411a972
JM
1460 __do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
1461 ~((target_ulong)0xFFFF0000), 0);
be147d08
JM
1462}
1463#endif
76a66253 1464#endif
9a64fbe4 1465
76a66253 1466void do_tw (int flags)
9a64fbe4 1467{
d9bce9d9
JM
1468 if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) ||
1469 ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) ||
1470 ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) ||
1471 ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) ||
a42bd6cc 1472 ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) {
e1833e1f 1473 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
a42bd6cc 1474 }
9a64fbe4
FB
1475}
1476
d9bce9d9
JM
1477#if defined(TARGET_PPC64)
1478void do_td (int flags)
1479{
1480 if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) ||
1481 ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) ||
1482 ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) ||
1483 ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) ||
1484 ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01)))))
e1833e1f 1485 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
d9bce9d9
JM
1486}
1487#endif
1488
fdabc366 1489/*****************************************************************************/
76a66253
JM
1490/* PowerPC 601 specific instructions (POWER bridge) */
1491void do_POWER_abso (void)
9a64fbe4 1492{
9c7e37e7 1493 if ((int32_t)T0 == INT32_MIN) {
76a66253
JM
1494 T0 = INT32_MAX;
1495 xer_ov = 1;
9c7e37e7 1496 } else if ((int32_t)T0 < 0) {
76a66253
JM
1497 T0 = -T0;
1498 xer_ov = 0;
9c7e37e7
JM
1499 } else {
1500 xer_ov = 0;
76a66253 1501 }
9c7e37e7 1502 xer_so |= xer_ov;
9a64fbe4
FB
1503}
1504
76a66253 1505void do_POWER_clcs (void)
9a64fbe4 1506{
76a66253
JM
1507 switch (T0) {
1508 case 0x0CUL:
1509 /* Instruction cache line size */
d63001d1 1510 T0 = env->icache_line_size;
76a66253
JM
1511 break;
1512 case 0x0DUL:
1513 /* Data cache line size */
d63001d1 1514 T0 = env->dcache_line_size;
76a66253
JM
1515 break;
1516 case 0x0EUL:
1517 /* Minimum cache line size */
d63001d1
JM
1518 T0 = env->icache_line_size < env->dcache_line_size ?
1519 env->icache_line_size : env->dcache_line_size;
76a66253
JM
1520 break;
1521 case 0x0FUL:
1522 /* Maximum cache line size */
d63001d1
JM
1523 T0 = env->icache_line_size > env->dcache_line_size ?
1524 env->icache_line_size : env->dcache_line_size;
76a66253
JM
1525 break;
1526 default:
1527 /* Undefined */
1528 break;
1529 }
1530}
1531
1532void do_POWER_div (void)
1533{
1534 uint64_t tmp;
1535
6f2d8978
JM
1536 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1537 (int32_t)T1 == 0) {
1538 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
76a66253
JM
1539 env->spr[SPR_MQ] = 0;
1540 } else {
1541 tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1542 env->spr[SPR_MQ] = tmp % T1;
d9bce9d9 1543 T0 = tmp / (int32_t)T1;
76a66253
JM
1544 }
1545}
1546
1547void do_POWER_divo (void)
1548{
1549 int64_t tmp;
1550
6f2d8978
JM
1551 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1552 (int32_t)T1 == 0) {
1553 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
76a66253
JM
1554 env->spr[SPR_MQ] = 0;
1555 xer_ov = 1;
76a66253
JM
1556 } else {
1557 tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1558 env->spr[SPR_MQ] = tmp % T1;
d9bce9d9 1559 tmp /= (int32_t)T1;
76a66253
JM
1560 if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) {
1561 xer_ov = 1;
76a66253
JM
1562 } else {
1563 xer_ov = 0;
1564 }
1565 T0 = tmp;
1566 }
6f2d8978 1567 xer_so |= xer_ov;
76a66253
JM
1568}
1569
1570void do_POWER_divs (void)
1571{
6f2d8978
JM
1572 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1573 (int32_t)T1 == 0) {
1574 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
76a66253
JM
1575 env->spr[SPR_MQ] = 0;
1576 } else {
1577 env->spr[SPR_MQ] = T0 % T1;
d9bce9d9 1578 T0 = (int32_t)T0 / (int32_t)T1;
76a66253
JM
1579 }
1580}
1581
1582void do_POWER_divso (void)
1583{
6f2d8978
JM
1584 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1585 (int32_t)T1 == 0) {
1586 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
76a66253
JM
1587 env->spr[SPR_MQ] = 0;
1588 xer_ov = 1;
76a66253 1589 } else {
d9bce9d9
JM
1590 T0 = (int32_t)T0 / (int32_t)T1;
1591 env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1;
76a66253
JM
1592 xer_ov = 0;
1593 }
6f2d8978 1594 xer_so |= xer_ov;
76a66253
JM
1595}
1596
1597void do_POWER_dozo (void)
1598{
d9bce9d9 1599 if ((int32_t)T1 > (int32_t)T0) {
76a66253
JM
1600 T2 = T0;
1601 T0 = T1 - T0;
d9bce9d9
JM
1602 if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
1603 ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) {
76a66253 1604 xer_ov = 1;
966439a6 1605 xer_so = 1;
76a66253
JM
1606 } else {
1607 xer_ov = 0;
1608 }
1609 } else {
1610 T0 = 0;
1611 xer_ov = 0;
1612 }
1613}
1614
1615void do_POWER_maskg (void)
1616{
1617 uint32_t ret;
1618
d9bce9d9 1619 if ((uint32_t)T0 == (uint32_t)(T1 + 1)) {
6f2d8978 1620 ret = UINT32_MAX;
76a66253 1621 } else {
6f2d8978
JM
1622 ret = (UINT32_MAX >> ((uint32_t)T0)) ^
1623 ((UINT32_MAX >> ((uint32_t)T1)) >> 1);
d9bce9d9 1624 if ((uint32_t)T0 > (uint32_t)T1)
76a66253
JM
1625 ret = ~ret;
1626 }
1627 T0 = ret;
1628}
1629
1630void do_POWER_mulo (void)
1631{
1632 uint64_t tmp;
1633
1634 tmp = (uint64_t)T0 * (uint64_t)T1;
1635 env->spr[SPR_MQ] = tmp >> 32;
1636 T0 = tmp;
1637 if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) {
1638 xer_ov = 1;
1639 xer_so = 1;
1640 } else {
1641 xer_ov = 0;
1642 }
1643}
1644
1645#if !defined (CONFIG_USER_ONLY)
1646void do_POWER_rac (void)
1647{
76a66253 1648 mmu_ctx_t ctx;
faadf50e 1649 int nb_BATs;
76a66253
JM
1650
1651 /* We don't have to generate many instances of this instruction,
1652 * as rac is supervisor only.
1653 */
faadf50e
JM
1654 /* XXX: FIX THIS: Pretend we have no BAT */
1655 nb_BATs = env->nb_BATs;
1656 env->nb_BATs = 0;
1657 if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT) == 0)
76a66253 1658 T0 = ctx.raddr;
faadf50e 1659 env->nb_BATs = nb_BATs;
76a66253
JM
1660}
1661
1662void do_POWER_rfsvc (void)
1663{
0411a972 1664 __do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
76a66253
JM
1665}
1666
056401ea
JM
1667void do_store_hid0_601 (void)
1668{
1669 uint32_t hid0;
1670
1671 hid0 = env->spr[SPR_HID0];
1672 if ((T0 ^ hid0) & 0x00000008) {
1673 /* Change current endianness */
1674 env->hflags &= ~(1 << MSR_LE);
1675 env->hflags_nmsr &= ~(1 << MSR_LE);
1676 env->hflags_nmsr |= (1 << MSR_LE) & (((T0 >> 3) & 1) << MSR_LE);
1677 env->hflags |= env->hflags_nmsr;
1678 if (loglevel != 0) {
1679 fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n",
1680 __func__, T0 & 0x8 ? 'l' : 'b', env->hflags);
1681 }
1682 }
1683 env->spr[SPR_HID0] = T0;
76a66253
JM
1684}
1685#endif
1686
1687/*****************************************************************************/
1688/* 602 specific instructions */
1689/* mfrom is the most crazy instruction ever seen, imho ! */
1690/* Real implementation uses a ROM table. Do the same */
1691#define USE_MFROM_ROM_TABLE
1692void do_op_602_mfrom (void)
1693{
1694 if (likely(T0 < 602)) {
d9bce9d9 1695#if defined(USE_MFROM_ROM_TABLE)
76a66253
JM
1696#include "mfrom_table.c"
1697 T0 = mfrom_ROM_table[T0];
fdabc366 1698#else
76a66253
JM
1699 double d;
1700 /* Extremly decomposed:
1701 * -T0 / 256
1702 * T0 = 256 * log10(10 + 1.0) + 0.5
1703 */
1704 d = T0;
1705 d = float64_div(d, 256, &env->fp_status);
1706 d = float64_chs(d);
1707 d = exp10(d); // XXX: use float emulation function
1708 d = float64_add(d, 1.0, &env->fp_status);
1709 d = log10(d); // XXX: use float emulation function
1710 d = float64_mul(d, 256, &env->fp_status);
1711 d = float64_add(d, 0.5, &env->fp_status);
1712 T0 = float64_round_to_int(d, &env->fp_status);
fdabc366 1713#endif
76a66253
JM
1714 } else {
1715 T0 = 0;
1716 }
1717}
1718
1719/*****************************************************************************/
1720/* Embedded PowerPC specific helpers */
76a66253
JM
1721void do_405_check_sat (void)
1722{
d9bce9d9
JM
1723 if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1724 !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
76a66253
JM
1725 /* Saturate result */
1726 if (T2 >> 31) {
1727 T0 = INT32_MIN;
1728 } else {
1729 T0 = INT32_MAX;
1730 }
1731 }
1732}
1733
a750fc0b
JM
1734/* XXX: to be improved to check access rights when in user-mode */
1735void do_load_dcr (void)
1736{
1737 target_ulong val;
1738
1739 if (unlikely(env->dcr_env == NULL)) {
1740 if (loglevel != 0) {
1741 fprintf(logfile, "No DCR environment\n");
1742 }
e1833e1f
JM
1743 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1744 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
a750fc0b
JM
1745 } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) {
1746 if (loglevel != 0) {
1747 fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0);
1748 }
e1833e1f
JM
1749 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1750 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
a750fc0b
JM
1751 } else {
1752 T0 = val;
1753 }
1754}
1755
1756void do_store_dcr (void)
1757{
1758 if (unlikely(env->dcr_env == NULL)) {
1759 if (loglevel != 0) {
1760 fprintf(logfile, "No DCR environment\n");
1761 }
e1833e1f
JM
1762 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1763 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
a750fc0b
JM
1764 } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) {
1765 if (loglevel != 0) {
1766 fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0);
1767 }
e1833e1f
JM
1768 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1769 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
a750fc0b
JM
1770 }
1771}
1772
76a66253 1773#if !defined(CONFIG_USER_ONLY)
a42bd6cc 1774void do_40x_rfci (void)
76a66253 1775{
0411a972
JM
1776 __do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
1777 ~((target_ulong)0xFFFF0000), 0);
a42bd6cc
JM
1778}
1779
1780void do_rfci (void)
1781{
0411a972
JM
1782 __do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
1783 ~((target_ulong)0x3FFF0000), 0);
a42bd6cc
JM
1784}
1785
1786void do_rfdi (void)
1787{
0411a972
JM
1788 __do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
1789 ~((target_ulong)0x3FFF0000), 0);
a42bd6cc
JM
1790}
1791
1792void do_rfmci (void)
1793{
0411a972
JM
1794 __do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
1795 ~((target_ulong)0x3FFF0000), 0);
76a66253
JM
1796}
1797
76a66253
JM
1798void do_load_403_pb (int num)
1799{
1800 T0 = env->pb[num];
1801}
1802
1803void do_store_403_pb (int num)
1804{
1805 if (likely(env->pb[num] != T0)) {
1806 env->pb[num] = T0;
1807 /* Should be optimized */
1808 tlb_flush(env, 1);
1809 }
1810}
1811#endif
1812
1813/* 440 specific */
1814void do_440_dlmzb (void)
1815{
1816 target_ulong mask;
1817 int i;
1818
1819 i = 1;
1820 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1821 if ((T0 & mask) == 0)
1822 goto done;
1823 i++;
1824 }
1825 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1826 if ((T1 & mask) == 0)
1827 break;
1828 i++;
1829 }
1830 done:
1831 T0 = i;
fdabc366
FB
1832}
1833
0487d6a8
JM
1834/* SPE extension helpers */
1835/* Use a table to make this quicker */
1836static uint8_t hbrev[16] = {
1837 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
1838 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
1839};
1840
b068d6a7 1841static always_inline uint8_t byte_reverse (uint8_t val)
0487d6a8
JM
1842{
1843 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
1844}
1845
b068d6a7 1846static always_inline uint32_t word_reverse (uint32_t val)
0487d6a8
JM
1847{
1848 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
1849 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
1850}
1851
3cd7d1dd 1852#define MASKBITS 16 // Random value - to be fixed (implementation dependant)
0487d6a8
JM
1853void do_brinc (void)
1854{
1855 uint32_t a, b, d, mask;
1856
3cd7d1dd
JM
1857 mask = UINT32_MAX >> (32 - MASKBITS);
1858 a = T0 & mask;
1859 b = T1 & mask;
1860 d = word_reverse(1 + word_reverse(a | ~b));
1861 T0 = (T0 & ~mask) | (d & b);
0487d6a8
JM
1862}
1863
1864#define DO_SPE_OP2(name) \
1865void do_ev##name (void) \
1866{ \
1867 T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) | \
1868 (uint64_t)_do_e##name(T0_64, T1_64); \
1869}
1870
1871#define DO_SPE_OP1(name) \
1872void do_ev##name (void) \
1873{ \
1874 T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) | \
1875 (uint64_t)_do_e##name(T0_64); \
1876}
1877
1878/* Fixed-point vector arithmetic */
b068d6a7 1879static always_inline uint32_t _do_eabs (uint32_t val)
0487d6a8 1880{
9c7e37e7
JM
1881 if ((val & 0x80000000) && val != 0x80000000)
1882 val -= val;
0487d6a8
JM
1883
1884 return val;
1885}
1886
b068d6a7 1887static always_inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2)
0487d6a8
JM
1888{
1889 return op1 + op2;
1890}
1891
b068d6a7 1892static always_inline int _do_ecntlsw (uint32_t val)
0487d6a8
JM
1893{
1894 if (val & 0x80000000)
603fccce 1895 return clz32(~val);
0487d6a8 1896 else
603fccce 1897 return clz32(val);
0487d6a8
JM
1898}
1899
b068d6a7 1900static always_inline int _do_ecntlzw (uint32_t val)
0487d6a8 1901{
603fccce 1902 return clz32(val);
0487d6a8
JM
1903}
1904
b068d6a7 1905static always_inline uint32_t _do_eneg (uint32_t val)
0487d6a8
JM
1906{
1907 if (val != 0x80000000)
9c7e37e7 1908 val -= val;
0487d6a8
JM
1909
1910 return val;
1911}
1912
b068d6a7 1913static always_inline uint32_t _do_erlw (uint32_t op1, uint32_t op2)
0487d6a8
JM
1914{
1915 return rotl32(op1, op2);
1916}
1917
b068d6a7 1918static always_inline uint32_t _do_erndw (uint32_t val)
0487d6a8
JM
1919{
1920 return (val + 0x000080000000) & 0xFFFF0000;
1921}
1922
b068d6a7 1923static always_inline uint32_t _do_eslw (uint32_t op1, uint32_t op2)
0487d6a8
JM
1924{
1925 /* No error here: 6 bits are used */
1926 return op1 << (op2 & 0x3F);
1927}
1928
b068d6a7 1929static always_inline int32_t _do_esrws (int32_t op1, uint32_t op2)
0487d6a8
JM
1930{
1931 /* No error here: 6 bits are used */
1932 return op1 >> (op2 & 0x3F);
1933}
1934
b068d6a7 1935static always_inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2)
0487d6a8
JM
1936{
1937 /* No error here: 6 bits are used */
1938 return op1 >> (op2 & 0x3F);
1939}
1940
b068d6a7 1941static always_inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2)
0487d6a8
JM
1942{
1943 return op2 - op1;
1944}
1945
1946/* evabs */
1947DO_SPE_OP1(abs);
1948/* evaddw */
1949DO_SPE_OP2(addw);
1950/* evcntlsw */
1951DO_SPE_OP1(cntlsw);
1952/* evcntlzw */
1953DO_SPE_OP1(cntlzw);
1954/* evneg */
1955DO_SPE_OP1(neg);
1956/* evrlw */
1957DO_SPE_OP2(rlw);
1958/* evrnd */
1959DO_SPE_OP1(rndw);
1960/* evslw */
1961DO_SPE_OP2(slw);
1962/* evsrws */
1963DO_SPE_OP2(srws);
1964/* evsrwu */
1965DO_SPE_OP2(srwu);
1966/* evsubfw */
1967DO_SPE_OP2(subfw);
1968
1969/* evsel is a little bit more complicated... */
b068d6a7 1970static always_inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n)
0487d6a8
JM
1971{
1972 if (n)
1973 return op1;
1974 else
1975 return op2;
1976}
1977
1978void do_evsel (void)
1979{
1980 T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) |
1981 (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1);
1982}
1983
1984/* Fixed-point vector comparisons */
1985#define DO_SPE_CMP(name) \
1986void do_ev##name (void) \
1987{ \
1988 T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32, \
1989 T1_64 >> 32) << 32, \
1990 _do_e##name(T0_64, T1_64)); \
1991}
1992
b068d6a7 1993static always_inline uint32_t _do_evcmp_merge (int t0, int t1)
0487d6a8
JM
1994{
1995 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1996}
b068d6a7 1997static always_inline int _do_ecmpeq (uint32_t op1, uint32_t op2)
0487d6a8
JM
1998{
1999 return op1 == op2 ? 1 : 0;
2000}
2001
b068d6a7 2002static always_inline int _do_ecmpgts (int32_t op1, int32_t op2)
0487d6a8
JM
2003{
2004 return op1 > op2 ? 1 : 0;
2005}
2006
b068d6a7 2007static always_inline int _do_ecmpgtu (uint32_t op1, uint32_t op2)
0487d6a8
JM
2008{
2009 return op1 > op2 ? 1 : 0;
2010}
2011
b068d6a7 2012static always_inline int _do_ecmplts (int32_t op1, int32_t op2)
0487d6a8
JM
2013{
2014 return op1 < op2 ? 1 : 0;
2015}
2016
b068d6a7 2017static always_inline int _do_ecmpltu (uint32_t op1, uint32_t op2)
0487d6a8
JM
2018{
2019 return op1 < op2 ? 1 : 0;
2020}
2021
2022/* evcmpeq */
2023DO_SPE_CMP(cmpeq);
2024/* evcmpgts */
2025DO_SPE_CMP(cmpgts);
2026/* evcmpgtu */
2027DO_SPE_CMP(cmpgtu);
2028/* evcmplts */
2029DO_SPE_CMP(cmplts);
2030/* evcmpltu */
2031DO_SPE_CMP(cmpltu);
2032
2033/* Single precision floating-point conversions from/to integer */
b068d6a7 2034static always_inline uint32_t _do_efscfsi (int32_t val)
0487d6a8 2035{
0ca9d380 2036 CPU_FloatU u;
0487d6a8
JM
2037
2038 u.f = int32_to_float32(val, &env->spe_status);
2039
0ca9d380 2040 return u.l;
0487d6a8
JM
2041}
2042
b068d6a7 2043static always_inline uint32_t _do_efscfui (uint32_t val)
0487d6a8 2044{
0ca9d380 2045 CPU_FloatU u;
0487d6a8
JM
2046
2047 u.f = uint32_to_float32(val, &env->spe_status);
2048
0ca9d380 2049 return u.l;
0487d6a8
JM
2050}
2051
b068d6a7 2052static always_inline int32_t _do_efsctsi (uint32_t val)
0487d6a8 2053{
0ca9d380 2054 CPU_FloatU u;
0487d6a8 2055
0ca9d380 2056 u.l = val;
0487d6a8
JM
2057 /* NaN are not treated the same way IEEE 754 does */
2058 if (unlikely(isnan(u.f)))
2059 return 0;
2060
2061 return float32_to_int32(u.f, &env->spe_status);
2062}
2063
b068d6a7 2064static always_inline uint32_t _do_efsctui (uint32_t val)
0487d6a8 2065{
0ca9d380 2066 CPU_FloatU u;
0487d6a8 2067
0ca9d380 2068 u.l = val;
0487d6a8
JM
2069 /* NaN are not treated the same way IEEE 754 does */
2070 if (unlikely(isnan(u.f)))
2071 return 0;
2072
2073 return float32_to_uint32(u.f, &env->spe_status);
2074}
2075
b068d6a7 2076static always_inline int32_t _do_efsctsiz (uint32_t val)
0487d6a8 2077{
0ca9d380 2078 CPU_FloatU u;
0487d6a8 2079
0ca9d380 2080 u.l = val;
0487d6a8
JM
2081 /* NaN are not treated the same way IEEE 754 does */
2082 if (unlikely(isnan(u.f)))
2083 return 0;
2084
2085 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2086}
2087
b068d6a7 2088static always_inline uint32_t _do_efsctuiz (uint32_t val)
0487d6a8 2089{
0ca9d380 2090 CPU_FloatU u;
0487d6a8 2091
0ca9d380 2092 u.l = val;
0487d6a8
JM
2093 /* NaN are not treated the same way IEEE 754 does */
2094 if (unlikely(isnan(u.f)))
2095 return 0;
2096
2097 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2098}
2099
2100void do_efscfsi (void)
2101{
2102 T0_64 = _do_efscfsi(T0_64);
2103}
2104
2105void do_efscfui (void)
2106{
2107 T0_64 = _do_efscfui(T0_64);
2108}
2109
2110void do_efsctsi (void)
2111{
2112 T0_64 = _do_efsctsi(T0_64);
2113}
2114
2115void do_efsctui (void)
2116{
2117 T0_64 = _do_efsctui(T0_64);
2118}
2119
2120void do_efsctsiz (void)
2121{
2122 T0_64 = _do_efsctsiz(T0_64);
2123}
2124
2125void do_efsctuiz (void)
2126{
2127 T0_64 = _do_efsctuiz(T0_64);
2128}
2129
2130/* Single precision floating-point conversion to/from fractional */
b068d6a7 2131static always_inline uint32_t _do_efscfsf (uint32_t val)
0487d6a8 2132{
0ca9d380 2133 CPU_FloatU u;
0487d6a8
JM
2134 float32 tmp;
2135
2136 u.f = int32_to_float32(val, &env->spe_status);
2137 tmp = int64_to_float32(1ULL << 32, &env->spe_status);
2138 u.f = float32_div(u.f, tmp, &env->spe_status);
2139
0ca9d380 2140 return u.l;
0487d6a8
JM
2141}
2142
b068d6a7 2143static always_inline uint32_t _do_efscfuf (uint32_t val)
0487d6a8 2144{
0ca9d380 2145 CPU_FloatU u;
0487d6a8
JM
2146 float32 tmp;
2147
2148 u.f = uint32_to_float32(val, &env->spe_status);
2149 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2150 u.f = float32_div(u.f, tmp, &env->spe_status);
2151
0ca9d380 2152 return u.l;
0487d6a8
JM
2153}
2154
b068d6a7 2155static always_inline int32_t _do_efsctsf (uint32_t val)
0487d6a8 2156{
0ca9d380 2157 CPU_FloatU u;
0487d6a8
JM
2158 float32 tmp;
2159
0ca9d380 2160 u.l = val;
0487d6a8
JM
2161 /* NaN are not treated the same way IEEE 754 does */
2162 if (unlikely(isnan(u.f)))
2163 return 0;
2164 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2165 u.f = float32_mul(u.f, tmp, &env->spe_status);
2166
2167 return float32_to_int32(u.f, &env->spe_status);
2168}
2169
b068d6a7 2170static always_inline uint32_t _do_efsctuf (uint32_t val)
0487d6a8 2171{
0ca9d380 2172 CPU_FloatU u;
0487d6a8
JM
2173 float32 tmp;
2174
0ca9d380 2175 u.l = val;
0487d6a8
JM
2176 /* NaN are not treated the same way IEEE 754 does */
2177 if (unlikely(isnan(u.f)))
2178 return 0;
2179 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2180 u.f = float32_mul(u.f, tmp, &env->spe_status);
2181
2182 return float32_to_uint32(u.f, &env->spe_status);
2183}
2184
b068d6a7 2185static always_inline int32_t _do_efsctsfz (uint32_t val)
0487d6a8 2186{
0ca9d380 2187 CPU_FloatU u;
0487d6a8
JM
2188 float32 tmp;
2189
0ca9d380 2190 u.l = val;
0487d6a8
JM
2191 /* NaN are not treated the same way IEEE 754 does */
2192 if (unlikely(isnan(u.f)))
2193 return 0;
2194 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2195 u.f = float32_mul(u.f, tmp, &env->spe_status);
2196
2197 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2198}
2199
b068d6a7 2200static always_inline uint32_t _do_efsctufz (uint32_t val)
0487d6a8 2201{
0ca9d380 2202 CPU_FloatU u;
0487d6a8
JM
2203 float32 tmp;
2204
0ca9d380 2205 u.l = val;
0487d6a8
JM
2206 /* NaN are not treated the same way IEEE 754 does */
2207 if (unlikely(isnan(u.f)))
2208 return 0;
2209 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2210 u.f = float32_mul(u.f, tmp, &env->spe_status);
2211
2212 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2213}
2214
2215void do_efscfsf (void)
2216{
2217 T0_64 = _do_efscfsf(T0_64);
2218}
2219
2220void do_efscfuf (void)
2221{
2222 T0_64 = _do_efscfuf(T0_64);
2223}
2224
2225void do_efsctsf (void)
2226{
2227 T0_64 = _do_efsctsf(T0_64);
2228}
2229
2230void do_efsctuf (void)
2231{
2232 T0_64 = _do_efsctuf(T0_64);
2233}
2234
2235void do_efsctsfz (void)
2236{
2237 T0_64 = _do_efsctsfz(T0_64);
2238}
2239
2240void do_efsctufz (void)
2241{
2242 T0_64 = _do_efsctufz(T0_64);
2243}
2244
2245/* Double precision floating point helpers */
b068d6a7 2246static always_inline int _do_efdcmplt (uint64_t op1, uint64_t op2)
0487d6a8
JM
2247{
2248 /* XXX: TODO: test special values (NaN, infinites, ...) */
2249 return _do_efdtstlt(op1, op2);
2250}
2251
b068d6a7 2252static always_inline int _do_efdcmpgt (uint64_t op1, uint64_t op2)
0487d6a8
JM
2253{
2254 /* XXX: TODO: test special values (NaN, infinites, ...) */
2255 return _do_efdtstgt(op1, op2);
2256}
2257
b068d6a7 2258static always_inline int _do_efdcmpeq (uint64_t op1, uint64_t op2)
0487d6a8
JM
2259{
2260 /* XXX: TODO: test special values (NaN, infinites, ...) */
2261 return _do_efdtsteq(op1, op2);
2262}
2263
2264void do_efdcmplt (void)
2265{
2266 T0 = _do_efdcmplt(T0_64, T1_64);
2267}
2268
2269void do_efdcmpgt (void)
2270{
2271 T0 = _do_efdcmpgt(T0_64, T1_64);
2272}
2273
2274void do_efdcmpeq (void)
2275{
2276 T0 = _do_efdcmpeq(T0_64, T1_64);
2277}
2278
2279/* Double precision floating-point conversion to/from integer */
b068d6a7 2280static always_inline uint64_t _do_efdcfsi (int64_t val)
0487d6a8 2281{
0ca9d380 2282 CPU_DoubleU u;
0487d6a8 2283
0ca9d380 2284 u.d = int64_to_float64(val, &env->spe_status);
0487d6a8 2285
0ca9d380 2286 return u.ll;
0487d6a8
JM
2287}
2288
b068d6a7 2289static always_inline uint64_t _do_efdcfui (uint64_t val)
0487d6a8 2290{
0ca9d380 2291 CPU_DoubleU u;
0487d6a8 2292
0ca9d380 2293 u.d = uint64_to_float64(val, &env->spe_status);
0487d6a8 2294
0ca9d380 2295 return u.ll;
0487d6a8
JM
2296}
2297
b068d6a7 2298static always_inline int64_t _do_efdctsi (uint64_t val)
0487d6a8 2299{
0ca9d380 2300 CPU_DoubleU u;
0487d6a8 2301
0ca9d380 2302 u.ll = val;
0487d6a8 2303 /* NaN are not treated the same way IEEE 754 does */
0ca9d380 2304 if (unlikely(isnan(u.d)))
0487d6a8
JM
2305 return 0;
2306
0ca9d380 2307 return float64_to_int64(u.d, &env->spe_status);
0487d6a8
JM
2308}
2309
b068d6a7 2310static always_inline uint64_t _do_efdctui (uint64_t val)
0487d6a8 2311{
0ca9d380 2312 CPU_DoubleU u;
0487d6a8 2313
0ca9d380 2314 u.ll = val;
0487d6a8 2315 /* NaN are not treated the same way IEEE 754 does */
0ca9d380 2316 if (unlikely(isnan(u.d)))
0487d6a8
JM
2317 return 0;
2318
0ca9d380 2319 return float64_to_uint64(u.d, &env->spe_status);
0487d6a8
JM
2320}
2321
b068d6a7 2322static always_inline int64_t _do_efdctsiz (uint64_t val)
0487d6a8 2323{
0ca9d380 2324 CPU_DoubleU u;
0487d6a8 2325
0ca9d380 2326 u.ll = val;
0487d6a8 2327 /* NaN are not treated the same way IEEE 754 does */
0ca9d380 2328 if (unlikely(isnan(u.d)))
0487d6a8
JM
2329 return 0;
2330
0ca9d380 2331 return float64_to_int64_round_to_zero(u.d, &env->spe_status);
0487d6a8
JM
2332}
2333
b068d6a7 2334static always_inline uint64_t _do_efdctuiz (uint64_t val)
0487d6a8 2335{
0ca9d380 2336 CPU_DoubleU u;
0487d6a8 2337
0ca9d380 2338 u.ll = val;
0487d6a8 2339 /* NaN are not treated the same way IEEE 754 does */
0ca9d380 2340 if (unlikely(isnan(u.d)))
0487d6a8
JM
2341 return 0;
2342
0ca9d380 2343 return float64_to_uint64_round_to_zero(u.d, &env->spe_status);
0487d6a8
JM
2344}
2345
2346void do_efdcfsi (void)
2347{
2348 T0_64 = _do_efdcfsi(T0_64);
2349}
2350
2351void do_efdcfui (void)
2352{
2353 T0_64 = _do_efdcfui(T0_64);
2354}
2355
2356void do_efdctsi (void)
2357{
2358 T0_64 = _do_efdctsi(T0_64);
2359}
2360
2361void do_efdctui (void)
2362{
2363 T0_64 = _do_efdctui(T0_64);
2364}
2365
2366void do_efdctsiz (void)
2367{
2368 T0_64 = _do_efdctsiz(T0_64);
2369}
2370
2371void do_efdctuiz (void)
2372{
2373 T0_64 = _do_efdctuiz(T0_64);
2374}
2375
2376/* Double precision floating-point conversion to/from fractional */
b068d6a7 2377static always_inline uint64_t _do_efdcfsf (int64_t val)
0487d6a8 2378{
0ca9d380 2379 CPU_DoubleU u;
0487d6a8
JM
2380 float64 tmp;
2381
0ca9d380 2382 u.d = int32_to_float64(val, &env->spe_status);
0487d6a8 2383 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
0ca9d380 2384 u.d = float64_div(u.d, tmp, &env->spe_status);
0487d6a8 2385
0ca9d380 2386 return u.ll;
0487d6a8
JM
2387}
2388
b068d6a7 2389static always_inline uint64_t _do_efdcfuf (uint64_t val)
0487d6a8 2390{
0ca9d380 2391 CPU_DoubleU u;
0487d6a8
JM
2392 float64 tmp;
2393
0ca9d380 2394 u.d = uint32_to_float64(val, &env->spe_status);
0487d6a8 2395 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
0ca9d380 2396 u.d = float64_div(u.d, tmp, &env->spe_status);
0487d6a8 2397
0ca9d380 2398 return u.ll;
0487d6a8
JM
2399}
2400
b068d6a7 2401static always_inline int64_t _do_efdctsf (uint64_t val)
0487d6a8 2402{
0ca9d380 2403 CPU_DoubleU u;
0487d6a8
JM
2404 float64 tmp;
2405
0ca9d380 2406 u.ll = val;
0487d6a8 2407 /* NaN are not treated the same way IEEE 754 does */
0ca9d380 2408 if (unlikely(isnan(u.d)))
0487d6a8
JM
2409 return 0;
2410 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
0ca9d380 2411 u.d = float64_mul(u.d, tmp, &env->spe_status);
0487d6a8 2412
0ca9d380 2413 return float64_to_int32(u.d, &env->spe_status);
0487d6a8
JM
2414}
2415
b068d6a7 2416static always_inline uint64_t _do_efdctuf (uint64_t val)
0487d6a8 2417{
0ca9d380 2418 CPU_DoubleU u;
0487d6a8
JM
2419 float64 tmp;
2420
0ca9d380 2421 u.ll = val;
0487d6a8 2422 /* NaN are not treated the same way IEEE 754 does */
0ca9d380 2423 if (unlikely(isnan(u.d)))
0487d6a8
JM
2424 return 0;
2425 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
0ca9d380 2426 u.d = float64_mul(u.d, tmp, &env->spe_status);
0487d6a8 2427
0ca9d380 2428 return float64_to_uint32(u.d, &env->spe_status);
0487d6a8
JM
2429}
2430
b068d6a7 2431static always_inline int64_t _do_efdctsfz (uint64_t val)
0487d6a8 2432{
0ca9d380 2433 CPU_DoubleU u;
0487d6a8
JM
2434 float64 tmp;
2435
0ca9d380 2436 u.ll = val;
0487d6a8 2437 /* NaN are not treated the same way IEEE 754 does */
0ca9d380 2438 if (unlikely(isnan(u.d)))
0487d6a8
JM
2439 return 0;
2440 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
0ca9d380 2441 u.d = float64_mul(u.d, tmp, &env->spe_status);
0487d6a8 2442
0ca9d380 2443 return float64_to_int32_round_to_zero(u.d, &env->spe_status);
0487d6a8
JM
2444}
2445
b068d6a7 2446static always_inline uint64_t _do_efdctufz (uint64_t val)
0487d6a8 2447{
0ca9d380 2448 CPU_DoubleU u;
0487d6a8
JM
2449 float64 tmp;
2450
0ca9d380 2451 u.ll = val;
0487d6a8 2452 /* NaN are not treated the same way IEEE 754 does */
0ca9d380 2453 if (unlikely(isnan(u.d)))
0487d6a8
JM
2454 return 0;
2455 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
0ca9d380 2456 u.d = float64_mul(u.d, tmp, &env->spe_status);
0487d6a8 2457
0ca9d380 2458 return float64_to_uint32_round_to_zero(u.d, &env->spe_status);
0487d6a8
JM
2459}
2460
2461void do_efdcfsf (void)
2462{
2463 T0_64 = _do_efdcfsf(T0_64);
2464}
2465
2466void do_efdcfuf (void)
2467{
2468 T0_64 = _do_efdcfuf(T0_64);
2469}
2470
2471void do_efdctsf (void)
2472{
2473 T0_64 = _do_efdctsf(T0_64);
2474}
2475
2476void do_efdctuf (void)
2477{
2478 T0_64 = _do_efdctuf(T0_64);
2479}
2480
2481void do_efdctsfz (void)
2482{
2483 T0_64 = _do_efdctsfz(T0_64);
2484}
2485
2486void do_efdctufz (void)
2487{
2488 T0_64 = _do_efdctufz(T0_64);
2489}
2490
2491/* Floating point conversion between single and double precision */
b068d6a7 2492static always_inline uint32_t _do_efscfd (uint64_t val)
0487d6a8 2493{
0ca9d380
AJ
2494 CPU_DoubleU u1;
2495 CPU_FloatU u2;
0487d6a8 2496
0ca9d380
AJ
2497 u1.ll = val;
2498 u2.f = float64_to_float32(u1.d, &env->spe_status);
0487d6a8 2499
0ca9d380 2500 return u2.l;
0487d6a8
JM
2501}
2502
b068d6a7 2503static always_inline uint64_t _do_efdcfs (uint32_t val)
0487d6a8 2504{
0ca9d380
AJ
2505 CPU_DoubleU u2;
2506 CPU_FloatU u1;
0487d6a8 2507
0ca9d380
AJ
2508 u1.l = val;
2509 u2.d = float32_to_float64(u1.f, &env->spe_status);
0487d6a8 2510
0ca9d380 2511 return u2.ll;
0487d6a8
JM
2512}
2513
2514void do_efscfd (void)
2515{
2516 T0_64 = _do_efscfd(T0_64);
2517}
2518
2519void do_efdcfs (void)
2520{
2521 T0_64 = _do_efdcfs(T0_64);
2522}
2523
2524/* Single precision fixed-point vector arithmetic */
2525/* evfsabs */
2526DO_SPE_OP1(fsabs);
2527/* evfsnabs */
2528DO_SPE_OP1(fsnabs);
2529/* evfsneg */
2530DO_SPE_OP1(fsneg);
2531/* evfsadd */
2532DO_SPE_OP2(fsadd);
2533/* evfssub */
2534DO_SPE_OP2(fssub);
2535/* evfsmul */
2536DO_SPE_OP2(fsmul);
2537/* evfsdiv */
2538DO_SPE_OP2(fsdiv);
2539
2540/* Single-precision floating-point comparisons */
b068d6a7 2541static always_inline int _do_efscmplt (uint32_t op1, uint32_t op2)
0487d6a8
JM
2542{
2543 /* XXX: TODO: test special values (NaN, infinites, ...) */
2544 return _do_efststlt(op1, op2);
2545}
2546
b068d6a7 2547static always_inline int _do_efscmpgt (uint32_t op1, uint32_t op2)
0487d6a8
JM
2548{
2549 /* XXX: TODO: test special values (NaN, infinites, ...) */
2550 return _do_efststgt(op1, op2);
2551}
2552
b068d6a7 2553static always_inline int _do_efscmpeq (uint32_t op1, uint32_t op2)
0487d6a8
JM
2554{
2555 /* XXX: TODO: test special values (NaN, infinites, ...) */
2556 return _do_efststeq(op1, op2);
2557}
2558
2559void do_efscmplt (void)
2560{
2561 T0 = _do_efscmplt(T0_64, T1_64);
2562}
2563
2564void do_efscmpgt (void)
2565{
2566 T0 = _do_efscmpgt(T0_64, T1_64);
2567}
2568
2569void do_efscmpeq (void)
2570{
2571 T0 = _do_efscmpeq(T0_64, T1_64);
2572}
2573
2574/* Single-precision floating-point vector comparisons */
2575/* evfscmplt */
2576DO_SPE_CMP(fscmplt);
2577/* evfscmpgt */
2578DO_SPE_CMP(fscmpgt);
2579/* evfscmpeq */
2580DO_SPE_CMP(fscmpeq);
2581/* evfststlt */
2582DO_SPE_CMP(fststlt);
2583/* evfststgt */
2584DO_SPE_CMP(fststgt);
2585/* evfststeq */
2586DO_SPE_CMP(fststeq);
2587
2588/* Single-precision floating-point vector conversions */
2589/* evfscfsi */
2590DO_SPE_OP1(fscfsi);
2591/* evfscfui */
2592DO_SPE_OP1(fscfui);
2593/* evfscfuf */
2594DO_SPE_OP1(fscfuf);
2595/* evfscfsf */
2596DO_SPE_OP1(fscfsf);
2597/* evfsctsi */
2598DO_SPE_OP1(fsctsi);
2599/* evfsctui */
2600DO_SPE_OP1(fsctui);
2601/* evfsctsiz */
2602DO_SPE_OP1(fsctsiz);
2603/* evfsctuiz */
2604DO_SPE_OP1(fsctuiz);
2605/* evfsctsf */
2606DO_SPE_OP1(fsctsf);
2607/* evfsctuf */
2608DO_SPE_OP1(fsctuf);
0487d6a8 2609
fdabc366
FB
2610/*****************************************************************************/
2611/* Softmmu support */
2612#if !defined (CONFIG_USER_ONLY)
2613
2614#define MMUSUFFIX _mmu
273af660
TS
2615#ifdef __s390__
2616# define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
2617#else
2618# define GETPC() (__builtin_return_address(0))
2619#endif
fdabc366
FB
2620
2621#define SHIFT 0
2622#include "softmmu_template.h"
2623
2624#define SHIFT 1
2625#include "softmmu_template.h"
2626
2627#define SHIFT 2
2628#include "softmmu_template.h"
2629
2630#define SHIFT 3
2631#include "softmmu_template.h"
2632
2633/* try to fill the TLB and return an exception if error. If retaddr is
2634 NULL, it means that the function was called in C code (i.e. not
2635 from generated code or from helper.c) */
2636/* XXX: fix it to restore all registers */
6ebbf390 2637void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
fdabc366
FB
2638{
2639 TranslationBlock *tb;
2640 CPUState *saved_env;
44f8625d 2641 unsigned long pc;
fdabc366
FB
2642 int ret;
2643
2644 /* XXX: hack to restore env in all cases, even if not called from
2645 generated code */
2646 saved_env = env;
2647 env = cpu_single_env;
6ebbf390 2648 ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
76a66253 2649 if (unlikely(ret != 0)) {
fdabc366
FB
2650 if (likely(retaddr)) {
2651 /* now we have a real cpu fault */
44f8625d 2652 pc = (unsigned long)retaddr;
fdabc366
FB
2653 tb = tb_find_pc(pc);
2654 if (likely(tb)) {
2655 /* the PC is inside the translated code. It means that we have
2656 a virtual CPU fault */
2657 cpu_restore_state(tb, env, pc, NULL);
76a66253 2658 }
fdabc366
FB
2659 }
2660 do_raise_exception_err(env->exception_index, env->error_code);
2661 }
2662 env = saved_env;
9a64fbe4
FB
2663}
2664
76a66253
JM
2665/* Software driven TLBs management */
2666/* PowerPC 602/603 software TLB load instructions helpers */
2667void do_load_6xx_tlb (int is_code)
2668{
2669 target_ulong RPN, CMP, EPN;
2670 int way;
d9bce9d9 2671
76a66253
JM
2672 RPN = env->spr[SPR_RPA];
2673 if (is_code) {
2674 CMP = env->spr[SPR_ICMP];
2675 EPN = env->spr[SPR_IMISS];
2676 } else {
2677 CMP = env->spr[SPR_DCMP];
2678 EPN = env->spr[SPR_DMISS];
2679 }
2680 way = (env->spr[SPR_SRR1] >> 17) & 1;
2681#if defined (DEBUG_SOFTWARE_TLB)
2682 if (loglevel != 0) {
6b542af7
JM
2683 fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX
2684 " PTE1 " ADDRX " way %d\n",
2685 __func__, T0, EPN, CMP, RPN, way);
76a66253
JM
2686 }
2687#endif
2688 /* Store this TLB */
d9bce9d9
JM
2689 ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2690 way, is_code, CMP, RPN);
76a66253
JM
2691}
2692
7dbe11ac
JM
2693void do_load_74xx_tlb (int is_code)
2694{
2695 target_ulong RPN, CMP, EPN;
2696 int way;
2697
2698 RPN = env->spr[SPR_PTELO];
2699 CMP = env->spr[SPR_PTEHI];
2700 EPN = env->spr[SPR_TLBMISS] & ~0x3;
2701 way = env->spr[SPR_TLBMISS] & 0x3;
2702#if defined (DEBUG_SOFTWARE_TLB)
2703 if (loglevel != 0) {
6b542af7
JM
2704 fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX
2705 " PTE1 " ADDRX " way %d\n",
2706 __func__, T0, EPN, CMP, RPN, way);
7dbe11ac
JM
2707 }
2708#endif
2709 /* Store this TLB */
2710 ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2711 way, is_code, CMP, RPN);
2712}
2713
a11b8151 2714static always_inline target_ulong booke_tlb_to_page_size (int size)
a8dea12f
JM
2715{
2716 return 1024 << (2 * size);
2717}
2718
a11b8151 2719static always_inline int booke_page_size_to_tlb (target_ulong page_size)
a8dea12f
JM
2720{
2721 int size;
2722
2723 switch (page_size) {
2724 case 0x00000400UL:
2725 size = 0x0;
2726 break;
2727 case 0x00001000UL:
2728 size = 0x1;
2729 break;
2730 case 0x00004000UL:
2731 size = 0x2;
2732 break;
2733 case 0x00010000UL:
2734 size = 0x3;
2735 break;
2736 case 0x00040000UL:
2737 size = 0x4;
2738 break;
2739 case 0x00100000UL:
2740 size = 0x5;
2741 break;
2742 case 0x00400000UL:
2743 size = 0x6;
2744 break;
2745 case 0x01000000UL:
2746 size = 0x7;
2747 break;
2748 case 0x04000000UL:
2749 size = 0x8;
2750 break;
2751 case 0x10000000UL:
2752 size = 0x9;
2753 break;
2754 case 0x40000000UL:
2755 size = 0xA;
2756 break;
2757#if defined (TARGET_PPC64)
2758 case 0x000100000000ULL:
2759 size = 0xB;
2760 break;
2761 case 0x000400000000ULL:
2762 size = 0xC;
2763 break;
2764 case 0x001000000000ULL:
2765 size = 0xD;
2766 break;
2767 case 0x004000000000ULL:
2768 size = 0xE;
2769 break;
2770 case 0x010000000000ULL:
2771 size = 0xF;
2772 break;
2773#endif
2774 default:
2775 size = -1;
2776 break;
2777 }
2778
2779 return size;
2780}
2781
76a66253 2782/* Helpers for 4xx TLB management */
76a66253
JM
2783void do_4xx_tlbre_lo (void)
2784{
a8dea12f
JM
2785 ppcemb_tlb_t *tlb;
2786 int size;
76a66253
JM
2787
2788 T0 &= 0x3F;
a8dea12f
JM
2789 tlb = &env->tlb[T0].tlbe;
2790 T0 = tlb->EPN;
2791 if (tlb->prot & PAGE_VALID)
2792 T0 |= 0x400;
2793 size = booke_page_size_to_tlb(tlb->size);
2794 if (size < 0 || size > 0x7)
2795 size = 1;
2796 T0 |= size << 7;
2797 env->spr[SPR_40x_PID] = tlb->PID;
76a66253
JM
2798}
2799
2800void do_4xx_tlbre_hi (void)
2801{
a8dea12f 2802 ppcemb_tlb_t *tlb;
76a66253
JM
2803
2804 T0 &= 0x3F;
a8dea12f
JM
2805 tlb = &env->tlb[T0].tlbe;
2806 T0 = tlb->RPN;
2807 if (tlb->prot & PAGE_EXEC)
2808 T0 |= 0x200;
2809 if (tlb->prot & PAGE_WRITE)
2810 T0 |= 0x100;
76a66253
JM
2811}
2812
c55e9aef 2813void do_4xx_tlbwe_hi (void)
76a66253 2814{
a8dea12f 2815 ppcemb_tlb_t *tlb;
76a66253
JM
2816 target_ulong page, end;
2817
c55e9aef 2818#if defined (DEBUG_SOFTWARE_TLB)
6b80055d 2819 if (loglevel != 0) {
6b542af7 2820 fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1);
c55e9aef
JM
2821 }
2822#endif
76a66253 2823 T0 &= 0x3F;
a8dea12f 2824 tlb = &env->tlb[T0].tlbe;
76a66253
JM
2825 /* Invalidate previous TLB (if it's valid) */
2826 if (tlb->prot & PAGE_VALID) {
2827 end = tlb->EPN + tlb->size;
c55e9aef 2828#if defined (DEBUG_SOFTWARE_TLB)
6b80055d 2829 if (loglevel != 0) {
c55e9aef
JM
2830 fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
2831 " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2832 }
2833#endif
76a66253
JM
2834 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2835 tlb_flush_page(env, page);
2836 }
a8dea12f 2837 tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7);
c294fc58
JM
2838 /* We cannot handle TLB size < TARGET_PAGE_SIZE.
2839 * If this ever occurs, one should use the ppcemb target instead
2840 * of the ppc or ppc64 one
2841 */
2842 if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
71c8b8fd
JM
2843 cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
2844 "are not supported (%d)\n",
c294fc58
JM
2845 tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7));
2846 }
a750fc0b 2847 tlb->EPN = T1 & ~(tlb->size - 1);
c55e9aef 2848 if (T1 & 0x40)
76a66253
JM
2849 tlb->prot |= PAGE_VALID;
2850 else
2851 tlb->prot &= ~PAGE_VALID;
c294fc58
JM
2852 if (T1 & 0x20) {
2853 /* XXX: TO BE FIXED */
2854 cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
2855 }
c55e9aef 2856 tlb->PID = env->spr[SPR_40x_PID]; /* PID */
a8dea12f 2857 tlb->attr = T1 & 0xFF;
c55e9aef 2858#if defined (DEBUG_SOFTWARE_TLB)
c294fc58
JM
2859 if (loglevel != 0) {
2860 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
c55e9aef 2861 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
5fafdf24 2862 (int)T0, tlb->RPN, tlb->EPN, tlb->size,
c55e9aef
JM
2863 tlb->prot & PAGE_READ ? 'r' : '-',
2864 tlb->prot & PAGE_WRITE ? 'w' : '-',
2865 tlb->prot & PAGE_EXEC ? 'x' : '-',
2866 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2867 }
2868#endif
76a66253
JM
2869 /* Invalidate new TLB (if valid) */
2870 if (tlb->prot & PAGE_VALID) {
2871 end = tlb->EPN + tlb->size;
c55e9aef 2872#if defined (DEBUG_SOFTWARE_TLB)
6b80055d 2873 if (loglevel != 0) {
c55e9aef
JM
2874 fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
2875 " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2876 }
2877#endif
76a66253
JM
2878 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2879 tlb_flush_page(env, page);
2880 }
76a66253
JM
2881}
2882
c55e9aef 2883void do_4xx_tlbwe_lo (void)
76a66253 2884{
a8dea12f 2885 ppcemb_tlb_t *tlb;
76a66253 2886
c55e9aef 2887#if defined (DEBUG_SOFTWARE_TLB)
6b80055d 2888 if (loglevel != 0) {
6b542af7 2889 fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1);
c55e9aef
JM
2890 }
2891#endif
76a66253 2892 T0 &= 0x3F;
a8dea12f 2893 tlb = &env->tlb[T0].tlbe;
76a66253
JM
2894 tlb->RPN = T1 & 0xFFFFFC00;
2895 tlb->prot = PAGE_READ;
2896 if (T1 & 0x200)
2897 tlb->prot |= PAGE_EXEC;
2898 if (T1 & 0x100)
2899 tlb->prot |= PAGE_WRITE;
c55e9aef 2900#if defined (DEBUG_SOFTWARE_TLB)
6b80055d
JM
2901 if (loglevel != 0) {
2902 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
c55e9aef 2903 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
5fafdf24 2904 (int)T0, tlb->RPN, tlb->EPN, tlb->size,
c55e9aef
JM
2905 tlb->prot & PAGE_READ ? 'r' : '-',
2906 tlb->prot & PAGE_WRITE ? 'w' : '-',
2907 tlb->prot & PAGE_EXEC ? 'x' : '-',
2908 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2909 }
2910#endif
76a66253 2911}
5eb7995e 2912
a4bb6c3e
JM
2913/* PowerPC 440 TLB management */
2914void do_440_tlbwe (int word)
5eb7995e
JM
2915{
2916 ppcemb_tlb_t *tlb;
a4bb6c3e 2917 target_ulong EPN, RPN, size;
5eb7995e
JM
2918 int do_flush_tlbs;
2919
2920#if defined (DEBUG_SOFTWARE_TLB)
2921 if (loglevel != 0) {
6b542af7 2922 fprintf(logfile, "%s word %d T0 " TDX " T1 " TDX "\n",
69facb78 2923 __func__, word, T0, T1);
5eb7995e
JM
2924 }
2925#endif
2926 do_flush_tlbs = 0;
2927 T0 &= 0x3F;
2928 tlb = &env->tlb[T0].tlbe;
a4bb6c3e
JM
2929 switch (word) {
2930 default:
2931 /* Just here to please gcc */
2932 case 0:
2933 EPN = T1 & 0xFFFFFC00;
2934 if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
5eb7995e 2935 do_flush_tlbs = 1;
a4bb6c3e
JM
2936 tlb->EPN = EPN;
2937 size = booke_tlb_to_page_size((T1 >> 4) & 0xF);
2938 if ((tlb->prot & PAGE_VALID) && tlb->size < size)
2939 do_flush_tlbs = 1;
2940 tlb->size = size;
2941 tlb->attr &= ~0x1;
2942 tlb->attr |= (T1 >> 8) & 1;
2943 if (T1 & 0x200) {
2944 tlb->prot |= PAGE_VALID;
2945 } else {
2946 if (tlb->prot & PAGE_VALID) {
2947 tlb->prot &= ~PAGE_VALID;
2948 do_flush_tlbs = 1;
2949 }
5eb7995e 2950 }
a4bb6c3e
JM
2951 tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
2952 if (do_flush_tlbs)
2953 tlb_flush(env, 1);
2954 break;
2955 case 1:
2956 RPN = T1 & 0xFFFFFC0F;
2957 if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
2958 tlb_flush(env, 1);
2959 tlb->RPN = RPN;
2960 break;
2961 case 2:
2962 tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00);
2963 tlb->prot = tlb->prot & PAGE_VALID;
2964 if (T1 & 0x1)
2965 tlb->prot |= PAGE_READ << 4;
2966 if (T1 & 0x2)
2967 tlb->prot |= PAGE_WRITE << 4;
2968 if (T1 & 0x4)
2969 tlb->prot |= PAGE_EXEC << 4;
2970 if (T1 & 0x8)
2971 tlb->prot |= PAGE_READ;
2972 if (T1 & 0x10)
2973 tlb->prot |= PAGE_WRITE;
2974 if (T1 & 0x20)
2975 tlb->prot |= PAGE_EXEC;
2976 break;
5eb7995e 2977 }
5eb7995e
JM
2978}
2979
a4bb6c3e 2980void do_440_tlbre (int word)
5eb7995e
JM
2981{
2982 ppcemb_tlb_t *tlb;
2983 int size;
2984
2985 T0 &= 0x3F;
2986 tlb = &env->tlb[T0].tlbe;
a4bb6c3e
JM
2987 switch (word) {
2988 default:
2989 /* Just here to please gcc */
2990 case 0:
2991 T0 = tlb->EPN;
2992 size = booke_page_size_to_tlb(tlb->size);
2993 if (size < 0 || size > 0xF)
2994 size = 1;
2995 T0 |= size << 4;
2996 if (tlb->attr & 0x1)
2997 T0 |= 0x100;
2998 if (tlb->prot & PAGE_VALID)
2999 T0 |= 0x200;
3000 env->spr[SPR_440_MMUCR] &= ~0x000000FF;
3001 env->spr[SPR_440_MMUCR] |= tlb->PID;
3002 break;
3003 case 1:
3004 T0 = tlb->RPN;
3005 break;
3006 case 2:
3007 T0 = tlb->attr & ~0x1;
3008 if (tlb->prot & (PAGE_READ << 4))
3009 T0 |= 0x1;
3010 if (tlb->prot & (PAGE_WRITE << 4))
3011 T0 |= 0x2;
3012 if (tlb->prot & (PAGE_EXEC << 4))
3013 T0 |= 0x4;
3014 if (tlb->prot & PAGE_READ)
3015 T0 |= 0x8;
3016 if (tlb->prot & PAGE_WRITE)
3017 T0 |= 0x10;
3018 if (tlb->prot & PAGE_EXEC)
3019 T0 |= 0x20;
3020 break;
3021 }
5eb7995e 3022}
76a66253 3023#endif /* !CONFIG_USER_ONLY */