]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - zfs/module/zfs/arc.c
UBUNTU: SAUCE: (noup) Update spl to 0.6.5.10-1, zfs to 0.6.5.10-1ubuntu2
[mirror_ubuntu-bionic-kernel.git] / zfs / module / zfs / arc.c
CommitLineData
70e083d2
TG
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
27 */
28
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory. This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about. Our cache is not so simple. At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them. Blocks are only evictable
44 * when there are no external references active. This makes
45 * eviction far more problematic: we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space. In these circumstances we are unable to adjust the cache
50 * size. To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss. Our model has a variable sized cache. It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size. So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict. In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes). We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists. The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
81 * adjusting the cache use method 2. We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table. It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state. When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock. Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()). Note however that the data associated
105 * with the buffer may be evicted prior to the callback. The callback
106 * must be made with *no locks held* (to prevent deadlock). Additionally,
107 * the users of callbacks must ensure that their private data is
108 * protected from simultaneous callbacks from arc_clear_callback()
109 * and arc_do_user_evicts().
110 *
111 * It as also possible to register a callback which is run when the
112 * arc_meta_limit is reached and no buffers can be safely evicted. In
113 * this case the arc user should drop a reference on some arc buffers so
114 * they can be reclaimed and the arc_meta_limit honored. For example,
115 * when using the ZPL each dentry holds a references on a znode. These
116 * dentries must be pruned before the arc buffer holding the znode can
117 * be safely evicted.
118 *
119 * Note that the majority of the performance stats are manipulated
120 * with atomic operations.
121 *
122 * The L2ARC uses the l2ad_mtx on each vdev for the following:
123 *
124 * - L2ARC buflist creation
125 * - L2ARC buflist eviction
126 * - L2ARC write completion, which walks L2ARC buflists
127 * - ARC header destruction, as it removes from L2ARC buflists
128 * - ARC header release, as it removes from L2ARC buflists
129 */
130
131#include <sys/spa.h>
132#include <sys/zio.h>
133#include <sys/zio_compress.h>
134#include <sys/zfs_context.h>
135#include <sys/arc.h>
136#include <sys/refcount.h>
137#include <sys/vdev.h>
138#include <sys/vdev_impl.h>
139#include <sys/dsl_pool.h>
140#include <sys/multilist.h>
141#ifdef _KERNEL
142#include <sys/vmsystm.h>
143#include <vm/anon.h>
144#include <sys/fs/swapnode.h>
145#include <sys/zpl.h>
146#include <linux/mm_compat.h>
147#endif
148#include <sys/callb.h>
149#include <sys/kstat.h>
150#include <sys/dmu_tx.h>
151#include <zfs_fletcher.h>
152#include <sys/arc_impl.h>
153#include <sys/trace_arc.h>
154
155#ifndef _KERNEL
156/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
157boolean_t arc_watch = B_FALSE;
158#endif
159
160static kmutex_t arc_reclaim_lock;
161static kcondvar_t arc_reclaim_thread_cv;
162static boolean_t arc_reclaim_thread_exit;
163static kcondvar_t arc_reclaim_waiters_cv;
164
165static kmutex_t arc_user_evicts_lock;
166static kcondvar_t arc_user_evicts_cv;
167static boolean_t arc_user_evicts_thread_exit;
168
169/*
170 * The number of headers to evict in arc_evict_state_impl() before
171 * dropping the sublist lock and evicting from another sublist. A lower
172 * value means we're more likely to evict the "correct" header (i.e. the
173 * oldest header in the arc state), but comes with higher overhead
174 * (i.e. more invocations of arc_evict_state_impl()).
175 */
176int zfs_arc_evict_batch_limit = 10;
177
178/*
179 * The number of sublists used for each of the arc state lists. If this
180 * is not set to a suitable value by the user, it will be configured to
181 * the number of CPUs on the system in arc_init().
182 */
183int zfs_arc_num_sublists_per_state = 0;
184
185/* number of seconds before growing cache again */
186static int arc_grow_retry = 5;
187
188/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
189int zfs_arc_overflow_shift = 8;
190
191/* shift of arc_c for calculating both min and max arc_p */
192static int arc_p_min_shift = 4;
193
194/* log2(fraction of arc to reclaim) */
195static int arc_shrink_shift = 7;
196
197/*
198 * log2(fraction of ARC which must be free to allow growing).
199 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
200 * when reading a new block into the ARC, we will evict an equal-sized block
201 * from the ARC.
202 *
203 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
204 * we will still not allow it to grow.
205 */
206int arc_no_grow_shift = 5;
207
208
209/*
210 * minimum lifespan of a prefetch block in clock ticks
211 * (initialized in arc_init())
212 */
213static int arc_min_prefetch_lifespan;
214
215/*
216 * If this percent of memory is free, don't throttle.
217 */
218int arc_lotsfree_percent = 10;
219
220static int arc_dead;
221
222/*
223 * The arc has filled available memory and has now warmed up.
224 */
225static boolean_t arc_warm;
226
227/*
228 * These tunables are for performance analysis.
229 */
230unsigned long zfs_arc_max = 0;
231unsigned long zfs_arc_min = 0;
232unsigned long zfs_arc_meta_limit = 0;
233unsigned long zfs_arc_meta_min = 0;
234int zfs_arc_grow_retry = 0;
235int zfs_arc_shrink_shift = 0;
236int zfs_arc_p_min_shift = 0;
237int zfs_disable_dup_eviction = 0;
238int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
239
240/*
241 * These tunables are Linux specific
242 */
243unsigned long zfs_arc_sys_free = 0;
244int zfs_arc_min_prefetch_lifespan = 0;
245int zfs_arc_p_aggressive_disable = 1;
246int zfs_arc_p_dampener_disable = 1;
247int zfs_arc_meta_prune = 10000;
248int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
249int zfs_arc_meta_adjust_restarts = 4096;
250int zfs_arc_lotsfree_percent = 10;
251
252/* The 6 states: */
253static arc_state_t ARC_anon;
254static arc_state_t ARC_mru;
255static arc_state_t ARC_mru_ghost;
256static arc_state_t ARC_mfu;
257static arc_state_t ARC_mfu_ghost;
258static arc_state_t ARC_l2c_only;
259
260typedef struct arc_stats {
261 kstat_named_t arcstat_hits;
262 kstat_named_t arcstat_misses;
263 kstat_named_t arcstat_demand_data_hits;
264 kstat_named_t arcstat_demand_data_misses;
265 kstat_named_t arcstat_demand_metadata_hits;
266 kstat_named_t arcstat_demand_metadata_misses;
267 kstat_named_t arcstat_prefetch_data_hits;
268 kstat_named_t arcstat_prefetch_data_misses;
269 kstat_named_t arcstat_prefetch_metadata_hits;
270 kstat_named_t arcstat_prefetch_metadata_misses;
271 kstat_named_t arcstat_mru_hits;
272 kstat_named_t arcstat_mru_ghost_hits;
273 kstat_named_t arcstat_mfu_hits;
274 kstat_named_t arcstat_mfu_ghost_hits;
275 kstat_named_t arcstat_deleted;
276 /*
277 * Number of buffers that could not be evicted because the hash lock
278 * was held by another thread. The lock may not necessarily be held
279 * by something using the same buffer, since hash locks are shared
280 * by multiple buffers.
281 */
282 kstat_named_t arcstat_mutex_miss;
283 /*
284 * Number of buffers skipped because they have I/O in progress, are
285 * indrect prefetch buffers that have not lived long enough, or are
286 * not from the spa we're trying to evict from.
287 */
288 kstat_named_t arcstat_evict_skip;
289 /*
290 * Number of times arc_evict_state() was unable to evict enough
291 * buffers to reach its target amount.
292 */
293 kstat_named_t arcstat_evict_not_enough;
294 kstat_named_t arcstat_evict_l2_cached;
295 kstat_named_t arcstat_evict_l2_eligible;
296 kstat_named_t arcstat_evict_l2_ineligible;
297 kstat_named_t arcstat_evict_l2_skip;
298 kstat_named_t arcstat_hash_elements;
299 kstat_named_t arcstat_hash_elements_max;
300 kstat_named_t arcstat_hash_collisions;
301 kstat_named_t arcstat_hash_chains;
302 kstat_named_t arcstat_hash_chain_max;
303 kstat_named_t arcstat_p;
304 kstat_named_t arcstat_c;
305 kstat_named_t arcstat_c_min;
306 kstat_named_t arcstat_c_max;
307 kstat_named_t arcstat_size;
308 /*
309 * Number of bytes consumed by internal ARC structures necessary
310 * for tracking purposes; these structures are not actually
311 * backed by ARC buffers. This includes arc_buf_hdr_t structures
312 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
313 * caches), and arc_buf_t structures (allocated via arc_buf_t
314 * cache).
315 */
316 kstat_named_t arcstat_hdr_size;
317 /*
318 * Number of bytes consumed by ARC buffers of type equal to
319 * ARC_BUFC_DATA. This is generally consumed by buffers backing
320 * on disk user data (e.g. plain file contents).
321 */
322 kstat_named_t arcstat_data_size;
323 /*
324 * Number of bytes consumed by ARC buffers of type equal to
325 * ARC_BUFC_METADATA. This is generally consumed by buffers
326 * backing on disk data that is used for internal ZFS
327 * structures (e.g. ZAP, dnode, indirect blocks, etc).
328 */
329 kstat_named_t arcstat_metadata_size;
330 /*
331 * Number of bytes consumed by various buffers and structures
332 * not actually backed with ARC buffers. This includes bonus
333 * buffers (allocated directly via zio_buf_* functions),
334 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
335 * cache), and dnode_t structures (allocated via dnode_t cache).
336 */
337 kstat_named_t arcstat_other_size;
338 /*
339 * Total number of bytes consumed by ARC buffers residing in the
340 * arc_anon state. This includes *all* buffers in the arc_anon
341 * state; e.g. data, metadata, evictable, and unevictable buffers
342 * are all included in this value.
343 */
344 kstat_named_t arcstat_anon_size;
345 /*
346 * Number of bytes consumed by ARC buffers that meet the
347 * following criteria: backing buffers of type ARC_BUFC_DATA,
348 * residing in the arc_anon state, and are eligible for eviction
349 * (e.g. have no outstanding holds on the buffer).
350 */
351 kstat_named_t arcstat_anon_evictable_data;
352 /*
353 * Number of bytes consumed by ARC buffers that meet the
354 * following criteria: backing buffers of type ARC_BUFC_METADATA,
355 * residing in the arc_anon state, and are eligible for eviction
356 * (e.g. have no outstanding holds on the buffer).
357 */
358 kstat_named_t arcstat_anon_evictable_metadata;
359 /*
360 * Total number of bytes consumed by ARC buffers residing in the
361 * arc_mru state. This includes *all* buffers in the arc_mru
362 * state; e.g. data, metadata, evictable, and unevictable buffers
363 * are all included in this value.
364 */
365 kstat_named_t arcstat_mru_size;
366 /*
367 * Number of bytes consumed by ARC buffers that meet the
368 * following criteria: backing buffers of type ARC_BUFC_DATA,
369 * residing in the arc_mru state, and are eligible for eviction
370 * (e.g. have no outstanding holds on the buffer).
371 */
372 kstat_named_t arcstat_mru_evictable_data;
373 /*
374 * Number of bytes consumed by ARC buffers that meet the
375 * following criteria: backing buffers of type ARC_BUFC_METADATA,
376 * residing in the arc_mru state, and are eligible for eviction
377 * (e.g. have no outstanding holds on the buffer).
378 */
379 kstat_named_t arcstat_mru_evictable_metadata;
380 /*
381 * Total number of bytes that *would have been* consumed by ARC
382 * buffers in the arc_mru_ghost state. The key thing to note
383 * here, is the fact that this size doesn't actually indicate
384 * RAM consumption. The ghost lists only consist of headers and
385 * don't actually have ARC buffers linked off of these headers.
386 * Thus, *if* the headers had associated ARC buffers, these
387 * buffers *would have* consumed this number of bytes.
388 */
389 kstat_named_t arcstat_mru_ghost_size;
390 /*
391 * Number of bytes that *would have been* consumed by ARC
392 * buffers that are eligible for eviction, of type
393 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
394 */
395 kstat_named_t arcstat_mru_ghost_evictable_data;
396 /*
397 * Number of bytes that *would have been* consumed by ARC
398 * buffers that are eligible for eviction, of type
399 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
400 */
401 kstat_named_t arcstat_mru_ghost_evictable_metadata;
402 /*
403 * Total number of bytes consumed by ARC buffers residing in the
404 * arc_mfu state. This includes *all* buffers in the arc_mfu
405 * state; e.g. data, metadata, evictable, and unevictable buffers
406 * are all included in this value.
407 */
408 kstat_named_t arcstat_mfu_size;
409 /*
410 * Number of bytes consumed by ARC buffers that are eligible for
411 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
412 * state.
413 */
414 kstat_named_t arcstat_mfu_evictable_data;
415 /*
416 * Number of bytes consumed by ARC buffers that are eligible for
417 * eviction, of type ARC_BUFC_METADATA, and reside in the
418 * arc_mfu state.
419 */
420 kstat_named_t arcstat_mfu_evictable_metadata;
421 /*
422 * Total number of bytes that *would have been* consumed by ARC
423 * buffers in the arc_mfu_ghost state. See the comment above
424 * arcstat_mru_ghost_size for more details.
425 */
426 kstat_named_t arcstat_mfu_ghost_size;
427 /*
428 * Number of bytes that *would have been* consumed by ARC
429 * buffers that are eligible for eviction, of type
430 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
431 */
432 kstat_named_t arcstat_mfu_ghost_evictable_data;
433 /*
434 * Number of bytes that *would have been* consumed by ARC
435 * buffers that are eligible for eviction, of type
436 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
437 */
438 kstat_named_t arcstat_mfu_ghost_evictable_metadata;
439 kstat_named_t arcstat_l2_hits;
440 kstat_named_t arcstat_l2_misses;
441 kstat_named_t arcstat_l2_feeds;
442 kstat_named_t arcstat_l2_rw_clash;
443 kstat_named_t arcstat_l2_read_bytes;
444 kstat_named_t arcstat_l2_write_bytes;
445 kstat_named_t arcstat_l2_writes_sent;
446 kstat_named_t arcstat_l2_writes_done;
447 kstat_named_t arcstat_l2_writes_error;
448 kstat_named_t arcstat_l2_writes_lock_retry;
449 kstat_named_t arcstat_l2_evict_lock_retry;
450 kstat_named_t arcstat_l2_evict_reading;
451 kstat_named_t arcstat_l2_evict_l1cached;
452 kstat_named_t arcstat_l2_free_on_write;
453 kstat_named_t arcstat_l2_cdata_free_on_write;
454 kstat_named_t arcstat_l2_abort_lowmem;
455 kstat_named_t arcstat_l2_cksum_bad;
456 kstat_named_t arcstat_l2_io_error;
457 kstat_named_t arcstat_l2_size;
458 kstat_named_t arcstat_l2_asize;
459 kstat_named_t arcstat_l2_hdr_size;
460 kstat_named_t arcstat_l2_compress_successes;
461 kstat_named_t arcstat_l2_compress_zeros;
462 kstat_named_t arcstat_l2_compress_failures;
463 kstat_named_t arcstat_memory_throttle_count;
464 kstat_named_t arcstat_duplicate_buffers;
465 kstat_named_t arcstat_duplicate_buffers_size;
466 kstat_named_t arcstat_duplicate_reads;
467 kstat_named_t arcstat_memory_direct_count;
468 kstat_named_t arcstat_memory_indirect_count;
469 kstat_named_t arcstat_no_grow;
470 kstat_named_t arcstat_tempreserve;
471 kstat_named_t arcstat_loaned_bytes;
472 kstat_named_t arcstat_prune;
473 kstat_named_t arcstat_meta_used;
474 kstat_named_t arcstat_meta_limit;
475 kstat_named_t arcstat_meta_max;
476 kstat_named_t arcstat_meta_min;
477 kstat_named_t arcstat_need_free;
478 kstat_named_t arcstat_sys_free;
479} arc_stats_t;
480
481static arc_stats_t arc_stats = {
482 { "hits", KSTAT_DATA_UINT64 },
483 { "misses", KSTAT_DATA_UINT64 },
484 { "demand_data_hits", KSTAT_DATA_UINT64 },
485 { "demand_data_misses", KSTAT_DATA_UINT64 },
486 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
487 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
488 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
489 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
490 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
491 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
492 { "mru_hits", KSTAT_DATA_UINT64 },
493 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
494 { "mfu_hits", KSTAT_DATA_UINT64 },
495 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
496 { "deleted", KSTAT_DATA_UINT64 },
497 { "mutex_miss", KSTAT_DATA_UINT64 },
498 { "evict_skip", KSTAT_DATA_UINT64 },
499 { "evict_not_enough", KSTAT_DATA_UINT64 },
500 { "evict_l2_cached", KSTAT_DATA_UINT64 },
501 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
502 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
503 { "evict_l2_skip", KSTAT_DATA_UINT64 },
504 { "hash_elements", KSTAT_DATA_UINT64 },
505 { "hash_elements_max", KSTAT_DATA_UINT64 },
506 { "hash_collisions", KSTAT_DATA_UINT64 },
507 { "hash_chains", KSTAT_DATA_UINT64 },
508 { "hash_chain_max", KSTAT_DATA_UINT64 },
509 { "p", KSTAT_DATA_UINT64 },
510 { "c", KSTAT_DATA_UINT64 },
511 { "c_min", KSTAT_DATA_UINT64 },
512 { "c_max", KSTAT_DATA_UINT64 },
513 { "size", KSTAT_DATA_UINT64 },
514 { "hdr_size", KSTAT_DATA_UINT64 },
515 { "data_size", KSTAT_DATA_UINT64 },
516 { "metadata_size", KSTAT_DATA_UINT64 },
517 { "other_size", KSTAT_DATA_UINT64 },
518 { "anon_size", KSTAT_DATA_UINT64 },
519 { "anon_evictable_data", KSTAT_DATA_UINT64 },
520 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
521 { "mru_size", KSTAT_DATA_UINT64 },
522 { "mru_evictable_data", KSTAT_DATA_UINT64 },
523 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
524 { "mru_ghost_size", KSTAT_DATA_UINT64 },
525 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
526 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
527 { "mfu_size", KSTAT_DATA_UINT64 },
528 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
529 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
530 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
531 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
532 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
533 { "l2_hits", KSTAT_DATA_UINT64 },
534 { "l2_misses", KSTAT_DATA_UINT64 },
535 { "l2_feeds", KSTAT_DATA_UINT64 },
536 { "l2_rw_clash", KSTAT_DATA_UINT64 },
537 { "l2_read_bytes", KSTAT_DATA_UINT64 },
538 { "l2_write_bytes", KSTAT_DATA_UINT64 },
539 { "l2_writes_sent", KSTAT_DATA_UINT64 },
540 { "l2_writes_done", KSTAT_DATA_UINT64 },
541 { "l2_writes_error", KSTAT_DATA_UINT64 },
542 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
543 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
544 { "l2_evict_reading", KSTAT_DATA_UINT64 },
545 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
546 { "l2_free_on_write", KSTAT_DATA_UINT64 },
547 { "l2_cdata_free_on_write", KSTAT_DATA_UINT64 },
548 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
549 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
550 { "l2_io_error", KSTAT_DATA_UINT64 },
551 { "l2_size", KSTAT_DATA_UINT64 },
552 { "l2_asize", KSTAT_DATA_UINT64 },
553 { "l2_hdr_size", KSTAT_DATA_UINT64 },
554 { "l2_compress_successes", KSTAT_DATA_UINT64 },
555 { "l2_compress_zeros", KSTAT_DATA_UINT64 },
556 { "l2_compress_failures", KSTAT_DATA_UINT64 },
557 { "memory_throttle_count", KSTAT_DATA_UINT64 },
558 { "duplicate_buffers", KSTAT_DATA_UINT64 },
559 { "duplicate_buffers_size", KSTAT_DATA_UINT64 },
560 { "duplicate_reads", KSTAT_DATA_UINT64 },
561 { "memory_direct_count", KSTAT_DATA_UINT64 },
562 { "memory_indirect_count", KSTAT_DATA_UINT64 },
563 { "arc_no_grow", KSTAT_DATA_UINT64 },
564 { "arc_tempreserve", KSTAT_DATA_UINT64 },
565 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
566 { "arc_prune", KSTAT_DATA_UINT64 },
567 { "arc_meta_used", KSTAT_DATA_UINT64 },
568 { "arc_meta_limit", KSTAT_DATA_UINT64 },
569 { "arc_meta_max", KSTAT_DATA_UINT64 },
570 { "arc_meta_min", KSTAT_DATA_UINT64 },
571 { "arc_need_free", KSTAT_DATA_UINT64 },
572 { "arc_sys_free", KSTAT_DATA_UINT64 }
573};
574
575#define ARCSTAT(stat) (arc_stats.stat.value.ui64)
576
577#define ARCSTAT_INCR(stat, val) \
578 atomic_add_64(&arc_stats.stat.value.ui64, (val))
579
580#define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
581#define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
582
583#define ARCSTAT_MAX(stat, val) { \
584 uint64_t m; \
585 while ((val) > (m = arc_stats.stat.value.ui64) && \
586 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
587 continue; \
588}
589
590#define ARCSTAT_MAXSTAT(stat) \
591 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
592
593/*
594 * We define a macro to allow ARC hits/misses to be easily broken down by
595 * two separate conditions, giving a total of four different subtypes for
596 * each of hits and misses (so eight statistics total).
597 */
598#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
599 if (cond1) { \
600 if (cond2) { \
601 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
602 } else { \
603 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
604 } \
605 } else { \
606 if (cond2) { \
607 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
608 } else { \
609 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
610 } \
611 }
612
613kstat_t *arc_ksp;
614static arc_state_t *arc_anon;
615static arc_state_t *arc_mru;
616static arc_state_t *arc_mru_ghost;
617static arc_state_t *arc_mfu;
618static arc_state_t *arc_mfu_ghost;
619static arc_state_t *arc_l2c_only;
620
621/*
622 * There are several ARC variables that are critical to export as kstats --
623 * but we don't want to have to grovel around in the kstat whenever we wish to
624 * manipulate them. For these variables, we therefore define them to be in
625 * terms of the statistic variable. This assures that we are not introducing
626 * the possibility of inconsistency by having shadow copies of the variables,
627 * while still allowing the code to be readable.
628 */
629#define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
630#define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
631#define arc_c ARCSTAT(arcstat_c) /* target size of cache */
632#define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
633#define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
634#define arc_no_grow ARCSTAT(arcstat_no_grow)
635#define arc_tempreserve ARCSTAT(arcstat_tempreserve)
636#define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
637#define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
638#define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
639#define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
640#define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
641#define arc_need_free ARCSTAT(arcstat_need_free) /* bytes to be freed */
642#define arc_sys_free ARCSTAT(arcstat_sys_free) /* target system free bytes */
643
644#define L2ARC_IS_VALID_COMPRESS(_c_) \
645 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
646
647static list_t arc_prune_list;
648static kmutex_t arc_prune_mtx;
649static taskq_t *arc_prune_taskq;
650static arc_buf_t *arc_eviction_list;
651static arc_buf_hdr_t arc_eviction_hdr;
652
653#define GHOST_STATE(state) \
654 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
655 (state) == arc_l2c_only)
656
657#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
658#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
659#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
660#define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
661#define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
662#define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
663
664#define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
665#define HDR_L2COMPRESS(hdr) ((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
666#define HDR_L2_READING(hdr) \
667 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
668 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
669#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
670#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
671#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
672
673#define HDR_ISTYPE_METADATA(hdr) \
674 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
675#define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
676
677#define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
678#define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
679
680/*
681 * Other sizes
682 */
683
684#define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
685#define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
686
687/*
688 * Hash table routines
689 */
690
691#define HT_LOCK_ALIGN 64
692#define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
693
694struct ht_lock {
695 kmutex_t ht_lock;
696#ifdef _KERNEL
697 unsigned char pad[HT_LOCK_PAD];
698#endif
699};
700
701#define BUF_LOCKS 8192
702typedef struct buf_hash_table {
703 uint64_t ht_mask;
704 arc_buf_hdr_t **ht_table;
705 struct ht_lock ht_locks[BUF_LOCKS];
706} buf_hash_table_t;
707
708static buf_hash_table_t buf_hash_table;
709
710#define BUF_HASH_INDEX(spa, dva, birth) \
711 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
712#define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
713#define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
714#define HDR_LOCK(hdr) \
715 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
716
717uint64_t zfs_crc64_table[256];
718
719/*
720 * Level 2 ARC
721 */
722
723#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
724#define L2ARC_HEADROOM 2 /* num of writes */
725/*
726 * If we discover during ARC scan any buffers to be compressed, we boost
727 * our headroom for the next scanning cycle by this percentage multiple.
728 */
729#define L2ARC_HEADROOM_BOOST 200
730#define L2ARC_FEED_SECS 1 /* caching interval secs */
731#define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
732
733/*
734 * Used to distinguish headers that are being process by
735 * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
736 * address. This can happen when the header is added to the l2arc's list
737 * of buffers to write in the first stage of l2arc_write_buffers(), but
738 * has not yet been written out which happens in the second stage of
739 * l2arc_write_buffers().
740 */
741#define L2ARC_ADDR_UNSET ((uint64_t)(-1))
742
743#define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
744#define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
745
746/* L2ARC Performance Tunables */
747unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
748unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
749unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
750unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
751unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
752unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
753int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
754int l2arc_nocompress = B_FALSE; /* don't compress bufs */
755int l2arc_feed_again = B_TRUE; /* turbo warmup */
756int l2arc_norw = B_FALSE; /* no reads during writes */
757
758/*
759 * L2ARC Internals
760 */
761static list_t L2ARC_dev_list; /* device list */
762static list_t *l2arc_dev_list; /* device list pointer */
763static kmutex_t l2arc_dev_mtx; /* device list mutex */
764static l2arc_dev_t *l2arc_dev_last; /* last device used */
765static list_t L2ARC_free_on_write; /* free after write buf list */
766static list_t *l2arc_free_on_write; /* free after write list ptr */
767static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
768static uint64_t l2arc_ndev; /* number of devices */
769
770typedef struct l2arc_read_callback {
771 arc_buf_t *l2rcb_buf; /* read buffer */
772 spa_t *l2rcb_spa; /* spa */
773 blkptr_t l2rcb_bp; /* original blkptr */
774 zbookmark_phys_t l2rcb_zb; /* original bookmark */
775 int l2rcb_flags; /* original flags */
776 enum zio_compress l2rcb_compress; /* applied compress */
777} l2arc_read_callback_t;
778
779typedef struct l2arc_data_free {
780 /* protected by l2arc_free_on_write_mtx */
781 void *l2df_data;
782 size_t l2df_size;
783 void (*l2df_func)(void *, size_t);
784 list_node_t l2df_list_node;
785} l2arc_data_free_t;
786
787static kmutex_t l2arc_feed_thr_lock;
788static kcondvar_t l2arc_feed_thr_cv;
789static uint8_t l2arc_thread_exit;
790
791static void arc_get_data_buf(arc_buf_t *);
792static void arc_access(arc_buf_hdr_t *, kmutex_t *);
793static boolean_t arc_is_overflowing(void);
794static void arc_buf_watch(arc_buf_t *);
795static void arc_tuning_update(void);
796
797static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
798static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
799
800static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
801static void l2arc_read_done(zio_t *);
802
803static boolean_t l2arc_compress_buf(arc_buf_hdr_t *);
804static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
805static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
806
807static uint64_t
808buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
809{
810 uint8_t *vdva = (uint8_t *)dva;
811 uint64_t crc = -1ULL;
812 int i;
813
814 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
815
816 for (i = 0; i < sizeof (dva_t); i++)
817 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
818
819 crc ^= (spa>>8) ^ birth;
820
821 return (crc);
822}
823
824#define BUF_EMPTY(buf) \
825 ((buf)->b_dva.dva_word[0] == 0 && \
826 (buf)->b_dva.dva_word[1] == 0)
827
828#define BUF_EQUAL(spa, dva, birth, buf) \
829 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
830 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
831 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
832
833static void
834buf_discard_identity(arc_buf_hdr_t *hdr)
835{
836 hdr->b_dva.dva_word[0] = 0;
837 hdr->b_dva.dva_word[1] = 0;
838 hdr->b_birth = 0;
839}
840
841static arc_buf_hdr_t *
842buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
843{
844 const dva_t *dva = BP_IDENTITY(bp);
845 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
846 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
847 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
848 arc_buf_hdr_t *hdr;
849
850 mutex_enter(hash_lock);
851 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
852 hdr = hdr->b_hash_next) {
853 if (BUF_EQUAL(spa, dva, birth, hdr)) {
854 *lockp = hash_lock;
855 return (hdr);
856 }
857 }
858 mutex_exit(hash_lock);
859 *lockp = NULL;
860 return (NULL);
861}
862
863/*
864 * Insert an entry into the hash table. If there is already an element
865 * equal to elem in the hash table, then the already existing element
866 * will be returned and the new element will not be inserted.
867 * Otherwise returns NULL.
868 * If lockp == NULL, the caller is assumed to already hold the hash lock.
869 */
870static arc_buf_hdr_t *
871buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
872{
873 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
874 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
875 arc_buf_hdr_t *fhdr;
876 uint32_t i;
877
878 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
879 ASSERT(hdr->b_birth != 0);
880 ASSERT(!HDR_IN_HASH_TABLE(hdr));
881
882 if (lockp != NULL) {
883 *lockp = hash_lock;
884 mutex_enter(hash_lock);
885 } else {
886 ASSERT(MUTEX_HELD(hash_lock));
887 }
888
889 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
890 fhdr = fhdr->b_hash_next, i++) {
891 if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
892 return (fhdr);
893 }
894
895 hdr->b_hash_next = buf_hash_table.ht_table[idx];
896 buf_hash_table.ht_table[idx] = hdr;
897 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
898
899 /* collect some hash table performance data */
900 if (i > 0) {
901 ARCSTAT_BUMP(arcstat_hash_collisions);
902 if (i == 1)
903 ARCSTAT_BUMP(arcstat_hash_chains);
904
905 ARCSTAT_MAX(arcstat_hash_chain_max, i);
906 }
907
908 ARCSTAT_BUMP(arcstat_hash_elements);
909 ARCSTAT_MAXSTAT(arcstat_hash_elements);
910
911 return (NULL);
912}
913
914static void
915buf_hash_remove(arc_buf_hdr_t *hdr)
916{
917 arc_buf_hdr_t *fhdr, **hdrp;
918 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
919
920 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
921 ASSERT(HDR_IN_HASH_TABLE(hdr));
922
923 hdrp = &buf_hash_table.ht_table[idx];
924 while ((fhdr = *hdrp) != hdr) {
925 ASSERT(fhdr != NULL);
926 hdrp = &fhdr->b_hash_next;
927 }
928 *hdrp = hdr->b_hash_next;
929 hdr->b_hash_next = NULL;
930 hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
931
932 /* collect some hash table performance data */
933 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
934
935 if (buf_hash_table.ht_table[idx] &&
936 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
937 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
938}
939
940/*
941 * Global data structures and functions for the buf kmem cache.
942 */
943static kmem_cache_t *hdr_full_cache;
944static kmem_cache_t *hdr_l2only_cache;
945static kmem_cache_t *buf_cache;
946
947static void
948buf_fini(void)
949{
950 int i;
951
952#if defined(_KERNEL) && defined(HAVE_SPL)
953 /*
954 * Large allocations which do not require contiguous pages
955 * should be using vmem_free() in the linux kernel\
956 */
957 vmem_free(buf_hash_table.ht_table,
958 (buf_hash_table.ht_mask + 1) * sizeof (void *));
959#else
960 kmem_free(buf_hash_table.ht_table,
961 (buf_hash_table.ht_mask + 1) * sizeof (void *));
962#endif
963 for (i = 0; i < BUF_LOCKS; i++)
964 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
965 kmem_cache_destroy(hdr_full_cache);
966 kmem_cache_destroy(hdr_l2only_cache);
967 kmem_cache_destroy(buf_cache);
968}
969
970/*
971 * Constructor callback - called when the cache is empty
972 * and a new buf is requested.
973 */
974/* ARGSUSED */
975static int
976hdr_full_cons(void *vbuf, void *unused, int kmflag)
977{
978 arc_buf_hdr_t *hdr = vbuf;
979
980 bzero(hdr, HDR_FULL_SIZE);
981 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
982 refcount_create(&hdr->b_l1hdr.b_refcnt);
983 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
984 list_link_init(&hdr->b_l1hdr.b_arc_node);
985 list_link_init(&hdr->b_l2hdr.b_l2node);
986 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
987 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
988
989 return (0);
990}
991
992/* ARGSUSED */
993static int
994hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
995{
996 arc_buf_hdr_t *hdr = vbuf;
997
998 bzero(hdr, HDR_L2ONLY_SIZE);
999 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1000
1001 return (0);
1002}
1003
1004/* ARGSUSED */
1005static int
1006buf_cons(void *vbuf, void *unused, int kmflag)
1007{
1008 arc_buf_t *buf = vbuf;
1009
1010 bzero(buf, sizeof (arc_buf_t));
1011 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1012 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1013
1014 return (0);
1015}
1016
1017/*
1018 * Destructor callback - called when a cached buf is
1019 * no longer required.
1020 */
1021/* ARGSUSED */
1022static void
1023hdr_full_dest(void *vbuf, void *unused)
1024{
1025 arc_buf_hdr_t *hdr = vbuf;
1026
1027 ASSERT(BUF_EMPTY(hdr));
1028 cv_destroy(&hdr->b_l1hdr.b_cv);
1029 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1030 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1031 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1032 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1033}
1034
1035/* ARGSUSED */
1036static void
1037hdr_l2only_dest(void *vbuf, void *unused)
1038{
1039 ASSERTV(arc_buf_hdr_t *hdr = vbuf);
1040
1041 ASSERT(BUF_EMPTY(hdr));
1042 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1043}
1044
1045/* ARGSUSED */
1046static void
1047buf_dest(void *vbuf, void *unused)
1048{
1049 arc_buf_t *buf = vbuf;
1050
1051 mutex_destroy(&buf->b_evict_lock);
1052 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1053}
1054
1055/*
1056 * Reclaim callback -- invoked when memory is low.
1057 */
1058/* ARGSUSED */
1059static void
1060hdr_recl(void *unused)
1061{
1062 dprintf("hdr_recl called\n");
1063 /*
1064 * umem calls the reclaim func when we destroy the buf cache,
1065 * which is after we do arc_fini().
1066 */
1067 if (!arc_dead)
1068 cv_signal(&arc_reclaim_thread_cv);
1069}
1070
1071static void
1072buf_init(void)
1073{
1074 uint64_t *ct;
1075 uint64_t hsize = 1ULL << 12;
1076 int i, j;
1077
1078 /*
1079 * The hash table is big enough to fill all of physical memory
1080 * with an average block size of zfs_arc_average_blocksize (default 8K).
1081 * By default, the table will take up
1082 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1083 */
1084 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
1085 hsize <<= 1;
1086retry:
1087 buf_hash_table.ht_mask = hsize - 1;
1088#if defined(_KERNEL) && defined(HAVE_SPL)
1089 /*
1090 * Large allocations which do not require contiguous pages
1091 * should be using vmem_alloc() in the linux kernel
1092 */
1093 buf_hash_table.ht_table =
1094 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1095#else
1096 buf_hash_table.ht_table =
1097 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1098#endif
1099 if (buf_hash_table.ht_table == NULL) {
1100 ASSERT(hsize > (1ULL << 8));
1101 hsize >>= 1;
1102 goto retry;
1103 }
1104
1105 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1106 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1107 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1108 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1109 NULL, NULL, 0);
1110 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1111 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1112
1113 for (i = 0; i < 256; i++)
1114 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1115 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1116
1117 for (i = 0; i < BUF_LOCKS; i++) {
1118 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1119 NULL, MUTEX_DEFAULT, NULL);
1120 }
1121}
1122
1123/*
1124 * Transition between the two allocation states for the arc_buf_hdr struct.
1125 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
1126 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
1127 * version is used when a cache buffer is only in the L2ARC in order to reduce
1128 * memory usage.
1129 */
1130static arc_buf_hdr_t *
1131arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1132{
1133 arc_buf_hdr_t *nhdr;
1134 l2arc_dev_t *dev;
1135
1136 ASSERT(HDR_HAS_L2HDR(hdr));
1137 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1138 (old == hdr_l2only_cache && new == hdr_full_cache));
1139
1140 dev = hdr->b_l2hdr.b_dev;
1141 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1142
1143 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1144 buf_hash_remove(hdr);
1145
1146 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
1147
1148 if (new == hdr_full_cache) {
1149 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1150 /*
1151 * arc_access and arc_change_state need to be aware that a
1152 * header has just come out of L2ARC, so we set its state to
1153 * l2c_only even though it's about to change.
1154 */
1155 nhdr->b_l1hdr.b_state = arc_l2c_only;
1156
1157 /* Verify previous threads set to NULL before freeing */
1158 ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1159 } else {
1160 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1161 ASSERT0(hdr->b_l1hdr.b_datacnt);
1162
1163 /*
1164 * If we've reached here, We must have been called from
1165 * arc_evict_hdr(), as such we should have already been
1166 * removed from any ghost list we were previously on
1167 * (which protects us from racing with arc_evict_state),
1168 * thus no locking is needed during this check.
1169 */
1170 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1171
1172 /*
1173 * A buffer must not be moved into the arc_l2c_only
1174 * state if it's not finished being written out to the
1175 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
1176 * might try to be accessed, even though it was removed.
1177 */
1178 VERIFY(!HDR_L2_WRITING(hdr));
1179 VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1180
1181 nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1182 }
1183 /*
1184 * The header has been reallocated so we need to re-insert it into any
1185 * lists it was on.
1186 */
1187 (void) buf_hash_insert(nhdr, NULL);
1188
1189 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1190
1191 mutex_enter(&dev->l2ad_mtx);
1192
1193 /*
1194 * We must place the realloc'ed header back into the list at
1195 * the same spot. Otherwise, if it's placed earlier in the list,
1196 * l2arc_write_buffers() could find it during the function's
1197 * write phase, and try to write it out to the l2arc.
1198 */
1199 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1200 list_remove(&dev->l2ad_buflist, hdr);
1201
1202 mutex_exit(&dev->l2ad_mtx);
1203
1204 /*
1205 * Since we're using the pointer address as the tag when
1206 * incrementing and decrementing the l2ad_alloc refcount, we
1207 * must remove the old pointer (that we're about to destroy) and
1208 * add the new pointer to the refcount. Otherwise we'd remove
1209 * the wrong pointer address when calling arc_hdr_destroy() later.
1210 */
1211
1212 (void) refcount_remove_many(&dev->l2ad_alloc,
1213 hdr->b_l2hdr.b_asize, hdr);
1214
1215 (void) refcount_add_many(&dev->l2ad_alloc,
1216 nhdr->b_l2hdr.b_asize, nhdr);
1217
1218 buf_discard_identity(hdr);
1219 hdr->b_freeze_cksum = NULL;
1220 kmem_cache_free(old, hdr);
1221
1222 return (nhdr);
1223}
1224
1225
1226#define ARC_MINTIME (hz>>4) /* 62 ms */
1227
1228static void
1229arc_cksum_verify(arc_buf_t *buf)
1230{
1231 zio_cksum_t zc;
1232
1233 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1234 return;
1235
1236 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1237 if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1238 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1239 return;
1240 }
1241 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1242 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1243 panic("buffer modified while frozen!");
1244 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1245}
1246
1247static int
1248arc_cksum_equal(arc_buf_t *buf)
1249{
1250 zio_cksum_t zc;
1251 int equal;
1252
1253 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1254 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1255 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1256 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1257
1258 return (equal);
1259}
1260
1261static void
1262arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1263{
1264 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1265 return;
1266
1267 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1268 if (buf->b_hdr->b_freeze_cksum != NULL) {
1269 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1270 return;
1271 }
1272 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1273 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1274 buf->b_hdr->b_freeze_cksum);
1275 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1276 arc_buf_watch(buf);
1277}
1278
1279#ifndef _KERNEL
1280void
1281arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1282{
1283 panic("Got SIGSEGV at address: 0x%lx\n", (long) si->si_addr);
1284}
1285#endif
1286
1287/* ARGSUSED */
1288static void
1289arc_buf_unwatch(arc_buf_t *buf)
1290{
1291#ifndef _KERNEL
1292 if (arc_watch) {
1293 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size,
1294 PROT_READ | PROT_WRITE));
1295 }
1296#endif
1297}
1298
1299/* ARGSUSED */
1300static void
1301arc_buf_watch(arc_buf_t *buf)
1302{
1303#ifndef _KERNEL
1304 if (arc_watch)
1305 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size, PROT_READ));
1306#endif
1307}
1308
1309static arc_buf_contents_t
1310arc_buf_type(arc_buf_hdr_t *hdr)
1311{
1312 if (HDR_ISTYPE_METADATA(hdr)) {
1313 return (ARC_BUFC_METADATA);
1314 } else {
1315 return (ARC_BUFC_DATA);
1316 }
1317}
1318
1319static uint32_t
1320arc_bufc_to_flags(arc_buf_contents_t type)
1321{
1322 switch (type) {
1323 case ARC_BUFC_DATA:
1324 /* metadata field is 0 if buffer contains normal data */
1325 return (0);
1326 case ARC_BUFC_METADATA:
1327 return (ARC_FLAG_BUFC_METADATA);
1328 default:
1329 break;
1330 }
1331 panic("undefined ARC buffer type!");
1332 return ((uint32_t)-1);
1333}
1334
1335void
1336arc_buf_thaw(arc_buf_t *buf)
1337{
1338 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1339 if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
1340 panic("modifying non-anon buffer!");
1341 if (HDR_IO_IN_PROGRESS(buf->b_hdr))
1342 panic("modifying buffer while i/o in progress!");
1343 arc_cksum_verify(buf);
1344 }
1345
1346 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1347 if (buf->b_hdr->b_freeze_cksum != NULL) {
1348 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1349 buf->b_hdr->b_freeze_cksum = NULL;
1350 }
1351
1352 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1353
1354 arc_buf_unwatch(buf);
1355}
1356
1357void
1358arc_buf_freeze(arc_buf_t *buf)
1359{
1360 kmutex_t *hash_lock;
1361
1362 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1363 return;
1364
1365 hash_lock = HDR_LOCK(buf->b_hdr);
1366 mutex_enter(hash_lock);
1367
1368 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1369 buf->b_hdr->b_l1hdr.b_state == arc_anon);
1370 arc_cksum_compute(buf, B_FALSE);
1371 mutex_exit(hash_lock);
1372
1373}
1374
1375static void
1376add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1377{
1378 arc_state_t *state;
1379
1380 ASSERT(HDR_HAS_L1HDR(hdr));
1381 ASSERT(MUTEX_HELD(hash_lock));
1382
1383 state = hdr->b_l1hdr.b_state;
1384
1385 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1386 (state != arc_anon)) {
1387 /* We don't use the L2-only state list. */
1388 if (state != arc_l2c_only) {
1389 arc_buf_contents_t type = arc_buf_type(hdr);
1390 uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
1391 multilist_t *list = &state->arcs_list[type];
1392 uint64_t *size = &state->arcs_lsize[type];
1393
1394 multilist_remove(list, hdr);
1395
1396 if (GHOST_STATE(state)) {
1397 ASSERT0(hdr->b_l1hdr.b_datacnt);
1398 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1399 delta = hdr->b_size;
1400 }
1401 ASSERT(delta > 0);
1402 ASSERT3U(*size, >=, delta);
1403 atomic_add_64(size, -delta);
1404 }
1405 /* remove the prefetch flag if we get a reference */
1406 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
1407 }
1408}
1409
1410static int
1411remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1412{
1413 int cnt;
1414 arc_state_t *state = hdr->b_l1hdr.b_state;
1415
1416 ASSERT(HDR_HAS_L1HDR(hdr));
1417 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1418 ASSERT(!GHOST_STATE(state));
1419
1420 /*
1421 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1422 * check to prevent usage of the arc_l2c_only list.
1423 */
1424 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1425 (state != arc_anon)) {
1426 arc_buf_contents_t type = arc_buf_type(hdr);
1427 multilist_t *list = &state->arcs_list[type];
1428 uint64_t *size = &state->arcs_lsize[type];
1429
1430 multilist_insert(list, hdr);
1431
1432 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1433 atomic_add_64(size, hdr->b_size *
1434 hdr->b_l1hdr.b_datacnt);
1435 }
1436 return (cnt);
1437}
1438
1439/*
1440 * Returns detailed information about a specific arc buffer. When the
1441 * state_index argument is set the function will calculate the arc header
1442 * list position for its arc state. Since this requires a linear traversal
1443 * callers are strongly encourage not to do this. However, it can be helpful
1444 * for targeted analysis so the functionality is provided.
1445 */
1446void
1447arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
1448{
1449 arc_buf_hdr_t *hdr = ab->b_hdr;
1450 l1arc_buf_hdr_t *l1hdr = NULL;
1451 l2arc_buf_hdr_t *l2hdr = NULL;
1452 arc_state_t *state = NULL;
1453
1454 memset(abi, 0, sizeof (arc_buf_info_t));
1455
1456 if (hdr == NULL)
1457 return;
1458
1459 abi->abi_flags = hdr->b_flags;
1460
1461 if (HDR_HAS_L1HDR(hdr)) {
1462 l1hdr = &hdr->b_l1hdr;
1463 state = l1hdr->b_state;
1464 }
1465 if (HDR_HAS_L2HDR(hdr))
1466 l2hdr = &hdr->b_l2hdr;
1467
1468 if (l1hdr) {
1469 abi->abi_datacnt = l1hdr->b_datacnt;
1470 abi->abi_access = l1hdr->b_arc_access;
1471 abi->abi_mru_hits = l1hdr->b_mru_hits;
1472 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
1473 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
1474 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
1475 abi->abi_holds = refcount_count(&l1hdr->b_refcnt);
1476 }
1477
1478 if (l2hdr) {
1479 abi->abi_l2arc_dattr = l2hdr->b_daddr;
1480 abi->abi_l2arc_asize = l2hdr->b_asize;
1481 abi->abi_l2arc_compress = l2hdr->b_compress;
1482 abi->abi_l2arc_hits = l2hdr->b_hits;
1483 }
1484
1485 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
1486 abi->abi_state_contents = arc_buf_type(hdr);
1487 abi->abi_size = hdr->b_size;
1488}
1489
1490/*
1491 * Move the supplied buffer to the indicated state. The hash lock
1492 * for the buffer must be held by the caller.
1493 */
1494static void
1495arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1496 kmutex_t *hash_lock)
1497{
1498 arc_state_t *old_state;
1499 int64_t refcnt;
1500 uint32_t datacnt;
1501 uint64_t from_delta, to_delta;
1502 arc_buf_contents_t buftype = arc_buf_type(hdr);
1503
1504 /*
1505 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1506 * in arc_read() when bringing a buffer out of the L2ARC. However, the
1507 * L1 hdr doesn't always exist when we change state to arc_anon before
1508 * destroying a header, in which case reallocating to add the L1 hdr is
1509 * pointless.
1510 */
1511 if (HDR_HAS_L1HDR(hdr)) {
1512 old_state = hdr->b_l1hdr.b_state;
1513 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1514 datacnt = hdr->b_l1hdr.b_datacnt;
1515 } else {
1516 old_state = arc_l2c_only;
1517 refcnt = 0;
1518 datacnt = 0;
1519 }
1520
1521 ASSERT(MUTEX_HELD(hash_lock));
1522 ASSERT3P(new_state, !=, old_state);
1523 ASSERT(refcnt == 0 || datacnt > 0);
1524 ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1525 ASSERT(old_state != arc_anon || datacnt <= 1);
1526
1527 from_delta = to_delta = datacnt * hdr->b_size;
1528
1529 /*
1530 * If this buffer is evictable, transfer it from the
1531 * old state list to the new state list.
1532 */
1533 if (refcnt == 0) {
1534 if (old_state != arc_anon && old_state != arc_l2c_only) {
1535 uint64_t *size = &old_state->arcs_lsize[buftype];
1536
1537 ASSERT(HDR_HAS_L1HDR(hdr));
1538 multilist_remove(&old_state->arcs_list[buftype], hdr);
1539
1540 /*
1541 * If prefetching out of the ghost cache,
1542 * we will have a non-zero datacnt.
1543 */
1544 if (GHOST_STATE(old_state) && datacnt == 0) {
1545 /* ghost elements have a ghost size */
1546 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1547 from_delta = hdr->b_size;
1548 }
1549 ASSERT3U(*size, >=, from_delta);
1550 atomic_add_64(size, -from_delta);
1551 }
1552 if (new_state != arc_anon && new_state != arc_l2c_only) {
1553 uint64_t *size = &new_state->arcs_lsize[buftype];
1554
1555 /*
1556 * An L1 header always exists here, since if we're
1557 * moving to some L1-cached state (i.e. not l2c_only or
1558 * anonymous), we realloc the header to add an L1hdr
1559 * beforehand.
1560 */
1561 ASSERT(HDR_HAS_L1HDR(hdr));
1562 multilist_insert(&new_state->arcs_list[buftype], hdr);
1563
1564 /* ghost elements have a ghost size */
1565 if (GHOST_STATE(new_state)) {
1566 ASSERT0(datacnt);
1567 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1568 to_delta = hdr->b_size;
1569 }
1570 atomic_add_64(size, to_delta);
1571 }
1572 }
1573
1574 ASSERT(!BUF_EMPTY(hdr));
1575 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1576 buf_hash_remove(hdr);
1577
1578 /* adjust state sizes (ignore arc_l2c_only) */
1579
1580 if (to_delta && new_state != arc_l2c_only) {
1581 ASSERT(HDR_HAS_L1HDR(hdr));
1582 if (GHOST_STATE(new_state)) {
1583 ASSERT0(datacnt);
1584
1585 /*
1586 * We moving a header to a ghost state, we first
1587 * remove all arc buffers. Thus, we'll have a
1588 * datacnt of zero, and no arc buffer to use for
1589 * the reference. As a result, we use the arc
1590 * header pointer for the reference.
1591 */
1592 (void) refcount_add_many(&new_state->arcs_size,
1593 hdr->b_size, hdr);
1594 } else {
1595 arc_buf_t *buf;
1596 ASSERT3U(datacnt, !=, 0);
1597
1598 /*
1599 * Each individual buffer holds a unique reference,
1600 * thus we must remove each of these references one
1601 * at a time.
1602 */
1603 for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
1604 buf = buf->b_next) {
1605 (void) refcount_add_many(&new_state->arcs_size,
1606 hdr->b_size, buf);
1607 }
1608 }
1609 }
1610
1611 if (from_delta && old_state != arc_l2c_only) {
1612 ASSERT(HDR_HAS_L1HDR(hdr));
1613 if (GHOST_STATE(old_state)) {
1614 /*
1615 * When moving a header off of a ghost state,
1616 * there's the possibility for datacnt to be
1617 * non-zero. This is because we first add the
1618 * arc buffer to the header prior to changing
1619 * the header's state. Since we used the header
1620 * for the reference when putting the header on
1621 * the ghost state, we must balance that and use
1622 * the header when removing off the ghost state
1623 * (even though datacnt is non zero).
1624 */
1625
1626 IMPLY(datacnt == 0, new_state == arc_anon ||
1627 new_state == arc_l2c_only);
1628
1629 (void) refcount_remove_many(&old_state->arcs_size,
1630 hdr->b_size, hdr);
1631 } else {
1632 arc_buf_t *buf;
1633 ASSERT3U(datacnt, !=, 0);
1634
1635 /*
1636 * Each individual buffer holds a unique reference,
1637 * thus we must remove each of these references one
1638 * at a time.
1639 */
1640 for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
1641 buf = buf->b_next) {
1642 (void) refcount_remove_many(
1643 &old_state->arcs_size, hdr->b_size, buf);
1644 }
1645 }
1646 }
1647
1648 if (HDR_HAS_L1HDR(hdr))
1649 hdr->b_l1hdr.b_state = new_state;
1650
1651 /*
1652 * L2 headers should never be on the L2 state list since they don't
1653 * have L1 headers allocated.
1654 */
1655 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
1656 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
1657}
1658
1659void
1660arc_space_consume(uint64_t space, arc_space_type_t type)
1661{
1662 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1663
1664 switch (type) {
1665 default:
1666 break;
1667 case ARC_SPACE_DATA:
1668 ARCSTAT_INCR(arcstat_data_size, space);
1669 break;
1670 case ARC_SPACE_META:
1671 ARCSTAT_INCR(arcstat_metadata_size, space);
1672 break;
1673 case ARC_SPACE_OTHER:
1674 ARCSTAT_INCR(arcstat_other_size, space);
1675 break;
1676 case ARC_SPACE_HDRS:
1677 ARCSTAT_INCR(arcstat_hdr_size, space);
1678 break;
1679 case ARC_SPACE_L2HDRS:
1680 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1681 break;
1682 }
1683
1684 if (type != ARC_SPACE_DATA)
1685 ARCSTAT_INCR(arcstat_meta_used, space);
1686
1687 atomic_add_64(&arc_size, space);
1688}
1689
1690void
1691arc_space_return(uint64_t space, arc_space_type_t type)
1692{
1693 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1694
1695 switch (type) {
1696 default:
1697 break;
1698 case ARC_SPACE_DATA:
1699 ARCSTAT_INCR(arcstat_data_size, -space);
1700 break;
1701 case ARC_SPACE_META:
1702 ARCSTAT_INCR(arcstat_metadata_size, -space);
1703 break;
1704 case ARC_SPACE_OTHER:
1705 ARCSTAT_INCR(arcstat_other_size, -space);
1706 break;
1707 case ARC_SPACE_HDRS:
1708 ARCSTAT_INCR(arcstat_hdr_size, -space);
1709 break;
1710 case ARC_SPACE_L2HDRS:
1711 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1712 break;
1713 }
1714
1715 if (type != ARC_SPACE_DATA) {
1716 ASSERT(arc_meta_used >= space);
1717 if (arc_meta_max < arc_meta_used)
1718 arc_meta_max = arc_meta_used;
1719 ARCSTAT_INCR(arcstat_meta_used, -space);
1720 }
1721
1722 ASSERT(arc_size >= space);
1723 atomic_add_64(&arc_size, -space);
1724}
1725
1726arc_buf_t *
1727arc_buf_alloc(spa_t *spa, uint64_t size, void *tag, arc_buf_contents_t type)
1728{
1729 arc_buf_hdr_t *hdr;
1730 arc_buf_t *buf;
1731
1732 VERIFY3U(size, <=, spa_maxblocksize(spa));
1733 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
1734 ASSERT(BUF_EMPTY(hdr));
1735 ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
1736 hdr->b_size = size;
1737 hdr->b_spa = spa_load_guid(spa);
1738 hdr->b_l1hdr.b_mru_hits = 0;
1739 hdr->b_l1hdr.b_mru_ghost_hits = 0;
1740 hdr->b_l1hdr.b_mfu_hits = 0;
1741 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
1742 hdr->b_l1hdr.b_l2_hits = 0;
1743
1744 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1745 buf->b_hdr = hdr;
1746 buf->b_data = NULL;
1747 buf->b_efunc = NULL;
1748 buf->b_private = NULL;
1749 buf->b_next = NULL;
1750
1751 hdr->b_flags = arc_bufc_to_flags(type);
1752 hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1753
1754 hdr->b_l1hdr.b_buf = buf;
1755 hdr->b_l1hdr.b_state = arc_anon;
1756 hdr->b_l1hdr.b_arc_access = 0;
1757 hdr->b_l1hdr.b_datacnt = 1;
1758 hdr->b_l1hdr.b_tmp_cdata = NULL;
1759
1760 arc_get_data_buf(buf);
1761 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1762 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
1763
1764 return (buf);
1765}
1766
1767static char *arc_onloan_tag = "onloan";
1768
1769/*
1770 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1771 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1772 * buffers must be returned to the arc before they can be used by the DMU or
1773 * freed.
1774 */
1775arc_buf_t *
1776arc_loan_buf(spa_t *spa, uint64_t size)
1777{
1778 arc_buf_t *buf;
1779
1780 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1781
1782 atomic_add_64(&arc_loaned_bytes, size);
1783 return (buf);
1784}
1785
1786/*
1787 * Return a loaned arc buffer to the arc.
1788 */
1789void
1790arc_return_buf(arc_buf_t *buf, void *tag)
1791{
1792 arc_buf_hdr_t *hdr = buf->b_hdr;
1793
1794 ASSERT(buf->b_data != NULL);
1795 ASSERT(HDR_HAS_L1HDR(hdr));
1796 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
1797 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
1798
1799 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1800}
1801
1802/* Detach an arc_buf from a dbuf (tag) */
1803void
1804arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1805{
1806 arc_buf_hdr_t *hdr = buf->b_hdr;
1807
1808 ASSERT(buf->b_data != NULL);
1809 ASSERT(HDR_HAS_L1HDR(hdr));
1810 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
1811 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
1812 buf->b_efunc = NULL;
1813 buf->b_private = NULL;
1814
1815 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1816}
1817
1818static arc_buf_t *
1819arc_buf_clone(arc_buf_t *from)
1820{
1821 arc_buf_t *buf;
1822 arc_buf_hdr_t *hdr = from->b_hdr;
1823 uint64_t size = hdr->b_size;
1824
1825 ASSERT(HDR_HAS_L1HDR(hdr));
1826 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
1827
1828 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1829 buf->b_hdr = hdr;
1830 buf->b_data = NULL;
1831 buf->b_efunc = NULL;
1832 buf->b_private = NULL;
1833 buf->b_next = hdr->b_l1hdr.b_buf;
1834 hdr->b_l1hdr.b_buf = buf;
1835 arc_get_data_buf(buf);
1836 bcopy(from->b_data, buf->b_data, size);
1837
1838 /*
1839 * This buffer already exists in the arc so create a duplicate
1840 * copy for the caller. If the buffer is associated with user data
1841 * then track the size and number of duplicates. These stats will be
1842 * updated as duplicate buffers are created and destroyed.
1843 */
1844 if (HDR_ISTYPE_DATA(hdr)) {
1845 ARCSTAT_BUMP(arcstat_duplicate_buffers);
1846 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1847 }
1848 hdr->b_l1hdr.b_datacnt += 1;
1849 return (buf);
1850}
1851
1852void
1853arc_buf_add_ref(arc_buf_t *buf, void* tag)
1854{
1855 arc_buf_hdr_t *hdr;
1856 kmutex_t *hash_lock;
1857
1858 /*
1859 * Check to see if this buffer is evicted. Callers
1860 * must verify b_data != NULL to know if the add_ref
1861 * was successful.
1862 */
1863 mutex_enter(&buf->b_evict_lock);
1864 if (buf->b_data == NULL) {
1865 mutex_exit(&buf->b_evict_lock);
1866 return;
1867 }
1868 hash_lock = HDR_LOCK(buf->b_hdr);
1869 mutex_enter(hash_lock);
1870 hdr = buf->b_hdr;
1871 ASSERT(HDR_HAS_L1HDR(hdr));
1872 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1873 mutex_exit(&buf->b_evict_lock);
1874
1875 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
1876 hdr->b_l1hdr.b_state == arc_mfu);
1877
1878 add_reference(hdr, hash_lock, tag);
1879 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1880 arc_access(hdr, hash_lock);
1881 mutex_exit(hash_lock);
1882 ARCSTAT_BUMP(arcstat_hits);
1883 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
1884 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
1885 data, metadata, hits);
1886}
1887
1888static void
1889arc_buf_free_on_write(void *data, size_t size,
1890 void (*free_func)(void *, size_t))
1891{
1892 l2arc_data_free_t *df;
1893
1894 df = kmem_alloc(sizeof (*df), KM_SLEEP);
1895 df->l2df_data = data;
1896 df->l2df_size = size;
1897 df->l2df_func = free_func;
1898 mutex_enter(&l2arc_free_on_write_mtx);
1899 list_insert_head(l2arc_free_on_write, df);
1900 mutex_exit(&l2arc_free_on_write_mtx);
1901}
1902
1903/*
1904 * Free the arc data buffer. If it is an l2arc write in progress,
1905 * the buffer is placed on l2arc_free_on_write to be freed later.
1906 */
1907static void
1908arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1909{
1910 arc_buf_hdr_t *hdr = buf->b_hdr;
1911
1912 if (HDR_L2_WRITING(hdr)) {
1913 arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
1914 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1915 } else {
1916 free_func(buf->b_data, hdr->b_size);
1917 }
1918}
1919
1920static void
1921arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
1922{
1923 ASSERT(HDR_HAS_L2HDR(hdr));
1924 ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
1925
1926 /*
1927 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
1928 * that doesn't exist, the header is in the arc_l2c_only state,
1929 * and there isn't anything to free (it's already been freed).
1930 */
1931 if (!HDR_HAS_L1HDR(hdr))
1932 return;
1933
1934 /*
1935 * The header isn't being written to the l2arc device, thus it
1936 * shouldn't have a b_tmp_cdata to free.
1937 */
1938 if (!HDR_L2_WRITING(hdr)) {
1939 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1940 return;
1941 }
1942
1943 /*
1944 * The header does not have compression enabled. This can be due
1945 * to the buffer not being compressible, or because we're
1946 * freeing the buffer before the second phase of
1947 * l2arc_write_buffer() has started (which does the compression
1948 * step). In either case, b_tmp_cdata does not point to a
1949 * separately compressed buffer, so there's nothing to free (it
1950 * points to the same buffer as the arc_buf_t's b_data field).
1951 */
1952 if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_OFF) {
1953 hdr->b_l1hdr.b_tmp_cdata = NULL;
1954 return;
1955 }
1956
1957 /*
1958 * There's nothing to free since the buffer was all zero's and
1959 * compressed to a zero length buffer.
1960 */
1961 if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_EMPTY) {
1962 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1963 return;
1964 }
1965
1966 ASSERT(L2ARC_IS_VALID_COMPRESS(hdr->b_l2hdr.b_compress));
1967
1968 arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata,
1969 hdr->b_size, zio_data_buf_free);
1970
1971 ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
1972 hdr->b_l1hdr.b_tmp_cdata = NULL;
1973}
1974
1975/*
1976 * Free up buf->b_data and if 'remove' is set, then pull the
1977 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
1978 */
1979static void
1980arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
1981{
1982 arc_buf_t **bufp;
1983
1984 /* free up data associated with the buf */
1985 if (buf->b_data != NULL) {
1986 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
1987 uint64_t size = buf->b_hdr->b_size;
1988 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
1989
1990 arc_cksum_verify(buf);
1991 arc_buf_unwatch(buf);
1992
1993 if (type == ARC_BUFC_METADATA) {
1994 arc_buf_data_free(buf, zio_buf_free);
1995 arc_space_return(size, ARC_SPACE_META);
1996 } else {
1997 ASSERT(type == ARC_BUFC_DATA);
1998 arc_buf_data_free(buf, zio_data_buf_free);
1999 arc_space_return(size, ARC_SPACE_DATA);
2000 }
2001
2002 /* protected by hash lock, if in the hash table */
2003 if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
2004 uint64_t *cnt = &state->arcs_lsize[type];
2005
2006 ASSERT(refcount_is_zero(
2007 &buf->b_hdr->b_l1hdr.b_refcnt));
2008 ASSERT(state != arc_anon && state != arc_l2c_only);
2009
2010 ASSERT3U(*cnt, >=, size);
2011 atomic_add_64(cnt, -size);
2012 }
2013
2014 (void) refcount_remove_many(&state->arcs_size, size, buf);
2015 buf->b_data = NULL;
2016
2017 /*
2018 * If we're destroying a duplicate buffer make sure
2019 * that the appropriate statistics are updated.
2020 */
2021 if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
2022 HDR_ISTYPE_DATA(buf->b_hdr)) {
2023 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
2024 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
2025 }
2026 ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
2027 buf->b_hdr->b_l1hdr.b_datacnt -= 1;
2028 }
2029
2030 /* only remove the buf if requested */
2031 if (!remove)
2032 return;
2033
2034 /* remove the buf from the hdr list */
2035 for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
2036 bufp = &(*bufp)->b_next)
2037 continue;
2038 *bufp = buf->b_next;
2039 buf->b_next = NULL;
2040
2041 ASSERT(buf->b_efunc == NULL);
2042
2043 /* clean up the buf */
2044 buf->b_hdr = NULL;
2045 kmem_cache_free(buf_cache, buf);
2046}
2047
2048static void
2049arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2050{
2051 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2052 l2arc_dev_t *dev = l2hdr->b_dev;
2053
2054 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2055 ASSERT(HDR_HAS_L2HDR(hdr));
2056
2057 list_remove(&dev->l2ad_buflist, hdr);
2058
2059 /*
2060 * We don't want to leak the b_tmp_cdata buffer that was
2061 * allocated in l2arc_write_buffers()
2062 */
2063 arc_buf_l2_cdata_free(hdr);
2064
2065 /*
2066 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
2067 * this header is being processed by l2arc_write_buffers() (i.e.
2068 * it's in the first stage of l2arc_write_buffers()).
2069 * Re-affirming that truth here, just to serve as a reminder. If
2070 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
2071 * may not have its HDR_L2_WRITING flag set. (the write may have
2072 * completed, in which case HDR_L2_WRITING will be false and the
2073 * b_daddr field will point to the address of the buffer on disk).
2074 */
2075 IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
2076
2077 /*
2078 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
2079 * l2arc_write_buffers(). Since we've just removed this header
2080 * from the l2arc buffer list, this header will never reach the
2081 * second stage of l2arc_write_buffers(), which increments the
2082 * accounting stats for this header. Thus, we must be careful
2083 * not to decrement them for this header either.
2084 */
2085 if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
2086 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
2087 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
2088
2089 vdev_space_update(dev->l2ad_vdev,
2090 -l2hdr->b_asize, 0, 0);
2091
2092 (void) refcount_remove_many(&dev->l2ad_alloc,
2093 l2hdr->b_asize, hdr);
2094 }
2095
2096 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
2097}
2098
2099static void
2100arc_hdr_destroy(arc_buf_hdr_t *hdr)
2101{
2102 if (HDR_HAS_L1HDR(hdr)) {
2103 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
2104 hdr->b_l1hdr.b_datacnt > 0);
2105 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2106 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2107 }
2108 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2109 ASSERT(!HDR_IN_HASH_TABLE(hdr));
2110
2111 if (HDR_HAS_L2HDR(hdr)) {
2112 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2113 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
2114
2115 if (!buflist_held)
2116 mutex_enter(&dev->l2ad_mtx);
2117
2118 /*
2119 * Even though we checked this conditional above, we
2120 * need to check this again now that we have the
2121 * l2ad_mtx. This is because we could be racing with
2122 * another thread calling l2arc_evict() which might have
2123 * destroyed this header's L2 portion as we were waiting
2124 * to acquire the l2ad_mtx. If that happens, we don't
2125 * want to re-destroy the header's L2 portion.
2126 */
2127 if (HDR_HAS_L2HDR(hdr))
2128 arc_hdr_l2hdr_destroy(hdr);
2129
2130 if (!buflist_held)
2131 mutex_exit(&dev->l2ad_mtx);
2132 }
2133
2134 if (!BUF_EMPTY(hdr))
2135 buf_discard_identity(hdr);
2136
2137 if (hdr->b_freeze_cksum != NULL) {
2138 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2139 hdr->b_freeze_cksum = NULL;
2140 }
2141
2142 if (HDR_HAS_L1HDR(hdr)) {
2143 while (hdr->b_l1hdr.b_buf) {
2144 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2145
2146 if (buf->b_efunc != NULL) {
2147 mutex_enter(&arc_user_evicts_lock);
2148 mutex_enter(&buf->b_evict_lock);
2149 ASSERT(buf->b_hdr != NULL);
2150 arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
2151 hdr->b_l1hdr.b_buf = buf->b_next;
2152 buf->b_hdr = &arc_eviction_hdr;
2153 buf->b_next = arc_eviction_list;
2154 arc_eviction_list = buf;
2155 mutex_exit(&buf->b_evict_lock);
2156 cv_signal(&arc_user_evicts_cv);
2157 mutex_exit(&arc_user_evicts_lock);
2158 } else {
2159 arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
2160 }
2161 }
2162 }
2163
2164 ASSERT3P(hdr->b_hash_next, ==, NULL);
2165 if (HDR_HAS_L1HDR(hdr)) {
2166 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2167 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
2168 kmem_cache_free(hdr_full_cache, hdr);
2169 } else {
2170 kmem_cache_free(hdr_l2only_cache, hdr);
2171 }
2172}
2173
2174void
2175arc_buf_free(arc_buf_t *buf, void *tag)
2176{
2177 arc_buf_hdr_t *hdr = buf->b_hdr;
2178 int hashed = hdr->b_l1hdr.b_state != arc_anon;
2179
2180 ASSERT(buf->b_efunc == NULL);
2181 ASSERT(buf->b_data != NULL);
2182
2183 if (hashed) {
2184 kmutex_t *hash_lock = HDR_LOCK(hdr);
2185
2186 mutex_enter(hash_lock);
2187 hdr = buf->b_hdr;
2188 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2189
2190 (void) remove_reference(hdr, hash_lock, tag);
2191 if (hdr->b_l1hdr.b_datacnt > 1) {
2192 arc_buf_destroy(buf, TRUE);
2193 } else {
2194 ASSERT(buf == hdr->b_l1hdr.b_buf);
2195 ASSERT(buf->b_efunc == NULL);
2196 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2197 }
2198 mutex_exit(hash_lock);
2199 } else if (HDR_IO_IN_PROGRESS(hdr)) {
2200 int destroy_hdr;
2201 /*
2202 * We are in the middle of an async write. Don't destroy
2203 * this buffer unless the write completes before we finish
2204 * decrementing the reference count.
2205 */
2206 mutex_enter(&arc_user_evicts_lock);
2207 (void) remove_reference(hdr, NULL, tag);
2208 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2209 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
2210 mutex_exit(&arc_user_evicts_lock);
2211 if (destroy_hdr)
2212 arc_hdr_destroy(hdr);
2213 } else {
2214 if (remove_reference(hdr, NULL, tag) > 0)
2215 arc_buf_destroy(buf, TRUE);
2216 else
2217 arc_hdr_destroy(hdr);
2218 }
2219}
2220
2221boolean_t
2222arc_buf_remove_ref(arc_buf_t *buf, void* tag)
2223{
2224 arc_buf_hdr_t *hdr = buf->b_hdr;
2225 kmutex_t *hash_lock = HDR_LOCK(hdr);
2226 boolean_t no_callback = (buf->b_efunc == NULL);
2227
2228 if (hdr->b_l1hdr.b_state == arc_anon) {
2229 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2230 arc_buf_free(buf, tag);
2231 return (no_callback);
2232 }
2233
2234 mutex_enter(hash_lock);
2235 hdr = buf->b_hdr;
2236 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
2237 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2238 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2239 ASSERT(buf->b_data != NULL);
2240
2241 (void) remove_reference(hdr, hash_lock, tag);
2242 if (hdr->b_l1hdr.b_datacnt > 1) {
2243 if (no_callback)
2244 arc_buf_destroy(buf, TRUE);
2245 } else if (no_callback) {
2246 ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
2247 ASSERT(buf->b_efunc == NULL);
2248 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2249 }
2250 ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
2251 refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2252 mutex_exit(hash_lock);
2253 return (no_callback);
2254}
2255
2256uint64_t
2257arc_buf_size(arc_buf_t *buf)
2258{
2259 return (buf->b_hdr->b_size);
2260}
2261
2262/*
2263 * Called from the DMU to determine if the current buffer should be
2264 * evicted. In order to ensure proper locking, the eviction must be initiated
2265 * from the DMU. Return true if the buffer is associated with user data and
2266 * duplicate buffers still exist.
2267 */
2268boolean_t
2269arc_buf_eviction_needed(arc_buf_t *buf)
2270{
2271 arc_buf_hdr_t *hdr;
2272 boolean_t evict_needed = B_FALSE;
2273
2274 if (zfs_disable_dup_eviction)
2275 return (B_FALSE);
2276
2277 mutex_enter(&buf->b_evict_lock);
2278 hdr = buf->b_hdr;
2279 if (hdr == NULL) {
2280 /*
2281 * We are in arc_do_user_evicts(); let that function
2282 * perform the eviction.
2283 */
2284 ASSERT(buf->b_data == NULL);
2285 mutex_exit(&buf->b_evict_lock);
2286 return (B_FALSE);
2287 } else if (buf->b_data == NULL) {
2288 /*
2289 * We have already been added to the arc eviction list;
2290 * recommend eviction.
2291 */
2292 ASSERT3P(hdr, ==, &arc_eviction_hdr);
2293 mutex_exit(&buf->b_evict_lock);
2294 return (B_TRUE);
2295 }
2296
2297 if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
2298 evict_needed = B_TRUE;
2299
2300 mutex_exit(&buf->b_evict_lock);
2301 return (evict_needed);
2302}
2303
2304/*
2305 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
2306 * state of the header is dependent on its state prior to entering this
2307 * function. The following transitions are possible:
2308 *
2309 * - arc_mru -> arc_mru_ghost
2310 * - arc_mfu -> arc_mfu_ghost
2311 * - arc_mru_ghost -> arc_l2c_only
2312 * - arc_mru_ghost -> deleted
2313 * - arc_mfu_ghost -> arc_l2c_only
2314 * - arc_mfu_ghost -> deleted
2315 */
2316static int64_t
2317arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
2318{
2319 arc_state_t *evicted_state, *state;
2320 int64_t bytes_evicted = 0;
2321
2322 ASSERT(MUTEX_HELD(hash_lock));
2323 ASSERT(HDR_HAS_L1HDR(hdr));
2324
2325 state = hdr->b_l1hdr.b_state;
2326 if (GHOST_STATE(state)) {
2327 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2328 ASSERT(hdr->b_l1hdr.b_buf == NULL);
2329
2330 /*
2331 * l2arc_write_buffers() relies on a header's L1 portion
2332 * (i.e. its b_tmp_cdata field) during its write phase.
2333 * Thus, we cannot push a header onto the arc_l2c_only
2334 * state (removing its L1 piece) until the header is
2335 * done being written to the l2arc.
2336 */
2337 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
2338 ARCSTAT_BUMP(arcstat_evict_l2_skip);
2339 return (bytes_evicted);
2340 }
2341
2342 ARCSTAT_BUMP(arcstat_deleted);
2343 bytes_evicted += hdr->b_size;
2344
2345 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
2346
2347 if (HDR_HAS_L2HDR(hdr)) {
2348 /*
2349 * This buffer is cached on the 2nd Level ARC;
2350 * don't destroy the header.
2351 */
2352 arc_change_state(arc_l2c_only, hdr, hash_lock);
2353 /*
2354 * dropping from L1+L2 cached to L2-only,
2355 * realloc to remove the L1 header.
2356 */
2357 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2358 hdr_l2only_cache);
2359 } else {
2360 arc_change_state(arc_anon, hdr, hash_lock);
2361 arc_hdr_destroy(hdr);
2362 }
2363 return (bytes_evicted);
2364 }
2365
2366 ASSERT(state == arc_mru || state == arc_mfu);
2367 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2368
2369 /* prefetch buffers have a minimum lifespan */
2370 if (HDR_IO_IN_PROGRESS(hdr) ||
2371 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2372 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2373 arc_min_prefetch_lifespan)) {
2374 ARCSTAT_BUMP(arcstat_evict_skip);
2375 return (bytes_evicted);
2376 }
2377
2378 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2379 ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2380 while (hdr->b_l1hdr.b_buf) {
2381 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2382 if (!mutex_tryenter(&buf->b_evict_lock)) {
2383 ARCSTAT_BUMP(arcstat_mutex_miss);
2384 break;
2385 }
2386 if (buf->b_data != NULL)
2387 bytes_evicted += hdr->b_size;
2388 if (buf->b_efunc != NULL) {
2389 mutex_enter(&arc_user_evicts_lock);
2390 arc_buf_destroy(buf, FALSE);
2391 hdr->b_l1hdr.b_buf = buf->b_next;
2392 buf->b_hdr = &arc_eviction_hdr;
2393 buf->b_next = arc_eviction_list;
2394 arc_eviction_list = buf;
2395 cv_signal(&arc_user_evicts_cv);
2396 mutex_exit(&arc_user_evicts_lock);
2397 mutex_exit(&buf->b_evict_lock);
2398 } else {
2399 mutex_exit(&buf->b_evict_lock);
2400 arc_buf_destroy(buf, TRUE);
2401 }
2402 }
2403
2404 if (HDR_HAS_L2HDR(hdr)) {
2405 ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
2406 } else {
2407 if (l2arc_write_eligible(hdr->b_spa, hdr))
2408 ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
2409 else
2410 ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
2411 }
2412
2413 if (hdr->b_l1hdr.b_datacnt == 0) {
2414 arc_change_state(evicted_state, hdr, hash_lock);
2415 ASSERT(HDR_IN_HASH_TABLE(hdr));
2416 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2417 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2418 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2419 }
2420
2421 return (bytes_evicted);
2422}
2423
2424static uint64_t
2425arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
2426 uint64_t spa, int64_t bytes)
2427{
2428 multilist_sublist_t *mls;
2429 uint64_t bytes_evicted = 0;
2430 arc_buf_hdr_t *hdr;
2431 kmutex_t *hash_lock;
2432 int evict_count = 0;
2433
2434 ASSERT3P(marker, !=, NULL);
2435 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2436
2437 mls = multilist_sublist_lock(ml, idx);
2438
2439 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
2440 hdr = multilist_sublist_prev(mls, marker)) {
2441 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
2442 (evict_count >= zfs_arc_evict_batch_limit))
2443 break;
2444
2445 /*
2446 * To keep our iteration location, move the marker
2447 * forward. Since we're not holding hdr's hash lock, we
2448 * must be very careful and not remove 'hdr' from the
2449 * sublist. Otherwise, other consumers might mistake the
2450 * 'hdr' as not being on a sublist when they call the
2451 * multilist_link_active() function (they all rely on
2452 * the hash lock protecting concurrent insertions and
2453 * removals). multilist_sublist_move_forward() was
2454 * specifically implemented to ensure this is the case
2455 * (only 'marker' will be removed and re-inserted).
2456 */
2457 multilist_sublist_move_forward(mls, marker);
2458
2459 /*
2460 * The only case where the b_spa field should ever be
2461 * zero, is the marker headers inserted by
2462 * arc_evict_state(). It's possible for multiple threads
2463 * to be calling arc_evict_state() concurrently (e.g.
2464 * dsl_pool_close() and zio_inject_fault()), so we must
2465 * skip any markers we see from these other threads.
2466 */
2467 if (hdr->b_spa == 0)
2468 continue;
2469
2470 /* we're only interested in evicting buffers of a certain spa */
2471 if (spa != 0 && hdr->b_spa != spa) {
2472 ARCSTAT_BUMP(arcstat_evict_skip);
2473 continue;
2474 }
2475
2476 hash_lock = HDR_LOCK(hdr);
2477
2478 /*
2479 * We aren't calling this function from any code path
2480 * that would already be holding a hash lock, so we're
2481 * asserting on this assumption to be defensive in case
2482 * this ever changes. Without this check, it would be
2483 * possible to incorrectly increment arcstat_mutex_miss
2484 * below (e.g. if the code changed such that we called
2485 * this function with a hash lock held).
2486 */
2487 ASSERT(!MUTEX_HELD(hash_lock));
2488
2489 if (mutex_tryenter(hash_lock)) {
2490 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
2491 mutex_exit(hash_lock);
2492
2493 bytes_evicted += evicted;
2494
2495 /*
2496 * If evicted is zero, arc_evict_hdr() must have
2497 * decided to skip this header, don't increment
2498 * evict_count in this case.
2499 */
2500 if (evicted != 0)
2501 evict_count++;
2502
2503 /*
2504 * If arc_size isn't overflowing, signal any
2505 * threads that might happen to be waiting.
2506 *
2507 * For each header evicted, we wake up a single
2508 * thread. If we used cv_broadcast, we could
2509 * wake up "too many" threads causing arc_size
2510 * to significantly overflow arc_c; since
2511 * arc_get_data_buf() doesn't check for overflow
2512 * when it's woken up (it doesn't because it's
2513 * possible for the ARC to be overflowing while
2514 * full of un-evictable buffers, and the
2515 * function should proceed in this case).
2516 *
2517 * If threads are left sleeping, due to not
2518 * using cv_broadcast, they will be woken up
2519 * just before arc_reclaim_thread() sleeps.
2520 */
2521 mutex_enter(&arc_reclaim_lock);
2522 if (!arc_is_overflowing())
2523 cv_signal(&arc_reclaim_waiters_cv);
2524 mutex_exit(&arc_reclaim_lock);
2525 } else {
2526 ARCSTAT_BUMP(arcstat_mutex_miss);
2527 }
2528 }
2529
2530 multilist_sublist_unlock(mls);
2531
2532 return (bytes_evicted);
2533}
2534
2535/*
2536 * Evict buffers from the given arc state, until we've removed the
2537 * specified number of bytes. Move the removed buffers to the
2538 * appropriate evict state.
2539 *
2540 * This function makes a "best effort". It skips over any buffers
2541 * it can't get a hash_lock on, and so, may not catch all candidates.
2542 * It may also return without evicting as much space as requested.
2543 *
2544 * If bytes is specified using the special value ARC_EVICT_ALL, this
2545 * will evict all available (i.e. unlocked and evictable) buffers from
2546 * the given arc state; which is used by arc_flush().
2547 */
2548static uint64_t
2549arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
2550 arc_buf_contents_t type)
2551{
2552 uint64_t total_evicted = 0;
2553 multilist_t *ml = &state->arcs_list[type];
2554 int num_sublists;
2555 arc_buf_hdr_t **markers;
2556 int i;
2557
2558 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2559
2560 num_sublists = multilist_get_num_sublists(ml);
2561
2562 /*
2563 * If we've tried to evict from each sublist, made some
2564 * progress, but still have not hit the target number of bytes
2565 * to evict, we want to keep trying. The markers allow us to
2566 * pick up where we left off for each individual sublist, rather
2567 * than starting from the tail each time.
2568 */
2569 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
2570 for (i = 0; i < num_sublists; i++) {
2571 multilist_sublist_t *mls;
2572
2573 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
2574
2575 /*
2576 * A b_spa of 0 is used to indicate that this header is
2577 * a marker. This fact is used in arc_adjust_type() and
2578 * arc_evict_state_impl().
2579 */
2580 markers[i]->b_spa = 0;
2581
2582 mls = multilist_sublist_lock(ml, i);
2583 multilist_sublist_insert_tail(mls, markers[i]);
2584 multilist_sublist_unlock(mls);
2585 }
2586
2587 /*
2588 * While we haven't hit our target number of bytes to evict, or
2589 * we're evicting all available buffers.
2590 */
2591 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
2592 /*
2593 * Start eviction using a randomly selected sublist,
2594 * this is to try and evenly balance eviction across all
2595 * sublists. Always starting at the same sublist
2596 * (e.g. index 0) would cause evictions to favor certain
2597 * sublists over others.
2598 */
2599 int sublist_idx = multilist_get_random_index(ml);
2600 uint64_t scan_evicted = 0;
2601
2602 for (i = 0; i < num_sublists; i++) {
2603 uint64_t bytes_remaining;
2604 uint64_t bytes_evicted;
2605
2606 if (bytes == ARC_EVICT_ALL)
2607 bytes_remaining = ARC_EVICT_ALL;
2608 else if (total_evicted < bytes)
2609 bytes_remaining = bytes - total_evicted;
2610 else
2611 break;
2612
2613 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
2614 markers[sublist_idx], spa, bytes_remaining);
2615
2616 scan_evicted += bytes_evicted;
2617 total_evicted += bytes_evicted;
2618
2619 /* we've reached the end, wrap to the beginning */
2620 if (++sublist_idx >= num_sublists)
2621 sublist_idx = 0;
2622 }
2623
2624 /*
2625 * If we didn't evict anything during this scan, we have
2626 * no reason to believe we'll evict more during another
2627 * scan, so break the loop.
2628 */
2629 if (scan_evicted == 0) {
2630 /* This isn't possible, let's make that obvious */
2631 ASSERT3S(bytes, !=, 0);
2632
2633 /*
2634 * When bytes is ARC_EVICT_ALL, the only way to
2635 * break the loop is when scan_evicted is zero.
2636 * In that case, we actually have evicted enough,
2637 * so we don't want to increment the kstat.
2638 */
2639 if (bytes != ARC_EVICT_ALL) {
2640 ASSERT3S(total_evicted, <, bytes);
2641 ARCSTAT_BUMP(arcstat_evict_not_enough);
2642 }
2643
2644 break;
2645 }
2646 }
2647
2648 for (i = 0; i < num_sublists; i++) {
2649 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2650 multilist_sublist_remove(mls, markers[i]);
2651 multilist_sublist_unlock(mls);
2652
2653 kmem_cache_free(hdr_full_cache, markers[i]);
2654 }
2655 kmem_free(markers, sizeof (*markers) * num_sublists);
2656
2657 return (total_evicted);
2658}
2659
2660/*
2661 * Flush all "evictable" data of the given type from the arc state
2662 * specified. This will not evict any "active" buffers (i.e. referenced).
2663 *
2664 * When 'retry' is set to FALSE, the function will make a single pass
2665 * over the state and evict any buffers that it can. Since it doesn't
2666 * continually retry the eviction, it might end up leaving some buffers
2667 * in the ARC due to lock misses.
2668 *
2669 * When 'retry' is set to TRUE, the function will continually retry the
2670 * eviction until *all* evictable buffers have been removed from the
2671 * state. As a result, if concurrent insertions into the state are
2672 * allowed (e.g. if the ARC isn't shutting down), this function might
2673 * wind up in an infinite loop, continually trying to evict buffers.
2674 */
2675static uint64_t
2676arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
2677 boolean_t retry)
2678{
2679 uint64_t evicted = 0;
2680
2681 while (state->arcs_lsize[type] != 0) {
2682 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
2683
2684 if (!retry)
2685 break;
2686 }
2687
2688 return (evicted);
2689}
2690
2691/*
2692 * Helper function for arc_prune_async() it is responsible for safely
2693 * handling the execution of a registered arc_prune_func_t.
2694 */
2695static void
2696arc_prune_task(void *ptr)
2697{
2698 arc_prune_t *ap = (arc_prune_t *)ptr;
2699 arc_prune_func_t *func = ap->p_pfunc;
2700
2701 if (func != NULL)
2702 func(ap->p_adjust, ap->p_private);
2703
2704 refcount_remove(&ap->p_refcnt, func);
2705}
2706
2707/*
2708 * Notify registered consumers they must drop holds on a portion of the ARC
2709 * buffered they reference. This provides a mechanism to ensure the ARC can
2710 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
2711 * is analogous to dnlc_reduce_cache() but more generic.
2712 *
2713 * This operation is performed asynchronously so it may be safely called
2714 * in the context of the arc_reclaim_thread(). A reference is taken here
2715 * for each registered arc_prune_t and the arc_prune_task() is responsible
2716 * for releasing it once the registered arc_prune_func_t has completed.
2717 */
2718static void
2719arc_prune_async(int64_t adjust)
2720{
2721 arc_prune_t *ap;
2722
2723 mutex_enter(&arc_prune_mtx);
2724 for (ap = list_head(&arc_prune_list); ap != NULL;
2725 ap = list_next(&arc_prune_list, ap)) {
2726
2727 if (refcount_count(&ap->p_refcnt) >= 2)
2728 continue;
2729
2730 refcount_add(&ap->p_refcnt, ap->p_pfunc);
2731 ap->p_adjust = adjust;
2732 taskq_dispatch(arc_prune_taskq, arc_prune_task, ap, TQ_SLEEP);
2733 ARCSTAT_BUMP(arcstat_prune);
2734 }
2735 mutex_exit(&arc_prune_mtx);
2736}
2737
2738/*
2739 * Evict the specified number of bytes from the state specified,
2740 * restricting eviction to the spa and type given. This function
2741 * prevents us from trying to evict more from a state's list than
2742 * is "evictable", and to skip evicting altogether when passed a
2743 * negative value for "bytes". In contrast, arc_evict_state() will
2744 * evict everything it can, when passed a negative value for "bytes".
2745 */
2746static uint64_t
2747arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
2748 arc_buf_contents_t type)
2749{
2750 int64_t delta;
2751
2752 if (bytes > 0 && state->arcs_lsize[type] > 0) {
2753 delta = MIN(state->arcs_lsize[type], bytes);
2754 return (arc_evict_state(state, spa, delta, type));
2755 }
2756
2757 return (0);
2758}
2759
2760/*
2761 * The goal of this function is to evict enough meta data buffers from the
2762 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
2763 * more complicated than it appears because it is common for data buffers
2764 * to have holds on meta data buffers. In addition, dnode meta data buffers
2765 * will be held by the dnodes in the block preventing them from being freed.
2766 * This means we can't simply traverse the ARC and expect to always find
2767 * enough unheld meta data buffer to release.
2768 *
2769 * Therefore, this function has been updated to make alternating passes
2770 * over the ARC releasing data buffers and then newly unheld meta data
2771 * buffers. This ensures forward progress is maintained and arc_meta_used
2772 * will decrease. Normally this is sufficient, but if required the ARC
2773 * will call the registered prune callbacks causing dentry and inodes to
2774 * be dropped from the VFS cache. This will make dnode meta data buffers
2775 * available for reclaim.
2776 */
2777static uint64_t
2778arc_adjust_meta_balanced(void)
2779{
2780 int64_t adjustmnt, delta, prune = 0;
2781 uint64_t total_evicted = 0;
2782 arc_buf_contents_t type = ARC_BUFC_DATA;
2783 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
2784
2785restart:
2786 /*
2787 * This slightly differs than the way we evict from the mru in
2788 * arc_adjust because we don't have a "target" value (i.e. no
2789 * "meta" arc_p). As a result, I think we can completely
2790 * cannibalize the metadata in the MRU before we evict the
2791 * metadata from the MFU. I think we probably need to implement a
2792 * "metadata arc_p" value to do this properly.
2793 */
2794 adjustmnt = arc_meta_used - arc_meta_limit;
2795
2796 if (adjustmnt > 0 && arc_mru->arcs_lsize[type] > 0) {
2797 delta = MIN(arc_mru->arcs_lsize[type], adjustmnt);
2798 total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
2799 adjustmnt -= delta;
2800 }
2801
2802 /*
2803 * We can't afford to recalculate adjustmnt here. If we do,
2804 * new metadata buffers can sneak into the MRU or ANON lists,
2805 * thus penalize the MFU metadata. Although the fudge factor is
2806 * small, it has been empirically shown to be significant for
2807 * certain workloads (e.g. creating many empty directories). As
2808 * such, we use the original calculation for adjustmnt, and
2809 * simply decrement the amount of data evicted from the MRU.
2810 */
2811
2812 if (adjustmnt > 0 && arc_mfu->arcs_lsize[type] > 0) {
2813 delta = MIN(arc_mfu->arcs_lsize[type], adjustmnt);
2814 total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
2815 }
2816
2817 adjustmnt = arc_meta_used - arc_meta_limit;
2818
2819 if (adjustmnt > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
2820 delta = MIN(adjustmnt,
2821 arc_mru_ghost->arcs_lsize[type]);
2822 total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
2823 adjustmnt -= delta;
2824 }
2825
2826 if (adjustmnt > 0 && arc_mfu_ghost->arcs_lsize[type] > 0) {
2827 delta = MIN(adjustmnt,
2828 arc_mfu_ghost->arcs_lsize[type]);
2829 total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
2830 }
2831
2832 /*
2833 * If after attempting to make the requested adjustment to the ARC
2834 * the meta limit is still being exceeded then request that the
2835 * higher layers drop some cached objects which have holds on ARC
2836 * meta buffers. Requests to the upper layers will be made with
2837 * increasingly large scan sizes until the ARC is below the limit.
2838 */
2839 if (arc_meta_used > arc_meta_limit) {
2840 if (type == ARC_BUFC_DATA) {
2841 type = ARC_BUFC_METADATA;
2842 } else {
2843 type = ARC_BUFC_DATA;
2844
2845 if (zfs_arc_meta_prune) {
2846 prune += zfs_arc_meta_prune;
2847 arc_prune_async(prune);
2848 }
2849 }
2850
2851 if (restarts > 0) {
2852 restarts--;
2853 goto restart;
2854 }
2855 }
2856 return (total_evicted);
2857}
2858
2859/*
2860 * Evict metadata buffers from the cache, such that arc_meta_used is
2861 * capped by the arc_meta_limit tunable.
2862 */
2863static uint64_t
2864arc_adjust_meta_only(void)
2865{
2866 uint64_t total_evicted = 0;
2867 int64_t target;
2868
2869 /*
2870 * If we're over the meta limit, we want to evict enough
2871 * metadata to get back under the meta limit. We don't want to
2872 * evict so much that we drop the MRU below arc_p, though. If
2873 * we're over the meta limit more than we're over arc_p, we
2874 * evict some from the MRU here, and some from the MFU below.
2875 */
2876 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
2877 (int64_t)(refcount_count(&arc_anon->arcs_size) +
2878 refcount_count(&arc_mru->arcs_size) - arc_p));
2879
2880 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2881
2882 /*
2883 * Similar to the above, we want to evict enough bytes to get us
2884 * below the meta limit, but not so much as to drop us below the
2885 * space alloted to the MFU (which is defined as arc_c - arc_p).
2886 */
2887 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
2888 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
2889
2890 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
2891
2892 return (total_evicted);
2893}
2894
2895static uint64_t
2896arc_adjust_meta(void)
2897{
2898 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
2899 return (arc_adjust_meta_only());
2900 else
2901 return (arc_adjust_meta_balanced());
2902}
2903
2904/*
2905 * Return the type of the oldest buffer in the given arc state
2906 *
2907 * This function will select a random sublist of type ARC_BUFC_DATA and
2908 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
2909 * is compared, and the type which contains the "older" buffer will be
2910 * returned.
2911 */
2912static arc_buf_contents_t
2913arc_adjust_type(arc_state_t *state)
2914{
2915 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
2916 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
2917 int data_idx = multilist_get_random_index(data_ml);
2918 int meta_idx = multilist_get_random_index(meta_ml);
2919 multilist_sublist_t *data_mls;
2920 multilist_sublist_t *meta_mls;
2921 arc_buf_contents_t type;
2922 arc_buf_hdr_t *data_hdr;
2923 arc_buf_hdr_t *meta_hdr;
2924
2925 /*
2926 * We keep the sublist lock until we're finished, to prevent
2927 * the headers from being destroyed via arc_evict_state().
2928 */
2929 data_mls = multilist_sublist_lock(data_ml, data_idx);
2930 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
2931
2932 /*
2933 * These two loops are to ensure we skip any markers that
2934 * might be at the tail of the lists due to arc_evict_state().
2935 */
2936
2937 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
2938 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
2939 if (data_hdr->b_spa != 0)
2940 break;
2941 }
2942
2943 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
2944 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
2945 if (meta_hdr->b_spa != 0)
2946 break;
2947 }
2948
2949 if (data_hdr == NULL && meta_hdr == NULL) {
2950 type = ARC_BUFC_DATA;
2951 } else if (data_hdr == NULL) {
2952 ASSERT3P(meta_hdr, !=, NULL);
2953 type = ARC_BUFC_METADATA;
2954 } else if (meta_hdr == NULL) {
2955 ASSERT3P(data_hdr, !=, NULL);
2956 type = ARC_BUFC_DATA;
2957 } else {
2958 ASSERT3P(data_hdr, !=, NULL);
2959 ASSERT3P(meta_hdr, !=, NULL);
2960
2961 /* The headers can't be on the sublist without an L1 header */
2962 ASSERT(HDR_HAS_L1HDR(data_hdr));
2963 ASSERT(HDR_HAS_L1HDR(meta_hdr));
2964
2965 if (data_hdr->b_l1hdr.b_arc_access <
2966 meta_hdr->b_l1hdr.b_arc_access) {
2967 type = ARC_BUFC_DATA;
2968 } else {
2969 type = ARC_BUFC_METADATA;
2970 }
2971 }
2972
2973 multilist_sublist_unlock(meta_mls);
2974 multilist_sublist_unlock(data_mls);
2975
2976 return (type);
2977}
2978
2979/*
2980 * Evict buffers from the cache, such that arc_size is capped by arc_c.
2981 */
2982static uint64_t
2983arc_adjust(void)
2984{
2985 uint64_t total_evicted = 0;
2986 uint64_t bytes;
2987 int64_t target;
2988
2989 /*
2990 * If we're over arc_meta_limit, we want to correct that before
2991 * potentially evicting data buffers below.
2992 */
2993 total_evicted += arc_adjust_meta();
2994
2995 /*
2996 * Adjust MRU size
2997 *
2998 * If we're over the target cache size, we want to evict enough
2999 * from the list to get back to our target size. We don't want
3000 * to evict too much from the MRU, such that it drops below
3001 * arc_p. So, if we're over our target cache size more than
3002 * the MRU is over arc_p, we'll evict enough to get back to
3003 * arc_p here, and then evict more from the MFU below.
3004 */
3005 target = MIN((int64_t)(arc_size - arc_c),
3006 (int64_t)(refcount_count(&arc_anon->arcs_size) +
3007 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3008
3009 /*
3010 * If we're below arc_meta_min, always prefer to evict data.
3011 * Otherwise, try to satisfy the requested number of bytes to
3012 * evict from the type which contains older buffers; in an
3013 * effort to keep newer buffers in the cache regardless of their
3014 * type. If we cannot satisfy the number of bytes from this
3015 * type, spill over into the next type.
3016 */
3017 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3018 arc_meta_used > arc_meta_min) {
3019 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3020 total_evicted += bytes;
3021
3022 /*
3023 * If we couldn't evict our target number of bytes from
3024 * metadata, we try to get the rest from data.
3025 */
3026 target -= bytes;
3027
3028 total_evicted +=
3029 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3030 } else {
3031 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3032 total_evicted += bytes;
3033
3034 /*
3035 * If we couldn't evict our target number of bytes from
3036 * data, we try to get the rest from metadata.
3037 */
3038 target -= bytes;
3039
3040 total_evicted +=
3041 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3042 }
3043
3044 /*
3045 * Adjust MFU size
3046 *
3047 * Now that we've tried to evict enough from the MRU to get its
3048 * size back to arc_p, if we're still above the target cache
3049 * size, we evict the rest from the MFU.
3050 */
3051 target = arc_size - arc_c;
3052
3053 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3054 arc_meta_used > arc_meta_min) {
3055 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3056 total_evicted += bytes;
3057
3058 /*
3059 * If we couldn't evict our target number of bytes from
3060 * metadata, we try to get the rest from data.
3061 */
3062 target -= bytes;
3063
3064 total_evicted +=
3065 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3066 } else {
3067 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3068 total_evicted += bytes;
3069
3070 /*
3071 * If we couldn't evict our target number of bytes from
3072 * data, we try to get the rest from data.
3073 */
3074 target -= bytes;
3075
3076 total_evicted +=
3077 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3078 }
3079
3080 /*
3081 * Adjust ghost lists
3082 *
3083 * In addition to the above, the ARC also defines target values
3084 * for the ghost lists. The sum of the mru list and mru ghost
3085 * list should never exceed the target size of the cache, and
3086 * the sum of the mru list, mfu list, mru ghost list, and mfu
3087 * ghost list should never exceed twice the target size of the
3088 * cache. The following logic enforces these limits on the ghost
3089 * caches, and evicts from them as needed.
3090 */
3091 target = refcount_count(&arc_mru->arcs_size) +
3092 refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3093
3094 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3095 total_evicted += bytes;
3096
3097 target -= bytes;
3098
3099 total_evicted +=
3100 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3101
3102 /*
3103 * We assume the sum of the mru list and mfu list is less than
3104 * or equal to arc_c (we enforced this above), which means we
3105 * can use the simpler of the two equations below:
3106 *
3107 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3108 * mru ghost + mfu ghost <= arc_c
3109 */
3110 target = refcount_count(&arc_mru_ghost->arcs_size) +
3111 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3112
3113 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3114 total_evicted += bytes;
3115
3116 target -= bytes;
3117
3118 total_evicted +=
3119 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3120
3121 return (total_evicted);
3122}
3123
3124static void
3125arc_do_user_evicts(void)
3126{
3127 mutex_enter(&arc_user_evicts_lock);
3128 while (arc_eviction_list != NULL) {
3129 arc_buf_t *buf = arc_eviction_list;
3130 arc_eviction_list = buf->b_next;
3131 mutex_enter(&buf->b_evict_lock);
3132 buf->b_hdr = NULL;
3133 mutex_exit(&buf->b_evict_lock);
3134 mutex_exit(&arc_user_evicts_lock);
3135
3136 if (buf->b_efunc != NULL)
3137 VERIFY0(buf->b_efunc(buf->b_private));
3138
3139 buf->b_efunc = NULL;
3140 buf->b_private = NULL;
3141 kmem_cache_free(buf_cache, buf);
3142 mutex_enter(&arc_user_evicts_lock);
3143 }
3144 mutex_exit(&arc_user_evicts_lock);
3145}
3146
3147void
3148arc_flush(spa_t *spa, boolean_t retry)
3149{
3150 uint64_t guid = 0;
3151
3152 /*
3153 * If retry is TRUE, a spa must not be specified since we have
3154 * no good way to determine if all of a spa's buffers have been
3155 * evicted from an arc state.
3156 */
3157 ASSERT(!retry || spa == 0);
3158
3159 if (spa != NULL)
3160 guid = spa_load_guid(spa);
3161
3162 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3163 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3164
3165 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3166 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3167
3168 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3169 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3170
3171 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3172 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3173
3174 arc_do_user_evicts();
3175 ASSERT(spa || arc_eviction_list == NULL);
3176}
3177
3178void
3179arc_shrink(int64_t to_free)
3180{
3181 uint64_t c = arc_c;
3182
3183 if (c > to_free && c - to_free > arc_c_min) {
3184 arc_c = c - to_free;
3185 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3186 if (arc_c > arc_size)
3187 arc_c = MAX(arc_size, arc_c_min);
3188 if (arc_p > arc_c)
3189 arc_p = (arc_c >> 1);
3190 ASSERT(arc_c >= arc_c_min);
3191 ASSERT((int64_t)arc_p >= 0);
3192 } else {
3193 arc_c = arc_c_min;
3194 }
3195
3196 if (arc_size > arc_c)
3197 (void) arc_adjust();
3198}
3199
3200typedef enum free_memory_reason_t {
3201 FMR_UNKNOWN,
3202 FMR_NEEDFREE,
3203 FMR_LOTSFREE,
3204 FMR_SWAPFS_MINFREE,
3205 FMR_PAGES_PP_MAXIMUM,
3206 FMR_HEAP_ARENA,
3207 FMR_ZIO_ARENA,
3208} free_memory_reason_t;
3209
3210int64_t last_free_memory;
3211free_memory_reason_t last_free_reason;
3212
3213#ifdef _KERNEL
3214/*
3215 * Additional reserve of pages for pp_reserve.
3216 */
3217int64_t arc_pages_pp_reserve = 64;
3218
3219/*
3220 * Additional reserve of pages for swapfs.
3221 */
3222int64_t arc_swapfs_reserve = 64;
3223#endif /* _KERNEL */
3224
3225/*
3226 * Return the amount of memory that can be consumed before reclaim will be
3227 * needed. Positive if there is sufficient free memory, negative indicates
3228 * the amount of memory that needs to be freed up.
3229 */
3230static int64_t
3231arc_available_memory(void)
3232{
3233 int64_t lowest = INT64_MAX;
3234 free_memory_reason_t r = FMR_UNKNOWN;
3235#ifdef _KERNEL
3236 int64_t n;
3237#ifdef __linux__
3238 pgcnt_t needfree = btop(arc_need_free);
3239 pgcnt_t lotsfree = btop(arc_sys_free);
3240 pgcnt_t desfree = 0;
3241#endif
3242
3243 if (needfree > 0) {
3244 n = PAGESIZE * (-needfree);
3245 if (n < lowest) {
3246 lowest = n;
3247 r = FMR_NEEDFREE;
3248 }
3249 }
3250
3251 /*
3252 * check that we're out of range of the pageout scanner. It starts to
3253 * schedule paging if freemem is less than lotsfree and needfree.
3254 * lotsfree is the high-water mark for pageout, and needfree is the
3255 * number of needed free pages. We add extra pages here to make sure
3256 * the scanner doesn't start up while we're freeing memory.
3257 */
3258 n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3259 if (n < lowest) {
3260 lowest = n;
3261 r = FMR_LOTSFREE;
3262 }
3263
3264#ifndef __linux__
3265 /*
3266 * check to make sure that swapfs has enough space so that anon
3267 * reservations can still succeed. anon_resvmem() checks that the
3268 * availrmem is greater than swapfs_minfree, and the number of reserved
3269 * swap pages. We also add a bit of extra here just to prevent
3270 * circumstances from getting really dire.
3271 */
3272 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3273 desfree - arc_swapfs_reserve);
3274 if (n < lowest) {
3275 lowest = n;
3276 r = FMR_SWAPFS_MINFREE;
3277 }
3278
3279
3280 /*
3281 * Check that we have enough availrmem that memory locking (e.g., via
3282 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
3283 * stores the number of pages that cannot be locked; when availrmem
3284 * drops below pages_pp_maximum, page locking mechanisms such as
3285 * page_pp_lock() will fail.)
3286 */
3287 n = PAGESIZE * (availrmem - pages_pp_maximum -
3288 arc_pages_pp_reserve);
3289 if (n < lowest) {
3290 lowest = n;
3291 r = FMR_PAGES_PP_MAXIMUM;
3292 }
3293#endif
3294
3295#if defined(__i386)
3296 /*
3297 * If we're on an i386 platform, it's possible that we'll exhaust the
3298 * kernel heap space before we ever run out of available physical
3299 * memory. Most checks of the size of the heap_area compare against
3300 * tune.t_minarmem, which is the minimum available real memory that we
3301 * can have in the system. However, this is generally fixed at 25 pages
3302 * which is so low that it's useless. In this comparison, we seek to
3303 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3304 * heap is allocated. (Or, in the calculation, if less than 1/4th is
3305 * free)
3306 */
3307 n = vmem_size(heap_arena, VMEM_FREE) -
3308 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3309 if (n < lowest) {
3310 lowest = n;
3311 r = FMR_HEAP_ARENA;
3312 }
3313#endif
3314
3315 /*
3316 * If zio data pages are being allocated out of a separate heap segment,
3317 * then enforce that the size of available vmem for this arena remains
3318 * above about 1/16th free.
3319 *
3320 * Note: The 1/16th arena free requirement was put in place
3321 * to aggressively evict memory from the arc in order to avoid
3322 * memory fragmentation issues.
3323 */
3324 if (zio_arena != NULL) {
3325 n = vmem_size(zio_arena, VMEM_FREE) -
3326 (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3327 if (n < lowest) {
3328 lowest = n;
3329 r = FMR_ZIO_ARENA;
3330 }
3331 }
3332#else /* _KERNEL */
3333 /* Every 100 calls, free a small amount */
3334 if (spa_get_random(100) == 0)
3335 lowest = -1024;
3336#endif /* _KERNEL */
3337
3338 last_free_memory = lowest;
3339 last_free_reason = r;
3340
3341 return (lowest);
3342}
3343
3344/*
3345 * Determine if the system is under memory pressure and is asking
3346 * to reclaim memory. A return value of TRUE indicates that the system
3347 * is under memory pressure and that the arc should adjust accordingly.
3348 */
3349static boolean_t
3350arc_reclaim_needed(void)
3351{
3352 return (arc_available_memory() < 0);
3353}
3354
3355static void
3356arc_kmem_reap_now(void)
3357{
3358 size_t i;
3359 kmem_cache_t *prev_cache = NULL;
3360 kmem_cache_t *prev_data_cache = NULL;
3361 extern kmem_cache_t *zio_buf_cache[];
3362 extern kmem_cache_t *zio_data_buf_cache[];
3363 extern kmem_cache_t *range_seg_cache;
3364
3365 if ((arc_meta_used >= arc_meta_limit) && zfs_arc_meta_prune) {
3366 /*
3367 * We are exceeding our meta-data cache limit.
3368 * Prune some entries to release holds on meta-data.
3369 */
3370 arc_prune_async(zfs_arc_meta_prune);
3371 }
3372
3373 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
3374#ifdef _ILP32
3375 /* reach upper limit of cache size on 32-bit */
3376 if (zio_buf_cache[i] == NULL)
3377 break;
3378#endif
3379 if (zio_buf_cache[i] != prev_cache) {
3380 prev_cache = zio_buf_cache[i];
3381 kmem_cache_reap_now(zio_buf_cache[i]);
3382 }
3383 if (zio_data_buf_cache[i] != prev_data_cache) {
3384 prev_data_cache = zio_data_buf_cache[i];
3385 kmem_cache_reap_now(zio_data_buf_cache[i]);
3386 }
3387 }
3388 kmem_cache_reap_now(buf_cache);
3389 kmem_cache_reap_now(hdr_full_cache);
3390 kmem_cache_reap_now(hdr_l2only_cache);
3391 kmem_cache_reap_now(range_seg_cache);
3392
3393 if (zio_arena != NULL) {
3394 /*
3395 * Ask the vmem arena to reclaim unused memory from its
3396 * quantum caches.
3397 */
3398 vmem_qcache_reap(zio_arena);
3399 }
3400}
3401
3402/*
3403 * Threads can block in arc_get_data_buf() waiting for this thread to evict
3404 * enough data and signal them to proceed. When this happens, the threads in
3405 * arc_get_data_buf() are sleeping while holding the hash lock for their
3406 * particular arc header. Thus, we must be careful to never sleep on a
3407 * hash lock in this thread. This is to prevent the following deadlock:
3408 *
3409 * - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
3410 * waiting for the reclaim thread to signal it.
3411 *
3412 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
3413 * fails, and goes to sleep forever.
3414 *
3415 * This possible deadlock is avoided by always acquiring a hash lock
3416 * using mutex_tryenter() from arc_reclaim_thread().
3417 */
3418static void
3419arc_reclaim_thread(void)
3420{
3421 fstrans_cookie_t cookie = spl_fstrans_mark();
3422 clock_t growtime = 0;
3423 callb_cpr_t cpr;
3424
3425 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
3426
3427 mutex_enter(&arc_reclaim_lock);
3428 while (!arc_reclaim_thread_exit) {
3429 int64_t to_free;
3430 int64_t free_memory = arc_available_memory();
3431 uint64_t evicted = 0;
3432
3433 arc_tuning_update();
3434
3435 mutex_exit(&arc_reclaim_lock);
3436
3437 if (free_memory < 0) {
3438
3439 arc_no_grow = B_TRUE;
3440 arc_warm = B_TRUE;
3441
3442 /*
3443 * Wait at least zfs_grow_retry (default 5) seconds
3444 * before considering growing.
3445 */
3446 growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
3447
3448 arc_kmem_reap_now();
3449
3450 /*
3451 * If we are still low on memory, shrink the ARC
3452 * so that we have arc_shrink_min free space.
3453 */
3454 free_memory = arc_available_memory();
3455
3456 to_free = (arc_c >> arc_shrink_shift) - free_memory;
3457 if (to_free > 0) {
3458#ifdef _KERNEL
3459 to_free = MAX(to_free, arc_need_free);
3460#endif
3461 arc_shrink(to_free);
3462 }
3463 } else if (free_memory < arc_c >> arc_no_grow_shift) {
3464 arc_no_grow = B_TRUE;
3465 } else if (ddi_get_lbolt() >= growtime) {
3466 arc_no_grow = B_FALSE;
3467 }
3468
3469 evicted = arc_adjust();
3470
3471 mutex_enter(&arc_reclaim_lock);
3472
3473 /*
3474 * If evicted is zero, we couldn't evict anything via
3475 * arc_adjust(). This could be due to hash lock
3476 * collisions, but more likely due to the majority of
3477 * arc buffers being unevictable. Therefore, even if
3478 * arc_size is above arc_c, another pass is unlikely to
3479 * be helpful and could potentially cause us to enter an
3480 * infinite loop.
3481 */
3482 if (arc_size <= arc_c || evicted == 0) {
3483 /*
3484 * We're either no longer overflowing, or we
3485 * can't evict anything more, so we should wake
3486 * up any threads before we go to sleep and clear
3487 * arc_need_free since nothing more can be done.
3488 */
3489 cv_broadcast(&arc_reclaim_waiters_cv);
3490 arc_need_free = 0;
3491
3492 /*
3493 * Block until signaled, or after one second (we
3494 * might need to perform arc_kmem_reap_now()
3495 * even if we aren't being signalled)
3496 */
3497 CALLB_CPR_SAFE_BEGIN(&cpr);
3498 (void) cv_timedwait_sig(&arc_reclaim_thread_cv,
3499 &arc_reclaim_lock, ddi_get_lbolt() + hz);
3500 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
3501 }
3502 }
3503
3504 arc_reclaim_thread_exit = FALSE;
3505 cv_broadcast(&arc_reclaim_thread_cv);
3506 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
3507 spl_fstrans_unmark(cookie);
3508 thread_exit();
3509}
3510
3511static void
3512arc_user_evicts_thread(void)
3513{
3514 fstrans_cookie_t cookie = spl_fstrans_mark();
3515 callb_cpr_t cpr;
3516
3517 CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
3518
3519 mutex_enter(&arc_user_evicts_lock);
3520 while (!arc_user_evicts_thread_exit) {
3521 mutex_exit(&arc_user_evicts_lock);
3522
3523 arc_do_user_evicts();
3524
3525 /*
3526 * This is necessary in order for the mdb ::arc dcmd to
3527 * show up to date information. Since the ::arc command
3528 * does not call the kstat's update function, without
3529 * this call, the command may show stale stats for the
3530 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3531 * with this change, the data might be up to 1 second
3532 * out of date; but that should suffice. The arc_state_t
3533 * structures can be queried directly if more accurate
3534 * information is needed.
3535 */
3536 if (arc_ksp != NULL)
3537 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3538
3539 mutex_enter(&arc_user_evicts_lock);
3540
3541 /*
3542 * Block until signaled, or after one second (we need to
3543 * call the arc's kstat update function regularly).
3544 */
3545 CALLB_CPR_SAFE_BEGIN(&cpr);
3546 (void) cv_timedwait_sig(&arc_user_evicts_cv,
3547 &arc_user_evicts_lock, ddi_get_lbolt() + hz);
3548 CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
3549 }
3550
3551 arc_user_evicts_thread_exit = FALSE;
3552 cv_broadcast(&arc_user_evicts_cv);
3553 CALLB_CPR_EXIT(&cpr); /* drops arc_user_evicts_lock */
3554 spl_fstrans_unmark(cookie);
3555 thread_exit();
3556}
3557
3558#ifdef _KERNEL
3559/*
3560 * Determine the amount of memory eligible for eviction contained in the
3561 * ARC. All clean data reported by the ghost lists can always be safely
3562 * evicted. Due to arc_c_min, the same does not hold for all clean data
3563 * contained by the regular mru and mfu lists.
3564 *
3565 * In the case of the regular mru and mfu lists, we need to report as
3566 * much clean data as possible, such that evicting that same reported
3567 * data will not bring arc_size below arc_c_min. Thus, in certain
3568 * circumstances, the total amount of clean data in the mru and mfu
3569 * lists might not actually be evictable.
3570 *
3571 * The following two distinct cases are accounted for:
3572 *
3573 * 1. The sum of the amount of dirty data contained by both the mru and
3574 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
3575 * is greater than or equal to arc_c_min.
3576 * (i.e. amount of dirty data >= arc_c_min)
3577 *
3578 * This is the easy case; all clean data contained by the mru and mfu
3579 * lists is evictable. Evicting all clean data can only drop arc_size
3580 * to the amount of dirty data, which is greater than arc_c_min.
3581 *
3582 * 2. The sum of the amount of dirty data contained by both the mru and
3583 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
3584 * is less than arc_c_min.
3585 * (i.e. arc_c_min > amount of dirty data)
3586 *
3587 * 2.1. arc_size is greater than or equal arc_c_min.
3588 * (i.e. arc_size >= arc_c_min > amount of dirty data)
3589 *
3590 * In this case, not all clean data from the regular mru and mfu
3591 * lists is actually evictable; we must leave enough clean data
3592 * to keep arc_size above arc_c_min. Thus, the maximum amount of
3593 * evictable data from the two lists combined, is exactly the
3594 * difference between arc_size and arc_c_min.
3595 *
3596 * 2.2. arc_size is less than arc_c_min
3597 * (i.e. arc_c_min > arc_size > amount of dirty data)
3598 *
3599 * In this case, none of the data contained in the mru and mfu
3600 * lists is evictable, even if it's clean. Since arc_size is
3601 * already below arc_c_min, evicting any more would only
3602 * increase this negative difference.
3603 */
3604static uint64_t
3605arc_evictable_memory(void) {
3606 uint64_t arc_clean =
3607 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3608 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3609 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3610 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3611 uint64_t ghost_clean =
3612 arc_mru_ghost->arcs_lsize[ARC_BUFC_DATA] +
3613 arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] +
3614 arc_mfu_ghost->arcs_lsize[ARC_BUFC_DATA] +
3615 arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA];
3616 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
3617
3618 if (arc_dirty >= arc_c_min)
3619 return (ghost_clean + arc_clean);
3620
3621 return (ghost_clean + MAX((int64_t)arc_size - (int64_t)arc_c_min, 0));
3622}
3623
3624/*
3625 * If sc->nr_to_scan is zero, the caller is requesting a query of the
3626 * number of objects which can potentially be freed. If it is nonzero,
3627 * the request is to free that many objects.
3628 *
3629 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
3630 * in struct shrinker and also require the shrinker to return the number
3631 * of objects freed.
3632 *
3633 * Older kernels require the shrinker to return the number of freeable
3634 * objects following the freeing of nr_to_free.
3635 */
3636static spl_shrinker_t
3637__arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
3638{
3639 int64_t pages;
3640
3641 /* The arc is considered warm once reclaim has occurred */
3642 if (unlikely(arc_warm == B_FALSE))
3643 arc_warm = B_TRUE;
3644
3645 /* Return the potential number of reclaimable pages */
3646 pages = btop((int64_t)arc_evictable_memory());
3647 if (sc->nr_to_scan == 0)
3648 return (pages);
3649
3650 /* Not allowed to perform filesystem reclaim */
3651 if (!(sc->gfp_mask & __GFP_FS))
3652 return (SHRINK_STOP);
3653
3654 /* Reclaim in progress */
3655 if (mutex_tryenter(&arc_reclaim_lock) == 0)
3656 return (SHRINK_STOP);
3657
3658 mutex_exit(&arc_reclaim_lock);
3659
3660 /*
3661 * Evict the requested number of pages by shrinking arc_c the
3662 * requested amount. If there is nothing left to evict just
3663 * reap whatever we can from the various arc slabs.
3664 */
3665 if (pages > 0) {
3666 arc_shrink(ptob(sc->nr_to_scan));
3667 arc_kmem_reap_now();
3668#ifdef HAVE_SPLIT_SHRINKER_CALLBACK
3669 pages = MAX(pages - btop(arc_evictable_memory()), 0);
3670#else
3671 pages = btop(arc_evictable_memory());
3672#endif
3673 } else {
3674 arc_kmem_reap_now();
3675 pages = SHRINK_STOP;
3676 }
3677
3678 /*
3679 * We've reaped what we can, wake up threads.
3680 */
3681 cv_broadcast(&arc_reclaim_waiters_cv);
3682
3683 /*
3684 * When direct reclaim is observed it usually indicates a rapid
3685 * increase in memory pressure. This occurs because the kswapd
3686 * threads were unable to asynchronously keep enough free memory
3687 * available. In this case set arc_no_grow to briefly pause arc
3688 * growth to avoid compounding the memory pressure.
3689 */
3690 if (current_is_kswapd()) {
3691 ARCSTAT_BUMP(arcstat_memory_indirect_count);
3692 } else {
3693 arc_no_grow = B_TRUE;
3694 arc_need_free = ptob(sc->nr_to_scan);
3695 ARCSTAT_BUMP(arcstat_memory_direct_count);
3696 }
3697
3698 return (pages);
3699}
3700SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
3701
3702SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
3703#endif /* _KERNEL */
3704
3705/*
3706 * Adapt arc info given the number of bytes we are trying to add and
3707 * the state that we are comming from. This function is only called
3708 * when we are adding new content to the cache.
3709 */
3710static void
3711arc_adapt(int bytes, arc_state_t *state)
3712{
3713 int mult;
3714 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
3715 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
3716 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
3717
3718 if (state == arc_l2c_only)
3719 return;
3720
3721 ASSERT(bytes > 0);
3722 /*
3723 * Adapt the target size of the MRU list:
3724 * - if we just hit in the MRU ghost list, then increase
3725 * the target size of the MRU list.
3726 * - if we just hit in the MFU ghost list, then increase
3727 * the target size of the MFU list by decreasing the
3728 * target size of the MRU list.
3729 */
3730 if (state == arc_mru_ghost) {
3731 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
3732 if (!zfs_arc_p_dampener_disable)
3733 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
3734
3735 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
3736 } else if (state == arc_mfu_ghost) {
3737 uint64_t delta;
3738
3739 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
3740 if (!zfs_arc_p_dampener_disable)
3741 mult = MIN(mult, 10);
3742
3743 delta = MIN(bytes * mult, arc_p);
3744 arc_p = MAX(arc_p_min, arc_p - delta);
3745 }
3746 ASSERT((int64_t)arc_p >= 0);
3747
3748 if (arc_reclaim_needed()) {
3749 cv_signal(&arc_reclaim_thread_cv);
3750 return;
3751 }
3752
3753 if (arc_no_grow)
3754 return;
3755
3756 if (arc_c >= arc_c_max)
3757 return;
3758
3759 /*
3760 * If we're within (2 * maxblocksize) bytes of the target
3761 * cache size, increment the target cache size
3762 */
3763 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
3764 if (arc_size >= arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
3765 atomic_add_64(&arc_c, (int64_t)bytes);
3766 if (arc_c > arc_c_max)
3767 arc_c = arc_c_max;
3768 else if (state == arc_anon)
3769 atomic_add_64(&arc_p, (int64_t)bytes);
3770 if (arc_p > arc_c)
3771 arc_p = arc_c;
3772 }
3773 ASSERT((int64_t)arc_p >= 0);
3774}
3775
3776/*
3777 * Check if arc_size has grown past our upper threshold, determined by
3778 * zfs_arc_overflow_shift.
3779 */
3780static boolean_t
3781arc_is_overflowing(void)
3782{
3783 /* Always allow at least one block of overflow */
3784 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
3785 arc_c >> zfs_arc_overflow_shift);
3786
3787 return (arc_size >= arc_c + overflow);
3788}
3789
3790/*
3791 * The buffer, supplied as the first argument, needs a data block. If we
3792 * are hitting the hard limit for the cache size, we must sleep, waiting
3793 * for the eviction thread to catch up. If we're past the target size
3794 * but below the hard limit, we'll only signal the reclaim thread and
3795 * continue on.
3796 */
3797static void
3798arc_get_data_buf(arc_buf_t *buf)
3799{
3800 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
3801 uint64_t size = buf->b_hdr->b_size;
3802 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
3803
3804 arc_adapt(size, state);
3805
3806 /*
3807 * If arc_size is currently overflowing, and has grown past our
3808 * upper limit, we must be adding data faster than the evict
3809 * thread can evict. Thus, to ensure we don't compound the
3810 * problem by adding more data and forcing arc_size to grow even
3811 * further past it's target size, we halt and wait for the
3812 * eviction thread to catch up.
3813 *
3814 * It's also possible that the reclaim thread is unable to evict
3815 * enough buffers to get arc_size below the overflow limit (e.g.
3816 * due to buffers being un-evictable, or hash lock collisions).
3817 * In this case, we want to proceed regardless if we're
3818 * overflowing; thus we don't use a while loop here.
3819 */
3820 if (arc_is_overflowing()) {
3821 mutex_enter(&arc_reclaim_lock);
3822
3823 /*
3824 * Now that we've acquired the lock, we may no longer be
3825 * over the overflow limit, lets check.
3826 *
3827 * We're ignoring the case of spurious wake ups. If that
3828 * were to happen, it'd let this thread consume an ARC
3829 * buffer before it should have (i.e. before we're under
3830 * the overflow limit and were signalled by the reclaim
3831 * thread). As long as that is a rare occurrence, it
3832 * shouldn't cause any harm.
3833 */
3834 if (arc_is_overflowing()) {
3835 cv_signal(&arc_reclaim_thread_cv);
3836 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
3837 }
3838
3839 mutex_exit(&arc_reclaim_lock);
3840 }
3841
3842 if (type == ARC_BUFC_METADATA) {
3843 buf->b_data = zio_buf_alloc(size);
3844 arc_space_consume(size, ARC_SPACE_META);
3845 } else {
3846 ASSERT(type == ARC_BUFC_DATA);
3847 buf->b_data = zio_data_buf_alloc(size);
3848 arc_space_consume(size, ARC_SPACE_DATA);
3849 }
3850
3851 /*
3852 * Update the state size. Note that ghost states have a
3853 * "ghost size" and so don't need to be updated.
3854 */
3855 if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
3856 arc_buf_hdr_t *hdr = buf->b_hdr;
3857 arc_state_t *state = hdr->b_l1hdr.b_state;
3858
3859 (void) refcount_add_many(&state->arcs_size, size, buf);
3860
3861 /*
3862 * If this is reached via arc_read, the link is
3863 * protected by the hash lock. If reached via
3864 * arc_buf_alloc, the header should not be accessed by
3865 * any other thread. And, if reached via arc_read_done,
3866 * the hash lock will protect it if it's found in the
3867 * hash table; otherwise no other thread should be
3868 * trying to [add|remove]_reference it.
3869 */
3870 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
3871 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3872 atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
3873 size);
3874 }
3875 /*
3876 * If we are growing the cache, and we are adding anonymous
3877 * data, and we have outgrown arc_p, update arc_p
3878 */
3879 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
3880 (refcount_count(&arc_anon->arcs_size) +
3881 refcount_count(&arc_mru->arcs_size) > arc_p))
3882 arc_p = MIN(arc_c, arc_p + size);
3883 }
3884}
3885
3886/*
3887 * This routine is called whenever a buffer is accessed.
3888 * NOTE: the hash lock is dropped in this function.
3889 */
3890static void
3891arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3892{
3893 clock_t now;
3894
3895 ASSERT(MUTEX_HELD(hash_lock));
3896 ASSERT(HDR_HAS_L1HDR(hdr));
3897
3898 if (hdr->b_l1hdr.b_state == arc_anon) {
3899 /*
3900 * This buffer is not in the cache, and does not
3901 * appear in our "ghost" list. Add the new buffer
3902 * to the MRU state.
3903 */
3904
3905 ASSERT0(hdr->b_l1hdr.b_arc_access);
3906 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3907 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3908 arc_change_state(arc_mru, hdr, hash_lock);
3909
3910 } else if (hdr->b_l1hdr.b_state == arc_mru) {
3911 now = ddi_get_lbolt();
3912
3913 /*
3914 * If this buffer is here because of a prefetch, then either:
3915 * - clear the flag if this is a "referencing" read
3916 * (any subsequent access will bump this into the MFU state).
3917 * or
3918 * - move the buffer to the head of the list if this is
3919 * another prefetch (to make it less likely to be evicted).
3920 */
3921 if (HDR_PREFETCH(hdr)) {
3922 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
3923 /* link protected by hash lock */
3924 ASSERT(multilist_link_active(
3925 &hdr->b_l1hdr.b_arc_node));
3926 } else {
3927 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3928 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
3929 ARCSTAT_BUMP(arcstat_mru_hits);
3930 }
3931 hdr->b_l1hdr.b_arc_access = now;
3932 return;
3933 }
3934
3935 /*
3936 * This buffer has been "accessed" only once so far,
3937 * but it is still in the cache. Move it to the MFU
3938 * state.
3939 */
3940 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
3941 ARC_MINTIME)) {
3942 /*
3943 * More than 125ms have passed since we
3944 * instantiated this buffer. Move it to the
3945 * most frequently used state.
3946 */
3947 hdr->b_l1hdr.b_arc_access = now;
3948 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3949 arc_change_state(arc_mfu, hdr, hash_lock);
3950 }
3951 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
3952 ARCSTAT_BUMP(arcstat_mru_hits);
3953 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
3954 arc_state_t *new_state;
3955 /*
3956 * This buffer has been "accessed" recently, but
3957 * was evicted from the cache. Move it to the
3958 * MFU state.
3959 */
3960
3961 if (HDR_PREFETCH(hdr)) {
3962 new_state = arc_mru;
3963 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
3964 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3965 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3966 } else {
3967 new_state = arc_mfu;
3968 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3969 }
3970
3971 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3972 arc_change_state(new_state, hdr, hash_lock);
3973
3974 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
3975 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
3976 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
3977 /*
3978 * This buffer has been accessed more than once and is
3979 * still in the cache. Keep it in the MFU state.
3980 *
3981 * NOTE: an add_reference() that occurred when we did
3982 * the arc_read() will have kicked this off the list.
3983 * If it was a prefetch, we will explicitly move it to
3984 * the head of the list now.
3985 */
3986 if ((HDR_PREFETCH(hdr)) != 0) {
3987 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3988 /* link protected by hash_lock */
3989 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3990 }
3991 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
3992 ARCSTAT_BUMP(arcstat_mfu_hits);
3993 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3994 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
3995 arc_state_t *new_state = arc_mfu;
3996 /*
3997 * This buffer has been accessed more than once but has
3998 * been evicted from the cache. Move it back to the
3999 * MFU state.
4000 */
4001
4002 if (HDR_PREFETCH(hdr)) {
4003 /*
4004 * This is a prefetch access...
4005 * move this block back to the MRU state.
4006 */
4007 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4008 new_state = arc_mru;
4009 }
4010
4011 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4012 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4013 arc_change_state(new_state, hdr, hash_lock);
4014
4015 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
4016 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4017 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4018 /*
4019 * This buffer is on the 2nd Level ARC.
4020 */
4021
4022 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4023 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4024 arc_change_state(arc_mfu, hdr, hash_lock);
4025 } else {
4026 cmn_err(CE_PANIC, "invalid arc state 0x%p",
4027 hdr->b_l1hdr.b_state);
4028 }
4029}
4030
4031/* a generic arc_done_func_t which you can use */
4032/* ARGSUSED */
4033void
4034arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4035{
4036 if (zio == NULL || zio->io_error == 0)
4037 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
4038 VERIFY(arc_buf_remove_ref(buf, arg));
4039}
4040
4041/* a generic arc_done_func_t */
4042void
4043arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4044{
4045 arc_buf_t **bufp = arg;
4046 if (zio && zio->io_error) {
4047 VERIFY(arc_buf_remove_ref(buf, arg));
4048 *bufp = NULL;
4049 } else {
4050 *bufp = buf;
4051 ASSERT(buf->b_data);
4052 }
4053}
4054
4055static void
4056arc_read_done(zio_t *zio)
4057{
4058 arc_buf_hdr_t *hdr;
4059 arc_buf_t *buf;
4060 arc_buf_t *abuf; /* buffer we're assigning to callback */
4061 kmutex_t *hash_lock = NULL;
4062 arc_callback_t *callback_list, *acb;
4063 int freeable = FALSE;
4064
4065 buf = zio->io_private;
4066 hdr = buf->b_hdr;
4067
4068 /*
4069 * The hdr was inserted into hash-table and removed from lists
4070 * prior to starting I/O. We should find this header, since
4071 * it's in the hash table, and it should be legit since it's
4072 * not possible to evict it during the I/O. The only possible
4073 * reason for it not to be found is if we were freed during the
4074 * read.
4075 */
4076 if (HDR_IN_HASH_TABLE(hdr)) {
4077 arc_buf_hdr_t *found;
4078
4079 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4080 ASSERT3U(hdr->b_dva.dva_word[0], ==,
4081 BP_IDENTITY(zio->io_bp)->dva_word[0]);
4082 ASSERT3U(hdr->b_dva.dva_word[1], ==,
4083 BP_IDENTITY(zio->io_bp)->dva_word[1]);
4084
4085 found = buf_hash_find(hdr->b_spa, zio->io_bp,
4086 &hash_lock);
4087
4088 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
4089 hash_lock == NULL) ||
4090 (found == hdr &&
4091 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4092 (found == hdr && HDR_L2_READING(hdr)));
4093 }
4094
4095 hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
4096 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4097 hdr->b_flags &= ~ARC_FLAG_L2CACHE;
4098
4099 /* byteswap if necessary */
4100 callback_list = hdr->b_l1hdr.b_acb;
4101 ASSERT(callback_list != NULL);
4102 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
4103 dmu_object_byteswap_t bswap =
4104 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4105 if (BP_GET_LEVEL(zio->io_bp) > 0)
4106 byteswap_uint64_array(buf->b_data, hdr->b_size);
4107 else
4108 dmu_ot_byteswap[bswap].ob_func(buf->b_data, hdr->b_size);
4109 }
4110
4111 arc_cksum_compute(buf, B_FALSE);
4112 arc_buf_watch(buf);
4113
4114 if (hash_lock && zio->io_error == 0 &&
4115 hdr->b_l1hdr.b_state == arc_anon) {
4116 /*
4117 * Only call arc_access on anonymous buffers. This is because
4118 * if we've issued an I/O for an evicted buffer, we've already
4119 * called arc_access (to prevent any simultaneous readers from
4120 * getting confused).
4121 */
4122 arc_access(hdr, hash_lock);
4123 }
4124
4125 /* create copies of the data buffer for the callers */
4126 abuf = buf;
4127 for (acb = callback_list; acb; acb = acb->acb_next) {
4128 if (acb->acb_done) {
4129 if (abuf == NULL) {
4130 ARCSTAT_BUMP(arcstat_duplicate_reads);
4131 abuf = arc_buf_clone(buf);
4132 }
4133 acb->acb_buf = abuf;
4134 abuf = NULL;
4135 }
4136 }
4137 hdr->b_l1hdr.b_acb = NULL;
4138 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4139 ASSERT(!HDR_BUF_AVAILABLE(hdr));
4140 if (abuf == buf) {
4141 ASSERT(buf->b_efunc == NULL);
4142 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4143 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4144 }
4145
4146 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4147 callback_list != NULL);
4148
4149 if (zio->io_error != 0) {
4150 hdr->b_flags |= ARC_FLAG_IO_ERROR;
4151 if (hdr->b_l1hdr.b_state != arc_anon)
4152 arc_change_state(arc_anon, hdr, hash_lock);
4153 if (HDR_IN_HASH_TABLE(hdr))
4154 buf_hash_remove(hdr);
4155 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4156 }
4157
4158 /*
4159 * Broadcast before we drop the hash_lock to avoid the possibility
4160 * that the hdr (and hence the cv) might be freed before we get to
4161 * the cv_broadcast().
4162 */
4163 cv_broadcast(&hdr->b_l1hdr.b_cv);
4164
4165 if (hash_lock != NULL) {
4166 mutex_exit(hash_lock);
4167 } else {
4168 /*
4169 * This block was freed while we waited for the read to
4170 * complete. It has been removed from the hash table and
4171 * moved to the anonymous state (so that it won't show up
4172 * in the cache).
4173 */
4174 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4175 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4176 }
4177
4178 /* execute each callback and free its structure */
4179 while ((acb = callback_list) != NULL) {
4180 if (acb->acb_done)
4181 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4182
4183 if (acb->acb_zio_dummy != NULL) {
4184 acb->acb_zio_dummy->io_error = zio->io_error;
4185 zio_nowait(acb->acb_zio_dummy);
4186 }
4187
4188 callback_list = acb->acb_next;
4189 kmem_free(acb, sizeof (arc_callback_t));
4190 }
4191
4192 if (freeable)
4193 arc_hdr_destroy(hdr);
4194}
4195
4196/*
4197 * "Read" the block at the specified DVA (in bp) via the
4198 * cache. If the block is found in the cache, invoke the provided
4199 * callback immediately and return. Note that the `zio' parameter
4200 * in the callback will be NULL in this case, since no IO was
4201 * required. If the block is not in the cache pass the read request
4202 * on to the spa with a substitute callback function, so that the
4203 * requested block will be added to the cache.
4204 *
4205 * If a read request arrives for a block that has a read in-progress,
4206 * either wait for the in-progress read to complete (and return the
4207 * results); or, if this is a read with a "done" func, add a record
4208 * to the read to invoke the "done" func when the read completes,
4209 * and return; or just return.
4210 *
4211 * arc_read_done() will invoke all the requested "done" functions
4212 * for readers of this block.
4213 */
4214int
4215arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4216 void *private, zio_priority_t priority, int zio_flags,
4217 arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4218{
4219 arc_buf_hdr_t *hdr = NULL;
4220 arc_buf_t *buf = NULL;
4221 kmutex_t *hash_lock = NULL;
4222 zio_t *rzio;
4223 uint64_t guid = spa_load_guid(spa);
4224 int rc = 0;
4225
4226 ASSERT(!BP_IS_EMBEDDED(bp) ||
4227 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4228
4229top:
4230 if (!BP_IS_EMBEDDED(bp)) {
4231 /*
4232 * Embedded BP's have no DVA and require no I/O to "read".
4233 * Create an anonymous arc buf to back it.
4234 */
4235 hdr = buf_hash_find(guid, bp, &hash_lock);
4236 }
4237
4238 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
4239
4240 *arc_flags |= ARC_FLAG_CACHED;
4241
4242 if (HDR_IO_IN_PROGRESS(hdr)) {
4243
4244 if (*arc_flags & ARC_FLAG_WAIT) {
4245 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4246 mutex_exit(hash_lock);
4247 goto top;
4248 }
4249 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4250
4251 if (done) {
4252 arc_callback_t *acb = NULL;
4253
4254 acb = kmem_zalloc(sizeof (arc_callback_t),
4255 KM_SLEEP);
4256 acb->acb_done = done;
4257 acb->acb_private = private;
4258 if (pio != NULL)
4259 acb->acb_zio_dummy = zio_null(pio,
4260 spa, NULL, NULL, NULL, zio_flags);
4261
4262 ASSERT(acb->acb_done != NULL);
4263 acb->acb_next = hdr->b_l1hdr.b_acb;
4264 hdr->b_l1hdr.b_acb = acb;
4265 add_reference(hdr, hash_lock, private);
4266 mutex_exit(hash_lock);
4267 goto out;
4268 }
4269 mutex_exit(hash_lock);
4270 goto out;
4271 }
4272
4273 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4274 hdr->b_l1hdr.b_state == arc_mfu);
4275
4276 if (done) {
4277 add_reference(hdr, hash_lock, private);
4278 /*
4279 * If this block is already in use, create a new
4280 * copy of the data so that we will be guaranteed
4281 * that arc_release() will always succeed.
4282 */
4283 buf = hdr->b_l1hdr.b_buf;
4284 ASSERT(buf);
4285 ASSERT(buf->b_data);
4286 if (HDR_BUF_AVAILABLE(hdr)) {
4287 ASSERT(buf->b_efunc == NULL);
4288 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4289 } else {
4290 buf = arc_buf_clone(buf);
4291 }
4292
4293 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
4294 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4295 hdr->b_flags |= ARC_FLAG_PREFETCH;
4296 }
4297 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4298 arc_access(hdr, hash_lock);
4299 if (*arc_flags & ARC_FLAG_L2CACHE)
4300 hdr->b_flags |= ARC_FLAG_L2CACHE;
4301 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4302 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4303 mutex_exit(hash_lock);
4304 ARCSTAT_BUMP(arcstat_hits);
4305 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4306 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4307 data, metadata, hits);
4308
4309 if (done)
4310 done(NULL, buf, private);
4311 } else {
4312 uint64_t size = BP_GET_LSIZE(bp);
4313 arc_callback_t *acb;
4314 vdev_t *vd = NULL;
4315 uint64_t addr = 0;
4316 boolean_t devw = B_FALSE;
4317 enum zio_compress b_compress = ZIO_COMPRESS_OFF;
4318 int32_t b_asize = 0;
4319
4320 /*
4321 * Gracefully handle a damaged logical block size as a
4322 * checksum error.
4323 */
4324 if (size > spa_maxblocksize(spa)) {
4325 ASSERT3P(buf, ==, NULL);
4326 rc = SET_ERROR(ECKSUM);
4327 goto out;
4328 }
4329
4330 if (hdr == NULL) {
4331 /* this block is not in the cache */
4332 arc_buf_hdr_t *exists = NULL;
4333 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4334 buf = arc_buf_alloc(spa, size, private, type);
4335 hdr = buf->b_hdr;
4336 if (!BP_IS_EMBEDDED(bp)) {
4337 hdr->b_dva = *BP_IDENTITY(bp);
4338 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4339 exists = buf_hash_insert(hdr, &hash_lock);
4340 }
4341 if (exists != NULL) {
4342 /* somebody beat us to the hash insert */
4343 mutex_exit(hash_lock);
4344 buf_discard_identity(hdr);
4345 (void) arc_buf_remove_ref(buf, private);
4346 goto top; /* restart the IO request */
4347 }
4348
4349 /* if this is a prefetch, we don't have a reference */
4350 if (*arc_flags & ARC_FLAG_PREFETCH) {
4351 (void) remove_reference(hdr, hash_lock,
4352 private);
4353 hdr->b_flags |= ARC_FLAG_PREFETCH;
4354 }
4355 if (*arc_flags & ARC_FLAG_L2CACHE)
4356 hdr->b_flags |= ARC_FLAG_L2CACHE;
4357 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4358 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4359 if (BP_GET_LEVEL(bp) > 0)
4360 hdr->b_flags |= ARC_FLAG_INDIRECT;
4361 } else {
4362 /*
4363 * This block is in the ghost cache. If it was L2-only
4364 * (and thus didn't have an L1 hdr), we realloc the
4365 * header to add an L1 hdr.
4366 */
4367 if (!HDR_HAS_L1HDR(hdr)) {
4368 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4369 hdr_full_cache);
4370 }
4371
4372 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4373 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4374 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4375 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4376
4377 /* if this is a prefetch, we don't have a reference */
4378 if (*arc_flags & ARC_FLAG_PREFETCH)
4379 hdr->b_flags |= ARC_FLAG_PREFETCH;
4380 else
4381 add_reference(hdr, hash_lock, private);
4382 if (*arc_flags & ARC_FLAG_L2CACHE)
4383 hdr->b_flags |= ARC_FLAG_L2CACHE;
4384 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4385 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4386 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
4387 buf->b_hdr = hdr;
4388 buf->b_data = NULL;
4389 buf->b_efunc = NULL;
4390 buf->b_private = NULL;
4391 buf->b_next = NULL;
4392 hdr->b_l1hdr.b_buf = buf;
4393 ASSERT0(hdr->b_l1hdr.b_datacnt);
4394 hdr->b_l1hdr.b_datacnt = 1;
4395 arc_get_data_buf(buf);
4396 arc_access(hdr, hash_lock);
4397 }
4398
4399 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4400
4401 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4402 acb->acb_done = done;
4403 acb->acb_private = private;
4404
4405 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4406 hdr->b_l1hdr.b_acb = acb;
4407 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4408
4409 if (HDR_HAS_L2HDR(hdr) &&
4410 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4411 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4412 addr = hdr->b_l2hdr.b_daddr;
4413 b_compress = hdr->b_l2hdr.b_compress;
4414 b_asize = hdr->b_l2hdr.b_asize;
4415 /*
4416 * Lock out device removal.
4417 */
4418 if (vdev_is_dead(vd) ||
4419 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4420 vd = NULL;
4421 }
4422
4423 if (hash_lock != NULL)
4424 mutex_exit(hash_lock);
4425
4426 /*
4427 * At this point, we have a level 1 cache miss. Try again in
4428 * L2ARC if possible.
4429 */
4430 ASSERT3U(hdr->b_size, ==, size);
4431 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
4432 uint64_t, size, zbookmark_phys_t *, zb);
4433 ARCSTAT_BUMP(arcstat_misses);
4434 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4435 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4436 data, metadata, misses);
4437
4438 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
4439 /*
4440 * Read from the L2ARC if the following are true:
4441 * 1. The L2ARC vdev was previously cached.
4442 * 2. This buffer still has L2ARC metadata.
4443 * 3. This buffer isn't currently writing to the L2ARC.
4444 * 4. The L2ARC entry wasn't evicted, which may
4445 * also have invalidated the vdev.
4446 * 5. This isn't prefetch and l2arc_noprefetch is set.
4447 */
4448 if (HDR_HAS_L2HDR(hdr) &&
4449 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4450 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
4451 l2arc_read_callback_t *cb;
4452
4453 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4454 ARCSTAT_BUMP(arcstat_l2_hits);
4455 atomic_inc_32(&hdr->b_l2hdr.b_hits);
4456
4457 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
4458 KM_SLEEP);
4459 cb->l2rcb_buf = buf;
4460 cb->l2rcb_spa = spa;
4461 cb->l2rcb_bp = *bp;
4462 cb->l2rcb_zb = *zb;
4463 cb->l2rcb_flags = zio_flags;
4464 cb->l2rcb_compress = b_compress;
4465
4466 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4467 addr + size < vd->vdev_psize -
4468 VDEV_LABEL_END_SIZE);
4469
4470 /*
4471 * l2arc read. The SCL_L2ARC lock will be
4472 * released by l2arc_read_done().
4473 * Issue a null zio if the underlying buffer
4474 * was squashed to zero size by compression.
4475 */
4476 if (b_compress == ZIO_COMPRESS_EMPTY) {
4477 rzio = zio_null(pio, spa, vd,
4478 l2arc_read_done, cb,
4479 zio_flags | ZIO_FLAG_DONT_CACHE |
4480 ZIO_FLAG_CANFAIL |
4481 ZIO_FLAG_DONT_PROPAGATE |
4482 ZIO_FLAG_DONT_RETRY);
4483 } else {
4484 rzio = zio_read_phys(pio, vd, addr,
4485 b_asize, buf->b_data,
4486 ZIO_CHECKSUM_OFF,
4487 l2arc_read_done, cb, priority,
4488 zio_flags | ZIO_FLAG_DONT_CACHE |
4489 ZIO_FLAG_CANFAIL |
4490 ZIO_FLAG_DONT_PROPAGATE |
4491 ZIO_FLAG_DONT_RETRY, B_FALSE);
4492 }
4493 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4494 zio_t *, rzio);
4495 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
4496
4497 if (*arc_flags & ARC_FLAG_NOWAIT) {
4498 zio_nowait(rzio);
4499 goto out;
4500 }
4501
4502 ASSERT(*arc_flags & ARC_FLAG_WAIT);
4503 if (zio_wait(rzio) == 0)
4504 goto out;
4505
4506 /* l2arc read error; goto zio_read() */
4507 } else {
4508 DTRACE_PROBE1(l2arc__miss,
4509 arc_buf_hdr_t *, hdr);
4510 ARCSTAT_BUMP(arcstat_l2_misses);
4511 if (HDR_L2_WRITING(hdr))
4512 ARCSTAT_BUMP(arcstat_l2_rw_clash);
4513 spa_config_exit(spa, SCL_L2ARC, vd);
4514 }
4515 } else {
4516 if (vd != NULL)
4517 spa_config_exit(spa, SCL_L2ARC, vd);
4518 if (l2arc_ndev != 0) {
4519 DTRACE_PROBE1(l2arc__miss,
4520 arc_buf_hdr_t *, hdr);
4521 ARCSTAT_BUMP(arcstat_l2_misses);
4522 }
4523 }
4524
4525 rzio = zio_read(pio, spa, bp, buf->b_data, size,
4526 arc_read_done, buf, priority, zio_flags, zb);
4527
4528 if (*arc_flags & ARC_FLAG_WAIT) {
4529 rc = zio_wait(rzio);
4530 goto out;
4531 }
4532
4533 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4534 zio_nowait(rzio);
4535 }
4536
4537out:
4538 spa_read_history_add(spa, zb, *arc_flags);
4539 return (rc);
4540}
4541
4542arc_prune_t *
4543arc_add_prune_callback(arc_prune_func_t *func, void *private)
4544{
4545 arc_prune_t *p;
4546
4547 p = kmem_alloc(sizeof (*p), KM_SLEEP);
4548 p->p_pfunc = func;
4549 p->p_private = private;
4550 list_link_init(&p->p_node);
4551 refcount_create(&p->p_refcnt);
4552
4553 mutex_enter(&arc_prune_mtx);
4554 refcount_add(&p->p_refcnt, &arc_prune_list);
4555 list_insert_head(&arc_prune_list, p);
4556 mutex_exit(&arc_prune_mtx);
4557
4558 return (p);
4559}
4560
4561void
4562arc_remove_prune_callback(arc_prune_t *p)
4563{
4564 boolean_t wait = B_FALSE;
4565 mutex_enter(&arc_prune_mtx);
4566 list_remove(&arc_prune_list, p);
4567 if (refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
4568 wait = B_TRUE;
4569 mutex_exit(&arc_prune_mtx);
4570
4571 /* wait for arc_prune_task to finish */
4572 if (wait)
4573 taskq_wait_outstanding(arc_prune_taskq, 0);
4574 ASSERT0(refcount_count(&p->p_refcnt));
4575 refcount_destroy(&p->p_refcnt);
4576 kmem_free(p, sizeof (*p));
4577}
4578
4579void
4580arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4581{
4582 ASSERT(buf->b_hdr != NULL);
4583 ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4584 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4585 func == NULL);
4586 ASSERT(buf->b_efunc == NULL);
4587 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4588
4589 buf->b_efunc = func;
4590 buf->b_private = private;
4591}
4592
4593/*
4594 * Notify the arc that a block was freed, and thus will never be used again.
4595 */
4596void
4597arc_freed(spa_t *spa, const blkptr_t *bp)
4598{
4599 arc_buf_hdr_t *hdr;
4600 kmutex_t *hash_lock;
4601 uint64_t guid = spa_load_guid(spa);
4602
4603 ASSERT(!BP_IS_EMBEDDED(bp));
4604
4605 hdr = buf_hash_find(guid, bp, &hash_lock);
4606 if (hdr == NULL)
4607 return;
4608 if (HDR_BUF_AVAILABLE(hdr)) {
4609 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
4610 add_reference(hdr, hash_lock, FTAG);
4611 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4612 mutex_exit(hash_lock);
4613
4614 arc_release(buf, FTAG);
4615 (void) arc_buf_remove_ref(buf, FTAG);
4616 } else {
4617 mutex_exit(hash_lock);
4618 }
4619
4620}
4621
4622/*
4623 * Clear the user eviction callback set by arc_set_callback(), first calling
4624 * it if it exists. Because the presence of a callback keeps an arc_buf cached
4625 * clearing the callback may result in the arc_buf being destroyed. However,
4626 * it will not result in the *last* arc_buf being destroyed, hence the data
4627 * will remain cached in the ARC. We make a copy of the arc buffer here so
4628 * that we can process the callback without holding any locks.
4629 *
4630 * It's possible that the callback is already in the process of being cleared
4631 * by another thread. In this case we can not clear the callback.
4632 *
4633 * Returns B_TRUE if the callback was successfully called and cleared.
4634 */
4635boolean_t
4636arc_clear_callback(arc_buf_t *buf)
4637{
4638 arc_buf_hdr_t *hdr;
4639 kmutex_t *hash_lock;
4640 arc_evict_func_t *efunc = buf->b_efunc;
4641 void *private = buf->b_private;
4642
4643 mutex_enter(&buf->b_evict_lock);
4644 hdr = buf->b_hdr;
4645 if (hdr == NULL) {
4646 /*
4647 * We are in arc_do_user_evicts().
4648 */
4649 ASSERT(buf->b_data == NULL);
4650 mutex_exit(&buf->b_evict_lock);
4651 return (B_FALSE);
4652 } else if (buf->b_data == NULL) {
4653 /*
4654 * We are on the eviction list; process this buffer now
4655 * but let arc_do_user_evicts() do the reaping.
4656 */
4657 buf->b_efunc = NULL;
4658 mutex_exit(&buf->b_evict_lock);
4659 VERIFY0(efunc(private));
4660 return (B_TRUE);
4661 }
4662 hash_lock = HDR_LOCK(hdr);
4663 mutex_enter(hash_lock);
4664 hdr = buf->b_hdr;
4665 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4666
4667 ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4668 hdr->b_l1hdr.b_datacnt);
4669 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4670 hdr->b_l1hdr.b_state == arc_mfu);
4671
4672 buf->b_efunc = NULL;
4673 buf->b_private = NULL;
4674
4675 if (hdr->b_l1hdr.b_datacnt > 1) {
4676 mutex_exit(&buf->b_evict_lock);
4677 arc_buf_destroy(buf, TRUE);
4678 } else {
4679 ASSERT(buf == hdr->b_l1hdr.b_buf);
4680 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4681 mutex_exit(&buf->b_evict_lock);
4682 }
4683
4684 mutex_exit(hash_lock);
4685 VERIFY0(efunc(private));
4686 return (B_TRUE);
4687}
4688
4689/*
4690 * Release this buffer from the cache, making it an anonymous buffer. This
4691 * must be done after a read and prior to modifying the buffer contents.
4692 * If the buffer has more than one reference, we must make
4693 * a new hdr for the buffer.
4694 */
4695void
4696arc_release(arc_buf_t *buf, void *tag)
4697{
4698 kmutex_t *hash_lock;
4699 arc_state_t *state;
4700 arc_buf_hdr_t *hdr = buf->b_hdr;
4701
4702 /*
4703 * It would be nice to assert that if its DMU metadata (level >
4704 * 0 || it's the dnode file), then it must be syncing context.
4705 * But we don't know that information at this level.
4706 */
4707
4708 mutex_enter(&buf->b_evict_lock);
4709
4710 ASSERT(HDR_HAS_L1HDR(hdr));
4711
4712 /*
4713 * We don't grab the hash lock prior to this check, because if
4714 * the buffer's header is in the arc_anon state, it won't be
4715 * linked into the hash table.
4716 */
4717 if (hdr->b_l1hdr.b_state == arc_anon) {
4718 mutex_exit(&buf->b_evict_lock);
4719 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4720 ASSERT(!HDR_IN_HASH_TABLE(hdr));
4721 ASSERT(!HDR_HAS_L2HDR(hdr));
4722 ASSERT(BUF_EMPTY(hdr));
4723
4724 ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4725 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4726 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4727
4728 ASSERT3P(buf->b_efunc, ==, NULL);
4729 ASSERT3P(buf->b_private, ==, NULL);
4730
4731 hdr->b_l1hdr.b_arc_access = 0;
4732 arc_buf_thaw(buf);
4733
4734 return;
4735 }
4736
4737 hash_lock = HDR_LOCK(hdr);
4738 mutex_enter(hash_lock);
4739
4740 /*
4741 * This assignment is only valid as long as the hash_lock is
4742 * held, we must be careful not to reference state or the
4743 * b_state field after dropping the lock.
4744 */
4745 state = hdr->b_l1hdr.b_state;
4746 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4747 ASSERT3P(state, !=, arc_anon);
4748
4749 /* this buffer is not on any list */
4750 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4751
4752 if (HDR_HAS_L2HDR(hdr)) {
4753 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4754
4755 /*
4756 * We have to recheck this conditional again now that
4757 * we're holding the l2ad_mtx to prevent a race with
4758 * another thread which might be concurrently calling
4759 * l2arc_evict(). In that case, l2arc_evict() might have
4760 * destroyed the header's L2 portion as we were waiting
4761 * to acquire the l2ad_mtx.
4762 */
4763 if (HDR_HAS_L2HDR(hdr))
4764 arc_hdr_l2hdr_destroy(hdr);
4765
4766 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4767 }
4768
4769 /*
4770 * Do we have more than one buf?
4771 */
4772 if (hdr->b_l1hdr.b_datacnt > 1) {
4773 arc_buf_hdr_t *nhdr;
4774 arc_buf_t **bufp;
4775 uint64_t blksz = hdr->b_size;
4776 uint64_t spa = hdr->b_spa;
4777 arc_buf_contents_t type = arc_buf_type(hdr);
4778 uint32_t flags = hdr->b_flags;
4779
4780 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
4781 /*
4782 * Pull the data off of this hdr and attach it to
4783 * a new anonymous hdr.
4784 */
4785 (void) remove_reference(hdr, hash_lock, tag);
4786 bufp = &hdr->b_l1hdr.b_buf;
4787 while (*bufp != buf)
4788 bufp = &(*bufp)->b_next;
4789 *bufp = buf->b_next;
4790 buf->b_next = NULL;
4791
4792 ASSERT3P(state, !=, arc_l2c_only);
4793
4794 (void) refcount_remove_many(
4795 &state->arcs_size, hdr->b_size, buf);
4796
4797 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4798 uint64_t *size;
4799
4800 ASSERT3P(state, !=, arc_l2c_only);
4801 size = &state->arcs_lsize[type];
4802 ASSERT3U(*size, >=, hdr->b_size);
4803 atomic_add_64(size, -hdr->b_size);
4804 }
4805
4806 /*
4807 * We're releasing a duplicate user data buffer, update
4808 * our statistics accordingly.
4809 */
4810 if (HDR_ISTYPE_DATA(hdr)) {
4811 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
4812 ARCSTAT_INCR(arcstat_duplicate_buffers_size,
4813 -hdr->b_size);
4814 }
4815 hdr->b_l1hdr.b_datacnt -= 1;
4816 arc_cksum_verify(buf);
4817 arc_buf_unwatch(buf);
4818
4819 mutex_exit(hash_lock);
4820
4821 nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
4822 nhdr->b_size = blksz;
4823 nhdr->b_spa = spa;
4824
4825 nhdr->b_l1hdr.b_mru_hits = 0;
4826 nhdr->b_l1hdr.b_mru_ghost_hits = 0;
4827 nhdr->b_l1hdr.b_mfu_hits = 0;
4828 nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
4829 nhdr->b_l1hdr.b_l2_hits = 0;
4830 nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
4831 nhdr->b_flags |= arc_bufc_to_flags(type);
4832 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
4833
4834 nhdr->b_l1hdr.b_buf = buf;
4835 nhdr->b_l1hdr.b_datacnt = 1;
4836 nhdr->b_l1hdr.b_state = arc_anon;
4837 nhdr->b_l1hdr.b_arc_access = 0;
4838 nhdr->b_l1hdr.b_tmp_cdata = NULL;
4839 nhdr->b_freeze_cksum = NULL;
4840
4841 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
4842 buf->b_hdr = nhdr;
4843 mutex_exit(&buf->b_evict_lock);
4844 (void) refcount_add_many(&arc_anon->arcs_size, blksz, buf);
4845 } else {
4846 mutex_exit(&buf->b_evict_lock);
4847 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
4848 /* protected by hash lock, or hdr is on arc_anon */
4849 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4850 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4851 hdr->b_l1hdr.b_mru_hits = 0;
4852 hdr->b_l1hdr.b_mru_ghost_hits = 0;
4853 hdr->b_l1hdr.b_mfu_hits = 0;
4854 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
4855 hdr->b_l1hdr.b_l2_hits = 0;
4856 arc_change_state(arc_anon, hdr, hash_lock);
4857 hdr->b_l1hdr.b_arc_access = 0;
4858 mutex_exit(hash_lock);
4859
4860 buf_discard_identity(hdr);
4861 arc_buf_thaw(buf);
4862 }
4863 buf->b_efunc = NULL;
4864 buf->b_private = NULL;
4865}
4866
4867int
4868arc_released(arc_buf_t *buf)
4869{
4870 int released;
4871
4872 mutex_enter(&buf->b_evict_lock);
4873 released = (buf->b_data != NULL &&
4874 buf->b_hdr->b_l1hdr.b_state == arc_anon);
4875 mutex_exit(&buf->b_evict_lock);
4876 return (released);
4877}
4878
4879#ifdef ZFS_DEBUG
4880int
4881arc_referenced(arc_buf_t *buf)
4882{
4883 int referenced;
4884
4885 mutex_enter(&buf->b_evict_lock);
4886 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
4887 mutex_exit(&buf->b_evict_lock);
4888 return (referenced);
4889}
4890#endif
4891
4892static void
4893arc_write_ready(zio_t *zio)
4894{
4895 arc_write_callback_t *callback = zio->io_private;
4896 arc_buf_t *buf = callback->awcb_buf;
4897 arc_buf_hdr_t *hdr = buf->b_hdr;
4898
4899 ASSERT(HDR_HAS_L1HDR(hdr));
4900 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
4901 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4902 callback->awcb_ready(zio, buf, callback->awcb_private);
4903
4904 /*
4905 * If the IO is already in progress, then this is a re-write
4906 * attempt, so we need to thaw and re-compute the cksum.
4907 * It is the responsibility of the callback to handle the
4908 * accounting for any re-write attempt.
4909 */
4910 if (HDR_IO_IN_PROGRESS(hdr)) {
4911 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
4912 if (hdr->b_freeze_cksum != NULL) {
4913 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
4914 hdr->b_freeze_cksum = NULL;
4915 }
4916 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
4917 }
4918 arc_cksum_compute(buf, B_FALSE);
4919 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4920}
4921
4922/*
4923 * The SPA calls this callback for each physical write that happens on behalf
4924 * of a logical write. See the comment in dbuf_write_physdone() for details.
4925 */
4926static void
4927arc_write_physdone(zio_t *zio)
4928{
4929 arc_write_callback_t *cb = zio->io_private;
4930 if (cb->awcb_physdone != NULL)
4931 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
4932}
4933
4934static void
4935arc_write_done(zio_t *zio)
4936{
4937 arc_write_callback_t *callback = zio->io_private;
4938 arc_buf_t *buf = callback->awcb_buf;
4939 arc_buf_hdr_t *hdr = buf->b_hdr;
4940
4941 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4942
4943 if (zio->io_error == 0) {
4944 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
4945 buf_discard_identity(hdr);
4946 } else {
4947 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
4948 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
4949 }
4950 } else {
4951 ASSERT(BUF_EMPTY(hdr));
4952 }
4953
4954 /*
4955 * If the block to be written was all-zero or compressed enough to be
4956 * embedded in the BP, no write was performed so there will be no
4957 * dva/birth/checksum. The buffer must therefore remain anonymous
4958 * (and uncached).
4959 */
4960 if (!BUF_EMPTY(hdr)) {
4961 arc_buf_hdr_t *exists;
4962 kmutex_t *hash_lock;
4963
4964 ASSERT(zio->io_error == 0);
4965
4966 arc_cksum_verify(buf);
4967
4968 exists = buf_hash_insert(hdr, &hash_lock);
4969 if (exists != NULL) {
4970 /*
4971 * This can only happen if we overwrite for
4972 * sync-to-convergence, because we remove
4973 * buffers from the hash table when we arc_free().
4974 */
4975 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
4976 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4977 panic("bad overwrite, hdr=%p exists=%p",
4978 (void *)hdr, (void *)exists);
4979 ASSERT(refcount_is_zero(
4980 &exists->b_l1hdr.b_refcnt));
4981 arc_change_state(arc_anon, exists, hash_lock);
4982 mutex_exit(hash_lock);
4983 arc_hdr_destroy(exists);
4984 exists = buf_hash_insert(hdr, &hash_lock);
4985 ASSERT3P(exists, ==, NULL);
4986 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
4987 /* nopwrite */
4988 ASSERT(zio->io_prop.zp_nopwrite);
4989 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4990 panic("bad nopwrite, hdr=%p exists=%p",
4991 (void *)hdr, (void *)exists);
4992 } else {
4993 /* Dedup */
4994 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4995 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
4996 ASSERT(BP_GET_DEDUP(zio->io_bp));
4997 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
4998 }
4999 }
5000 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
5001 /* if it's not anon, we are doing a scrub */
5002 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5003 arc_access(hdr, hash_lock);
5004 mutex_exit(hash_lock);
5005 } else {
5006 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
5007 }
5008
5009 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5010 callback->awcb_done(zio, buf, callback->awcb_private);
5011
5012 kmem_free(callback, sizeof (arc_write_callback_t));
5013}
5014
5015zio_t *
5016arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
5017 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
5018 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
5019 arc_done_func_t *done, void *private, zio_priority_t priority,
5020 int zio_flags, const zbookmark_phys_t *zb)
5021{
5022 arc_buf_hdr_t *hdr = buf->b_hdr;
5023 arc_write_callback_t *callback;
5024 zio_t *zio;
5025
5026 ASSERT(ready != NULL);
5027 ASSERT(done != NULL);
5028 ASSERT(!HDR_IO_ERROR(hdr));
5029 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5030 ASSERT(hdr->b_l1hdr.b_acb == NULL);
5031 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
5032 if (l2arc)
5033 hdr->b_flags |= ARC_FLAG_L2CACHE;
5034 if (l2arc_compress)
5035 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
5036 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5037 callback->awcb_ready = ready;
5038 callback->awcb_physdone = physdone;
5039 callback->awcb_done = done;
5040 callback->awcb_private = private;
5041 callback->awcb_buf = buf;
5042
5043 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
5044 arc_write_ready, arc_write_physdone, arc_write_done, callback,
5045 priority, zio_flags, zb);
5046
5047 return (zio);
5048}
5049
5050static int
5051arc_memory_throttle(uint64_t reserve, uint64_t txg)
5052{
5053#ifdef _KERNEL
5054 uint64_t available_memory = ptob(freemem);
5055 static uint64_t page_load = 0;
5056 static uint64_t last_txg = 0;
5057#ifdef __linux__
5058 pgcnt_t minfree = btop(arc_sys_free / 4);
5059#endif
5060
5061 if (freemem > physmem * arc_lotsfree_percent / 100)
5062 return (0);
5063
5064 if (txg > last_txg) {
5065 last_txg = txg;
5066 page_load = 0;
5067 }
5068
5069 /*
5070 * If we are in pageout, we know that memory is already tight,
5071 * the arc is already going to be evicting, so we just want to
5072 * continue to let page writes occur as quickly as possible.
5073 */
5074 if (current_is_kswapd()) {
5075 if (page_load > MAX(ptob(minfree), available_memory) / 4) {
5076 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
5077 return (SET_ERROR(ERESTART));
5078 }
5079 /* Note: reserve is inflated, so we deflate */
5080 page_load += reserve / 8;
5081 return (0);
5082 } else if (page_load > 0 && arc_reclaim_needed()) {
5083 /* memory is low, delay before restarting */
5084 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5085 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
5086 return (SET_ERROR(EAGAIN));
5087 }
5088 page_load = 0;
5089#endif
5090 return (0);
5091}
5092
5093void
5094arc_tempreserve_clear(uint64_t reserve)
5095{
5096 atomic_add_64(&arc_tempreserve, -reserve);
5097 ASSERT((int64_t)arc_tempreserve >= 0);
5098}
5099
5100int
5101arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5102{
5103 int error;
5104 uint64_t anon_size;
5105
5106 if (!arc_no_grow &&
5107 reserve > arc_c/4 &&
5108 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
5109 arc_c = MIN(arc_c_max, reserve * 4);
5110
5111 /*
5112 * Throttle when the calculated memory footprint for the TXG
5113 * exceeds the target ARC size.
5114 */
5115 if (reserve > arc_c) {
5116 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
5117 return (SET_ERROR(ERESTART));
5118 }
5119
5120 /*
5121 * Don't count loaned bufs as in flight dirty data to prevent long
5122 * network delays from blocking transactions that are ready to be
5123 * assigned to a txg.
5124 */
5125 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5126 arc_loaned_bytes), 0);
5127
5128 /*
5129 * Writes will, almost always, require additional memory allocations
5130 * in order to compress/encrypt/etc the data. We therefore need to
5131 * make sure that there is sufficient available memory for this.
5132 */
5133 error = arc_memory_throttle(reserve, txg);
5134 if (error != 0)
5135 return (error);
5136
5137 /*
5138 * Throttle writes when the amount of dirty data in the cache
5139 * gets too large. We try to keep the cache less than half full
5140 * of dirty blocks so that our sync times don't grow too large.
5141 * Note: if two requests come in concurrently, we might let them
5142 * both succeed, when one of them should fail. Not a huge deal.
5143 */
5144
5145 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5146 anon_size > arc_c / 4) {
5147 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5148 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5149 arc_tempreserve>>10,
5150 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
5151 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
5152 reserve>>10, arc_c>>10);
5153 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
5154 return (SET_ERROR(ERESTART));
5155 }
5156 atomic_add_64(&arc_tempreserve, reserve);
5157 return (0);
5158}
5159
5160static void
5161arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5162 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5163{
5164 size->value.ui64 = refcount_count(&state->arcs_size);
5165 evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
5166 evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
5167}
5168
5169static int
5170arc_kstat_update(kstat_t *ksp, int rw)
5171{
5172 arc_stats_t *as = ksp->ks_data;
5173
5174 if (rw == KSTAT_WRITE) {
5175 return (EACCES);
5176 } else {
5177 arc_kstat_update_state(arc_anon,
5178 &as->arcstat_anon_size,
5179 &as->arcstat_anon_evictable_data,
5180 &as->arcstat_anon_evictable_metadata);
5181 arc_kstat_update_state(arc_mru,
5182 &as->arcstat_mru_size,
5183 &as->arcstat_mru_evictable_data,
5184 &as->arcstat_mru_evictable_metadata);
5185 arc_kstat_update_state(arc_mru_ghost,
5186 &as->arcstat_mru_ghost_size,
5187 &as->arcstat_mru_ghost_evictable_data,
5188 &as->arcstat_mru_ghost_evictable_metadata);
5189 arc_kstat_update_state(arc_mfu,
5190 &as->arcstat_mfu_size,
5191 &as->arcstat_mfu_evictable_data,
5192 &as->arcstat_mfu_evictable_metadata);
5193 arc_kstat_update_state(arc_mfu_ghost,
5194 &as->arcstat_mfu_ghost_size,
5195 &as->arcstat_mfu_ghost_evictable_data,
5196 &as->arcstat_mfu_ghost_evictable_metadata);
5197 }
5198
5199 return (0);
5200}
5201
5202/*
5203 * This function *must* return indices evenly distributed between all
5204 * sublists of the multilist. This is needed due to how the ARC eviction
5205 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5206 * distributed between all sublists and uses this assumption when
5207 * deciding which sublist to evict from and how much to evict from it.
5208 */
5209unsigned int
5210arc_state_multilist_index_func(multilist_t *ml, void *obj)
5211{
5212 arc_buf_hdr_t *hdr = obj;
5213
5214 /*
5215 * We rely on b_dva to generate evenly distributed index
5216 * numbers using buf_hash below. So, as an added precaution,
5217 * let's make sure we never add empty buffers to the arc lists.
5218 */
5219 ASSERT(!BUF_EMPTY(hdr));
5220
5221 /*
5222 * The assumption here, is the hash value for a given
5223 * arc_buf_hdr_t will remain constant throughout its lifetime
5224 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
5225 * Thus, we don't need to store the header's sublist index
5226 * on insertion, as this index can be recalculated on removal.
5227 *
5228 * Also, the low order bits of the hash value are thought to be
5229 * distributed evenly. Otherwise, in the case that the multilist
5230 * has a power of two number of sublists, each sublists' usage
5231 * would not be evenly distributed.
5232 */
5233 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5234 multilist_get_num_sublists(ml));
5235}
5236
5237/*
5238 * Called during module initialization and periodically thereafter to
5239 * apply reasonable changes to the exposed performance tunings. Non-zero
5240 * zfs_* values which differ from the currently set values will be applied.
5241 */
5242static void
5243arc_tuning_update(void)
5244{
5245 /* Valid range: 64M - <all physical memory> */
5246 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
5247 (zfs_arc_max > 64 << 20) && (zfs_arc_max < ptob(physmem)) &&
5248 (zfs_arc_max > arc_c_min)) {
5249 arc_c_max = zfs_arc_max;
5250 arc_c = arc_c_max;
5251 arc_p = (arc_c >> 1);
5252 arc_meta_limit = MIN(arc_meta_limit, (3 * arc_c_max) / 4);
5253 }
5254
5255 /* Valid range: 32M - <arc_c_max> */
5256 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
5257 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
5258 (zfs_arc_min <= arc_c_max)) {
5259 arc_c_min = zfs_arc_min;
5260 arc_c = MAX(arc_c, arc_c_min);
5261 }
5262
5263 /* Valid range: 16M - <arc_c_max> */
5264 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
5265 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
5266 (zfs_arc_meta_min <= arc_c_max)) {
5267 arc_meta_min = zfs_arc_meta_min;
5268 arc_meta_limit = MAX(arc_meta_limit, arc_meta_min);
5269 }
5270
5271 /* Valid range: <arc_meta_min> - <arc_c_max> */
5272 if ((zfs_arc_meta_limit) && (zfs_arc_meta_limit != arc_meta_limit) &&
5273 (zfs_arc_meta_limit >= zfs_arc_meta_min) &&
5274 (zfs_arc_meta_limit <= arc_c_max))
5275 arc_meta_limit = zfs_arc_meta_limit;
5276
5277 /* Valid range: 1 - N */
5278 if (zfs_arc_grow_retry)
5279 arc_grow_retry = zfs_arc_grow_retry;
5280
5281 /* Valid range: 1 - N */
5282 if (zfs_arc_shrink_shift) {
5283 arc_shrink_shift = zfs_arc_shrink_shift;
5284 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
5285 }
5286
5287 /* Valid range: 1 - N */
5288 if (zfs_arc_p_min_shift)
5289 arc_p_min_shift = zfs_arc_p_min_shift;
5290
5291 /* Valid range: 1 - N ticks */
5292 if (zfs_arc_min_prefetch_lifespan)
5293 arc_min_prefetch_lifespan = zfs_arc_min_prefetch_lifespan;
5294
5295 /* Valid range: 0 - 100 */
5296 if ((zfs_arc_lotsfree_percent >= 0) &&
5297 (zfs_arc_lotsfree_percent <= 100))
5298 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
5299
5300 /* Valid range: 0 - <all physical memory> */
5301 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
5302 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), ptob(physmem));
5303
5304}
5305
5306void
5307arc_init(void)
5308{
5309 /*
5310 * allmem is "all memory that we could possibly use".
5311 */
5312#ifdef _KERNEL
5313 uint64_t allmem = ptob(physmem);
5314#else
5315 uint64_t allmem = (physmem * PAGESIZE) / 2;
5316#endif
5317
5318 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5319 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5320 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5321
5322 mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
5323 cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
5324
5325 /* Convert seconds to clock ticks */
5326 arc_min_prefetch_lifespan = 1 * hz;
5327
5328 /* Start out with 1/8 of all memory */
5329 arc_c = allmem / 8;
5330
5331#ifdef _KERNEL
5332 /*
5333 * On architectures where the physical memory can be larger
5334 * than the addressable space (intel in 32-bit mode), we may
5335 * need to limit the cache to 1/8 of VM size.
5336 */
5337 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
5338
5339 /*
5340 * Register a shrinker to support synchronous (direct) memory
5341 * reclaim from the arc. This is done to prevent kswapd from
5342 * swapping out pages when it is preferable to shrink the arc.
5343 */
5344 spl_register_shrinker(&arc_shrinker);
5345
5346 /* Set to 1/64 of all memory or a minimum of 512K */
5347 arc_sys_free = MAX(ptob(physmem / 64), (512 * 1024));
5348 arc_need_free = 0;
5349#endif
5350
5351 /* Set min cache to allow safe operation of arc_adapt() */
5352 arc_c_min = 2ULL << SPA_MAXBLOCKSHIFT;
5353 /* Set max to 1/2 of all memory */
5354 arc_c_max = allmem / 2;
5355
5356 arc_c = arc_c_max;
5357 arc_p = (arc_c >> 1);
5358
5359 /* Set min to 1/2 of arc_c_min */
5360 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
5361 /* Initialize maximum observed usage to zero */
5362 arc_meta_max = 0;
5363 /* Set limit to 3/4 of arc_c_max with a floor of arc_meta_min */
5364 arc_meta_limit = MAX((3 * arc_c_max) / 4, arc_meta_min);
5365
5366 /* Apply user specified tunings */
5367 arc_tuning_update();
5368
5369 if (zfs_arc_num_sublists_per_state < 1)
5370 zfs_arc_num_sublists_per_state = MAX(boot_ncpus, 1);
5371
5372 /* if kmem_flags are set, lets try to use less memory */
5373 if (kmem_debugging())
5374 arc_c = arc_c / 2;
5375 if (arc_c < arc_c_min)
5376 arc_c = arc_c_min;
5377
5378 arc_anon = &ARC_anon;
5379 arc_mru = &ARC_mru;
5380 arc_mru_ghost = &ARC_mru_ghost;
5381 arc_mfu = &ARC_mfu;
5382 arc_mfu_ghost = &ARC_mfu_ghost;
5383 arc_l2c_only = &ARC_l2c_only;
5384 arc_size = 0;
5385
5386 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
5387 sizeof (arc_buf_hdr_t),
5388 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5389 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5390 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
5391 sizeof (arc_buf_hdr_t),
5392 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5393 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5394 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
5395 sizeof (arc_buf_hdr_t),
5396 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5397 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5398 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
5399 sizeof (arc_buf_hdr_t),
5400 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5401 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5402 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
5403 sizeof (arc_buf_hdr_t),
5404 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5405 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5406 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
5407 sizeof (arc_buf_hdr_t),
5408 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5409 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5410 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
5411 sizeof (arc_buf_hdr_t),
5412 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5413 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5414 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
5415 sizeof (arc_buf_hdr_t),
5416 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5417 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5418 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
5419 sizeof (arc_buf_hdr_t),
5420 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5421 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5422 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
5423 sizeof (arc_buf_hdr_t),
5424 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5425 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5426
5427 arc_anon->arcs_state = ARC_STATE_ANON;
5428 arc_mru->arcs_state = ARC_STATE_MRU;
5429 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
5430 arc_mfu->arcs_state = ARC_STATE_MFU;
5431 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
5432 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
5433
5434 refcount_create(&arc_anon->arcs_size);
5435 refcount_create(&arc_mru->arcs_size);
5436 refcount_create(&arc_mru_ghost->arcs_size);
5437 refcount_create(&arc_mfu->arcs_size);
5438 refcount_create(&arc_mfu_ghost->arcs_size);
5439 refcount_create(&arc_l2c_only->arcs_size);
5440
5441 buf_init();
5442
5443 arc_reclaim_thread_exit = FALSE;
5444 arc_user_evicts_thread_exit = FALSE;
5445 list_create(&arc_prune_list, sizeof (arc_prune_t),
5446 offsetof(arc_prune_t, p_node));
5447 arc_eviction_list = NULL;
5448 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
5449 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
5450
5451 arc_prune_taskq = taskq_create("arc_prune", max_ncpus, defclsyspri,
5452 max_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
5453
5454 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
5455 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
5456
5457 if (arc_ksp != NULL) {
5458 arc_ksp->ks_data = &arc_stats;
5459 arc_ksp->ks_update = arc_kstat_update;
5460 kstat_install(arc_ksp);
5461 }
5462
5463 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
5464 TS_RUN, defclsyspri);
5465
5466 (void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
5467 TS_RUN, defclsyspri);
5468
5469 arc_dead = FALSE;
5470 arc_warm = B_FALSE;
5471
5472 /*
5473 * Calculate maximum amount of dirty data per pool.
5474 *
5475 * If it has been set by a module parameter, take that.
5476 * Otherwise, use a percentage of physical memory defined by
5477 * zfs_dirty_data_max_percent (default 10%) with a cap at
9784fa9e 5478 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
70e083d2
TG
5479 */
5480 if (zfs_dirty_data_max_max == 0)
9784fa9e
CIK
5481 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
5482 (uint64_t)physmem * PAGESIZE *
5483 zfs_dirty_data_max_max_percent / 100);
70e083d2
TG
5484
5485 if (zfs_dirty_data_max == 0) {
5486 zfs_dirty_data_max = (uint64_t)physmem * PAGESIZE *
5487 zfs_dirty_data_max_percent / 100;
5488 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
5489 zfs_dirty_data_max_max);
5490 }
5491}
5492
5493void
5494arc_fini(void)
5495{
5496 arc_prune_t *p;
5497
5498#ifdef _KERNEL
5499 spl_unregister_shrinker(&arc_shrinker);
5500#endif /* _KERNEL */
5501
5502 mutex_enter(&arc_reclaim_lock);
5503 arc_reclaim_thread_exit = TRUE;
5504 /*
5505 * The reclaim thread will set arc_reclaim_thread_exit back to
5506 * FALSE when it is finished exiting; we're waiting for that.
5507 */
5508 while (arc_reclaim_thread_exit) {
5509 cv_signal(&arc_reclaim_thread_cv);
5510 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
5511 }
5512 mutex_exit(&arc_reclaim_lock);
5513
5514 mutex_enter(&arc_user_evicts_lock);
5515 arc_user_evicts_thread_exit = TRUE;
5516 /*
5517 * The user evicts thread will set arc_user_evicts_thread_exit
5518 * to FALSE when it is finished exiting; we're waiting for that.
5519 */
5520 while (arc_user_evicts_thread_exit) {
5521 cv_signal(&arc_user_evicts_cv);
5522 cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
5523 }
5524 mutex_exit(&arc_user_evicts_lock);
5525
5526 /* Use TRUE to ensure *all* buffers are evicted */
5527 arc_flush(NULL, TRUE);
5528
5529 arc_dead = TRUE;
5530
5531 if (arc_ksp != NULL) {
5532 kstat_delete(arc_ksp);
5533 arc_ksp = NULL;
5534 }
5535
5536 taskq_wait(arc_prune_taskq);
5537 taskq_destroy(arc_prune_taskq);
5538
5539 mutex_enter(&arc_prune_mtx);
5540 while ((p = list_head(&arc_prune_list)) != NULL) {
5541 list_remove(&arc_prune_list, p);
5542 refcount_remove(&p->p_refcnt, &arc_prune_list);
5543 refcount_destroy(&p->p_refcnt);
5544 kmem_free(p, sizeof (*p));
5545 }
5546 mutex_exit(&arc_prune_mtx);
5547
5548 list_destroy(&arc_prune_list);
5549 mutex_destroy(&arc_prune_mtx);
5550 mutex_destroy(&arc_reclaim_lock);
5551 cv_destroy(&arc_reclaim_thread_cv);
5552 cv_destroy(&arc_reclaim_waiters_cv);
5553
5554 mutex_destroy(&arc_user_evicts_lock);
5555 cv_destroy(&arc_user_evicts_cv);
5556
5557 refcount_destroy(&arc_anon->arcs_size);
5558 refcount_destroy(&arc_mru->arcs_size);
5559 refcount_destroy(&arc_mru_ghost->arcs_size);
5560 refcount_destroy(&arc_mfu->arcs_size);
5561 refcount_destroy(&arc_mfu_ghost->arcs_size);
5562 refcount_destroy(&arc_l2c_only->arcs_size);
5563
5564 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5565 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5566 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5567 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5568 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5569 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5570 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5571 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5572 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
5573 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
5574
5575 buf_fini();
5576
5577 ASSERT0(arc_loaned_bytes);
5578}
5579
5580/*
5581 * Level 2 ARC
5582 *
5583 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5584 * It uses dedicated storage devices to hold cached data, which are populated
5585 * using large infrequent writes. The main role of this cache is to boost
5586 * the performance of random read workloads. The intended L2ARC devices
5587 * include short-stroked disks, solid state disks, and other media with
5588 * substantially faster read latency than disk.
5589 *
5590 * +-----------------------+
5591 * | ARC |
5592 * +-----------------------+
5593 * | ^ ^
5594 * | | |
5595 * l2arc_feed_thread() arc_read()
5596 * | | |
5597 * | l2arc read |
5598 * V | |
5599 * +---------------+ |
5600 * | L2ARC | |
5601 * +---------------+ |
5602 * | ^ |
5603 * l2arc_write() | |
5604 * | | |
5605 * V | |
5606 * +-------+ +-------+
5607 * | vdev | | vdev |
5608 * | cache | | cache |
5609 * +-------+ +-------+
5610 * +=========+ .-----.
5611 * : L2ARC : |-_____-|
5612 * : devices : | Disks |
5613 * +=========+ `-_____-'
5614 *
5615 * Read requests are satisfied from the following sources, in order:
5616 *
5617 * 1) ARC
5618 * 2) vdev cache of L2ARC devices
5619 * 3) L2ARC devices
5620 * 4) vdev cache of disks
5621 * 5) disks
5622 *
5623 * Some L2ARC device types exhibit extremely slow write performance.
5624 * To accommodate for this there are some significant differences between
5625 * the L2ARC and traditional cache design:
5626 *
5627 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
5628 * the ARC behave as usual, freeing buffers and placing headers on ghost
5629 * lists. The ARC does not send buffers to the L2ARC during eviction as
5630 * this would add inflated write latencies for all ARC memory pressure.
5631 *
5632 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5633 * It does this by periodically scanning buffers from the eviction-end of
5634 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
5635 * not already there. It scans until a headroom of buffers is satisfied,
5636 * which itself is a buffer for ARC eviction. If a compressible buffer is
5637 * found during scanning and selected for writing to an L2ARC device, we
5638 * temporarily boost scanning headroom during the next scan cycle to make
5639 * sure we adapt to compression effects (which might significantly reduce
5640 * the data volume we write to L2ARC). The thread that does this is
5641 * l2arc_feed_thread(), illustrated below; example sizes are included to
5642 * provide a better sense of ratio than this diagram:
5643 *
5644 * head --> tail
5645 * +---------------------+----------+
5646 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
5647 * +---------------------+----------+ | o L2ARC eligible
5648 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
5649 * +---------------------+----------+ |
5650 * 15.9 Gbytes ^ 32 Mbytes |
5651 * headroom |
5652 * l2arc_feed_thread()
5653 * |
5654 * l2arc write hand <--[oooo]--'
5655 * | 8 Mbyte
5656 * | write max
5657 * V
5658 * +==============================+
5659 * L2ARC dev |####|#|###|###| |####| ... |
5660 * +==============================+
5661 * 32 Gbytes
5662 *
5663 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5664 * evicted, then the L2ARC has cached a buffer much sooner than it probably
5665 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
5666 * safe to say that this is an uncommon case, since buffers at the end of
5667 * the ARC lists have moved there due to inactivity.
5668 *
5669 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5670 * then the L2ARC simply misses copying some buffers. This serves as a
5671 * pressure valve to prevent heavy read workloads from both stalling the ARC
5672 * with waits and clogging the L2ARC with writes. This also helps prevent
5673 * the potential for the L2ARC to churn if it attempts to cache content too
5674 * quickly, such as during backups of the entire pool.
5675 *
5676 * 5. After system boot and before the ARC has filled main memory, there are
5677 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5678 * lists can remain mostly static. Instead of searching from tail of these
5679 * lists as pictured, the l2arc_feed_thread() will search from the list heads
5680 * for eligible buffers, greatly increasing its chance of finding them.
5681 *
5682 * The L2ARC device write speed is also boosted during this time so that
5683 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
5684 * there are no L2ARC reads, and no fear of degrading read performance
5685 * through increased writes.
5686 *
5687 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
5688 * the vdev queue can aggregate them into larger and fewer writes. Each
5689 * device is written to in a rotor fashion, sweeping writes through
5690 * available space then repeating.
5691 *
5692 * 7. The L2ARC does not store dirty content. It never needs to flush
5693 * write buffers back to disk based storage.
5694 *
5695 * 8. If an ARC buffer is written (and dirtied) which also exists in the
5696 * L2ARC, the now stale L2ARC buffer is immediately dropped.
5697 *
5698 * The performance of the L2ARC can be tweaked by a number of tunables, which
5699 * may be necessary for different workloads:
5700 *
5701 * l2arc_write_max max write bytes per interval
5702 * l2arc_write_boost extra write bytes during device warmup
5703 * l2arc_noprefetch skip caching prefetched buffers
5704 * l2arc_nocompress skip compressing buffers
5705 * l2arc_headroom number of max device writes to precache
5706 * l2arc_headroom_boost when we find compressed buffers during ARC
5707 * scanning, we multiply headroom by this
5708 * percentage factor for the next scan cycle,
5709 * since more compressed buffers are likely to
5710 * be present
5711 * l2arc_feed_secs seconds between L2ARC writing
5712 *
5713 * Tunables may be removed or added as future performance improvements are
5714 * integrated, and also may become zpool properties.
5715 *
5716 * There are three key functions that control how the L2ARC warms up:
5717 *
5718 * l2arc_write_eligible() check if a buffer is eligible to cache
5719 * l2arc_write_size() calculate how much to write
5720 * l2arc_write_interval() calculate sleep delay between writes
5721 *
5722 * These three functions determine what to write, how much, and how quickly
5723 * to send writes.
5724 */
5725
5726static boolean_t
5727l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
5728{
5729 /*
5730 * A buffer is *not* eligible for the L2ARC if it:
5731 * 1. belongs to a different spa.
5732 * 2. is already cached on the L2ARC.
5733 * 3. has an I/O in progress (it may be an incomplete read).
5734 * 4. is flagged not eligible (zfs property).
5735 */
5736 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
5737 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
5738 return (B_FALSE);
5739
5740 return (B_TRUE);
5741}
5742
5743static uint64_t
5744l2arc_write_size(void)
5745{
5746 uint64_t size;
5747
5748 /*
5749 * Make sure our globals have meaningful values in case the user
5750 * altered them.
5751 */
5752 size = l2arc_write_max;
5753 if (size == 0) {
5754 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5755 "be greater than zero, resetting it to the default (%d)",
5756 L2ARC_WRITE_SIZE);
5757 size = l2arc_write_max = L2ARC_WRITE_SIZE;
5758 }
5759
5760 if (arc_warm == B_FALSE)
5761 size += l2arc_write_boost;
5762
5763 return (size);
5764
5765}
5766
5767static clock_t
5768l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5769{
5770 clock_t interval, next, now;
5771
5772 /*
5773 * If the ARC lists are busy, increase our write rate; if the
5774 * lists are stale, idle back. This is achieved by checking
5775 * how much we previously wrote - if it was more than half of
5776 * what we wanted, schedule the next write much sooner.
5777 */
5778 if (l2arc_feed_again && wrote > (wanted / 2))
5779 interval = (hz * l2arc_feed_min_ms) / 1000;
5780 else
5781 interval = hz * l2arc_feed_secs;
5782
5783 now = ddi_get_lbolt();
5784 next = MAX(now, MIN(now + interval, began + interval));
5785
5786 return (next);
5787}
5788
5789/*
5790 * Cycle through L2ARC devices. This is how L2ARC load balances.
5791 * If a device is returned, this also returns holding the spa config lock.
5792 */
5793static l2arc_dev_t *
5794l2arc_dev_get_next(void)
5795{
5796 l2arc_dev_t *first, *next = NULL;
5797
5798 /*
5799 * Lock out the removal of spas (spa_namespace_lock), then removal
5800 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
5801 * both locks will be dropped and a spa config lock held instead.
5802 */
5803 mutex_enter(&spa_namespace_lock);
5804 mutex_enter(&l2arc_dev_mtx);
5805
5806 /* if there are no vdevs, there is nothing to do */
5807 if (l2arc_ndev == 0)
5808 goto out;
5809
5810 first = NULL;
5811 next = l2arc_dev_last;
5812 do {
5813 /* loop around the list looking for a non-faulted vdev */
5814 if (next == NULL) {
5815 next = list_head(l2arc_dev_list);
5816 } else {
5817 next = list_next(l2arc_dev_list, next);
5818 if (next == NULL)
5819 next = list_head(l2arc_dev_list);
5820 }
5821
5822 /* if we have come back to the start, bail out */
5823 if (first == NULL)
5824 first = next;
5825 else if (next == first)
5826 break;
5827
5828 } while (vdev_is_dead(next->l2ad_vdev));
5829
5830 /* if we were unable to find any usable vdevs, return NULL */
5831 if (vdev_is_dead(next->l2ad_vdev))
5832 next = NULL;
5833
5834 l2arc_dev_last = next;
5835
5836out:
5837 mutex_exit(&l2arc_dev_mtx);
5838
5839 /*
5840 * Grab the config lock to prevent the 'next' device from being
5841 * removed while we are writing to it.
5842 */
5843 if (next != NULL)
5844 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
5845 mutex_exit(&spa_namespace_lock);
5846
5847 return (next);
5848}
5849
5850/*
5851 * Free buffers that were tagged for destruction.
5852 */
5853static void
5854l2arc_do_free_on_write(void)
5855{
5856 list_t *buflist;
5857 l2arc_data_free_t *df, *df_prev;
5858
5859 mutex_enter(&l2arc_free_on_write_mtx);
5860 buflist = l2arc_free_on_write;
5861
5862 for (df = list_tail(buflist); df; df = df_prev) {
5863 df_prev = list_prev(buflist, df);
5864 ASSERT(df->l2df_data != NULL);
5865 ASSERT(df->l2df_func != NULL);
5866 df->l2df_func(df->l2df_data, df->l2df_size);
5867 list_remove(buflist, df);
5868 kmem_free(df, sizeof (l2arc_data_free_t));
5869 }
5870
5871 mutex_exit(&l2arc_free_on_write_mtx);
5872}
5873
5874/*
5875 * A write to a cache device has completed. Update all headers to allow
5876 * reads from these buffers to begin.
5877 */
5878static void
5879l2arc_write_done(zio_t *zio)
5880{
5881 l2arc_write_callback_t *cb;
5882 l2arc_dev_t *dev;
5883 list_t *buflist;
5884 arc_buf_hdr_t *head, *hdr, *hdr_prev;
5885 kmutex_t *hash_lock;
5886 int64_t bytes_dropped = 0;
5887
5888 cb = zio->io_private;
5889 ASSERT(cb != NULL);
5890 dev = cb->l2wcb_dev;
5891 ASSERT(dev != NULL);
5892 head = cb->l2wcb_head;
5893 ASSERT(head != NULL);
5894 buflist = &dev->l2ad_buflist;
5895 ASSERT(buflist != NULL);
5896 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
5897 l2arc_write_callback_t *, cb);
5898
5899 if (zio->io_error != 0)
5900 ARCSTAT_BUMP(arcstat_l2_writes_error);
5901
5902 /*
5903 * All writes completed, or an error was hit.
5904 */
5905top:
5906 mutex_enter(&dev->l2ad_mtx);
5907 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
5908 hdr_prev = list_prev(buflist, hdr);
5909
5910 hash_lock = HDR_LOCK(hdr);
5911
5912 /*
5913 * We cannot use mutex_enter or else we can deadlock
5914 * with l2arc_write_buffers (due to swapping the order
5915 * the hash lock and l2ad_mtx are taken).
5916 */
5917 if (!mutex_tryenter(hash_lock)) {
5918 /*
5919 * Missed the hash lock. We must retry so we
5920 * don't leave the ARC_FLAG_L2_WRITING bit set.
5921 */
5922 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
5923
5924 /*
5925 * We don't want to rescan the headers we've
5926 * already marked as having been written out, so
5927 * we reinsert the head node so we can pick up
5928 * where we left off.
5929 */
5930 list_remove(buflist, head);
5931 list_insert_after(buflist, hdr, head);
5932
5933 mutex_exit(&dev->l2ad_mtx);
5934
5935 /*
5936 * We wait for the hash lock to become available
5937 * to try and prevent busy waiting, and increase
5938 * the chance we'll be able to acquire the lock
5939 * the next time around.
5940 */
5941 mutex_enter(hash_lock);
5942 mutex_exit(hash_lock);
5943 goto top;
5944 }
5945
5946 /*
5947 * We could not have been moved into the arc_l2c_only
5948 * state while in-flight due to our ARC_FLAG_L2_WRITING
5949 * bit being set. Let's just ensure that's being enforced.
5950 */
5951 ASSERT(HDR_HAS_L1HDR(hdr));
5952
5953 /*
5954 * We may have allocated a buffer for L2ARC compression,
5955 * we must release it to avoid leaking this data.
5956 */
5957 l2arc_release_cdata_buf(hdr);
5958
5959 if (zio->io_error != 0) {
5960 /*
5961 * Error - drop L2ARC entry.
5962 */
5963 list_remove(buflist, hdr);
5964 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
5965
5966 ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
5967 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
5968
5969 bytes_dropped += hdr->b_l2hdr.b_asize;
5970 (void) refcount_remove_many(&dev->l2ad_alloc,
5971 hdr->b_l2hdr.b_asize, hdr);
5972 }
5973
5974 /*
5975 * Allow ARC to begin reads and ghost list evictions to
5976 * this L2ARC entry.
5977 */
5978 hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
5979
5980 mutex_exit(hash_lock);
5981 }
5982
5983 atomic_inc_64(&l2arc_writes_done);
5984 list_remove(buflist, head);
5985 ASSERT(!HDR_HAS_L1HDR(head));
5986 kmem_cache_free(hdr_l2only_cache, head);
5987 mutex_exit(&dev->l2ad_mtx);
5988
5989 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
5990
5991 l2arc_do_free_on_write();
5992
5993 kmem_free(cb, sizeof (l2arc_write_callback_t));
5994}
5995
5996/*
5997 * A read to a cache device completed. Validate buffer contents before
5998 * handing over to the regular ARC routines.
5999 */
6000static void
6001l2arc_read_done(zio_t *zio)
6002{
6003 l2arc_read_callback_t *cb;
6004 arc_buf_hdr_t *hdr;
6005 arc_buf_t *buf;
6006 kmutex_t *hash_lock;
6007 int equal;
6008
6009 ASSERT(zio->io_vd != NULL);
6010 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6011
6012 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6013
6014 cb = zio->io_private;
6015 ASSERT(cb != NULL);
6016 buf = cb->l2rcb_buf;
6017 ASSERT(buf != NULL);
6018
6019 hash_lock = HDR_LOCK(buf->b_hdr);
6020 mutex_enter(hash_lock);
6021 hdr = buf->b_hdr;
6022 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6023
6024 /*
6025 * If the buffer was compressed, decompress it first.
6026 */
6027 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
6028 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
6029 ASSERT(zio->io_data != NULL);
6030 ASSERT3U(zio->io_size, ==, hdr->b_size);
6031 ASSERT3U(BP_GET_LSIZE(&cb->l2rcb_bp), ==, hdr->b_size);
6032
6033 /*
6034 * Check this survived the L2ARC journey.
6035 */
6036 equal = arc_cksum_equal(buf);
6037 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6038 mutex_exit(hash_lock);
6039 zio->io_private = buf;
6040 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
6041 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
6042 arc_read_done(zio);
6043 } else {
6044 mutex_exit(hash_lock);
6045 /*
6046 * Buffer didn't survive caching. Increment stats and
6047 * reissue to the original storage device.
6048 */
6049 if (zio->io_error != 0) {
6050 ARCSTAT_BUMP(arcstat_l2_io_error);
6051 } else {
6052 zio->io_error = SET_ERROR(EIO);
6053 }
6054 if (!equal)
6055 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6056
6057 /*
6058 * If there's no waiter, issue an async i/o to the primary
6059 * storage now. If there *is* a waiter, the caller must
6060 * issue the i/o in a context where it's OK to block.
6061 */
6062 if (zio->io_waiter == NULL) {
6063 zio_t *pio = zio_unique_parent(zio);
6064
6065 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6066
6067 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
6068 buf->b_data, hdr->b_size, arc_read_done, buf,
6069 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
6070 }
6071 }
6072
6073 kmem_free(cb, sizeof (l2arc_read_callback_t));
6074}
6075
6076/*
6077 * This is the list priority from which the L2ARC will search for pages to
6078 * cache. This is used within loops (0..3) to cycle through lists in the
6079 * desired order. This order can have a significant effect on cache
6080 * performance.
6081 *
6082 * Currently the metadata lists are hit first, MFU then MRU, followed by
6083 * the data lists. This function returns a locked list, and also returns
6084 * the lock pointer.
6085 */
6086static multilist_sublist_t *
6087l2arc_sublist_lock(int list_num)
6088{
6089 multilist_t *ml = NULL;
6090 unsigned int idx;
6091
6092 ASSERT(list_num >= 0 && list_num <= 3);
6093
6094 switch (list_num) {
6095 case 0:
6096 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
6097 break;
6098 case 1:
6099 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
6100 break;
6101 case 2:
6102 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
6103 break;
6104 case 3:
6105 ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
6106 break;
6107 }
6108
6109 /*
6110 * Return a randomly-selected sublist. This is acceptable
6111 * because the caller feeds only a little bit of data for each
6112 * call (8MB). Subsequent calls will result in different
6113 * sublists being selected.
6114 */
6115 idx = multilist_get_random_index(ml);
6116 return (multilist_sublist_lock(ml, idx));
6117}
6118
6119/*
6120 * Evict buffers from the device write hand to the distance specified in
6121 * bytes. This distance may span populated buffers, it may span nothing.
6122 * This is clearing a region on the L2ARC device ready for writing.
6123 * If the 'all' boolean is set, every buffer is evicted.
6124 */
6125static void
6126l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6127{
6128 list_t *buflist;
6129 arc_buf_hdr_t *hdr, *hdr_prev;
6130 kmutex_t *hash_lock;
6131 uint64_t taddr;
6132
6133 buflist = &dev->l2ad_buflist;
6134
6135 if (!all && dev->l2ad_first) {
6136 /*
6137 * This is the first sweep through the device. There is
6138 * nothing to evict.
6139 */
6140 return;
6141 }
6142
6143 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6144 /*
6145 * When nearing the end of the device, evict to the end
6146 * before the device write hand jumps to the start.
6147 */
6148 taddr = dev->l2ad_end;
6149 } else {
6150 taddr = dev->l2ad_hand + distance;
6151 }
6152 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6153 uint64_t, taddr, boolean_t, all);
6154
6155top:
6156 mutex_enter(&dev->l2ad_mtx);
6157 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6158 hdr_prev = list_prev(buflist, hdr);
6159
6160 hash_lock = HDR_LOCK(hdr);
6161
6162 /*
6163 * We cannot use mutex_enter or else we can deadlock
6164 * with l2arc_write_buffers (due to swapping the order
6165 * the hash lock and l2ad_mtx are taken).
6166 */
6167 if (!mutex_tryenter(hash_lock)) {
6168 /*
6169 * Missed the hash lock. Retry.
6170 */
6171 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6172 mutex_exit(&dev->l2ad_mtx);
6173 mutex_enter(hash_lock);
6174 mutex_exit(hash_lock);
6175 goto top;
6176 }
6177
6178 if (HDR_L2_WRITE_HEAD(hdr)) {
6179 /*
6180 * We hit a write head node. Leave it for
6181 * l2arc_write_done().
6182 */
6183 list_remove(buflist, hdr);
6184 mutex_exit(hash_lock);
6185 continue;
6186 }
6187
6188 if (!all && HDR_HAS_L2HDR(hdr) &&
6189 (hdr->b_l2hdr.b_daddr > taddr ||
6190 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6191 /*
6192 * We've evicted to the target address,
6193 * or the end of the device.
6194 */
6195 mutex_exit(hash_lock);
6196 break;
6197 }
6198
6199 ASSERT(HDR_HAS_L2HDR(hdr));
6200 if (!HDR_HAS_L1HDR(hdr)) {
6201 ASSERT(!HDR_L2_READING(hdr));
6202 /*
6203 * This doesn't exist in the ARC. Destroy.
6204 * arc_hdr_destroy() will call list_remove()
6205 * and decrement arcstat_l2_size.
6206 */
6207 arc_change_state(arc_anon, hdr, hash_lock);
6208 arc_hdr_destroy(hdr);
6209 } else {
6210 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6211 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6212 /*
6213 * Invalidate issued or about to be issued
6214 * reads, since we may be about to write
6215 * over this location.
6216 */
6217 if (HDR_L2_READING(hdr)) {
6218 ARCSTAT_BUMP(arcstat_l2_evict_reading);
6219 hdr->b_flags |= ARC_FLAG_L2_EVICTED;
6220 }
6221
6222 /* Ensure this header has finished being written */
6223 ASSERT(!HDR_L2_WRITING(hdr));
6224 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6225
6226 arc_hdr_l2hdr_destroy(hdr);
6227 }
6228 mutex_exit(hash_lock);
6229 }
6230 mutex_exit(&dev->l2ad_mtx);
6231}
6232
6233/*
6234 * Find and write ARC buffers to the L2ARC device.
6235 *
6236 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6237 * for reading until they have completed writing.
6238 * The headroom_boost is an in-out parameter used to maintain headroom boost
6239 * state between calls to this function.
6240 *
6241 * Returns the number of bytes actually written (which may be smaller than
6242 * the delta by which the device hand has changed due to alignment).
6243 */
6244static uint64_t
6245l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
6246 boolean_t *headroom_boost)
6247{
6248 arc_buf_hdr_t *hdr, *hdr_prev, *head;
6249 uint64_t write_asize, write_sz, headroom, buf_compress_minsz,
6250 stats_size;
6251 void *buf_data;
6252 boolean_t full;
6253 l2arc_write_callback_t *cb;
6254 zio_t *pio, *wzio;
6255 uint64_t guid = spa_load_guid(spa);
6256 int try;
6257 const boolean_t do_headroom_boost = *headroom_boost;
6258
6259 ASSERT(dev->l2ad_vdev != NULL);
6260
6261 /* Lower the flag now, we might want to raise it again later. */
6262 *headroom_boost = B_FALSE;
6263
6264 pio = NULL;
6265 write_sz = write_asize = 0;
6266 full = B_FALSE;
6267 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6268 head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
6269 head->b_flags |= ARC_FLAG_HAS_L2HDR;
6270
6271 /*
6272 * We will want to try to compress buffers that are at least 2x the
6273 * device sector size.
6274 */
6275 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
6276
6277 /*
6278 * Copy buffers for L2ARC writing.
6279 */
6280 for (try = 0; try <= 3; try++) {
6281 multilist_sublist_t *mls = l2arc_sublist_lock(try);
6282 uint64_t passed_sz = 0;
6283
6284 /*
6285 * L2ARC fast warmup.
6286 *
6287 * Until the ARC is warm and starts to evict, read from the
6288 * head of the ARC lists rather than the tail.
6289 */
6290 if (arc_warm == B_FALSE)
6291 hdr = multilist_sublist_head(mls);
6292 else
6293 hdr = multilist_sublist_tail(mls);
6294
6295 headroom = target_sz * l2arc_headroom;
6296 if (do_headroom_boost)
6297 headroom = (headroom * l2arc_headroom_boost) / 100;
6298
6299 for (; hdr; hdr = hdr_prev) {
6300 kmutex_t *hash_lock;
6301 uint64_t buf_sz;
6302 uint64_t buf_a_sz;
6303
6304 if (arc_warm == B_FALSE)
6305 hdr_prev = multilist_sublist_next(mls, hdr);
6306 else
6307 hdr_prev = multilist_sublist_prev(mls, hdr);
6308
6309 hash_lock = HDR_LOCK(hdr);
6310 if (!mutex_tryenter(hash_lock)) {
6311 /*
6312 * Skip this buffer rather than waiting.
6313 */
6314 continue;
6315 }
6316
6317 passed_sz += hdr->b_size;
6318 if (passed_sz > headroom) {
6319 /*
6320 * Searched too far.
6321 */
6322 mutex_exit(hash_lock);
6323 break;
6324 }
6325
6326 if (!l2arc_write_eligible(guid, hdr)) {
6327 mutex_exit(hash_lock);
6328 continue;
6329 }
6330
6331 /*
6332 * Assume that the buffer is not going to be compressed
6333 * and could take more space on disk because of a larger
6334 * disk block size.
6335 */
6336 buf_sz = hdr->b_size;
6337 buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6338
6339 if ((write_asize + buf_a_sz) > target_sz) {
6340 full = B_TRUE;
6341 mutex_exit(hash_lock);
6342 break;
6343 }
6344
6345 if (pio == NULL) {
6346 /*
6347 * Insert a dummy header on the buflist so
6348 * l2arc_write_done() can find where the
6349 * write buffers begin without searching.
6350 */
6351 mutex_enter(&dev->l2ad_mtx);
6352 list_insert_head(&dev->l2ad_buflist, head);
6353 mutex_exit(&dev->l2ad_mtx);
6354
6355 cb = kmem_alloc(
6356 sizeof (l2arc_write_callback_t), KM_SLEEP);
6357 cb->l2wcb_dev = dev;
6358 cb->l2wcb_head = head;
6359 pio = zio_root(spa, l2arc_write_done, cb,
6360 ZIO_FLAG_CANFAIL);
6361 }
6362
6363 /*
6364 * Create and add a new L2ARC header.
6365 */
6366 hdr->b_l2hdr.b_dev = dev;
6367 hdr->b_flags |= ARC_FLAG_L2_WRITING;
6368 /*
6369 * Temporarily stash the data buffer in b_tmp_cdata.
6370 * The subsequent write step will pick it up from
6371 * there. This is because can't access b_l1hdr.b_buf
6372 * without holding the hash_lock, which we in turn
6373 * can't access without holding the ARC list locks
6374 * (which we want to avoid during compression/writing)
6375 */
6376 hdr->b_l2hdr.b_compress = ZIO_COMPRESS_OFF;
6377 hdr->b_l2hdr.b_asize = hdr->b_size;
6378 hdr->b_l2hdr.b_hits = 0;
6379 hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
6380
6381 /*
6382 * Explicitly set the b_daddr field to a known
6383 * value which means "invalid address". This
6384 * enables us to differentiate which stage of
6385 * l2arc_write_buffers() the particular header
6386 * is in (e.g. this loop, or the one below).
6387 * ARC_FLAG_L2_WRITING is not enough to make
6388 * this distinction, and we need to know in
6389 * order to do proper l2arc vdev accounting in
6390 * arc_release() and arc_hdr_destroy().
6391 *
6392 * Note, we can't use a new flag to distinguish
6393 * the two stages because we don't hold the
6394 * header's hash_lock below, in the second stage
6395 * of this function. Thus, we can't simply
6396 * change the b_flags field to denote that the
6397 * IO has been sent. We can change the b_daddr
6398 * field of the L2 portion, though, since we'll
6399 * be holding the l2ad_mtx; which is why we're
6400 * using it to denote the header's state change.
6401 */
6402 hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
6403 hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
6404
6405 mutex_enter(&dev->l2ad_mtx);
6406 list_insert_head(&dev->l2ad_buflist, hdr);
6407 mutex_exit(&dev->l2ad_mtx);
6408
6409 /*
6410 * Compute and store the buffer cksum before
6411 * writing. On debug the cksum is verified first.
6412 */
6413 arc_cksum_verify(hdr->b_l1hdr.b_buf);
6414 arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
6415
6416 mutex_exit(hash_lock);
6417
6418 write_sz += buf_sz;
6419 write_asize += buf_a_sz;
6420 }
6421
6422 multilist_sublist_unlock(mls);
6423
6424 if (full == B_TRUE)
6425 break;
6426 }
6427
6428 /* No buffers selected for writing? */
6429 if (pio == NULL) {
6430 ASSERT0(write_sz);
6431 ASSERT(!HDR_HAS_L1HDR(head));
6432 kmem_cache_free(hdr_l2only_cache, head);
6433 return (0);
6434 }
6435
6436 mutex_enter(&dev->l2ad_mtx);
6437
6438 /*
6439 * Note that elsewhere in this file arcstat_l2_asize
6440 * and the used space on l2ad_vdev are updated using b_asize,
6441 * which is not necessarily rounded up to the device block size.
6442 * Too keep accounting consistent we do the same here as well:
6443 * stats_size accumulates the sum of b_asize of the written buffers,
6444 * while write_asize accumulates the sum of b_asize rounded up
6445 * to the device block size.
6446 * The latter sum is used only to validate the corectness of the code.
6447 */
6448 stats_size = 0;
6449 write_asize = 0;
6450
6451 /*
6452 * Now start writing the buffers. We're starting at the write head
6453 * and work backwards, retracing the course of the buffer selector
6454 * loop above.
6455 */
6456 for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
6457 hdr = list_prev(&dev->l2ad_buflist, hdr)) {
6458 uint64_t buf_sz;
6459
6460 /*
6461 * We rely on the L1 portion of the header below, so
6462 * it's invalid for this header to have been evicted out
6463 * of the ghost cache, prior to being written out. The
6464 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6465 */
6466 ASSERT(HDR_HAS_L1HDR(hdr));
6467
6468 /*
6469 * We shouldn't need to lock the buffer here, since we flagged
6470 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
6471 * take care to only access its L2 cache parameters. In
6472 * particular, hdr->l1hdr.b_buf may be invalid by now due to
6473 * ARC eviction.
6474 */
6475 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
6476
6477 if ((!l2arc_nocompress && HDR_L2COMPRESS(hdr)) &&
6478 hdr->b_l2hdr.b_asize >= buf_compress_minsz) {
6479 if (l2arc_compress_buf(hdr)) {
6480 /*
6481 * If compression succeeded, enable headroom
6482 * boost on the next scan cycle.
6483 */
6484 *headroom_boost = B_TRUE;
6485 }
6486 }
6487
6488 /*
6489 * Pick up the buffer data we had previously stashed away
6490 * (and now potentially also compressed).
6491 */
6492 buf_data = hdr->b_l1hdr.b_tmp_cdata;
6493 buf_sz = hdr->b_l2hdr.b_asize;
6494
6495 /*
6496 * We need to do this regardless if buf_sz is zero or
6497 * not, otherwise, when this l2hdr is evicted we'll
6498 * remove a reference that was never added.
6499 */
6500 (void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr);
6501
6502 /* Compression may have squashed the buffer to zero length. */
6503 if (buf_sz != 0) {
6504 uint64_t buf_a_sz;
6505
6506 wzio = zio_write_phys(pio, dev->l2ad_vdev,
6507 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
6508 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
6509 ZIO_FLAG_CANFAIL, B_FALSE);
6510
6511 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6512 zio_t *, wzio);
6513 (void) zio_nowait(wzio);
6514
6515 stats_size += buf_sz;
6516
6517 /*
6518 * Keep the clock hand suitably device-aligned.
6519 */
6520 buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6521 write_asize += buf_a_sz;
6522 dev->l2ad_hand += buf_a_sz;
6523 }
6524 }
6525
6526 mutex_exit(&dev->l2ad_mtx);
6527
6528 ASSERT3U(write_asize, <=, target_sz);
6529 ARCSTAT_BUMP(arcstat_l2_writes_sent);
6530 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
6531 ARCSTAT_INCR(arcstat_l2_size, write_sz);
6532 ARCSTAT_INCR(arcstat_l2_asize, stats_size);
6533 vdev_space_update(dev->l2ad_vdev, stats_size, 0, 0);
6534
6535 /*
6536 * Bump device hand to the device start if it is approaching the end.
6537 * l2arc_evict() will already have evicted ahead for this case.
6538 */
6539 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
6540 dev->l2ad_hand = dev->l2ad_start;
6541 dev->l2ad_first = B_FALSE;
6542 }
6543
6544 dev->l2ad_writing = B_TRUE;
6545 (void) zio_wait(pio);
6546 dev->l2ad_writing = B_FALSE;
6547
6548 return (write_asize);
6549}
6550
6551/*
6552 * Compresses an L2ARC buffer.
6553 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
6554 * size in l2hdr->b_asize. This routine tries to compress the data and
6555 * depending on the compression result there are three possible outcomes:
6556 * *) The buffer was incompressible. The original l2hdr contents were left
6557 * untouched and are ready for writing to an L2 device.
6558 * *) The buffer was all-zeros, so there is no need to write it to an L2
6559 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
6560 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
6561 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
6562 * data buffer which holds the compressed data to be written, and b_asize
6563 * tells us how much data there is. b_compress is set to the appropriate
6564 * compression algorithm. Once writing is done, invoke
6565 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
6566 *
6567 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
6568 * buffer was incompressible).
6569 */
6570static boolean_t
6571l2arc_compress_buf(arc_buf_hdr_t *hdr)
6572{
6573 void *cdata;
6574 size_t csize, len, rounded;
6575 l2arc_buf_hdr_t *l2hdr;
6576
6577 ASSERT(HDR_HAS_L2HDR(hdr));
6578
6579 l2hdr = &hdr->b_l2hdr;
6580
6581 ASSERT(HDR_HAS_L1HDR(hdr));
6582 ASSERT3U(l2hdr->b_compress, ==, ZIO_COMPRESS_OFF);
6583 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6584
6585 len = l2hdr->b_asize;
6586 cdata = zio_data_buf_alloc(len);
6587 ASSERT3P(cdata, !=, NULL);
6588 csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata,
6589 cdata, l2hdr->b_asize);
6590
6591 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
6592 if (rounded > csize) {
6593 bzero((char *)cdata + csize, rounded - csize);
6594 csize = rounded;
6595 }
6596
6597 if (csize == 0) {
6598 /* zero block, indicate that there's nothing to write */
6599 zio_data_buf_free(cdata, len);
6600 l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
6601 l2hdr->b_asize = 0;
6602 hdr->b_l1hdr.b_tmp_cdata = NULL;
6603 ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6604 return (B_TRUE);
6605 } else if (csize > 0 && csize < len) {
6606 /*
6607 * Compression succeeded, we'll keep the cdata around for
6608 * writing and release it afterwards.
6609 */
6610 l2hdr->b_compress = ZIO_COMPRESS_LZ4;
6611 l2hdr->b_asize = csize;
6612 hdr->b_l1hdr.b_tmp_cdata = cdata;
6613 ARCSTAT_BUMP(arcstat_l2_compress_successes);
6614 return (B_TRUE);
6615 } else {
6616 /*
6617 * Compression failed, release the compressed buffer.
6618 * l2hdr will be left unmodified.
6619 */
6620 zio_data_buf_free(cdata, len);
6621 ARCSTAT_BUMP(arcstat_l2_compress_failures);
6622 return (B_FALSE);
6623 }
6624}
6625
6626/*
6627 * Decompresses a zio read back from an l2arc device. On success, the
6628 * underlying zio's io_data buffer is overwritten by the uncompressed
6629 * version. On decompression error (corrupt compressed stream), the
6630 * zio->io_error value is set to signal an I/O error.
6631 *
6632 * Please note that the compressed data stream is not checksummed, so
6633 * if the underlying device is experiencing data corruption, we may feed
6634 * corrupt data to the decompressor, so the decompressor needs to be
6635 * able to handle this situation (LZ4 does).
6636 */
6637static void
6638l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6639{
6640 uint64_t csize;
6641 void *cdata;
6642
6643 ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6644
6645 if (zio->io_error != 0) {
6646 /*
6647 * An io error has occured, just restore the original io
6648 * size in preparation for a main pool read.
6649 */
6650 zio->io_orig_size = zio->io_size = hdr->b_size;
6651 return;
6652 }
6653
6654 if (c == ZIO_COMPRESS_EMPTY) {
6655 /*
6656 * An empty buffer results in a null zio, which means we
6657 * need to fill its io_data after we're done restoring the
6658 * buffer's contents.
6659 */
6660 ASSERT(hdr->b_l1hdr.b_buf != NULL);
6661 bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6662 zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
6663 } else {
6664 ASSERT(zio->io_data != NULL);
6665 /*
6666 * We copy the compressed data from the start of the arc buffer
6667 * (the zio_read will have pulled in only what we need, the
6668 * rest is garbage which we will overwrite at decompression)
6669 * and then decompress back to the ARC data buffer. This way we
6670 * can minimize copying by simply decompressing back over the
6671 * original compressed data (rather than decompressing to an
6672 * aux buffer and then copying back the uncompressed buffer,
6673 * which is likely to be much larger).
6674 */
6675 csize = zio->io_size;
6676 cdata = zio_data_buf_alloc(csize);
6677 bcopy(zio->io_data, cdata, csize);
6678 if (zio_decompress_data(c, cdata, zio->io_data, csize,
6679 hdr->b_size) != 0)
6680 zio->io_error = EIO;
6681 zio_data_buf_free(cdata, csize);
6682 }
6683
6684 /* Restore the expected uncompressed IO size. */
6685 zio->io_orig_size = zio->io_size = hdr->b_size;
6686}
6687
6688/*
6689 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6690 * This buffer serves as a temporary holder of compressed data while
6691 * the buffer entry is being written to an l2arc device. Once that is
6692 * done, we can dispose of it.
6693 */
6694static void
6695l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
6696{
6697 enum zio_compress comp;
6698
6699 ASSERT(HDR_HAS_L1HDR(hdr));
6700 ASSERT(HDR_HAS_L2HDR(hdr));
6701 comp = hdr->b_l2hdr.b_compress;
6702 ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
6703
6704 if (comp == ZIO_COMPRESS_OFF) {
6705 /*
6706 * In this case, b_tmp_cdata points to the same buffer
6707 * as the arc_buf_t's b_data field. We don't want to
6708 * free it, since the arc_buf_t will handle that.
6709 */
6710 hdr->b_l1hdr.b_tmp_cdata = NULL;
6711 } else if (comp == ZIO_COMPRESS_EMPTY) {
6712 /*
6713 * In this case, b_tmp_cdata was compressed to an empty
6714 * buffer, thus there's nothing to free and b_tmp_cdata
6715 * should have been set to NULL in l2arc_write_buffers().
6716 */
6717 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6718 } else {
6719 /*
6720 * If the data was compressed, then we've allocated a
6721 * temporary buffer for it, so now we need to release it.
6722 */
6723 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6724 zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata,
6725 hdr->b_size);
6726 hdr->b_l1hdr.b_tmp_cdata = NULL;
6727 }
6728
6729}
6730
6731/*
6732 * This thread feeds the L2ARC at regular intervals. This is the beating
6733 * heart of the L2ARC.
6734 */
6735static void
6736l2arc_feed_thread(void)
6737{
6738 callb_cpr_t cpr;
6739 l2arc_dev_t *dev;
6740 spa_t *spa;
6741 uint64_t size, wrote;
6742 clock_t begin, next = ddi_get_lbolt();
6743 boolean_t headroom_boost = B_FALSE;
6744 fstrans_cookie_t cookie;
6745
6746 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
6747
6748 mutex_enter(&l2arc_feed_thr_lock);
6749
6750 cookie = spl_fstrans_mark();
6751 while (l2arc_thread_exit == 0) {
6752 CALLB_CPR_SAFE_BEGIN(&cpr);
6753 (void) cv_timedwait_sig(&l2arc_feed_thr_cv,
6754 &l2arc_feed_thr_lock, next);
6755 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
6756 next = ddi_get_lbolt() + hz;
6757
6758 /*
6759 * Quick check for L2ARC devices.
6760 */
6761 mutex_enter(&l2arc_dev_mtx);
6762 if (l2arc_ndev == 0) {
6763 mutex_exit(&l2arc_dev_mtx);
6764 continue;
6765 }
6766 mutex_exit(&l2arc_dev_mtx);
6767 begin = ddi_get_lbolt();
6768
6769 /*
6770 * This selects the next l2arc device to write to, and in
6771 * doing so the next spa to feed from: dev->l2ad_spa. This
6772 * will return NULL if there are now no l2arc devices or if
6773 * they are all faulted.
6774 *
6775 * If a device is returned, its spa's config lock is also
6776 * held to prevent device removal. l2arc_dev_get_next()
6777 * will grab and release l2arc_dev_mtx.
6778 */
6779 if ((dev = l2arc_dev_get_next()) == NULL)
6780 continue;
6781
6782 spa = dev->l2ad_spa;
6783 ASSERT(spa != NULL);
6784
6785 /*
6786 * If the pool is read-only then force the feed thread to
6787 * sleep a little longer.
6788 */
6789 if (!spa_writeable(spa)) {
6790 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
6791 spa_config_exit(spa, SCL_L2ARC, dev);
6792 continue;
6793 }
6794
6795 /*
6796 * Avoid contributing to memory pressure.
6797 */
6798 if (arc_reclaim_needed()) {
6799 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
6800 spa_config_exit(spa, SCL_L2ARC, dev);
6801 continue;
6802 }
6803
6804 ARCSTAT_BUMP(arcstat_l2_feeds);
6805
6806 size = l2arc_write_size();
6807
6808 /*
6809 * Evict L2ARC buffers that will be overwritten.
6810 */
6811 l2arc_evict(dev, size, B_FALSE);
6812
6813 /*
6814 * Write ARC buffers.
6815 */
6816 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
6817
6818 /*
6819 * Calculate interval between writes.
6820 */
6821 next = l2arc_write_interval(begin, size, wrote);
6822 spa_config_exit(spa, SCL_L2ARC, dev);
6823 }
6824 spl_fstrans_unmark(cookie);
6825
6826 l2arc_thread_exit = 0;
6827 cv_broadcast(&l2arc_feed_thr_cv);
6828 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
6829 thread_exit();
6830}
6831
6832boolean_t
6833l2arc_vdev_present(vdev_t *vd)
6834{
6835 l2arc_dev_t *dev;
6836
6837 mutex_enter(&l2arc_dev_mtx);
6838 for (dev = list_head(l2arc_dev_list); dev != NULL;
6839 dev = list_next(l2arc_dev_list, dev)) {
6840 if (dev->l2ad_vdev == vd)
6841 break;
6842 }
6843 mutex_exit(&l2arc_dev_mtx);
6844
6845 return (dev != NULL);
6846}
6847
6848/*
6849 * Add a vdev for use by the L2ARC. By this point the spa has already
6850 * validated the vdev and opened it.
6851 */
6852void
6853l2arc_add_vdev(spa_t *spa, vdev_t *vd)
6854{
6855 l2arc_dev_t *adddev;
6856
6857 ASSERT(!l2arc_vdev_present(vd));
6858
6859 /*
6860 * Create a new l2arc device entry.
6861 */
6862 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
6863 adddev->l2ad_spa = spa;
6864 adddev->l2ad_vdev = vd;
6865 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
6866 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
6867 adddev->l2ad_hand = adddev->l2ad_start;
6868 adddev->l2ad_first = B_TRUE;
6869 adddev->l2ad_writing = B_FALSE;
6870 list_link_init(&adddev->l2ad_node);
6871
6872 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
6873 /*
6874 * This is a list of all ARC buffers that are still valid on the
6875 * device.
6876 */
6877 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
6878 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
6879
6880 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
6881 refcount_create(&adddev->l2ad_alloc);
6882
6883 /*
6884 * Add device to global list
6885 */
6886 mutex_enter(&l2arc_dev_mtx);
6887 list_insert_head(l2arc_dev_list, adddev);
6888 atomic_inc_64(&l2arc_ndev);
6889 mutex_exit(&l2arc_dev_mtx);
6890}
6891
6892/*
6893 * Remove a vdev from the L2ARC.
6894 */
6895void
6896l2arc_remove_vdev(vdev_t *vd)
6897{
6898 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
6899
6900 /*
6901 * Find the device by vdev
6902 */
6903 mutex_enter(&l2arc_dev_mtx);
6904 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
6905 nextdev = list_next(l2arc_dev_list, dev);
6906 if (vd == dev->l2ad_vdev) {
6907 remdev = dev;
6908 break;
6909 }
6910 }
6911 ASSERT(remdev != NULL);
6912
6913 /*
6914 * Remove device from global list
6915 */
6916 list_remove(l2arc_dev_list, remdev);
6917 l2arc_dev_last = NULL; /* may have been invalidated */
6918 atomic_dec_64(&l2arc_ndev);
6919 mutex_exit(&l2arc_dev_mtx);
6920
6921 /*
6922 * Clear all buflists and ARC references. L2ARC device flush.
6923 */
6924 l2arc_evict(remdev, 0, B_TRUE);
6925 list_destroy(&remdev->l2ad_buflist);
6926 mutex_destroy(&remdev->l2ad_mtx);
6927 refcount_destroy(&remdev->l2ad_alloc);
6928 kmem_free(remdev, sizeof (l2arc_dev_t));
6929}
6930
6931void
6932l2arc_init(void)
6933{
6934 l2arc_thread_exit = 0;
6935 l2arc_ndev = 0;
6936 l2arc_writes_sent = 0;
6937 l2arc_writes_done = 0;
6938
6939 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
6940 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
6941 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
6942 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
6943
6944 l2arc_dev_list = &L2ARC_dev_list;
6945 l2arc_free_on_write = &L2ARC_free_on_write;
6946 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
6947 offsetof(l2arc_dev_t, l2ad_node));
6948 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
6949 offsetof(l2arc_data_free_t, l2df_list_node));
6950}
6951
6952void
6953l2arc_fini(void)
6954{
6955 /*
6956 * This is called from dmu_fini(), which is called from spa_fini();
6957 * Because of this, we can assume that all l2arc devices have
6958 * already been removed when the pools themselves were removed.
6959 */
6960
6961 l2arc_do_free_on_write();
6962
6963 mutex_destroy(&l2arc_feed_thr_lock);
6964 cv_destroy(&l2arc_feed_thr_cv);
6965 mutex_destroy(&l2arc_dev_mtx);
6966 mutex_destroy(&l2arc_free_on_write_mtx);
6967
6968 list_destroy(l2arc_dev_list);
6969 list_destroy(l2arc_free_on_write);
6970}
6971
6972void
6973l2arc_start(void)
6974{
6975 if (!(spa_mode_global & FWRITE))
6976 return;
6977
6978 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
6979 TS_RUN, defclsyspri);
6980}
6981
6982void
6983l2arc_stop(void)
6984{
6985 if (!(spa_mode_global & FWRITE))
6986 return;
6987
6988 mutex_enter(&l2arc_feed_thr_lock);
6989 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
6990 l2arc_thread_exit = 1;
6991 while (l2arc_thread_exit != 0)
6992 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
6993 mutex_exit(&l2arc_feed_thr_lock);
6994}
6995
6996#if defined(_KERNEL) && defined(HAVE_SPL)
6997EXPORT_SYMBOL(arc_buf_size);
6998EXPORT_SYMBOL(arc_write);
6999EXPORT_SYMBOL(arc_read);
7000EXPORT_SYMBOL(arc_buf_remove_ref);
7001EXPORT_SYMBOL(arc_buf_info);
7002EXPORT_SYMBOL(arc_getbuf_func);
7003EXPORT_SYMBOL(arc_add_prune_callback);
7004EXPORT_SYMBOL(arc_remove_prune_callback);
7005
7006module_param(zfs_arc_min, ulong, 0644);
7007MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
7008
7009module_param(zfs_arc_max, ulong, 0644);
7010MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
7011
7012module_param(zfs_arc_meta_limit, ulong, 0644);
7013MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
7014
7015module_param(zfs_arc_meta_min, ulong, 0644);
7016MODULE_PARM_DESC(zfs_arc_meta_min, "Min arc metadata");
7017
7018module_param(zfs_arc_meta_prune, int, 0644);
7019MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
7020
7021module_param(zfs_arc_meta_adjust_restarts, int, 0644);
7022MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts,
7023 "Limit number of restarts in arc_adjust_meta");
7024
7025module_param(zfs_arc_meta_strategy, int, 0644);
7026MODULE_PARM_DESC(zfs_arc_meta_strategy, "Meta reclaim strategy");
7027
7028module_param(zfs_arc_grow_retry, int, 0644);
7029MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
7030
7031module_param(zfs_arc_p_aggressive_disable, int, 0644);
7032MODULE_PARM_DESC(zfs_arc_p_aggressive_disable, "disable aggressive arc_p grow");
7033
7034module_param(zfs_arc_p_dampener_disable, int, 0644);
7035MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
7036
7037module_param(zfs_arc_shrink_shift, int, 0644);
7038MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
7039
7040module_param(zfs_arc_p_min_shift, int, 0644);
7041MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
7042
7043module_param(zfs_disable_dup_eviction, int, 0644);
7044MODULE_PARM_DESC(zfs_disable_dup_eviction, "disable duplicate buffer eviction");
7045
7046module_param(zfs_arc_average_blocksize, int, 0444);
7047MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
7048
7049module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
7050MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
7051
7052module_param(zfs_arc_num_sublists_per_state, int, 0644);
7053MODULE_PARM_DESC(zfs_arc_num_sublists_per_state,
7054 "Number of sublists used in each of the ARC state lists");
7055
7056module_param(l2arc_write_max, ulong, 0644);
7057MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
7058
7059module_param(l2arc_write_boost, ulong, 0644);
7060MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
7061
7062module_param(l2arc_headroom, ulong, 0644);
7063MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
7064
7065module_param(l2arc_headroom_boost, ulong, 0644);
7066MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
7067
7068module_param(l2arc_feed_secs, ulong, 0644);
7069MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
7070
7071module_param(l2arc_feed_min_ms, ulong, 0644);
7072MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
7073
7074module_param(l2arc_noprefetch, int, 0644);
7075MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
7076
7077module_param(l2arc_nocompress, int, 0644);
7078MODULE_PARM_DESC(l2arc_nocompress, "Skip compressing L2ARC buffers");
7079
7080module_param(l2arc_feed_again, int, 0644);
7081MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
7082
7083module_param(l2arc_norw, int, 0644);
7084MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
7085
7086module_param(zfs_arc_lotsfree_percent, int, 0644);
7087MODULE_PARM_DESC(zfs_arc_lotsfree_percent,
7088 "System free memory I/O throttle in bytes");
7089
7090module_param(zfs_arc_sys_free, ulong, 0644);
7091MODULE_PARM_DESC(zfs_arc_sys_free, "System free memory target size in bytes");
7092
7093#endif