]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - block/blk-mq.c
iocost: consider iocgs with active delays for debt forgiveness
[mirror_ubuntu-jammy-kernel.git] / block / blk-mq.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/backing-dev.h>
11#include <linux/bio.h>
12#include <linux/blkdev.h>
13#include <linux/kmemleak.h>
14#include <linux/mm.h>
15#include <linux/init.h>
16#include <linux/slab.h>
17#include <linux/workqueue.h>
18#include <linux/smp.h>
19#include <linux/llist.h>
20#include <linux/list_sort.h>
21#include <linux/cpu.h>
22#include <linux/cache.h>
23#include <linux/sched/sysctl.h>
24#include <linux/sched/topology.h>
25#include <linux/sched/signal.h>
26#include <linux/delay.h>
27#include <linux/crash_dump.h>
28#include <linux/prefetch.h>
29#include <linux/blk-crypto.h>
30
31#include <trace/events/block.h>
32
33#include <linux/blk-mq.h>
34#include <linux/t10-pi.h>
35#include "blk.h"
36#include "blk-mq.h"
37#include "blk-mq-debugfs.h"
38#include "blk-mq-tag.h"
39#include "blk-pm.h"
40#include "blk-stat.h"
41#include "blk-mq-sched.h"
42#include "blk-rq-qos.h"
43
44static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45
46static void blk_mq_poll_stats_start(struct request_queue *q);
47static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
49static int blk_mq_poll_stats_bkt(const struct request *rq)
50{
51 int ddir, sectors, bucket;
52
53 ddir = rq_data_dir(rq);
54 sectors = blk_rq_stats_sectors(rq);
55
56 bucket = ddir + 2 * ilog2(sectors);
57
58 if (bucket < 0)
59 return -1;
60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63 return bucket;
64}
65
66/*
67 * Check if any of the ctx, dispatch list or elevator
68 * have pending work in this hardware queue.
69 */
70static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71{
72 return !list_empty_careful(&hctx->dispatch) ||
73 sbitmap_any_bit_set(&hctx->ctx_map) ||
74 blk_mq_sched_has_work(hctx);
75}
76
77/*
78 * Mark this ctx as having pending work in this hardware queue
79 */
80static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82{
83 const int bit = ctx->index_hw[hctx->type];
84
85 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 sbitmap_set_bit(&hctx->ctx_map, bit);
87}
88
89static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 struct blk_mq_ctx *ctx)
91{
92 const int bit = ctx->index_hw[hctx->type];
93
94 sbitmap_clear_bit(&hctx->ctx_map, bit);
95}
96
97struct mq_inflight {
98 struct hd_struct *part;
99 unsigned int inflight[2];
100};
101
102static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 struct request *rq, void *priv,
104 bool reserved)
105{
106 struct mq_inflight *mi = priv;
107
108 if (rq->part == mi->part)
109 mi->inflight[rq_data_dir(rq)]++;
110
111 return true;
112}
113
114unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
115{
116 struct mq_inflight mi = { .part = part };
117
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119
120 return mi.inflight[0] + mi.inflight[1];
121}
122
123void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
124 unsigned int inflight[2])
125{
126 struct mq_inflight mi = { .part = part };
127
128 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
129 inflight[0] = mi.inflight[0];
130 inflight[1] = mi.inflight[1];
131}
132
133void blk_freeze_queue_start(struct request_queue *q)
134{
135 mutex_lock(&q->mq_freeze_lock);
136 if (++q->mq_freeze_depth == 1) {
137 percpu_ref_kill(&q->q_usage_counter);
138 mutex_unlock(&q->mq_freeze_lock);
139 if (queue_is_mq(q))
140 blk_mq_run_hw_queues(q, false);
141 } else {
142 mutex_unlock(&q->mq_freeze_lock);
143 }
144}
145EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
146
147void blk_mq_freeze_queue_wait(struct request_queue *q)
148{
149 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
150}
151EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
152
153int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
154 unsigned long timeout)
155{
156 return wait_event_timeout(q->mq_freeze_wq,
157 percpu_ref_is_zero(&q->q_usage_counter),
158 timeout);
159}
160EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
161
162/*
163 * Guarantee no request is in use, so we can change any data structure of
164 * the queue afterward.
165 */
166void blk_freeze_queue(struct request_queue *q)
167{
168 /*
169 * In the !blk_mq case we are only calling this to kill the
170 * q_usage_counter, otherwise this increases the freeze depth
171 * and waits for it to return to zero. For this reason there is
172 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
173 * exported to drivers as the only user for unfreeze is blk_mq.
174 */
175 blk_freeze_queue_start(q);
176 blk_mq_freeze_queue_wait(q);
177}
178
179void blk_mq_freeze_queue(struct request_queue *q)
180{
181 /*
182 * ...just an alias to keep freeze and unfreeze actions balanced
183 * in the blk_mq_* namespace
184 */
185 blk_freeze_queue(q);
186}
187EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
188
189void blk_mq_unfreeze_queue(struct request_queue *q)
190{
191 mutex_lock(&q->mq_freeze_lock);
192 q->mq_freeze_depth--;
193 WARN_ON_ONCE(q->mq_freeze_depth < 0);
194 if (!q->mq_freeze_depth) {
195 percpu_ref_resurrect(&q->q_usage_counter);
196 wake_up_all(&q->mq_freeze_wq);
197 }
198 mutex_unlock(&q->mq_freeze_lock);
199}
200EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
201
202/*
203 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
204 * mpt3sas driver such that this function can be removed.
205 */
206void blk_mq_quiesce_queue_nowait(struct request_queue *q)
207{
208 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
209}
210EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
211
212/**
213 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
214 * @q: request queue.
215 *
216 * Note: this function does not prevent that the struct request end_io()
217 * callback function is invoked. Once this function is returned, we make
218 * sure no dispatch can happen until the queue is unquiesced via
219 * blk_mq_unquiesce_queue().
220 */
221void blk_mq_quiesce_queue(struct request_queue *q)
222{
223 struct blk_mq_hw_ctx *hctx;
224 unsigned int i;
225 bool rcu = false;
226
227 blk_mq_quiesce_queue_nowait(q);
228
229 queue_for_each_hw_ctx(q, hctx, i) {
230 if (hctx->flags & BLK_MQ_F_BLOCKING)
231 synchronize_srcu(hctx->srcu);
232 else
233 rcu = true;
234 }
235 if (rcu)
236 synchronize_rcu();
237}
238EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
239
240/*
241 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
242 * @q: request queue.
243 *
244 * This function recovers queue into the state before quiescing
245 * which is done by blk_mq_quiesce_queue.
246 */
247void blk_mq_unquiesce_queue(struct request_queue *q)
248{
249 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
250
251 /* dispatch requests which are inserted during quiescing */
252 blk_mq_run_hw_queues(q, true);
253}
254EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
255
256void blk_mq_wake_waiters(struct request_queue *q)
257{
258 struct blk_mq_hw_ctx *hctx;
259 unsigned int i;
260
261 queue_for_each_hw_ctx(q, hctx, i)
262 if (blk_mq_hw_queue_mapped(hctx))
263 blk_mq_tag_wakeup_all(hctx->tags, true);
264}
265
266/*
267 * Only need start/end time stamping if we have iostat or
268 * blk stats enabled, or using an IO scheduler.
269 */
270static inline bool blk_mq_need_time_stamp(struct request *rq)
271{
272 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
273}
274
275static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
276 unsigned int tag, u64 alloc_time_ns)
277{
278 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
279 struct request *rq = tags->static_rqs[tag];
280
281 if (data->q->elevator) {
282 rq->tag = BLK_MQ_NO_TAG;
283 rq->internal_tag = tag;
284 } else {
285 rq->tag = tag;
286 rq->internal_tag = BLK_MQ_NO_TAG;
287 }
288
289 /* csd/requeue_work/fifo_time is initialized before use */
290 rq->q = data->q;
291 rq->mq_ctx = data->ctx;
292 rq->mq_hctx = data->hctx;
293 rq->rq_flags = 0;
294 rq->cmd_flags = data->cmd_flags;
295 if (data->flags & BLK_MQ_REQ_PREEMPT)
296 rq->rq_flags |= RQF_PREEMPT;
297 if (blk_queue_io_stat(data->q))
298 rq->rq_flags |= RQF_IO_STAT;
299 INIT_LIST_HEAD(&rq->queuelist);
300 INIT_HLIST_NODE(&rq->hash);
301 RB_CLEAR_NODE(&rq->rb_node);
302 rq->rq_disk = NULL;
303 rq->part = NULL;
304#ifdef CONFIG_BLK_RQ_ALLOC_TIME
305 rq->alloc_time_ns = alloc_time_ns;
306#endif
307 if (blk_mq_need_time_stamp(rq))
308 rq->start_time_ns = ktime_get_ns();
309 else
310 rq->start_time_ns = 0;
311 rq->io_start_time_ns = 0;
312 rq->stats_sectors = 0;
313 rq->nr_phys_segments = 0;
314#if defined(CONFIG_BLK_DEV_INTEGRITY)
315 rq->nr_integrity_segments = 0;
316#endif
317 blk_crypto_rq_set_defaults(rq);
318 /* tag was already set */
319 WRITE_ONCE(rq->deadline, 0);
320
321 rq->timeout = 0;
322
323 rq->end_io = NULL;
324 rq->end_io_data = NULL;
325
326 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
327 refcount_set(&rq->ref, 1);
328
329 if (!op_is_flush(data->cmd_flags)) {
330 struct elevator_queue *e = data->q->elevator;
331
332 rq->elv.icq = NULL;
333 if (e && e->type->ops.prepare_request) {
334 if (e->type->icq_cache)
335 blk_mq_sched_assign_ioc(rq);
336
337 e->type->ops.prepare_request(rq);
338 rq->rq_flags |= RQF_ELVPRIV;
339 }
340 }
341
342 data->hctx->queued++;
343 return rq;
344}
345
346static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
347{
348 struct request_queue *q = data->q;
349 struct elevator_queue *e = q->elevator;
350 u64 alloc_time_ns = 0;
351 unsigned int tag;
352
353 /* alloc_time includes depth and tag waits */
354 if (blk_queue_rq_alloc_time(q))
355 alloc_time_ns = ktime_get_ns();
356
357 if (data->cmd_flags & REQ_NOWAIT)
358 data->flags |= BLK_MQ_REQ_NOWAIT;
359
360 if (e) {
361 /*
362 * Flush requests are special and go directly to the
363 * dispatch list. Don't include reserved tags in the
364 * limiting, as it isn't useful.
365 */
366 if (!op_is_flush(data->cmd_flags) &&
367 e->type->ops.limit_depth &&
368 !(data->flags & BLK_MQ_REQ_RESERVED))
369 e->type->ops.limit_depth(data->cmd_flags, data);
370 }
371
372retry:
373 data->ctx = blk_mq_get_ctx(q);
374 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
375 if (!e)
376 blk_mq_tag_busy(data->hctx);
377
378 /*
379 * Waiting allocations only fail because of an inactive hctx. In that
380 * case just retry the hctx assignment and tag allocation as CPU hotplug
381 * should have migrated us to an online CPU by now.
382 */
383 tag = blk_mq_get_tag(data);
384 if (tag == BLK_MQ_NO_TAG) {
385 if (data->flags & BLK_MQ_REQ_NOWAIT)
386 return NULL;
387
388 /*
389 * Give up the CPU and sleep for a random short time to ensure
390 * that thread using a realtime scheduling class are migrated
391 * off the CPU, and thus off the hctx that is going away.
392 */
393 msleep(3);
394 goto retry;
395 }
396 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
397}
398
399struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400 blk_mq_req_flags_t flags)
401{
402 struct blk_mq_alloc_data data = {
403 .q = q,
404 .flags = flags,
405 .cmd_flags = op,
406 };
407 struct request *rq;
408 int ret;
409
410 ret = blk_queue_enter(q, flags);
411 if (ret)
412 return ERR_PTR(ret);
413
414 rq = __blk_mq_alloc_request(&data);
415 if (!rq)
416 goto out_queue_exit;
417 rq->__data_len = 0;
418 rq->__sector = (sector_t) -1;
419 rq->bio = rq->biotail = NULL;
420 return rq;
421out_queue_exit:
422 blk_queue_exit(q);
423 return ERR_PTR(-EWOULDBLOCK);
424}
425EXPORT_SYMBOL(blk_mq_alloc_request);
426
427struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
428 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
429{
430 struct blk_mq_alloc_data data = {
431 .q = q,
432 .flags = flags,
433 .cmd_flags = op,
434 };
435 u64 alloc_time_ns = 0;
436 unsigned int cpu;
437 unsigned int tag;
438 int ret;
439
440 /* alloc_time includes depth and tag waits */
441 if (blk_queue_rq_alloc_time(q))
442 alloc_time_ns = ktime_get_ns();
443
444 /*
445 * If the tag allocator sleeps we could get an allocation for a
446 * different hardware context. No need to complicate the low level
447 * allocator for this for the rare use case of a command tied to
448 * a specific queue.
449 */
450 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
451 return ERR_PTR(-EINVAL);
452
453 if (hctx_idx >= q->nr_hw_queues)
454 return ERR_PTR(-EIO);
455
456 ret = blk_queue_enter(q, flags);
457 if (ret)
458 return ERR_PTR(ret);
459
460 /*
461 * Check if the hardware context is actually mapped to anything.
462 * If not tell the caller that it should skip this queue.
463 */
464 ret = -EXDEV;
465 data.hctx = q->queue_hw_ctx[hctx_idx];
466 if (!blk_mq_hw_queue_mapped(data.hctx))
467 goto out_queue_exit;
468 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
469 data.ctx = __blk_mq_get_ctx(q, cpu);
470
471 if (!q->elevator)
472 blk_mq_tag_busy(data.hctx);
473
474 ret = -EWOULDBLOCK;
475 tag = blk_mq_get_tag(&data);
476 if (tag == BLK_MQ_NO_TAG)
477 goto out_queue_exit;
478 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
479
480out_queue_exit:
481 blk_queue_exit(q);
482 return ERR_PTR(ret);
483}
484EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
485
486static void __blk_mq_free_request(struct request *rq)
487{
488 struct request_queue *q = rq->q;
489 struct blk_mq_ctx *ctx = rq->mq_ctx;
490 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
491 const int sched_tag = rq->internal_tag;
492
493 blk_crypto_free_request(rq);
494 blk_pm_mark_last_busy(rq);
495 rq->mq_hctx = NULL;
496 if (rq->tag != BLK_MQ_NO_TAG)
497 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
498 if (sched_tag != BLK_MQ_NO_TAG)
499 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
500 blk_mq_sched_restart(hctx);
501 blk_queue_exit(q);
502}
503
504void blk_mq_free_request(struct request *rq)
505{
506 struct request_queue *q = rq->q;
507 struct elevator_queue *e = q->elevator;
508 struct blk_mq_ctx *ctx = rq->mq_ctx;
509 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
510
511 if (rq->rq_flags & RQF_ELVPRIV) {
512 if (e && e->type->ops.finish_request)
513 e->type->ops.finish_request(rq);
514 if (rq->elv.icq) {
515 put_io_context(rq->elv.icq->ioc);
516 rq->elv.icq = NULL;
517 }
518 }
519
520 ctx->rq_completed[rq_is_sync(rq)]++;
521 if (rq->rq_flags & RQF_MQ_INFLIGHT)
522 __blk_mq_dec_active_requests(hctx);
523
524 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
525 laptop_io_completion(q->backing_dev_info);
526
527 rq_qos_done(q, rq);
528
529 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
530 if (refcount_dec_and_test(&rq->ref))
531 __blk_mq_free_request(rq);
532}
533EXPORT_SYMBOL_GPL(blk_mq_free_request);
534
535inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
536{
537 u64 now = 0;
538
539 if (blk_mq_need_time_stamp(rq))
540 now = ktime_get_ns();
541
542 if (rq->rq_flags & RQF_STATS) {
543 blk_mq_poll_stats_start(rq->q);
544 blk_stat_add(rq, now);
545 }
546
547 blk_mq_sched_completed_request(rq, now);
548
549 blk_account_io_done(rq, now);
550
551 if (rq->end_io) {
552 rq_qos_done(rq->q, rq);
553 rq->end_io(rq, error);
554 } else {
555 blk_mq_free_request(rq);
556 }
557}
558EXPORT_SYMBOL(__blk_mq_end_request);
559
560void blk_mq_end_request(struct request *rq, blk_status_t error)
561{
562 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
563 BUG();
564 __blk_mq_end_request(rq, error);
565}
566EXPORT_SYMBOL(blk_mq_end_request);
567
568/*
569 * Softirq action handler - move entries to local list and loop over them
570 * while passing them to the queue registered handler.
571 */
572static __latent_entropy void blk_done_softirq(struct softirq_action *h)
573{
574 struct list_head *cpu_list, local_list;
575
576 local_irq_disable();
577 cpu_list = this_cpu_ptr(&blk_cpu_done);
578 list_replace_init(cpu_list, &local_list);
579 local_irq_enable();
580
581 while (!list_empty(&local_list)) {
582 struct request *rq;
583
584 rq = list_entry(local_list.next, struct request, ipi_list);
585 list_del_init(&rq->ipi_list);
586 rq->q->mq_ops->complete(rq);
587 }
588}
589
590static void blk_mq_trigger_softirq(struct request *rq)
591{
592 struct list_head *list;
593 unsigned long flags;
594
595 local_irq_save(flags);
596 list = this_cpu_ptr(&blk_cpu_done);
597 list_add_tail(&rq->ipi_list, list);
598
599 /*
600 * If the list only contains our just added request, signal a raise of
601 * the softirq. If there are already entries there, someone already
602 * raised the irq but it hasn't run yet.
603 */
604 if (list->next == &rq->ipi_list)
605 raise_softirq_irqoff(BLOCK_SOFTIRQ);
606 local_irq_restore(flags);
607}
608
609static int blk_softirq_cpu_dead(unsigned int cpu)
610{
611 /*
612 * If a CPU goes away, splice its entries to the current CPU
613 * and trigger a run of the softirq
614 */
615 local_irq_disable();
616 list_splice_init(&per_cpu(blk_cpu_done, cpu),
617 this_cpu_ptr(&blk_cpu_done));
618 raise_softirq_irqoff(BLOCK_SOFTIRQ);
619 local_irq_enable();
620
621 return 0;
622}
623
624
625static void __blk_mq_complete_request_remote(void *data)
626{
627 struct request *rq = data;
628
629 /*
630 * For most of single queue controllers, there is only one irq vector
631 * for handling I/O completion, and the only irq's affinity is set
632 * to all possible CPUs. On most of ARCHs, this affinity means the irq
633 * is handled on one specific CPU.
634 *
635 * So complete I/O requests in softirq context in case of single queue
636 * devices to avoid degrading I/O performance due to irqsoff latency.
637 */
638 if (rq->q->nr_hw_queues == 1)
639 blk_mq_trigger_softirq(rq);
640 else
641 rq->q->mq_ops->complete(rq);
642}
643
644static inline bool blk_mq_complete_need_ipi(struct request *rq)
645{
646 int cpu = raw_smp_processor_id();
647
648 if (!IS_ENABLED(CONFIG_SMP) ||
649 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
650 return false;
651
652 /* same CPU or cache domain? Complete locally */
653 if (cpu == rq->mq_ctx->cpu ||
654 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
655 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
656 return false;
657
658 /* don't try to IPI to an offline CPU */
659 return cpu_online(rq->mq_ctx->cpu);
660}
661
662bool blk_mq_complete_request_remote(struct request *rq)
663{
664 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
665
666 /*
667 * For a polled request, always complete locallly, it's pointless
668 * to redirect the completion.
669 */
670 if (rq->cmd_flags & REQ_HIPRI)
671 return false;
672
673 if (blk_mq_complete_need_ipi(rq)) {
674 rq->csd.func = __blk_mq_complete_request_remote;
675 rq->csd.info = rq;
676 rq->csd.flags = 0;
677 smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
678 } else {
679 if (rq->q->nr_hw_queues > 1)
680 return false;
681 blk_mq_trigger_softirq(rq);
682 }
683
684 return true;
685}
686EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
687
688/**
689 * blk_mq_complete_request - end I/O on a request
690 * @rq: the request being processed
691 *
692 * Description:
693 * Complete a request by scheduling the ->complete_rq operation.
694 **/
695void blk_mq_complete_request(struct request *rq)
696{
697 if (!blk_mq_complete_request_remote(rq))
698 rq->q->mq_ops->complete(rq);
699}
700EXPORT_SYMBOL(blk_mq_complete_request);
701
702static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
703 __releases(hctx->srcu)
704{
705 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
706 rcu_read_unlock();
707 else
708 srcu_read_unlock(hctx->srcu, srcu_idx);
709}
710
711static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
712 __acquires(hctx->srcu)
713{
714 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
715 /* shut up gcc false positive */
716 *srcu_idx = 0;
717 rcu_read_lock();
718 } else
719 *srcu_idx = srcu_read_lock(hctx->srcu);
720}
721
722/**
723 * blk_mq_start_request - Start processing a request
724 * @rq: Pointer to request to be started
725 *
726 * Function used by device drivers to notify the block layer that a request
727 * is going to be processed now, so blk layer can do proper initializations
728 * such as starting the timeout timer.
729 */
730void blk_mq_start_request(struct request *rq)
731{
732 struct request_queue *q = rq->q;
733
734 trace_block_rq_issue(q, rq);
735
736 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
737 rq->io_start_time_ns = ktime_get_ns();
738 rq->stats_sectors = blk_rq_sectors(rq);
739 rq->rq_flags |= RQF_STATS;
740 rq_qos_issue(q, rq);
741 }
742
743 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
744
745 blk_add_timer(rq);
746 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
747
748#ifdef CONFIG_BLK_DEV_INTEGRITY
749 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
750 q->integrity.profile->prepare_fn(rq);
751#endif
752}
753EXPORT_SYMBOL(blk_mq_start_request);
754
755static void __blk_mq_requeue_request(struct request *rq)
756{
757 struct request_queue *q = rq->q;
758
759 blk_mq_put_driver_tag(rq);
760
761 trace_block_rq_requeue(q, rq);
762 rq_qos_requeue(q, rq);
763
764 if (blk_mq_request_started(rq)) {
765 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
766 rq->rq_flags &= ~RQF_TIMED_OUT;
767 }
768}
769
770void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
771{
772 __blk_mq_requeue_request(rq);
773
774 /* this request will be re-inserted to io scheduler queue */
775 blk_mq_sched_requeue_request(rq);
776
777 BUG_ON(!list_empty(&rq->queuelist));
778 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
779}
780EXPORT_SYMBOL(blk_mq_requeue_request);
781
782static void blk_mq_requeue_work(struct work_struct *work)
783{
784 struct request_queue *q =
785 container_of(work, struct request_queue, requeue_work.work);
786 LIST_HEAD(rq_list);
787 struct request *rq, *next;
788
789 spin_lock_irq(&q->requeue_lock);
790 list_splice_init(&q->requeue_list, &rq_list);
791 spin_unlock_irq(&q->requeue_lock);
792
793 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
794 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
795 continue;
796
797 rq->rq_flags &= ~RQF_SOFTBARRIER;
798 list_del_init(&rq->queuelist);
799 /*
800 * If RQF_DONTPREP, rq has contained some driver specific
801 * data, so insert it to hctx dispatch list to avoid any
802 * merge.
803 */
804 if (rq->rq_flags & RQF_DONTPREP)
805 blk_mq_request_bypass_insert(rq, false, false);
806 else
807 blk_mq_sched_insert_request(rq, true, false, false);
808 }
809
810 while (!list_empty(&rq_list)) {
811 rq = list_entry(rq_list.next, struct request, queuelist);
812 list_del_init(&rq->queuelist);
813 blk_mq_sched_insert_request(rq, false, false, false);
814 }
815
816 blk_mq_run_hw_queues(q, false);
817}
818
819void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
820 bool kick_requeue_list)
821{
822 struct request_queue *q = rq->q;
823 unsigned long flags;
824
825 /*
826 * We abuse this flag that is otherwise used by the I/O scheduler to
827 * request head insertion from the workqueue.
828 */
829 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
830
831 spin_lock_irqsave(&q->requeue_lock, flags);
832 if (at_head) {
833 rq->rq_flags |= RQF_SOFTBARRIER;
834 list_add(&rq->queuelist, &q->requeue_list);
835 } else {
836 list_add_tail(&rq->queuelist, &q->requeue_list);
837 }
838 spin_unlock_irqrestore(&q->requeue_lock, flags);
839
840 if (kick_requeue_list)
841 blk_mq_kick_requeue_list(q);
842}
843
844void blk_mq_kick_requeue_list(struct request_queue *q)
845{
846 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
847}
848EXPORT_SYMBOL(blk_mq_kick_requeue_list);
849
850void blk_mq_delay_kick_requeue_list(struct request_queue *q,
851 unsigned long msecs)
852{
853 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
854 msecs_to_jiffies(msecs));
855}
856EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
857
858struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
859{
860 if (tag < tags->nr_tags) {
861 prefetch(tags->rqs[tag]);
862 return tags->rqs[tag];
863 }
864
865 return NULL;
866}
867EXPORT_SYMBOL(blk_mq_tag_to_rq);
868
869static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
870 void *priv, bool reserved)
871{
872 /*
873 * If we find a request that isn't idle and the queue matches,
874 * we know the queue is busy. Return false to stop the iteration.
875 */
876 if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
877 bool *busy = priv;
878
879 *busy = true;
880 return false;
881 }
882
883 return true;
884}
885
886bool blk_mq_queue_inflight(struct request_queue *q)
887{
888 bool busy = false;
889
890 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
891 return busy;
892}
893EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
894
895static void blk_mq_rq_timed_out(struct request *req, bool reserved)
896{
897 req->rq_flags |= RQF_TIMED_OUT;
898 if (req->q->mq_ops->timeout) {
899 enum blk_eh_timer_return ret;
900
901 ret = req->q->mq_ops->timeout(req, reserved);
902 if (ret == BLK_EH_DONE)
903 return;
904 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
905 }
906
907 blk_add_timer(req);
908}
909
910static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
911{
912 unsigned long deadline;
913
914 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
915 return false;
916 if (rq->rq_flags & RQF_TIMED_OUT)
917 return false;
918
919 deadline = READ_ONCE(rq->deadline);
920 if (time_after_eq(jiffies, deadline))
921 return true;
922
923 if (*next == 0)
924 *next = deadline;
925 else if (time_after(*next, deadline))
926 *next = deadline;
927 return false;
928}
929
930static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
931 struct request *rq, void *priv, bool reserved)
932{
933 unsigned long *next = priv;
934
935 /*
936 * Just do a quick check if it is expired before locking the request in
937 * so we're not unnecessarilly synchronizing across CPUs.
938 */
939 if (!blk_mq_req_expired(rq, next))
940 return true;
941
942 /*
943 * We have reason to believe the request may be expired. Take a
944 * reference on the request to lock this request lifetime into its
945 * currently allocated context to prevent it from being reallocated in
946 * the event the completion by-passes this timeout handler.
947 *
948 * If the reference was already released, then the driver beat the
949 * timeout handler to posting a natural completion.
950 */
951 if (!refcount_inc_not_zero(&rq->ref))
952 return true;
953
954 /*
955 * The request is now locked and cannot be reallocated underneath the
956 * timeout handler's processing. Re-verify this exact request is truly
957 * expired; if it is not expired, then the request was completed and
958 * reallocated as a new request.
959 */
960 if (blk_mq_req_expired(rq, next))
961 blk_mq_rq_timed_out(rq, reserved);
962
963 if (is_flush_rq(rq, hctx))
964 rq->end_io(rq, 0);
965 else if (refcount_dec_and_test(&rq->ref))
966 __blk_mq_free_request(rq);
967
968 return true;
969}
970
971static void blk_mq_timeout_work(struct work_struct *work)
972{
973 struct request_queue *q =
974 container_of(work, struct request_queue, timeout_work);
975 unsigned long next = 0;
976 struct blk_mq_hw_ctx *hctx;
977 int i;
978
979 /* A deadlock might occur if a request is stuck requiring a
980 * timeout at the same time a queue freeze is waiting
981 * completion, since the timeout code would not be able to
982 * acquire the queue reference here.
983 *
984 * That's why we don't use blk_queue_enter here; instead, we use
985 * percpu_ref_tryget directly, because we need to be able to
986 * obtain a reference even in the short window between the queue
987 * starting to freeze, by dropping the first reference in
988 * blk_freeze_queue_start, and the moment the last request is
989 * consumed, marked by the instant q_usage_counter reaches
990 * zero.
991 */
992 if (!percpu_ref_tryget(&q->q_usage_counter))
993 return;
994
995 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
996
997 if (next != 0) {
998 mod_timer(&q->timeout, next);
999 } else {
1000 /*
1001 * Request timeouts are handled as a forward rolling timer. If
1002 * we end up here it means that no requests are pending and
1003 * also that no request has been pending for a while. Mark
1004 * each hctx as idle.
1005 */
1006 queue_for_each_hw_ctx(q, hctx, i) {
1007 /* the hctx may be unmapped, so check it here */
1008 if (blk_mq_hw_queue_mapped(hctx))
1009 blk_mq_tag_idle(hctx);
1010 }
1011 }
1012 blk_queue_exit(q);
1013}
1014
1015struct flush_busy_ctx_data {
1016 struct blk_mq_hw_ctx *hctx;
1017 struct list_head *list;
1018};
1019
1020static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1021{
1022 struct flush_busy_ctx_data *flush_data = data;
1023 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1024 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1025 enum hctx_type type = hctx->type;
1026
1027 spin_lock(&ctx->lock);
1028 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1029 sbitmap_clear_bit(sb, bitnr);
1030 spin_unlock(&ctx->lock);
1031 return true;
1032}
1033
1034/*
1035 * Process software queues that have been marked busy, splicing them
1036 * to the for-dispatch
1037 */
1038void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1039{
1040 struct flush_busy_ctx_data data = {
1041 .hctx = hctx,
1042 .list = list,
1043 };
1044
1045 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1046}
1047EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1048
1049struct dispatch_rq_data {
1050 struct blk_mq_hw_ctx *hctx;
1051 struct request *rq;
1052};
1053
1054static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1055 void *data)
1056{
1057 struct dispatch_rq_data *dispatch_data = data;
1058 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1059 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1060 enum hctx_type type = hctx->type;
1061
1062 spin_lock(&ctx->lock);
1063 if (!list_empty(&ctx->rq_lists[type])) {
1064 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1065 list_del_init(&dispatch_data->rq->queuelist);
1066 if (list_empty(&ctx->rq_lists[type]))
1067 sbitmap_clear_bit(sb, bitnr);
1068 }
1069 spin_unlock(&ctx->lock);
1070
1071 return !dispatch_data->rq;
1072}
1073
1074struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1075 struct blk_mq_ctx *start)
1076{
1077 unsigned off = start ? start->index_hw[hctx->type] : 0;
1078 struct dispatch_rq_data data = {
1079 .hctx = hctx,
1080 .rq = NULL,
1081 };
1082
1083 __sbitmap_for_each_set(&hctx->ctx_map, off,
1084 dispatch_rq_from_ctx, &data);
1085
1086 return data.rq;
1087}
1088
1089static inline unsigned int queued_to_index(unsigned int queued)
1090{
1091 if (!queued)
1092 return 0;
1093
1094 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1095}
1096
1097static bool __blk_mq_get_driver_tag(struct request *rq)
1098{
1099 struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1100 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1101 int tag;
1102
1103 blk_mq_tag_busy(rq->mq_hctx);
1104
1105 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1106 bt = rq->mq_hctx->tags->breserved_tags;
1107 tag_offset = 0;
1108 } else {
1109 if (!hctx_may_queue(rq->mq_hctx, bt))
1110 return false;
1111 }
1112
1113 tag = __sbitmap_queue_get(bt);
1114 if (tag == BLK_MQ_NO_TAG)
1115 return false;
1116
1117 rq->tag = tag + tag_offset;
1118 return true;
1119}
1120
1121static bool blk_mq_get_driver_tag(struct request *rq)
1122{
1123 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1124
1125 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1126 return false;
1127
1128 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1129 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1130 rq->rq_flags |= RQF_MQ_INFLIGHT;
1131 __blk_mq_inc_active_requests(hctx);
1132 }
1133 hctx->tags->rqs[rq->tag] = rq;
1134 return true;
1135}
1136
1137static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1138 int flags, void *key)
1139{
1140 struct blk_mq_hw_ctx *hctx;
1141
1142 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1143
1144 spin_lock(&hctx->dispatch_wait_lock);
1145 if (!list_empty(&wait->entry)) {
1146 struct sbitmap_queue *sbq;
1147
1148 list_del_init(&wait->entry);
1149 sbq = hctx->tags->bitmap_tags;
1150 atomic_dec(&sbq->ws_active);
1151 }
1152 spin_unlock(&hctx->dispatch_wait_lock);
1153
1154 blk_mq_run_hw_queue(hctx, true);
1155 return 1;
1156}
1157
1158/*
1159 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1160 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1161 * restart. For both cases, take care to check the condition again after
1162 * marking us as waiting.
1163 */
1164static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1165 struct request *rq)
1166{
1167 struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1168 struct wait_queue_head *wq;
1169 wait_queue_entry_t *wait;
1170 bool ret;
1171
1172 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1173 blk_mq_sched_mark_restart_hctx(hctx);
1174
1175 /*
1176 * It's possible that a tag was freed in the window between the
1177 * allocation failure and adding the hardware queue to the wait
1178 * queue.
1179 *
1180 * Don't clear RESTART here, someone else could have set it.
1181 * At most this will cost an extra queue run.
1182 */
1183 return blk_mq_get_driver_tag(rq);
1184 }
1185
1186 wait = &hctx->dispatch_wait;
1187 if (!list_empty_careful(&wait->entry))
1188 return false;
1189
1190 wq = &bt_wait_ptr(sbq, hctx)->wait;
1191
1192 spin_lock_irq(&wq->lock);
1193 spin_lock(&hctx->dispatch_wait_lock);
1194 if (!list_empty(&wait->entry)) {
1195 spin_unlock(&hctx->dispatch_wait_lock);
1196 spin_unlock_irq(&wq->lock);
1197 return false;
1198 }
1199
1200 atomic_inc(&sbq->ws_active);
1201 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1202 __add_wait_queue(wq, wait);
1203
1204 /*
1205 * It's possible that a tag was freed in the window between the
1206 * allocation failure and adding the hardware queue to the wait
1207 * queue.
1208 */
1209 ret = blk_mq_get_driver_tag(rq);
1210 if (!ret) {
1211 spin_unlock(&hctx->dispatch_wait_lock);
1212 spin_unlock_irq(&wq->lock);
1213 return false;
1214 }
1215
1216 /*
1217 * We got a tag, remove ourselves from the wait queue to ensure
1218 * someone else gets the wakeup.
1219 */
1220 list_del_init(&wait->entry);
1221 atomic_dec(&sbq->ws_active);
1222 spin_unlock(&hctx->dispatch_wait_lock);
1223 spin_unlock_irq(&wq->lock);
1224
1225 return true;
1226}
1227
1228#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1229#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1230/*
1231 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1232 * - EWMA is one simple way to compute running average value
1233 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1234 * - take 4 as factor for avoiding to get too small(0) result, and this
1235 * factor doesn't matter because EWMA decreases exponentially
1236 */
1237static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1238{
1239 unsigned int ewma;
1240
1241 if (hctx->queue->elevator)
1242 return;
1243
1244 ewma = hctx->dispatch_busy;
1245
1246 if (!ewma && !busy)
1247 return;
1248
1249 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1250 if (busy)
1251 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1252 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1253
1254 hctx->dispatch_busy = ewma;
1255}
1256
1257#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1258
1259static void blk_mq_handle_dev_resource(struct request *rq,
1260 struct list_head *list)
1261{
1262 struct request *next =
1263 list_first_entry_or_null(list, struct request, queuelist);
1264
1265 /*
1266 * If an I/O scheduler has been configured and we got a driver tag for
1267 * the next request already, free it.
1268 */
1269 if (next)
1270 blk_mq_put_driver_tag(next);
1271
1272 list_add(&rq->queuelist, list);
1273 __blk_mq_requeue_request(rq);
1274}
1275
1276static void blk_mq_handle_zone_resource(struct request *rq,
1277 struct list_head *zone_list)
1278{
1279 /*
1280 * If we end up here it is because we cannot dispatch a request to a
1281 * specific zone due to LLD level zone-write locking or other zone
1282 * related resource not being available. In this case, set the request
1283 * aside in zone_list for retrying it later.
1284 */
1285 list_add(&rq->queuelist, zone_list);
1286 __blk_mq_requeue_request(rq);
1287}
1288
1289enum prep_dispatch {
1290 PREP_DISPATCH_OK,
1291 PREP_DISPATCH_NO_TAG,
1292 PREP_DISPATCH_NO_BUDGET,
1293};
1294
1295static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1296 bool need_budget)
1297{
1298 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1299
1300 if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1301 blk_mq_put_driver_tag(rq);
1302 return PREP_DISPATCH_NO_BUDGET;
1303 }
1304
1305 if (!blk_mq_get_driver_tag(rq)) {
1306 /*
1307 * The initial allocation attempt failed, so we need to
1308 * rerun the hardware queue when a tag is freed. The
1309 * waitqueue takes care of that. If the queue is run
1310 * before we add this entry back on the dispatch list,
1311 * we'll re-run it below.
1312 */
1313 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1314 /*
1315 * All budgets not got from this function will be put
1316 * together during handling partial dispatch
1317 */
1318 if (need_budget)
1319 blk_mq_put_dispatch_budget(rq->q);
1320 return PREP_DISPATCH_NO_TAG;
1321 }
1322 }
1323
1324 return PREP_DISPATCH_OK;
1325}
1326
1327/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1328static void blk_mq_release_budgets(struct request_queue *q,
1329 unsigned int nr_budgets)
1330{
1331 int i;
1332
1333 for (i = 0; i < nr_budgets; i++)
1334 blk_mq_put_dispatch_budget(q);
1335}
1336
1337/*
1338 * Returns true if we did some work AND can potentially do more.
1339 */
1340bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1341 unsigned int nr_budgets)
1342{
1343 enum prep_dispatch prep;
1344 struct request_queue *q = hctx->queue;
1345 struct request *rq, *nxt;
1346 int errors, queued;
1347 blk_status_t ret = BLK_STS_OK;
1348 LIST_HEAD(zone_list);
1349
1350 if (list_empty(list))
1351 return false;
1352
1353 /*
1354 * Now process all the entries, sending them to the driver.
1355 */
1356 errors = queued = 0;
1357 do {
1358 struct blk_mq_queue_data bd;
1359
1360 rq = list_first_entry(list, struct request, queuelist);
1361
1362 WARN_ON_ONCE(hctx != rq->mq_hctx);
1363 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1364 if (prep != PREP_DISPATCH_OK)
1365 break;
1366
1367 list_del_init(&rq->queuelist);
1368
1369 bd.rq = rq;
1370
1371 /*
1372 * Flag last if we have no more requests, or if we have more
1373 * but can't assign a driver tag to it.
1374 */
1375 if (list_empty(list))
1376 bd.last = true;
1377 else {
1378 nxt = list_first_entry(list, struct request, queuelist);
1379 bd.last = !blk_mq_get_driver_tag(nxt);
1380 }
1381
1382 /*
1383 * once the request is queued to lld, no need to cover the
1384 * budget any more
1385 */
1386 if (nr_budgets)
1387 nr_budgets--;
1388 ret = q->mq_ops->queue_rq(hctx, &bd);
1389 switch (ret) {
1390 case BLK_STS_OK:
1391 queued++;
1392 break;
1393 case BLK_STS_RESOURCE:
1394 case BLK_STS_DEV_RESOURCE:
1395 blk_mq_handle_dev_resource(rq, list);
1396 goto out;
1397 case BLK_STS_ZONE_RESOURCE:
1398 /*
1399 * Move the request to zone_list and keep going through
1400 * the dispatch list to find more requests the drive can
1401 * accept.
1402 */
1403 blk_mq_handle_zone_resource(rq, &zone_list);
1404 break;
1405 default:
1406 errors++;
1407 blk_mq_end_request(rq, BLK_STS_IOERR);
1408 }
1409 } while (!list_empty(list));
1410out:
1411 if (!list_empty(&zone_list))
1412 list_splice_tail_init(&zone_list, list);
1413
1414 hctx->dispatched[queued_to_index(queued)]++;
1415
1416 /*
1417 * Any items that need requeuing? Stuff them into hctx->dispatch,
1418 * that is where we will continue on next queue run.
1419 */
1420 if (!list_empty(list)) {
1421 bool needs_restart;
1422 /* For non-shared tags, the RESTART check will suffice */
1423 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1424 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1425 bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1426
1427 blk_mq_release_budgets(q, nr_budgets);
1428
1429 /*
1430 * If we didn't flush the entire list, we could have told
1431 * the driver there was more coming, but that turned out to
1432 * be a lie.
1433 */
1434 if (q->mq_ops->commit_rqs && queued)
1435 q->mq_ops->commit_rqs(hctx);
1436
1437 spin_lock(&hctx->lock);
1438 list_splice_tail_init(list, &hctx->dispatch);
1439 spin_unlock(&hctx->lock);
1440
1441 /*
1442 * Order adding requests to hctx->dispatch and checking
1443 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1444 * in blk_mq_sched_restart(). Avoid restart code path to
1445 * miss the new added requests to hctx->dispatch, meantime
1446 * SCHED_RESTART is observed here.
1447 */
1448 smp_mb();
1449
1450 /*
1451 * If SCHED_RESTART was set by the caller of this function and
1452 * it is no longer set that means that it was cleared by another
1453 * thread and hence that a queue rerun is needed.
1454 *
1455 * If 'no_tag' is set, that means that we failed getting
1456 * a driver tag with an I/O scheduler attached. If our dispatch
1457 * waitqueue is no longer active, ensure that we run the queue
1458 * AFTER adding our entries back to the list.
1459 *
1460 * If no I/O scheduler has been configured it is possible that
1461 * the hardware queue got stopped and restarted before requests
1462 * were pushed back onto the dispatch list. Rerun the queue to
1463 * avoid starvation. Notes:
1464 * - blk_mq_run_hw_queue() checks whether or not a queue has
1465 * been stopped before rerunning a queue.
1466 * - Some but not all block drivers stop a queue before
1467 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1468 * and dm-rq.
1469 *
1470 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1471 * bit is set, run queue after a delay to avoid IO stalls
1472 * that could otherwise occur if the queue is idle. We'll do
1473 * similar if we couldn't get budget and SCHED_RESTART is set.
1474 */
1475 needs_restart = blk_mq_sched_needs_restart(hctx);
1476 if (!needs_restart ||
1477 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1478 blk_mq_run_hw_queue(hctx, true);
1479 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1480 no_budget_avail))
1481 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1482
1483 blk_mq_update_dispatch_busy(hctx, true);
1484 return false;
1485 } else
1486 blk_mq_update_dispatch_busy(hctx, false);
1487
1488 return (queued + errors) != 0;
1489}
1490
1491/**
1492 * __blk_mq_run_hw_queue - Run a hardware queue.
1493 * @hctx: Pointer to the hardware queue to run.
1494 *
1495 * Send pending requests to the hardware.
1496 */
1497static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1498{
1499 int srcu_idx;
1500
1501 /*
1502 * We should be running this queue from one of the CPUs that
1503 * are mapped to it.
1504 *
1505 * There are at least two related races now between setting
1506 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1507 * __blk_mq_run_hw_queue():
1508 *
1509 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1510 * but later it becomes online, then this warning is harmless
1511 * at all
1512 *
1513 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1514 * but later it becomes offline, then the warning can't be
1515 * triggered, and we depend on blk-mq timeout handler to
1516 * handle dispatched requests to this hctx
1517 */
1518 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1519 cpu_online(hctx->next_cpu)) {
1520 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1521 raw_smp_processor_id(),
1522 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1523 dump_stack();
1524 }
1525
1526 /*
1527 * We can't run the queue inline with ints disabled. Ensure that
1528 * we catch bad users of this early.
1529 */
1530 WARN_ON_ONCE(in_interrupt());
1531
1532 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1533
1534 hctx_lock(hctx, &srcu_idx);
1535 blk_mq_sched_dispatch_requests(hctx);
1536 hctx_unlock(hctx, srcu_idx);
1537}
1538
1539static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1540{
1541 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1542
1543 if (cpu >= nr_cpu_ids)
1544 cpu = cpumask_first(hctx->cpumask);
1545 return cpu;
1546}
1547
1548/*
1549 * It'd be great if the workqueue API had a way to pass
1550 * in a mask and had some smarts for more clever placement.
1551 * For now we just round-robin here, switching for every
1552 * BLK_MQ_CPU_WORK_BATCH queued items.
1553 */
1554static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1555{
1556 bool tried = false;
1557 int next_cpu = hctx->next_cpu;
1558
1559 if (hctx->queue->nr_hw_queues == 1)
1560 return WORK_CPU_UNBOUND;
1561
1562 if (--hctx->next_cpu_batch <= 0) {
1563select_cpu:
1564 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1565 cpu_online_mask);
1566 if (next_cpu >= nr_cpu_ids)
1567 next_cpu = blk_mq_first_mapped_cpu(hctx);
1568 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1569 }
1570
1571 /*
1572 * Do unbound schedule if we can't find a online CPU for this hctx,
1573 * and it should only happen in the path of handling CPU DEAD.
1574 */
1575 if (!cpu_online(next_cpu)) {
1576 if (!tried) {
1577 tried = true;
1578 goto select_cpu;
1579 }
1580
1581 /*
1582 * Make sure to re-select CPU next time once after CPUs
1583 * in hctx->cpumask become online again.
1584 */
1585 hctx->next_cpu = next_cpu;
1586 hctx->next_cpu_batch = 1;
1587 return WORK_CPU_UNBOUND;
1588 }
1589
1590 hctx->next_cpu = next_cpu;
1591 return next_cpu;
1592}
1593
1594/**
1595 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1596 * @hctx: Pointer to the hardware queue to run.
1597 * @async: If we want to run the queue asynchronously.
1598 * @msecs: Microseconds of delay to wait before running the queue.
1599 *
1600 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1601 * with a delay of @msecs.
1602 */
1603static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1604 unsigned long msecs)
1605{
1606 if (unlikely(blk_mq_hctx_stopped(hctx)))
1607 return;
1608
1609 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1610 int cpu = get_cpu();
1611 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1612 __blk_mq_run_hw_queue(hctx);
1613 put_cpu();
1614 return;
1615 }
1616
1617 put_cpu();
1618 }
1619
1620 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1621 msecs_to_jiffies(msecs));
1622}
1623
1624/**
1625 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1626 * @hctx: Pointer to the hardware queue to run.
1627 * @msecs: Microseconds of delay to wait before running the queue.
1628 *
1629 * Run a hardware queue asynchronously with a delay of @msecs.
1630 */
1631void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1632{
1633 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1634}
1635EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1636
1637/**
1638 * blk_mq_run_hw_queue - Start to run a hardware queue.
1639 * @hctx: Pointer to the hardware queue to run.
1640 * @async: If we want to run the queue asynchronously.
1641 *
1642 * Check if the request queue is not in a quiesced state and if there are
1643 * pending requests to be sent. If this is true, run the queue to send requests
1644 * to hardware.
1645 */
1646void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1647{
1648 int srcu_idx;
1649 bool need_run;
1650
1651 /*
1652 * When queue is quiesced, we may be switching io scheduler, or
1653 * updating nr_hw_queues, or other things, and we can't run queue
1654 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1655 *
1656 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1657 * quiesced.
1658 */
1659 hctx_lock(hctx, &srcu_idx);
1660 need_run = !blk_queue_quiesced(hctx->queue) &&
1661 blk_mq_hctx_has_pending(hctx);
1662 hctx_unlock(hctx, srcu_idx);
1663
1664 if (need_run)
1665 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1666}
1667EXPORT_SYMBOL(blk_mq_run_hw_queue);
1668
1669/**
1670 * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
1671 * @q: Pointer to the request queue to run.
1672 * @async: If we want to run the queue asynchronously.
1673 */
1674void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1675{
1676 struct blk_mq_hw_ctx *hctx;
1677 int i;
1678
1679 queue_for_each_hw_ctx(q, hctx, i) {
1680 if (blk_mq_hctx_stopped(hctx))
1681 continue;
1682
1683 blk_mq_run_hw_queue(hctx, async);
1684 }
1685}
1686EXPORT_SYMBOL(blk_mq_run_hw_queues);
1687
1688/**
1689 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1690 * @q: Pointer to the request queue to run.
1691 * @msecs: Microseconds of delay to wait before running the queues.
1692 */
1693void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1694{
1695 struct blk_mq_hw_ctx *hctx;
1696 int i;
1697
1698 queue_for_each_hw_ctx(q, hctx, i) {
1699 if (blk_mq_hctx_stopped(hctx))
1700 continue;
1701
1702 blk_mq_delay_run_hw_queue(hctx, msecs);
1703 }
1704}
1705EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1706
1707/**
1708 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1709 * @q: request queue.
1710 *
1711 * The caller is responsible for serializing this function against
1712 * blk_mq_{start,stop}_hw_queue().
1713 */
1714bool blk_mq_queue_stopped(struct request_queue *q)
1715{
1716 struct blk_mq_hw_ctx *hctx;
1717 int i;
1718
1719 queue_for_each_hw_ctx(q, hctx, i)
1720 if (blk_mq_hctx_stopped(hctx))
1721 return true;
1722
1723 return false;
1724}
1725EXPORT_SYMBOL(blk_mq_queue_stopped);
1726
1727/*
1728 * This function is often used for pausing .queue_rq() by driver when
1729 * there isn't enough resource or some conditions aren't satisfied, and
1730 * BLK_STS_RESOURCE is usually returned.
1731 *
1732 * We do not guarantee that dispatch can be drained or blocked
1733 * after blk_mq_stop_hw_queue() returns. Please use
1734 * blk_mq_quiesce_queue() for that requirement.
1735 */
1736void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1737{
1738 cancel_delayed_work(&hctx->run_work);
1739
1740 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1741}
1742EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1743
1744/*
1745 * This function is often used for pausing .queue_rq() by driver when
1746 * there isn't enough resource or some conditions aren't satisfied, and
1747 * BLK_STS_RESOURCE is usually returned.
1748 *
1749 * We do not guarantee that dispatch can be drained or blocked
1750 * after blk_mq_stop_hw_queues() returns. Please use
1751 * blk_mq_quiesce_queue() for that requirement.
1752 */
1753void blk_mq_stop_hw_queues(struct request_queue *q)
1754{
1755 struct blk_mq_hw_ctx *hctx;
1756 int i;
1757
1758 queue_for_each_hw_ctx(q, hctx, i)
1759 blk_mq_stop_hw_queue(hctx);
1760}
1761EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1762
1763void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1764{
1765 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1766
1767 blk_mq_run_hw_queue(hctx, false);
1768}
1769EXPORT_SYMBOL(blk_mq_start_hw_queue);
1770
1771void blk_mq_start_hw_queues(struct request_queue *q)
1772{
1773 struct blk_mq_hw_ctx *hctx;
1774 int i;
1775
1776 queue_for_each_hw_ctx(q, hctx, i)
1777 blk_mq_start_hw_queue(hctx);
1778}
1779EXPORT_SYMBOL(blk_mq_start_hw_queues);
1780
1781void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1782{
1783 if (!blk_mq_hctx_stopped(hctx))
1784 return;
1785
1786 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1787 blk_mq_run_hw_queue(hctx, async);
1788}
1789EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1790
1791void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1792{
1793 struct blk_mq_hw_ctx *hctx;
1794 int i;
1795
1796 queue_for_each_hw_ctx(q, hctx, i)
1797 blk_mq_start_stopped_hw_queue(hctx, async);
1798}
1799EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1800
1801static void blk_mq_run_work_fn(struct work_struct *work)
1802{
1803 struct blk_mq_hw_ctx *hctx;
1804
1805 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1806
1807 /*
1808 * If we are stopped, don't run the queue.
1809 */
1810 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1811 return;
1812
1813 __blk_mq_run_hw_queue(hctx);
1814}
1815
1816static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1817 struct request *rq,
1818 bool at_head)
1819{
1820 struct blk_mq_ctx *ctx = rq->mq_ctx;
1821 enum hctx_type type = hctx->type;
1822
1823 lockdep_assert_held(&ctx->lock);
1824
1825 trace_block_rq_insert(hctx->queue, rq);
1826
1827 if (at_head)
1828 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1829 else
1830 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1831}
1832
1833void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1834 bool at_head)
1835{
1836 struct blk_mq_ctx *ctx = rq->mq_ctx;
1837
1838 lockdep_assert_held(&ctx->lock);
1839
1840 __blk_mq_insert_req_list(hctx, rq, at_head);
1841 blk_mq_hctx_mark_pending(hctx, ctx);
1842}
1843
1844/**
1845 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1846 * @rq: Pointer to request to be inserted.
1847 * @at_head: true if the request should be inserted at the head of the list.
1848 * @run_queue: If we should run the hardware queue after inserting the request.
1849 *
1850 * Should only be used carefully, when the caller knows we want to
1851 * bypass a potential IO scheduler on the target device.
1852 */
1853void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1854 bool run_queue)
1855{
1856 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1857
1858 spin_lock(&hctx->lock);
1859 if (at_head)
1860 list_add(&rq->queuelist, &hctx->dispatch);
1861 else
1862 list_add_tail(&rq->queuelist, &hctx->dispatch);
1863 spin_unlock(&hctx->lock);
1864
1865 if (run_queue)
1866 blk_mq_run_hw_queue(hctx, false);
1867}
1868
1869void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1870 struct list_head *list)
1871
1872{
1873 struct request *rq;
1874 enum hctx_type type = hctx->type;
1875
1876 /*
1877 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1878 * offline now
1879 */
1880 list_for_each_entry(rq, list, queuelist) {
1881 BUG_ON(rq->mq_ctx != ctx);
1882 trace_block_rq_insert(hctx->queue, rq);
1883 }
1884
1885 spin_lock(&ctx->lock);
1886 list_splice_tail_init(list, &ctx->rq_lists[type]);
1887 blk_mq_hctx_mark_pending(hctx, ctx);
1888 spin_unlock(&ctx->lock);
1889}
1890
1891static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1892{
1893 struct request *rqa = container_of(a, struct request, queuelist);
1894 struct request *rqb = container_of(b, struct request, queuelist);
1895
1896 if (rqa->mq_ctx != rqb->mq_ctx)
1897 return rqa->mq_ctx > rqb->mq_ctx;
1898 if (rqa->mq_hctx != rqb->mq_hctx)
1899 return rqa->mq_hctx > rqb->mq_hctx;
1900
1901 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1902}
1903
1904void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1905{
1906 LIST_HEAD(list);
1907
1908 if (list_empty(&plug->mq_list))
1909 return;
1910 list_splice_init(&plug->mq_list, &list);
1911
1912 if (plug->rq_count > 2 && plug->multiple_queues)
1913 list_sort(NULL, &list, plug_rq_cmp);
1914
1915 plug->rq_count = 0;
1916
1917 do {
1918 struct list_head rq_list;
1919 struct request *rq, *head_rq = list_entry_rq(list.next);
1920 struct list_head *pos = &head_rq->queuelist; /* skip first */
1921 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1922 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1923 unsigned int depth = 1;
1924
1925 list_for_each_continue(pos, &list) {
1926 rq = list_entry_rq(pos);
1927 BUG_ON(!rq->q);
1928 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1929 break;
1930 depth++;
1931 }
1932
1933 list_cut_before(&rq_list, &list, pos);
1934 trace_block_unplug(head_rq->q, depth, !from_schedule);
1935 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1936 from_schedule);
1937 } while(!list_empty(&list));
1938}
1939
1940static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1941 unsigned int nr_segs)
1942{
1943 if (bio->bi_opf & REQ_RAHEAD)
1944 rq->cmd_flags |= REQ_FAILFAST_MASK;
1945
1946 rq->__sector = bio->bi_iter.bi_sector;
1947 rq->write_hint = bio->bi_write_hint;
1948 blk_rq_bio_prep(rq, bio, nr_segs);
1949 blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1950
1951 blk_account_io_start(rq);
1952}
1953
1954static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1955 struct request *rq,
1956 blk_qc_t *cookie, bool last)
1957{
1958 struct request_queue *q = rq->q;
1959 struct blk_mq_queue_data bd = {
1960 .rq = rq,
1961 .last = last,
1962 };
1963 blk_qc_t new_cookie;
1964 blk_status_t ret;
1965
1966 new_cookie = request_to_qc_t(hctx, rq);
1967
1968 /*
1969 * For OK queue, we are done. For error, caller may kill it.
1970 * Any other error (busy), just add it to our list as we
1971 * previously would have done.
1972 */
1973 ret = q->mq_ops->queue_rq(hctx, &bd);
1974 switch (ret) {
1975 case BLK_STS_OK:
1976 blk_mq_update_dispatch_busy(hctx, false);
1977 *cookie = new_cookie;
1978 break;
1979 case BLK_STS_RESOURCE:
1980 case BLK_STS_DEV_RESOURCE:
1981 blk_mq_update_dispatch_busy(hctx, true);
1982 __blk_mq_requeue_request(rq);
1983 break;
1984 default:
1985 blk_mq_update_dispatch_busy(hctx, false);
1986 *cookie = BLK_QC_T_NONE;
1987 break;
1988 }
1989
1990 return ret;
1991}
1992
1993static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1994 struct request *rq,
1995 blk_qc_t *cookie,
1996 bool bypass_insert, bool last)
1997{
1998 struct request_queue *q = rq->q;
1999 bool run_queue = true;
2000
2001 /*
2002 * RCU or SRCU read lock is needed before checking quiesced flag.
2003 *
2004 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2005 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2006 * and avoid driver to try to dispatch again.
2007 */
2008 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2009 run_queue = false;
2010 bypass_insert = false;
2011 goto insert;
2012 }
2013
2014 if (q->elevator && !bypass_insert)
2015 goto insert;
2016
2017 if (!blk_mq_get_dispatch_budget(q))
2018 goto insert;
2019
2020 if (!blk_mq_get_driver_tag(rq)) {
2021 blk_mq_put_dispatch_budget(q);
2022 goto insert;
2023 }
2024
2025 return __blk_mq_issue_directly(hctx, rq, cookie, last);
2026insert:
2027 if (bypass_insert)
2028 return BLK_STS_RESOURCE;
2029
2030 blk_mq_sched_insert_request(rq, false, run_queue, false);
2031
2032 return BLK_STS_OK;
2033}
2034
2035/**
2036 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2037 * @hctx: Pointer of the associated hardware queue.
2038 * @rq: Pointer to request to be sent.
2039 * @cookie: Request queue cookie.
2040 *
2041 * If the device has enough resources to accept a new request now, send the
2042 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2043 * we can try send it another time in the future. Requests inserted at this
2044 * queue have higher priority.
2045 */
2046static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2047 struct request *rq, blk_qc_t *cookie)
2048{
2049 blk_status_t ret;
2050 int srcu_idx;
2051
2052 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2053
2054 hctx_lock(hctx, &srcu_idx);
2055
2056 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2057 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2058 blk_mq_request_bypass_insert(rq, false, true);
2059 else if (ret != BLK_STS_OK)
2060 blk_mq_end_request(rq, ret);
2061
2062 hctx_unlock(hctx, srcu_idx);
2063}
2064
2065blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2066{
2067 blk_status_t ret;
2068 int srcu_idx;
2069 blk_qc_t unused_cookie;
2070 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2071
2072 hctx_lock(hctx, &srcu_idx);
2073 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2074 hctx_unlock(hctx, srcu_idx);
2075
2076 return ret;
2077}
2078
2079void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2080 struct list_head *list)
2081{
2082 int queued = 0;
2083
2084 while (!list_empty(list)) {
2085 blk_status_t ret;
2086 struct request *rq = list_first_entry(list, struct request,
2087 queuelist);
2088
2089 list_del_init(&rq->queuelist);
2090 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2091 if (ret != BLK_STS_OK) {
2092 if (ret == BLK_STS_RESOURCE ||
2093 ret == BLK_STS_DEV_RESOURCE) {
2094 blk_mq_request_bypass_insert(rq, false,
2095 list_empty(list));
2096 break;
2097 }
2098 blk_mq_end_request(rq, ret);
2099 } else
2100 queued++;
2101 }
2102
2103 /*
2104 * If we didn't flush the entire list, we could have told
2105 * the driver there was more coming, but that turned out to
2106 * be a lie.
2107 */
2108 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued)
2109 hctx->queue->mq_ops->commit_rqs(hctx);
2110}
2111
2112static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2113{
2114 list_add_tail(&rq->queuelist, &plug->mq_list);
2115 plug->rq_count++;
2116 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2117 struct request *tmp;
2118
2119 tmp = list_first_entry(&plug->mq_list, struct request,
2120 queuelist);
2121 if (tmp->q != rq->q)
2122 plug->multiple_queues = true;
2123 }
2124}
2125
2126/**
2127 * blk_mq_submit_bio - Create and send a request to block device.
2128 * @bio: Bio pointer.
2129 *
2130 * Builds up a request structure from @q and @bio and send to the device. The
2131 * request may not be queued directly to hardware if:
2132 * * This request can be merged with another one
2133 * * We want to place request at plug queue for possible future merging
2134 * * There is an IO scheduler active at this queue
2135 *
2136 * It will not queue the request if there is an error with the bio, or at the
2137 * request creation.
2138 *
2139 * Returns: Request queue cookie.
2140 */
2141blk_qc_t blk_mq_submit_bio(struct bio *bio)
2142{
2143 struct request_queue *q = bio->bi_disk->queue;
2144 const int is_sync = op_is_sync(bio->bi_opf);
2145 const int is_flush_fua = op_is_flush(bio->bi_opf);
2146 struct blk_mq_alloc_data data = {
2147 .q = q,
2148 };
2149 struct request *rq;
2150 struct blk_plug *plug;
2151 struct request *same_queue_rq = NULL;
2152 unsigned int nr_segs;
2153 blk_qc_t cookie;
2154 blk_status_t ret;
2155
2156 blk_queue_bounce(q, &bio);
2157 __blk_queue_split(&bio, &nr_segs);
2158
2159 if (!bio_integrity_prep(bio))
2160 goto queue_exit;
2161
2162 if (!is_flush_fua && !blk_queue_nomerges(q) &&
2163 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2164 goto queue_exit;
2165
2166 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2167 goto queue_exit;
2168
2169 rq_qos_throttle(q, bio);
2170
2171 data.cmd_flags = bio->bi_opf;
2172 rq = __blk_mq_alloc_request(&data);
2173 if (unlikely(!rq)) {
2174 rq_qos_cleanup(q, bio);
2175 if (bio->bi_opf & REQ_NOWAIT)
2176 bio_wouldblock_error(bio);
2177 goto queue_exit;
2178 }
2179
2180 trace_block_getrq(q, bio, bio->bi_opf);
2181
2182 rq_qos_track(q, rq, bio);
2183
2184 cookie = request_to_qc_t(data.hctx, rq);
2185
2186 blk_mq_bio_to_request(rq, bio, nr_segs);
2187
2188 ret = blk_crypto_init_request(rq);
2189 if (ret != BLK_STS_OK) {
2190 bio->bi_status = ret;
2191 bio_endio(bio);
2192 blk_mq_free_request(rq);
2193 return BLK_QC_T_NONE;
2194 }
2195
2196 plug = blk_mq_plug(q, bio);
2197 if (unlikely(is_flush_fua)) {
2198 /* Bypass scheduler for flush requests */
2199 blk_insert_flush(rq);
2200 blk_mq_run_hw_queue(data.hctx, true);
2201 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2202 !blk_queue_nonrot(q))) {
2203 /*
2204 * Use plugging if we have a ->commit_rqs() hook as well, as
2205 * we know the driver uses bd->last in a smart fashion.
2206 *
2207 * Use normal plugging if this disk is slow HDD, as sequential
2208 * IO may benefit a lot from plug merging.
2209 */
2210 unsigned int request_count = plug->rq_count;
2211 struct request *last = NULL;
2212
2213 if (!request_count)
2214 trace_block_plug(q);
2215 else
2216 last = list_entry_rq(plug->mq_list.prev);
2217
2218 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2219 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2220 blk_flush_plug_list(plug, false);
2221 trace_block_plug(q);
2222 }
2223
2224 blk_add_rq_to_plug(plug, rq);
2225 } else if (q->elevator) {
2226 /* Insert the request at the IO scheduler queue */
2227 blk_mq_sched_insert_request(rq, false, true, true);
2228 } else if (plug && !blk_queue_nomerges(q)) {
2229 /*
2230 * We do limited plugging. If the bio can be merged, do that.
2231 * Otherwise the existing request in the plug list will be
2232 * issued. So the plug list will have one request at most
2233 * The plug list might get flushed before this. If that happens,
2234 * the plug list is empty, and same_queue_rq is invalid.
2235 */
2236 if (list_empty(&plug->mq_list))
2237 same_queue_rq = NULL;
2238 if (same_queue_rq) {
2239 list_del_init(&same_queue_rq->queuelist);
2240 plug->rq_count--;
2241 }
2242 blk_add_rq_to_plug(plug, rq);
2243 trace_block_plug(q);
2244
2245 if (same_queue_rq) {
2246 data.hctx = same_queue_rq->mq_hctx;
2247 trace_block_unplug(q, 1, true);
2248 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2249 &cookie);
2250 }
2251 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2252 !data.hctx->dispatch_busy) {
2253 /*
2254 * There is no scheduler and we can try to send directly
2255 * to the hardware.
2256 */
2257 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2258 } else {
2259 /* Default case. */
2260 blk_mq_sched_insert_request(rq, false, true, true);
2261 }
2262
2263 return cookie;
2264queue_exit:
2265 blk_queue_exit(q);
2266 return BLK_QC_T_NONE;
2267}
2268EXPORT_SYMBOL_GPL(blk_mq_submit_bio); /* only for request based dm */
2269
2270void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2271 unsigned int hctx_idx)
2272{
2273 struct page *page;
2274
2275 if (tags->rqs && set->ops->exit_request) {
2276 int i;
2277
2278 for (i = 0; i < tags->nr_tags; i++) {
2279 struct request *rq = tags->static_rqs[i];
2280
2281 if (!rq)
2282 continue;
2283 set->ops->exit_request(set, rq, hctx_idx);
2284 tags->static_rqs[i] = NULL;
2285 }
2286 }
2287
2288 while (!list_empty(&tags->page_list)) {
2289 page = list_first_entry(&tags->page_list, struct page, lru);
2290 list_del_init(&page->lru);
2291 /*
2292 * Remove kmemleak object previously allocated in
2293 * blk_mq_alloc_rqs().
2294 */
2295 kmemleak_free(page_address(page));
2296 __free_pages(page, page->private);
2297 }
2298}
2299
2300void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2301{
2302 kfree(tags->rqs);
2303 tags->rqs = NULL;
2304 kfree(tags->static_rqs);
2305 tags->static_rqs = NULL;
2306
2307 blk_mq_free_tags(tags, flags);
2308}
2309
2310struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2311 unsigned int hctx_idx,
2312 unsigned int nr_tags,
2313 unsigned int reserved_tags,
2314 unsigned int flags)
2315{
2316 struct blk_mq_tags *tags;
2317 int node;
2318
2319 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2320 if (node == NUMA_NO_NODE)
2321 node = set->numa_node;
2322
2323 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2324 if (!tags)
2325 return NULL;
2326
2327 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2328 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2329 node);
2330 if (!tags->rqs) {
2331 blk_mq_free_tags(tags, flags);
2332 return NULL;
2333 }
2334
2335 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2336 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2337 node);
2338 if (!tags->static_rqs) {
2339 kfree(tags->rqs);
2340 blk_mq_free_tags(tags, flags);
2341 return NULL;
2342 }
2343
2344 return tags;
2345}
2346
2347static size_t order_to_size(unsigned int order)
2348{
2349 return (size_t)PAGE_SIZE << order;
2350}
2351
2352static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2353 unsigned int hctx_idx, int node)
2354{
2355 int ret;
2356
2357 if (set->ops->init_request) {
2358 ret = set->ops->init_request(set, rq, hctx_idx, node);
2359 if (ret)
2360 return ret;
2361 }
2362
2363 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2364 return 0;
2365}
2366
2367int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2368 unsigned int hctx_idx, unsigned int depth)
2369{
2370 unsigned int i, j, entries_per_page, max_order = 4;
2371 size_t rq_size, left;
2372 int node;
2373
2374 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2375 if (node == NUMA_NO_NODE)
2376 node = set->numa_node;
2377
2378 INIT_LIST_HEAD(&tags->page_list);
2379
2380 /*
2381 * rq_size is the size of the request plus driver payload, rounded
2382 * to the cacheline size
2383 */
2384 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2385 cache_line_size());
2386 left = rq_size * depth;
2387
2388 for (i = 0; i < depth; ) {
2389 int this_order = max_order;
2390 struct page *page;
2391 int to_do;
2392 void *p;
2393
2394 while (this_order && left < order_to_size(this_order - 1))
2395 this_order--;
2396
2397 do {
2398 page = alloc_pages_node(node,
2399 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2400 this_order);
2401 if (page)
2402 break;
2403 if (!this_order--)
2404 break;
2405 if (order_to_size(this_order) < rq_size)
2406 break;
2407 } while (1);
2408
2409 if (!page)
2410 goto fail;
2411
2412 page->private = this_order;
2413 list_add_tail(&page->lru, &tags->page_list);
2414
2415 p = page_address(page);
2416 /*
2417 * Allow kmemleak to scan these pages as they contain pointers
2418 * to additional allocations like via ops->init_request().
2419 */
2420 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2421 entries_per_page = order_to_size(this_order) / rq_size;
2422 to_do = min(entries_per_page, depth - i);
2423 left -= to_do * rq_size;
2424 for (j = 0; j < to_do; j++) {
2425 struct request *rq = p;
2426
2427 tags->static_rqs[i] = rq;
2428 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2429 tags->static_rqs[i] = NULL;
2430 goto fail;
2431 }
2432
2433 p += rq_size;
2434 i++;
2435 }
2436 }
2437 return 0;
2438
2439fail:
2440 blk_mq_free_rqs(set, tags, hctx_idx);
2441 return -ENOMEM;
2442}
2443
2444struct rq_iter_data {
2445 struct blk_mq_hw_ctx *hctx;
2446 bool has_rq;
2447};
2448
2449static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2450{
2451 struct rq_iter_data *iter_data = data;
2452
2453 if (rq->mq_hctx != iter_data->hctx)
2454 return true;
2455 iter_data->has_rq = true;
2456 return false;
2457}
2458
2459static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2460{
2461 struct blk_mq_tags *tags = hctx->sched_tags ?
2462 hctx->sched_tags : hctx->tags;
2463 struct rq_iter_data data = {
2464 .hctx = hctx,
2465 };
2466
2467 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2468 return data.has_rq;
2469}
2470
2471static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2472 struct blk_mq_hw_ctx *hctx)
2473{
2474 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2475 return false;
2476 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2477 return false;
2478 return true;
2479}
2480
2481static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2482{
2483 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2484 struct blk_mq_hw_ctx, cpuhp_online);
2485
2486 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2487 !blk_mq_last_cpu_in_hctx(cpu, hctx))
2488 return 0;
2489
2490 /*
2491 * Prevent new request from being allocated on the current hctx.
2492 *
2493 * The smp_mb__after_atomic() Pairs with the implied barrier in
2494 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
2495 * seen once we return from the tag allocator.
2496 */
2497 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2498 smp_mb__after_atomic();
2499
2500 /*
2501 * Try to grab a reference to the queue and wait for any outstanding
2502 * requests. If we could not grab a reference the queue has been
2503 * frozen and there are no requests.
2504 */
2505 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2506 while (blk_mq_hctx_has_requests(hctx))
2507 msleep(5);
2508 percpu_ref_put(&hctx->queue->q_usage_counter);
2509 }
2510
2511 return 0;
2512}
2513
2514static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2515{
2516 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2517 struct blk_mq_hw_ctx, cpuhp_online);
2518
2519 if (cpumask_test_cpu(cpu, hctx->cpumask))
2520 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2521 return 0;
2522}
2523
2524/*
2525 * 'cpu' is going away. splice any existing rq_list entries from this
2526 * software queue to the hw queue dispatch list, and ensure that it
2527 * gets run.
2528 */
2529static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2530{
2531 struct blk_mq_hw_ctx *hctx;
2532 struct blk_mq_ctx *ctx;
2533 LIST_HEAD(tmp);
2534 enum hctx_type type;
2535
2536 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2537 if (!cpumask_test_cpu(cpu, hctx->cpumask))
2538 return 0;
2539
2540 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2541 type = hctx->type;
2542
2543 spin_lock(&ctx->lock);
2544 if (!list_empty(&ctx->rq_lists[type])) {
2545 list_splice_init(&ctx->rq_lists[type], &tmp);
2546 blk_mq_hctx_clear_pending(hctx, ctx);
2547 }
2548 spin_unlock(&ctx->lock);
2549
2550 if (list_empty(&tmp))
2551 return 0;
2552
2553 spin_lock(&hctx->lock);
2554 list_splice_tail_init(&tmp, &hctx->dispatch);
2555 spin_unlock(&hctx->lock);
2556
2557 blk_mq_run_hw_queue(hctx, true);
2558 return 0;
2559}
2560
2561static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2562{
2563 if (!(hctx->flags & BLK_MQ_F_STACKING))
2564 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2565 &hctx->cpuhp_online);
2566 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2567 &hctx->cpuhp_dead);
2568}
2569
2570/* hctx->ctxs will be freed in queue's release handler */
2571static void blk_mq_exit_hctx(struct request_queue *q,
2572 struct blk_mq_tag_set *set,
2573 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2574{
2575 if (blk_mq_hw_queue_mapped(hctx))
2576 blk_mq_tag_idle(hctx);
2577
2578 if (set->ops->exit_request)
2579 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2580
2581 if (set->ops->exit_hctx)
2582 set->ops->exit_hctx(hctx, hctx_idx);
2583
2584 blk_mq_remove_cpuhp(hctx);
2585
2586 spin_lock(&q->unused_hctx_lock);
2587 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2588 spin_unlock(&q->unused_hctx_lock);
2589}
2590
2591static void blk_mq_exit_hw_queues(struct request_queue *q,
2592 struct blk_mq_tag_set *set, int nr_queue)
2593{
2594 struct blk_mq_hw_ctx *hctx;
2595 unsigned int i;
2596
2597 queue_for_each_hw_ctx(q, hctx, i) {
2598 if (i == nr_queue)
2599 break;
2600 blk_mq_debugfs_unregister_hctx(hctx);
2601 blk_mq_exit_hctx(q, set, hctx, i);
2602 }
2603}
2604
2605static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2606{
2607 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2608
2609 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2610 __alignof__(struct blk_mq_hw_ctx)) !=
2611 sizeof(struct blk_mq_hw_ctx));
2612
2613 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2614 hw_ctx_size += sizeof(struct srcu_struct);
2615
2616 return hw_ctx_size;
2617}
2618
2619static int blk_mq_init_hctx(struct request_queue *q,
2620 struct blk_mq_tag_set *set,
2621 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2622{
2623 hctx->queue_num = hctx_idx;
2624
2625 if (!(hctx->flags & BLK_MQ_F_STACKING))
2626 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2627 &hctx->cpuhp_online);
2628 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2629
2630 hctx->tags = set->tags[hctx_idx];
2631
2632 if (set->ops->init_hctx &&
2633 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2634 goto unregister_cpu_notifier;
2635
2636 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2637 hctx->numa_node))
2638 goto exit_hctx;
2639 return 0;
2640
2641 exit_hctx:
2642 if (set->ops->exit_hctx)
2643 set->ops->exit_hctx(hctx, hctx_idx);
2644 unregister_cpu_notifier:
2645 blk_mq_remove_cpuhp(hctx);
2646 return -1;
2647}
2648
2649static struct blk_mq_hw_ctx *
2650blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2651 int node)
2652{
2653 struct blk_mq_hw_ctx *hctx;
2654 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2655
2656 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2657 if (!hctx)
2658 goto fail_alloc_hctx;
2659
2660 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2661 goto free_hctx;
2662
2663 atomic_set(&hctx->nr_active, 0);
2664 atomic_set(&hctx->elevator_queued, 0);
2665 if (node == NUMA_NO_NODE)
2666 node = set->numa_node;
2667 hctx->numa_node = node;
2668
2669 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2670 spin_lock_init(&hctx->lock);
2671 INIT_LIST_HEAD(&hctx->dispatch);
2672 hctx->queue = q;
2673 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2674
2675 INIT_LIST_HEAD(&hctx->hctx_list);
2676
2677 /*
2678 * Allocate space for all possible cpus to avoid allocation at
2679 * runtime
2680 */
2681 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2682 gfp, node);
2683 if (!hctx->ctxs)
2684 goto free_cpumask;
2685
2686 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2687 gfp, node))
2688 goto free_ctxs;
2689 hctx->nr_ctx = 0;
2690
2691 spin_lock_init(&hctx->dispatch_wait_lock);
2692 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2693 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2694
2695 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2696 if (!hctx->fq)
2697 goto free_bitmap;
2698
2699 if (hctx->flags & BLK_MQ_F_BLOCKING)
2700 init_srcu_struct(hctx->srcu);
2701 blk_mq_hctx_kobj_init(hctx);
2702
2703 return hctx;
2704
2705 free_bitmap:
2706 sbitmap_free(&hctx->ctx_map);
2707 free_ctxs:
2708 kfree(hctx->ctxs);
2709 free_cpumask:
2710 free_cpumask_var(hctx->cpumask);
2711 free_hctx:
2712 kfree(hctx);
2713 fail_alloc_hctx:
2714 return NULL;
2715}
2716
2717static void blk_mq_init_cpu_queues(struct request_queue *q,
2718 unsigned int nr_hw_queues)
2719{
2720 struct blk_mq_tag_set *set = q->tag_set;
2721 unsigned int i, j;
2722
2723 for_each_possible_cpu(i) {
2724 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2725 struct blk_mq_hw_ctx *hctx;
2726 int k;
2727
2728 __ctx->cpu = i;
2729 spin_lock_init(&__ctx->lock);
2730 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2731 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2732
2733 __ctx->queue = q;
2734
2735 /*
2736 * Set local node, IFF we have more than one hw queue. If
2737 * not, we remain on the home node of the device
2738 */
2739 for (j = 0; j < set->nr_maps; j++) {
2740 hctx = blk_mq_map_queue_type(q, j, i);
2741 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2742 hctx->numa_node = local_memory_node(cpu_to_node(i));
2743 }
2744 }
2745}
2746
2747static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2748 int hctx_idx)
2749{
2750 unsigned int flags = set->flags;
2751 int ret = 0;
2752
2753 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2754 set->queue_depth, set->reserved_tags, flags);
2755 if (!set->tags[hctx_idx])
2756 return false;
2757
2758 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2759 set->queue_depth);
2760 if (!ret)
2761 return true;
2762
2763 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2764 set->tags[hctx_idx] = NULL;
2765 return false;
2766}
2767
2768static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2769 unsigned int hctx_idx)
2770{
2771 unsigned int flags = set->flags;
2772
2773 if (set->tags && set->tags[hctx_idx]) {
2774 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2775 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2776 set->tags[hctx_idx] = NULL;
2777 }
2778}
2779
2780static void blk_mq_map_swqueue(struct request_queue *q)
2781{
2782 unsigned int i, j, hctx_idx;
2783 struct blk_mq_hw_ctx *hctx;
2784 struct blk_mq_ctx *ctx;
2785 struct blk_mq_tag_set *set = q->tag_set;
2786
2787 queue_for_each_hw_ctx(q, hctx, i) {
2788 cpumask_clear(hctx->cpumask);
2789 hctx->nr_ctx = 0;
2790 hctx->dispatch_from = NULL;
2791 }
2792
2793 /*
2794 * Map software to hardware queues.
2795 *
2796 * If the cpu isn't present, the cpu is mapped to first hctx.
2797 */
2798 for_each_possible_cpu(i) {
2799
2800 ctx = per_cpu_ptr(q->queue_ctx, i);
2801 for (j = 0; j < set->nr_maps; j++) {
2802 if (!set->map[j].nr_queues) {
2803 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2804 HCTX_TYPE_DEFAULT, i);
2805 continue;
2806 }
2807 hctx_idx = set->map[j].mq_map[i];
2808 /* unmapped hw queue can be remapped after CPU topo changed */
2809 if (!set->tags[hctx_idx] &&
2810 !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2811 /*
2812 * If tags initialization fail for some hctx,
2813 * that hctx won't be brought online. In this
2814 * case, remap the current ctx to hctx[0] which
2815 * is guaranteed to always have tags allocated
2816 */
2817 set->map[j].mq_map[i] = 0;
2818 }
2819
2820 hctx = blk_mq_map_queue_type(q, j, i);
2821 ctx->hctxs[j] = hctx;
2822 /*
2823 * If the CPU is already set in the mask, then we've
2824 * mapped this one already. This can happen if
2825 * devices share queues across queue maps.
2826 */
2827 if (cpumask_test_cpu(i, hctx->cpumask))
2828 continue;
2829
2830 cpumask_set_cpu(i, hctx->cpumask);
2831 hctx->type = j;
2832 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2833 hctx->ctxs[hctx->nr_ctx++] = ctx;
2834
2835 /*
2836 * If the nr_ctx type overflows, we have exceeded the
2837 * amount of sw queues we can support.
2838 */
2839 BUG_ON(!hctx->nr_ctx);
2840 }
2841
2842 for (; j < HCTX_MAX_TYPES; j++)
2843 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2844 HCTX_TYPE_DEFAULT, i);
2845 }
2846
2847 queue_for_each_hw_ctx(q, hctx, i) {
2848 /*
2849 * If no software queues are mapped to this hardware queue,
2850 * disable it and free the request entries.
2851 */
2852 if (!hctx->nr_ctx) {
2853 /* Never unmap queue 0. We need it as a
2854 * fallback in case of a new remap fails
2855 * allocation
2856 */
2857 if (i && set->tags[i])
2858 blk_mq_free_map_and_requests(set, i);
2859
2860 hctx->tags = NULL;
2861 continue;
2862 }
2863
2864 hctx->tags = set->tags[i];
2865 WARN_ON(!hctx->tags);
2866
2867 /*
2868 * Set the map size to the number of mapped software queues.
2869 * This is more accurate and more efficient than looping
2870 * over all possibly mapped software queues.
2871 */
2872 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2873
2874 /*
2875 * Initialize batch roundrobin counts
2876 */
2877 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2878 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2879 }
2880}
2881
2882/*
2883 * Caller needs to ensure that we're either frozen/quiesced, or that
2884 * the queue isn't live yet.
2885 */
2886static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2887{
2888 struct blk_mq_hw_ctx *hctx;
2889 int i;
2890
2891 queue_for_each_hw_ctx(q, hctx, i) {
2892 if (shared)
2893 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2894 else
2895 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2896 }
2897}
2898
2899static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2900 bool shared)
2901{
2902 struct request_queue *q;
2903
2904 lockdep_assert_held(&set->tag_list_lock);
2905
2906 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2907 blk_mq_freeze_queue(q);
2908 queue_set_hctx_shared(q, shared);
2909 blk_mq_unfreeze_queue(q);
2910 }
2911}
2912
2913static void blk_mq_del_queue_tag_set(struct request_queue *q)
2914{
2915 struct blk_mq_tag_set *set = q->tag_set;
2916
2917 mutex_lock(&set->tag_list_lock);
2918 list_del(&q->tag_set_list);
2919 if (list_is_singular(&set->tag_list)) {
2920 /* just transitioned to unshared */
2921 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2922 /* update existing queue */
2923 blk_mq_update_tag_set_shared(set, false);
2924 }
2925 mutex_unlock(&set->tag_list_lock);
2926 INIT_LIST_HEAD(&q->tag_set_list);
2927}
2928
2929static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2930 struct request_queue *q)
2931{
2932 mutex_lock(&set->tag_list_lock);
2933
2934 /*
2935 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2936 */
2937 if (!list_empty(&set->tag_list) &&
2938 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2939 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2940 /* update existing queue */
2941 blk_mq_update_tag_set_shared(set, true);
2942 }
2943 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
2944 queue_set_hctx_shared(q, true);
2945 list_add_tail(&q->tag_set_list, &set->tag_list);
2946
2947 mutex_unlock(&set->tag_list_lock);
2948}
2949
2950/* All allocations will be freed in release handler of q->mq_kobj */
2951static int blk_mq_alloc_ctxs(struct request_queue *q)
2952{
2953 struct blk_mq_ctxs *ctxs;
2954 int cpu;
2955
2956 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2957 if (!ctxs)
2958 return -ENOMEM;
2959
2960 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2961 if (!ctxs->queue_ctx)
2962 goto fail;
2963
2964 for_each_possible_cpu(cpu) {
2965 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2966 ctx->ctxs = ctxs;
2967 }
2968
2969 q->mq_kobj = &ctxs->kobj;
2970 q->queue_ctx = ctxs->queue_ctx;
2971
2972 return 0;
2973 fail:
2974 kfree(ctxs);
2975 return -ENOMEM;
2976}
2977
2978/*
2979 * It is the actual release handler for mq, but we do it from
2980 * request queue's release handler for avoiding use-after-free
2981 * and headache because q->mq_kobj shouldn't have been introduced,
2982 * but we can't group ctx/kctx kobj without it.
2983 */
2984void blk_mq_release(struct request_queue *q)
2985{
2986 struct blk_mq_hw_ctx *hctx, *next;
2987 int i;
2988
2989 queue_for_each_hw_ctx(q, hctx, i)
2990 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2991
2992 /* all hctx are in .unused_hctx_list now */
2993 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2994 list_del_init(&hctx->hctx_list);
2995 kobject_put(&hctx->kobj);
2996 }
2997
2998 kfree(q->queue_hw_ctx);
2999
3000 /*
3001 * release .mq_kobj and sw queue's kobject now because
3002 * both share lifetime with request queue.
3003 */
3004 blk_mq_sysfs_deinit(q);
3005}
3006
3007struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3008 void *queuedata)
3009{
3010 struct request_queue *uninit_q, *q;
3011
3012 uninit_q = blk_alloc_queue(set->numa_node);
3013 if (!uninit_q)
3014 return ERR_PTR(-ENOMEM);
3015 uninit_q->queuedata = queuedata;
3016
3017 /*
3018 * Initialize the queue without an elevator. device_add_disk() will do
3019 * the initialization.
3020 */
3021 q = blk_mq_init_allocated_queue(set, uninit_q, false);
3022 if (IS_ERR(q))
3023 blk_cleanup_queue(uninit_q);
3024
3025 return q;
3026}
3027EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3028
3029struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3030{
3031 return blk_mq_init_queue_data(set, NULL);
3032}
3033EXPORT_SYMBOL(blk_mq_init_queue);
3034
3035/*
3036 * Helper for setting up a queue with mq ops, given queue depth, and
3037 * the passed in mq ops flags.
3038 */
3039struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3040 const struct blk_mq_ops *ops,
3041 unsigned int queue_depth,
3042 unsigned int set_flags)
3043{
3044 struct request_queue *q;
3045 int ret;
3046
3047 memset(set, 0, sizeof(*set));
3048 set->ops = ops;
3049 set->nr_hw_queues = 1;
3050 set->nr_maps = 1;
3051 set->queue_depth = queue_depth;
3052 set->numa_node = NUMA_NO_NODE;
3053 set->flags = set_flags;
3054
3055 ret = blk_mq_alloc_tag_set(set);
3056 if (ret)
3057 return ERR_PTR(ret);
3058
3059 q = blk_mq_init_queue(set);
3060 if (IS_ERR(q)) {
3061 blk_mq_free_tag_set(set);
3062 return q;
3063 }
3064
3065 return q;
3066}
3067EXPORT_SYMBOL(blk_mq_init_sq_queue);
3068
3069static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3070 struct blk_mq_tag_set *set, struct request_queue *q,
3071 int hctx_idx, int node)
3072{
3073 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3074
3075 /* reuse dead hctx first */
3076 spin_lock(&q->unused_hctx_lock);
3077 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3078 if (tmp->numa_node == node) {
3079 hctx = tmp;
3080 break;
3081 }
3082 }
3083 if (hctx)
3084 list_del_init(&hctx->hctx_list);
3085 spin_unlock(&q->unused_hctx_lock);
3086
3087 if (!hctx)
3088 hctx = blk_mq_alloc_hctx(q, set, node);
3089 if (!hctx)
3090 goto fail;
3091
3092 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3093 goto free_hctx;
3094
3095 return hctx;
3096
3097 free_hctx:
3098 kobject_put(&hctx->kobj);
3099 fail:
3100 return NULL;
3101}
3102
3103static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3104 struct request_queue *q)
3105{
3106 int i, j, end;
3107 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3108
3109 if (q->nr_hw_queues < set->nr_hw_queues) {
3110 struct blk_mq_hw_ctx **new_hctxs;
3111
3112 new_hctxs = kcalloc_node(set->nr_hw_queues,
3113 sizeof(*new_hctxs), GFP_KERNEL,
3114 set->numa_node);
3115 if (!new_hctxs)
3116 return;
3117 if (hctxs)
3118 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3119 sizeof(*hctxs));
3120 q->queue_hw_ctx = new_hctxs;
3121 kfree(hctxs);
3122 hctxs = new_hctxs;
3123 }
3124
3125 /* protect against switching io scheduler */
3126 mutex_lock(&q->sysfs_lock);
3127 for (i = 0; i < set->nr_hw_queues; i++) {
3128 int node;
3129 struct blk_mq_hw_ctx *hctx;
3130
3131 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3132 /*
3133 * If the hw queue has been mapped to another numa node,
3134 * we need to realloc the hctx. If allocation fails, fallback
3135 * to use the previous one.
3136 */
3137 if (hctxs[i] && (hctxs[i]->numa_node == node))
3138 continue;
3139
3140 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3141 if (hctx) {
3142 if (hctxs[i])
3143 blk_mq_exit_hctx(q, set, hctxs[i], i);
3144 hctxs[i] = hctx;
3145 } else {
3146 if (hctxs[i])
3147 pr_warn("Allocate new hctx on node %d fails,\
3148 fallback to previous one on node %d\n",
3149 node, hctxs[i]->numa_node);
3150 else
3151 break;
3152 }
3153 }
3154 /*
3155 * Increasing nr_hw_queues fails. Free the newly allocated
3156 * hctxs and keep the previous q->nr_hw_queues.
3157 */
3158 if (i != set->nr_hw_queues) {
3159 j = q->nr_hw_queues;
3160 end = i;
3161 } else {
3162 j = i;
3163 end = q->nr_hw_queues;
3164 q->nr_hw_queues = set->nr_hw_queues;
3165 }
3166
3167 for (; j < end; j++) {
3168 struct blk_mq_hw_ctx *hctx = hctxs[j];
3169
3170 if (hctx) {
3171 if (hctx->tags)
3172 blk_mq_free_map_and_requests(set, j);
3173 blk_mq_exit_hctx(q, set, hctx, j);
3174 hctxs[j] = NULL;
3175 }
3176 }
3177 mutex_unlock(&q->sysfs_lock);
3178}
3179
3180struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3181 struct request_queue *q,
3182 bool elevator_init)
3183{
3184 /* mark the queue as mq asap */
3185 q->mq_ops = set->ops;
3186
3187 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3188 blk_mq_poll_stats_bkt,
3189 BLK_MQ_POLL_STATS_BKTS, q);
3190 if (!q->poll_cb)
3191 goto err_exit;
3192
3193 if (blk_mq_alloc_ctxs(q))
3194 goto err_poll;
3195
3196 /* init q->mq_kobj and sw queues' kobjects */
3197 blk_mq_sysfs_init(q);
3198
3199 INIT_LIST_HEAD(&q->unused_hctx_list);
3200 spin_lock_init(&q->unused_hctx_lock);
3201
3202 blk_mq_realloc_hw_ctxs(set, q);
3203 if (!q->nr_hw_queues)
3204 goto err_hctxs;
3205
3206 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3207 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3208
3209 q->tag_set = set;
3210
3211 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3212 if (set->nr_maps > HCTX_TYPE_POLL &&
3213 set->map[HCTX_TYPE_POLL].nr_queues)
3214 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3215
3216 q->sg_reserved_size = INT_MAX;
3217
3218 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3219 INIT_LIST_HEAD(&q->requeue_list);
3220 spin_lock_init(&q->requeue_lock);
3221
3222 q->nr_requests = set->queue_depth;
3223
3224 /*
3225 * Default to classic polling
3226 */
3227 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3228
3229 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3230 blk_mq_add_queue_tag_set(set, q);
3231 blk_mq_map_swqueue(q);
3232
3233 if (elevator_init)
3234 elevator_init_mq(q);
3235
3236 return q;
3237
3238err_hctxs:
3239 kfree(q->queue_hw_ctx);
3240 q->nr_hw_queues = 0;
3241 blk_mq_sysfs_deinit(q);
3242err_poll:
3243 blk_stat_free_callback(q->poll_cb);
3244 q->poll_cb = NULL;
3245err_exit:
3246 q->mq_ops = NULL;
3247 return ERR_PTR(-ENOMEM);
3248}
3249EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3250
3251/* tags can _not_ be used after returning from blk_mq_exit_queue */
3252void blk_mq_exit_queue(struct request_queue *q)
3253{
3254 struct blk_mq_tag_set *set = q->tag_set;
3255
3256 blk_mq_del_queue_tag_set(q);
3257 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3258}
3259
3260static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3261{
3262 int i;
3263
3264 for (i = 0; i < set->nr_hw_queues; i++)
3265 if (!__blk_mq_alloc_map_and_request(set, i))
3266 goto out_unwind;
3267
3268 return 0;
3269
3270out_unwind:
3271 while (--i >= 0)
3272 blk_mq_free_map_and_requests(set, i);
3273
3274 return -ENOMEM;
3275}
3276
3277/*
3278 * Allocate the request maps associated with this tag_set. Note that this
3279 * may reduce the depth asked for, if memory is tight. set->queue_depth
3280 * will be updated to reflect the allocated depth.
3281 */
3282static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3283{
3284 unsigned int depth;
3285 int err;
3286
3287 depth = set->queue_depth;
3288 do {
3289 err = __blk_mq_alloc_rq_maps(set);
3290 if (!err)
3291 break;
3292
3293 set->queue_depth >>= 1;
3294 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3295 err = -ENOMEM;
3296 break;
3297 }
3298 } while (set->queue_depth);
3299
3300 if (!set->queue_depth || err) {
3301 pr_err("blk-mq: failed to allocate request map\n");
3302 return -ENOMEM;
3303 }
3304
3305 if (depth != set->queue_depth)
3306 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3307 depth, set->queue_depth);
3308
3309 return 0;
3310}
3311
3312static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3313{
3314 /*
3315 * blk_mq_map_queues() and multiple .map_queues() implementations
3316 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3317 * number of hardware queues.
3318 */
3319 if (set->nr_maps == 1)
3320 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3321
3322 if (set->ops->map_queues && !is_kdump_kernel()) {
3323 int i;
3324
3325 /*
3326 * transport .map_queues is usually done in the following
3327 * way:
3328 *
3329 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3330 * mask = get_cpu_mask(queue)
3331 * for_each_cpu(cpu, mask)
3332 * set->map[x].mq_map[cpu] = queue;
3333 * }
3334 *
3335 * When we need to remap, the table has to be cleared for
3336 * killing stale mapping since one CPU may not be mapped
3337 * to any hw queue.
3338 */
3339 for (i = 0; i < set->nr_maps; i++)
3340 blk_mq_clear_mq_map(&set->map[i]);
3341
3342 return set->ops->map_queues(set);
3343 } else {
3344 BUG_ON(set->nr_maps > 1);
3345 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3346 }
3347}
3348
3349static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3350 int cur_nr_hw_queues, int new_nr_hw_queues)
3351{
3352 struct blk_mq_tags **new_tags;
3353
3354 if (cur_nr_hw_queues >= new_nr_hw_queues)
3355 return 0;
3356
3357 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3358 GFP_KERNEL, set->numa_node);
3359 if (!new_tags)
3360 return -ENOMEM;
3361
3362 if (set->tags)
3363 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3364 sizeof(*set->tags));
3365 kfree(set->tags);
3366 set->tags = new_tags;
3367 set->nr_hw_queues = new_nr_hw_queues;
3368
3369 return 0;
3370}
3371
3372/*
3373 * Alloc a tag set to be associated with one or more request queues.
3374 * May fail with EINVAL for various error conditions. May adjust the
3375 * requested depth down, if it's too large. In that case, the set
3376 * value will be stored in set->queue_depth.
3377 */
3378int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3379{
3380 int i, ret;
3381
3382 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3383
3384 if (!set->nr_hw_queues)
3385 return -EINVAL;
3386 if (!set->queue_depth)
3387 return -EINVAL;
3388 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3389 return -EINVAL;
3390
3391 if (!set->ops->queue_rq)
3392 return -EINVAL;
3393
3394 if (!set->ops->get_budget ^ !set->ops->put_budget)
3395 return -EINVAL;
3396
3397 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3398 pr_info("blk-mq: reduced tag depth to %u\n",
3399 BLK_MQ_MAX_DEPTH);
3400 set->queue_depth = BLK_MQ_MAX_DEPTH;
3401 }
3402
3403 if (!set->nr_maps)
3404 set->nr_maps = 1;
3405 else if (set->nr_maps > HCTX_MAX_TYPES)
3406 return -EINVAL;
3407
3408 /*
3409 * If a crashdump is active, then we are potentially in a very
3410 * memory constrained environment. Limit us to 1 queue and
3411 * 64 tags to prevent using too much memory.
3412 */
3413 if (is_kdump_kernel()) {
3414 set->nr_hw_queues = 1;
3415 set->nr_maps = 1;
3416 set->queue_depth = min(64U, set->queue_depth);
3417 }
3418 /*
3419 * There is no use for more h/w queues than cpus if we just have
3420 * a single map
3421 */
3422 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3423 set->nr_hw_queues = nr_cpu_ids;
3424
3425 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3426 return -ENOMEM;
3427
3428 ret = -ENOMEM;
3429 for (i = 0; i < set->nr_maps; i++) {
3430 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3431 sizeof(set->map[i].mq_map[0]),
3432 GFP_KERNEL, set->numa_node);
3433 if (!set->map[i].mq_map)
3434 goto out_free_mq_map;
3435 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3436 }
3437
3438 ret = blk_mq_update_queue_map(set);
3439 if (ret)
3440 goto out_free_mq_map;
3441
3442 ret = blk_mq_alloc_map_and_requests(set);
3443 if (ret)
3444 goto out_free_mq_map;
3445
3446 if (blk_mq_is_sbitmap_shared(set->flags)) {
3447 atomic_set(&set->active_queues_shared_sbitmap, 0);
3448
3449 if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3450 ret = -ENOMEM;
3451 goto out_free_mq_rq_maps;
3452 }
3453 }
3454
3455 mutex_init(&set->tag_list_lock);
3456 INIT_LIST_HEAD(&set->tag_list);
3457
3458 return 0;
3459
3460out_free_mq_rq_maps:
3461 for (i = 0; i < set->nr_hw_queues; i++)
3462 blk_mq_free_map_and_requests(set, i);
3463out_free_mq_map:
3464 for (i = 0; i < set->nr_maps; i++) {
3465 kfree(set->map[i].mq_map);
3466 set->map[i].mq_map = NULL;
3467 }
3468 kfree(set->tags);
3469 set->tags = NULL;
3470 return ret;
3471}
3472EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3473
3474void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3475{
3476 int i, j;
3477
3478 for (i = 0; i < set->nr_hw_queues; i++)
3479 blk_mq_free_map_and_requests(set, i);
3480
3481 if (blk_mq_is_sbitmap_shared(set->flags))
3482 blk_mq_exit_shared_sbitmap(set);
3483
3484 for (j = 0; j < set->nr_maps; j++) {
3485 kfree(set->map[j].mq_map);
3486 set->map[j].mq_map = NULL;
3487 }
3488
3489 kfree(set->tags);
3490 set->tags = NULL;
3491}
3492EXPORT_SYMBOL(blk_mq_free_tag_set);
3493
3494int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3495{
3496 struct blk_mq_tag_set *set = q->tag_set;
3497 struct blk_mq_hw_ctx *hctx;
3498 int i, ret;
3499
3500 if (!set)
3501 return -EINVAL;
3502
3503 if (q->nr_requests == nr)
3504 return 0;
3505
3506 blk_mq_freeze_queue(q);
3507 blk_mq_quiesce_queue(q);
3508
3509 ret = 0;
3510 queue_for_each_hw_ctx(q, hctx, i) {
3511 if (!hctx->tags)
3512 continue;
3513 /*
3514 * If we're using an MQ scheduler, just update the scheduler
3515 * queue depth. This is similar to what the old code would do.
3516 */
3517 if (!hctx->sched_tags) {
3518 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3519 false);
3520 if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3521 blk_mq_tag_resize_shared_sbitmap(set, nr);
3522 } else {
3523 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3524 nr, true);
3525 }
3526 if (ret)
3527 break;
3528 if (q->elevator && q->elevator->type->ops.depth_updated)
3529 q->elevator->type->ops.depth_updated(hctx);
3530 }
3531
3532 if (!ret)
3533 q->nr_requests = nr;
3534
3535 blk_mq_unquiesce_queue(q);
3536 blk_mq_unfreeze_queue(q);
3537
3538 return ret;
3539}
3540
3541/*
3542 * request_queue and elevator_type pair.
3543 * It is just used by __blk_mq_update_nr_hw_queues to cache
3544 * the elevator_type associated with a request_queue.
3545 */
3546struct blk_mq_qe_pair {
3547 struct list_head node;
3548 struct request_queue *q;
3549 struct elevator_type *type;
3550};
3551
3552/*
3553 * Cache the elevator_type in qe pair list and switch the
3554 * io scheduler to 'none'
3555 */
3556static bool blk_mq_elv_switch_none(struct list_head *head,
3557 struct request_queue *q)
3558{
3559 struct blk_mq_qe_pair *qe;
3560
3561 if (!q->elevator)
3562 return true;
3563
3564 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3565 if (!qe)
3566 return false;
3567
3568 INIT_LIST_HEAD(&qe->node);
3569 qe->q = q;
3570 qe->type = q->elevator->type;
3571 list_add(&qe->node, head);
3572
3573 mutex_lock(&q->sysfs_lock);
3574 /*
3575 * After elevator_switch_mq, the previous elevator_queue will be
3576 * released by elevator_release. The reference of the io scheduler
3577 * module get by elevator_get will also be put. So we need to get
3578 * a reference of the io scheduler module here to prevent it to be
3579 * removed.
3580 */
3581 __module_get(qe->type->elevator_owner);
3582 elevator_switch_mq(q, NULL);
3583 mutex_unlock(&q->sysfs_lock);
3584
3585 return true;
3586}
3587
3588static void blk_mq_elv_switch_back(struct list_head *head,
3589 struct request_queue *q)
3590{
3591 struct blk_mq_qe_pair *qe;
3592 struct elevator_type *t = NULL;
3593
3594 list_for_each_entry(qe, head, node)
3595 if (qe->q == q) {
3596 t = qe->type;
3597 break;
3598 }
3599
3600 if (!t)
3601 return;
3602
3603 list_del(&qe->node);
3604 kfree(qe);
3605
3606 mutex_lock(&q->sysfs_lock);
3607 elevator_switch_mq(q, t);
3608 mutex_unlock(&q->sysfs_lock);
3609}
3610
3611static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3612 int nr_hw_queues)
3613{
3614 struct request_queue *q;
3615 LIST_HEAD(head);
3616 int prev_nr_hw_queues;
3617
3618 lockdep_assert_held(&set->tag_list_lock);
3619
3620 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3621 nr_hw_queues = nr_cpu_ids;
3622 if (nr_hw_queues < 1)
3623 return;
3624 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3625 return;
3626
3627 list_for_each_entry(q, &set->tag_list, tag_set_list)
3628 blk_mq_freeze_queue(q);
3629 /*
3630 * Switch IO scheduler to 'none', cleaning up the data associated
3631 * with the previous scheduler. We will switch back once we are done
3632 * updating the new sw to hw queue mappings.
3633 */
3634 list_for_each_entry(q, &set->tag_list, tag_set_list)
3635 if (!blk_mq_elv_switch_none(&head, q))
3636 goto switch_back;
3637
3638 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3639 blk_mq_debugfs_unregister_hctxs(q);
3640 blk_mq_sysfs_unregister(q);
3641 }
3642
3643 prev_nr_hw_queues = set->nr_hw_queues;
3644 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3645 0)
3646 goto reregister;
3647
3648 set->nr_hw_queues = nr_hw_queues;
3649fallback:
3650 blk_mq_update_queue_map(set);
3651 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3652 blk_mq_realloc_hw_ctxs(set, q);
3653 if (q->nr_hw_queues != set->nr_hw_queues) {
3654 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3655 nr_hw_queues, prev_nr_hw_queues);
3656 set->nr_hw_queues = prev_nr_hw_queues;
3657 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3658 goto fallback;
3659 }
3660 blk_mq_map_swqueue(q);
3661 }
3662
3663reregister:
3664 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3665 blk_mq_sysfs_register(q);
3666 blk_mq_debugfs_register_hctxs(q);
3667 }
3668
3669switch_back:
3670 list_for_each_entry(q, &set->tag_list, tag_set_list)
3671 blk_mq_elv_switch_back(&head, q);
3672
3673 list_for_each_entry(q, &set->tag_list, tag_set_list)
3674 blk_mq_unfreeze_queue(q);
3675}
3676
3677void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3678{
3679 mutex_lock(&set->tag_list_lock);
3680 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3681 mutex_unlock(&set->tag_list_lock);
3682}
3683EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3684
3685/* Enable polling stats and return whether they were already enabled. */
3686static bool blk_poll_stats_enable(struct request_queue *q)
3687{
3688 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3689 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3690 return true;
3691 blk_stat_add_callback(q, q->poll_cb);
3692 return false;
3693}
3694
3695static void blk_mq_poll_stats_start(struct request_queue *q)
3696{
3697 /*
3698 * We don't arm the callback if polling stats are not enabled or the
3699 * callback is already active.
3700 */
3701 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3702 blk_stat_is_active(q->poll_cb))
3703 return;
3704
3705 blk_stat_activate_msecs(q->poll_cb, 100);
3706}
3707
3708static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3709{
3710 struct request_queue *q = cb->data;
3711 int bucket;
3712
3713 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3714 if (cb->stat[bucket].nr_samples)
3715 q->poll_stat[bucket] = cb->stat[bucket];
3716 }
3717}
3718
3719static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3720 struct request *rq)
3721{
3722 unsigned long ret = 0;
3723 int bucket;
3724
3725 /*
3726 * If stats collection isn't on, don't sleep but turn it on for
3727 * future users
3728 */
3729 if (!blk_poll_stats_enable(q))
3730 return 0;
3731
3732 /*
3733 * As an optimistic guess, use half of the mean service time
3734 * for this type of request. We can (and should) make this smarter.
3735 * For instance, if the completion latencies are tight, we can
3736 * get closer than just half the mean. This is especially
3737 * important on devices where the completion latencies are longer
3738 * than ~10 usec. We do use the stats for the relevant IO size
3739 * if available which does lead to better estimates.
3740 */
3741 bucket = blk_mq_poll_stats_bkt(rq);
3742 if (bucket < 0)
3743 return ret;
3744
3745 if (q->poll_stat[bucket].nr_samples)
3746 ret = (q->poll_stat[bucket].mean + 1) / 2;
3747
3748 return ret;
3749}
3750
3751static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3752 struct request *rq)
3753{
3754 struct hrtimer_sleeper hs;
3755 enum hrtimer_mode mode;
3756 unsigned int nsecs;
3757 ktime_t kt;
3758
3759 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3760 return false;
3761
3762 /*
3763 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3764 *
3765 * 0: use half of prev avg
3766 * >0: use this specific value
3767 */
3768 if (q->poll_nsec > 0)
3769 nsecs = q->poll_nsec;
3770 else
3771 nsecs = blk_mq_poll_nsecs(q, rq);
3772
3773 if (!nsecs)
3774 return false;
3775
3776 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3777
3778 /*
3779 * This will be replaced with the stats tracking code, using
3780 * 'avg_completion_time / 2' as the pre-sleep target.
3781 */
3782 kt = nsecs;
3783
3784 mode = HRTIMER_MODE_REL;
3785 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3786 hrtimer_set_expires(&hs.timer, kt);
3787
3788 do {
3789 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3790 break;
3791 set_current_state(TASK_UNINTERRUPTIBLE);
3792 hrtimer_sleeper_start_expires(&hs, mode);
3793 if (hs.task)
3794 io_schedule();
3795 hrtimer_cancel(&hs.timer);
3796 mode = HRTIMER_MODE_ABS;
3797 } while (hs.task && !signal_pending(current));
3798
3799 __set_current_state(TASK_RUNNING);
3800 destroy_hrtimer_on_stack(&hs.timer);
3801 return true;
3802}
3803
3804static bool blk_mq_poll_hybrid(struct request_queue *q,
3805 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3806{
3807 struct request *rq;
3808
3809 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3810 return false;
3811
3812 if (!blk_qc_t_is_internal(cookie))
3813 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3814 else {
3815 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3816 /*
3817 * With scheduling, if the request has completed, we'll
3818 * get a NULL return here, as we clear the sched tag when
3819 * that happens. The request still remains valid, like always,
3820 * so we should be safe with just the NULL check.
3821 */
3822 if (!rq)
3823 return false;
3824 }
3825
3826 return blk_mq_poll_hybrid_sleep(q, rq);
3827}
3828
3829/**
3830 * blk_poll - poll for IO completions
3831 * @q: the queue
3832 * @cookie: cookie passed back at IO submission time
3833 * @spin: whether to spin for completions
3834 *
3835 * Description:
3836 * Poll for completions on the passed in queue. Returns number of
3837 * completed entries found. If @spin is true, then blk_poll will continue
3838 * looping until at least one completion is found, unless the task is
3839 * otherwise marked running (or we need to reschedule).
3840 */
3841int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3842{
3843 struct blk_mq_hw_ctx *hctx;
3844 long state;
3845
3846 if (!blk_qc_t_valid(cookie) ||
3847 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3848 return 0;
3849
3850 if (current->plug)
3851 blk_flush_plug_list(current->plug, false);
3852
3853 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3854
3855 /*
3856 * If we sleep, have the caller restart the poll loop to reset
3857 * the state. Like for the other success return cases, the
3858 * caller is responsible for checking if the IO completed. If
3859 * the IO isn't complete, we'll get called again and will go
3860 * straight to the busy poll loop.
3861 */
3862 if (blk_mq_poll_hybrid(q, hctx, cookie))
3863 return 1;
3864
3865 hctx->poll_considered++;
3866
3867 state = current->state;
3868 do {
3869 int ret;
3870
3871 hctx->poll_invoked++;
3872
3873 ret = q->mq_ops->poll(hctx);
3874 if (ret > 0) {
3875 hctx->poll_success++;
3876 __set_current_state(TASK_RUNNING);
3877 return ret;
3878 }
3879
3880 if (signal_pending_state(state, current))
3881 __set_current_state(TASK_RUNNING);
3882
3883 if (current->state == TASK_RUNNING)
3884 return 1;
3885 if (ret < 0 || !spin)
3886 break;
3887 cpu_relax();
3888 } while (!need_resched());
3889
3890 __set_current_state(TASK_RUNNING);
3891 return 0;
3892}
3893EXPORT_SYMBOL_GPL(blk_poll);
3894
3895unsigned int blk_mq_rq_cpu(struct request *rq)
3896{
3897 return rq->mq_ctx->cpu;
3898}
3899EXPORT_SYMBOL(blk_mq_rq_cpu);
3900
3901static int __init blk_mq_init(void)
3902{
3903 int i;
3904
3905 for_each_possible_cpu(i)
3906 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3907 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3908
3909 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3910 "block/softirq:dead", NULL,
3911 blk_softirq_cpu_dead);
3912 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3913 blk_mq_hctx_notify_dead);
3914 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3915 blk_mq_hctx_notify_online,
3916 blk_mq_hctx_notify_offline);
3917 return 0;
3918}
3919subsys_initcall(blk_mq_init);