]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - fs/btrfs/inode.c
Btrfs: use insert_inode_locked4 for inode creation
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / inode.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
35#include <linux/aio.h>
36#include <linux/bit_spinlock.h>
37#include <linux/xattr.h>
38#include <linux/posix_acl.h>
39#include <linux/falloc.h>
40#include <linux/slab.h>
41#include <linux/ratelimit.h>
42#include <linux/mount.h>
43#include <linux/btrfs.h>
44#include <linux/blkdev.h>
45#include <linux/posix_acl_xattr.h>
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
50#include "print-tree.h"
51#include "ordered-data.h"
52#include "xattr.h"
53#include "tree-log.h"
54#include "volumes.h"
55#include "compression.h"
56#include "locking.h"
57#include "free-space-cache.h"
58#include "inode-map.h"
59#include "backref.h"
60#include "hash.h"
61#include "props.h"
62
63struct btrfs_iget_args {
64 struct btrfs_key *location;
65 struct btrfs_root *root;
66};
67
68static const struct inode_operations btrfs_dir_inode_operations;
69static const struct inode_operations btrfs_symlink_inode_operations;
70static const struct inode_operations btrfs_dir_ro_inode_operations;
71static const struct inode_operations btrfs_special_inode_operations;
72static const struct inode_operations btrfs_file_inode_operations;
73static const struct address_space_operations btrfs_aops;
74static const struct address_space_operations btrfs_symlink_aops;
75static const struct file_operations btrfs_dir_file_operations;
76static struct extent_io_ops btrfs_extent_io_ops;
77
78static struct kmem_cache *btrfs_inode_cachep;
79static struct kmem_cache *btrfs_delalloc_work_cachep;
80struct kmem_cache *btrfs_trans_handle_cachep;
81struct kmem_cache *btrfs_transaction_cachep;
82struct kmem_cache *btrfs_path_cachep;
83struct kmem_cache *btrfs_free_space_cachep;
84
85#define S_SHIFT 12
86static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94};
95
96static int btrfs_setsize(struct inode *inode, struct iattr *attr);
97static int btrfs_truncate(struct inode *inode);
98static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
99static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
103static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
108
109static int btrfs_dirty_inode(struct inode *inode);
110
111static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
114{
115 int err;
116
117 err = btrfs_init_acl(trans, inode, dir);
118 if (!err)
119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
120 return err;
121}
122
123/*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
128static int insert_inline_extent(struct btrfs_trans_handle *trans,
129 struct btrfs_path *path, int extent_inserted,
130 struct btrfs_root *root, struct inode *inode,
131 u64 start, size_t size, size_t compressed_size,
132 int compress_type,
133 struct page **compressed_pages)
134{
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
137 char *kaddr;
138 unsigned long ptr;
139 struct btrfs_file_extent_item *ei;
140 int err = 0;
141 int ret;
142 size_t cur_size = size;
143 unsigned long offset;
144
145 if (compressed_size && compressed_pages)
146 cur_size = compressed_size;
147
148 inode_add_bytes(inode, size);
149
150 if (!extent_inserted) {
151 struct btrfs_key key;
152 size_t datasize;
153
154 key.objectid = btrfs_ino(inode);
155 key.offset = start;
156 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
157
158 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159 path->leave_spinning = 1;
160 ret = btrfs_insert_empty_item(trans, root, path, &key,
161 datasize);
162 if (ret) {
163 err = ret;
164 goto fail;
165 }
166 }
167 leaf = path->nodes[0];
168 ei = btrfs_item_ptr(leaf, path->slots[0],
169 struct btrfs_file_extent_item);
170 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 btrfs_set_file_extent_encryption(leaf, ei, 0);
173 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 ptr = btrfs_file_extent_inline_start(ei);
176
177 if (compress_type != BTRFS_COMPRESS_NONE) {
178 struct page *cpage;
179 int i = 0;
180 while (compressed_size > 0) {
181 cpage = compressed_pages[i];
182 cur_size = min_t(unsigned long, compressed_size,
183 PAGE_CACHE_SIZE);
184
185 kaddr = kmap_atomic(cpage);
186 write_extent_buffer(leaf, kaddr, ptr, cur_size);
187 kunmap_atomic(kaddr);
188
189 i++;
190 ptr += cur_size;
191 compressed_size -= cur_size;
192 }
193 btrfs_set_file_extent_compression(leaf, ei,
194 compress_type);
195 } else {
196 page = find_get_page(inode->i_mapping,
197 start >> PAGE_CACHE_SHIFT);
198 btrfs_set_file_extent_compression(leaf, ei, 0);
199 kaddr = kmap_atomic(page);
200 offset = start & (PAGE_CACHE_SIZE - 1);
201 write_extent_buffer(leaf, kaddr + offset, ptr, size);
202 kunmap_atomic(kaddr);
203 page_cache_release(page);
204 }
205 btrfs_mark_buffer_dirty(leaf);
206 btrfs_release_path(path);
207
208 /*
209 * we're an inline extent, so nobody can
210 * extend the file past i_size without locking
211 * a page we already have locked.
212 *
213 * We must do any isize and inode updates
214 * before we unlock the pages. Otherwise we
215 * could end up racing with unlink.
216 */
217 BTRFS_I(inode)->disk_i_size = inode->i_size;
218 ret = btrfs_update_inode(trans, root, inode);
219
220 return ret;
221fail:
222 return err;
223}
224
225
226/*
227 * conditionally insert an inline extent into the file. This
228 * does the checks required to make sure the data is small enough
229 * to fit as an inline extent.
230 */
231static noinline int cow_file_range_inline(struct btrfs_root *root,
232 struct inode *inode, u64 start,
233 u64 end, size_t compressed_size,
234 int compress_type,
235 struct page **compressed_pages)
236{
237 struct btrfs_trans_handle *trans;
238 u64 isize = i_size_read(inode);
239 u64 actual_end = min(end + 1, isize);
240 u64 inline_len = actual_end - start;
241 u64 aligned_end = ALIGN(end, root->sectorsize);
242 u64 data_len = inline_len;
243 int ret;
244 struct btrfs_path *path;
245 int extent_inserted = 0;
246 u32 extent_item_size;
247
248 if (compressed_size)
249 data_len = compressed_size;
250
251 if (start > 0 ||
252 actual_end >= PAGE_CACHE_SIZE ||
253 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
254 (!compressed_size &&
255 (actual_end & (root->sectorsize - 1)) == 0) ||
256 end + 1 < isize ||
257 data_len > root->fs_info->max_inline) {
258 return 1;
259 }
260
261 path = btrfs_alloc_path();
262 if (!path)
263 return -ENOMEM;
264
265 trans = btrfs_join_transaction(root);
266 if (IS_ERR(trans)) {
267 btrfs_free_path(path);
268 return PTR_ERR(trans);
269 }
270 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271
272 if (compressed_size && compressed_pages)
273 extent_item_size = btrfs_file_extent_calc_inline_size(
274 compressed_size);
275 else
276 extent_item_size = btrfs_file_extent_calc_inline_size(
277 inline_len);
278
279 ret = __btrfs_drop_extents(trans, root, inode, path,
280 start, aligned_end, NULL,
281 1, 1, extent_item_size, &extent_inserted);
282 if (ret) {
283 btrfs_abort_transaction(trans, root, ret);
284 goto out;
285 }
286
287 if (isize > actual_end)
288 inline_len = min_t(u64, isize, actual_end);
289 ret = insert_inline_extent(trans, path, extent_inserted,
290 root, inode, start,
291 inline_len, compressed_size,
292 compress_type, compressed_pages);
293 if (ret && ret != -ENOSPC) {
294 btrfs_abort_transaction(trans, root, ret);
295 goto out;
296 } else if (ret == -ENOSPC) {
297 ret = 1;
298 goto out;
299 }
300
301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
302 btrfs_delalloc_release_metadata(inode, end + 1 - start);
303 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
304out:
305 btrfs_free_path(path);
306 btrfs_end_transaction(trans, root);
307 return ret;
308}
309
310struct async_extent {
311 u64 start;
312 u64 ram_size;
313 u64 compressed_size;
314 struct page **pages;
315 unsigned long nr_pages;
316 int compress_type;
317 struct list_head list;
318};
319
320struct async_cow {
321 struct inode *inode;
322 struct btrfs_root *root;
323 struct page *locked_page;
324 u64 start;
325 u64 end;
326 struct list_head extents;
327 struct btrfs_work work;
328};
329
330static noinline int add_async_extent(struct async_cow *cow,
331 u64 start, u64 ram_size,
332 u64 compressed_size,
333 struct page **pages,
334 unsigned long nr_pages,
335 int compress_type)
336{
337 struct async_extent *async_extent;
338
339 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
340 BUG_ON(!async_extent); /* -ENOMEM */
341 async_extent->start = start;
342 async_extent->ram_size = ram_size;
343 async_extent->compressed_size = compressed_size;
344 async_extent->pages = pages;
345 async_extent->nr_pages = nr_pages;
346 async_extent->compress_type = compress_type;
347 list_add_tail(&async_extent->list, &cow->extents);
348 return 0;
349}
350
351/*
352 * we create compressed extents in two phases. The first
353 * phase compresses a range of pages that have already been
354 * locked (both pages and state bits are locked).
355 *
356 * This is done inside an ordered work queue, and the compression
357 * is spread across many cpus. The actual IO submission is step
358 * two, and the ordered work queue takes care of making sure that
359 * happens in the same order things were put onto the queue by
360 * writepages and friends.
361 *
362 * If this code finds it can't get good compression, it puts an
363 * entry onto the work queue to write the uncompressed bytes. This
364 * makes sure that both compressed inodes and uncompressed inodes
365 * are written in the same order that the flusher thread sent them
366 * down.
367 */
368static noinline int compress_file_range(struct inode *inode,
369 struct page *locked_page,
370 u64 start, u64 end,
371 struct async_cow *async_cow,
372 int *num_added)
373{
374 struct btrfs_root *root = BTRFS_I(inode)->root;
375 u64 num_bytes;
376 u64 blocksize = root->sectorsize;
377 u64 actual_end;
378 u64 isize = i_size_read(inode);
379 int ret = 0;
380 struct page **pages = NULL;
381 unsigned long nr_pages;
382 unsigned long nr_pages_ret = 0;
383 unsigned long total_compressed = 0;
384 unsigned long total_in = 0;
385 unsigned long max_compressed = 128 * 1024;
386 unsigned long max_uncompressed = 128 * 1024;
387 int i;
388 int will_compress;
389 int compress_type = root->fs_info->compress_type;
390 int redirty = 0;
391
392 /* if this is a small write inside eof, kick off a defrag */
393 if ((end - start + 1) < 16 * 1024 &&
394 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
395 btrfs_add_inode_defrag(NULL, inode);
396
397 /*
398 * skip compression for a small file range(<=blocksize) that
399 * isn't an inline extent, since it dosen't save disk space at all.
400 */
401 if ((end - start + 1) <= blocksize &&
402 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
403 goto cleanup_and_bail_uncompressed;
404
405 actual_end = min_t(u64, isize, end + 1);
406again:
407 will_compress = 0;
408 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
409 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
410
411 /*
412 * we don't want to send crud past the end of i_size through
413 * compression, that's just a waste of CPU time. So, if the
414 * end of the file is before the start of our current
415 * requested range of bytes, we bail out to the uncompressed
416 * cleanup code that can deal with all of this.
417 *
418 * It isn't really the fastest way to fix things, but this is a
419 * very uncommon corner.
420 */
421 if (actual_end <= start)
422 goto cleanup_and_bail_uncompressed;
423
424 total_compressed = actual_end - start;
425
426 /* we want to make sure that amount of ram required to uncompress
427 * an extent is reasonable, so we limit the total size in ram
428 * of a compressed extent to 128k. This is a crucial number
429 * because it also controls how easily we can spread reads across
430 * cpus for decompression.
431 *
432 * We also want to make sure the amount of IO required to do
433 * a random read is reasonably small, so we limit the size of
434 * a compressed extent to 128k.
435 */
436 total_compressed = min(total_compressed, max_uncompressed);
437 num_bytes = ALIGN(end - start + 1, blocksize);
438 num_bytes = max(blocksize, num_bytes);
439 total_in = 0;
440 ret = 0;
441
442 /*
443 * we do compression for mount -o compress and when the
444 * inode has not been flagged as nocompress. This flag can
445 * change at any time if we discover bad compression ratios.
446 */
447 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
448 (btrfs_test_opt(root, COMPRESS) ||
449 (BTRFS_I(inode)->force_compress) ||
450 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
451 WARN_ON(pages);
452 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
453 if (!pages) {
454 /* just bail out to the uncompressed code */
455 goto cont;
456 }
457
458 if (BTRFS_I(inode)->force_compress)
459 compress_type = BTRFS_I(inode)->force_compress;
460
461 /*
462 * we need to call clear_page_dirty_for_io on each
463 * page in the range. Otherwise applications with the file
464 * mmap'd can wander in and change the page contents while
465 * we are compressing them.
466 *
467 * If the compression fails for any reason, we set the pages
468 * dirty again later on.
469 */
470 extent_range_clear_dirty_for_io(inode, start, end);
471 redirty = 1;
472 ret = btrfs_compress_pages(compress_type,
473 inode->i_mapping, start,
474 total_compressed, pages,
475 nr_pages, &nr_pages_ret,
476 &total_in,
477 &total_compressed,
478 max_compressed);
479
480 if (!ret) {
481 unsigned long offset = total_compressed &
482 (PAGE_CACHE_SIZE - 1);
483 struct page *page = pages[nr_pages_ret - 1];
484 char *kaddr;
485
486 /* zero the tail end of the last page, we might be
487 * sending it down to disk
488 */
489 if (offset) {
490 kaddr = kmap_atomic(page);
491 memset(kaddr + offset, 0,
492 PAGE_CACHE_SIZE - offset);
493 kunmap_atomic(kaddr);
494 }
495 will_compress = 1;
496 }
497 }
498cont:
499 if (start == 0) {
500 /* lets try to make an inline extent */
501 if (ret || total_in < (actual_end - start)) {
502 /* we didn't compress the entire range, try
503 * to make an uncompressed inline extent.
504 */
505 ret = cow_file_range_inline(root, inode, start, end,
506 0, 0, NULL);
507 } else {
508 /* try making a compressed inline extent */
509 ret = cow_file_range_inline(root, inode, start, end,
510 total_compressed,
511 compress_type, pages);
512 }
513 if (ret <= 0) {
514 unsigned long clear_flags = EXTENT_DELALLOC |
515 EXTENT_DEFRAG;
516 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
517
518 /*
519 * inline extent creation worked or returned error,
520 * we don't need to create any more async work items.
521 * Unlock and free up our temp pages.
522 */
523 extent_clear_unlock_delalloc(inode, start, end, NULL,
524 clear_flags, PAGE_UNLOCK |
525 PAGE_CLEAR_DIRTY |
526 PAGE_SET_WRITEBACK |
527 PAGE_END_WRITEBACK);
528 goto free_pages_out;
529 }
530 }
531
532 if (will_compress) {
533 /*
534 * we aren't doing an inline extent round the compressed size
535 * up to a block size boundary so the allocator does sane
536 * things
537 */
538 total_compressed = ALIGN(total_compressed, blocksize);
539
540 /*
541 * one last check to make sure the compression is really a
542 * win, compare the page count read with the blocks on disk
543 */
544 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
545 if (total_compressed >= total_in) {
546 will_compress = 0;
547 } else {
548 num_bytes = total_in;
549 }
550 }
551 if (!will_compress && pages) {
552 /*
553 * the compression code ran but failed to make things smaller,
554 * free any pages it allocated and our page pointer array
555 */
556 for (i = 0; i < nr_pages_ret; i++) {
557 WARN_ON(pages[i]->mapping);
558 page_cache_release(pages[i]);
559 }
560 kfree(pages);
561 pages = NULL;
562 total_compressed = 0;
563 nr_pages_ret = 0;
564
565 /* flag the file so we don't compress in the future */
566 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
567 !(BTRFS_I(inode)->force_compress)) {
568 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
569 }
570 }
571 if (will_compress) {
572 *num_added += 1;
573
574 /* the async work queues will take care of doing actual
575 * allocation on disk for these compressed pages,
576 * and will submit them to the elevator.
577 */
578 add_async_extent(async_cow, start, num_bytes,
579 total_compressed, pages, nr_pages_ret,
580 compress_type);
581
582 if (start + num_bytes < end) {
583 start += num_bytes;
584 pages = NULL;
585 cond_resched();
586 goto again;
587 }
588 } else {
589cleanup_and_bail_uncompressed:
590 /*
591 * No compression, but we still need to write the pages in
592 * the file we've been given so far. redirty the locked
593 * page if it corresponds to our extent and set things up
594 * for the async work queue to run cow_file_range to do
595 * the normal delalloc dance
596 */
597 if (page_offset(locked_page) >= start &&
598 page_offset(locked_page) <= end) {
599 __set_page_dirty_nobuffers(locked_page);
600 /* unlocked later on in the async handlers */
601 }
602 if (redirty)
603 extent_range_redirty_for_io(inode, start, end);
604 add_async_extent(async_cow, start, end - start + 1,
605 0, NULL, 0, BTRFS_COMPRESS_NONE);
606 *num_added += 1;
607 }
608
609out:
610 return ret;
611
612free_pages_out:
613 for (i = 0; i < nr_pages_ret; i++) {
614 WARN_ON(pages[i]->mapping);
615 page_cache_release(pages[i]);
616 }
617 kfree(pages);
618
619 goto out;
620}
621
622/*
623 * phase two of compressed writeback. This is the ordered portion
624 * of the code, which only gets called in the order the work was
625 * queued. We walk all the async extents created by compress_file_range
626 * and send them down to the disk.
627 */
628static noinline int submit_compressed_extents(struct inode *inode,
629 struct async_cow *async_cow)
630{
631 struct async_extent *async_extent;
632 u64 alloc_hint = 0;
633 struct btrfs_key ins;
634 struct extent_map *em;
635 struct btrfs_root *root = BTRFS_I(inode)->root;
636 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
637 struct extent_io_tree *io_tree;
638 int ret = 0;
639
640 if (list_empty(&async_cow->extents))
641 return 0;
642
643again:
644 while (!list_empty(&async_cow->extents)) {
645 async_extent = list_entry(async_cow->extents.next,
646 struct async_extent, list);
647 list_del(&async_extent->list);
648
649 io_tree = &BTRFS_I(inode)->io_tree;
650
651retry:
652 /* did the compression code fall back to uncompressed IO? */
653 if (!async_extent->pages) {
654 int page_started = 0;
655 unsigned long nr_written = 0;
656
657 lock_extent(io_tree, async_extent->start,
658 async_extent->start +
659 async_extent->ram_size - 1);
660
661 /* allocate blocks */
662 ret = cow_file_range(inode, async_cow->locked_page,
663 async_extent->start,
664 async_extent->start +
665 async_extent->ram_size - 1,
666 &page_started, &nr_written, 0);
667
668 /* JDM XXX */
669
670 /*
671 * if page_started, cow_file_range inserted an
672 * inline extent and took care of all the unlocking
673 * and IO for us. Otherwise, we need to submit
674 * all those pages down to the drive.
675 */
676 if (!page_started && !ret)
677 extent_write_locked_range(io_tree,
678 inode, async_extent->start,
679 async_extent->start +
680 async_extent->ram_size - 1,
681 btrfs_get_extent,
682 WB_SYNC_ALL);
683 else if (ret)
684 unlock_page(async_cow->locked_page);
685 kfree(async_extent);
686 cond_resched();
687 continue;
688 }
689
690 lock_extent(io_tree, async_extent->start,
691 async_extent->start + async_extent->ram_size - 1);
692
693 ret = btrfs_reserve_extent(root,
694 async_extent->compressed_size,
695 async_extent->compressed_size,
696 0, alloc_hint, &ins, 1, 1);
697 if (ret) {
698 int i;
699
700 for (i = 0; i < async_extent->nr_pages; i++) {
701 WARN_ON(async_extent->pages[i]->mapping);
702 page_cache_release(async_extent->pages[i]);
703 }
704 kfree(async_extent->pages);
705 async_extent->nr_pages = 0;
706 async_extent->pages = NULL;
707
708 if (ret == -ENOSPC) {
709 unlock_extent(io_tree, async_extent->start,
710 async_extent->start +
711 async_extent->ram_size - 1);
712
713 /*
714 * we need to redirty the pages if we decide to
715 * fallback to uncompressed IO, otherwise we
716 * will not submit these pages down to lower
717 * layers.
718 */
719 extent_range_redirty_for_io(inode,
720 async_extent->start,
721 async_extent->start +
722 async_extent->ram_size - 1);
723
724 goto retry;
725 }
726 goto out_free;
727 }
728
729 /*
730 * here we're doing allocation and writeback of the
731 * compressed pages
732 */
733 btrfs_drop_extent_cache(inode, async_extent->start,
734 async_extent->start +
735 async_extent->ram_size - 1, 0);
736
737 em = alloc_extent_map();
738 if (!em) {
739 ret = -ENOMEM;
740 goto out_free_reserve;
741 }
742 em->start = async_extent->start;
743 em->len = async_extent->ram_size;
744 em->orig_start = em->start;
745 em->mod_start = em->start;
746 em->mod_len = em->len;
747
748 em->block_start = ins.objectid;
749 em->block_len = ins.offset;
750 em->orig_block_len = ins.offset;
751 em->ram_bytes = async_extent->ram_size;
752 em->bdev = root->fs_info->fs_devices->latest_bdev;
753 em->compress_type = async_extent->compress_type;
754 set_bit(EXTENT_FLAG_PINNED, &em->flags);
755 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
756 em->generation = -1;
757
758 while (1) {
759 write_lock(&em_tree->lock);
760 ret = add_extent_mapping(em_tree, em, 1);
761 write_unlock(&em_tree->lock);
762 if (ret != -EEXIST) {
763 free_extent_map(em);
764 break;
765 }
766 btrfs_drop_extent_cache(inode, async_extent->start,
767 async_extent->start +
768 async_extent->ram_size - 1, 0);
769 }
770
771 if (ret)
772 goto out_free_reserve;
773
774 ret = btrfs_add_ordered_extent_compress(inode,
775 async_extent->start,
776 ins.objectid,
777 async_extent->ram_size,
778 ins.offset,
779 BTRFS_ORDERED_COMPRESSED,
780 async_extent->compress_type);
781 if (ret) {
782 btrfs_drop_extent_cache(inode, async_extent->start,
783 async_extent->start +
784 async_extent->ram_size - 1, 0);
785 goto out_free_reserve;
786 }
787
788 /*
789 * clear dirty, set writeback and unlock the pages.
790 */
791 extent_clear_unlock_delalloc(inode, async_extent->start,
792 async_extent->start +
793 async_extent->ram_size - 1,
794 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
795 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
796 PAGE_SET_WRITEBACK);
797 ret = btrfs_submit_compressed_write(inode,
798 async_extent->start,
799 async_extent->ram_size,
800 ins.objectid,
801 ins.offset, async_extent->pages,
802 async_extent->nr_pages);
803 alloc_hint = ins.objectid + ins.offset;
804 kfree(async_extent);
805 if (ret)
806 goto out;
807 cond_resched();
808 }
809 ret = 0;
810out:
811 return ret;
812out_free_reserve:
813 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
814out_free:
815 extent_clear_unlock_delalloc(inode, async_extent->start,
816 async_extent->start +
817 async_extent->ram_size - 1,
818 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
819 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
820 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
821 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
822 kfree(async_extent);
823 goto again;
824}
825
826static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
827 u64 num_bytes)
828{
829 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
830 struct extent_map *em;
831 u64 alloc_hint = 0;
832
833 read_lock(&em_tree->lock);
834 em = search_extent_mapping(em_tree, start, num_bytes);
835 if (em) {
836 /*
837 * if block start isn't an actual block number then find the
838 * first block in this inode and use that as a hint. If that
839 * block is also bogus then just don't worry about it.
840 */
841 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
842 free_extent_map(em);
843 em = search_extent_mapping(em_tree, 0, 0);
844 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
845 alloc_hint = em->block_start;
846 if (em)
847 free_extent_map(em);
848 } else {
849 alloc_hint = em->block_start;
850 free_extent_map(em);
851 }
852 }
853 read_unlock(&em_tree->lock);
854
855 return alloc_hint;
856}
857
858/*
859 * when extent_io.c finds a delayed allocation range in the file,
860 * the call backs end up in this code. The basic idea is to
861 * allocate extents on disk for the range, and create ordered data structs
862 * in ram to track those extents.
863 *
864 * locked_page is the page that writepage had locked already. We use
865 * it to make sure we don't do extra locks or unlocks.
866 *
867 * *page_started is set to one if we unlock locked_page and do everything
868 * required to start IO on it. It may be clean and already done with
869 * IO when we return.
870 */
871static noinline int cow_file_range(struct inode *inode,
872 struct page *locked_page,
873 u64 start, u64 end, int *page_started,
874 unsigned long *nr_written,
875 int unlock)
876{
877 struct btrfs_root *root = BTRFS_I(inode)->root;
878 u64 alloc_hint = 0;
879 u64 num_bytes;
880 unsigned long ram_size;
881 u64 disk_num_bytes;
882 u64 cur_alloc_size;
883 u64 blocksize = root->sectorsize;
884 struct btrfs_key ins;
885 struct extent_map *em;
886 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
887 int ret = 0;
888
889 if (btrfs_is_free_space_inode(inode)) {
890 WARN_ON_ONCE(1);
891 ret = -EINVAL;
892 goto out_unlock;
893 }
894
895 num_bytes = ALIGN(end - start + 1, blocksize);
896 num_bytes = max(blocksize, num_bytes);
897 disk_num_bytes = num_bytes;
898
899 /* if this is a small write inside eof, kick off defrag */
900 if (num_bytes < 64 * 1024 &&
901 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
902 btrfs_add_inode_defrag(NULL, inode);
903
904 if (start == 0) {
905 /* lets try to make an inline extent */
906 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
907 NULL);
908 if (ret == 0) {
909 extent_clear_unlock_delalloc(inode, start, end, NULL,
910 EXTENT_LOCKED | EXTENT_DELALLOC |
911 EXTENT_DEFRAG, PAGE_UNLOCK |
912 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
913 PAGE_END_WRITEBACK);
914
915 *nr_written = *nr_written +
916 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
917 *page_started = 1;
918 goto out;
919 } else if (ret < 0) {
920 goto out_unlock;
921 }
922 }
923
924 BUG_ON(disk_num_bytes >
925 btrfs_super_total_bytes(root->fs_info->super_copy));
926
927 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
928 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
929
930 while (disk_num_bytes > 0) {
931 unsigned long op;
932
933 cur_alloc_size = disk_num_bytes;
934 ret = btrfs_reserve_extent(root, cur_alloc_size,
935 root->sectorsize, 0, alloc_hint,
936 &ins, 1, 1);
937 if (ret < 0)
938 goto out_unlock;
939
940 em = alloc_extent_map();
941 if (!em) {
942 ret = -ENOMEM;
943 goto out_reserve;
944 }
945 em->start = start;
946 em->orig_start = em->start;
947 ram_size = ins.offset;
948 em->len = ins.offset;
949 em->mod_start = em->start;
950 em->mod_len = em->len;
951
952 em->block_start = ins.objectid;
953 em->block_len = ins.offset;
954 em->orig_block_len = ins.offset;
955 em->ram_bytes = ram_size;
956 em->bdev = root->fs_info->fs_devices->latest_bdev;
957 set_bit(EXTENT_FLAG_PINNED, &em->flags);
958 em->generation = -1;
959
960 while (1) {
961 write_lock(&em_tree->lock);
962 ret = add_extent_mapping(em_tree, em, 1);
963 write_unlock(&em_tree->lock);
964 if (ret != -EEXIST) {
965 free_extent_map(em);
966 break;
967 }
968 btrfs_drop_extent_cache(inode, start,
969 start + ram_size - 1, 0);
970 }
971 if (ret)
972 goto out_reserve;
973
974 cur_alloc_size = ins.offset;
975 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
976 ram_size, cur_alloc_size, 0);
977 if (ret)
978 goto out_drop_extent_cache;
979
980 if (root->root_key.objectid ==
981 BTRFS_DATA_RELOC_TREE_OBJECTID) {
982 ret = btrfs_reloc_clone_csums(inode, start,
983 cur_alloc_size);
984 if (ret)
985 goto out_drop_extent_cache;
986 }
987
988 if (disk_num_bytes < cur_alloc_size)
989 break;
990
991 /* we're not doing compressed IO, don't unlock the first
992 * page (which the caller expects to stay locked), don't
993 * clear any dirty bits and don't set any writeback bits
994 *
995 * Do set the Private2 bit so we know this page was properly
996 * setup for writepage
997 */
998 op = unlock ? PAGE_UNLOCK : 0;
999 op |= PAGE_SET_PRIVATE2;
1000
1001 extent_clear_unlock_delalloc(inode, start,
1002 start + ram_size - 1, locked_page,
1003 EXTENT_LOCKED | EXTENT_DELALLOC,
1004 op);
1005 disk_num_bytes -= cur_alloc_size;
1006 num_bytes -= cur_alloc_size;
1007 alloc_hint = ins.objectid + ins.offset;
1008 start += cur_alloc_size;
1009 }
1010out:
1011 return ret;
1012
1013out_drop_extent_cache:
1014 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1015out_reserve:
1016 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1017out_unlock:
1018 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1019 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1020 EXTENT_DELALLOC | EXTENT_DEFRAG,
1021 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1022 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1023 goto out;
1024}
1025
1026/*
1027 * work queue call back to started compression on a file and pages
1028 */
1029static noinline void async_cow_start(struct btrfs_work *work)
1030{
1031 struct async_cow *async_cow;
1032 int num_added = 0;
1033 async_cow = container_of(work, struct async_cow, work);
1034
1035 compress_file_range(async_cow->inode, async_cow->locked_page,
1036 async_cow->start, async_cow->end, async_cow,
1037 &num_added);
1038 if (num_added == 0) {
1039 btrfs_add_delayed_iput(async_cow->inode);
1040 async_cow->inode = NULL;
1041 }
1042}
1043
1044/*
1045 * work queue call back to submit previously compressed pages
1046 */
1047static noinline void async_cow_submit(struct btrfs_work *work)
1048{
1049 struct async_cow *async_cow;
1050 struct btrfs_root *root;
1051 unsigned long nr_pages;
1052
1053 async_cow = container_of(work, struct async_cow, work);
1054
1055 root = async_cow->root;
1056 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1057 PAGE_CACHE_SHIFT;
1058
1059 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1060 5 * 1024 * 1024 &&
1061 waitqueue_active(&root->fs_info->async_submit_wait))
1062 wake_up(&root->fs_info->async_submit_wait);
1063
1064 if (async_cow->inode)
1065 submit_compressed_extents(async_cow->inode, async_cow);
1066}
1067
1068static noinline void async_cow_free(struct btrfs_work *work)
1069{
1070 struct async_cow *async_cow;
1071 async_cow = container_of(work, struct async_cow, work);
1072 if (async_cow->inode)
1073 btrfs_add_delayed_iput(async_cow->inode);
1074 kfree(async_cow);
1075}
1076
1077static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1078 u64 start, u64 end, int *page_started,
1079 unsigned long *nr_written)
1080{
1081 struct async_cow *async_cow;
1082 struct btrfs_root *root = BTRFS_I(inode)->root;
1083 unsigned long nr_pages;
1084 u64 cur_end;
1085 int limit = 10 * 1024 * 1024;
1086
1087 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1088 1, 0, NULL, GFP_NOFS);
1089 while (start < end) {
1090 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1091 BUG_ON(!async_cow); /* -ENOMEM */
1092 async_cow->inode = igrab(inode);
1093 async_cow->root = root;
1094 async_cow->locked_page = locked_page;
1095 async_cow->start = start;
1096
1097 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1098 cur_end = end;
1099 else
1100 cur_end = min(end, start + 512 * 1024 - 1);
1101
1102 async_cow->end = cur_end;
1103 INIT_LIST_HEAD(&async_cow->extents);
1104
1105 btrfs_init_work(&async_cow->work,
1106 btrfs_delalloc_helper,
1107 async_cow_start, async_cow_submit,
1108 async_cow_free);
1109
1110 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1111 PAGE_CACHE_SHIFT;
1112 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1113
1114 btrfs_queue_work(root->fs_info->delalloc_workers,
1115 &async_cow->work);
1116
1117 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1118 wait_event(root->fs_info->async_submit_wait,
1119 (atomic_read(&root->fs_info->async_delalloc_pages) <
1120 limit));
1121 }
1122
1123 while (atomic_read(&root->fs_info->async_submit_draining) &&
1124 atomic_read(&root->fs_info->async_delalloc_pages)) {
1125 wait_event(root->fs_info->async_submit_wait,
1126 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1127 0));
1128 }
1129
1130 *nr_written += nr_pages;
1131 start = cur_end + 1;
1132 }
1133 *page_started = 1;
1134 return 0;
1135}
1136
1137static noinline int csum_exist_in_range(struct btrfs_root *root,
1138 u64 bytenr, u64 num_bytes)
1139{
1140 int ret;
1141 struct btrfs_ordered_sum *sums;
1142 LIST_HEAD(list);
1143
1144 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1145 bytenr + num_bytes - 1, &list, 0);
1146 if (ret == 0 && list_empty(&list))
1147 return 0;
1148
1149 while (!list_empty(&list)) {
1150 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1151 list_del(&sums->list);
1152 kfree(sums);
1153 }
1154 return 1;
1155}
1156
1157/*
1158 * when nowcow writeback call back. This checks for snapshots or COW copies
1159 * of the extents that exist in the file, and COWs the file as required.
1160 *
1161 * If no cow copies or snapshots exist, we write directly to the existing
1162 * blocks on disk
1163 */
1164static noinline int run_delalloc_nocow(struct inode *inode,
1165 struct page *locked_page,
1166 u64 start, u64 end, int *page_started, int force,
1167 unsigned long *nr_written)
1168{
1169 struct btrfs_root *root = BTRFS_I(inode)->root;
1170 struct btrfs_trans_handle *trans;
1171 struct extent_buffer *leaf;
1172 struct btrfs_path *path;
1173 struct btrfs_file_extent_item *fi;
1174 struct btrfs_key found_key;
1175 u64 cow_start;
1176 u64 cur_offset;
1177 u64 extent_end;
1178 u64 extent_offset;
1179 u64 disk_bytenr;
1180 u64 num_bytes;
1181 u64 disk_num_bytes;
1182 u64 ram_bytes;
1183 int extent_type;
1184 int ret, err;
1185 int type;
1186 int nocow;
1187 int check_prev = 1;
1188 bool nolock;
1189 u64 ino = btrfs_ino(inode);
1190
1191 path = btrfs_alloc_path();
1192 if (!path) {
1193 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1194 EXTENT_LOCKED | EXTENT_DELALLOC |
1195 EXTENT_DO_ACCOUNTING |
1196 EXTENT_DEFRAG, PAGE_UNLOCK |
1197 PAGE_CLEAR_DIRTY |
1198 PAGE_SET_WRITEBACK |
1199 PAGE_END_WRITEBACK);
1200 return -ENOMEM;
1201 }
1202
1203 nolock = btrfs_is_free_space_inode(inode);
1204
1205 if (nolock)
1206 trans = btrfs_join_transaction_nolock(root);
1207 else
1208 trans = btrfs_join_transaction(root);
1209
1210 if (IS_ERR(trans)) {
1211 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1212 EXTENT_LOCKED | EXTENT_DELALLOC |
1213 EXTENT_DO_ACCOUNTING |
1214 EXTENT_DEFRAG, PAGE_UNLOCK |
1215 PAGE_CLEAR_DIRTY |
1216 PAGE_SET_WRITEBACK |
1217 PAGE_END_WRITEBACK);
1218 btrfs_free_path(path);
1219 return PTR_ERR(trans);
1220 }
1221
1222 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1223
1224 cow_start = (u64)-1;
1225 cur_offset = start;
1226 while (1) {
1227 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1228 cur_offset, 0);
1229 if (ret < 0)
1230 goto error;
1231 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1232 leaf = path->nodes[0];
1233 btrfs_item_key_to_cpu(leaf, &found_key,
1234 path->slots[0] - 1);
1235 if (found_key.objectid == ino &&
1236 found_key.type == BTRFS_EXTENT_DATA_KEY)
1237 path->slots[0]--;
1238 }
1239 check_prev = 0;
1240next_slot:
1241 leaf = path->nodes[0];
1242 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1243 ret = btrfs_next_leaf(root, path);
1244 if (ret < 0)
1245 goto error;
1246 if (ret > 0)
1247 break;
1248 leaf = path->nodes[0];
1249 }
1250
1251 nocow = 0;
1252 disk_bytenr = 0;
1253 num_bytes = 0;
1254 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1255
1256 if (found_key.objectid > ino ||
1257 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1258 found_key.offset > end)
1259 break;
1260
1261 if (found_key.offset > cur_offset) {
1262 extent_end = found_key.offset;
1263 extent_type = 0;
1264 goto out_check;
1265 }
1266
1267 fi = btrfs_item_ptr(leaf, path->slots[0],
1268 struct btrfs_file_extent_item);
1269 extent_type = btrfs_file_extent_type(leaf, fi);
1270
1271 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1272 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1273 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1274 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1275 extent_offset = btrfs_file_extent_offset(leaf, fi);
1276 extent_end = found_key.offset +
1277 btrfs_file_extent_num_bytes(leaf, fi);
1278 disk_num_bytes =
1279 btrfs_file_extent_disk_num_bytes(leaf, fi);
1280 if (extent_end <= start) {
1281 path->slots[0]++;
1282 goto next_slot;
1283 }
1284 if (disk_bytenr == 0)
1285 goto out_check;
1286 if (btrfs_file_extent_compression(leaf, fi) ||
1287 btrfs_file_extent_encryption(leaf, fi) ||
1288 btrfs_file_extent_other_encoding(leaf, fi))
1289 goto out_check;
1290 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1291 goto out_check;
1292 if (btrfs_extent_readonly(root, disk_bytenr))
1293 goto out_check;
1294 if (btrfs_cross_ref_exist(trans, root, ino,
1295 found_key.offset -
1296 extent_offset, disk_bytenr))
1297 goto out_check;
1298 disk_bytenr += extent_offset;
1299 disk_bytenr += cur_offset - found_key.offset;
1300 num_bytes = min(end + 1, extent_end) - cur_offset;
1301 /*
1302 * if there are pending snapshots for this root,
1303 * we fall into common COW way.
1304 */
1305 if (!nolock) {
1306 err = btrfs_start_nocow_write(root);
1307 if (!err)
1308 goto out_check;
1309 }
1310 /*
1311 * force cow if csum exists in the range.
1312 * this ensure that csum for a given extent are
1313 * either valid or do not exist.
1314 */
1315 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1316 goto out_check;
1317 nocow = 1;
1318 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1319 extent_end = found_key.offset +
1320 btrfs_file_extent_inline_len(leaf,
1321 path->slots[0], fi);
1322 extent_end = ALIGN(extent_end, root->sectorsize);
1323 } else {
1324 BUG_ON(1);
1325 }
1326out_check:
1327 if (extent_end <= start) {
1328 path->slots[0]++;
1329 if (!nolock && nocow)
1330 btrfs_end_nocow_write(root);
1331 goto next_slot;
1332 }
1333 if (!nocow) {
1334 if (cow_start == (u64)-1)
1335 cow_start = cur_offset;
1336 cur_offset = extent_end;
1337 if (cur_offset > end)
1338 break;
1339 path->slots[0]++;
1340 goto next_slot;
1341 }
1342
1343 btrfs_release_path(path);
1344 if (cow_start != (u64)-1) {
1345 ret = cow_file_range(inode, locked_page,
1346 cow_start, found_key.offset - 1,
1347 page_started, nr_written, 1);
1348 if (ret) {
1349 if (!nolock && nocow)
1350 btrfs_end_nocow_write(root);
1351 goto error;
1352 }
1353 cow_start = (u64)-1;
1354 }
1355
1356 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1357 struct extent_map *em;
1358 struct extent_map_tree *em_tree;
1359 em_tree = &BTRFS_I(inode)->extent_tree;
1360 em = alloc_extent_map();
1361 BUG_ON(!em); /* -ENOMEM */
1362 em->start = cur_offset;
1363 em->orig_start = found_key.offset - extent_offset;
1364 em->len = num_bytes;
1365 em->block_len = num_bytes;
1366 em->block_start = disk_bytenr;
1367 em->orig_block_len = disk_num_bytes;
1368 em->ram_bytes = ram_bytes;
1369 em->bdev = root->fs_info->fs_devices->latest_bdev;
1370 em->mod_start = em->start;
1371 em->mod_len = em->len;
1372 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1373 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1374 em->generation = -1;
1375 while (1) {
1376 write_lock(&em_tree->lock);
1377 ret = add_extent_mapping(em_tree, em, 1);
1378 write_unlock(&em_tree->lock);
1379 if (ret != -EEXIST) {
1380 free_extent_map(em);
1381 break;
1382 }
1383 btrfs_drop_extent_cache(inode, em->start,
1384 em->start + em->len - 1, 0);
1385 }
1386 type = BTRFS_ORDERED_PREALLOC;
1387 } else {
1388 type = BTRFS_ORDERED_NOCOW;
1389 }
1390
1391 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1392 num_bytes, num_bytes, type);
1393 BUG_ON(ret); /* -ENOMEM */
1394
1395 if (root->root_key.objectid ==
1396 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1397 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1398 num_bytes);
1399 if (ret) {
1400 if (!nolock && nocow)
1401 btrfs_end_nocow_write(root);
1402 goto error;
1403 }
1404 }
1405
1406 extent_clear_unlock_delalloc(inode, cur_offset,
1407 cur_offset + num_bytes - 1,
1408 locked_page, EXTENT_LOCKED |
1409 EXTENT_DELALLOC, PAGE_UNLOCK |
1410 PAGE_SET_PRIVATE2);
1411 if (!nolock && nocow)
1412 btrfs_end_nocow_write(root);
1413 cur_offset = extent_end;
1414 if (cur_offset > end)
1415 break;
1416 }
1417 btrfs_release_path(path);
1418
1419 if (cur_offset <= end && cow_start == (u64)-1) {
1420 cow_start = cur_offset;
1421 cur_offset = end;
1422 }
1423
1424 if (cow_start != (u64)-1) {
1425 ret = cow_file_range(inode, locked_page, cow_start, end,
1426 page_started, nr_written, 1);
1427 if (ret)
1428 goto error;
1429 }
1430
1431error:
1432 err = btrfs_end_transaction(trans, root);
1433 if (!ret)
1434 ret = err;
1435
1436 if (ret && cur_offset < end)
1437 extent_clear_unlock_delalloc(inode, cur_offset, end,
1438 locked_page, EXTENT_LOCKED |
1439 EXTENT_DELALLOC | EXTENT_DEFRAG |
1440 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1441 PAGE_CLEAR_DIRTY |
1442 PAGE_SET_WRITEBACK |
1443 PAGE_END_WRITEBACK);
1444 btrfs_free_path(path);
1445 return ret;
1446}
1447
1448/*
1449 * extent_io.c call back to do delayed allocation processing
1450 */
1451static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1452 u64 start, u64 end, int *page_started,
1453 unsigned long *nr_written)
1454{
1455 int ret;
1456 struct btrfs_root *root = BTRFS_I(inode)->root;
1457
1458 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1459 ret = run_delalloc_nocow(inode, locked_page, start, end,
1460 page_started, 1, nr_written);
1461 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1462 ret = run_delalloc_nocow(inode, locked_page, start, end,
1463 page_started, 0, nr_written);
1464 } else if (!btrfs_test_opt(root, COMPRESS) &&
1465 !(BTRFS_I(inode)->force_compress) &&
1466 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1467 ret = cow_file_range(inode, locked_page, start, end,
1468 page_started, nr_written, 1);
1469 } else {
1470 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1471 &BTRFS_I(inode)->runtime_flags);
1472 ret = cow_file_range_async(inode, locked_page, start, end,
1473 page_started, nr_written);
1474 }
1475 return ret;
1476}
1477
1478static void btrfs_split_extent_hook(struct inode *inode,
1479 struct extent_state *orig, u64 split)
1480{
1481 /* not delalloc, ignore it */
1482 if (!(orig->state & EXTENT_DELALLOC))
1483 return;
1484
1485 spin_lock(&BTRFS_I(inode)->lock);
1486 BTRFS_I(inode)->outstanding_extents++;
1487 spin_unlock(&BTRFS_I(inode)->lock);
1488}
1489
1490/*
1491 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1492 * extents so we can keep track of new extents that are just merged onto old
1493 * extents, such as when we are doing sequential writes, so we can properly
1494 * account for the metadata space we'll need.
1495 */
1496static void btrfs_merge_extent_hook(struct inode *inode,
1497 struct extent_state *new,
1498 struct extent_state *other)
1499{
1500 /* not delalloc, ignore it */
1501 if (!(other->state & EXTENT_DELALLOC))
1502 return;
1503
1504 spin_lock(&BTRFS_I(inode)->lock);
1505 BTRFS_I(inode)->outstanding_extents--;
1506 spin_unlock(&BTRFS_I(inode)->lock);
1507}
1508
1509static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1510 struct inode *inode)
1511{
1512 spin_lock(&root->delalloc_lock);
1513 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1514 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1515 &root->delalloc_inodes);
1516 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1517 &BTRFS_I(inode)->runtime_flags);
1518 root->nr_delalloc_inodes++;
1519 if (root->nr_delalloc_inodes == 1) {
1520 spin_lock(&root->fs_info->delalloc_root_lock);
1521 BUG_ON(!list_empty(&root->delalloc_root));
1522 list_add_tail(&root->delalloc_root,
1523 &root->fs_info->delalloc_roots);
1524 spin_unlock(&root->fs_info->delalloc_root_lock);
1525 }
1526 }
1527 spin_unlock(&root->delalloc_lock);
1528}
1529
1530static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1531 struct inode *inode)
1532{
1533 spin_lock(&root->delalloc_lock);
1534 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1535 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1536 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1537 &BTRFS_I(inode)->runtime_flags);
1538 root->nr_delalloc_inodes--;
1539 if (!root->nr_delalloc_inodes) {
1540 spin_lock(&root->fs_info->delalloc_root_lock);
1541 BUG_ON(list_empty(&root->delalloc_root));
1542 list_del_init(&root->delalloc_root);
1543 spin_unlock(&root->fs_info->delalloc_root_lock);
1544 }
1545 }
1546 spin_unlock(&root->delalloc_lock);
1547}
1548
1549/*
1550 * extent_io.c set_bit_hook, used to track delayed allocation
1551 * bytes in this file, and to maintain the list of inodes that
1552 * have pending delalloc work to be done.
1553 */
1554static void btrfs_set_bit_hook(struct inode *inode,
1555 struct extent_state *state, unsigned long *bits)
1556{
1557
1558 /*
1559 * set_bit and clear bit hooks normally require _irqsave/restore
1560 * but in this case, we are only testing for the DELALLOC
1561 * bit, which is only set or cleared with irqs on
1562 */
1563 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1564 struct btrfs_root *root = BTRFS_I(inode)->root;
1565 u64 len = state->end + 1 - state->start;
1566 bool do_list = !btrfs_is_free_space_inode(inode);
1567
1568 if (*bits & EXTENT_FIRST_DELALLOC) {
1569 *bits &= ~EXTENT_FIRST_DELALLOC;
1570 } else {
1571 spin_lock(&BTRFS_I(inode)->lock);
1572 BTRFS_I(inode)->outstanding_extents++;
1573 spin_unlock(&BTRFS_I(inode)->lock);
1574 }
1575
1576 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1577 root->fs_info->delalloc_batch);
1578 spin_lock(&BTRFS_I(inode)->lock);
1579 BTRFS_I(inode)->delalloc_bytes += len;
1580 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1581 &BTRFS_I(inode)->runtime_flags))
1582 btrfs_add_delalloc_inodes(root, inode);
1583 spin_unlock(&BTRFS_I(inode)->lock);
1584 }
1585}
1586
1587/*
1588 * extent_io.c clear_bit_hook, see set_bit_hook for why
1589 */
1590static void btrfs_clear_bit_hook(struct inode *inode,
1591 struct extent_state *state,
1592 unsigned long *bits)
1593{
1594 /*
1595 * set_bit and clear bit hooks normally require _irqsave/restore
1596 * but in this case, we are only testing for the DELALLOC
1597 * bit, which is only set or cleared with irqs on
1598 */
1599 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1600 struct btrfs_root *root = BTRFS_I(inode)->root;
1601 u64 len = state->end + 1 - state->start;
1602 bool do_list = !btrfs_is_free_space_inode(inode);
1603
1604 if (*bits & EXTENT_FIRST_DELALLOC) {
1605 *bits &= ~EXTENT_FIRST_DELALLOC;
1606 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1607 spin_lock(&BTRFS_I(inode)->lock);
1608 BTRFS_I(inode)->outstanding_extents--;
1609 spin_unlock(&BTRFS_I(inode)->lock);
1610 }
1611
1612 /*
1613 * We don't reserve metadata space for space cache inodes so we
1614 * don't need to call dellalloc_release_metadata if there is an
1615 * error.
1616 */
1617 if (*bits & EXTENT_DO_ACCOUNTING &&
1618 root != root->fs_info->tree_root)
1619 btrfs_delalloc_release_metadata(inode, len);
1620
1621 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1622 && do_list && !(state->state & EXTENT_NORESERVE))
1623 btrfs_free_reserved_data_space(inode, len);
1624
1625 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1626 root->fs_info->delalloc_batch);
1627 spin_lock(&BTRFS_I(inode)->lock);
1628 BTRFS_I(inode)->delalloc_bytes -= len;
1629 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1630 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1631 &BTRFS_I(inode)->runtime_flags))
1632 btrfs_del_delalloc_inode(root, inode);
1633 spin_unlock(&BTRFS_I(inode)->lock);
1634 }
1635}
1636
1637/*
1638 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1639 * we don't create bios that span stripes or chunks
1640 */
1641int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1642 size_t size, struct bio *bio,
1643 unsigned long bio_flags)
1644{
1645 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1646 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1647 u64 length = 0;
1648 u64 map_length;
1649 int ret;
1650
1651 if (bio_flags & EXTENT_BIO_COMPRESSED)
1652 return 0;
1653
1654 length = bio->bi_iter.bi_size;
1655 map_length = length;
1656 ret = btrfs_map_block(root->fs_info, rw, logical,
1657 &map_length, NULL, 0);
1658 /* Will always return 0 with map_multi == NULL */
1659 BUG_ON(ret < 0);
1660 if (map_length < length + size)
1661 return 1;
1662 return 0;
1663}
1664
1665/*
1666 * in order to insert checksums into the metadata in large chunks,
1667 * we wait until bio submission time. All the pages in the bio are
1668 * checksummed and sums are attached onto the ordered extent record.
1669 *
1670 * At IO completion time the cums attached on the ordered extent record
1671 * are inserted into the btree
1672 */
1673static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1674 struct bio *bio, int mirror_num,
1675 unsigned long bio_flags,
1676 u64 bio_offset)
1677{
1678 struct btrfs_root *root = BTRFS_I(inode)->root;
1679 int ret = 0;
1680
1681 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1682 BUG_ON(ret); /* -ENOMEM */
1683 return 0;
1684}
1685
1686/*
1687 * in order to insert checksums into the metadata in large chunks,
1688 * we wait until bio submission time. All the pages in the bio are
1689 * checksummed and sums are attached onto the ordered extent record.
1690 *
1691 * At IO completion time the cums attached on the ordered extent record
1692 * are inserted into the btree
1693 */
1694static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1695 int mirror_num, unsigned long bio_flags,
1696 u64 bio_offset)
1697{
1698 struct btrfs_root *root = BTRFS_I(inode)->root;
1699 int ret;
1700
1701 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1702 if (ret)
1703 bio_endio(bio, ret);
1704 return ret;
1705}
1706
1707/*
1708 * extent_io.c submission hook. This does the right thing for csum calculation
1709 * on write, or reading the csums from the tree before a read
1710 */
1711static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1712 int mirror_num, unsigned long bio_flags,
1713 u64 bio_offset)
1714{
1715 struct btrfs_root *root = BTRFS_I(inode)->root;
1716 int ret = 0;
1717 int skip_sum;
1718 int metadata = 0;
1719 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1720
1721 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1722
1723 if (btrfs_is_free_space_inode(inode))
1724 metadata = 2;
1725
1726 if (!(rw & REQ_WRITE)) {
1727 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1728 if (ret)
1729 goto out;
1730
1731 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1732 ret = btrfs_submit_compressed_read(inode, bio,
1733 mirror_num,
1734 bio_flags);
1735 goto out;
1736 } else if (!skip_sum) {
1737 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1738 if (ret)
1739 goto out;
1740 }
1741 goto mapit;
1742 } else if (async && !skip_sum) {
1743 /* csum items have already been cloned */
1744 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1745 goto mapit;
1746 /* we're doing a write, do the async checksumming */
1747 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1748 inode, rw, bio, mirror_num,
1749 bio_flags, bio_offset,
1750 __btrfs_submit_bio_start,
1751 __btrfs_submit_bio_done);
1752 goto out;
1753 } else if (!skip_sum) {
1754 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1755 if (ret)
1756 goto out;
1757 }
1758
1759mapit:
1760 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1761
1762out:
1763 if (ret < 0)
1764 bio_endio(bio, ret);
1765 return ret;
1766}
1767
1768/*
1769 * given a list of ordered sums record them in the inode. This happens
1770 * at IO completion time based on sums calculated at bio submission time.
1771 */
1772static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1773 struct inode *inode, u64 file_offset,
1774 struct list_head *list)
1775{
1776 struct btrfs_ordered_sum *sum;
1777
1778 list_for_each_entry(sum, list, list) {
1779 trans->adding_csums = 1;
1780 btrfs_csum_file_blocks(trans,
1781 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1782 trans->adding_csums = 0;
1783 }
1784 return 0;
1785}
1786
1787int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1788 struct extent_state **cached_state)
1789{
1790 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1791 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1792 cached_state, GFP_NOFS);
1793}
1794
1795/* see btrfs_writepage_start_hook for details on why this is required */
1796struct btrfs_writepage_fixup {
1797 struct page *page;
1798 struct btrfs_work work;
1799};
1800
1801static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1802{
1803 struct btrfs_writepage_fixup *fixup;
1804 struct btrfs_ordered_extent *ordered;
1805 struct extent_state *cached_state = NULL;
1806 struct page *page;
1807 struct inode *inode;
1808 u64 page_start;
1809 u64 page_end;
1810 int ret;
1811
1812 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1813 page = fixup->page;
1814again:
1815 lock_page(page);
1816 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1817 ClearPageChecked(page);
1818 goto out_page;
1819 }
1820
1821 inode = page->mapping->host;
1822 page_start = page_offset(page);
1823 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1824
1825 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1826 &cached_state);
1827
1828 /* already ordered? We're done */
1829 if (PagePrivate2(page))
1830 goto out;
1831
1832 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1833 if (ordered) {
1834 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1835 page_end, &cached_state, GFP_NOFS);
1836 unlock_page(page);
1837 btrfs_start_ordered_extent(inode, ordered, 1);
1838 btrfs_put_ordered_extent(ordered);
1839 goto again;
1840 }
1841
1842 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1843 if (ret) {
1844 mapping_set_error(page->mapping, ret);
1845 end_extent_writepage(page, ret, page_start, page_end);
1846 ClearPageChecked(page);
1847 goto out;
1848 }
1849
1850 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1851 ClearPageChecked(page);
1852 set_page_dirty(page);
1853out:
1854 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1855 &cached_state, GFP_NOFS);
1856out_page:
1857 unlock_page(page);
1858 page_cache_release(page);
1859 kfree(fixup);
1860}
1861
1862/*
1863 * There are a few paths in the higher layers of the kernel that directly
1864 * set the page dirty bit without asking the filesystem if it is a
1865 * good idea. This causes problems because we want to make sure COW
1866 * properly happens and the data=ordered rules are followed.
1867 *
1868 * In our case any range that doesn't have the ORDERED bit set
1869 * hasn't been properly setup for IO. We kick off an async process
1870 * to fix it up. The async helper will wait for ordered extents, set
1871 * the delalloc bit and make it safe to write the page.
1872 */
1873static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1874{
1875 struct inode *inode = page->mapping->host;
1876 struct btrfs_writepage_fixup *fixup;
1877 struct btrfs_root *root = BTRFS_I(inode)->root;
1878
1879 /* this page is properly in the ordered list */
1880 if (TestClearPagePrivate2(page))
1881 return 0;
1882
1883 if (PageChecked(page))
1884 return -EAGAIN;
1885
1886 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1887 if (!fixup)
1888 return -EAGAIN;
1889
1890 SetPageChecked(page);
1891 page_cache_get(page);
1892 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
1893 btrfs_writepage_fixup_worker, NULL, NULL);
1894 fixup->page = page;
1895 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
1896 return -EBUSY;
1897}
1898
1899static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1900 struct inode *inode, u64 file_pos,
1901 u64 disk_bytenr, u64 disk_num_bytes,
1902 u64 num_bytes, u64 ram_bytes,
1903 u8 compression, u8 encryption,
1904 u16 other_encoding, int extent_type)
1905{
1906 struct btrfs_root *root = BTRFS_I(inode)->root;
1907 struct btrfs_file_extent_item *fi;
1908 struct btrfs_path *path;
1909 struct extent_buffer *leaf;
1910 struct btrfs_key ins;
1911 int extent_inserted = 0;
1912 int ret;
1913
1914 path = btrfs_alloc_path();
1915 if (!path)
1916 return -ENOMEM;
1917
1918 /*
1919 * we may be replacing one extent in the tree with another.
1920 * The new extent is pinned in the extent map, and we don't want
1921 * to drop it from the cache until it is completely in the btree.
1922 *
1923 * So, tell btrfs_drop_extents to leave this extent in the cache.
1924 * the caller is expected to unpin it and allow it to be merged
1925 * with the others.
1926 */
1927 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1928 file_pos + num_bytes, NULL, 0,
1929 1, sizeof(*fi), &extent_inserted);
1930 if (ret)
1931 goto out;
1932
1933 if (!extent_inserted) {
1934 ins.objectid = btrfs_ino(inode);
1935 ins.offset = file_pos;
1936 ins.type = BTRFS_EXTENT_DATA_KEY;
1937
1938 path->leave_spinning = 1;
1939 ret = btrfs_insert_empty_item(trans, root, path, &ins,
1940 sizeof(*fi));
1941 if (ret)
1942 goto out;
1943 }
1944 leaf = path->nodes[0];
1945 fi = btrfs_item_ptr(leaf, path->slots[0],
1946 struct btrfs_file_extent_item);
1947 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1948 btrfs_set_file_extent_type(leaf, fi, extent_type);
1949 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1950 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1951 btrfs_set_file_extent_offset(leaf, fi, 0);
1952 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1953 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1954 btrfs_set_file_extent_compression(leaf, fi, compression);
1955 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1956 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1957
1958 btrfs_mark_buffer_dirty(leaf);
1959 btrfs_release_path(path);
1960
1961 inode_add_bytes(inode, num_bytes);
1962
1963 ins.objectid = disk_bytenr;
1964 ins.offset = disk_num_bytes;
1965 ins.type = BTRFS_EXTENT_ITEM_KEY;
1966 ret = btrfs_alloc_reserved_file_extent(trans, root,
1967 root->root_key.objectid,
1968 btrfs_ino(inode), file_pos, &ins);
1969out:
1970 btrfs_free_path(path);
1971
1972 return ret;
1973}
1974
1975/* snapshot-aware defrag */
1976struct sa_defrag_extent_backref {
1977 struct rb_node node;
1978 struct old_sa_defrag_extent *old;
1979 u64 root_id;
1980 u64 inum;
1981 u64 file_pos;
1982 u64 extent_offset;
1983 u64 num_bytes;
1984 u64 generation;
1985};
1986
1987struct old_sa_defrag_extent {
1988 struct list_head list;
1989 struct new_sa_defrag_extent *new;
1990
1991 u64 extent_offset;
1992 u64 bytenr;
1993 u64 offset;
1994 u64 len;
1995 int count;
1996};
1997
1998struct new_sa_defrag_extent {
1999 struct rb_root root;
2000 struct list_head head;
2001 struct btrfs_path *path;
2002 struct inode *inode;
2003 u64 file_pos;
2004 u64 len;
2005 u64 bytenr;
2006 u64 disk_len;
2007 u8 compress_type;
2008};
2009
2010static int backref_comp(struct sa_defrag_extent_backref *b1,
2011 struct sa_defrag_extent_backref *b2)
2012{
2013 if (b1->root_id < b2->root_id)
2014 return -1;
2015 else if (b1->root_id > b2->root_id)
2016 return 1;
2017
2018 if (b1->inum < b2->inum)
2019 return -1;
2020 else if (b1->inum > b2->inum)
2021 return 1;
2022
2023 if (b1->file_pos < b2->file_pos)
2024 return -1;
2025 else if (b1->file_pos > b2->file_pos)
2026 return 1;
2027
2028 /*
2029 * [------------------------------] ===> (a range of space)
2030 * |<--->| |<---->| =============> (fs/file tree A)
2031 * |<---------------------------->| ===> (fs/file tree B)
2032 *
2033 * A range of space can refer to two file extents in one tree while
2034 * refer to only one file extent in another tree.
2035 *
2036 * So we may process a disk offset more than one time(two extents in A)
2037 * and locate at the same extent(one extent in B), then insert two same
2038 * backrefs(both refer to the extent in B).
2039 */
2040 return 0;
2041}
2042
2043static void backref_insert(struct rb_root *root,
2044 struct sa_defrag_extent_backref *backref)
2045{
2046 struct rb_node **p = &root->rb_node;
2047 struct rb_node *parent = NULL;
2048 struct sa_defrag_extent_backref *entry;
2049 int ret;
2050
2051 while (*p) {
2052 parent = *p;
2053 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2054
2055 ret = backref_comp(backref, entry);
2056 if (ret < 0)
2057 p = &(*p)->rb_left;
2058 else
2059 p = &(*p)->rb_right;
2060 }
2061
2062 rb_link_node(&backref->node, parent, p);
2063 rb_insert_color(&backref->node, root);
2064}
2065
2066/*
2067 * Note the backref might has changed, and in this case we just return 0.
2068 */
2069static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2070 void *ctx)
2071{
2072 struct btrfs_file_extent_item *extent;
2073 struct btrfs_fs_info *fs_info;
2074 struct old_sa_defrag_extent *old = ctx;
2075 struct new_sa_defrag_extent *new = old->new;
2076 struct btrfs_path *path = new->path;
2077 struct btrfs_key key;
2078 struct btrfs_root *root;
2079 struct sa_defrag_extent_backref *backref;
2080 struct extent_buffer *leaf;
2081 struct inode *inode = new->inode;
2082 int slot;
2083 int ret;
2084 u64 extent_offset;
2085 u64 num_bytes;
2086
2087 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2088 inum == btrfs_ino(inode))
2089 return 0;
2090
2091 key.objectid = root_id;
2092 key.type = BTRFS_ROOT_ITEM_KEY;
2093 key.offset = (u64)-1;
2094
2095 fs_info = BTRFS_I(inode)->root->fs_info;
2096 root = btrfs_read_fs_root_no_name(fs_info, &key);
2097 if (IS_ERR(root)) {
2098 if (PTR_ERR(root) == -ENOENT)
2099 return 0;
2100 WARN_ON(1);
2101 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2102 inum, offset, root_id);
2103 return PTR_ERR(root);
2104 }
2105
2106 key.objectid = inum;
2107 key.type = BTRFS_EXTENT_DATA_KEY;
2108 if (offset > (u64)-1 << 32)
2109 key.offset = 0;
2110 else
2111 key.offset = offset;
2112
2113 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2114 if (WARN_ON(ret < 0))
2115 return ret;
2116 ret = 0;
2117
2118 while (1) {
2119 cond_resched();
2120
2121 leaf = path->nodes[0];
2122 slot = path->slots[0];
2123
2124 if (slot >= btrfs_header_nritems(leaf)) {
2125 ret = btrfs_next_leaf(root, path);
2126 if (ret < 0) {
2127 goto out;
2128 } else if (ret > 0) {
2129 ret = 0;
2130 goto out;
2131 }
2132 continue;
2133 }
2134
2135 path->slots[0]++;
2136
2137 btrfs_item_key_to_cpu(leaf, &key, slot);
2138
2139 if (key.objectid > inum)
2140 goto out;
2141
2142 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2143 continue;
2144
2145 extent = btrfs_item_ptr(leaf, slot,
2146 struct btrfs_file_extent_item);
2147
2148 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2149 continue;
2150
2151 /*
2152 * 'offset' refers to the exact key.offset,
2153 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2154 * (key.offset - extent_offset).
2155 */
2156 if (key.offset != offset)
2157 continue;
2158
2159 extent_offset = btrfs_file_extent_offset(leaf, extent);
2160 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2161
2162 if (extent_offset >= old->extent_offset + old->offset +
2163 old->len || extent_offset + num_bytes <=
2164 old->extent_offset + old->offset)
2165 continue;
2166 break;
2167 }
2168
2169 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2170 if (!backref) {
2171 ret = -ENOENT;
2172 goto out;
2173 }
2174
2175 backref->root_id = root_id;
2176 backref->inum = inum;
2177 backref->file_pos = offset;
2178 backref->num_bytes = num_bytes;
2179 backref->extent_offset = extent_offset;
2180 backref->generation = btrfs_file_extent_generation(leaf, extent);
2181 backref->old = old;
2182 backref_insert(&new->root, backref);
2183 old->count++;
2184out:
2185 btrfs_release_path(path);
2186 WARN_ON(ret);
2187 return ret;
2188}
2189
2190static noinline bool record_extent_backrefs(struct btrfs_path *path,
2191 struct new_sa_defrag_extent *new)
2192{
2193 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2194 struct old_sa_defrag_extent *old, *tmp;
2195 int ret;
2196
2197 new->path = path;
2198
2199 list_for_each_entry_safe(old, tmp, &new->head, list) {
2200 ret = iterate_inodes_from_logical(old->bytenr +
2201 old->extent_offset, fs_info,
2202 path, record_one_backref,
2203 old);
2204 if (ret < 0 && ret != -ENOENT)
2205 return false;
2206
2207 /* no backref to be processed for this extent */
2208 if (!old->count) {
2209 list_del(&old->list);
2210 kfree(old);
2211 }
2212 }
2213
2214 if (list_empty(&new->head))
2215 return false;
2216
2217 return true;
2218}
2219
2220static int relink_is_mergable(struct extent_buffer *leaf,
2221 struct btrfs_file_extent_item *fi,
2222 struct new_sa_defrag_extent *new)
2223{
2224 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2225 return 0;
2226
2227 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2228 return 0;
2229
2230 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2231 return 0;
2232
2233 if (btrfs_file_extent_encryption(leaf, fi) ||
2234 btrfs_file_extent_other_encoding(leaf, fi))
2235 return 0;
2236
2237 return 1;
2238}
2239
2240/*
2241 * Note the backref might has changed, and in this case we just return 0.
2242 */
2243static noinline int relink_extent_backref(struct btrfs_path *path,
2244 struct sa_defrag_extent_backref *prev,
2245 struct sa_defrag_extent_backref *backref)
2246{
2247 struct btrfs_file_extent_item *extent;
2248 struct btrfs_file_extent_item *item;
2249 struct btrfs_ordered_extent *ordered;
2250 struct btrfs_trans_handle *trans;
2251 struct btrfs_fs_info *fs_info;
2252 struct btrfs_root *root;
2253 struct btrfs_key key;
2254 struct extent_buffer *leaf;
2255 struct old_sa_defrag_extent *old = backref->old;
2256 struct new_sa_defrag_extent *new = old->new;
2257 struct inode *src_inode = new->inode;
2258 struct inode *inode;
2259 struct extent_state *cached = NULL;
2260 int ret = 0;
2261 u64 start;
2262 u64 len;
2263 u64 lock_start;
2264 u64 lock_end;
2265 bool merge = false;
2266 int index;
2267
2268 if (prev && prev->root_id == backref->root_id &&
2269 prev->inum == backref->inum &&
2270 prev->file_pos + prev->num_bytes == backref->file_pos)
2271 merge = true;
2272
2273 /* step 1: get root */
2274 key.objectid = backref->root_id;
2275 key.type = BTRFS_ROOT_ITEM_KEY;
2276 key.offset = (u64)-1;
2277
2278 fs_info = BTRFS_I(src_inode)->root->fs_info;
2279 index = srcu_read_lock(&fs_info->subvol_srcu);
2280
2281 root = btrfs_read_fs_root_no_name(fs_info, &key);
2282 if (IS_ERR(root)) {
2283 srcu_read_unlock(&fs_info->subvol_srcu, index);
2284 if (PTR_ERR(root) == -ENOENT)
2285 return 0;
2286 return PTR_ERR(root);
2287 }
2288
2289 if (btrfs_root_readonly(root)) {
2290 srcu_read_unlock(&fs_info->subvol_srcu, index);
2291 return 0;
2292 }
2293
2294 /* step 2: get inode */
2295 key.objectid = backref->inum;
2296 key.type = BTRFS_INODE_ITEM_KEY;
2297 key.offset = 0;
2298
2299 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2300 if (IS_ERR(inode)) {
2301 srcu_read_unlock(&fs_info->subvol_srcu, index);
2302 return 0;
2303 }
2304
2305 srcu_read_unlock(&fs_info->subvol_srcu, index);
2306
2307 /* step 3: relink backref */
2308 lock_start = backref->file_pos;
2309 lock_end = backref->file_pos + backref->num_bytes - 1;
2310 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2311 0, &cached);
2312
2313 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2314 if (ordered) {
2315 btrfs_put_ordered_extent(ordered);
2316 goto out_unlock;
2317 }
2318
2319 trans = btrfs_join_transaction(root);
2320 if (IS_ERR(trans)) {
2321 ret = PTR_ERR(trans);
2322 goto out_unlock;
2323 }
2324
2325 key.objectid = backref->inum;
2326 key.type = BTRFS_EXTENT_DATA_KEY;
2327 key.offset = backref->file_pos;
2328
2329 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2330 if (ret < 0) {
2331 goto out_free_path;
2332 } else if (ret > 0) {
2333 ret = 0;
2334 goto out_free_path;
2335 }
2336
2337 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2338 struct btrfs_file_extent_item);
2339
2340 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2341 backref->generation)
2342 goto out_free_path;
2343
2344 btrfs_release_path(path);
2345
2346 start = backref->file_pos;
2347 if (backref->extent_offset < old->extent_offset + old->offset)
2348 start += old->extent_offset + old->offset -
2349 backref->extent_offset;
2350
2351 len = min(backref->extent_offset + backref->num_bytes,
2352 old->extent_offset + old->offset + old->len);
2353 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2354
2355 ret = btrfs_drop_extents(trans, root, inode, start,
2356 start + len, 1);
2357 if (ret)
2358 goto out_free_path;
2359again:
2360 key.objectid = btrfs_ino(inode);
2361 key.type = BTRFS_EXTENT_DATA_KEY;
2362 key.offset = start;
2363
2364 path->leave_spinning = 1;
2365 if (merge) {
2366 struct btrfs_file_extent_item *fi;
2367 u64 extent_len;
2368 struct btrfs_key found_key;
2369
2370 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2371 if (ret < 0)
2372 goto out_free_path;
2373
2374 path->slots[0]--;
2375 leaf = path->nodes[0];
2376 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2377
2378 fi = btrfs_item_ptr(leaf, path->slots[0],
2379 struct btrfs_file_extent_item);
2380 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2381
2382 if (extent_len + found_key.offset == start &&
2383 relink_is_mergable(leaf, fi, new)) {
2384 btrfs_set_file_extent_num_bytes(leaf, fi,
2385 extent_len + len);
2386 btrfs_mark_buffer_dirty(leaf);
2387 inode_add_bytes(inode, len);
2388
2389 ret = 1;
2390 goto out_free_path;
2391 } else {
2392 merge = false;
2393 btrfs_release_path(path);
2394 goto again;
2395 }
2396 }
2397
2398 ret = btrfs_insert_empty_item(trans, root, path, &key,
2399 sizeof(*extent));
2400 if (ret) {
2401 btrfs_abort_transaction(trans, root, ret);
2402 goto out_free_path;
2403 }
2404
2405 leaf = path->nodes[0];
2406 item = btrfs_item_ptr(leaf, path->slots[0],
2407 struct btrfs_file_extent_item);
2408 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2409 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2410 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2411 btrfs_set_file_extent_num_bytes(leaf, item, len);
2412 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2413 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2414 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2415 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2416 btrfs_set_file_extent_encryption(leaf, item, 0);
2417 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2418
2419 btrfs_mark_buffer_dirty(leaf);
2420 inode_add_bytes(inode, len);
2421 btrfs_release_path(path);
2422
2423 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2424 new->disk_len, 0,
2425 backref->root_id, backref->inum,
2426 new->file_pos, 0); /* start - extent_offset */
2427 if (ret) {
2428 btrfs_abort_transaction(trans, root, ret);
2429 goto out_free_path;
2430 }
2431
2432 ret = 1;
2433out_free_path:
2434 btrfs_release_path(path);
2435 path->leave_spinning = 0;
2436 btrfs_end_transaction(trans, root);
2437out_unlock:
2438 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2439 &cached, GFP_NOFS);
2440 iput(inode);
2441 return ret;
2442}
2443
2444static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2445{
2446 struct old_sa_defrag_extent *old, *tmp;
2447
2448 if (!new)
2449 return;
2450
2451 list_for_each_entry_safe(old, tmp, &new->head, list) {
2452 list_del(&old->list);
2453 kfree(old);
2454 }
2455 kfree(new);
2456}
2457
2458static void relink_file_extents(struct new_sa_defrag_extent *new)
2459{
2460 struct btrfs_path *path;
2461 struct sa_defrag_extent_backref *backref;
2462 struct sa_defrag_extent_backref *prev = NULL;
2463 struct inode *inode;
2464 struct btrfs_root *root;
2465 struct rb_node *node;
2466 int ret;
2467
2468 inode = new->inode;
2469 root = BTRFS_I(inode)->root;
2470
2471 path = btrfs_alloc_path();
2472 if (!path)
2473 return;
2474
2475 if (!record_extent_backrefs(path, new)) {
2476 btrfs_free_path(path);
2477 goto out;
2478 }
2479 btrfs_release_path(path);
2480
2481 while (1) {
2482 node = rb_first(&new->root);
2483 if (!node)
2484 break;
2485 rb_erase(node, &new->root);
2486
2487 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2488
2489 ret = relink_extent_backref(path, prev, backref);
2490 WARN_ON(ret < 0);
2491
2492 kfree(prev);
2493
2494 if (ret == 1)
2495 prev = backref;
2496 else
2497 prev = NULL;
2498 cond_resched();
2499 }
2500 kfree(prev);
2501
2502 btrfs_free_path(path);
2503out:
2504 free_sa_defrag_extent(new);
2505
2506 atomic_dec(&root->fs_info->defrag_running);
2507 wake_up(&root->fs_info->transaction_wait);
2508}
2509
2510static struct new_sa_defrag_extent *
2511record_old_file_extents(struct inode *inode,
2512 struct btrfs_ordered_extent *ordered)
2513{
2514 struct btrfs_root *root = BTRFS_I(inode)->root;
2515 struct btrfs_path *path;
2516 struct btrfs_key key;
2517 struct old_sa_defrag_extent *old;
2518 struct new_sa_defrag_extent *new;
2519 int ret;
2520
2521 new = kmalloc(sizeof(*new), GFP_NOFS);
2522 if (!new)
2523 return NULL;
2524
2525 new->inode = inode;
2526 new->file_pos = ordered->file_offset;
2527 new->len = ordered->len;
2528 new->bytenr = ordered->start;
2529 new->disk_len = ordered->disk_len;
2530 new->compress_type = ordered->compress_type;
2531 new->root = RB_ROOT;
2532 INIT_LIST_HEAD(&new->head);
2533
2534 path = btrfs_alloc_path();
2535 if (!path)
2536 goto out_kfree;
2537
2538 key.objectid = btrfs_ino(inode);
2539 key.type = BTRFS_EXTENT_DATA_KEY;
2540 key.offset = new->file_pos;
2541
2542 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2543 if (ret < 0)
2544 goto out_free_path;
2545 if (ret > 0 && path->slots[0] > 0)
2546 path->slots[0]--;
2547
2548 /* find out all the old extents for the file range */
2549 while (1) {
2550 struct btrfs_file_extent_item *extent;
2551 struct extent_buffer *l;
2552 int slot;
2553 u64 num_bytes;
2554 u64 offset;
2555 u64 end;
2556 u64 disk_bytenr;
2557 u64 extent_offset;
2558
2559 l = path->nodes[0];
2560 slot = path->slots[0];
2561
2562 if (slot >= btrfs_header_nritems(l)) {
2563 ret = btrfs_next_leaf(root, path);
2564 if (ret < 0)
2565 goto out_free_path;
2566 else if (ret > 0)
2567 break;
2568 continue;
2569 }
2570
2571 btrfs_item_key_to_cpu(l, &key, slot);
2572
2573 if (key.objectid != btrfs_ino(inode))
2574 break;
2575 if (key.type != BTRFS_EXTENT_DATA_KEY)
2576 break;
2577 if (key.offset >= new->file_pos + new->len)
2578 break;
2579
2580 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2581
2582 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2583 if (key.offset + num_bytes < new->file_pos)
2584 goto next;
2585
2586 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2587 if (!disk_bytenr)
2588 goto next;
2589
2590 extent_offset = btrfs_file_extent_offset(l, extent);
2591
2592 old = kmalloc(sizeof(*old), GFP_NOFS);
2593 if (!old)
2594 goto out_free_path;
2595
2596 offset = max(new->file_pos, key.offset);
2597 end = min(new->file_pos + new->len, key.offset + num_bytes);
2598
2599 old->bytenr = disk_bytenr;
2600 old->extent_offset = extent_offset;
2601 old->offset = offset - key.offset;
2602 old->len = end - offset;
2603 old->new = new;
2604 old->count = 0;
2605 list_add_tail(&old->list, &new->head);
2606next:
2607 path->slots[0]++;
2608 cond_resched();
2609 }
2610
2611 btrfs_free_path(path);
2612 atomic_inc(&root->fs_info->defrag_running);
2613
2614 return new;
2615
2616out_free_path:
2617 btrfs_free_path(path);
2618out_kfree:
2619 free_sa_defrag_extent(new);
2620 return NULL;
2621}
2622
2623static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2624 u64 start, u64 len)
2625{
2626 struct btrfs_block_group_cache *cache;
2627
2628 cache = btrfs_lookup_block_group(root->fs_info, start);
2629 ASSERT(cache);
2630
2631 spin_lock(&cache->lock);
2632 cache->delalloc_bytes -= len;
2633 spin_unlock(&cache->lock);
2634
2635 btrfs_put_block_group(cache);
2636}
2637
2638/* as ordered data IO finishes, this gets called so we can finish
2639 * an ordered extent if the range of bytes in the file it covers are
2640 * fully written.
2641 */
2642static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2643{
2644 struct inode *inode = ordered_extent->inode;
2645 struct btrfs_root *root = BTRFS_I(inode)->root;
2646 struct btrfs_trans_handle *trans = NULL;
2647 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2648 struct extent_state *cached_state = NULL;
2649 struct new_sa_defrag_extent *new = NULL;
2650 int compress_type = 0;
2651 int ret = 0;
2652 u64 logical_len = ordered_extent->len;
2653 bool nolock;
2654 bool truncated = false;
2655
2656 nolock = btrfs_is_free_space_inode(inode);
2657
2658 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2659 ret = -EIO;
2660 goto out;
2661 }
2662
2663 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2664 truncated = true;
2665 logical_len = ordered_extent->truncated_len;
2666 /* Truncated the entire extent, don't bother adding */
2667 if (!logical_len)
2668 goto out;
2669 }
2670
2671 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2672 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2673 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2674 if (nolock)
2675 trans = btrfs_join_transaction_nolock(root);
2676 else
2677 trans = btrfs_join_transaction(root);
2678 if (IS_ERR(trans)) {
2679 ret = PTR_ERR(trans);
2680 trans = NULL;
2681 goto out;
2682 }
2683 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2684 ret = btrfs_update_inode_fallback(trans, root, inode);
2685 if (ret) /* -ENOMEM or corruption */
2686 btrfs_abort_transaction(trans, root, ret);
2687 goto out;
2688 }
2689
2690 lock_extent_bits(io_tree, ordered_extent->file_offset,
2691 ordered_extent->file_offset + ordered_extent->len - 1,
2692 0, &cached_state);
2693
2694 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2695 ordered_extent->file_offset + ordered_extent->len - 1,
2696 EXTENT_DEFRAG, 1, cached_state);
2697 if (ret) {
2698 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2699 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2700 /* the inode is shared */
2701 new = record_old_file_extents(inode, ordered_extent);
2702
2703 clear_extent_bit(io_tree, ordered_extent->file_offset,
2704 ordered_extent->file_offset + ordered_extent->len - 1,
2705 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2706 }
2707
2708 if (nolock)
2709 trans = btrfs_join_transaction_nolock(root);
2710 else
2711 trans = btrfs_join_transaction(root);
2712 if (IS_ERR(trans)) {
2713 ret = PTR_ERR(trans);
2714 trans = NULL;
2715 goto out_unlock;
2716 }
2717
2718 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2719
2720 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2721 compress_type = ordered_extent->compress_type;
2722 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2723 BUG_ON(compress_type);
2724 ret = btrfs_mark_extent_written(trans, inode,
2725 ordered_extent->file_offset,
2726 ordered_extent->file_offset +
2727 logical_len);
2728 } else {
2729 BUG_ON(root == root->fs_info->tree_root);
2730 ret = insert_reserved_file_extent(trans, inode,
2731 ordered_extent->file_offset,
2732 ordered_extent->start,
2733 ordered_extent->disk_len,
2734 logical_len, logical_len,
2735 compress_type, 0, 0,
2736 BTRFS_FILE_EXTENT_REG);
2737 if (!ret)
2738 btrfs_release_delalloc_bytes(root,
2739 ordered_extent->start,
2740 ordered_extent->disk_len);
2741 }
2742 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2743 ordered_extent->file_offset, ordered_extent->len,
2744 trans->transid);
2745 if (ret < 0) {
2746 btrfs_abort_transaction(trans, root, ret);
2747 goto out_unlock;
2748 }
2749
2750 add_pending_csums(trans, inode, ordered_extent->file_offset,
2751 &ordered_extent->list);
2752
2753 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2754 ret = btrfs_update_inode_fallback(trans, root, inode);
2755 if (ret) { /* -ENOMEM or corruption */
2756 btrfs_abort_transaction(trans, root, ret);
2757 goto out_unlock;
2758 }
2759 ret = 0;
2760out_unlock:
2761 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2762 ordered_extent->file_offset +
2763 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2764out:
2765 if (root != root->fs_info->tree_root)
2766 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2767 if (trans)
2768 btrfs_end_transaction(trans, root);
2769
2770 if (ret || truncated) {
2771 u64 start, end;
2772
2773 if (truncated)
2774 start = ordered_extent->file_offset + logical_len;
2775 else
2776 start = ordered_extent->file_offset;
2777 end = ordered_extent->file_offset + ordered_extent->len - 1;
2778 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2779
2780 /* Drop the cache for the part of the extent we didn't write. */
2781 btrfs_drop_extent_cache(inode, start, end, 0);
2782
2783 /*
2784 * If the ordered extent had an IOERR or something else went
2785 * wrong we need to return the space for this ordered extent
2786 * back to the allocator. We only free the extent in the
2787 * truncated case if we didn't write out the extent at all.
2788 */
2789 if ((ret || !logical_len) &&
2790 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2791 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2792 btrfs_free_reserved_extent(root, ordered_extent->start,
2793 ordered_extent->disk_len, 1);
2794 }
2795
2796
2797 /*
2798 * This needs to be done to make sure anybody waiting knows we are done
2799 * updating everything for this ordered extent.
2800 */
2801 btrfs_remove_ordered_extent(inode, ordered_extent);
2802
2803 /* for snapshot-aware defrag */
2804 if (new) {
2805 if (ret) {
2806 free_sa_defrag_extent(new);
2807 atomic_dec(&root->fs_info->defrag_running);
2808 } else {
2809 relink_file_extents(new);
2810 }
2811 }
2812
2813 /* once for us */
2814 btrfs_put_ordered_extent(ordered_extent);
2815 /* once for the tree */
2816 btrfs_put_ordered_extent(ordered_extent);
2817
2818 return ret;
2819}
2820
2821static void finish_ordered_fn(struct btrfs_work *work)
2822{
2823 struct btrfs_ordered_extent *ordered_extent;
2824 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2825 btrfs_finish_ordered_io(ordered_extent);
2826}
2827
2828static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2829 struct extent_state *state, int uptodate)
2830{
2831 struct inode *inode = page->mapping->host;
2832 struct btrfs_root *root = BTRFS_I(inode)->root;
2833 struct btrfs_ordered_extent *ordered_extent = NULL;
2834 struct btrfs_workqueue *wq;
2835 btrfs_work_func_t func;
2836
2837 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2838
2839 ClearPagePrivate2(page);
2840 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2841 end - start + 1, uptodate))
2842 return 0;
2843
2844 if (btrfs_is_free_space_inode(inode)) {
2845 wq = root->fs_info->endio_freespace_worker;
2846 func = btrfs_freespace_write_helper;
2847 } else {
2848 wq = root->fs_info->endio_write_workers;
2849 func = btrfs_endio_write_helper;
2850 }
2851
2852 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
2853 NULL);
2854 btrfs_queue_work(wq, &ordered_extent->work);
2855
2856 return 0;
2857}
2858
2859/*
2860 * when reads are done, we need to check csums to verify the data is correct
2861 * if there's a match, we allow the bio to finish. If not, the code in
2862 * extent_io.c will try to find good copies for us.
2863 */
2864static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2865 u64 phy_offset, struct page *page,
2866 u64 start, u64 end, int mirror)
2867{
2868 size_t offset = start - page_offset(page);
2869 struct inode *inode = page->mapping->host;
2870 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2871 char *kaddr;
2872 struct btrfs_root *root = BTRFS_I(inode)->root;
2873 u32 csum_expected;
2874 u32 csum = ~(u32)0;
2875 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2876 DEFAULT_RATELIMIT_BURST);
2877
2878 if (PageChecked(page)) {
2879 ClearPageChecked(page);
2880 goto good;
2881 }
2882
2883 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2884 goto good;
2885
2886 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2887 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2888 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2889 GFP_NOFS);
2890 return 0;
2891 }
2892
2893 phy_offset >>= inode->i_sb->s_blocksize_bits;
2894 csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
2895
2896 kaddr = kmap_atomic(page);
2897 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
2898 btrfs_csum_final(csum, (char *)&csum);
2899 if (csum != csum_expected)
2900 goto zeroit;
2901
2902 kunmap_atomic(kaddr);
2903good:
2904 return 0;
2905
2906zeroit:
2907 if (__ratelimit(&_rs))
2908 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
2909 btrfs_ino(page->mapping->host), start, csum, csum_expected);
2910 memset(kaddr + offset, 1, end - start + 1);
2911 flush_dcache_page(page);
2912 kunmap_atomic(kaddr);
2913 if (csum_expected == 0)
2914 return 0;
2915 return -EIO;
2916}
2917
2918struct delayed_iput {
2919 struct list_head list;
2920 struct inode *inode;
2921};
2922
2923/* JDM: If this is fs-wide, why can't we add a pointer to
2924 * btrfs_inode instead and avoid the allocation? */
2925void btrfs_add_delayed_iput(struct inode *inode)
2926{
2927 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2928 struct delayed_iput *delayed;
2929
2930 if (atomic_add_unless(&inode->i_count, -1, 1))
2931 return;
2932
2933 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2934 delayed->inode = inode;
2935
2936 spin_lock(&fs_info->delayed_iput_lock);
2937 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2938 spin_unlock(&fs_info->delayed_iput_lock);
2939}
2940
2941void btrfs_run_delayed_iputs(struct btrfs_root *root)
2942{
2943 LIST_HEAD(list);
2944 struct btrfs_fs_info *fs_info = root->fs_info;
2945 struct delayed_iput *delayed;
2946 int empty;
2947
2948 spin_lock(&fs_info->delayed_iput_lock);
2949 empty = list_empty(&fs_info->delayed_iputs);
2950 spin_unlock(&fs_info->delayed_iput_lock);
2951 if (empty)
2952 return;
2953
2954 spin_lock(&fs_info->delayed_iput_lock);
2955 list_splice_init(&fs_info->delayed_iputs, &list);
2956 spin_unlock(&fs_info->delayed_iput_lock);
2957
2958 while (!list_empty(&list)) {
2959 delayed = list_entry(list.next, struct delayed_iput, list);
2960 list_del(&delayed->list);
2961 iput(delayed->inode);
2962 kfree(delayed);
2963 }
2964}
2965
2966/*
2967 * This is called in transaction commit time. If there are no orphan
2968 * files in the subvolume, it removes orphan item and frees block_rsv
2969 * structure.
2970 */
2971void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2972 struct btrfs_root *root)
2973{
2974 struct btrfs_block_rsv *block_rsv;
2975 int ret;
2976
2977 if (atomic_read(&root->orphan_inodes) ||
2978 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2979 return;
2980
2981 spin_lock(&root->orphan_lock);
2982 if (atomic_read(&root->orphan_inodes)) {
2983 spin_unlock(&root->orphan_lock);
2984 return;
2985 }
2986
2987 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2988 spin_unlock(&root->orphan_lock);
2989 return;
2990 }
2991
2992 block_rsv = root->orphan_block_rsv;
2993 root->orphan_block_rsv = NULL;
2994 spin_unlock(&root->orphan_lock);
2995
2996 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
2997 btrfs_root_refs(&root->root_item) > 0) {
2998 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2999 root->root_key.objectid);
3000 if (ret)
3001 btrfs_abort_transaction(trans, root, ret);
3002 else
3003 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3004 &root->state);
3005 }
3006
3007 if (block_rsv) {
3008 WARN_ON(block_rsv->size > 0);
3009 btrfs_free_block_rsv(root, block_rsv);
3010 }
3011}
3012
3013/*
3014 * This creates an orphan entry for the given inode in case something goes
3015 * wrong in the middle of an unlink/truncate.
3016 *
3017 * NOTE: caller of this function should reserve 5 units of metadata for
3018 * this function.
3019 */
3020int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3021{
3022 struct btrfs_root *root = BTRFS_I(inode)->root;
3023 struct btrfs_block_rsv *block_rsv = NULL;
3024 int reserve = 0;
3025 int insert = 0;
3026 int ret;
3027
3028 if (!root->orphan_block_rsv) {
3029 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3030 if (!block_rsv)
3031 return -ENOMEM;
3032 }
3033
3034 spin_lock(&root->orphan_lock);
3035 if (!root->orphan_block_rsv) {
3036 root->orphan_block_rsv = block_rsv;
3037 } else if (block_rsv) {
3038 btrfs_free_block_rsv(root, block_rsv);
3039 block_rsv = NULL;
3040 }
3041
3042 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3043 &BTRFS_I(inode)->runtime_flags)) {
3044#if 0
3045 /*
3046 * For proper ENOSPC handling, we should do orphan
3047 * cleanup when mounting. But this introduces backward
3048 * compatibility issue.
3049 */
3050 if (!xchg(&root->orphan_item_inserted, 1))
3051 insert = 2;
3052 else
3053 insert = 1;
3054#endif
3055 insert = 1;
3056 atomic_inc(&root->orphan_inodes);
3057 }
3058
3059 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3060 &BTRFS_I(inode)->runtime_flags))
3061 reserve = 1;
3062 spin_unlock(&root->orphan_lock);
3063
3064 /* grab metadata reservation from transaction handle */
3065 if (reserve) {
3066 ret = btrfs_orphan_reserve_metadata(trans, inode);
3067 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3068 }
3069
3070 /* insert an orphan item to track this unlinked/truncated file */
3071 if (insert >= 1) {
3072 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3073 if (ret) {
3074 atomic_dec(&root->orphan_inodes);
3075 if (reserve) {
3076 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3077 &BTRFS_I(inode)->runtime_flags);
3078 btrfs_orphan_release_metadata(inode);
3079 }
3080 if (ret != -EEXIST) {
3081 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3082 &BTRFS_I(inode)->runtime_flags);
3083 btrfs_abort_transaction(trans, root, ret);
3084 return ret;
3085 }
3086 }
3087 ret = 0;
3088 }
3089
3090 /* insert an orphan item to track subvolume contains orphan files */
3091 if (insert >= 2) {
3092 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3093 root->root_key.objectid);
3094 if (ret && ret != -EEXIST) {
3095 btrfs_abort_transaction(trans, root, ret);
3096 return ret;
3097 }
3098 }
3099 return 0;
3100}
3101
3102/*
3103 * We have done the truncate/delete so we can go ahead and remove the orphan
3104 * item for this particular inode.
3105 */
3106static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3107 struct inode *inode)
3108{
3109 struct btrfs_root *root = BTRFS_I(inode)->root;
3110 int delete_item = 0;
3111 int release_rsv = 0;
3112 int ret = 0;
3113
3114 spin_lock(&root->orphan_lock);
3115 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3116 &BTRFS_I(inode)->runtime_flags))
3117 delete_item = 1;
3118
3119 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3120 &BTRFS_I(inode)->runtime_flags))
3121 release_rsv = 1;
3122 spin_unlock(&root->orphan_lock);
3123
3124 if (delete_item) {
3125 atomic_dec(&root->orphan_inodes);
3126 if (trans)
3127 ret = btrfs_del_orphan_item(trans, root,
3128 btrfs_ino(inode));
3129 }
3130
3131 if (release_rsv)
3132 btrfs_orphan_release_metadata(inode);
3133
3134 return ret;
3135}
3136
3137/*
3138 * this cleans up any orphans that may be left on the list from the last use
3139 * of this root.
3140 */
3141int btrfs_orphan_cleanup(struct btrfs_root *root)
3142{
3143 struct btrfs_path *path;
3144 struct extent_buffer *leaf;
3145 struct btrfs_key key, found_key;
3146 struct btrfs_trans_handle *trans;
3147 struct inode *inode;
3148 u64 last_objectid = 0;
3149 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3150
3151 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3152 return 0;
3153
3154 path = btrfs_alloc_path();
3155 if (!path) {
3156 ret = -ENOMEM;
3157 goto out;
3158 }
3159 path->reada = -1;
3160
3161 key.objectid = BTRFS_ORPHAN_OBJECTID;
3162 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3163 key.offset = (u64)-1;
3164
3165 while (1) {
3166 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3167 if (ret < 0)
3168 goto out;
3169
3170 /*
3171 * if ret == 0 means we found what we were searching for, which
3172 * is weird, but possible, so only screw with path if we didn't
3173 * find the key and see if we have stuff that matches
3174 */
3175 if (ret > 0) {
3176 ret = 0;
3177 if (path->slots[0] == 0)
3178 break;
3179 path->slots[0]--;
3180 }
3181
3182 /* pull out the item */
3183 leaf = path->nodes[0];
3184 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3185
3186 /* make sure the item matches what we want */
3187 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3188 break;
3189 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3190 break;
3191
3192 /* release the path since we're done with it */
3193 btrfs_release_path(path);
3194
3195 /*
3196 * this is where we are basically btrfs_lookup, without the
3197 * crossing root thing. we store the inode number in the
3198 * offset of the orphan item.
3199 */
3200
3201 if (found_key.offset == last_objectid) {
3202 btrfs_err(root->fs_info,
3203 "Error removing orphan entry, stopping orphan cleanup");
3204 ret = -EINVAL;
3205 goto out;
3206 }
3207
3208 last_objectid = found_key.offset;
3209
3210 found_key.objectid = found_key.offset;
3211 found_key.type = BTRFS_INODE_ITEM_KEY;
3212 found_key.offset = 0;
3213 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3214 ret = PTR_ERR_OR_ZERO(inode);
3215 if (ret && ret != -ESTALE)
3216 goto out;
3217
3218 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3219 struct btrfs_root *dead_root;
3220 struct btrfs_fs_info *fs_info = root->fs_info;
3221 int is_dead_root = 0;
3222
3223 /*
3224 * this is an orphan in the tree root. Currently these
3225 * could come from 2 sources:
3226 * a) a snapshot deletion in progress
3227 * b) a free space cache inode
3228 * We need to distinguish those two, as the snapshot
3229 * orphan must not get deleted.
3230 * find_dead_roots already ran before us, so if this
3231 * is a snapshot deletion, we should find the root
3232 * in the dead_roots list
3233 */
3234 spin_lock(&fs_info->trans_lock);
3235 list_for_each_entry(dead_root, &fs_info->dead_roots,
3236 root_list) {
3237 if (dead_root->root_key.objectid ==
3238 found_key.objectid) {
3239 is_dead_root = 1;
3240 break;
3241 }
3242 }
3243 spin_unlock(&fs_info->trans_lock);
3244 if (is_dead_root) {
3245 /* prevent this orphan from being found again */
3246 key.offset = found_key.objectid - 1;
3247 continue;
3248 }
3249 }
3250 /*
3251 * Inode is already gone but the orphan item is still there,
3252 * kill the orphan item.
3253 */
3254 if (ret == -ESTALE) {
3255 trans = btrfs_start_transaction(root, 1);
3256 if (IS_ERR(trans)) {
3257 ret = PTR_ERR(trans);
3258 goto out;
3259 }
3260 btrfs_debug(root->fs_info, "auto deleting %Lu",
3261 found_key.objectid);
3262 ret = btrfs_del_orphan_item(trans, root,
3263 found_key.objectid);
3264 btrfs_end_transaction(trans, root);
3265 if (ret)
3266 goto out;
3267 continue;
3268 }
3269
3270 /*
3271 * add this inode to the orphan list so btrfs_orphan_del does
3272 * the proper thing when we hit it
3273 */
3274 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3275 &BTRFS_I(inode)->runtime_flags);
3276 atomic_inc(&root->orphan_inodes);
3277
3278 /* if we have links, this was a truncate, lets do that */
3279 if (inode->i_nlink) {
3280 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3281 iput(inode);
3282 continue;
3283 }
3284 nr_truncate++;
3285
3286 /* 1 for the orphan item deletion. */
3287 trans = btrfs_start_transaction(root, 1);
3288 if (IS_ERR(trans)) {
3289 iput(inode);
3290 ret = PTR_ERR(trans);
3291 goto out;
3292 }
3293 ret = btrfs_orphan_add(trans, inode);
3294 btrfs_end_transaction(trans, root);
3295 if (ret) {
3296 iput(inode);
3297 goto out;
3298 }
3299
3300 ret = btrfs_truncate(inode);
3301 if (ret)
3302 btrfs_orphan_del(NULL, inode);
3303 } else {
3304 nr_unlink++;
3305 }
3306
3307 /* this will do delete_inode and everything for us */
3308 iput(inode);
3309 if (ret)
3310 goto out;
3311 }
3312 /* release the path since we're done with it */
3313 btrfs_release_path(path);
3314
3315 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3316
3317 if (root->orphan_block_rsv)
3318 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3319 (u64)-1);
3320
3321 if (root->orphan_block_rsv ||
3322 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3323 trans = btrfs_join_transaction(root);
3324 if (!IS_ERR(trans))
3325 btrfs_end_transaction(trans, root);
3326 }
3327
3328 if (nr_unlink)
3329 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3330 if (nr_truncate)
3331 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3332
3333out:
3334 if (ret)
3335 btrfs_crit(root->fs_info,
3336 "could not do orphan cleanup %d", ret);
3337 btrfs_free_path(path);
3338 return ret;
3339}
3340
3341/*
3342 * very simple check to peek ahead in the leaf looking for xattrs. If we
3343 * don't find any xattrs, we know there can't be any acls.
3344 *
3345 * slot is the slot the inode is in, objectid is the objectid of the inode
3346 */
3347static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3348 int slot, u64 objectid,
3349 int *first_xattr_slot)
3350{
3351 u32 nritems = btrfs_header_nritems(leaf);
3352 struct btrfs_key found_key;
3353 static u64 xattr_access = 0;
3354 static u64 xattr_default = 0;
3355 int scanned = 0;
3356
3357 if (!xattr_access) {
3358 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3359 strlen(POSIX_ACL_XATTR_ACCESS));
3360 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3361 strlen(POSIX_ACL_XATTR_DEFAULT));
3362 }
3363
3364 slot++;
3365 *first_xattr_slot = -1;
3366 while (slot < nritems) {
3367 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3368
3369 /* we found a different objectid, there must not be acls */
3370 if (found_key.objectid != objectid)
3371 return 0;
3372
3373 /* we found an xattr, assume we've got an acl */
3374 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3375 if (*first_xattr_slot == -1)
3376 *first_xattr_slot = slot;
3377 if (found_key.offset == xattr_access ||
3378 found_key.offset == xattr_default)
3379 return 1;
3380 }
3381
3382 /*
3383 * we found a key greater than an xattr key, there can't
3384 * be any acls later on
3385 */
3386 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3387 return 0;
3388
3389 slot++;
3390 scanned++;
3391
3392 /*
3393 * it goes inode, inode backrefs, xattrs, extents,
3394 * so if there are a ton of hard links to an inode there can
3395 * be a lot of backrefs. Don't waste time searching too hard,
3396 * this is just an optimization
3397 */
3398 if (scanned >= 8)
3399 break;
3400 }
3401 /* we hit the end of the leaf before we found an xattr or
3402 * something larger than an xattr. We have to assume the inode
3403 * has acls
3404 */
3405 if (*first_xattr_slot == -1)
3406 *first_xattr_slot = slot;
3407 return 1;
3408}
3409
3410/*
3411 * read an inode from the btree into the in-memory inode
3412 */
3413static void btrfs_read_locked_inode(struct inode *inode)
3414{
3415 struct btrfs_path *path;
3416 struct extent_buffer *leaf;
3417 struct btrfs_inode_item *inode_item;
3418 struct btrfs_timespec *tspec;
3419 struct btrfs_root *root = BTRFS_I(inode)->root;
3420 struct btrfs_key location;
3421 unsigned long ptr;
3422 int maybe_acls;
3423 u32 rdev;
3424 int ret;
3425 bool filled = false;
3426 int first_xattr_slot;
3427
3428 ret = btrfs_fill_inode(inode, &rdev);
3429 if (!ret)
3430 filled = true;
3431
3432 path = btrfs_alloc_path();
3433 if (!path)
3434 goto make_bad;
3435
3436 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3437
3438 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3439 if (ret)
3440 goto make_bad;
3441
3442 leaf = path->nodes[0];
3443
3444 if (filled)
3445 goto cache_index;
3446
3447 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3448 struct btrfs_inode_item);
3449 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3450 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3451 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3452 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3453 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3454
3455 tspec = btrfs_inode_atime(inode_item);
3456 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3457 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3458
3459 tspec = btrfs_inode_mtime(inode_item);
3460 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3461 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3462
3463 tspec = btrfs_inode_ctime(inode_item);
3464 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3465 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3466
3467 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3468 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3469 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3470
3471 /*
3472 * If we were modified in the current generation and evicted from memory
3473 * and then re-read we need to do a full sync since we don't have any
3474 * idea about which extents were modified before we were evicted from
3475 * cache.
3476 */
3477 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3478 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3479 &BTRFS_I(inode)->runtime_flags);
3480
3481 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3482 inode->i_generation = BTRFS_I(inode)->generation;
3483 inode->i_rdev = 0;
3484 rdev = btrfs_inode_rdev(leaf, inode_item);
3485
3486 BTRFS_I(inode)->index_cnt = (u64)-1;
3487 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3488
3489cache_index:
3490 path->slots[0]++;
3491 if (inode->i_nlink != 1 ||
3492 path->slots[0] >= btrfs_header_nritems(leaf))
3493 goto cache_acl;
3494
3495 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3496 if (location.objectid != btrfs_ino(inode))
3497 goto cache_acl;
3498
3499 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3500 if (location.type == BTRFS_INODE_REF_KEY) {
3501 struct btrfs_inode_ref *ref;
3502
3503 ref = (struct btrfs_inode_ref *)ptr;
3504 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3505 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3506 struct btrfs_inode_extref *extref;
3507
3508 extref = (struct btrfs_inode_extref *)ptr;
3509 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3510 extref);
3511 }
3512cache_acl:
3513 /*
3514 * try to precache a NULL acl entry for files that don't have
3515 * any xattrs or acls
3516 */
3517 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3518 btrfs_ino(inode), &first_xattr_slot);
3519 if (first_xattr_slot != -1) {
3520 path->slots[0] = first_xattr_slot;
3521 ret = btrfs_load_inode_props(inode, path);
3522 if (ret)
3523 btrfs_err(root->fs_info,
3524 "error loading props for ino %llu (root %llu): %d",
3525 btrfs_ino(inode),
3526 root->root_key.objectid, ret);
3527 }
3528 btrfs_free_path(path);
3529
3530 if (!maybe_acls)
3531 cache_no_acl(inode);
3532
3533 switch (inode->i_mode & S_IFMT) {
3534 case S_IFREG:
3535 inode->i_mapping->a_ops = &btrfs_aops;
3536 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3537 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3538 inode->i_fop = &btrfs_file_operations;
3539 inode->i_op = &btrfs_file_inode_operations;
3540 break;
3541 case S_IFDIR:
3542 inode->i_fop = &btrfs_dir_file_operations;
3543 if (root == root->fs_info->tree_root)
3544 inode->i_op = &btrfs_dir_ro_inode_operations;
3545 else
3546 inode->i_op = &btrfs_dir_inode_operations;
3547 break;
3548 case S_IFLNK:
3549 inode->i_op = &btrfs_symlink_inode_operations;
3550 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3551 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3552 break;
3553 default:
3554 inode->i_op = &btrfs_special_inode_operations;
3555 init_special_inode(inode, inode->i_mode, rdev);
3556 break;
3557 }
3558
3559 btrfs_update_iflags(inode);
3560 return;
3561
3562make_bad:
3563 btrfs_free_path(path);
3564 make_bad_inode(inode);
3565}
3566
3567/*
3568 * given a leaf and an inode, copy the inode fields into the leaf
3569 */
3570static void fill_inode_item(struct btrfs_trans_handle *trans,
3571 struct extent_buffer *leaf,
3572 struct btrfs_inode_item *item,
3573 struct inode *inode)
3574{
3575 struct btrfs_map_token token;
3576
3577 btrfs_init_map_token(&token);
3578
3579 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3580 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3581 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3582 &token);
3583 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3584 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3585
3586 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3587 inode->i_atime.tv_sec, &token);
3588 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3589 inode->i_atime.tv_nsec, &token);
3590
3591 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3592 inode->i_mtime.tv_sec, &token);
3593 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3594 inode->i_mtime.tv_nsec, &token);
3595
3596 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3597 inode->i_ctime.tv_sec, &token);
3598 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3599 inode->i_ctime.tv_nsec, &token);
3600
3601 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3602 &token);
3603 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3604 &token);
3605 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3606 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3607 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3608 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3609 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3610}
3611
3612/*
3613 * copy everything in the in-memory inode into the btree.
3614 */
3615static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3616 struct btrfs_root *root, struct inode *inode)
3617{
3618 struct btrfs_inode_item *inode_item;
3619 struct btrfs_path *path;
3620 struct extent_buffer *leaf;
3621 int ret;
3622
3623 path = btrfs_alloc_path();
3624 if (!path)
3625 return -ENOMEM;
3626
3627 path->leave_spinning = 1;
3628 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3629 1);
3630 if (ret) {
3631 if (ret > 0)
3632 ret = -ENOENT;
3633 goto failed;
3634 }
3635
3636 leaf = path->nodes[0];
3637 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3638 struct btrfs_inode_item);
3639
3640 fill_inode_item(trans, leaf, inode_item, inode);
3641 btrfs_mark_buffer_dirty(leaf);
3642 btrfs_set_inode_last_trans(trans, inode);
3643 ret = 0;
3644failed:
3645 btrfs_free_path(path);
3646 return ret;
3647}
3648
3649/*
3650 * copy everything in the in-memory inode into the btree.
3651 */
3652noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3653 struct btrfs_root *root, struct inode *inode)
3654{
3655 int ret;
3656
3657 /*
3658 * If the inode is a free space inode, we can deadlock during commit
3659 * if we put it into the delayed code.
3660 *
3661 * The data relocation inode should also be directly updated
3662 * without delay
3663 */
3664 if (!btrfs_is_free_space_inode(inode)
3665 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
3666 btrfs_update_root_times(trans, root);
3667
3668 ret = btrfs_delayed_update_inode(trans, root, inode);
3669 if (!ret)
3670 btrfs_set_inode_last_trans(trans, inode);
3671 return ret;
3672 }
3673
3674 return btrfs_update_inode_item(trans, root, inode);
3675}
3676
3677noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3678 struct btrfs_root *root,
3679 struct inode *inode)
3680{
3681 int ret;
3682
3683 ret = btrfs_update_inode(trans, root, inode);
3684 if (ret == -ENOSPC)
3685 return btrfs_update_inode_item(trans, root, inode);
3686 return ret;
3687}
3688
3689/*
3690 * unlink helper that gets used here in inode.c and in the tree logging
3691 * recovery code. It remove a link in a directory with a given name, and
3692 * also drops the back refs in the inode to the directory
3693 */
3694static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3695 struct btrfs_root *root,
3696 struct inode *dir, struct inode *inode,
3697 const char *name, int name_len)
3698{
3699 struct btrfs_path *path;
3700 int ret = 0;
3701 struct extent_buffer *leaf;
3702 struct btrfs_dir_item *di;
3703 struct btrfs_key key;
3704 u64 index;
3705 u64 ino = btrfs_ino(inode);
3706 u64 dir_ino = btrfs_ino(dir);
3707
3708 path = btrfs_alloc_path();
3709 if (!path) {
3710 ret = -ENOMEM;
3711 goto out;
3712 }
3713
3714 path->leave_spinning = 1;
3715 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3716 name, name_len, -1);
3717 if (IS_ERR(di)) {
3718 ret = PTR_ERR(di);
3719 goto err;
3720 }
3721 if (!di) {
3722 ret = -ENOENT;
3723 goto err;
3724 }
3725 leaf = path->nodes[0];
3726 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3727 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3728 if (ret)
3729 goto err;
3730 btrfs_release_path(path);
3731
3732 /*
3733 * If we don't have dir index, we have to get it by looking up
3734 * the inode ref, since we get the inode ref, remove it directly,
3735 * it is unnecessary to do delayed deletion.
3736 *
3737 * But if we have dir index, needn't search inode ref to get it.
3738 * Since the inode ref is close to the inode item, it is better
3739 * that we delay to delete it, and just do this deletion when
3740 * we update the inode item.
3741 */
3742 if (BTRFS_I(inode)->dir_index) {
3743 ret = btrfs_delayed_delete_inode_ref(inode);
3744 if (!ret) {
3745 index = BTRFS_I(inode)->dir_index;
3746 goto skip_backref;
3747 }
3748 }
3749
3750 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3751 dir_ino, &index);
3752 if (ret) {
3753 btrfs_info(root->fs_info,
3754 "failed to delete reference to %.*s, inode %llu parent %llu",
3755 name_len, name, ino, dir_ino);
3756 btrfs_abort_transaction(trans, root, ret);
3757 goto err;
3758 }
3759skip_backref:
3760 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3761 if (ret) {
3762 btrfs_abort_transaction(trans, root, ret);
3763 goto err;
3764 }
3765
3766 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3767 inode, dir_ino);
3768 if (ret != 0 && ret != -ENOENT) {
3769 btrfs_abort_transaction(trans, root, ret);
3770 goto err;
3771 }
3772
3773 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3774 dir, index);
3775 if (ret == -ENOENT)
3776 ret = 0;
3777 else if (ret)
3778 btrfs_abort_transaction(trans, root, ret);
3779err:
3780 btrfs_free_path(path);
3781 if (ret)
3782 goto out;
3783
3784 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3785 inode_inc_iversion(inode);
3786 inode_inc_iversion(dir);
3787 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3788 ret = btrfs_update_inode(trans, root, dir);
3789out:
3790 return ret;
3791}
3792
3793int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3794 struct btrfs_root *root,
3795 struct inode *dir, struct inode *inode,
3796 const char *name, int name_len)
3797{
3798 int ret;
3799 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3800 if (!ret) {
3801 drop_nlink(inode);
3802 ret = btrfs_update_inode(trans, root, inode);
3803 }
3804 return ret;
3805}
3806
3807/*
3808 * helper to start transaction for unlink and rmdir.
3809 *
3810 * unlink and rmdir are special in btrfs, they do not always free space, so
3811 * if we cannot make our reservations the normal way try and see if there is
3812 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3813 * allow the unlink to occur.
3814 */
3815static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3816{
3817 struct btrfs_trans_handle *trans;
3818 struct btrfs_root *root = BTRFS_I(dir)->root;
3819 int ret;
3820
3821 /*
3822 * 1 for the possible orphan item
3823 * 1 for the dir item
3824 * 1 for the dir index
3825 * 1 for the inode ref
3826 * 1 for the inode
3827 */
3828 trans = btrfs_start_transaction(root, 5);
3829 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3830 return trans;
3831
3832 if (PTR_ERR(trans) == -ENOSPC) {
3833 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3834
3835 trans = btrfs_start_transaction(root, 0);
3836 if (IS_ERR(trans))
3837 return trans;
3838 ret = btrfs_cond_migrate_bytes(root->fs_info,
3839 &root->fs_info->trans_block_rsv,
3840 num_bytes, 5);
3841 if (ret) {
3842 btrfs_end_transaction(trans, root);
3843 return ERR_PTR(ret);
3844 }
3845 trans->block_rsv = &root->fs_info->trans_block_rsv;
3846 trans->bytes_reserved = num_bytes;
3847 }
3848 return trans;
3849}
3850
3851static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3852{
3853 struct btrfs_root *root = BTRFS_I(dir)->root;
3854 struct btrfs_trans_handle *trans;
3855 struct inode *inode = dentry->d_inode;
3856 int ret;
3857
3858 trans = __unlink_start_trans(dir);
3859 if (IS_ERR(trans))
3860 return PTR_ERR(trans);
3861
3862 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3863
3864 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3865 dentry->d_name.name, dentry->d_name.len);
3866 if (ret)
3867 goto out;
3868
3869 if (inode->i_nlink == 0) {
3870 ret = btrfs_orphan_add(trans, inode);
3871 if (ret)
3872 goto out;
3873 }
3874
3875out:
3876 btrfs_end_transaction(trans, root);
3877 btrfs_btree_balance_dirty(root);
3878 return ret;
3879}
3880
3881int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3882 struct btrfs_root *root,
3883 struct inode *dir, u64 objectid,
3884 const char *name, int name_len)
3885{
3886 struct btrfs_path *path;
3887 struct extent_buffer *leaf;
3888 struct btrfs_dir_item *di;
3889 struct btrfs_key key;
3890 u64 index;
3891 int ret;
3892 u64 dir_ino = btrfs_ino(dir);
3893
3894 path = btrfs_alloc_path();
3895 if (!path)
3896 return -ENOMEM;
3897
3898 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3899 name, name_len, -1);
3900 if (IS_ERR_OR_NULL(di)) {
3901 if (!di)
3902 ret = -ENOENT;
3903 else
3904 ret = PTR_ERR(di);
3905 goto out;
3906 }
3907
3908 leaf = path->nodes[0];
3909 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3910 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3911 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3912 if (ret) {
3913 btrfs_abort_transaction(trans, root, ret);
3914 goto out;
3915 }
3916 btrfs_release_path(path);
3917
3918 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3919 objectid, root->root_key.objectid,
3920 dir_ino, &index, name, name_len);
3921 if (ret < 0) {
3922 if (ret != -ENOENT) {
3923 btrfs_abort_transaction(trans, root, ret);
3924 goto out;
3925 }
3926 di = btrfs_search_dir_index_item(root, path, dir_ino,
3927 name, name_len);
3928 if (IS_ERR_OR_NULL(di)) {
3929 if (!di)
3930 ret = -ENOENT;
3931 else
3932 ret = PTR_ERR(di);
3933 btrfs_abort_transaction(trans, root, ret);
3934 goto out;
3935 }
3936
3937 leaf = path->nodes[0];
3938 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3939 btrfs_release_path(path);
3940 index = key.offset;
3941 }
3942 btrfs_release_path(path);
3943
3944 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3945 if (ret) {
3946 btrfs_abort_transaction(trans, root, ret);
3947 goto out;
3948 }
3949
3950 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3951 inode_inc_iversion(dir);
3952 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3953 ret = btrfs_update_inode_fallback(trans, root, dir);
3954 if (ret)
3955 btrfs_abort_transaction(trans, root, ret);
3956out:
3957 btrfs_free_path(path);
3958 return ret;
3959}
3960
3961static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3962{
3963 struct inode *inode = dentry->d_inode;
3964 int err = 0;
3965 struct btrfs_root *root = BTRFS_I(dir)->root;
3966 struct btrfs_trans_handle *trans;
3967
3968 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3969 return -ENOTEMPTY;
3970 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3971 return -EPERM;
3972
3973 trans = __unlink_start_trans(dir);
3974 if (IS_ERR(trans))
3975 return PTR_ERR(trans);
3976
3977 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3978 err = btrfs_unlink_subvol(trans, root, dir,
3979 BTRFS_I(inode)->location.objectid,
3980 dentry->d_name.name,
3981 dentry->d_name.len);
3982 goto out;
3983 }
3984
3985 err = btrfs_orphan_add(trans, inode);
3986 if (err)
3987 goto out;
3988
3989 /* now the directory is empty */
3990 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3991 dentry->d_name.name, dentry->d_name.len);
3992 if (!err)
3993 btrfs_i_size_write(inode, 0);
3994out:
3995 btrfs_end_transaction(trans, root);
3996 btrfs_btree_balance_dirty(root);
3997
3998 return err;
3999}
4000
4001/*
4002 * this can truncate away extent items, csum items and directory items.
4003 * It starts at a high offset and removes keys until it can't find
4004 * any higher than new_size
4005 *
4006 * csum items that cross the new i_size are truncated to the new size
4007 * as well.
4008 *
4009 * min_type is the minimum key type to truncate down to. If set to 0, this
4010 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4011 */
4012int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4013 struct btrfs_root *root,
4014 struct inode *inode,
4015 u64 new_size, u32 min_type)
4016{
4017 struct btrfs_path *path;
4018 struct extent_buffer *leaf;
4019 struct btrfs_file_extent_item *fi;
4020 struct btrfs_key key;
4021 struct btrfs_key found_key;
4022 u64 extent_start = 0;
4023 u64 extent_num_bytes = 0;
4024 u64 extent_offset = 0;
4025 u64 item_end = 0;
4026 u64 last_size = (u64)-1;
4027 u32 found_type = (u8)-1;
4028 int found_extent;
4029 int del_item;
4030 int pending_del_nr = 0;
4031 int pending_del_slot = 0;
4032 int extent_type = -1;
4033 int ret;
4034 int err = 0;
4035 u64 ino = btrfs_ino(inode);
4036
4037 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4038
4039 path = btrfs_alloc_path();
4040 if (!path)
4041 return -ENOMEM;
4042 path->reada = -1;
4043
4044 /*
4045 * We want to drop from the next block forward in case this new size is
4046 * not block aligned since we will be keeping the last block of the
4047 * extent just the way it is.
4048 */
4049 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4050 root == root->fs_info->tree_root)
4051 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4052 root->sectorsize), (u64)-1, 0);
4053
4054 /*
4055 * This function is also used to drop the items in the log tree before
4056 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4057 * it is used to drop the loged items. So we shouldn't kill the delayed
4058 * items.
4059 */
4060 if (min_type == 0 && root == BTRFS_I(inode)->root)
4061 btrfs_kill_delayed_inode_items(inode);
4062
4063 key.objectid = ino;
4064 key.offset = (u64)-1;
4065 key.type = (u8)-1;
4066
4067search_again:
4068 path->leave_spinning = 1;
4069 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4070 if (ret < 0) {
4071 err = ret;
4072 goto out;
4073 }
4074
4075 if (ret > 0) {
4076 /* there are no items in the tree for us to truncate, we're
4077 * done
4078 */
4079 if (path->slots[0] == 0)
4080 goto out;
4081 path->slots[0]--;
4082 }
4083
4084 while (1) {
4085 fi = NULL;
4086 leaf = path->nodes[0];
4087 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4088 found_type = btrfs_key_type(&found_key);
4089
4090 if (found_key.objectid != ino)
4091 break;
4092
4093 if (found_type < min_type)
4094 break;
4095
4096 item_end = found_key.offset;
4097 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4098 fi = btrfs_item_ptr(leaf, path->slots[0],
4099 struct btrfs_file_extent_item);
4100 extent_type = btrfs_file_extent_type(leaf, fi);
4101 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4102 item_end +=
4103 btrfs_file_extent_num_bytes(leaf, fi);
4104 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4105 item_end += btrfs_file_extent_inline_len(leaf,
4106 path->slots[0], fi);
4107 }
4108 item_end--;
4109 }
4110 if (found_type > min_type) {
4111 del_item = 1;
4112 } else {
4113 if (item_end < new_size)
4114 break;
4115 if (found_key.offset >= new_size)
4116 del_item = 1;
4117 else
4118 del_item = 0;
4119 }
4120 found_extent = 0;
4121 /* FIXME, shrink the extent if the ref count is only 1 */
4122 if (found_type != BTRFS_EXTENT_DATA_KEY)
4123 goto delete;
4124
4125 if (del_item)
4126 last_size = found_key.offset;
4127 else
4128 last_size = new_size;
4129
4130 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4131 u64 num_dec;
4132 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4133 if (!del_item) {
4134 u64 orig_num_bytes =
4135 btrfs_file_extent_num_bytes(leaf, fi);
4136 extent_num_bytes = ALIGN(new_size -
4137 found_key.offset,
4138 root->sectorsize);
4139 btrfs_set_file_extent_num_bytes(leaf, fi,
4140 extent_num_bytes);
4141 num_dec = (orig_num_bytes -
4142 extent_num_bytes);
4143 if (test_bit(BTRFS_ROOT_REF_COWS,
4144 &root->state) &&
4145 extent_start != 0)
4146 inode_sub_bytes(inode, num_dec);
4147 btrfs_mark_buffer_dirty(leaf);
4148 } else {
4149 extent_num_bytes =
4150 btrfs_file_extent_disk_num_bytes(leaf,
4151 fi);
4152 extent_offset = found_key.offset -
4153 btrfs_file_extent_offset(leaf, fi);
4154
4155 /* FIXME blocksize != 4096 */
4156 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4157 if (extent_start != 0) {
4158 found_extent = 1;
4159 if (test_bit(BTRFS_ROOT_REF_COWS,
4160 &root->state))
4161 inode_sub_bytes(inode, num_dec);
4162 }
4163 }
4164 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4165 /*
4166 * we can't truncate inline items that have had
4167 * special encodings
4168 */
4169 if (!del_item &&
4170 btrfs_file_extent_compression(leaf, fi) == 0 &&
4171 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4172 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4173 u32 size = new_size - found_key.offset;
4174
4175 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4176 inode_sub_bytes(inode, item_end + 1 -
4177 new_size);
4178
4179 /*
4180 * update the ram bytes to properly reflect
4181 * the new size of our item
4182 */
4183 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4184 size =
4185 btrfs_file_extent_calc_inline_size(size);
4186 btrfs_truncate_item(root, path, size, 1);
4187 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4188 &root->state)) {
4189 inode_sub_bytes(inode, item_end + 1 -
4190 found_key.offset);
4191 }
4192 }
4193delete:
4194 if (del_item) {
4195 if (!pending_del_nr) {
4196 /* no pending yet, add ourselves */
4197 pending_del_slot = path->slots[0];
4198 pending_del_nr = 1;
4199 } else if (pending_del_nr &&
4200 path->slots[0] + 1 == pending_del_slot) {
4201 /* hop on the pending chunk */
4202 pending_del_nr++;
4203 pending_del_slot = path->slots[0];
4204 } else {
4205 BUG();
4206 }
4207 } else {
4208 break;
4209 }
4210 if (found_extent &&
4211 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4212 root == root->fs_info->tree_root)) {
4213 btrfs_set_path_blocking(path);
4214 ret = btrfs_free_extent(trans, root, extent_start,
4215 extent_num_bytes, 0,
4216 btrfs_header_owner(leaf),
4217 ino, extent_offset, 0);
4218 BUG_ON(ret);
4219 }
4220
4221 if (found_type == BTRFS_INODE_ITEM_KEY)
4222 break;
4223
4224 if (path->slots[0] == 0 ||
4225 path->slots[0] != pending_del_slot) {
4226 if (pending_del_nr) {
4227 ret = btrfs_del_items(trans, root, path,
4228 pending_del_slot,
4229 pending_del_nr);
4230 if (ret) {
4231 btrfs_abort_transaction(trans,
4232 root, ret);
4233 goto error;
4234 }
4235 pending_del_nr = 0;
4236 }
4237 btrfs_release_path(path);
4238 goto search_again;
4239 } else {
4240 path->slots[0]--;
4241 }
4242 }
4243out:
4244 if (pending_del_nr) {
4245 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4246 pending_del_nr);
4247 if (ret)
4248 btrfs_abort_transaction(trans, root, ret);
4249 }
4250error:
4251 if (last_size != (u64)-1 &&
4252 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4253 btrfs_ordered_update_i_size(inode, last_size, NULL);
4254 btrfs_free_path(path);
4255 return err;
4256}
4257
4258/*
4259 * btrfs_truncate_page - read, zero a chunk and write a page
4260 * @inode - inode that we're zeroing
4261 * @from - the offset to start zeroing
4262 * @len - the length to zero, 0 to zero the entire range respective to the
4263 * offset
4264 * @front - zero up to the offset instead of from the offset on
4265 *
4266 * This will find the page for the "from" offset and cow the page and zero the
4267 * part we want to zero. This is used with truncate and hole punching.
4268 */
4269int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4270 int front)
4271{
4272 struct address_space *mapping = inode->i_mapping;
4273 struct btrfs_root *root = BTRFS_I(inode)->root;
4274 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4275 struct btrfs_ordered_extent *ordered;
4276 struct extent_state *cached_state = NULL;
4277 char *kaddr;
4278 u32 blocksize = root->sectorsize;
4279 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4280 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4281 struct page *page;
4282 gfp_t mask = btrfs_alloc_write_mask(mapping);
4283 int ret = 0;
4284 u64 page_start;
4285 u64 page_end;
4286
4287 if ((offset & (blocksize - 1)) == 0 &&
4288 (!len || ((len & (blocksize - 1)) == 0)))
4289 goto out;
4290 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4291 if (ret)
4292 goto out;
4293
4294again:
4295 page = find_or_create_page(mapping, index, mask);
4296 if (!page) {
4297 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4298 ret = -ENOMEM;
4299 goto out;
4300 }
4301
4302 page_start = page_offset(page);
4303 page_end = page_start + PAGE_CACHE_SIZE - 1;
4304
4305 if (!PageUptodate(page)) {
4306 ret = btrfs_readpage(NULL, page);
4307 lock_page(page);
4308 if (page->mapping != mapping) {
4309 unlock_page(page);
4310 page_cache_release(page);
4311 goto again;
4312 }
4313 if (!PageUptodate(page)) {
4314 ret = -EIO;
4315 goto out_unlock;
4316 }
4317 }
4318 wait_on_page_writeback(page);
4319
4320 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4321 set_page_extent_mapped(page);
4322
4323 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4324 if (ordered) {
4325 unlock_extent_cached(io_tree, page_start, page_end,
4326 &cached_state, GFP_NOFS);
4327 unlock_page(page);
4328 page_cache_release(page);
4329 btrfs_start_ordered_extent(inode, ordered, 1);
4330 btrfs_put_ordered_extent(ordered);
4331 goto again;
4332 }
4333
4334 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4335 EXTENT_DIRTY | EXTENT_DELALLOC |
4336 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4337 0, 0, &cached_state, GFP_NOFS);
4338
4339 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4340 &cached_state);
4341 if (ret) {
4342 unlock_extent_cached(io_tree, page_start, page_end,
4343 &cached_state, GFP_NOFS);
4344 goto out_unlock;
4345 }
4346
4347 if (offset != PAGE_CACHE_SIZE) {
4348 if (!len)
4349 len = PAGE_CACHE_SIZE - offset;
4350 kaddr = kmap(page);
4351 if (front)
4352 memset(kaddr, 0, offset);
4353 else
4354 memset(kaddr + offset, 0, len);
4355 flush_dcache_page(page);
4356 kunmap(page);
4357 }
4358 ClearPageChecked(page);
4359 set_page_dirty(page);
4360 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4361 GFP_NOFS);
4362
4363out_unlock:
4364 if (ret)
4365 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4366 unlock_page(page);
4367 page_cache_release(page);
4368out:
4369 return ret;
4370}
4371
4372static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4373 u64 offset, u64 len)
4374{
4375 struct btrfs_trans_handle *trans;
4376 int ret;
4377
4378 /*
4379 * Still need to make sure the inode looks like it's been updated so
4380 * that any holes get logged if we fsync.
4381 */
4382 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4383 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4384 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4385 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4386 return 0;
4387 }
4388
4389 /*
4390 * 1 - for the one we're dropping
4391 * 1 - for the one we're adding
4392 * 1 - for updating the inode.
4393 */
4394 trans = btrfs_start_transaction(root, 3);
4395 if (IS_ERR(trans))
4396 return PTR_ERR(trans);
4397
4398 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4399 if (ret) {
4400 btrfs_abort_transaction(trans, root, ret);
4401 btrfs_end_transaction(trans, root);
4402 return ret;
4403 }
4404
4405 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4406 0, 0, len, 0, len, 0, 0, 0);
4407 if (ret)
4408 btrfs_abort_transaction(trans, root, ret);
4409 else
4410 btrfs_update_inode(trans, root, inode);
4411 btrfs_end_transaction(trans, root);
4412 return ret;
4413}
4414
4415/*
4416 * This function puts in dummy file extents for the area we're creating a hole
4417 * for. So if we are truncating this file to a larger size we need to insert
4418 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4419 * the range between oldsize and size
4420 */
4421int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4422{
4423 struct btrfs_root *root = BTRFS_I(inode)->root;
4424 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4425 struct extent_map *em = NULL;
4426 struct extent_state *cached_state = NULL;
4427 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4428 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4429 u64 block_end = ALIGN(size, root->sectorsize);
4430 u64 last_byte;
4431 u64 cur_offset;
4432 u64 hole_size;
4433 int err = 0;
4434
4435 /*
4436 * If our size started in the middle of a page we need to zero out the
4437 * rest of the page before we expand the i_size, otherwise we could
4438 * expose stale data.
4439 */
4440 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4441 if (err)
4442 return err;
4443
4444 if (size <= hole_start)
4445 return 0;
4446
4447 while (1) {
4448 struct btrfs_ordered_extent *ordered;
4449
4450 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4451 &cached_state);
4452 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4453 block_end - hole_start);
4454 if (!ordered)
4455 break;
4456 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4457 &cached_state, GFP_NOFS);
4458 btrfs_start_ordered_extent(inode, ordered, 1);
4459 btrfs_put_ordered_extent(ordered);
4460 }
4461
4462 cur_offset = hole_start;
4463 while (1) {
4464 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4465 block_end - cur_offset, 0);
4466 if (IS_ERR(em)) {
4467 err = PTR_ERR(em);
4468 em = NULL;
4469 break;
4470 }
4471 last_byte = min(extent_map_end(em), block_end);
4472 last_byte = ALIGN(last_byte , root->sectorsize);
4473 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4474 struct extent_map *hole_em;
4475 hole_size = last_byte - cur_offset;
4476
4477 err = maybe_insert_hole(root, inode, cur_offset,
4478 hole_size);
4479 if (err)
4480 break;
4481 btrfs_drop_extent_cache(inode, cur_offset,
4482 cur_offset + hole_size - 1, 0);
4483 hole_em = alloc_extent_map();
4484 if (!hole_em) {
4485 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4486 &BTRFS_I(inode)->runtime_flags);
4487 goto next;
4488 }
4489 hole_em->start = cur_offset;
4490 hole_em->len = hole_size;
4491 hole_em->orig_start = cur_offset;
4492
4493 hole_em->block_start = EXTENT_MAP_HOLE;
4494 hole_em->block_len = 0;
4495 hole_em->orig_block_len = 0;
4496 hole_em->ram_bytes = hole_size;
4497 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4498 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4499 hole_em->generation = root->fs_info->generation;
4500
4501 while (1) {
4502 write_lock(&em_tree->lock);
4503 err = add_extent_mapping(em_tree, hole_em, 1);
4504 write_unlock(&em_tree->lock);
4505 if (err != -EEXIST)
4506 break;
4507 btrfs_drop_extent_cache(inode, cur_offset,
4508 cur_offset +
4509 hole_size - 1, 0);
4510 }
4511 free_extent_map(hole_em);
4512 }
4513next:
4514 free_extent_map(em);
4515 em = NULL;
4516 cur_offset = last_byte;
4517 if (cur_offset >= block_end)
4518 break;
4519 }
4520 free_extent_map(em);
4521 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4522 GFP_NOFS);
4523 return err;
4524}
4525
4526static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4527{
4528 struct btrfs_root *root = BTRFS_I(inode)->root;
4529 struct btrfs_trans_handle *trans;
4530 loff_t oldsize = i_size_read(inode);
4531 loff_t newsize = attr->ia_size;
4532 int mask = attr->ia_valid;
4533 int ret;
4534
4535 /*
4536 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4537 * special case where we need to update the times despite not having
4538 * these flags set. For all other operations the VFS set these flags
4539 * explicitly if it wants a timestamp update.
4540 */
4541 if (newsize != oldsize) {
4542 inode_inc_iversion(inode);
4543 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4544 inode->i_ctime = inode->i_mtime =
4545 current_fs_time(inode->i_sb);
4546 }
4547
4548 if (newsize > oldsize) {
4549 truncate_pagecache(inode, newsize);
4550 ret = btrfs_cont_expand(inode, oldsize, newsize);
4551 if (ret)
4552 return ret;
4553
4554 trans = btrfs_start_transaction(root, 1);
4555 if (IS_ERR(trans))
4556 return PTR_ERR(trans);
4557
4558 i_size_write(inode, newsize);
4559 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4560 ret = btrfs_update_inode(trans, root, inode);
4561 btrfs_end_transaction(trans, root);
4562 } else {
4563
4564 /*
4565 * We're truncating a file that used to have good data down to
4566 * zero. Make sure it gets into the ordered flush list so that
4567 * any new writes get down to disk quickly.
4568 */
4569 if (newsize == 0)
4570 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4571 &BTRFS_I(inode)->runtime_flags);
4572
4573 /*
4574 * 1 for the orphan item we're going to add
4575 * 1 for the orphan item deletion.
4576 */
4577 trans = btrfs_start_transaction(root, 2);
4578 if (IS_ERR(trans))
4579 return PTR_ERR(trans);
4580
4581 /*
4582 * We need to do this in case we fail at _any_ point during the
4583 * actual truncate. Once we do the truncate_setsize we could
4584 * invalidate pages which forces any outstanding ordered io to
4585 * be instantly completed which will give us extents that need
4586 * to be truncated. If we fail to get an orphan inode down we
4587 * could have left over extents that were never meant to live,
4588 * so we need to garuntee from this point on that everything
4589 * will be consistent.
4590 */
4591 ret = btrfs_orphan_add(trans, inode);
4592 btrfs_end_transaction(trans, root);
4593 if (ret)
4594 return ret;
4595
4596 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4597 truncate_setsize(inode, newsize);
4598
4599 /* Disable nonlocked read DIO to avoid the end less truncate */
4600 btrfs_inode_block_unlocked_dio(inode);
4601 inode_dio_wait(inode);
4602 btrfs_inode_resume_unlocked_dio(inode);
4603
4604 ret = btrfs_truncate(inode);
4605 if (ret && inode->i_nlink) {
4606 int err;
4607
4608 /*
4609 * failed to truncate, disk_i_size is only adjusted down
4610 * as we remove extents, so it should represent the true
4611 * size of the inode, so reset the in memory size and
4612 * delete our orphan entry.
4613 */
4614 trans = btrfs_join_transaction(root);
4615 if (IS_ERR(trans)) {
4616 btrfs_orphan_del(NULL, inode);
4617 return ret;
4618 }
4619 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4620 err = btrfs_orphan_del(trans, inode);
4621 if (err)
4622 btrfs_abort_transaction(trans, root, err);
4623 btrfs_end_transaction(trans, root);
4624 }
4625 }
4626
4627 return ret;
4628}
4629
4630static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4631{
4632 struct inode *inode = dentry->d_inode;
4633 struct btrfs_root *root = BTRFS_I(inode)->root;
4634 int err;
4635
4636 if (btrfs_root_readonly(root))
4637 return -EROFS;
4638
4639 err = inode_change_ok(inode, attr);
4640 if (err)
4641 return err;
4642
4643 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4644 err = btrfs_setsize(inode, attr);
4645 if (err)
4646 return err;
4647 }
4648
4649 if (attr->ia_valid) {
4650 setattr_copy(inode, attr);
4651 inode_inc_iversion(inode);
4652 err = btrfs_dirty_inode(inode);
4653
4654 if (!err && attr->ia_valid & ATTR_MODE)
4655 err = posix_acl_chmod(inode, inode->i_mode);
4656 }
4657
4658 return err;
4659}
4660
4661/*
4662 * While truncating the inode pages during eviction, we get the VFS calling
4663 * btrfs_invalidatepage() against each page of the inode. This is slow because
4664 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4665 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4666 * extent_state structures over and over, wasting lots of time.
4667 *
4668 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4669 * those expensive operations on a per page basis and do only the ordered io
4670 * finishing, while we release here the extent_map and extent_state structures,
4671 * without the excessive merging and splitting.
4672 */
4673static void evict_inode_truncate_pages(struct inode *inode)
4674{
4675 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4676 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4677 struct rb_node *node;
4678
4679 ASSERT(inode->i_state & I_FREEING);
4680 truncate_inode_pages_final(&inode->i_data);
4681
4682 write_lock(&map_tree->lock);
4683 while (!RB_EMPTY_ROOT(&map_tree->map)) {
4684 struct extent_map *em;
4685
4686 node = rb_first(&map_tree->map);
4687 em = rb_entry(node, struct extent_map, rb_node);
4688 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4689 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4690 remove_extent_mapping(map_tree, em);
4691 free_extent_map(em);
4692 if (need_resched()) {
4693 write_unlock(&map_tree->lock);
4694 cond_resched();
4695 write_lock(&map_tree->lock);
4696 }
4697 }
4698 write_unlock(&map_tree->lock);
4699
4700 spin_lock(&io_tree->lock);
4701 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4702 struct extent_state *state;
4703 struct extent_state *cached_state = NULL;
4704
4705 node = rb_first(&io_tree->state);
4706 state = rb_entry(node, struct extent_state, rb_node);
4707 atomic_inc(&state->refs);
4708 spin_unlock(&io_tree->lock);
4709
4710 lock_extent_bits(io_tree, state->start, state->end,
4711 0, &cached_state);
4712 clear_extent_bit(io_tree, state->start, state->end,
4713 EXTENT_LOCKED | EXTENT_DIRTY |
4714 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4715 EXTENT_DEFRAG, 1, 1,
4716 &cached_state, GFP_NOFS);
4717 free_extent_state(state);
4718
4719 cond_resched();
4720 spin_lock(&io_tree->lock);
4721 }
4722 spin_unlock(&io_tree->lock);
4723}
4724
4725void btrfs_evict_inode(struct inode *inode)
4726{
4727 struct btrfs_trans_handle *trans;
4728 struct btrfs_root *root = BTRFS_I(inode)->root;
4729 struct btrfs_block_rsv *rsv, *global_rsv;
4730 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4731 int ret;
4732
4733 trace_btrfs_inode_evict(inode);
4734
4735 evict_inode_truncate_pages(inode);
4736
4737 if (inode->i_nlink &&
4738 ((btrfs_root_refs(&root->root_item) != 0 &&
4739 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4740 btrfs_is_free_space_inode(inode)))
4741 goto no_delete;
4742
4743 if (is_bad_inode(inode)) {
4744 btrfs_orphan_del(NULL, inode);
4745 goto no_delete;
4746 }
4747 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4748 btrfs_wait_ordered_range(inode, 0, (u64)-1);
4749
4750 if (root->fs_info->log_root_recovering) {
4751 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4752 &BTRFS_I(inode)->runtime_flags));
4753 goto no_delete;
4754 }
4755
4756 if (inode->i_nlink > 0) {
4757 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4758 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4759 goto no_delete;
4760 }
4761
4762 ret = btrfs_commit_inode_delayed_inode(inode);
4763 if (ret) {
4764 btrfs_orphan_del(NULL, inode);
4765 goto no_delete;
4766 }
4767
4768 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4769 if (!rsv) {
4770 btrfs_orphan_del(NULL, inode);
4771 goto no_delete;
4772 }
4773 rsv->size = min_size;
4774 rsv->failfast = 1;
4775 global_rsv = &root->fs_info->global_block_rsv;
4776
4777 btrfs_i_size_write(inode, 0);
4778
4779 /*
4780 * This is a bit simpler than btrfs_truncate since we've already
4781 * reserved our space for our orphan item in the unlink, so we just
4782 * need to reserve some slack space in case we add bytes and update
4783 * inode item when doing the truncate.
4784 */
4785 while (1) {
4786 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4787 BTRFS_RESERVE_FLUSH_LIMIT);
4788
4789 /*
4790 * Try and steal from the global reserve since we will
4791 * likely not use this space anyway, we want to try as
4792 * hard as possible to get this to work.
4793 */
4794 if (ret)
4795 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4796
4797 if (ret) {
4798 btrfs_warn(root->fs_info,
4799 "Could not get space for a delete, will truncate on mount %d",
4800 ret);
4801 btrfs_orphan_del(NULL, inode);
4802 btrfs_free_block_rsv(root, rsv);
4803 goto no_delete;
4804 }
4805
4806 trans = btrfs_join_transaction(root);
4807 if (IS_ERR(trans)) {
4808 btrfs_orphan_del(NULL, inode);
4809 btrfs_free_block_rsv(root, rsv);
4810 goto no_delete;
4811 }
4812
4813 trans->block_rsv = rsv;
4814
4815 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4816 if (ret != -ENOSPC)
4817 break;
4818
4819 trans->block_rsv = &root->fs_info->trans_block_rsv;
4820 btrfs_end_transaction(trans, root);
4821 trans = NULL;
4822 btrfs_btree_balance_dirty(root);
4823 }
4824
4825 btrfs_free_block_rsv(root, rsv);
4826
4827 /*
4828 * Errors here aren't a big deal, it just means we leave orphan items
4829 * in the tree. They will be cleaned up on the next mount.
4830 */
4831 if (ret == 0) {
4832 trans->block_rsv = root->orphan_block_rsv;
4833 btrfs_orphan_del(trans, inode);
4834 } else {
4835 btrfs_orphan_del(NULL, inode);
4836 }
4837
4838 trans->block_rsv = &root->fs_info->trans_block_rsv;
4839 if (!(root == root->fs_info->tree_root ||
4840 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4841 btrfs_return_ino(root, btrfs_ino(inode));
4842
4843 btrfs_end_transaction(trans, root);
4844 btrfs_btree_balance_dirty(root);
4845no_delete:
4846 btrfs_remove_delayed_node(inode);
4847 clear_inode(inode);
4848 return;
4849}
4850
4851/*
4852 * this returns the key found in the dir entry in the location pointer.
4853 * If no dir entries were found, location->objectid is 0.
4854 */
4855static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4856 struct btrfs_key *location)
4857{
4858 const char *name = dentry->d_name.name;
4859 int namelen = dentry->d_name.len;
4860 struct btrfs_dir_item *di;
4861 struct btrfs_path *path;
4862 struct btrfs_root *root = BTRFS_I(dir)->root;
4863 int ret = 0;
4864
4865 path = btrfs_alloc_path();
4866 if (!path)
4867 return -ENOMEM;
4868
4869 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4870 namelen, 0);
4871 if (IS_ERR(di))
4872 ret = PTR_ERR(di);
4873
4874 if (IS_ERR_OR_NULL(di))
4875 goto out_err;
4876
4877 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4878out:
4879 btrfs_free_path(path);
4880 return ret;
4881out_err:
4882 location->objectid = 0;
4883 goto out;
4884}
4885
4886/*
4887 * when we hit a tree root in a directory, the btrfs part of the inode
4888 * needs to be changed to reflect the root directory of the tree root. This
4889 * is kind of like crossing a mount point.
4890 */
4891static int fixup_tree_root_location(struct btrfs_root *root,
4892 struct inode *dir,
4893 struct dentry *dentry,
4894 struct btrfs_key *location,
4895 struct btrfs_root **sub_root)
4896{
4897 struct btrfs_path *path;
4898 struct btrfs_root *new_root;
4899 struct btrfs_root_ref *ref;
4900 struct extent_buffer *leaf;
4901 int ret;
4902 int err = 0;
4903
4904 path = btrfs_alloc_path();
4905 if (!path) {
4906 err = -ENOMEM;
4907 goto out;
4908 }
4909
4910 err = -ENOENT;
4911 ret = btrfs_find_item(root->fs_info->tree_root, path,
4912 BTRFS_I(dir)->root->root_key.objectid,
4913 location->objectid, BTRFS_ROOT_REF_KEY, NULL);
4914 if (ret) {
4915 if (ret < 0)
4916 err = ret;
4917 goto out;
4918 }
4919
4920 leaf = path->nodes[0];
4921 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4922 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4923 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4924 goto out;
4925
4926 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4927 (unsigned long)(ref + 1),
4928 dentry->d_name.len);
4929 if (ret)
4930 goto out;
4931
4932 btrfs_release_path(path);
4933
4934 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4935 if (IS_ERR(new_root)) {
4936 err = PTR_ERR(new_root);
4937 goto out;
4938 }
4939
4940 *sub_root = new_root;
4941 location->objectid = btrfs_root_dirid(&new_root->root_item);
4942 location->type = BTRFS_INODE_ITEM_KEY;
4943 location->offset = 0;
4944 err = 0;
4945out:
4946 btrfs_free_path(path);
4947 return err;
4948}
4949
4950static void inode_tree_add(struct inode *inode)
4951{
4952 struct btrfs_root *root = BTRFS_I(inode)->root;
4953 struct btrfs_inode *entry;
4954 struct rb_node **p;
4955 struct rb_node *parent;
4956 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4957 u64 ino = btrfs_ino(inode);
4958
4959 if (inode_unhashed(inode))
4960 return;
4961 parent = NULL;
4962 spin_lock(&root->inode_lock);
4963 p = &root->inode_tree.rb_node;
4964 while (*p) {
4965 parent = *p;
4966 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4967
4968 if (ino < btrfs_ino(&entry->vfs_inode))
4969 p = &parent->rb_left;
4970 else if (ino > btrfs_ino(&entry->vfs_inode))
4971 p = &parent->rb_right;
4972 else {
4973 WARN_ON(!(entry->vfs_inode.i_state &
4974 (I_WILL_FREE | I_FREEING)));
4975 rb_replace_node(parent, new, &root->inode_tree);
4976 RB_CLEAR_NODE(parent);
4977 spin_unlock(&root->inode_lock);
4978 return;
4979 }
4980 }
4981 rb_link_node(new, parent, p);
4982 rb_insert_color(new, &root->inode_tree);
4983 spin_unlock(&root->inode_lock);
4984}
4985
4986static void inode_tree_del(struct inode *inode)
4987{
4988 struct btrfs_root *root = BTRFS_I(inode)->root;
4989 int empty = 0;
4990
4991 spin_lock(&root->inode_lock);
4992 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4993 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4994 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4995 empty = RB_EMPTY_ROOT(&root->inode_tree);
4996 }
4997 spin_unlock(&root->inode_lock);
4998
4999 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5000 synchronize_srcu(&root->fs_info->subvol_srcu);
5001 spin_lock(&root->inode_lock);
5002 empty = RB_EMPTY_ROOT(&root->inode_tree);
5003 spin_unlock(&root->inode_lock);
5004 if (empty)
5005 btrfs_add_dead_root(root);
5006 }
5007}
5008
5009void btrfs_invalidate_inodes(struct btrfs_root *root)
5010{
5011 struct rb_node *node;
5012 struct rb_node *prev;
5013 struct btrfs_inode *entry;
5014 struct inode *inode;
5015 u64 objectid = 0;
5016
5017 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5018 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5019
5020 spin_lock(&root->inode_lock);
5021again:
5022 node = root->inode_tree.rb_node;
5023 prev = NULL;
5024 while (node) {
5025 prev = node;
5026 entry = rb_entry(node, struct btrfs_inode, rb_node);
5027
5028 if (objectid < btrfs_ino(&entry->vfs_inode))
5029 node = node->rb_left;
5030 else if (objectid > btrfs_ino(&entry->vfs_inode))
5031 node = node->rb_right;
5032 else
5033 break;
5034 }
5035 if (!node) {
5036 while (prev) {
5037 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5038 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5039 node = prev;
5040 break;
5041 }
5042 prev = rb_next(prev);
5043 }
5044 }
5045 while (node) {
5046 entry = rb_entry(node, struct btrfs_inode, rb_node);
5047 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5048 inode = igrab(&entry->vfs_inode);
5049 if (inode) {
5050 spin_unlock(&root->inode_lock);
5051 if (atomic_read(&inode->i_count) > 1)
5052 d_prune_aliases(inode);
5053 /*
5054 * btrfs_drop_inode will have it removed from
5055 * the inode cache when its usage count
5056 * hits zero.
5057 */
5058 iput(inode);
5059 cond_resched();
5060 spin_lock(&root->inode_lock);
5061 goto again;
5062 }
5063
5064 if (cond_resched_lock(&root->inode_lock))
5065 goto again;
5066
5067 node = rb_next(node);
5068 }
5069 spin_unlock(&root->inode_lock);
5070}
5071
5072static int btrfs_init_locked_inode(struct inode *inode, void *p)
5073{
5074 struct btrfs_iget_args *args = p;
5075 inode->i_ino = args->location->objectid;
5076 memcpy(&BTRFS_I(inode)->location, args->location,
5077 sizeof(*args->location));
5078 BTRFS_I(inode)->root = args->root;
5079 return 0;
5080}
5081
5082static int btrfs_find_actor(struct inode *inode, void *opaque)
5083{
5084 struct btrfs_iget_args *args = opaque;
5085 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5086 args->root == BTRFS_I(inode)->root;
5087}
5088
5089static struct inode *btrfs_iget_locked(struct super_block *s,
5090 struct btrfs_key *location,
5091 struct btrfs_root *root)
5092{
5093 struct inode *inode;
5094 struct btrfs_iget_args args;
5095 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5096
5097 args.location = location;
5098 args.root = root;
5099
5100 inode = iget5_locked(s, hashval, btrfs_find_actor,
5101 btrfs_init_locked_inode,
5102 (void *)&args);
5103 return inode;
5104}
5105
5106/* Get an inode object given its location and corresponding root.
5107 * Returns in *is_new if the inode was read from disk
5108 */
5109struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5110 struct btrfs_root *root, int *new)
5111{
5112 struct inode *inode;
5113
5114 inode = btrfs_iget_locked(s, location, root);
5115 if (!inode)
5116 return ERR_PTR(-ENOMEM);
5117
5118 if (inode->i_state & I_NEW) {
5119 btrfs_read_locked_inode(inode);
5120 if (!is_bad_inode(inode)) {
5121 inode_tree_add(inode);
5122 unlock_new_inode(inode);
5123 if (new)
5124 *new = 1;
5125 } else {
5126 unlock_new_inode(inode);
5127 iput(inode);
5128 inode = ERR_PTR(-ESTALE);
5129 }
5130 }
5131
5132 return inode;
5133}
5134
5135static struct inode *new_simple_dir(struct super_block *s,
5136 struct btrfs_key *key,
5137 struct btrfs_root *root)
5138{
5139 struct inode *inode = new_inode(s);
5140
5141 if (!inode)
5142 return ERR_PTR(-ENOMEM);
5143
5144 BTRFS_I(inode)->root = root;
5145 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5146 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5147
5148 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5149 inode->i_op = &btrfs_dir_ro_inode_operations;
5150 inode->i_fop = &simple_dir_operations;
5151 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5152 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5153
5154 return inode;
5155}
5156
5157struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5158{
5159 struct inode *inode;
5160 struct btrfs_root *root = BTRFS_I(dir)->root;
5161 struct btrfs_root *sub_root = root;
5162 struct btrfs_key location;
5163 int index;
5164 int ret = 0;
5165
5166 if (dentry->d_name.len > BTRFS_NAME_LEN)
5167 return ERR_PTR(-ENAMETOOLONG);
5168
5169 ret = btrfs_inode_by_name(dir, dentry, &location);
5170 if (ret < 0)
5171 return ERR_PTR(ret);
5172
5173 if (location.objectid == 0)
5174 return ERR_PTR(-ENOENT);
5175
5176 if (location.type == BTRFS_INODE_ITEM_KEY) {
5177 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5178 return inode;
5179 }
5180
5181 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5182
5183 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5184 ret = fixup_tree_root_location(root, dir, dentry,
5185 &location, &sub_root);
5186 if (ret < 0) {
5187 if (ret != -ENOENT)
5188 inode = ERR_PTR(ret);
5189 else
5190 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5191 } else {
5192 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5193 }
5194 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5195
5196 if (!IS_ERR(inode) && root != sub_root) {
5197 down_read(&root->fs_info->cleanup_work_sem);
5198 if (!(inode->i_sb->s_flags & MS_RDONLY))
5199 ret = btrfs_orphan_cleanup(sub_root);
5200 up_read(&root->fs_info->cleanup_work_sem);
5201 if (ret) {
5202 iput(inode);
5203 inode = ERR_PTR(ret);
5204 }
5205 /*
5206 * If orphan cleanup did remove any orphans, it means the tree
5207 * was modified and therefore the commit root is not the same as
5208 * the current root anymore. This is a problem, because send
5209 * uses the commit root and therefore can see inode items that
5210 * don't exist in the current root anymore, and for example make
5211 * calls to btrfs_iget, which will do tree lookups based on the
5212 * current root and not on the commit root. Those lookups will
5213 * fail, returning a -ESTALE error, and making send fail with
5214 * that error. So make sure a send does not see any orphans we
5215 * have just removed, and that it will see the same inodes
5216 * regardless of whether a transaction commit happened before
5217 * it started (meaning that the commit root will be the same as
5218 * the current root) or not.
5219 */
5220 if (sub_root->node != sub_root->commit_root) {
5221 u64 sub_flags = btrfs_root_flags(&sub_root->root_item);
5222
5223 if (sub_flags & BTRFS_ROOT_SUBVOL_RDONLY) {
5224 struct extent_buffer *eb;
5225
5226 /*
5227 * Assert we can't have races between dentry
5228 * lookup called through the snapshot creation
5229 * ioctl and the VFS.
5230 */
5231 ASSERT(mutex_is_locked(&dir->i_mutex));
5232
5233 down_write(&root->fs_info->commit_root_sem);
5234 eb = sub_root->commit_root;
5235 sub_root->commit_root =
5236 btrfs_root_node(sub_root);
5237 up_write(&root->fs_info->commit_root_sem);
5238 free_extent_buffer(eb);
5239 }
5240 }
5241 }
5242
5243 return inode;
5244}
5245
5246static int btrfs_dentry_delete(const struct dentry *dentry)
5247{
5248 struct btrfs_root *root;
5249 struct inode *inode = dentry->d_inode;
5250
5251 if (!inode && !IS_ROOT(dentry))
5252 inode = dentry->d_parent->d_inode;
5253
5254 if (inode) {
5255 root = BTRFS_I(inode)->root;
5256 if (btrfs_root_refs(&root->root_item) == 0)
5257 return 1;
5258
5259 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5260 return 1;
5261 }
5262 return 0;
5263}
5264
5265static void btrfs_dentry_release(struct dentry *dentry)
5266{
5267 kfree(dentry->d_fsdata);
5268}
5269
5270static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5271 unsigned int flags)
5272{
5273 struct inode *inode;
5274
5275 inode = btrfs_lookup_dentry(dir, dentry);
5276 if (IS_ERR(inode)) {
5277 if (PTR_ERR(inode) == -ENOENT)
5278 inode = NULL;
5279 else
5280 return ERR_CAST(inode);
5281 }
5282
5283 return d_materialise_unique(dentry, inode);
5284}
5285
5286unsigned char btrfs_filetype_table[] = {
5287 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5288};
5289
5290static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5291{
5292 struct inode *inode = file_inode(file);
5293 struct btrfs_root *root = BTRFS_I(inode)->root;
5294 struct btrfs_item *item;
5295 struct btrfs_dir_item *di;
5296 struct btrfs_key key;
5297 struct btrfs_key found_key;
5298 struct btrfs_path *path;
5299 struct list_head ins_list;
5300 struct list_head del_list;
5301 int ret;
5302 struct extent_buffer *leaf;
5303 int slot;
5304 unsigned char d_type;
5305 int over = 0;
5306 u32 di_cur;
5307 u32 di_total;
5308 u32 di_len;
5309 int key_type = BTRFS_DIR_INDEX_KEY;
5310 char tmp_name[32];
5311 char *name_ptr;
5312 int name_len;
5313 int is_curr = 0; /* ctx->pos points to the current index? */
5314
5315 /* FIXME, use a real flag for deciding about the key type */
5316 if (root->fs_info->tree_root == root)
5317 key_type = BTRFS_DIR_ITEM_KEY;
5318
5319 if (!dir_emit_dots(file, ctx))
5320 return 0;
5321
5322 path = btrfs_alloc_path();
5323 if (!path)
5324 return -ENOMEM;
5325
5326 path->reada = 1;
5327
5328 if (key_type == BTRFS_DIR_INDEX_KEY) {
5329 INIT_LIST_HEAD(&ins_list);
5330 INIT_LIST_HEAD(&del_list);
5331 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5332 }
5333
5334 btrfs_set_key_type(&key, key_type);
5335 key.offset = ctx->pos;
5336 key.objectid = btrfs_ino(inode);
5337
5338 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5339 if (ret < 0)
5340 goto err;
5341
5342 while (1) {
5343 leaf = path->nodes[0];
5344 slot = path->slots[0];
5345 if (slot >= btrfs_header_nritems(leaf)) {
5346 ret = btrfs_next_leaf(root, path);
5347 if (ret < 0)
5348 goto err;
5349 else if (ret > 0)
5350 break;
5351 continue;
5352 }
5353
5354 item = btrfs_item_nr(slot);
5355 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5356
5357 if (found_key.objectid != key.objectid)
5358 break;
5359 if (btrfs_key_type(&found_key) != key_type)
5360 break;
5361 if (found_key.offset < ctx->pos)
5362 goto next;
5363 if (key_type == BTRFS_DIR_INDEX_KEY &&
5364 btrfs_should_delete_dir_index(&del_list,
5365 found_key.offset))
5366 goto next;
5367
5368 ctx->pos = found_key.offset;
5369 is_curr = 1;
5370
5371 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5372 di_cur = 0;
5373 di_total = btrfs_item_size(leaf, item);
5374
5375 while (di_cur < di_total) {
5376 struct btrfs_key location;
5377
5378 if (verify_dir_item(root, leaf, di))
5379 break;
5380
5381 name_len = btrfs_dir_name_len(leaf, di);
5382 if (name_len <= sizeof(tmp_name)) {
5383 name_ptr = tmp_name;
5384 } else {
5385 name_ptr = kmalloc(name_len, GFP_NOFS);
5386 if (!name_ptr) {
5387 ret = -ENOMEM;
5388 goto err;
5389 }
5390 }
5391 read_extent_buffer(leaf, name_ptr,
5392 (unsigned long)(di + 1), name_len);
5393
5394 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5395 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5396
5397
5398 /* is this a reference to our own snapshot? If so
5399 * skip it.
5400 *
5401 * In contrast to old kernels, we insert the snapshot's
5402 * dir item and dir index after it has been created, so
5403 * we won't find a reference to our own snapshot. We
5404 * still keep the following code for backward
5405 * compatibility.
5406 */
5407 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5408 location.objectid == root->root_key.objectid) {
5409 over = 0;
5410 goto skip;
5411 }
5412 over = !dir_emit(ctx, name_ptr, name_len,
5413 location.objectid, d_type);
5414
5415skip:
5416 if (name_ptr != tmp_name)
5417 kfree(name_ptr);
5418
5419 if (over)
5420 goto nopos;
5421 di_len = btrfs_dir_name_len(leaf, di) +
5422 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5423 di_cur += di_len;
5424 di = (struct btrfs_dir_item *)((char *)di + di_len);
5425 }
5426next:
5427 path->slots[0]++;
5428 }
5429
5430 if (key_type == BTRFS_DIR_INDEX_KEY) {
5431 if (is_curr)
5432 ctx->pos++;
5433 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5434 if (ret)
5435 goto nopos;
5436 }
5437
5438 /* Reached end of directory/root. Bump pos past the last item. */
5439 ctx->pos++;
5440
5441 /*
5442 * Stop new entries from being returned after we return the last
5443 * entry.
5444 *
5445 * New directory entries are assigned a strictly increasing
5446 * offset. This means that new entries created during readdir
5447 * are *guaranteed* to be seen in the future by that readdir.
5448 * This has broken buggy programs which operate on names as
5449 * they're returned by readdir. Until we re-use freed offsets
5450 * we have this hack to stop new entries from being returned
5451 * under the assumption that they'll never reach this huge
5452 * offset.
5453 *
5454 * This is being careful not to overflow 32bit loff_t unless the
5455 * last entry requires it because doing so has broken 32bit apps
5456 * in the past.
5457 */
5458 if (key_type == BTRFS_DIR_INDEX_KEY) {
5459 if (ctx->pos >= INT_MAX)
5460 ctx->pos = LLONG_MAX;
5461 else
5462 ctx->pos = INT_MAX;
5463 }
5464nopos:
5465 ret = 0;
5466err:
5467 if (key_type == BTRFS_DIR_INDEX_KEY)
5468 btrfs_put_delayed_items(&ins_list, &del_list);
5469 btrfs_free_path(path);
5470 return ret;
5471}
5472
5473int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5474{
5475 struct btrfs_root *root = BTRFS_I(inode)->root;
5476 struct btrfs_trans_handle *trans;
5477 int ret = 0;
5478 bool nolock = false;
5479
5480 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5481 return 0;
5482
5483 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5484 nolock = true;
5485
5486 if (wbc->sync_mode == WB_SYNC_ALL) {
5487 if (nolock)
5488 trans = btrfs_join_transaction_nolock(root);
5489 else
5490 trans = btrfs_join_transaction(root);
5491 if (IS_ERR(trans))
5492 return PTR_ERR(trans);
5493 ret = btrfs_commit_transaction(trans, root);
5494 }
5495 return ret;
5496}
5497
5498/*
5499 * This is somewhat expensive, updating the tree every time the
5500 * inode changes. But, it is most likely to find the inode in cache.
5501 * FIXME, needs more benchmarking...there are no reasons other than performance
5502 * to keep or drop this code.
5503 */
5504static int btrfs_dirty_inode(struct inode *inode)
5505{
5506 struct btrfs_root *root = BTRFS_I(inode)->root;
5507 struct btrfs_trans_handle *trans;
5508 int ret;
5509
5510 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5511 return 0;
5512
5513 trans = btrfs_join_transaction(root);
5514 if (IS_ERR(trans))
5515 return PTR_ERR(trans);
5516
5517 ret = btrfs_update_inode(trans, root, inode);
5518 if (ret && ret == -ENOSPC) {
5519 /* whoops, lets try again with the full transaction */
5520 btrfs_end_transaction(trans, root);
5521 trans = btrfs_start_transaction(root, 1);
5522 if (IS_ERR(trans))
5523 return PTR_ERR(trans);
5524
5525 ret = btrfs_update_inode(trans, root, inode);
5526 }
5527 btrfs_end_transaction(trans, root);
5528 if (BTRFS_I(inode)->delayed_node)
5529 btrfs_balance_delayed_items(root);
5530
5531 return ret;
5532}
5533
5534/*
5535 * This is a copy of file_update_time. We need this so we can return error on
5536 * ENOSPC for updating the inode in the case of file write and mmap writes.
5537 */
5538static int btrfs_update_time(struct inode *inode, struct timespec *now,
5539 int flags)
5540{
5541 struct btrfs_root *root = BTRFS_I(inode)->root;
5542
5543 if (btrfs_root_readonly(root))
5544 return -EROFS;
5545
5546 if (flags & S_VERSION)
5547 inode_inc_iversion(inode);
5548 if (flags & S_CTIME)
5549 inode->i_ctime = *now;
5550 if (flags & S_MTIME)
5551 inode->i_mtime = *now;
5552 if (flags & S_ATIME)
5553 inode->i_atime = *now;
5554 return btrfs_dirty_inode(inode);
5555}
5556
5557/*
5558 * find the highest existing sequence number in a directory
5559 * and then set the in-memory index_cnt variable to reflect
5560 * free sequence numbers
5561 */
5562static int btrfs_set_inode_index_count(struct inode *inode)
5563{
5564 struct btrfs_root *root = BTRFS_I(inode)->root;
5565 struct btrfs_key key, found_key;
5566 struct btrfs_path *path;
5567 struct extent_buffer *leaf;
5568 int ret;
5569
5570 key.objectid = btrfs_ino(inode);
5571 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5572 key.offset = (u64)-1;
5573
5574 path = btrfs_alloc_path();
5575 if (!path)
5576 return -ENOMEM;
5577
5578 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5579 if (ret < 0)
5580 goto out;
5581 /* FIXME: we should be able to handle this */
5582 if (ret == 0)
5583 goto out;
5584 ret = 0;
5585
5586 /*
5587 * MAGIC NUMBER EXPLANATION:
5588 * since we search a directory based on f_pos we have to start at 2
5589 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5590 * else has to start at 2
5591 */
5592 if (path->slots[0] == 0) {
5593 BTRFS_I(inode)->index_cnt = 2;
5594 goto out;
5595 }
5596
5597 path->slots[0]--;
5598
5599 leaf = path->nodes[0];
5600 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5601
5602 if (found_key.objectid != btrfs_ino(inode) ||
5603 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5604 BTRFS_I(inode)->index_cnt = 2;
5605 goto out;
5606 }
5607
5608 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5609out:
5610 btrfs_free_path(path);
5611 return ret;
5612}
5613
5614/*
5615 * helper to find a free sequence number in a given directory. This current
5616 * code is very simple, later versions will do smarter things in the btree
5617 */
5618int btrfs_set_inode_index(struct inode *dir, u64 *index)
5619{
5620 int ret = 0;
5621
5622 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5623 ret = btrfs_inode_delayed_dir_index_count(dir);
5624 if (ret) {
5625 ret = btrfs_set_inode_index_count(dir);
5626 if (ret)
5627 return ret;
5628 }
5629 }
5630
5631 *index = BTRFS_I(dir)->index_cnt;
5632 BTRFS_I(dir)->index_cnt++;
5633
5634 return ret;
5635}
5636
5637static int btrfs_insert_inode_locked(struct inode *inode)
5638{
5639 struct btrfs_iget_args args;
5640 args.location = &BTRFS_I(inode)->location;
5641 args.root = BTRFS_I(inode)->root;
5642
5643 return insert_inode_locked4(inode,
5644 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5645 btrfs_find_actor, &args);
5646}
5647
5648static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5649 struct btrfs_root *root,
5650 struct inode *dir,
5651 const char *name, int name_len,
5652 u64 ref_objectid, u64 objectid,
5653 umode_t mode, u64 *index)
5654{
5655 struct inode *inode;
5656 struct btrfs_inode_item *inode_item;
5657 struct btrfs_key *location;
5658 struct btrfs_path *path;
5659 struct btrfs_inode_ref *ref;
5660 struct btrfs_key key[2];
5661 u32 sizes[2];
5662 int nitems = name ? 2 : 1;
5663 unsigned long ptr;
5664 int ret;
5665
5666 path = btrfs_alloc_path();
5667 if (!path)
5668 return ERR_PTR(-ENOMEM);
5669
5670 inode = new_inode(root->fs_info->sb);
5671 if (!inode) {
5672 btrfs_free_path(path);
5673 return ERR_PTR(-ENOMEM);
5674 }
5675
5676 /*
5677 * O_TMPFILE, set link count to 0, so that after this point,
5678 * we fill in an inode item with the correct link count.
5679 */
5680 if (!name)
5681 set_nlink(inode, 0);
5682
5683 /*
5684 * we have to initialize this early, so we can reclaim the inode
5685 * number if we fail afterwards in this function.
5686 */
5687 inode->i_ino = objectid;
5688
5689 if (dir && name) {
5690 trace_btrfs_inode_request(dir);
5691
5692 ret = btrfs_set_inode_index(dir, index);
5693 if (ret) {
5694 btrfs_free_path(path);
5695 iput(inode);
5696 return ERR_PTR(ret);
5697 }
5698 } else if (dir) {
5699 *index = 0;
5700 }
5701 /*
5702 * index_cnt is ignored for everything but a dir,
5703 * btrfs_get_inode_index_count has an explanation for the magic
5704 * number
5705 */
5706 BTRFS_I(inode)->index_cnt = 2;
5707 BTRFS_I(inode)->dir_index = *index;
5708 BTRFS_I(inode)->root = root;
5709 BTRFS_I(inode)->generation = trans->transid;
5710 inode->i_generation = BTRFS_I(inode)->generation;
5711
5712 /*
5713 * We could have gotten an inode number from somebody who was fsynced
5714 * and then removed in this same transaction, so let's just set full
5715 * sync since it will be a full sync anyway and this will blow away the
5716 * old info in the log.
5717 */
5718 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5719
5720 key[0].objectid = objectid;
5721 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5722 key[0].offset = 0;
5723
5724 sizes[0] = sizeof(struct btrfs_inode_item);
5725
5726 if (name) {
5727 /*
5728 * Start new inodes with an inode_ref. This is slightly more
5729 * efficient for small numbers of hard links since they will
5730 * be packed into one item. Extended refs will kick in if we
5731 * add more hard links than can fit in the ref item.
5732 */
5733 key[1].objectid = objectid;
5734 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5735 key[1].offset = ref_objectid;
5736
5737 sizes[1] = name_len + sizeof(*ref);
5738 }
5739
5740 location = &BTRFS_I(inode)->location;
5741 location->objectid = objectid;
5742 location->offset = 0;
5743 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5744
5745 ret = btrfs_insert_inode_locked(inode);
5746 if (ret < 0)
5747 goto fail;
5748
5749 path->leave_spinning = 1;
5750 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
5751 if (ret != 0)
5752 goto fail_unlock;
5753
5754 inode_init_owner(inode, dir, mode);
5755 inode_set_bytes(inode, 0);
5756 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5757 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5758 struct btrfs_inode_item);
5759 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5760 sizeof(*inode_item));
5761 fill_inode_item(trans, path->nodes[0], inode_item, inode);
5762
5763 if (name) {
5764 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5765 struct btrfs_inode_ref);
5766 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5767 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5768 ptr = (unsigned long)(ref + 1);
5769 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5770 }
5771
5772 btrfs_mark_buffer_dirty(path->nodes[0]);
5773 btrfs_free_path(path);
5774
5775 btrfs_inherit_iflags(inode, dir);
5776
5777 if (S_ISREG(mode)) {
5778 if (btrfs_test_opt(root, NODATASUM))
5779 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5780 if (btrfs_test_opt(root, NODATACOW))
5781 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5782 BTRFS_INODE_NODATASUM;
5783 }
5784
5785 inode_tree_add(inode);
5786
5787 trace_btrfs_inode_new(inode);
5788 btrfs_set_inode_last_trans(trans, inode);
5789
5790 btrfs_update_root_times(trans, root);
5791
5792 ret = btrfs_inode_inherit_props(trans, inode, dir);
5793 if (ret)
5794 btrfs_err(root->fs_info,
5795 "error inheriting props for ino %llu (root %llu): %d",
5796 btrfs_ino(inode), root->root_key.objectid, ret);
5797
5798 return inode;
5799
5800fail_unlock:
5801 unlock_new_inode(inode);
5802fail:
5803 if (dir && name)
5804 BTRFS_I(dir)->index_cnt--;
5805 btrfs_free_path(path);
5806 iput(inode);
5807 return ERR_PTR(ret);
5808}
5809
5810static inline u8 btrfs_inode_type(struct inode *inode)
5811{
5812 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5813}
5814
5815/*
5816 * utility function to add 'inode' into 'parent_inode' with
5817 * a give name and a given sequence number.
5818 * if 'add_backref' is true, also insert a backref from the
5819 * inode to the parent directory.
5820 */
5821int btrfs_add_link(struct btrfs_trans_handle *trans,
5822 struct inode *parent_inode, struct inode *inode,
5823 const char *name, int name_len, int add_backref, u64 index)
5824{
5825 int ret = 0;
5826 struct btrfs_key key;
5827 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5828 u64 ino = btrfs_ino(inode);
5829 u64 parent_ino = btrfs_ino(parent_inode);
5830
5831 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5832 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5833 } else {
5834 key.objectid = ino;
5835 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5836 key.offset = 0;
5837 }
5838
5839 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5840 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5841 key.objectid, root->root_key.objectid,
5842 parent_ino, index, name, name_len);
5843 } else if (add_backref) {
5844 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5845 parent_ino, index);
5846 }
5847
5848 /* Nothing to clean up yet */
5849 if (ret)
5850 return ret;
5851
5852 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5853 parent_inode, &key,
5854 btrfs_inode_type(inode), index);
5855 if (ret == -EEXIST || ret == -EOVERFLOW)
5856 goto fail_dir_item;
5857 else if (ret) {
5858 btrfs_abort_transaction(trans, root, ret);
5859 return ret;
5860 }
5861
5862 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5863 name_len * 2);
5864 inode_inc_iversion(parent_inode);
5865 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5866 ret = btrfs_update_inode(trans, root, parent_inode);
5867 if (ret)
5868 btrfs_abort_transaction(trans, root, ret);
5869 return ret;
5870
5871fail_dir_item:
5872 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5873 u64 local_index;
5874 int err;
5875 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5876 key.objectid, root->root_key.objectid,
5877 parent_ino, &local_index, name, name_len);
5878
5879 } else if (add_backref) {
5880 u64 local_index;
5881 int err;
5882
5883 err = btrfs_del_inode_ref(trans, root, name, name_len,
5884 ino, parent_ino, &local_index);
5885 }
5886 return ret;
5887}
5888
5889static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5890 struct inode *dir, struct dentry *dentry,
5891 struct inode *inode, int backref, u64 index)
5892{
5893 int err = btrfs_add_link(trans, dir, inode,
5894 dentry->d_name.name, dentry->d_name.len,
5895 backref, index);
5896 if (err > 0)
5897 err = -EEXIST;
5898 return err;
5899}
5900
5901static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5902 umode_t mode, dev_t rdev)
5903{
5904 struct btrfs_trans_handle *trans;
5905 struct btrfs_root *root = BTRFS_I(dir)->root;
5906 struct inode *inode = NULL;
5907 int err;
5908 int drop_inode = 0;
5909 u64 objectid;
5910 u64 index = 0;
5911
5912 if (!new_valid_dev(rdev))
5913 return -EINVAL;
5914
5915 /*
5916 * 2 for inode item and ref
5917 * 2 for dir items
5918 * 1 for xattr if selinux is on
5919 */
5920 trans = btrfs_start_transaction(root, 5);
5921 if (IS_ERR(trans))
5922 return PTR_ERR(trans);
5923
5924 err = btrfs_find_free_ino(root, &objectid);
5925 if (err)
5926 goto out_unlock;
5927
5928 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5929 dentry->d_name.len, btrfs_ino(dir), objectid,
5930 mode, &index);
5931 if (IS_ERR(inode)) {
5932 err = PTR_ERR(inode);
5933 goto out_unlock;
5934 }
5935
5936 /*
5937 * If the active LSM wants to access the inode during
5938 * d_instantiate it needs these. Smack checks to see
5939 * if the filesystem supports xattrs by looking at the
5940 * ops vector.
5941 */
5942 inode->i_op = &btrfs_special_inode_operations;
5943 init_special_inode(inode, inode->i_mode, rdev);
5944
5945 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5946 if (err)
5947 goto out_unlock_inode;
5948
5949 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5950 if (err) {
5951 goto out_unlock_inode;
5952 } else {
5953 btrfs_update_inode(trans, root, inode);
5954 unlock_new_inode(inode);
5955 d_instantiate(dentry, inode);
5956 }
5957
5958out_unlock:
5959 btrfs_end_transaction(trans, root);
5960 btrfs_balance_delayed_items(root);
5961 btrfs_btree_balance_dirty(root);
5962 if (drop_inode) {
5963 inode_dec_link_count(inode);
5964 iput(inode);
5965 }
5966 return err;
5967
5968out_unlock_inode:
5969 drop_inode = 1;
5970 unlock_new_inode(inode);
5971 goto out_unlock;
5972
5973}
5974
5975static int btrfs_create(struct inode *dir, struct dentry *dentry,
5976 umode_t mode, bool excl)
5977{
5978 struct btrfs_trans_handle *trans;
5979 struct btrfs_root *root = BTRFS_I(dir)->root;
5980 struct inode *inode = NULL;
5981 int drop_inode_on_err = 0;
5982 int err;
5983 u64 objectid;
5984 u64 index = 0;
5985
5986 /*
5987 * 2 for inode item and ref
5988 * 2 for dir items
5989 * 1 for xattr if selinux is on
5990 */
5991 trans = btrfs_start_transaction(root, 5);
5992 if (IS_ERR(trans))
5993 return PTR_ERR(trans);
5994
5995 err = btrfs_find_free_ino(root, &objectid);
5996 if (err)
5997 goto out_unlock;
5998
5999 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6000 dentry->d_name.len, btrfs_ino(dir), objectid,
6001 mode, &index);
6002 if (IS_ERR(inode)) {
6003 err = PTR_ERR(inode);
6004 goto out_unlock;
6005 }
6006 drop_inode_on_err = 1;
6007 /*
6008 * If the active LSM wants to access the inode during
6009 * d_instantiate it needs these. Smack checks to see
6010 * if the filesystem supports xattrs by looking at the
6011 * ops vector.
6012 */
6013 inode->i_fop = &btrfs_file_operations;
6014 inode->i_op = &btrfs_file_inode_operations;
6015 inode->i_mapping->a_ops = &btrfs_aops;
6016 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6017
6018 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6019 if (err)
6020 goto out_unlock_inode;
6021
6022 err = btrfs_update_inode(trans, root, inode);
6023 if (err)
6024 goto out_unlock_inode;
6025
6026 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6027 if (err)
6028 goto out_unlock_inode;
6029
6030 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6031 unlock_new_inode(inode);
6032 d_instantiate(dentry, inode);
6033
6034out_unlock:
6035 btrfs_end_transaction(trans, root);
6036 if (err && drop_inode_on_err) {
6037 inode_dec_link_count(inode);
6038 iput(inode);
6039 }
6040 btrfs_balance_delayed_items(root);
6041 btrfs_btree_balance_dirty(root);
6042 return err;
6043
6044out_unlock_inode:
6045 unlock_new_inode(inode);
6046 goto out_unlock;
6047
6048}
6049
6050static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6051 struct dentry *dentry)
6052{
6053 struct btrfs_trans_handle *trans;
6054 struct btrfs_root *root = BTRFS_I(dir)->root;
6055 struct inode *inode = old_dentry->d_inode;
6056 u64 index;
6057 int err;
6058 int drop_inode = 0;
6059
6060 /* do not allow sys_link's with other subvols of the same device */
6061 if (root->objectid != BTRFS_I(inode)->root->objectid)
6062 return -EXDEV;
6063
6064 if (inode->i_nlink >= BTRFS_LINK_MAX)
6065 return -EMLINK;
6066
6067 err = btrfs_set_inode_index(dir, &index);
6068 if (err)
6069 goto fail;
6070
6071 /*
6072 * 2 items for inode and inode ref
6073 * 2 items for dir items
6074 * 1 item for parent inode
6075 */
6076 trans = btrfs_start_transaction(root, 5);
6077 if (IS_ERR(trans)) {
6078 err = PTR_ERR(trans);
6079 goto fail;
6080 }
6081
6082 /* There are several dir indexes for this inode, clear the cache. */
6083 BTRFS_I(inode)->dir_index = 0ULL;
6084 inc_nlink(inode);
6085 inode_inc_iversion(inode);
6086 inode->i_ctime = CURRENT_TIME;
6087 ihold(inode);
6088 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6089
6090 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6091
6092 if (err) {
6093 drop_inode = 1;
6094 } else {
6095 struct dentry *parent = dentry->d_parent;
6096 err = btrfs_update_inode(trans, root, inode);
6097 if (err)
6098 goto fail;
6099 if (inode->i_nlink == 1) {
6100 /*
6101 * If new hard link count is 1, it's a file created
6102 * with open(2) O_TMPFILE flag.
6103 */
6104 err = btrfs_orphan_del(trans, inode);
6105 if (err)
6106 goto fail;
6107 }
6108 d_instantiate(dentry, inode);
6109 btrfs_log_new_name(trans, inode, NULL, parent);
6110 }
6111
6112 btrfs_end_transaction(trans, root);
6113 btrfs_balance_delayed_items(root);
6114fail:
6115 if (drop_inode) {
6116 inode_dec_link_count(inode);
6117 iput(inode);
6118 }
6119 btrfs_btree_balance_dirty(root);
6120 return err;
6121}
6122
6123static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6124{
6125 struct inode *inode = NULL;
6126 struct btrfs_trans_handle *trans;
6127 struct btrfs_root *root = BTRFS_I(dir)->root;
6128 int err = 0;
6129 int drop_on_err = 0;
6130 u64 objectid = 0;
6131 u64 index = 0;
6132
6133 /*
6134 * 2 items for inode and ref
6135 * 2 items for dir items
6136 * 1 for xattr if selinux is on
6137 */
6138 trans = btrfs_start_transaction(root, 5);
6139 if (IS_ERR(trans))
6140 return PTR_ERR(trans);
6141
6142 err = btrfs_find_free_ino(root, &objectid);
6143 if (err)
6144 goto out_fail;
6145
6146 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6147 dentry->d_name.len, btrfs_ino(dir), objectid,
6148 S_IFDIR | mode, &index);
6149 if (IS_ERR(inode)) {
6150 err = PTR_ERR(inode);
6151 goto out_fail;
6152 }
6153
6154 drop_on_err = 1;
6155 /* these must be set before we unlock the inode */
6156 inode->i_op = &btrfs_dir_inode_operations;
6157 inode->i_fop = &btrfs_dir_file_operations;
6158
6159 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6160 if (err)
6161 goto out_fail_inode;
6162
6163 btrfs_i_size_write(inode, 0);
6164 err = btrfs_update_inode(trans, root, inode);
6165 if (err)
6166 goto out_fail_inode;
6167
6168 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6169 dentry->d_name.len, 0, index);
6170 if (err)
6171 goto out_fail_inode;
6172
6173 d_instantiate(dentry, inode);
6174 /*
6175 * mkdir is special. We're unlocking after we call d_instantiate
6176 * to avoid a race with nfsd calling d_instantiate.
6177 */
6178 unlock_new_inode(inode);
6179 drop_on_err = 0;
6180
6181out_fail:
6182 btrfs_end_transaction(trans, root);
6183 if (drop_on_err)
6184 iput(inode);
6185 btrfs_balance_delayed_items(root);
6186 btrfs_btree_balance_dirty(root);
6187 return err;
6188
6189out_fail_inode:
6190 unlock_new_inode(inode);
6191 goto out_fail;
6192}
6193
6194/* helper for btfs_get_extent. Given an existing extent in the tree,
6195 * and an extent that you want to insert, deal with overlap and insert
6196 * the new extent into the tree.
6197 */
6198static int merge_extent_mapping(struct extent_map_tree *em_tree,
6199 struct extent_map *existing,
6200 struct extent_map *em,
6201 u64 map_start)
6202{
6203 u64 start_diff;
6204
6205 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6206 start_diff = map_start - em->start;
6207 em->start = map_start;
6208 em->len = existing->start - em->start;
6209 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6210 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6211 em->block_start += start_diff;
6212 em->block_len -= start_diff;
6213 }
6214 return add_extent_mapping(em_tree, em, 0);
6215}
6216
6217static noinline int uncompress_inline(struct btrfs_path *path,
6218 struct inode *inode, struct page *page,
6219 size_t pg_offset, u64 extent_offset,
6220 struct btrfs_file_extent_item *item)
6221{
6222 int ret;
6223 struct extent_buffer *leaf = path->nodes[0];
6224 char *tmp;
6225 size_t max_size;
6226 unsigned long inline_size;
6227 unsigned long ptr;
6228 int compress_type;
6229
6230 WARN_ON(pg_offset != 0);
6231 compress_type = btrfs_file_extent_compression(leaf, item);
6232 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6233 inline_size = btrfs_file_extent_inline_item_len(leaf,
6234 btrfs_item_nr(path->slots[0]));
6235 tmp = kmalloc(inline_size, GFP_NOFS);
6236 if (!tmp)
6237 return -ENOMEM;
6238 ptr = btrfs_file_extent_inline_start(item);
6239
6240 read_extent_buffer(leaf, tmp, ptr, inline_size);
6241
6242 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6243 ret = btrfs_decompress(compress_type, tmp, page,
6244 extent_offset, inline_size, max_size);
6245 kfree(tmp);
6246 return ret;
6247}
6248
6249/*
6250 * a bit scary, this does extent mapping from logical file offset to the disk.
6251 * the ugly parts come from merging extents from the disk with the in-ram
6252 * representation. This gets more complex because of the data=ordered code,
6253 * where the in-ram extents might be locked pending data=ordered completion.
6254 *
6255 * This also copies inline extents directly into the page.
6256 */
6257
6258struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6259 size_t pg_offset, u64 start, u64 len,
6260 int create)
6261{
6262 int ret;
6263 int err = 0;
6264 u64 extent_start = 0;
6265 u64 extent_end = 0;
6266 u64 objectid = btrfs_ino(inode);
6267 u32 found_type;
6268 struct btrfs_path *path = NULL;
6269 struct btrfs_root *root = BTRFS_I(inode)->root;
6270 struct btrfs_file_extent_item *item;
6271 struct extent_buffer *leaf;
6272 struct btrfs_key found_key;
6273 struct extent_map *em = NULL;
6274 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6275 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6276 struct btrfs_trans_handle *trans = NULL;
6277 const bool new_inline = !page || create;
6278
6279again:
6280 read_lock(&em_tree->lock);
6281 em = lookup_extent_mapping(em_tree, start, len);
6282 if (em)
6283 em->bdev = root->fs_info->fs_devices->latest_bdev;
6284 read_unlock(&em_tree->lock);
6285
6286 if (em) {
6287 if (em->start > start || em->start + em->len <= start)
6288 free_extent_map(em);
6289 else if (em->block_start == EXTENT_MAP_INLINE && page)
6290 free_extent_map(em);
6291 else
6292 goto out;
6293 }
6294 em = alloc_extent_map();
6295 if (!em) {
6296 err = -ENOMEM;
6297 goto out;
6298 }
6299 em->bdev = root->fs_info->fs_devices->latest_bdev;
6300 em->start = EXTENT_MAP_HOLE;
6301 em->orig_start = EXTENT_MAP_HOLE;
6302 em->len = (u64)-1;
6303 em->block_len = (u64)-1;
6304
6305 if (!path) {
6306 path = btrfs_alloc_path();
6307 if (!path) {
6308 err = -ENOMEM;
6309 goto out;
6310 }
6311 /*
6312 * Chances are we'll be called again, so go ahead and do
6313 * readahead
6314 */
6315 path->reada = 1;
6316 }
6317
6318 ret = btrfs_lookup_file_extent(trans, root, path,
6319 objectid, start, trans != NULL);
6320 if (ret < 0) {
6321 err = ret;
6322 goto out;
6323 }
6324
6325 if (ret != 0) {
6326 if (path->slots[0] == 0)
6327 goto not_found;
6328 path->slots[0]--;
6329 }
6330
6331 leaf = path->nodes[0];
6332 item = btrfs_item_ptr(leaf, path->slots[0],
6333 struct btrfs_file_extent_item);
6334 /* are we inside the extent that was found? */
6335 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6336 found_type = btrfs_key_type(&found_key);
6337 if (found_key.objectid != objectid ||
6338 found_type != BTRFS_EXTENT_DATA_KEY) {
6339 /*
6340 * If we backup past the first extent we want to move forward
6341 * and see if there is an extent in front of us, otherwise we'll
6342 * say there is a hole for our whole search range which can
6343 * cause problems.
6344 */
6345 extent_end = start;
6346 goto next;
6347 }
6348
6349 found_type = btrfs_file_extent_type(leaf, item);
6350 extent_start = found_key.offset;
6351 if (found_type == BTRFS_FILE_EXTENT_REG ||
6352 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6353 extent_end = extent_start +
6354 btrfs_file_extent_num_bytes(leaf, item);
6355 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6356 size_t size;
6357 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6358 extent_end = ALIGN(extent_start + size, root->sectorsize);
6359 }
6360next:
6361 if (start >= extent_end) {
6362 path->slots[0]++;
6363 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6364 ret = btrfs_next_leaf(root, path);
6365 if (ret < 0) {
6366 err = ret;
6367 goto out;
6368 }
6369 if (ret > 0)
6370 goto not_found;
6371 leaf = path->nodes[0];
6372 }
6373 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6374 if (found_key.objectid != objectid ||
6375 found_key.type != BTRFS_EXTENT_DATA_KEY)
6376 goto not_found;
6377 if (start + len <= found_key.offset)
6378 goto not_found;
6379 if (start > found_key.offset)
6380 goto next;
6381 em->start = start;
6382 em->orig_start = start;
6383 em->len = found_key.offset - start;
6384 goto not_found_em;
6385 }
6386
6387 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6388
6389 if (found_type == BTRFS_FILE_EXTENT_REG ||
6390 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6391 goto insert;
6392 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6393 unsigned long ptr;
6394 char *map;
6395 size_t size;
6396 size_t extent_offset;
6397 size_t copy_size;
6398
6399 if (new_inline)
6400 goto out;
6401
6402 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6403 extent_offset = page_offset(page) + pg_offset - extent_start;
6404 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6405 size - extent_offset);
6406 em->start = extent_start + extent_offset;
6407 em->len = ALIGN(copy_size, root->sectorsize);
6408 em->orig_block_len = em->len;
6409 em->orig_start = em->start;
6410 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6411 if (create == 0 && !PageUptodate(page)) {
6412 if (btrfs_file_extent_compression(leaf, item) !=
6413 BTRFS_COMPRESS_NONE) {
6414 ret = uncompress_inline(path, inode, page,
6415 pg_offset,
6416 extent_offset, item);
6417 if (ret) {
6418 err = ret;
6419 goto out;
6420 }
6421 } else {
6422 map = kmap(page);
6423 read_extent_buffer(leaf, map + pg_offset, ptr,
6424 copy_size);
6425 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6426 memset(map + pg_offset + copy_size, 0,
6427 PAGE_CACHE_SIZE - pg_offset -
6428 copy_size);
6429 }
6430 kunmap(page);
6431 }
6432 flush_dcache_page(page);
6433 } else if (create && PageUptodate(page)) {
6434 BUG();
6435 if (!trans) {
6436 kunmap(page);
6437 free_extent_map(em);
6438 em = NULL;
6439
6440 btrfs_release_path(path);
6441 trans = btrfs_join_transaction(root);
6442
6443 if (IS_ERR(trans))
6444 return ERR_CAST(trans);
6445 goto again;
6446 }
6447 map = kmap(page);
6448 write_extent_buffer(leaf, map + pg_offset, ptr,
6449 copy_size);
6450 kunmap(page);
6451 btrfs_mark_buffer_dirty(leaf);
6452 }
6453 set_extent_uptodate(io_tree, em->start,
6454 extent_map_end(em) - 1, NULL, GFP_NOFS);
6455 goto insert;
6456 }
6457not_found:
6458 em->start = start;
6459 em->orig_start = start;
6460 em->len = len;
6461not_found_em:
6462 em->block_start = EXTENT_MAP_HOLE;
6463 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6464insert:
6465 btrfs_release_path(path);
6466 if (em->start > start || extent_map_end(em) <= start) {
6467 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6468 em->start, em->len, start, len);
6469 err = -EIO;
6470 goto out;
6471 }
6472
6473 err = 0;
6474 write_lock(&em_tree->lock);
6475 ret = add_extent_mapping(em_tree, em, 0);
6476 /* it is possible that someone inserted the extent into the tree
6477 * while we had the lock dropped. It is also possible that
6478 * an overlapping map exists in the tree
6479 */
6480 if (ret == -EEXIST) {
6481 struct extent_map *existing;
6482
6483 ret = 0;
6484
6485 existing = lookup_extent_mapping(em_tree, start, len);
6486 if (existing && (existing->start > start ||
6487 existing->start + existing->len <= start)) {
6488 free_extent_map(existing);
6489 existing = NULL;
6490 }
6491 if (!existing) {
6492 existing = lookup_extent_mapping(em_tree, em->start,
6493 em->len);
6494 if (existing) {
6495 err = merge_extent_mapping(em_tree, existing,
6496 em, start);
6497 free_extent_map(existing);
6498 if (err) {
6499 free_extent_map(em);
6500 em = NULL;
6501 }
6502 } else {
6503 err = -EIO;
6504 free_extent_map(em);
6505 em = NULL;
6506 }
6507 } else {
6508 free_extent_map(em);
6509 em = existing;
6510 err = 0;
6511 }
6512 }
6513 write_unlock(&em_tree->lock);
6514out:
6515
6516 trace_btrfs_get_extent(root, em);
6517
6518 if (path)
6519 btrfs_free_path(path);
6520 if (trans) {
6521 ret = btrfs_end_transaction(trans, root);
6522 if (!err)
6523 err = ret;
6524 }
6525 if (err) {
6526 free_extent_map(em);
6527 return ERR_PTR(err);
6528 }
6529 BUG_ON(!em); /* Error is always set */
6530 return em;
6531}
6532
6533struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6534 size_t pg_offset, u64 start, u64 len,
6535 int create)
6536{
6537 struct extent_map *em;
6538 struct extent_map *hole_em = NULL;
6539 u64 range_start = start;
6540 u64 end;
6541 u64 found;
6542 u64 found_end;
6543 int err = 0;
6544
6545 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6546 if (IS_ERR(em))
6547 return em;
6548 if (em) {
6549 /*
6550 * if our em maps to
6551 * - a hole or
6552 * - a pre-alloc extent,
6553 * there might actually be delalloc bytes behind it.
6554 */
6555 if (em->block_start != EXTENT_MAP_HOLE &&
6556 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6557 return em;
6558 else
6559 hole_em = em;
6560 }
6561
6562 /* check to see if we've wrapped (len == -1 or similar) */
6563 end = start + len;
6564 if (end < start)
6565 end = (u64)-1;
6566 else
6567 end -= 1;
6568
6569 em = NULL;
6570
6571 /* ok, we didn't find anything, lets look for delalloc */
6572 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6573 end, len, EXTENT_DELALLOC, 1);
6574 found_end = range_start + found;
6575 if (found_end < range_start)
6576 found_end = (u64)-1;
6577
6578 /*
6579 * we didn't find anything useful, return
6580 * the original results from get_extent()
6581 */
6582 if (range_start > end || found_end <= start) {
6583 em = hole_em;
6584 hole_em = NULL;
6585 goto out;
6586 }
6587
6588 /* adjust the range_start to make sure it doesn't
6589 * go backwards from the start they passed in
6590 */
6591 range_start = max(start, range_start);
6592 found = found_end - range_start;
6593
6594 if (found > 0) {
6595 u64 hole_start = start;
6596 u64 hole_len = len;
6597
6598 em = alloc_extent_map();
6599 if (!em) {
6600 err = -ENOMEM;
6601 goto out;
6602 }
6603 /*
6604 * when btrfs_get_extent can't find anything it
6605 * returns one huge hole
6606 *
6607 * make sure what it found really fits our range, and
6608 * adjust to make sure it is based on the start from
6609 * the caller
6610 */
6611 if (hole_em) {
6612 u64 calc_end = extent_map_end(hole_em);
6613
6614 if (calc_end <= start || (hole_em->start > end)) {
6615 free_extent_map(hole_em);
6616 hole_em = NULL;
6617 } else {
6618 hole_start = max(hole_em->start, start);
6619 hole_len = calc_end - hole_start;
6620 }
6621 }
6622 em->bdev = NULL;
6623 if (hole_em && range_start > hole_start) {
6624 /* our hole starts before our delalloc, so we
6625 * have to return just the parts of the hole
6626 * that go until the delalloc starts
6627 */
6628 em->len = min(hole_len,
6629 range_start - hole_start);
6630 em->start = hole_start;
6631 em->orig_start = hole_start;
6632 /*
6633 * don't adjust block start at all,
6634 * it is fixed at EXTENT_MAP_HOLE
6635 */
6636 em->block_start = hole_em->block_start;
6637 em->block_len = hole_len;
6638 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6639 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6640 } else {
6641 em->start = range_start;
6642 em->len = found;
6643 em->orig_start = range_start;
6644 em->block_start = EXTENT_MAP_DELALLOC;
6645 em->block_len = found;
6646 }
6647 } else if (hole_em) {
6648 return hole_em;
6649 }
6650out:
6651
6652 free_extent_map(hole_em);
6653 if (err) {
6654 free_extent_map(em);
6655 return ERR_PTR(err);
6656 }
6657 return em;
6658}
6659
6660static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6661 u64 start, u64 len)
6662{
6663 struct btrfs_root *root = BTRFS_I(inode)->root;
6664 struct extent_map *em;
6665 struct btrfs_key ins;
6666 u64 alloc_hint;
6667 int ret;
6668
6669 alloc_hint = get_extent_allocation_hint(inode, start, len);
6670 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6671 alloc_hint, &ins, 1, 1);
6672 if (ret)
6673 return ERR_PTR(ret);
6674
6675 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6676 ins.offset, ins.offset, ins.offset, 0);
6677 if (IS_ERR(em)) {
6678 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6679 return em;
6680 }
6681
6682 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6683 ins.offset, ins.offset, 0);
6684 if (ret) {
6685 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6686 free_extent_map(em);
6687 return ERR_PTR(ret);
6688 }
6689
6690 return em;
6691}
6692
6693/*
6694 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6695 * block must be cow'd
6696 */
6697noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6698 u64 *orig_start, u64 *orig_block_len,
6699 u64 *ram_bytes)
6700{
6701 struct btrfs_trans_handle *trans;
6702 struct btrfs_path *path;
6703 int ret;
6704 struct extent_buffer *leaf;
6705 struct btrfs_root *root = BTRFS_I(inode)->root;
6706 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6707 struct btrfs_file_extent_item *fi;
6708 struct btrfs_key key;
6709 u64 disk_bytenr;
6710 u64 backref_offset;
6711 u64 extent_end;
6712 u64 num_bytes;
6713 int slot;
6714 int found_type;
6715 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6716
6717 path = btrfs_alloc_path();
6718 if (!path)
6719 return -ENOMEM;
6720
6721 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6722 offset, 0);
6723 if (ret < 0)
6724 goto out;
6725
6726 slot = path->slots[0];
6727 if (ret == 1) {
6728 if (slot == 0) {
6729 /* can't find the item, must cow */
6730 ret = 0;
6731 goto out;
6732 }
6733 slot--;
6734 }
6735 ret = 0;
6736 leaf = path->nodes[0];
6737 btrfs_item_key_to_cpu(leaf, &key, slot);
6738 if (key.objectid != btrfs_ino(inode) ||
6739 key.type != BTRFS_EXTENT_DATA_KEY) {
6740 /* not our file or wrong item type, must cow */
6741 goto out;
6742 }
6743
6744 if (key.offset > offset) {
6745 /* Wrong offset, must cow */
6746 goto out;
6747 }
6748
6749 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6750 found_type = btrfs_file_extent_type(leaf, fi);
6751 if (found_type != BTRFS_FILE_EXTENT_REG &&
6752 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6753 /* not a regular extent, must cow */
6754 goto out;
6755 }
6756
6757 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6758 goto out;
6759
6760 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6761 if (extent_end <= offset)
6762 goto out;
6763
6764 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6765 if (disk_bytenr == 0)
6766 goto out;
6767
6768 if (btrfs_file_extent_compression(leaf, fi) ||
6769 btrfs_file_extent_encryption(leaf, fi) ||
6770 btrfs_file_extent_other_encoding(leaf, fi))
6771 goto out;
6772
6773 backref_offset = btrfs_file_extent_offset(leaf, fi);
6774
6775 if (orig_start) {
6776 *orig_start = key.offset - backref_offset;
6777 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6778 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6779 }
6780
6781 if (btrfs_extent_readonly(root, disk_bytenr))
6782 goto out;
6783
6784 num_bytes = min(offset + *len, extent_end) - offset;
6785 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6786 u64 range_end;
6787
6788 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6789 ret = test_range_bit(io_tree, offset, range_end,
6790 EXTENT_DELALLOC, 0, NULL);
6791 if (ret) {
6792 ret = -EAGAIN;
6793 goto out;
6794 }
6795 }
6796
6797 btrfs_release_path(path);
6798
6799 /*
6800 * look for other files referencing this extent, if we
6801 * find any we must cow
6802 */
6803 trans = btrfs_join_transaction(root);
6804 if (IS_ERR(trans)) {
6805 ret = 0;
6806 goto out;
6807 }
6808
6809 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6810 key.offset - backref_offset, disk_bytenr);
6811 btrfs_end_transaction(trans, root);
6812 if (ret) {
6813 ret = 0;
6814 goto out;
6815 }
6816
6817 /*
6818 * adjust disk_bytenr and num_bytes to cover just the bytes
6819 * in this extent we are about to write. If there
6820 * are any csums in that range we have to cow in order
6821 * to keep the csums correct
6822 */
6823 disk_bytenr += backref_offset;
6824 disk_bytenr += offset - key.offset;
6825 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6826 goto out;
6827 /*
6828 * all of the above have passed, it is safe to overwrite this extent
6829 * without cow
6830 */
6831 *len = num_bytes;
6832 ret = 1;
6833out:
6834 btrfs_free_path(path);
6835 return ret;
6836}
6837
6838bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
6839{
6840 struct radix_tree_root *root = &inode->i_mapping->page_tree;
6841 int found = false;
6842 void **pagep = NULL;
6843 struct page *page = NULL;
6844 int start_idx;
6845 int end_idx;
6846
6847 start_idx = start >> PAGE_CACHE_SHIFT;
6848
6849 /*
6850 * end is the last byte in the last page. end == start is legal
6851 */
6852 end_idx = end >> PAGE_CACHE_SHIFT;
6853
6854 rcu_read_lock();
6855
6856 /* Most of the code in this while loop is lifted from
6857 * find_get_page. It's been modified to begin searching from a
6858 * page and return just the first page found in that range. If the
6859 * found idx is less than or equal to the end idx then we know that
6860 * a page exists. If no pages are found or if those pages are
6861 * outside of the range then we're fine (yay!) */
6862 while (page == NULL &&
6863 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
6864 page = radix_tree_deref_slot(pagep);
6865 if (unlikely(!page))
6866 break;
6867
6868 if (radix_tree_exception(page)) {
6869 if (radix_tree_deref_retry(page)) {
6870 page = NULL;
6871 continue;
6872 }
6873 /*
6874 * Otherwise, shmem/tmpfs must be storing a swap entry
6875 * here as an exceptional entry: so return it without
6876 * attempting to raise page count.
6877 */
6878 page = NULL;
6879 break; /* TODO: Is this relevant for this use case? */
6880 }
6881
6882 if (!page_cache_get_speculative(page)) {
6883 page = NULL;
6884 continue;
6885 }
6886
6887 /*
6888 * Has the page moved?
6889 * This is part of the lockless pagecache protocol. See
6890 * include/linux/pagemap.h for details.
6891 */
6892 if (unlikely(page != *pagep)) {
6893 page_cache_release(page);
6894 page = NULL;
6895 }
6896 }
6897
6898 if (page) {
6899 if (page->index <= end_idx)
6900 found = true;
6901 page_cache_release(page);
6902 }
6903
6904 rcu_read_unlock();
6905 return found;
6906}
6907
6908static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6909 struct extent_state **cached_state, int writing)
6910{
6911 struct btrfs_ordered_extent *ordered;
6912 int ret = 0;
6913
6914 while (1) {
6915 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6916 0, cached_state);
6917 /*
6918 * We're concerned with the entire range that we're going to be
6919 * doing DIO to, so we need to make sure theres no ordered
6920 * extents in this range.
6921 */
6922 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6923 lockend - lockstart + 1);
6924
6925 /*
6926 * We need to make sure there are no buffered pages in this
6927 * range either, we could have raced between the invalidate in
6928 * generic_file_direct_write and locking the extent. The
6929 * invalidate needs to happen so that reads after a write do not
6930 * get stale data.
6931 */
6932 if (!ordered &&
6933 (!writing ||
6934 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
6935 break;
6936
6937 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6938 cached_state, GFP_NOFS);
6939
6940 if (ordered) {
6941 btrfs_start_ordered_extent(inode, ordered, 1);
6942 btrfs_put_ordered_extent(ordered);
6943 } else {
6944 /* Screw you mmap */
6945 ret = filemap_write_and_wait_range(inode->i_mapping,
6946 lockstart,
6947 lockend);
6948 if (ret)
6949 break;
6950
6951 /*
6952 * If we found a page that couldn't be invalidated just
6953 * fall back to buffered.
6954 */
6955 ret = invalidate_inode_pages2_range(inode->i_mapping,
6956 lockstart >> PAGE_CACHE_SHIFT,
6957 lockend >> PAGE_CACHE_SHIFT);
6958 if (ret)
6959 break;
6960 }
6961
6962 cond_resched();
6963 }
6964
6965 return ret;
6966}
6967
6968static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6969 u64 len, u64 orig_start,
6970 u64 block_start, u64 block_len,
6971 u64 orig_block_len, u64 ram_bytes,
6972 int type)
6973{
6974 struct extent_map_tree *em_tree;
6975 struct extent_map *em;
6976 struct btrfs_root *root = BTRFS_I(inode)->root;
6977 int ret;
6978
6979 em_tree = &BTRFS_I(inode)->extent_tree;
6980 em = alloc_extent_map();
6981 if (!em)
6982 return ERR_PTR(-ENOMEM);
6983
6984 em->start = start;
6985 em->orig_start = orig_start;
6986 em->mod_start = start;
6987 em->mod_len = len;
6988 em->len = len;
6989 em->block_len = block_len;
6990 em->block_start = block_start;
6991 em->bdev = root->fs_info->fs_devices->latest_bdev;
6992 em->orig_block_len = orig_block_len;
6993 em->ram_bytes = ram_bytes;
6994 em->generation = -1;
6995 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6996 if (type == BTRFS_ORDERED_PREALLOC)
6997 set_bit(EXTENT_FLAG_FILLING, &em->flags);
6998
6999 do {
7000 btrfs_drop_extent_cache(inode, em->start,
7001 em->start + em->len - 1, 0);
7002 write_lock(&em_tree->lock);
7003 ret = add_extent_mapping(em_tree, em, 1);
7004 write_unlock(&em_tree->lock);
7005 } while (ret == -EEXIST);
7006
7007 if (ret) {
7008 free_extent_map(em);
7009 return ERR_PTR(ret);
7010 }
7011
7012 return em;
7013}
7014
7015
7016static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7017 struct buffer_head *bh_result, int create)
7018{
7019 struct extent_map *em;
7020 struct btrfs_root *root = BTRFS_I(inode)->root;
7021 struct extent_state *cached_state = NULL;
7022 u64 start = iblock << inode->i_blkbits;
7023 u64 lockstart, lockend;
7024 u64 len = bh_result->b_size;
7025 int unlock_bits = EXTENT_LOCKED;
7026 int ret = 0;
7027
7028 if (create)
7029 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
7030 else
7031 len = min_t(u64, len, root->sectorsize);
7032
7033 lockstart = start;
7034 lockend = start + len - 1;
7035
7036 /*
7037 * If this errors out it's because we couldn't invalidate pagecache for
7038 * this range and we need to fallback to buffered.
7039 */
7040 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7041 return -ENOTBLK;
7042
7043 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7044 if (IS_ERR(em)) {
7045 ret = PTR_ERR(em);
7046 goto unlock_err;
7047 }
7048
7049 /*
7050 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7051 * io. INLINE is special, and we could probably kludge it in here, but
7052 * it's still buffered so for safety lets just fall back to the generic
7053 * buffered path.
7054 *
7055 * For COMPRESSED we _have_ to read the entire extent in so we can
7056 * decompress it, so there will be buffering required no matter what we
7057 * do, so go ahead and fallback to buffered.
7058 *
7059 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7060 * to buffered IO. Don't blame me, this is the price we pay for using
7061 * the generic code.
7062 */
7063 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7064 em->block_start == EXTENT_MAP_INLINE) {
7065 free_extent_map(em);
7066 ret = -ENOTBLK;
7067 goto unlock_err;
7068 }
7069
7070 /* Just a good old fashioned hole, return */
7071 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7072 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7073 free_extent_map(em);
7074 goto unlock_err;
7075 }
7076
7077 /*
7078 * We don't allocate a new extent in the following cases
7079 *
7080 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7081 * existing extent.
7082 * 2) The extent is marked as PREALLOC. We're good to go here and can
7083 * just use the extent.
7084 *
7085 */
7086 if (!create) {
7087 len = min(len, em->len - (start - em->start));
7088 lockstart = start + len;
7089 goto unlock;
7090 }
7091
7092 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7093 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7094 em->block_start != EXTENT_MAP_HOLE)) {
7095 int type;
7096 int ret;
7097 u64 block_start, orig_start, orig_block_len, ram_bytes;
7098
7099 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7100 type = BTRFS_ORDERED_PREALLOC;
7101 else
7102 type = BTRFS_ORDERED_NOCOW;
7103 len = min(len, em->len - (start - em->start));
7104 block_start = em->block_start + (start - em->start);
7105
7106 if (can_nocow_extent(inode, start, &len, &orig_start,
7107 &orig_block_len, &ram_bytes) == 1) {
7108 if (type == BTRFS_ORDERED_PREALLOC) {
7109 free_extent_map(em);
7110 em = create_pinned_em(inode, start, len,
7111 orig_start,
7112 block_start, len,
7113 orig_block_len,
7114 ram_bytes, type);
7115 if (IS_ERR(em))
7116 goto unlock_err;
7117 }
7118
7119 ret = btrfs_add_ordered_extent_dio(inode, start,
7120 block_start, len, len, type);
7121 if (ret) {
7122 free_extent_map(em);
7123 goto unlock_err;
7124 }
7125 goto unlock;
7126 }
7127 }
7128
7129 /*
7130 * this will cow the extent, reset the len in case we changed
7131 * it above
7132 */
7133 len = bh_result->b_size;
7134 free_extent_map(em);
7135 em = btrfs_new_extent_direct(inode, start, len);
7136 if (IS_ERR(em)) {
7137 ret = PTR_ERR(em);
7138 goto unlock_err;
7139 }
7140 len = min(len, em->len - (start - em->start));
7141unlock:
7142 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7143 inode->i_blkbits;
7144 bh_result->b_size = len;
7145 bh_result->b_bdev = em->bdev;
7146 set_buffer_mapped(bh_result);
7147 if (create) {
7148 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7149 set_buffer_new(bh_result);
7150
7151 /*
7152 * Need to update the i_size under the extent lock so buffered
7153 * readers will get the updated i_size when we unlock.
7154 */
7155 if (start + len > i_size_read(inode))
7156 i_size_write(inode, start + len);
7157
7158 spin_lock(&BTRFS_I(inode)->lock);
7159 BTRFS_I(inode)->outstanding_extents++;
7160 spin_unlock(&BTRFS_I(inode)->lock);
7161
7162 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7163 lockstart + len - 1, EXTENT_DELALLOC, NULL,
7164 &cached_state, GFP_NOFS);
7165 BUG_ON(ret);
7166 }
7167
7168 /*
7169 * In the case of write we need to clear and unlock the entire range,
7170 * in the case of read we need to unlock only the end area that we
7171 * aren't using if there is any left over space.
7172 */
7173 if (lockstart < lockend) {
7174 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7175 lockend, unlock_bits, 1, 0,
7176 &cached_state, GFP_NOFS);
7177 } else {
7178 free_extent_state(cached_state);
7179 }
7180
7181 free_extent_map(em);
7182
7183 return 0;
7184
7185unlock_err:
7186 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7187 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7188 return ret;
7189}
7190
7191static void btrfs_endio_direct_read(struct bio *bio, int err)
7192{
7193 struct btrfs_dio_private *dip = bio->bi_private;
7194 struct bio_vec *bvec;
7195 struct inode *inode = dip->inode;
7196 struct btrfs_root *root = BTRFS_I(inode)->root;
7197 struct bio *dio_bio;
7198 u32 *csums = (u32 *)dip->csum;
7199 u64 start;
7200 int i;
7201
7202 start = dip->logical_offset;
7203 bio_for_each_segment_all(bvec, bio, i) {
7204 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
7205 struct page *page = bvec->bv_page;
7206 char *kaddr;
7207 u32 csum = ~(u32)0;
7208 unsigned long flags;
7209
7210 local_irq_save(flags);
7211 kaddr = kmap_atomic(page);
7212 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
7213 csum, bvec->bv_len);
7214 btrfs_csum_final(csum, (char *)&csum);
7215 kunmap_atomic(kaddr);
7216 local_irq_restore(flags);
7217
7218 flush_dcache_page(bvec->bv_page);
7219 if (csum != csums[i]) {
7220 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
7221 btrfs_ino(inode), start, csum,
7222 csums[i]);
7223 err = -EIO;
7224 }
7225 }
7226
7227 start += bvec->bv_len;
7228 }
7229
7230 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7231 dip->logical_offset + dip->bytes - 1);
7232 dio_bio = dip->dio_bio;
7233
7234 kfree(dip);
7235
7236 /* If we had a csum failure make sure to clear the uptodate flag */
7237 if (err)
7238 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7239 dio_end_io(dio_bio, err);
7240 bio_put(bio);
7241}
7242
7243static void btrfs_endio_direct_write(struct bio *bio, int err)
7244{
7245 struct btrfs_dio_private *dip = bio->bi_private;
7246 struct inode *inode = dip->inode;
7247 struct btrfs_root *root = BTRFS_I(inode)->root;
7248 struct btrfs_ordered_extent *ordered = NULL;
7249 u64 ordered_offset = dip->logical_offset;
7250 u64 ordered_bytes = dip->bytes;
7251 struct bio *dio_bio;
7252 int ret;
7253
7254 if (err)
7255 goto out_done;
7256again:
7257 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7258 &ordered_offset,
7259 ordered_bytes, !err);
7260 if (!ret)
7261 goto out_test;
7262
7263 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7264 finish_ordered_fn, NULL, NULL);
7265 btrfs_queue_work(root->fs_info->endio_write_workers,
7266 &ordered->work);
7267out_test:
7268 /*
7269 * our bio might span multiple ordered extents. If we haven't
7270 * completed the accounting for the whole dio, go back and try again
7271 */
7272 if (ordered_offset < dip->logical_offset + dip->bytes) {
7273 ordered_bytes = dip->logical_offset + dip->bytes -
7274 ordered_offset;
7275 ordered = NULL;
7276 goto again;
7277 }
7278out_done:
7279 dio_bio = dip->dio_bio;
7280
7281 kfree(dip);
7282
7283 /* If we had an error make sure to clear the uptodate flag */
7284 if (err)
7285 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7286 dio_end_io(dio_bio, err);
7287 bio_put(bio);
7288}
7289
7290static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7291 struct bio *bio, int mirror_num,
7292 unsigned long bio_flags, u64 offset)
7293{
7294 int ret;
7295 struct btrfs_root *root = BTRFS_I(inode)->root;
7296 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7297 BUG_ON(ret); /* -ENOMEM */
7298 return 0;
7299}
7300
7301static void btrfs_end_dio_bio(struct bio *bio, int err)
7302{
7303 struct btrfs_dio_private *dip = bio->bi_private;
7304
7305 if (err) {
7306 btrfs_err(BTRFS_I(dip->inode)->root->fs_info,
7307 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7308 btrfs_ino(dip->inode), bio->bi_rw,
7309 (unsigned long long)bio->bi_iter.bi_sector,
7310 bio->bi_iter.bi_size, err);
7311 dip->errors = 1;
7312
7313 /*
7314 * before atomic variable goto zero, we must make sure
7315 * dip->errors is perceived to be set.
7316 */
7317 smp_mb__before_atomic();
7318 }
7319
7320 /* if there are more bios still pending for this dio, just exit */
7321 if (!atomic_dec_and_test(&dip->pending_bios))
7322 goto out;
7323
7324 if (dip->errors) {
7325 bio_io_error(dip->orig_bio);
7326 } else {
7327 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7328 bio_endio(dip->orig_bio, 0);
7329 }
7330out:
7331 bio_put(bio);
7332}
7333
7334static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7335 u64 first_sector, gfp_t gfp_flags)
7336{
7337 int nr_vecs = bio_get_nr_vecs(bdev);
7338 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7339}
7340
7341static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7342 int rw, u64 file_offset, int skip_sum,
7343 int async_submit)
7344{
7345 struct btrfs_dio_private *dip = bio->bi_private;
7346 int write = rw & REQ_WRITE;
7347 struct btrfs_root *root = BTRFS_I(inode)->root;
7348 int ret;
7349
7350 if (async_submit)
7351 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7352
7353 bio_get(bio);
7354
7355 if (!write) {
7356 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7357 if (ret)
7358 goto err;
7359 }
7360
7361 if (skip_sum)
7362 goto map;
7363
7364 if (write && async_submit) {
7365 ret = btrfs_wq_submit_bio(root->fs_info,
7366 inode, rw, bio, 0, 0,
7367 file_offset,
7368 __btrfs_submit_bio_start_direct_io,
7369 __btrfs_submit_bio_done);
7370 goto err;
7371 } else if (write) {
7372 /*
7373 * If we aren't doing async submit, calculate the csum of the
7374 * bio now.
7375 */
7376 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7377 if (ret)
7378 goto err;
7379 } else if (!skip_sum) {
7380 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
7381 file_offset);
7382 if (ret)
7383 goto err;
7384 }
7385
7386map:
7387 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7388err:
7389 bio_put(bio);
7390 return ret;
7391}
7392
7393static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7394 int skip_sum)
7395{
7396 struct inode *inode = dip->inode;
7397 struct btrfs_root *root = BTRFS_I(inode)->root;
7398 struct bio *bio;
7399 struct bio *orig_bio = dip->orig_bio;
7400 struct bio_vec *bvec = orig_bio->bi_io_vec;
7401 u64 start_sector = orig_bio->bi_iter.bi_sector;
7402 u64 file_offset = dip->logical_offset;
7403 u64 submit_len = 0;
7404 u64 map_length;
7405 int nr_pages = 0;
7406 int ret = 0;
7407 int async_submit = 0;
7408
7409 map_length = orig_bio->bi_iter.bi_size;
7410 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7411 &map_length, NULL, 0);
7412 if (ret)
7413 return -EIO;
7414
7415 if (map_length >= orig_bio->bi_iter.bi_size) {
7416 bio = orig_bio;
7417 goto submit;
7418 }
7419
7420 /* async crcs make it difficult to collect full stripe writes. */
7421 if (btrfs_get_alloc_profile(root, 1) &
7422 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7423 async_submit = 0;
7424 else
7425 async_submit = 1;
7426
7427 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7428 if (!bio)
7429 return -ENOMEM;
7430
7431 bio->bi_private = dip;
7432 bio->bi_end_io = btrfs_end_dio_bio;
7433 atomic_inc(&dip->pending_bios);
7434
7435 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7436 if (unlikely(map_length < submit_len + bvec->bv_len ||
7437 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7438 bvec->bv_offset) < bvec->bv_len)) {
7439 /*
7440 * inc the count before we submit the bio so
7441 * we know the end IO handler won't happen before
7442 * we inc the count. Otherwise, the dip might get freed
7443 * before we're done setting it up
7444 */
7445 atomic_inc(&dip->pending_bios);
7446 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7447 file_offset, skip_sum,
7448 async_submit);
7449 if (ret) {
7450 bio_put(bio);
7451 atomic_dec(&dip->pending_bios);
7452 goto out_err;
7453 }
7454
7455 start_sector += submit_len >> 9;
7456 file_offset += submit_len;
7457
7458 submit_len = 0;
7459 nr_pages = 0;
7460
7461 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7462 start_sector, GFP_NOFS);
7463 if (!bio)
7464 goto out_err;
7465 bio->bi_private = dip;
7466 bio->bi_end_io = btrfs_end_dio_bio;
7467
7468 map_length = orig_bio->bi_iter.bi_size;
7469 ret = btrfs_map_block(root->fs_info, rw,
7470 start_sector << 9,
7471 &map_length, NULL, 0);
7472 if (ret) {
7473 bio_put(bio);
7474 goto out_err;
7475 }
7476 } else {
7477 submit_len += bvec->bv_len;
7478 nr_pages++;
7479 bvec++;
7480 }
7481 }
7482
7483submit:
7484 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7485 async_submit);
7486 if (!ret)
7487 return 0;
7488
7489 bio_put(bio);
7490out_err:
7491 dip->errors = 1;
7492 /*
7493 * before atomic variable goto zero, we must
7494 * make sure dip->errors is perceived to be set.
7495 */
7496 smp_mb__before_atomic();
7497 if (atomic_dec_and_test(&dip->pending_bios))
7498 bio_io_error(dip->orig_bio);
7499
7500 /* bio_end_io() will handle error, so we needn't return it */
7501 return 0;
7502}
7503
7504static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7505 struct inode *inode, loff_t file_offset)
7506{
7507 struct btrfs_root *root = BTRFS_I(inode)->root;
7508 struct btrfs_dio_private *dip;
7509 struct bio *io_bio;
7510 int skip_sum;
7511 int sum_len;
7512 int write = rw & REQ_WRITE;
7513 int ret = 0;
7514 u16 csum_size;
7515
7516 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7517
7518 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7519 if (!io_bio) {
7520 ret = -ENOMEM;
7521 goto free_ordered;
7522 }
7523
7524 if (!skip_sum && !write) {
7525 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7526 sum_len = dio_bio->bi_iter.bi_size >>
7527 inode->i_sb->s_blocksize_bits;
7528 sum_len *= csum_size;
7529 } else {
7530 sum_len = 0;
7531 }
7532
7533 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
7534 if (!dip) {
7535 ret = -ENOMEM;
7536 goto free_io_bio;
7537 }
7538
7539 dip->private = dio_bio->bi_private;
7540 dip->inode = inode;
7541 dip->logical_offset = file_offset;
7542 dip->bytes = dio_bio->bi_iter.bi_size;
7543 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7544 io_bio->bi_private = dip;
7545 dip->errors = 0;
7546 dip->orig_bio = io_bio;
7547 dip->dio_bio = dio_bio;
7548 atomic_set(&dip->pending_bios, 0);
7549
7550 if (write)
7551 io_bio->bi_end_io = btrfs_endio_direct_write;
7552 else
7553 io_bio->bi_end_io = btrfs_endio_direct_read;
7554
7555 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7556 if (!ret)
7557 return;
7558
7559free_io_bio:
7560 bio_put(io_bio);
7561
7562free_ordered:
7563 /*
7564 * If this is a write, we need to clean up the reserved space and kill
7565 * the ordered extent.
7566 */
7567 if (write) {
7568 struct btrfs_ordered_extent *ordered;
7569 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7570 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7571 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7572 btrfs_free_reserved_extent(root, ordered->start,
7573 ordered->disk_len, 1);
7574 btrfs_put_ordered_extent(ordered);
7575 btrfs_put_ordered_extent(ordered);
7576 }
7577 bio_endio(dio_bio, ret);
7578}
7579
7580static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7581 const struct iov_iter *iter, loff_t offset)
7582{
7583 int seg;
7584 int i;
7585 unsigned blocksize_mask = root->sectorsize - 1;
7586 ssize_t retval = -EINVAL;
7587
7588 if (offset & blocksize_mask)
7589 goto out;
7590
7591 if (iov_iter_alignment(iter) & blocksize_mask)
7592 goto out;
7593
7594 /* If this is a write we don't need to check anymore */
7595 if (rw & WRITE)
7596 return 0;
7597 /*
7598 * Check to make sure we don't have duplicate iov_base's in this
7599 * iovec, if so return EINVAL, otherwise we'll get csum errors
7600 * when reading back.
7601 */
7602 for (seg = 0; seg < iter->nr_segs; seg++) {
7603 for (i = seg + 1; i < iter->nr_segs; i++) {
7604 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7605 goto out;
7606 }
7607 }
7608 retval = 0;
7609out:
7610 return retval;
7611}
7612
7613static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7614 struct iov_iter *iter, loff_t offset)
7615{
7616 struct file *file = iocb->ki_filp;
7617 struct inode *inode = file->f_mapping->host;
7618 size_t count = 0;
7619 int flags = 0;
7620 bool wakeup = true;
7621 bool relock = false;
7622 ssize_t ret;
7623
7624 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
7625 return 0;
7626
7627 atomic_inc(&inode->i_dio_count);
7628 smp_mb__after_atomic();
7629
7630 /*
7631 * The generic stuff only does filemap_write_and_wait_range, which
7632 * isn't enough if we've written compressed pages to this area, so
7633 * we need to flush the dirty pages again to make absolutely sure
7634 * that any outstanding dirty pages are on disk.
7635 */
7636 count = iov_iter_count(iter);
7637 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7638 &BTRFS_I(inode)->runtime_flags))
7639 filemap_fdatawrite_range(inode->i_mapping, offset,
7640 offset + count - 1);
7641
7642 if (rw & WRITE) {
7643 /*
7644 * If the write DIO is beyond the EOF, we need update
7645 * the isize, but it is protected by i_mutex. So we can
7646 * not unlock the i_mutex at this case.
7647 */
7648 if (offset + count <= inode->i_size) {
7649 mutex_unlock(&inode->i_mutex);
7650 relock = true;
7651 }
7652 ret = btrfs_delalloc_reserve_space(inode, count);
7653 if (ret)
7654 goto out;
7655 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7656 &BTRFS_I(inode)->runtime_flags))) {
7657 inode_dio_done(inode);
7658 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7659 wakeup = false;
7660 }
7661
7662 ret = __blockdev_direct_IO(rw, iocb, inode,
7663 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7664 iter, offset, btrfs_get_blocks_direct, NULL,
7665 btrfs_submit_direct, flags);
7666 if (rw & WRITE) {
7667 if (ret < 0 && ret != -EIOCBQUEUED)
7668 btrfs_delalloc_release_space(inode, count);
7669 else if (ret >= 0 && (size_t)ret < count)
7670 btrfs_delalloc_release_space(inode,
7671 count - (size_t)ret);
7672 else
7673 btrfs_delalloc_release_metadata(inode, 0);
7674 }
7675out:
7676 if (wakeup)
7677 inode_dio_done(inode);
7678 if (relock)
7679 mutex_lock(&inode->i_mutex);
7680
7681 return ret;
7682}
7683
7684#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7685
7686static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7687 __u64 start, __u64 len)
7688{
7689 int ret;
7690
7691 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7692 if (ret)
7693 return ret;
7694
7695 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
7696}
7697
7698int btrfs_readpage(struct file *file, struct page *page)
7699{
7700 struct extent_io_tree *tree;
7701 tree = &BTRFS_I(page->mapping->host)->io_tree;
7702 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
7703}
7704
7705static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
7706{
7707 struct extent_io_tree *tree;
7708
7709
7710 if (current->flags & PF_MEMALLOC) {
7711 redirty_page_for_writepage(wbc, page);
7712 unlock_page(page);
7713 return 0;
7714 }
7715 tree = &BTRFS_I(page->mapping->host)->io_tree;
7716 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
7717}
7718
7719static int btrfs_writepages(struct address_space *mapping,
7720 struct writeback_control *wbc)
7721{
7722 struct extent_io_tree *tree;
7723
7724 tree = &BTRFS_I(mapping->host)->io_tree;
7725 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7726}
7727
7728static int
7729btrfs_readpages(struct file *file, struct address_space *mapping,
7730 struct list_head *pages, unsigned nr_pages)
7731{
7732 struct extent_io_tree *tree;
7733 tree = &BTRFS_I(mapping->host)->io_tree;
7734 return extent_readpages(tree, mapping, pages, nr_pages,
7735 btrfs_get_extent);
7736}
7737static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7738{
7739 struct extent_io_tree *tree;
7740 struct extent_map_tree *map;
7741 int ret;
7742
7743 tree = &BTRFS_I(page->mapping->host)->io_tree;
7744 map = &BTRFS_I(page->mapping->host)->extent_tree;
7745 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
7746 if (ret == 1) {
7747 ClearPagePrivate(page);
7748 set_page_private(page, 0);
7749 page_cache_release(page);
7750 }
7751 return ret;
7752}
7753
7754static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7755{
7756 if (PageWriteback(page) || PageDirty(page))
7757 return 0;
7758 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
7759}
7760
7761static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7762 unsigned int length)
7763{
7764 struct inode *inode = page->mapping->host;
7765 struct extent_io_tree *tree;
7766 struct btrfs_ordered_extent *ordered;
7767 struct extent_state *cached_state = NULL;
7768 u64 page_start = page_offset(page);
7769 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
7770 int inode_evicting = inode->i_state & I_FREEING;
7771
7772 /*
7773 * we have the page locked, so new writeback can't start,
7774 * and the dirty bit won't be cleared while we are here.
7775 *
7776 * Wait for IO on this page so that we can safely clear
7777 * the PagePrivate2 bit and do ordered accounting
7778 */
7779 wait_on_page_writeback(page);
7780
7781 tree = &BTRFS_I(inode)->io_tree;
7782 if (offset) {
7783 btrfs_releasepage(page, GFP_NOFS);
7784 return;
7785 }
7786
7787 if (!inode_evicting)
7788 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7789 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7790 if (ordered) {
7791 /*
7792 * IO on this page will never be started, so we need
7793 * to account for any ordered extents now
7794 */
7795 if (!inode_evicting)
7796 clear_extent_bit(tree, page_start, page_end,
7797 EXTENT_DIRTY | EXTENT_DELALLOC |
7798 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7799 EXTENT_DEFRAG, 1, 0, &cached_state,
7800 GFP_NOFS);
7801 /*
7802 * whoever cleared the private bit is responsible
7803 * for the finish_ordered_io
7804 */
7805 if (TestClearPagePrivate2(page)) {
7806 struct btrfs_ordered_inode_tree *tree;
7807 u64 new_len;
7808
7809 tree = &BTRFS_I(inode)->ordered_tree;
7810
7811 spin_lock_irq(&tree->lock);
7812 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7813 new_len = page_start - ordered->file_offset;
7814 if (new_len < ordered->truncated_len)
7815 ordered->truncated_len = new_len;
7816 spin_unlock_irq(&tree->lock);
7817
7818 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7819 page_start,
7820 PAGE_CACHE_SIZE, 1))
7821 btrfs_finish_ordered_io(ordered);
7822 }
7823 btrfs_put_ordered_extent(ordered);
7824 if (!inode_evicting) {
7825 cached_state = NULL;
7826 lock_extent_bits(tree, page_start, page_end, 0,
7827 &cached_state);
7828 }
7829 }
7830
7831 if (!inode_evicting) {
7832 clear_extent_bit(tree, page_start, page_end,
7833 EXTENT_LOCKED | EXTENT_DIRTY |
7834 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7835 EXTENT_DEFRAG, 1, 1,
7836 &cached_state, GFP_NOFS);
7837
7838 __btrfs_releasepage(page, GFP_NOFS);
7839 }
7840
7841 ClearPageChecked(page);
7842 if (PagePrivate(page)) {
7843 ClearPagePrivate(page);
7844 set_page_private(page, 0);
7845 page_cache_release(page);
7846 }
7847}
7848
7849/*
7850 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7851 * called from a page fault handler when a page is first dirtied. Hence we must
7852 * be careful to check for EOF conditions here. We set the page up correctly
7853 * for a written page which means we get ENOSPC checking when writing into
7854 * holes and correct delalloc and unwritten extent mapping on filesystems that
7855 * support these features.
7856 *
7857 * We are not allowed to take the i_mutex here so we have to play games to
7858 * protect against truncate races as the page could now be beyond EOF. Because
7859 * vmtruncate() writes the inode size before removing pages, once we have the
7860 * page lock we can determine safely if the page is beyond EOF. If it is not
7861 * beyond EOF, then the page is guaranteed safe against truncation until we
7862 * unlock the page.
7863 */
7864int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
7865{
7866 struct page *page = vmf->page;
7867 struct inode *inode = file_inode(vma->vm_file);
7868 struct btrfs_root *root = BTRFS_I(inode)->root;
7869 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7870 struct btrfs_ordered_extent *ordered;
7871 struct extent_state *cached_state = NULL;
7872 char *kaddr;
7873 unsigned long zero_start;
7874 loff_t size;
7875 int ret;
7876 int reserved = 0;
7877 u64 page_start;
7878 u64 page_end;
7879
7880 sb_start_pagefault(inode->i_sb);
7881 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
7882 if (!ret) {
7883 ret = file_update_time(vma->vm_file);
7884 reserved = 1;
7885 }
7886 if (ret) {
7887 if (ret == -ENOMEM)
7888 ret = VM_FAULT_OOM;
7889 else /* -ENOSPC, -EIO, etc */
7890 ret = VM_FAULT_SIGBUS;
7891 if (reserved)
7892 goto out;
7893 goto out_noreserve;
7894 }
7895
7896 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
7897again:
7898 lock_page(page);
7899 size = i_size_read(inode);
7900 page_start = page_offset(page);
7901 page_end = page_start + PAGE_CACHE_SIZE - 1;
7902
7903 if ((page->mapping != inode->i_mapping) ||
7904 (page_start >= size)) {
7905 /* page got truncated out from underneath us */
7906 goto out_unlock;
7907 }
7908 wait_on_page_writeback(page);
7909
7910 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
7911 set_page_extent_mapped(page);
7912
7913 /*
7914 * we can't set the delalloc bits if there are pending ordered
7915 * extents. Drop our locks and wait for them to finish
7916 */
7917 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7918 if (ordered) {
7919 unlock_extent_cached(io_tree, page_start, page_end,
7920 &cached_state, GFP_NOFS);
7921 unlock_page(page);
7922 btrfs_start_ordered_extent(inode, ordered, 1);
7923 btrfs_put_ordered_extent(ordered);
7924 goto again;
7925 }
7926
7927 /*
7928 * XXX - page_mkwrite gets called every time the page is dirtied, even
7929 * if it was already dirty, so for space accounting reasons we need to
7930 * clear any delalloc bits for the range we are fixing to save. There
7931 * is probably a better way to do this, but for now keep consistent with
7932 * prepare_pages in the normal write path.
7933 */
7934 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
7935 EXTENT_DIRTY | EXTENT_DELALLOC |
7936 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
7937 0, 0, &cached_state, GFP_NOFS);
7938
7939 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7940 &cached_state);
7941 if (ret) {
7942 unlock_extent_cached(io_tree, page_start, page_end,
7943 &cached_state, GFP_NOFS);
7944 ret = VM_FAULT_SIGBUS;
7945 goto out_unlock;
7946 }
7947 ret = 0;
7948
7949 /* page is wholly or partially inside EOF */
7950 if (page_start + PAGE_CACHE_SIZE > size)
7951 zero_start = size & ~PAGE_CACHE_MASK;
7952 else
7953 zero_start = PAGE_CACHE_SIZE;
7954
7955 if (zero_start != PAGE_CACHE_SIZE) {
7956 kaddr = kmap(page);
7957 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7958 flush_dcache_page(page);
7959 kunmap(page);
7960 }
7961 ClearPageChecked(page);
7962 set_page_dirty(page);
7963 SetPageUptodate(page);
7964
7965 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7966 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
7967 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
7968
7969 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
7970
7971out_unlock:
7972 if (!ret) {
7973 sb_end_pagefault(inode->i_sb);
7974 return VM_FAULT_LOCKED;
7975 }
7976 unlock_page(page);
7977out:
7978 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
7979out_noreserve:
7980 sb_end_pagefault(inode->i_sb);
7981 return ret;
7982}
7983
7984static int btrfs_truncate(struct inode *inode)
7985{
7986 struct btrfs_root *root = BTRFS_I(inode)->root;
7987 struct btrfs_block_rsv *rsv;
7988 int ret = 0;
7989 int err = 0;
7990 struct btrfs_trans_handle *trans;
7991 u64 mask = root->sectorsize - 1;
7992 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
7993
7994 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
7995 (u64)-1);
7996 if (ret)
7997 return ret;
7998
7999 /*
8000 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8001 * 3 things going on here
8002 *
8003 * 1) We need to reserve space for our orphan item and the space to
8004 * delete our orphan item. Lord knows we don't want to have a dangling
8005 * orphan item because we didn't reserve space to remove it.
8006 *
8007 * 2) We need to reserve space to update our inode.
8008 *
8009 * 3) We need to have something to cache all the space that is going to
8010 * be free'd up by the truncate operation, but also have some slack
8011 * space reserved in case it uses space during the truncate (thank you
8012 * very much snapshotting).
8013 *
8014 * And we need these to all be seperate. The fact is we can use alot of
8015 * space doing the truncate, and we have no earthly idea how much space
8016 * we will use, so we need the truncate reservation to be seperate so it
8017 * doesn't end up using space reserved for updating the inode or
8018 * removing the orphan item. We also need to be able to stop the
8019 * transaction and start a new one, which means we need to be able to
8020 * update the inode several times, and we have no idea of knowing how
8021 * many times that will be, so we can't just reserve 1 item for the
8022 * entirety of the opration, so that has to be done seperately as well.
8023 * Then there is the orphan item, which does indeed need to be held on
8024 * to for the whole operation, and we need nobody to touch this reserved
8025 * space except the orphan code.
8026 *
8027 * So that leaves us with
8028 *
8029 * 1) root->orphan_block_rsv - for the orphan deletion.
8030 * 2) rsv - for the truncate reservation, which we will steal from the
8031 * transaction reservation.
8032 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8033 * updating the inode.
8034 */
8035 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8036 if (!rsv)
8037 return -ENOMEM;
8038 rsv->size = min_size;
8039 rsv->failfast = 1;
8040
8041 /*
8042 * 1 for the truncate slack space
8043 * 1 for updating the inode.
8044 */
8045 trans = btrfs_start_transaction(root, 2);
8046 if (IS_ERR(trans)) {
8047 err = PTR_ERR(trans);
8048 goto out;
8049 }
8050
8051 /* Migrate the slack space for the truncate to our reserve */
8052 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8053 min_size);
8054 BUG_ON(ret);
8055
8056 /*
8057 * So if we truncate and then write and fsync we normally would just
8058 * write the extents that changed, which is a problem if we need to
8059 * first truncate that entire inode. So set this flag so we write out
8060 * all of the extents in the inode to the sync log so we're completely
8061 * safe.
8062 */
8063 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8064 trans->block_rsv = rsv;
8065
8066 while (1) {
8067 ret = btrfs_truncate_inode_items(trans, root, inode,
8068 inode->i_size,
8069 BTRFS_EXTENT_DATA_KEY);
8070 if (ret != -ENOSPC) {
8071 err = ret;
8072 break;
8073 }
8074
8075 trans->block_rsv = &root->fs_info->trans_block_rsv;
8076 ret = btrfs_update_inode(trans, root, inode);
8077 if (ret) {
8078 err = ret;
8079 break;
8080 }
8081
8082 btrfs_end_transaction(trans, root);
8083 btrfs_btree_balance_dirty(root);
8084
8085 trans = btrfs_start_transaction(root, 2);
8086 if (IS_ERR(trans)) {
8087 ret = err = PTR_ERR(trans);
8088 trans = NULL;
8089 break;
8090 }
8091
8092 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8093 rsv, min_size);
8094 BUG_ON(ret); /* shouldn't happen */
8095 trans->block_rsv = rsv;
8096 }
8097
8098 if (ret == 0 && inode->i_nlink > 0) {
8099 trans->block_rsv = root->orphan_block_rsv;
8100 ret = btrfs_orphan_del(trans, inode);
8101 if (ret)
8102 err = ret;
8103 }
8104
8105 if (trans) {
8106 trans->block_rsv = &root->fs_info->trans_block_rsv;
8107 ret = btrfs_update_inode(trans, root, inode);
8108 if (ret && !err)
8109 err = ret;
8110
8111 ret = btrfs_end_transaction(trans, root);
8112 btrfs_btree_balance_dirty(root);
8113 }
8114
8115out:
8116 btrfs_free_block_rsv(root, rsv);
8117
8118 if (ret && !err)
8119 err = ret;
8120
8121 return err;
8122}
8123
8124/*
8125 * create a new subvolume directory/inode (helper for the ioctl).
8126 */
8127int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8128 struct btrfs_root *new_root,
8129 struct btrfs_root *parent_root,
8130 u64 new_dirid)
8131{
8132 struct inode *inode;
8133 int err;
8134 u64 index = 0;
8135
8136 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8137 new_dirid, new_dirid,
8138 S_IFDIR | (~current_umask() & S_IRWXUGO),
8139 &index);
8140 if (IS_ERR(inode))
8141 return PTR_ERR(inode);
8142 inode->i_op = &btrfs_dir_inode_operations;
8143 inode->i_fop = &btrfs_dir_file_operations;
8144
8145 set_nlink(inode, 1);
8146 btrfs_i_size_write(inode, 0);
8147 unlock_new_inode(inode);
8148
8149 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8150 if (err)
8151 btrfs_err(new_root->fs_info,
8152 "error inheriting subvolume %llu properties: %d",
8153 new_root->root_key.objectid, err);
8154
8155 err = btrfs_update_inode(trans, new_root, inode);
8156
8157 iput(inode);
8158 return err;
8159}
8160
8161struct inode *btrfs_alloc_inode(struct super_block *sb)
8162{
8163 struct btrfs_inode *ei;
8164 struct inode *inode;
8165
8166 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8167 if (!ei)
8168 return NULL;
8169
8170 ei->root = NULL;
8171 ei->generation = 0;
8172 ei->last_trans = 0;
8173 ei->last_sub_trans = 0;
8174 ei->logged_trans = 0;
8175 ei->delalloc_bytes = 0;
8176 ei->disk_i_size = 0;
8177 ei->flags = 0;
8178 ei->csum_bytes = 0;
8179 ei->index_cnt = (u64)-1;
8180 ei->dir_index = 0;
8181 ei->last_unlink_trans = 0;
8182 ei->last_log_commit = 0;
8183
8184 spin_lock_init(&ei->lock);
8185 ei->outstanding_extents = 0;
8186 ei->reserved_extents = 0;
8187
8188 ei->runtime_flags = 0;
8189 ei->force_compress = BTRFS_COMPRESS_NONE;
8190
8191 ei->delayed_node = NULL;
8192
8193 inode = &ei->vfs_inode;
8194 extent_map_tree_init(&ei->extent_tree);
8195 extent_io_tree_init(&ei->io_tree, &inode->i_data);
8196 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8197 ei->io_tree.track_uptodate = 1;
8198 ei->io_failure_tree.track_uptodate = 1;
8199 atomic_set(&ei->sync_writers, 0);
8200 mutex_init(&ei->log_mutex);
8201 mutex_init(&ei->delalloc_mutex);
8202 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8203 INIT_LIST_HEAD(&ei->delalloc_inodes);
8204 RB_CLEAR_NODE(&ei->rb_node);
8205
8206 return inode;
8207}
8208
8209#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8210void btrfs_test_destroy_inode(struct inode *inode)
8211{
8212 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8213 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8214}
8215#endif
8216
8217static void btrfs_i_callback(struct rcu_head *head)
8218{
8219 struct inode *inode = container_of(head, struct inode, i_rcu);
8220 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8221}
8222
8223void btrfs_destroy_inode(struct inode *inode)
8224{
8225 struct btrfs_ordered_extent *ordered;
8226 struct btrfs_root *root = BTRFS_I(inode)->root;
8227
8228 WARN_ON(!hlist_empty(&inode->i_dentry));
8229 WARN_ON(inode->i_data.nrpages);
8230 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8231 WARN_ON(BTRFS_I(inode)->reserved_extents);
8232 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8233 WARN_ON(BTRFS_I(inode)->csum_bytes);
8234
8235 /*
8236 * This can happen where we create an inode, but somebody else also
8237 * created the same inode and we need to destroy the one we already
8238 * created.
8239 */
8240 if (!root)
8241 goto free;
8242
8243 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8244 &BTRFS_I(inode)->runtime_flags)) {
8245 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8246 btrfs_ino(inode));
8247 atomic_dec(&root->orphan_inodes);
8248 }
8249
8250 while (1) {
8251 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8252 if (!ordered)
8253 break;
8254 else {
8255 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8256 ordered->file_offset, ordered->len);
8257 btrfs_remove_ordered_extent(inode, ordered);
8258 btrfs_put_ordered_extent(ordered);
8259 btrfs_put_ordered_extent(ordered);
8260 }
8261 }
8262 inode_tree_del(inode);
8263 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8264free:
8265 call_rcu(&inode->i_rcu, btrfs_i_callback);
8266}
8267
8268int btrfs_drop_inode(struct inode *inode)
8269{
8270 struct btrfs_root *root = BTRFS_I(inode)->root;
8271
8272 if (root == NULL)
8273 return 1;
8274
8275 /* the snap/subvol tree is on deleting */
8276 if (btrfs_root_refs(&root->root_item) == 0)
8277 return 1;
8278 else
8279 return generic_drop_inode(inode);
8280}
8281
8282static void init_once(void *foo)
8283{
8284 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8285
8286 inode_init_once(&ei->vfs_inode);
8287}
8288
8289void btrfs_destroy_cachep(void)
8290{
8291 /*
8292 * Make sure all delayed rcu free inodes are flushed before we
8293 * destroy cache.
8294 */
8295 rcu_barrier();
8296 if (btrfs_inode_cachep)
8297 kmem_cache_destroy(btrfs_inode_cachep);
8298 if (btrfs_trans_handle_cachep)
8299 kmem_cache_destroy(btrfs_trans_handle_cachep);
8300 if (btrfs_transaction_cachep)
8301 kmem_cache_destroy(btrfs_transaction_cachep);
8302 if (btrfs_path_cachep)
8303 kmem_cache_destroy(btrfs_path_cachep);
8304 if (btrfs_free_space_cachep)
8305 kmem_cache_destroy(btrfs_free_space_cachep);
8306 if (btrfs_delalloc_work_cachep)
8307 kmem_cache_destroy(btrfs_delalloc_work_cachep);
8308}
8309
8310int btrfs_init_cachep(void)
8311{
8312 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8313 sizeof(struct btrfs_inode), 0,
8314 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8315 if (!btrfs_inode_cachep)
8316 goto fail;
8317
8318 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8319 sizeof(struct btrfs_trans_handle), 0,
8320 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8321 if (!btrfs_trans_handle_cachep)
8322 goto fail;
8323
8324 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8325 sizeof(struct btrfs_transaction), 0,
8326 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8327 if (!btrfs_transaction_cachep)
8328 goto fail;
8329
8330 btrfs_path_cachep = kmem_cache_create("btrfs_path",
8331 sizeof(struct btrfs_path), 0,
8332 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8333 if (!btrfs_path_cachep)
8334 goto fail;
8335
8336 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8337 sizeof(struct btrfs_free_space), 0,
8338 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8339 if (!btrfs_free_space_cachep)
8340 goto fail;
8341
8342 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8343 sizeof(struct btrfs_delalloc_work), 0,
8344 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8345 NULL);
8346 if (!btrfs_delalloc_work_cachep)
8347 goto fail;
8348
8349 return 0;
8350fail:
8351 btrfs_destroy_cachep();
8352 return -ENOMEM;
8353}
8354
8355static int btrfs_getattr(struct vfsmount *mnt,
8356 struct dentry *dentry, struct kstat *stat)
8357{
8358 u64 delalloc_bytes;
8359 struct inode *inode = dentry->d_inode;
8360 u32 blocksize = inode->i_sb->s_blocksize;
8361
8362 generic_fillattr(inode, stat);
8363 stat->dev = BTRFS_I(inode)->root->anon_dev;
8364 stat->blksize = PAGE_CACHE_SIZE;
8365
8366 spin_lock(&BTRFS_I(inode)->lock);
8367 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8368 spin_unlock(&BTRFS_I(inode)->lock);
8369 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8370 ALIGN(delalloc_bytes, blocksize)) >> 9;
8371 return 0;
8372}
8373
8374static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8375 struct inode *new_dir, struct dentry *new_dentry)
8376{
8377 struct btrfs_trans_handle *trans;
8378 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8379 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8380 struct inode *new_inode = new_dentry->d_inode;
8381 struct inode *old_inode = old_dentry->d_inode;
8382 struct timespec ctime = CURRENT_TIME;
8383 u64 index = 0;
8384 u64 root_objectid;
8385 int ret;
8386 u64 old_ino = btrfs_ino(old_inode);
8387
8388 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8389 return -EPERM;
8390
8391 /* we only allow rename subvolume link between subvolumes */
8392 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8393 return -EXDEV;
8394
8395 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8396 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8397 return -ENOTEMPTY;
8398
8399 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8400 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8401 return -ENOTEMPTY;
8402
8403
8404 /* check for collisions, even if the name isn't there */
8405 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
8406 new_dentry->d_name.name,
8407 new_dentry->d_name.len);
8408
8409 if (ret) {
8410 if (ret == -EEXIST) {
8411 /* we shouldn't get
8412 * eexist without a new_inode */
8413 if (WARN_ON(!new_inode)) {
8414 return ret;
8415 }
8416 } else {
8417 /* maybe -EOVERFLOW */
8418 return ret;
8419 }
8420 }
8421 ret = 0;
8422
8423 /*
8424 * we're using rename to replace one file with another. Start IO on it
8425 * now so we don't add too much work to the end of the transaction
8426 */
8427 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8428 filemap_flush(old_inode->i_mapping);
8429
8430 /* close the racy window with snapshot create/destroy ioctl */
8431 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8432 down_read(&root->fs_info->subvol_sem);
8433 /*
8434 * We want to reserve the absolute worst case amount of items. So if
8435 * both inodes are subvols and we need to unlink them then that would
8436 * require 4 item modifications, but if they are both normal inodes it
8437 * would require 5 item modifications, so we'll assume their normal
8438 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8439 * should cover the worst case number of items we'll modify.
8440 */
8441 trans = btrfs_start_transaction(root, 11);
8442 if (IS_ERR(trans)) {
8443 ret = PTR_ERR(trans);
8444 goto out_notrans;
8445 }
8446
8447 if (dest != root)
8448 btrfs_record_root_in_trans(trans, dest);
8449
8450 ret = btrfs_set_inode_index(new_dir, &index);
8451 if (ret)
8452 goto out_fail;
8453
8454 BTRFS_I(old_inode)->dir_index = 0ULL;
8455 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8456 /* force full log commit if subvolume involved. */
8457 btrfs_set_log_full_commit(root->fs_info, trans);
8458 } else {
8459 ret = btrfs_insert_inode_ref(trans, dest,
8460 new_dentry->d_name.name,
8461 new_dentry->d_name.len,
8462 old_ino,
8463 btrfs_ino(new_dir), index);
8464 if (ret)
8465 goto out_fail;
8466 /*
8467 * this is an ugly little race, but the rename is required
8468 * to make sure that if we crash, the inode is either at the
8469 * old name or the new one. pinning the log transaction lets
8470 * us make sure we don't allow a log commit to come in after
8471 * we unlink the name but before we add the new name back in.
8472 */
8473 btrfs_pin_log_trans(root);
8474 }
8475
8476 inode_inc_iversion(old_dir);
8477 inode_inc_iversion(new_dir);
8478 inode_inc_iversion(old_inode);
8479 old_dir->i_ctime = old_dir->i_mtime = ctime;
8480 new_dir->i_ctime = new_dir->i_mtime = ctime;
8481 old_inode->i_ctime = ctime;
8482
8483 if (old_dentry->d_parent != new_dentry->d_parent)
8484 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8485
8486 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8487 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8488 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8489 old_dentry->d_name.name,
8490 old_dentry->d_name.len);
8491 } else {
8492 ret = __btrfs_unlink_inode(trans, root, old_dir,
8493 old_dentry->d_inode,
8494 old_dentry->d_name.name,
8495 old_dentry->d_name.len);
8496 if (!ret)
8497 ret = btrfs_update_inode(trans, root, old_inode);
8498 }
8499 if (ret) {
8500 btrfs_abort_transaction(trans, root, ret);
8501 goto out_fail;
8502 }
8503
8504 if (new_inode) {
8505 inode_inc_iversion(new_inode);
8506 new_inode->i_ctime = CURRENT_TIME;
8507 if (unlikely(btrfs_ino(new_inode) ==
8508 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8509 root_objectid = BTRFS_I(new_inode)->location.objectid;
8510 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8511 root_objectid,
8512 new_dentry->d_name.name,
8513 new_dentry->d_name.len);
8514 BUG_ON(new_inode->i_nlink == 0);
8515 } else {
8516 ret = btrfs_unlink_inode(trans, dest, new_dir,
8517 new_dentry->d_inode,
8518 new_dentry->d_name.name,
8519 new_dentry->d_name.len);
8520 }
8521 if (!ret && new_inode->i_nlink == 0)
8522 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8523 if (ret) {
8524 btrfs_abort_transaction(trans, root, ret);
8525 goto out_fail;
8526 }
8527 }
8528
8529 ret = btrfs_add_link(trans, new_dir, old_inode,
8530 new_dentry->d_name.name,
8531 new_dentry->d_name.len, 0, index);
8532 if (ret) {
8533 btrfs_abort_transaction(trans, root, ret);
8534 goto out_fail;
8535 }
8536
8537 if (old_inode->i_nlink == 1)
8538 BTRFS_I(old_inode)->dir_index = index;
8539
8540 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8541 struct dentry *parent = new_dentry->d_parent;
8542 btrfs_log_new_name(trans, old_inode, old_dir, parent);
8543 btrfs_end_log_trans(root);
8544 }
8545out_fail:
8546 btrfs_end_transaction(trans, root);
8547out_notrans:
8548 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8549 up_read(&root->fs_info->subvol_sem);
8550
8551 return ret;
8552}
8553
8554static void btrfs_run_delalloc_work(struct btrfs_work *work)
8555{
8556 struct btrfs_delalloc_work *delalloc_work;
8557 struct inode *inode;
8558
8559 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8560 work);
8561 inode = delalloc_work->inode;
8562 if (delalloc_work->wait) {
8563 btrfs_wait_ordered_range(inode, 0, (u64)-1);
8564 } else {
8565 filemap_flush(inode->i_mapping);
8566 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8567 &BTRFS_I(inode)->runtime_flags))
8568 filemap_flush(inode->i_mapping);
8569 }
8570
8571 if (delalloc_work->delay_iput)
8572 btrfs_add_delayed_iput(inode);
8573 else
8574 iput(inode);
8575 complete(&delalloc_work->completion);
8576}
8577
8578struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8579 int wait, int delay_iput)
8580{
8581 struct btrfs_delalloc_work *work;
8582
8583 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8584 if (!work)
8585 return NULL;
8586
8587 init_completion(&work->completion);
8588 INIT_LIST_HEAD(&work->list);
8589 work->inode = inode;
8590 work->wait = wait;
8591 work->delay_iput = delay_iput;
8592 WARN_ON_ONCE(!inode);
8593 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
8594 btrfs_run_delalloc_work, NULL, NULL);
8595
8596 return work;
8597}
8598
8599void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8600{
8601 wait_for_completion(&work->completion);
8602 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8603}
8604
8605/*
8606 * some fairly slow code that needs optimization. This walks the list
8607 * of all the inodes with pending delalloc and forces them to disk.
8608 */
8609static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
8610 int nr)
8611{
8612 struct btrfs_inode *binode;
8613 struct inode *inode;
8614 struct btrfs_delalloc_work *work, *next;
8615 struct list_head works;
8616 struct list_head splice;
8617 int ret = 0;
8618
8619 INIT_LIST_HEAD(&works);
8620 INIT_LIST_HEAD(&splice);
8621
8622 mutex_lock(&root->delalloc_mutex);
8623 spin_lock(&root->delalloc_lock);
8624 list_splice_init(&root->delalloc_inodes, &splice);
8625 while (!list_empty(&splice)) {
8626 binode = list_entry(splice.next, struct btrfs_inode,
8627 delalloc_inodes);
8628
8629 list_move_tail(&binode->delalloc_inodes,
8630 &root->delalloc_inodes);
8631 inode = igrab(&binode->vfs_inode);
8632 if (!inode) {
8633 cond_resched_lock(&root->delalloc_lock);
8634 continue;
8635 }
8636 spin_unlock(&root->delalloc_lock);
8637
8638 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8639 if (unlikely(!work)) {
8640 if (delay_iput)
8641 btrfs_add_delayed_iput(inode);
8642 else
8643 iput(inode);
8644 ret = -ENOMEM;
8645 goto out;
8646 }
8647 list_add_tail(&work->list, &works);
8648 btrfs_queue_work(root->fs_info->flush_workers,
8649 &work->work);
8650 ret++;
8651 if (nr != -1 && ret >= nr)
8652 goto out;
8653 cond_resched();
8654 spin_lock(&root->delalloc_lock);
8655 }
8656 spin_unlock(&root->delalloc_lock);
8657
8658out:
8659 list_for_each_entry_safe(work, next, &works, list) {
8660 list_del_init(&work->list);
8661 btrfs_wait_and_free_delalloc_work(work);
8662 }
8663
8664 if (!list_empty_careful(&splice)) {
8665 spin_lock(&root->delalloc_lock);
8666 list_splice_tail(&splice, &root->delalloc_inodes);
8667 spin_unlock(&root->delalloc_lock);
8668 }
8669 mutex_unlock(&root->delalloc_mutex);
8670 return ret;
8671}
8672
8673int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8674{
8675 int ret;
8676
8677 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
8678 return -EROFS;
8679
8680 ret = __start_delalloc_inodes(root, delay_iput, -1);
8681 if (ret > 0)
8682 ret = 0;
8683 /*
8684 * the filemap_flush will queue IO into the worker threads, but
8685 * we have to make sure the IO is actually started and that
8686 * ordered extents get created before we return
8687 */
8688 atomic_inc(&root->fs_info->async_submit_draining);
8689 while (atomic_read(&root->fs_info->nr_async_submits) ||
8690 atomic_read(&root->fs_info->async_delalloc_pages)) {
8691 wait_event(root->fs_info->async_submit_wait,
8692 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8693 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8694 }
8695 atomic_dec(&root->fs_info->async_submit_draining);
8696 return ret;
8697}
8698
8699int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
8700 int nr)
8701{
8702 struct btrfs_root *root;
8703 struct list_head splice;
8704 int ret;
8705
8706 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
8707 return -EROFS;
8708
8709 INIT_LIST_HEAD(&splice);
8710
8711 mutex_lock(&fs_info->delalloc_root_mutex);
8712 spin_lock(&fs_info->delalloc_root_lock);
8713 list_splice_init(&fs_info->delalloc_roots, &splice);
8714 while (!list_empty(&splice) && nr) {
8715 root = list_first_entry(&splice, struct btrfs_root,
8716 delalloc_root);
8717 root = btrfs_grab_fs_root(root);
8718 BUG_ON(!root);
8719 list_move_tail(&root->delalloc_root,
8720 &fs_info->delalloc_roots);
8721 spin_unlock(&fs_info->delalloc_root_lock);
8722
8723 ret = __start_delalloc_inodes(root, delay_iput, nr);
8724 btrfs_put_fs_root(root);
8725 if (ret < 0)
8726 goto out;
8727
8728 if (nr != -1) {
8729 nr -= ret;
8730 WARN_ON(nr < 0);
8731 }
8732 spin_lock(&fs_info->delalloc_root_lock);
8733 }
8734 spin_unlock(&fs_info->delalloc_root_lock);
8735
8736 ret = 0;
8737 atomic_inc(&fs_info->async_submit_draining);
8738 while (atomic_read(&fs_info->nr_async_submits) ||
8739 atomic_read(&fs_info->async_delalloc_pages)) {
8740 wait_event(fs_info->async_submit_wait,
8741 (atomic_read(&fs_info->nr_async_submits) == 0 &&
8742 atomic_read(&fs_info->async_delalloc_pages) == 0));
8743 }
8744 atomic_dec(&fs_info->async_submit_draining);
8745out:
8746 if (!list_empty_careful(&splice)) {
8747 spin_lock(&fs_info->delalloc_root_lock);
8748 list_splice_tail(&splice, &fs_info->delalloc_roots);
8749 spin_unlock(&fs_info->delalloc_root_lock);
8750 }
8751 mutex_unlock(&fs_info->delalloc_root_mutex);
8752 return ret;
8753}
8754
8755static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8756 const char *symname)
8757{
8758 struct btrfs_trans_handle *trans;
8759 struct btrfs_root *root = BTRFS_I(dir)->root;
8760 struct btrfs_path *path;
8761 struct btrfs_key key;
8762 struct inode *inode = NULL;
8763 int err;
8764 int drop_inode = 0;
8765 u64 objectid;
8766 u64 index = 0;
8767 int name_len;
8768 int datasize;
8769 unsigned long ptr;
8770 struct btrfs_file_extent_item *ei;
8771 struct extent_buffer *leaf;
8772
8773 name_len = strlen(symname);
8774 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8775 return -ENAMETOOLONG;
8776
8777 /*
8778 * 2 items for inode item and ref
8779 * 2 items for dir items
8780 * 1 item for xattr if selinux is on
8781 */
8782 trans = btrfs_start_transaction(root, 5);
8783 if (IS_ERR(trans))
8784 return PTR_ERR(trans);
8785
8786 err = btrfs_find_free_ino(root, &objectid);
8787 if (err)
8788 goto out_unlock;
8789
8790 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
8791 dentry->d_name.len, btrfs_ino(dir), objectid,
8792 S_IFLNK|S_IRWXUGO, &index);
8793 if (IS_ERR(inode)) {
8794 err = PTR_ERR(inode);
8795 goto out_unlock;
8796 }
8797
8798 /*
8799 * If the active LSM wants to access the inode during
8800 * d_instantiate it needs these. Smack checks to see
8801 * if the filesystem supports xattrs by looking at the
8802 * ops vector.
8803 */
8804 inode->i_fop = &btrfs_file_operations;
8805 inode->i_op = &btrfs_file_inode_operations;
8806 inode->i_mapping->a_ops = &btrfs_aops;
8807 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8808 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8809
8810 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
8811 if (err)
8812 goto out_unlock_inode;
8813
8814 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
8815 if (err)
8816 goto out_unlock_inode;
8817
8818 path = btrfs_alloc_path();
8819 if (!path) {
8820 err = -ENOMEM;
8821 goto out_unlock_inode;
8822 }
8823 key.objectid = btrfs_ino(inode);
8824 key.offset = 0;
8825 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8826 datasize = btrfs_file_extent_calc_inline_size(name_len);
8827 err = btrfs_insert_empty_item(trans, root, path, &key,
8828 datasize);
8829 if (err) {
8830 btrfs_free_path(path);
8831 goto out_unlock_inode;
8832 }
8833 leaf = path->nodes[0];
8834 ei = btrfs_item_ptr(leaf, path->slots[0],
8835 struct btrfs_file_extent_item);
8836 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8837 btrfs_set_file_extent_type(leaf, ei,
8838 BTRFS_FILE_EXTENT_INLINE);
8839 btrfs_set_file_extent_encryption(leaf, ei, 0);
8840 btrfs_set_file_extent_compression(leaf, ei, 0);
8841 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8842 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8843
8844 ptr = btrfs_file_extent_inline_start(ei);
8845 write_extent_buffer(leaf, symname, ptr, name_len);
8846 btrfs_mark_buffer_dirty(leaf);
8847 btrfs_free_path(path);
8848
8849 inode->i_op = &btrfs_symlink_inode_operations;
8850 inode->i_mapping->a_ops = &btrfs_symlink_aops;
8851 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8852 inode_set_bytes(inode, name_len);
8853 btrfs_i_size_write(inode, name_len);
8854 err = btrfs_update_inode(trans, root, inode);
8855 if (err) {
8856 drop_inode = 1;
8857 goto out_unlock_inode;
8858 }
8859
8860 unlock_new_inode(inode);
8861 d_instantiate(dentry, inode);
8862
8863out_unlock:
8864 btrfs_end_transaction(trans, root);
8865 if (drop_inode) {
8866 inode_dec_link_count(inode);
8867 iput(inode);
8868 }
8869 btrfs_btree_balance_dirty(root);
8870 return err;
8871
8872out_unlock_inode:
8873 drop_inode = 1;
8874 unlock_new_inode(inode);
8875 goto out_unlock;
8876}
8877
8878static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8879 u64 start, u64 num_bytes, u64 min_size,
8880 loff_t actual_len, u64 *alloc_hint,
8881 struct btrfs_trans_handle *trans)
8882{
8883 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8884 struct extent_map *em;
8885 struct btrfs_root *root = BTRFS_I(inode)->root;
8886 struct btrfs_key ins;
8887 u64 cur_offset = start;
8888 u64 i_size;
8889 u64 cur_bytes;
8890 int ret = 0;
8891 bool own_trans = true;
8892
8893 if (trans)
8894 own_trans = false;
8895 while (num_bytes > 0) {
8896 if (own_trans) {
8897 trans = btrfs_start_transaction(root, 3);
8898 if (IS_ERR(trans)) {
8899 ret = PTR_ERR(trans);
8900 break;
8901 }
8902 }
8903
8904 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8905 cur_bytes = max(cur_bytes, min_size);
8906 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
8907 *alloc_hint, &ins, 1, 0);
8908 if (ret) {
8909 if (own_trans)
8910 btrfs_end_transaction(trans, root);
8911 break;
8912 }
8913
8914 ret = insert_reserved_file_extent(trans, inode,
8915 cur_offset, ins.objectid,
8916 ins.offset, ins.offset,
8917 ins.offset, 0, 0, 0,
8918 BTRFS_FILE_EXTENT_PREALLOC);
8919 if (ret) {
8920 btrfs_free_reserved_extent(root, ins.objectid,
8921 ins.offset, 0);
8922 btrfs_abort_transaction(trans, root, ret);
8923 if (own_trans)
8924 btrfs_end_transaction(trans, root);
8925 break;
8926 }
8927 btrfs_drop_extent_cache(inode, cur_offset,
8928 cur_offset + ins.offset -1, 0);
8929
8930 em = alloc_extent_map();
8931 if (!em) {
8932 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8933 &BTRFS_I(inode)->runtime_flags);
8934 goto next;
8935 }
8936
8937 em->start = cur_offset;
8938 em->orig_start = cur_offset;
8939 em->len = ins.offset;
8940 em->block_start = ins.objectid;
8941 em->block_len = ins.offset;
8942 em->orig_block_len = ins.offset;
8943 em->ram_bytes = ins.offset;
8944 em->bdev = root->fs_info->fs_devices->latest_bdev;
8945 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8946 em->generation = trans->transid;
8947
8948 while (1) {
8949 write_lock(&em_tree->lock);
8950 ret = add_extent_mapping(em_tree, em, 1);
8951 write_unlock(&em_tree->lock);
8952 if (ret != -EEXIST)
8953 break;
8954 btrfs_drop_extent_cache(inode, cur_offset,
8955 cur_offset + ins.offset - 1,
8956 0);
8957 }
8958 free_extent_map(em);
8959next:
8960 num_bytes -= ins.offset;
8961 cur_offset += ins.offset;
8962 *alloc_hint = ins.objectid + ins.offset;
8963
8964 inode_inc_iversion(inode);
8965 inode->i_ctime = CURRENT_TIME;
8966 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8967 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8968 (actual_len > inode->i_size) &&
8969 (cur_offset > inode->i_size)) {
8970 if (cur_offset > actual_len)
8971 i_size = actual_len;
8972 else
8973 i_size = cur_offset;
8974 i_size_write(inode, i_size);
8975 btrfs_ordered_update_i_size(inode, i_size, NULL);
8976 }
8977
8978 ret = btrfs_update_inode(trans, root, inode);
8979
8980 if (ret) {
8981 btrfs_abort_transaction(trans, root, ret);
8982 if (own_trans)
8983 btrfs_end_transaction(trans, root);
8984 break;
8985 }
8986
8987 if (own_trans)
8988 btrfs_end_transaction(trans, root);
8989 }
8990 return ret;
8991}
8992
8993int btrfs_prealloc_file_range(struct inode *inode, int mode,
8994 u64 start, u64 num_bytes, u64 min_size,
8995 loff_t actual_len, u64 *alloc_hint)
8996{
8997 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8998 min_size, actual_len, alloc_hint,
8999 NULL);
9000}
9001
9002int btrfs_prealloc_file_range_trans(struct inode *inode,
9003 struct btrfs_trans_handle *trans, int mode,
9004 u64 start, u64 num_bytes, u64 min_size,
9005 loff_t actual_len, u64 *alloc_hint)
9006{
9007 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9008 min_size, actual_len, alloc_hint, trans);
9009}
9010
9011static int btrfs_set_page_dirty(struct page *page)
9012{
9013 return __set_page_dirty_nobuffers(page);
9014}
9015
9016static int btrfs_permission(struct inode *inode, int mask)
9017{
9018 struct btrfs_root *root = BTRFS_I(inode)->root;
9019 umode_t mode = inode->i_mode;
9020
9021 if (mask & MAY_WRITE &&
9022 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9023 if (btrfs_root_readonly(root))
9024 return -EROFS;
9025 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9026 return -EACCES;
9027 }
9028 return generic_permission(inode, mask);
9029}
9030
9031static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9032{
9033 struct btrfs_trans_handle *trans;
9034 struct btrfs_root *root = BTRFS_I(dir)->root;
9035 struct inode *inode = NULL;
9036 u64 objectid;
9037 u64 index;
9038 int ret = 0;
9039
9040 /*
9041 * 5 units required for adding orphan entry
9042 */
9043 trans = btrfs_start_transaction(root, 5);
9044 if (IS_ERR(trans))
9045 return PTR_ERR(trans);
9046
9047 ret = btrfs_find_free_ino(root, &objectid);
9048 if (ret)
9049 goto out;
9050
9051 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9052 btrfs_ino(dir), objectid, mode, &index);
9053 if (IS_ERR(inode)) {
9054 ret = PTR_ERR(inode);
9055 inode = NULL;
9056 goto out;
9057 }
9058
9059 inode->i_fop = &btrfs_file_operations;
9060 inode->i_op = &btrfs_file_inode_operations;
9061
9062 inode->i_mapping->a_ops = &btrfs_aops;
9063 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9064 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9065
9066 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9067 if (ret)
9068 goto out_inode;
9069
9070 ret = btrfs_update_inode(trans, root, inode);
9071 if (ret)
9072 goto out_inode;
9073 ret = btrfs_orphan_add(trans, inode);
9074 if (ret)
9075 goto out_inode;
9076
9077 /*
9078 * We set number of links to 0 in btrfs_new_inode(), and here we set
9079 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9080 * through:
9081 *
9082 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9083 */
9084 set_nlink(inode, 1);
9085 unlock_new_inode(inode);
9086 d_tmpfile(dentry, inode);
9087 mark_inode_dirty(inode);
9088
9089out:
9090 btrfs_end_transaction(trans, root);
9091 if (ret)
9092 iput(inode);
9093 btrfs_balance_delayed_items(root);
9094 btrfs_btree_balance_dirty(root);
9095 return ret;
9096
9097out_inode:
9098 unlock_new_inode(inode);
9099 goto out;
9100
9101}
9102
9103static const struct inode_operations btrfs_dir_inode_operations = {
9104 .getattr = btrfs_getattr,
9105 .lookup = btrfs_lookup,
9106 .create = btrfs_create,
9107 .unlink = btrfs_unlink,
9108 .link = btrfs_link,
9109 .mkdir = btrfs_mkdir,
9110 .rmdir = btrfs_rmdir,
9111 .rename = btrfs_rename,
9112 .symlink = btrfs_symlink,
9113 .setattr = btrfs_setattr,
9114 .mknod = btrfs_mknod,
9115 .setxattr = btrfs_setxattr,
9116 .getxattr = btrfs_getxattr,
9117 .listxattr = btrfs_listxattr,
9118 .removexattr = btrfs_removexattr,
9119 .permission = btrfs_permission,
9120 .get_acl = btrfs_get_acl,
9121 .set_acl = btrfs_set_acl,
9122 .update_time = btrfs_update_time,
9123 .tmpfile = btrfs_tmpfile,
9124};
9125static const struct inode_operations btrfs_dir_ro_inode_operations = {
9126 .lookup = btrfs_lookup,
9127 .permission = btrfs_permission,
9128 .get_acl = btrfs_get_acl,
9129 .set_acl = btrfs_set_acl,
9130 .update_time = btrfs_update_time,
9131};
9132
9133static const struct file_operations btrfs_dir_file_operations = {
9134 .llseek = generic_file_llseek,
9135 .read = generic_read_dir,
9136 .iterate = btrfs_real_readdir,
9137 .unlocked_ioctl = btrfs_ioctl,
9138#ifdef CONFIG_COMPAT
9139 .compat_ioctl = btrfs_ioctl,
9140#endif
9141 .release = btrfs_release_file,
9142 .fsync = btrfs_sync_file,
9143};
9144
9145static struct extent_io_ops btrfs_extent_io_ops = {
9146 .fill_delalloc = run_delalloc_range,
9147 .submit_bio_hook = btrfs_submit_bio_hook,
9148 .merge_bio_hook = btrfs_merge_bio_hook,
9149 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
9150 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
9151 .writepage_start_hook = btrfs_writepage_start_hook,
9152 .set_bit_hook = btrfs_set_bit_hook,
9153 .clear_bit_hook = btrfs_clear_bit_hook,
9154 .merge_extent_hook = btrfs_merge_extent_hook,
9155 .split_extent_hook = btrfs_split_extent_hook,
9156};
9157
9158/*
9159 * btrfs doesn't support the bmap operation because swapfiles
9160 * use bmap to make a mapping of extents in the file. They assume
9161 * these extents won't change over the life of the file and they
9162 * use the bmap result to do IO directly to the drive.
9163 *
9164 * the btrfs bmap call would return logical addresses that aren't
9165 * suitable for IO and they also will change frequently as COW
9166 * operations happen. So, swapfile + btrfs == corruption.
9167 *
9168 * For now we're avoiding this by dropping bmap.
9169 */
9170static const struct address_space_operations btrfs_aops = {
9171 .readpage = btrfs_readpage,
9172 .writepage = btrfs_writepage,
9173 .writepages = btrfs_writepages,
9174 .readpages = btrfs_readpages,
9175 .direct_IO = btrfs_direct_IO,
9176 .invalidatepage = btrfs_invalidatepage,
9177 .releasepage = btrfs_releasepage,
9178 .set_page_dirty = btrfs_set_page_dirty,
9179 .error_remove_page = generic_error_remove_page,
9180};
9181
9182static const struct address_space_operations btrfs_symlink_aops = {
9183 .readpage = btrfs_readpage,
9184 .writepage = btrfs_writepage,
9185 .invalidatepage = btrfs_invalidatepage,
9186 .releasepage = btrfs_releasepage,
9187};
9188
9189static const struct inode_operations btrfs_file_inode_operations = {
9190 .getattr = btrfs_getattr,
9191 .setattr = btrfs_setattr,
9192 .setxattr = btrfs_setxattr,
9193 .getxattr = btrfs_getxattr,
9194 .listxattr = btrfs_listxattr,
9195 .removexattr = btrfs_removexattr,
9196 .permission = btrfs_permission,
9197 .fiemap = btrfs_fiemap,
9198 .get_acl = btrfs_get_acl,
9199 .set_acl = btrfs_set_acl,
9200 .update_time = btrfs_update_time,
9201};
9202static const struct inode_operations btrfs_special_inode_operations = {
9203 .getattr = btrfs_getattr,
9204 .setattr = btrfs_setattr,
9205 .permission = btrfs_permission,
9206 .setxattr = btrfs_setxattr,
9207 .getxattr = btrfs_getxattr,
9208 .listxattr = btrfs_listxattr,
9209 .removexattr = btrfs_removexattr,
9210 .get_acl = btrfs_get_acl,
9211 .set_acl = btrfs_set_acl,
9212 .update_time = btrfs_update_time,
9213};
9214static const struct inode_operations btrfs_symlink_inode_operations = {
9215 .readlink = generic_readlink,
9216 .follow_link = page_follow_link_light,
9217 .put_link = page_put_link,
9218 .getattr = btrfs_getattr,
9219 .setattr = btrfs_setattr,
9220 .permission = btrfs_permission,
9221 .setxattr = btrfs_setxattr,
9222 .getxattr = btrfs_getxattr,
9223 .listxattr = btrfs_listxattr,
9224 .removexattr = btrfs_removexattr,
9225 .update_time = btrfs_update_time,
9226};
9227
9228const struct dentry_operations btrfs_dentry_operations = {
9229 .d_delete = btrfs_dentry_delete,
9230 .d_release = btrfs_dentry_release,
9231};