]> git.proxmox.com Git - mirror_qemu.git/blame_incremental - arch_init.c
ram_save_page: change calling covention
[mirror_qemu.git] / arch_init.c
... / ...
CommitLineData
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24#include <stdint.h>
25#include <stdarg.h>
26#include <stdlib.h>
27#ifndef _WIN32
28#include <sys/types.h>
29#include <sys/mman.h>
30#endif
31#include "config.h"
32#include "monitor/monitor.h"
33#include "sysemu/sysemu.h"
34#include "qemu/bitops.h"
35#include "qemu/bitmap.h"
36#include "sysemu/arch_init.h"
37#include "audio/audio.h"
38#include "hw/i386/pc.h"
39#include "hw/pci/pci.h"
40#include "hw/audio/audio.h"
41#include "sysemu/kvm.h"
42#include "migration/migration.h"
43#include "hw/i386/smbios.h"
44#include "exec/address-spaces.h"
45#include "hw/audio/pcspk.h"
46#include "migration/page_cache.h"
47#include "qemu/config-file.h"
48#include "qemu/error-report.h"
49#include "qmp-commands.h"
50#include "trace.h"
51#include "exec/cpu-all.h"
52#include "exec/ram_addr.h"
53#include "hw/acpi/acpi.h"
54#include "qemu/host-utils.h"
55#include "qemu/rcu_queue.h"
56
57#ifdef DEBUG_ARCH_INIT
58#define DPRINTF(fmt, ...) \
59 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
60#else
61#define DPRINTF(fmt, ...) \
62 do { } while (0)
63#endif
64
65#ifdef TARGET_SPARC
66int graphic_width = 1024;
67int graphic_height = 768;
68int graphic_depth = 8;
69#else
70int graphic_width = 800;
71int graphic_height = 600;
72int graphic_depth = 32;
73#endif
74
75
76#if defined(TARGET_ALPHA)
77#define QEMU_ARCH QEMU_ARCH_ALPHA
78#elif defined(TARGET_ARM)
79#define QEMU_ARCH QEMU_ARCH_ARM
80#elif defined(TARGET_CRIS)
81#define QEMU_ARCH QEMU_ARCH_CRIS
82#elif defined(TARGET_I386)
83#define QEMU_ARCH QEMU_ARCH_I386
84#elif defined(TARGET_M68K)
85#define QEMU_ARCH QEMU_ARCH_M68K
86#elif defined(TARGET_LM32)
87#define QEMU_ARCH QEMU_ARCH_LM32
88#elif defined(TARGET_MICROBLAZE)
89#define QEMU_ARCH QEMU_ARCH_MICROBLAZE
90#elif defined(TARGET_MIPS)
91#define QEMU_ARCH QEMU_ARCH_MIPS
92#elif defined(TARGET_MOXIE)
93#define QEMU_ARCH QEMU_ARCH_MOXIE
94#elif defined(TARGET_OPENRISC)
95#define QEMU_ARCH QEMU_ARCH_OPENRISC
96#elif defined(TARGET_PPC)
97#define QEMU_ARCH QEMU_ARCH_PPC
98#elif defined(TARGET_S390X)
99#define QEMU_ARCH QEMU_ARCH_S390X
100#elif defined(TARGET_SH4)
101#define QEMU_ARCH QEMU_ARCH_SH4
102#elif defined(TARGET_SPARC)
103#define QEMU_ARCH QEMU_ARCH_SPARC
104#elif defined(TARGET_XTENSA)
105#define QEMU_ARCH QEMU_ARCH_XTENSA
106#elif defined(TARGET_UNICORE32)
107#define QEMU_ARCH QEMU_ARCH_UNICORE32
108#elif defined(TARGET_TRICORE)
109#define QEMU_ARCH QEMU_ARCH_TRICORE
110#endif
111
112const uint32_t arch_type = QEMU_ARCH;
113static bool mig_throttle_on;
114static int dirty_rate_high_cnt;
115static void check_guest_throttling(void);
116
117static uint64_t bitmap_sync_count;
118
119/***********************************************************/
120/* ram save/restore */
121
122#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
123#define RAM_SAVE_FLAG_COMPRESS 0x02
124#define RAM_SAVE_FLAG_MEM_SIZE 0x04
125#define RAM_SAVE_FLAG_PAGE 0x08
126#define RAM_SAVE_FLAG_EOS 0x10
127#define RAM_SAVE_FLAG_CONTINUE 0x20
128#define RAM_SAVE_FLAG_XBZRLE 0x40
129/* 0x80 is reserved in migration.h start with 0x100 next */
130
131static struct defconfig_file {
132 const char *filename;
133 /* Indicates it is an user config file (disabled by -no-user-config) */
134 bool userconfig;
135} default_config_files[] = {
136 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
137 { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true },
138 { NULL }, /* end of list */
139};
140
141static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE];
142
143int qemu_read_default_config_files(bool userconfig)
144{
145 int ret;
146 struct defconfig_file *f;
147
148 for (f = default_config_files; f->filename; f++) {
149 if (!userconfig && f->userconfig) {
150 continue;
151 }
152 ret = qemu_read_config_file(f->filename);
153 if (ret < 0 && ret != -ENOENT) {
154 return ret;
155 }
156 }
157
158 return 0;
159}
160
161static inline bool is_zero_range(uint8_t *p, uint64_t size)
162{
163 return buffer_find_nonzero_offset(p, size) == size;
164}
165
166/* struct contains XBZRLE cache and a static page
167 used by the compression */
168static struct {
169 /* buffer used for XBZRLE encoding */
170 uint8_t *encoded_buf;
171 /* buffer for storing page content */
172 uint8_t *current_buf;
173 /* Cache for XBZRLE, Protected by lock. */
174 PageCache *cache;
175 QemuMutex lock;
176} XBZRLE;
177
178/* buffer used for XBZRLE decoding */
179static uint8_t *xbzrle_decoded_buf;
180
181static void XBZRLE_cache_lock(void)
182{
183 if (migrate_use_xbzrle())
184 qemu_mutex_lock(&XBZRLE.lock);
185}
186
187static void XBZRLE_cache_unlock(void)
188{
189 if (migrate_use_xbzrle())
190 qemu_mutex_unlock(&XBZRLE.lock);
191}
192
193/*
194 * called from qmp_migrate_set_cache_size in main thread, possibly while
195 * a migration is in progress.
196 * A running migration maybe using the cache and might finish during this
197 * call, hence changes to the cache are protected by XBZRLE.lock().
198 */
199int64_t xbzrle_cache_resize(int64_t new_size)
200{
201 PageCache *new_cache;
202 int64_t ret;
203
204 if (new_size < TARGET_PAGE_SIZE) {
205 return -1;
206 }
207
208 XBZRLE_cache_lock();
209
210 if (XBZRLE.cache != NULL) {
211 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
212 goto out_new_size;
213 }
214 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
215 TARGET_PAGE_SIZE);
216 if (!new_cache) {
217 error_report("Error creating cache");
218 ret = -1;
219 goto out;
220 }
221
222 cache_fini(XBZRLE.cache);
223 XBZRLE.cache = new_cache;
224 }
225
226out_new_size:
227 ret = pow2floor(new_size);
228out:
229 XBZRLE_cache_unlock();
230 return ret;
231}
232
233/* accounting for migration statistics */
234typedef struct AccountingInfo {
235 uint64_t dup_pages;
236 uint64_t skipped_pages;
237 uint64_t norm_pages;
238 uint64_t iterations;
239 uint64_t xbzrle_bytes;
240 uint64_t xbzrle_pages;
241 uint64_t xbzrle_cache_miss;
242 double xbzrle_cache_miss_rate;
243 uint64_t xbzrle_overflows;
244} AccountingInfo;
245
246static AccountingInfo acct_info;
247
248static void acct_clear(void)
249{
250 memset(&acct_info, 0, sizeof(acct_info));
251}
252
253uint64_t dup_mig_bytes_transferred(void)
254{
255 return acct_info.dup_pages * TARGET_PAGE_SIZE;
256}
257
258uint64_t dup_mig_pages_transferred(void)
259{
260 return acct_info.dup_pages;
261}
262
263uint64_t skipped_mig_bytes_transferred(void)
264{
265 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
266}
267
268uint64_t skipped_mig_pages_transferred(void)
269{
270 return acct_info.skipped_pages;
271}
272
273uint64_t norm_mig_bytes_transferred(void)
274{
275 return acct_info.norm_pages * TARGET_PAGE_SIZE;
276}
277
278uint64_t norm_mig_pages_transferred(void)
279{
280 return acct_info.norm_pages;
281}
282
283uint64_t xbzrle_mig_bytes_transferred(void)
284{
285 return acct_info.xbzrle_bytes;
286}
287
288uint64_t xbzrle_mig_pages_transferred(void)
289{
290 return acct_info.xbzrle_pages;
291}
292
293uint64_t xbzrle_mig_pages_cache_miss(void)
294{
295 return acct_info.xbzrle_cache_miss;
296}
297
298double xbzrle_mig_cache_miss_rate(void)
299{
300 return acct_info.xbzrle_cache_miss_rate;
301}
302
303uint64_t xbzrle_mig_pages_overflow(void)
304{
305 return acct_info.xbzrle_overflows;
306}
307
308static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
309 int cont, int flag)
310{
311 size_t size;
312
313 qemu_put_be64(f, offset | cont | flag);
314 size = 8;
315
316 if (!cont) {
317 qemu_put_byte(f, strlen(block->idstr));
318 qemu_put_buffer(f, (uint8_t *)block->idstr,
319 strlen(block->idstr));
320 size += 1 + strlen(block->idstr);
321 }
322 return size;
323}
324
325/* This is the last block that we have visited serching for dirty pages
326 */
327static RAMBlock *last_seen_block;
328/* This is the last block from where we have sent data */
329static RAMBlock *last_sent_block;
330static ram_addr_t last_offset;
331static unsigned long *migration_bitmap;
332static uint64_t migration_dirty_pages;
333static uint32_t last_version;
334static bool ram_bulk_stage;
335
336/* Update the xbzrle cache to reflect a page that's been sent as all 0.
337 * The important thing is that a stale (not-yet-0'd) page be replaced
338 * by the new data.
339 * As a bonus, if the page wasn't in the cache it gets added so that
340 * when a small write is made into the 0'd page it gets XBZRLE sent
341 */
342static void xbzrle_cache_zero_page(ram_addr_t current_addr)
343{
344 if (ram_bulk_stage || !migrate_use_xbzrle()) {
345 return;
346 }
347
348 /* We don't care if this fails to allocate a new cache page
349 * as long as it updated an old one */
350 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
351 bitmap_sync_count);
352}
353
354#define ENCODING_FLAG_XBZRLE 0x1
355
356static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
357 ram_addr_t current_addr, RAMBlock *block,
358 ram_addr_t offset, int cont, bool last_stage)
359{
360 int encoded_len = 0, bytes_sent = -1;
361 uint8_t *prev_cached_page;
362
363 if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) {
364 acct_info.xbzrle_cache_miss++;
365 if (!last_stage) {
366 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
367 bitmap_sync_count) == -1) {
368 return -1;
369 } else {
370 /* update *current_data when the page has been
371 inserted into cache */
372 *current_data = get_cached_data(XBZRLE.cache, current_addr);
373 }
374 }
375 return -1;
376 }
377
378 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
379
380 /* save current buffer into memory */
381 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
382
383 /* XBZRLE encoding (if there is no overflow) */
384 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
385 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
386 TARGET_PAGE_SIZE);
387 if (encoded_len == 0) {
388 DPRINTF("Skipping unmodified page\n");
389 return 0;
390 } else if (encoded_len == -1) {
391 DPRINTF("Overflow\n");
392 acct_info.xbzrle_overflows++;
393 /* update data in the cache */
394 if (!last_stage) {
395 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
396 *current_data = prev_cached_page;
397 }
398 return -1;
399 }
400
401 /* we need to update the data in the cache, in order to get the same data */
402 if (!last_stage) {
403 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
404 }
405
406 /* Send XBZRLE based compressed page */
407 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
408 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
409 qemu_put_be16(f, encoded_len);
410 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
411 bytes_sent += encoded_len + 1 + 2;
412 acct_info.xbzrle_pages++;
413 acct_info.xbzrle_bytes += bytes_sent;
414
415 return bytes_sent;
416}
417
418static inline
419ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
420 ram_addr_t start)
421{
422 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
423 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
424 uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
425 unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
426
427 unsigned long next;
428
429 if (ram_bulk_stage && nr > base) {
430 next = nr + 1;
431 } else {
432 next = find_next_bit(migration_bitmap, size, nr);
433 }
434
435 if (next < size) {
436 clear_bit(next, migration_bitmap);
437 migration_dirty_pages--;
438 }
439 return (next - base) << TARGET_PAGE_BITS;
440}
441
442static inline bool migration_bitmap_set_dirty(ram_addr_t addr)
443{
444 bool ret;
445 int nr = addr >> TARGET_PAGE_BITS;
446
447 ret = test_and_set_bit(nr, migration_bitmap);
448
449 if (!ret) {
450 migration_dirty_pages++;
451 }
452 return ret;
453}
454
455static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
456{
457 ram_addr_t addr;
458 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
459
460 /* start address is aligned at the start of a word? */
461 if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
462 int k;
463 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
464 unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
465
466 for (k = page; k < page + nr; k++) {
467 if (src[k]) {
468 unsigned long new_dirty;
469 new_dirty = ~migration_bitmap[k];
470 migration_bitmap[k] |= src[k];
471 new_dirty &= src[k];
472 migration_dirty_pages += ctpopl(new_dirty);
473 src[k] = 0;
474 }
475 }
476 } else {
477 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
478 if (cpu_physical_memory_get_dirty(start + addr,
479 TARGET_PAGE_SIZE,
480 DIRTY_MEMORY_MIGRATION)) {
481 cpu_physical_memory_reset_dirty(start + addr,
482 TARGET_PAGE_SIZE,
483 DIRTY_MEMORY_MIGRATION);
484 migration_bitmap_set_dirty(start + addr);
485 }
486 }
487 }
488}
489
490
491/* Fix me: there are too many global variables used in migration process. */
492static int64_t start_time;
493static int64_t bytes_xfer_prev;
494static int64_t num_dirty_pages_period;
495
496static void migration_bitmap_sync_init(void)
497{
498 start_time = 0;
499 bytes_xfer_prev = 0;
500 num_dirty_pages_period = 0;
501}
502
503/* Called with iothread lock held, to protect ram_list.dirty_memory[] */
504static void migration_bitmap_sync(void)
505{
506 RAMBlock *block;
507 uint64_t num_dirty_pages_init = migration_dirty_pages;
508 MigrationState *s = migrate_get_current();
509 int64_t end_time;
510 int64_t bytes_xfer_now;
511 static uint64_t xbzrle_cache_miss_prev;
512 static uint64_t iterations_prev;
513
514 bitmap_sync_count++;
515
516 if (!bytes_xfer_prev) {
517 bytes_xfer_prev = ram_bytes_transferred();
518 }
519
520 if (!start_time) {
521 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
522 }
523
524 trace_migration_bitmap_sync_start();
525 address_space_sync_dirty_bitmap(&address_space_memory);
526
527 rcu_read_lock();
528 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
529 migration_bitmap_sync_range(block->mr->ram_addr, block->used_length);
530 }
531 rcu_read_unlock();
532
533 trace_migration_bitmap_sync_end(migration_dirty_pages
534 - num_dirty_pages_init);
535 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
536 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
537
538 /* more than 1 second = 1000 millisecons */
539 if (end_time > start_time + 1000) {
540 if (migrate_auto_converge()) {
541 /* The following detection logic can be refined later. For now:
542 Check to see if the dirtied bytes is 50% more than the approx.
543 amount of bytes that just got transferred since the last time we
544 were in this routine. If that happens >N times (for now N==4)
545 we turn on the throttle down logic */
546 bytes_xfer_now = ram_bytes_transferred();
547 if (s->dirty_pages_rate &&
548 (num_dirty_pages_period * TARGET_PAGE_SIZE >
549 (bytes_xfer_now - bytes_xfer_prev)/2) &&
550 (dirty_rate_high_cnt++ > 4)) {
551 trace_migration_throttle();
552 mig_throttle_on = true;
553 dirty_rate_high_cnt = 0;
554 }
555 bytes_xfer_prev = bytes_xfer_now;
556 } else {
557 mig_throttle_on = false;
558 }
559 if (migrate_use_xbzrle()) {
560 if (iterations_prev != 0) {
561 acct_info.xbzrle_cache_miss_rate =
562 (double)(acct_info.xbzrle_cache_miss -
563 xbzrle_cache_miss_prev) /
564 (acct_info.iterations - iterations_prev);
565 }
566 iterations_prev = acct_info.iterations;
567 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
568 }
569 s->dirty_pages_rate = num_dirty_pages_period * 1000
570 / (end_time - start_time);
571 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
572 start_time = end_time;
573 num_dirty_pages_period = 0;
574 s->dirty_sync_count = bitmap_sync_count;
575 }
576}
577
578/**
579 * ram_save_page: Send the given page to the stream
580 *
581 * Returns: Number of pages written.
582 *
583 * @f: QEMUFile where to send the data
584 * @block: block that contains the page we want to send
585 * @offset: offset inside the block for the page
586 * @last_stage: if we are at the completion stage
587 * @bytes_transferred: increase it with the number of transferred bytes
588 */
589static int ram_save_page(QEMUFile *f, RAMBlock* block, ram_addr_t offset,
590 bool last_stage, uint64_t *bytes_transferred)
591{
592 int pages = -1;
593 uint64_t bytes_xmit;
594 int cont;
595 ram_addr_t current_addr;
596 MemoryRegion *mr = block->mr;
597 uint8_t *p;
598 int ret;
599 bool send_async = true;
600
601 cont = (block == last_sent_block) ? RAM_SAVE_FLAG_CONTINUE : 0;
602
603 p = memory_region_get_ram_ptr(mr) + offset;
604
605 /* In doubt sent page as normal */
606 bytes_xmit = 0;
607 ret = ram_control_save_page(f, block->offset,
608 offset, TARGET_PAGE_SIZE, &bytes_xmit);
609 if (bytes_xmit) {
610 *bytes_transferred += bytes_xmit;
611 pages = 1;
612 }
613
614 XBZRLE_cache_lock();
615
616 current_addr = block->offset + offset;
617 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
618 if (ret != RAM_SAVE_CONTROL_DELAYED) {
619 if (bytes_xmit > 0) {
620 acct_info.norm_pages++;
621 } else if (bytes_xmit == 0) {
622 acct_info.dup_pages++;
623 }
624 }
625 } else if (is_zero_range(p, TARGET_PAGE_SIZE)) {
626 acct_info.dup_pages++;
627 *bytes_transferred += save_block_hdr(f, block, offset, cont,
628 RAM_SAVE_FLAG_COMPRESS);
629 qemu_put_byte(f, 0);
630 *bytes_transferred += 1;
631 pages = 1;
632 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
633 * page would be stale
634 */
635 xbzrle_cache_zero_page(current_addr);
636 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
637 int bytes_sent;
638
639 bytes_sent = save_xbzrle_page(f, &p, current_addr, block,
640 offset, cont, last_stage);
641
642 if (bytes_sent > 0) {
643 *bytes_transferred += bytes_sent;
644 pages = 1;
645 } else if (bytes_sent == 0) {
646 pages = 0;
647 } else {
648 pages = -1;
649 }
650 if (!last_stage) {
651 /* Can't send this cached data async, since the cache page
652 * might get updated before it gets to the wire
653 */
654 send_async = false;
655 }
656 }
657
658 /* XBZRLE overflow or normal page */
659 if (pages == -1) {
660 *bytes_transferred += save_block_hdr(f, block, offset, cont,
661 RAM_SAVE_FLAG_PAGE);
662 if (send_async) {
663 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
664 } else {
665 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
666 }
667 *bytes_transferred += TARGET_PAGE_SIZE;
668 pages = 1;
669 acct_info.norm_pages++;
670 }
671
672 XBZRLE_cache_unlock();
673
674 return pages;
675}
676
677/**
678 * ram_find_and_save_block: Finds a dirty page and sends it to f
679 *
680 * Called within an RCU critical section.
681 *
682 * Returns: The number of pages written
683 * 0 means no dirty pages
684 *
685 * @f: QEMUFile where to send the data
686 * @last_stage: if we are at the completion stage
687 * @bytes_transferred: increase it with the number of transferred bytes
688 */
689
690static int ram_find_and_save_block(QEMUFile *f, bool last_stage,
691 uint64_t *bytes_transferred)
692{
693 RAMBlock *block = last_seen_block;
694 ram_addr_t offset = last_offset;
695 bool complete_round = false;
696 int pages = 0;
697 MemoryRegion *mr;
698
699 if (!block)
700 block = QLIST_FIRST_RCU(&ram_list.blocks);
701
702 while (true) {
703 mr = block->mr;
704 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
705 if (complete_round && block == last_seen_block &&
706 offset >= last_offset) {
707 break;
708 }
709 if (offset >= block->used_length) {
710 offset = 0;
711 block = QLIST_NEXT_RCU(block, next);
712 if (!block) {
713 block = QLIST_FIRST_RCU(&ram_list.blocks);
714 complete_round = true;
715 ram_bulk_stage = false;
716 }
717 } else {
718 pages = ram_save_page(f, block, offset, last_stage,
719 bytes_transferred);
720
721 /* if page is unmodified, continue to the next */
722 if (pages > 0) {
723 last_sent_block = block;
724 break;
725 }
726 }
727 }
728
729 last_seen_block = block;
730 last_offset = offset;
731
732 return pages;
733}
734
735static uint64_t bytes_transferred;
736
737void acct_update_position(QEMUFile *f, size_t size, bool zero)
738{
739 uint64_t pages = size / TARGET_PAGE_SIZE;
740 if (zero) {
741 acct_info.dup_pages += pages;
742 } else {
743 acct_info.norm_pages += pages;
744 bytes_transferred += size;
745 qemu_update_position(f, size);
746 }
747}
748
749static ram_addr_t ram_save_remaining(void)
750{
751 return migration_dirty_pages;
752}
753
754uint64_t ram_bytes_remaining(void)
755{
756 return ram_save_remaining() * TARGET_PAGE_SIZE;
757}
758
759uint64_t ram_bytes_transferred(void)
760{
761 return bytes_transferred;
762}
763
764uint64_t ram_bytes_total(void)
765{
766 RAMBlock *block;
767 uint64_t total = 0;
768
769 rcu_read_lock();
770 QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
771 total += block->used_length;
772 rcu_read_unlock();
773 return total;
774}
775
776void free_xbzrle_decoded_buf(void)
777{
778 g_free(xbzrle_decoded_buf);
779 xbzrle_decoded_buf = NULL;
780}
781
782static void migration_end(void)
783{
784 if (migration_bitmap) {
785 memory_global_dirty_log_stop();
786 g_free(migration_bitmap);
787 migration_bitmap = NULL;
788 }
789
790 XBZRLE_cache_lock();
791 if (XBZRLE.cache) {
792 cache_fini(XBZRLE.cache);
793 g_free(XBZRLE.encoded_buf);
794 g_free(XBZRLE.current_buf);
795 XBZRLE.cache = NULL;
796 XBZRLE.encoded_buf = NULL;
797 XBZRLE.current_buf = NULL;
798 }
799 XBZRLE_cache_unlock();
800}
801
802static void ram_migration_cancel(void *opaque)
803{
804 migration_end();
805}
806
807static void reset_ram_globals(void)
808{
809 last_seen_block = NULL;
810 last_sent_block = NULL;
811 last_offset = 0;
812 last_version = ram_list.version;
813 ram_bulk_stage = true;
814}
815
816#define MAX_WAIT 50 /* ms, half buffered_file limit */
817
818
819/* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
820 * long-running RCU critical section. When rcu-reclaims in the code
821 * start to become numerous it will be necessary to reduce the
822 * granularity of these critical sections.
823 */
824
825static int ram_save_setup(QEMUFile *f, void *opaque)
826{
827 RAMBlock *block;
828 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
829
830 mig_throttle_on = false;
831 dirty_rate_high_cnt = 0;
832 bitmap_sync_count = 0;
833 migration_bitmap_sync_init();
834
835 if (migrate_use_xbzrle()) {
836 XBZRLE_cache_lock();
837 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
838 TARGET_PAGE_SIZE,
839 TARGET_PAGE_SIZE);
840 if (!XBZRLE.cache) {
841 XBZRLE_cache_unlock();
842 error_report("Error creating cache");
843 return -1;
844 }
845 XBZRLE_cache_unlock();
846
847 /* We prefer not to abort if there is no memory */
848 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
849 if (!XBZRLE.encoded_buf) {
850 error_report("Error allocating encoded_buf");
851 return -1;
852 }
853
854 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
855 if (!XBZRLE.current_buf) {
856 error_report("Error allocating current_buf");
857 g_free(XBZRLE.encoded_buf);
858 XBZRLE.encoded_buf = NULL;
859 return -1;
860 }
861
862 acct_clear();
863 }
864
865 /* iothread lock needed for ram_list.dirty_memory[] */
866 qemu_mutex_lock_iothread();
867 qemu_mutex_lock_ramlist();
868 rcu_read_lock();
869 bytes_transferred = 0;
870 reset_ram_globals();
871
872 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
873 migration_bitmap = bitmap_new(ram_bitmap_pages);
874 bitmap_set(migration_bitmap, 0, ram_bitmap_pages);
875
876 /*
877 * Count the total number of pages used by ram blocks not including any
878 * gaps due to alignment or unplugs.
879 */
880 migration_dirty_pages = 0;
881 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
882 uint64_t block_pages;
883
884 block_pages = block->used_length >> TARGET_PAGE_BITS;
885 migration_dirty_pages += block_pages;
886 }
887
888 memory_global_dirty_log_start();
889 migration_bitmap_sync();
890 qemu_mutex_unlock_ramlist();
891 qemu_mutex_unlock_iothread();
892
893 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
894
895 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
896 qemu_put_byte(f, strlen(block->idstr));
897 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
898 qemu_put_be64(f, block->used_length);
899 }
900
901 rcu_read_unlock();
902
903 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
904 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
905
906 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
907
908 return 0;
909}
910
911static int ram_save_iterate(QEMUFile *f, void *opaque)
912{
913 int ret;
914 int i;
915 int64_t t0;
916 int pages_sent = 0;
917
918 rcu_read_lock();
919 if (ram_list.version != last_version) {
920 reset_ram_globals();
921 }
922
923 /* Read version before ram_list.blocks */
924 smp_rmb();
925
926 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
927
928 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
929 i = 0;
930 while ((ret = qemu_file_rate_limit(f)) == 0) {
931 int pages;
932
933 pages = ram_find_and_save_block(f, false, &bytes_transferred);
934 /* no more pages to sent */
935 if (pages == 0) {
936 break;
937 }
938 pages_sent += pages;
939 acct_info.iterations++;
940 check_guest_throttling();
941 /* we want to check in the 1st loop, just in case it was the 1st time
942 and we had to sync the dirty bitmap.
943 qemu_get_clock_ns() is a bit expensive, so we only check each some
944 iterations
945 */
946 if ((i & 63) == 0) {
947 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
948 if (t1 > MAX_WAIT) {
949 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
950 t1, i);
951 break;
952 }
953 }
954 i++;
955 }
956 rcu_read_unlock();
957
958 /*
959 * Must occur before EOS (or any QEMUFile operation)
960 * because of RDMA protocol.
961 */
962 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
963
964 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
965 bytes_transferred += 8;
966
967 ret = qemu_file_get_error(f);
968 if (ret < 0) {
969 return ret;
970 }
971
972 return pages_sent;
973}
974
975/* Called with iothread lock */
976static int ram_save_complete(QEMUFile *f, void *opaque)
977{
978 rcu_read_lock();
979
980 migration_bitmap_sync();
981
982 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
983
984 /* try transferring iterative blocks of memory */
985
986 /* flush all remaining blocks regardless of rate limiting */
987 while (true) {
988 int pages;
989
990 pages = ram_find_and_save_block(f, true, &bytes_transferred);
991 /* no more blocks to sent */
992 if (pages == 0) {
993 break;
994 }
995 }
996
997 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
998 migration_end();
999
1000 rcu_read_unlock();
1001 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1002
1003 return 0;
1004}
1005
1006static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
1007{
1008 uint64_t remaining_size;
1009
1010 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
1011
1012 if (remaining_size < max_size) {
1013 qemu_mutex_lock_iothread();
1014 rcu_read_lock();
1015 migration_bitmap_sync();
1016 rcu_read_unlock();
1017 qemu_mutex_unlock_iothread();
1018 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
1019 }
1020 return remaining_size;
1021}
1022
1023static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
1024{
1025 unsigned int xh_len;
1026 int xh_flags;
1027
1028 if (!xbzrle_decoded_buf) {
1029 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
1030 }
1031
1032 /* extract RLE header */
1033 xh_flags = qemu_get_byte(f);
1034 xh_len = qemu_get_be16(f);
1035
1036 if (xh_flags != ENCODING_FLAG_XBZRLE) {
1037 error_report("Failed to load XBZRLE page - wrong compression!");
1038 return -1;
1039 }
1040
1041 if (xh_len > TARGET_PAGE_SIZE) {
1042 error_report("Failed to load XBZRLE page - len overflow!");
1043 return -1;
1044 }
1045 /* load data and decode */
1046 qemu_get_buffer(f, xbzrle_decoded_buf, xh_len);
1047
1048 /* decode RLE */
1049 if (xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host,
1050 TARGET_PAGE_SIZE) == -1) {
1051 error_report("Failed to load XBZRLE page - decode error!");
1052 return -1;
1053 }
1054
1055 return 0;
1056}
1057
1058/* Must be called from within a rcu critical section.
1059 * Returns a pointer from within the RCU-protected ram_list.
1060 */
1061static inline void *host_from_stream_offset(QEMUFile *f,
1062 ram_addr_t offset,
1063 int flags)
1064{
1065 static RAMBlock *block = NULL;
1066 char id[256];
1067 uint8_t len;
1068
1069 if (flags & RAM_SAVE_FLAG_CONTINUE) {
1070 if (!block || block->max_length <= offset) {
1071 error_report("Ack, bad migration stream!");
1072 return NULL;
1073 }
1074
1075 return memory_region_get_ram_ptr(block->mr) + offset;
1076 }
1077
1078 len = qemu_get_byte(f);
1079 qemu_get_buffer(f, (uint8_t *)id, len);
1080 id[len] = 0;
1081
1082 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1083 if (!strncmp(id, block->idstr, sizeof(id)) &&
1084 block->max_length > offset) {
1085 return memory_region_get_ram_ptr(block->mr) + offset;
1086 }
1087 }
1088
1089 error_report("Can't find block %s!", id);
1090 return NULL;
1091}
1092
1093/*
1094 * If a page (or a whole RDMA chunk) has been
1095 * determined to be zero, then zap it.
1096 */
1097void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
1098{
1099 if (ch != 0 || !is_zero_range(host, size)) {
1100 memset(host, ch, size);
1101 }
1102}
1103
1104static int ram_load(QEMUFile *f, void *opaque, int version_id)
1105{
1106 int flags = 0, ret = 0;
1107 static uint64_t seq_iter;
1108
1109 seq_iter++;
1110
1111 if (version_id != 4) {
1112 ret = -EINVAL;
1113 }
1114
1115 /* This RCU critical section can be very long running.
1116 * When RCU reclaims in the code start to become numerous,
1117 * it will be necessary to reduce the granularity of this
1118 * critical section.
1119 */
1120 rcu_read_lock();
1121 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
1122 ram_addr_t addr, total_ram_bytes;
1123 void *host;
1124 uint8_t ch;
1125
1126 addr = qemu_get_be64(f);
1127 flags = addr & ~TARGET_PAGE_MASK;
1128 addr &= TARGET_PAGE_MASK;
1129
1130 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
1131 case RAM_SAVE_FLAG_MEM_SIZE:
1132 /* Synchronize RAM block list */
1133 total_ram_bytes = addr;
1134 while (!ret && total_ram_bytes) {
1135 RAMBlock *block;
1136 uint8_t len;
1137 char id[256];
1138 ram_addr_t length;
1139
1140 len = qemu_get_byte(f);
1141 qemu_get_buffer(f, (uint8_t *)id, len);
1142 id[len] = 0;
1143 length = qemu_get_be64(f);
1144
1145 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1146 if (!strncmp(id, block->idstr, sizeof(id))) {
1147 if (length != block->used_length) {
1148 Error *local_err = NULL;
1149
1150 ret = qemu_ram_resize(block->offset, length, &local_err);
1151 if (local_err) {
1152 error_report_err(local_err);
1153 }
1154 }
1155 break;
1156 }
1157 }
1158
1159 if (!block) {
1160 error_report("Unknown ramblock \"%s\", cannot "
1161 "accept migration", id);
1162 ret = -EINVAL;
1163 }
1164
1165 total_ram_bytes -= length;
1166 }
1167 break;
1168 case RAM_SAVE_FLAG_COMPRESS:
1169 host = host_from_stream_offset(f, addr, flags);
1170 if (!host) {
1171 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1172 ret = -EINVAL;
1173 break;
1174 }
1175 ch = qemu_get_byte(f);
1176 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
1177 break;
1178 case RAM_SAVE_FLAG_PAGE:
1179 host = host_from_stream_offset(f, addr, flags);
1180 if (!host) {
1181 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1182 ret = -EINVAL;
1183 break;
1184 }
1185 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
1186 break;
1187 case RAM_SAVE_FLAG_XBZRLE:
1188 host = host_from_stream_offset(f, addr, flags);
1189 if (!host) {
1190 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1191 ret = -EINVAL;
1192 break;
1193 }
1194 if (load_xbzrle(f, addr, host) < 0) {
1195 error_report("Failed to decompress XBZRLE page at "
1196 RAM_ADDR_FMT, addr);
1197 ret = -EINVAL;
1198 break;
1199 }
1200 break;
1201 case RAM_SAVE_FLAG_EOS:
1202 /* normal exit */
1203 break;
1204 default:
1205 if (flags & RAM_SAVE_FLAG_HOOK) {
1206 ram_control_load_hook(f, flags);
1207 } else {
1208 error_report("Unknown combination of migration flags: %#x",
1209 flags);
1210 ret = -EINVAL;
1211 }
1212 }
1213 if (!ret) {
1214 ret = qemu_file_get_error(f);
1215 }
1216 }
1217
1218 rcu_read_unlock();
1219 DPRINTF("Completed load of VM with exit code %d seq iteration "
1220 "%" PRIu64 "\n", ret, seq_iter);
1221 return ret;
1222}
1223
1224static SaveVMHandlers savevm_ram_handlers = {
1225 .save_live_setup = ram_save_setup,
1226 .save_live_iterate = ram_save_iterate,
1227 .save_live_complete = ram_save_complete,
1228 .save_live_pending = ram_save_pending,
1229 .load_state = ram_load,
1230 .cancel = ram_migration_cancel,
1231};
1232
1233void ram_mig_init(void)
1234{
1235 qemu_mutex_init(&XBZRLE.lock);
1236 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);
1237}
1238
1239struct soundhw {
1240 const char *name;
1241 const char *descr;
1242 int enabled;
1243 int isa;
1244 union {
1245 int (*init_isa) (ISABus *bus);
1246 int (*init_pci) (PCIBus *bus);
1247 } init;
1248};
1249
1250static struct soundhw soundhw[9];
1251static int soundhw_count;
1252
1253void isa_register_soundhw(const char *name, const char *descr,
1254 int (*init_isa)(ISABus *bus))
1255{
1256 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1257 soundhw[soundhw_count].name = name;
1258 soundhw[soundhw_count].descr = descr;
1259 soundhw[soundhw_count].isa = 1;
1260 soundhw[soundhw_count].init.init_isa = init_isa;
1261 soundhw_count++;
1262}
1263
1264void pci_register_soundhw(const char *name, const char *descr,
1265 int (*init_pci)(PCIBus *bus))
1266{
1267 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1268 soundhw[soundhw_count].name = name;
1269 soundhw[soundhw_count].descr = descr;
1270 soundhw[soundhw_count].isa = 0;
1271 soundhw[soundhw_count].init.init_pci = init_pci;
1272 soundhw_count++;
1273}
1274
1275void select_soundhw(const char *optarg)
1276{
1277 struct soundhw *c;
1278
1279 if (is_help_option(optarg)) {
1280 show_valid_cards:
1281
1282 if (soundhw_count) {
1283 printf("Valid sound card names (comma separated):\n");
1284 for (c = soundhw; c->name; ++c) {
1285 printf ("%-11s %s\n", c->name, c->descr);
1286 }
1287 printf("\n-soundhw all will enable all of the above\n");
1288 } else {
1289 printf("Machine has no user-selectable audio hardware "
1290 "(it may or may not have always-present audio hardware).\n");
1291 }
1292 exit(!is_help_option(optarg));
1293 }
1294 else {
1295 size_t l;
1296 const char *p;
1297 char *e;
1298 int bad_card = 0;
1299
1300 if (!strcmp(optarg, "all")) {
1301 for (c = soundhw; c->name; ++c) {
1302 c->enabled = 1;
1303 }
1304 return;
1305 }
1306
1307 p = optarg;
1308 while (*p) {
1309 e = strchr(p, ',');
1310 l = !e ? strlen(p) : (size_t) (e - p);
1311
1312 for (c = soundhw; c->name; ++c) {
1313 if (!strncmp(c->name, p, l) && !c->name[l]) {
1314 c->enabled = 1;
1315 break;
1316 }
1317 }
1318
1319 if (!c->name) {
1320 if (l > 80) {
1321 error_report("Unknown sound card name (too big to show)");
1322 }
1323 else {
1324 error_report("Unknown sound card name `%.*s'",
1325 (int) l, p);
1326 }
1327 bad_card = 1;
1328 }
1329 p += l + (e != NULL);
1330 }
1331
1332 if (bad_card) {
1333 goto show_valid_cards;
1334 }
1335 }
1336}
1337
1338void audio_init(void)
1339{
1340 struct soundhw *c;
1341 ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1342 PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1343
1344 for (c = soundhw; c->name; ++c) {
1345 if (c->enabled) {
1346 if (c->isa) {
1347 if (!isa_bus) {
1348 error_report("ISA bus not available for %s", c->name);
1349 exit(1);
1350 }
1351 c->init.init_isa(isa_bus);
1352 } else {
1353 if (!pci_bus) {
1354 error_report("PCI bus not available for %s", c->name);
1355 exit(1);
1356 }
1357 c->init.init_pci(pci_bus);
1358 }
1359 }
1360 }
1361}
1362
1363int qemu_uuid_parse(const char *str, uint8_t *uuid)
1364{
1365 int ret;
1366
1367 if (strlen(str) != 36) {
1368 return -1;
1369 }
1370
1371 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1372 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1373 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1374 &uuid[15]);
1375
1376 if (ret != 16) {
1377 return -1;
1378 }
1379 return 0;
1380}
1381
1382void do_acpitable_option(const QemuOpts *opts)
1383{
1384#ifdef TARGET_I386
1385 Error *err = NULL;
1386
1387 acpi_table_add(opts, &err);
1388 if (err) {
1389 error_report("Wrong acpi table provided: %s",
1390 error_get_pretty(err));
1391 error_free(err);
1392 exit(1);
1393 }
1394#endif
1395}
1396
1397void do_smbios_option(QemuOpts *opts)
1398{
1399#ifdef TARGET_I386
1400 smbios_entry_add(opts);
1401#endif
1402}
1403
1404void cpudef_init(void)
1405{
1406#if defined(cpudef_setup)
1407 cpudef_setup(); /* parse cpu definitions in target config file */
1408#endif
1409}
1410
1411int kvm_available(void)
1412{
1413#ifdef CONFIG_KVM
1414 return 1;
1415#else
1416 return 0;
1417#endif
1418}
1419
1420int xen_available(void)
1421{
1422#ifdef CONFIG_XEN
1423 return 1;
1424#else
1425 return 0;
1426#endif
1427}
1428
1429
1430TargetInfo *qmp_query_target(Error **errp)
1431{
1432 TargetInfo *info = g_malloc0(sizeof(*info));
1433
1434 info->arch = g_strdup(TARGET_NAME);
1435
1436 return info;
1437}
1438
1439/* Stub function that's gets run on the vcpu when its brought out of the
1440 VM to run inside qemu via async_run_on_cpu()*/
1441static void mig_sleep_cpu(void *opq)
1442{
1443 qemu_mutex_unlock_iothread();
1444 g_usleep(30*1000);
1445 qemu_mutex_lock_iothread();
1446}
1447
1448/* To reduce the dirty rate explicitly disallow the VCPUs from spending
1449 much time in the VM. The migration thread will try to catchup.
1450 Workload will experience a performance drop.
1451*/
1452static void mig_throttle_guest_down(void)
1453{
1454 CPUState *cpu;
1455
1456 qemu_mutex_lock_iothread();
1457 CPU_FOREACH(cpu) {
1458 async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1459 }
1460 qemu_mutex_unlock_iothread();
1461}
1462
1463static void check_guest_throttling(void)
1464{
1465 static int64_t t0;
1466 int64_t t1;
1467
1468 if (!mig_throttle_on) {
1469 return;
1470 }
1471
1472 if (!t0) {
1473 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1474 return;
1475 }
1476
1477 t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1478
1479 /* If it has been more than 40 ms since the last time the guest
1480 * was throttled then do it again.
1481 */
1482 if (40 < (t1-t0)/1000000) {
1483 mig_throttle_guest_down();
1484 t0 = t1;
1485 }
1486}