]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - fs/btrfs/inode.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / inode.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/compat.h>
34#include <linux/bit_spinlock.h>
35#include <linux/xattr.h>
36#include <linux/posix_acl.h>
37#include <linux/falloc.h>
38#include <linux/slab.h>
39#include <linux/ratelimit.h>
40#include <linux/mount.h>
41#include <linux/btrfs.h>
42#include <linux/blkdev.h>
43#include <linux/posix_acl_xattr.h>
44#include <linux/uio.h>
45#include "ctree.h"
46#include "disk-io.h"
47#include "transaction.h"
48#include "btrfs_inode.h"
49#include "print-tree.h"
50#include "ordered-data.h"
51#include "xattr.h"
52#include "tree-log.h"
53#include "volumes.h"
54#include "compression.h"
55#include "locking.h"
56#include "free-space-cache.h"
57#include "inode-map.h"
58#include "backref.h"
59#include "hash.h"
60#include "props.h"
61#include "qgroup.h"
62#include "dedupe.h"
63
64struct btrfs_iget_args {
65 struct btrfs_key *location;
66 struct btrfs_root *root;
67};
68
69struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
74 int overwrite;
75};
76
77static const struct inode_operations btrfs_dir_inode_operations;
78static const struct inode_operations btrfs_symlink_inode_operations;
79static const struct inode_operations btrfs_dir_ro_inode_operations;
80static const struct inode_operations btrfs_special_inode_operations;
81static const struct inode_operations btrfs_file_inode_operations;
82static const struct address_space_operations btrfs_aops;
83static const struct address_space_operations btrfs_symlink_aops;
84static const struct file_operations btrfs_dir_file_operations;
85static const struct extent_io_ops btrfs_extent_io_ops;
86
87static struct kmem_cache *btrfs_inode_cachep;
88struct kmem_cache *btrfs_trans_handle_cachep;
89struct kmem_cache *btrfs_path_cachep;
90struct kmem_cache *btrfs_free_space_cachep;
91
92#define S_SHIFT 12
93static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101};
102
103static int btrfs_setsize(struct inode *inode, struct iattr *attr);
104static int btrfs_truncate(struct inode *inode);
105static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
106static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
108 u64 start, u64 end, u64 delalloc_end,
109 int *page_started, unsigned long *nr_written,
110 int unlock, struct btrfs_dedupe_hash *hash);
111static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
112 u64 orig_start, u64 block_start,
113 u64 block_len, u64 orig_block_len,
114 u64 ram_bytes, int compress_type,
115 int type);
116
117static void __endio_write_update_ordered(struct inode *inode,
118 const u64 offset, const u64 bytes,
119 const bool uptodate);
120
121/*
122 * Cleanup all submitted ordered extents in specified range to handle errors
123 * from the fill_dellaloc() callback.
124 *
125 * NOTE: caller must ensure that when an error happens, it can not call
126 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
127 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
128 * to be released, which we want to happen only when finishing the ordered
129 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
130 * fill_delalloc() callback already does proper cleanup for the first page of
131 * the range, that is, it invokes the callback writepage_end_io_hook() for the
132 * range of the first page.
133 */
134static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
135 const u64 offset,
136 const u64 bytes)
137{
138 unsigned long index = offset >> PAGE_SHIFT;
139 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
140 struct page *page;
141
142 while (index <= end_index) {
143 page = find_get_page(inode->i_mapping, index);
144 index++;
145 if (!page)
146 continue;
147 ClearPagePrivate2(page);
148 put_page(page);
149 }
150 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
151 bytes - PAGE_SIZE, false);
152}
153
154static int btrfs_dirty_inode(struct inode *inode);
155
156#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
157void btrfs_test_inode_set_ops(struct inode *inode)
158{
159 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
160}
161#endif
162
163static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
164 struct inode *inode, struct inode *dir,
165 const struct qstr *qstr)
166{
167 int err;
168
169 err = btrfs_init_acl(trans, inode, dir);
170 if (!err)
171 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
172 return err;
173}
174
175/*
176 * this does all the hard work for inserting an inline extent into
177 * the btree. The caller should have done a btrfs_drop_extents so that
178 * no overlapping inline items exist in the btree
179 */
180static int insert_inline_extent(struct btrfs_trans_handle *trans,
181 struct btrfs_path *path, int extent_inserted,
182 struct btrfs_root *root, struct inode *inode,
183 u64 start, size_t size, size_t compressed_size,
184 int compress_type,
185 struct page **compressed_pages)
186{
187 struct extent_buffer *leaf;
188 struct page *page = NULL;
189 char *kaddr;
190 unsigned long ptr;
191 struct btrfs_file_extent_item *ei;
192 int ret;
193 size_t cur_size = size;
194 unsigned long offset;
195
196 if (compressed_size && compressed_pages)
197 cur_size = compressed_size;
198
199 inode_add_bytes(inode, size);
200
201 if (!extent_inserted) {
202 struct btrfs_key key;
203 size_t datasize;
204
205 key.objectid = btrfs_ino(BTRFS_I(inode));
206 key.offset = start;
207 key.type = BTRFS_EXTENT_DATA_KEY;
208
209 datasize = btrfs_file_extent_calc_inline_size(cur_size);
210 path->leave_spinning = 1;
211 ret = btrfs_insert_empty_item(trans, root, path, &key,
212 datasize);
213 if (ret)
214 goto fail;
215 }
216 leaf = path->nodes[0];
217 ei = btrfs_item_ptr(leaf, path->slots[0],
218 struct btrfs_file_extent_item);
219 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
220 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
221 btrfs_set_file_extent_encryption(leaf, ei, 0);
222 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
223 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
224 ptr = btrfs_file_extent_inline_start(ei);
225
226 if (compress_type != BTRFS_COMPRESS_NONE) {
227 struct page *cpage;
228 int i = 0;
229 while (compressed_size > 0) {
230 cpage = compressed_pages[i];
231 cur_size = min_t(unsigned long, compressed_size,
232 PAGE_SIZE);
233
234 kaddr = kmap_atomic(cpage);
235 write_extent_buffer(leaf, kaddr, ptr, cur_size);
236 kunmap_atomic(kaddr);
237
238 i++;
239 ptr += cur_size;
240 compressed_size -= cur_size;
241 }
242 btrfs_set_file_extent_compression(leaf, ei,
243 compress_type);
244 } else {
245 page = find_get_page(inode->i_mapping,
246 start >> PAGE_SHIFT);
247 btrfs_set_file_extent_compression(leaf, ei, 0);
248 kaddr = kmap_atomic(page);
249 offset = start & (PAGE_SIZE - 1);
250 write_extent_buffer(leaf, kaddr + offset, ptr, size);
251 kunmap_atomic(kaddr);
252 put_page(page);
253 }
254 btrfs_mark_buffer_dirty(leaf);
255 btrfs_release_path(path);
256
257 /*
258 * we're an inline extent, so nobody can
259 * extend the file past i_size without locking
260 * a page we already have locked.
261 *
262 * We must do any isize and inode updates
263 * before we unlock the pages. Otherwise we
264 * could end up racing with unlink.
265 */
266 BTRFS_I(inode)->disk_i_size = inode->i_size;
267 ret = btrfs_update_inode(trans, root, inode);
268
269fail:
270 return ret;
271}
272
273
274/*
275 * conditionally insert an inline extent into the file. This
276 * does the checks required to make sure the data is small enough
277 * to fit as an inline extent.
278 */
279static noinline int cow_file_range_inline(struct btrfs_root *root,
280 struct inode *inode, u64 start,
281 u64 end, size_t compressed_size,
282 int compress_type,
283 struct page **compressed_pages)
284{
285 struct btrfs_fs_info *fs_info = root->fs_info;
286 struct btrfs_trans_handle *trans;
287 u64 isize = i_size_read(inode);
288 u64 actual_end = min(end + 1, isize);
289 u64 inline_len = actual_end - start;
290 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
291 u64 data_len = inline_len;
292 int ret;
293 struct btrfs_path *path;
294 int extent_inserted = 0;
295 u32 extent_item_size;
296
297 if (compressed_size)
298 data_len = compressed_size;
299
300 if (start > 0 ||
301 actual_end > fs_info->sectorsize ||
302 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
303 (!compressed_size &&
304 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
305 end + 1 < isize ||
306 data_len > fs_info->max_inline) {
307 return 1;
308 }
309
310 path = btrfs_alloc_path();
311 if (!path)
312 return -ENOMEM;
313
314 trans = btrfs_join_transaction(root);
315 if (IS_ERR(trans)) {
316 btrfs_free_path(path);
317 return PTR_ERR(trans);
318 }
319 trans->block_rsv = &fs_info->delalloc_block_rsv;
320
321 if (compressed_size && compressed_pages)
322 extent_item_size = btrfs_file_extent_calc_inline_size(
323 compressed_size);
324 else
325 extent_item_size = btrfs_file_extent_calc_inline_size(
326 inline_len);
327
328 ret = __btrfs_drop_extents(trans, root, inode, path,
329 start, aligned_end, NULL,
330 1, 1, extent_item_size, &extent_inserted);
331 if (ret) {
332 btrfs_abort_transaction(trans, ret);
333 goto out;
334 }
335
336 if (isize > actual_end)
337 inline_len = min_t(u64, isize, actual_end);
338 ret = insert_inline_extent(trans, path, extent_inserted,
339 root, inode, start,
340 inline_len, compressed_size,
341 compress_type, compressed_pages);
342 if (ret && ret != -ENOSPC) {
343 btrfs_abort_transaction(trans, ret);
344 goto out;
345 } else if (ret == -ENOSPC) {
346 ret = 1;
347 goto out;
348 }
349
350 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
351 btrfs_delalloc_release_metadata(BTRFS_I(inode), end + 1 - start);
352 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
353out:
354 /*
355 * Don't forget to free the reserved space, as for inlined extent
356 * it won't count as data extent, free them directly here.
357 * And at reserve time, it's always aligned to page size, so
358 * just free one page here.
359 */
360 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
361 btrfs_free_path(path);
362 btrfs_end_transaction(trans);
363 return ret;
364}
365
366struct async_extent {
367 u64 start;
368 u64 ram_size;
369 u64 compressed_size;
370 struct page **pages;
371 unsigned long nr_pages;
372 int compress_type;
373 struct list_head list;
374};
375
376struct async_cow {
377 struct inode *inode;
378 struct btrfs_root *root;
379 struct page *locked_page;
380 u64 start;
381 u64 end;
382 struct list_head extents;
383 struct btrfs_work work;
384};
385
386static noinline int add_async_extent(struct async_cow *cow,
387 u64 start, u64 ram_size,
388 u64 compressed_size,
389 struct page **pages,
390 unsigned long nr_pages,
391 int compress_type)
392{
393 struct async_extent *async_extent;
394
395 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
396 BUG_ON(!async_extent); /* -ENOMEM */
397 async_extent->start = start;
398 async_extent->ram_size = ram_size;
399 async_extent->compressed_size = compressed_size;
400 async_extent->pages = pages;
401 async_extent->nr_pages = nr_pages;
402 async_extent->compress_type = compress_type;
403 list_add_tail(&async_extent->list, &cow->extents);
404 return 0;
405}
406
407static inline int inode_need_compress(struct inode *inode)
408{
409 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
410
411 /* force compress */
412 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
413 return 1;
414 /* bad compression ratios */
415 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
416 return 0;
417 if (btrfs_test_opt(fs_info, COMPRESS) ||
418 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
419 BTRFS_I(inode)->force_compress)
420 return 1;
421 return 0;
422}
423
424static inline void inode_should_defrag(struct btrfs_inode *inode,
425 u64 start, u64 end, u64 num_bytes, u64 small_write)
426{
427 /* If this is a small write inside eof, kick off a defrag */
428 if (num_bytes < small_write &&
429 (start > 0 || end + 1 < inode->disk_i_size))
430 btrfs_add_inode_defrag(NULL, inode);
431}
432
433/*
434 * we create compressed extents in two phases. The first
435 * phase compresses a range of pages that have already been
436 * locked (both pages and state bits are locked).
437 *
438 * This is done inside an ordered work queue, and the compression
439 * is spread across many cpus. The actual IO submission is step
440 * two, and the ordered work queue takes care of making sure that
441 * happens in the same order things were put onto the queue by
442 * writepages and friends.
443 *
444 * If this code finds it can't get good compression, it puts an
445 * entry onto the work queue to write the uncompressed bytes. This
446 * makes sure that both compressed inodes and uncompressed inodes
447 * are written in the same order that the flusher thread sent them
448 * down.
449 */
450static noinline void compress_file_range(struct inode *inode,
451 struct page *locked_page,
452 u64 start, u64 end,
453 struct async_cow *async_cow,
454 int *num_added)
455{
456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
457 struct btrfs_root *root = BTRFS_I(inode)->root;
458 u64 num_bytes;
459 u64 blocksize = fs_info->sectorsize;
460 u64 actual_end;
461 u64 isize = i_size_read(inode);
462 int ret = 0;
463 struct page **pages = NULL;
464 unsigned long nr_pages;
465 unsigned long total_compressed = 0;
466 unsigned long total_in = 0;
467 int i;
468 int will_compress;
469 int compress_type = fs_info->compress_type;
470 int redirty = 0;
471
472 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
473 SZ_16K);
474
475 actual_end = min_t(u64, isize, end + 1);
476again:
477 will_compress = 0;
478 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
479 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
480 nr_pages = min_t(unsigned long, nr_pages,
481 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
482
483 /*
484 * we don't want to send crud past the end of i_size through
485 * compression, that's just a waste of CPU time. So, if the
486 * end of the file is before the start of our current
487 * requested range of bytes, we bail out to the uncompressed
488 * cleanup code that can deal with all of this.
489 *
490 * It isn't really the fastest way to fix things, but this is a
491 * very uncommon corner.
492 */
493 if (actual_end <= start)
494 goto cleanup_and_bail_uncompressed;
495
496 total_compressed = actual_end - start;
497
498 /*
499 * skip compression for a small file range(<=blocksize) that
500 * isn't an inline extent, since it doesn't save disk space at all.
501 */
502 if (total_compressed <= blocksize &&
503 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
504 goto cleanup_and_bail_uncompressed;
505
506 total_compressed = min_t(unsigned long, total_compressed,
507 BTRFS_MAX_UNCOMPRESSED);
508 num_bytes = ALIGN(end - start + 1, blocksize);
509 num_bytes = max(blocksize, num_bytes);
510 total_in = 0;
511 ret = 0;
512
513 /*
514 * we do compression for mount -o compress and when the
515 * inode has not been flagged as nocompress. This flag can
516 * change at any time if we discover bad compression ratios.
517 */
518 if (inode_need_compress(inode)) {
519 WARN_ON(pages);
520 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
521 if (!pages) {
522 /* just bail out to the uncompressed code */
523 goto cont;
524 }
525
526 if (BTRFS_I(inode)->force_compress)
527 compress_type = BTRFS_I(inode)->force_compress;
528
529 /*
530 * we need to call clear_page_dirty_for_io on each
531 * page in the range. Otherwise applications with the file
532 * mmap'd can wander in and change the page contents while
533 * we are compressing them.
534 *
535 * If the compression fails for any reason, we set the pages
536 * dirty again later on.
537 */
538 extent_range_clear_dirty_for_io(inode, start, end);
539 redirty = 1;
540 ret = btrfs_compress_pages(compress_type,
541 inode->i_mapping, start,
542 pages,
543 &nr_pages,
544 &total_in,
545 &total_compressed);
546
547 if (!ret) {
548 unsigned long offset = total_compressed &
549 (PAGE_SIZE - 1);
550 struct page *page = pages[nr_pages - 1];
551 char *kaddr;
552
553 /* zero the tail end of the last page, we might be
554 * sending it down to disk
555 */
556 if (offset) {
557 kaddr = kmap_atomic(page);
558 memset(kaddr + offset, 0,
559 PAGE_SIZE - offset);
560 kunmap_atomic(kaddr);
561 }
562 will_compress = 1;
563 }
564 }
565cont:
566 if (start == 0) {
567 /* lets try to make an inline extent */
568 if (ret || total_in < (actual_end - start)) {
569 /* we didn't compress the entire range, try
570 * to make an uncompressed inline extent.
571 */
572 ret = cow_file_range_inline(root, inode, start, end,
573 0, BTRFS_COMPRESS_NONE, NULL);
574 } else {
575 /* try making a compressed inline extent */
576 ret = cow_file_range_inline(root, inode, start, end,
577 total_compressed,
578 compress_type, pages);
579 }
580 if (ret <= 0) {
581 unsigned long clear_flags = EXTENT_DELALLOC |
582 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG;
583 unsigned long page_error_op;
584
585 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
586 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
587
588 /*
589 * inline extent creation worked or returned error,
590 * we don't need to create any more async work items.
591 * Unlock and free up our temp pages.
592 */
593 extent_clear_unlock_delalloc(inode, start, end, end,
594 NULL, clear_flags,
595 PAGE_UNLOCK |
596 PAGE_CLEAR_DIRTY |
597 PAGE_SET_WRITEBACK |
598 page_error_op |
599 PAGE_END_WRITEBACK);
600 if (ret == 0)
601 btrfs_free_reserved_data_space_noquota(inode,
602 start,
603 end - start + 1);
604 goto free_pages_out;
605 }
606 }
607
608 if (will_compress) {
609 /*
610 * we aren't doing an inline extent round the compressed size
611 * up to a block size boundary so the allocator does sane
612 * things
613 */
614 total_compressed = ALIGN(total_compressed, blocksize);
615
616 /*
617 * one last check to make sure the compression is really a
618 * win, compare the page count read with the blocks on disk,
619 * compression must free at least one sector size
620 */
621 total_in = ALIGN(total_in, PAGE_SIZE);
622 if (total_compressed + blocksize <= total_in) {
623 num_bytes = total_in;
624 *num_added += 1;
625
626 /*
627 * The async work queues will take care of doing actual
628 * allocation on disk for these compressed pages, and
629 * will submit them to the elevator.
630 */
631 add_async_extent(async_cow, start, num_bytes,
632 total_compressed, pages, nr_pages,
633 compress_type);
634
635 if (start + num_bytes < end) {
636 start += num_bytes;
637 pages = NULL;
638 cond_resched();
639 goto again;
640 }
641 return;
642 }
643 }
644 if (pages) {
645 /*
646 * the compression code ran but failed to make things smaller,
647 * free any pages it allocated and our page pointer array
648 */
649 for (i = 0; i < nr_pages; i++) {
650 WARN_ON(pages[i]->mapping);
651 put_page(pages[i]);
652 }
653 kfree(pages);
654 pages = NULL;
655 total_compressed = 0;
656 nr_pages = 0;
657
658 /* flag the file so we don't compress in the future */
659 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
660 !(BTRFS_I(inode)->force_compress)) {
661 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
662 }
663 }
664cleanup_and_bail_uncompressed:
665 /*
666 * No compression, but we still need to write the pages in the file
667 * we've been given so far. redirty the locked page if it corresponds
668 * to our extent and set things up for the async work queue to run
669 * cow_file_range to do the normal delalloc dance.
670 */
671 if (page_offset(locked_page) >= start &&
672 page_offset(locked_page) <= end)
673 __set_page_dirty_nobuffers(locked_page);
674 /* unlocked later on in the async handlers */
675
676 if (redirty)
677 extent_range_redirty_for_io(inode, start, end);
678 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
679 BTRFS_COMPRESS_NONE);
680 *num_added += 1;
681
682 return;
683
684free_pages_out:
685 for (i = 0; i < nr_pages; i++) {
686 WARN_ON(pages[i]->mapping);
687 put_page(pages[i]);
688 }
689 kfree(pages);
690}
691
692static void free_async_extent_pages(struct async_extent *async_extent)
693{
694 int i;
695
696 if (!async_extent->pages)
697 return;
698
699 for (i = 0; i < async_extent->nr_pages; i++) {
700 WARN_ON(async_extent->pages[i]->mapping);
701 put_page(async_extent->pages[i]);
702 }
703 kfree(async_extent->pages);
704 async_extent->nr_pages = 0;
705 async_extent->pages = NULL;
706}
707
708/*
709 * phase two of compressed writeback. This is the ordered portion
710 * of the code, which only gets called in the order the work was
711 * queued. We walk all the async extents created by compress_file_range
712 * and send them down to the disk.
713 */
714static noinline void submit_compressed_extents(struct inode *inode,
715 struct async_cow *async_cow)
716{
717 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
718 struct async_extent *async_extent;
719 u64 alloc_hint = 0;
720 struct btrfs_key ins;
721 struct extent_map *em;
722 struct btrfs_root *root = BTRFS_I(inode)->root;
723 struct extent_io_tree *io_tree;
724 int ret = 0;
725
726again:
727 while (!list_empty(&async_cow->extents)) {
728 async_extent = list_entry(async_cow->extents.next,
729 struct async_extent, list);
730 list_del(&async_extent->list);
731
732 io_tree = &BTRFS_I(inode)->io_tree;
733
734retry:
735 /* did the compression code fall back to uncompressed IO? */
736 if (!async_extent->pages) {
737 int page_started = 0;
738 unsigned long nr_written = 0;
739
740 lock_extent(io_tree, async_extent->start,
741 async_extent->start +
742 async_extent->ram_size - 1);
743
744 /* allocate blocks */
745 ret = cow_file_range(inode, async_cow->locked_page,
746 async_extent->start,
747 async_extent->start +
748 async_extent->ram_size - 1,
749 async_extent->start +
750 async_extent->ram_size - 1,
751 &page_started, &nr_written, 0,
752 NULL);
753
754 /* JDM XXX */
755
756 /*
757 * if page_started, cow_file_range inserted an
758 * inline extent and took care of all the unlocking
759 * and IO for us. Otherwise, we need to submit
760 * all those pages down to the drive.
761 */
762 if (!page_started && !ret)
763 extent_write_locked_range(io_tree,
764 inode, async_extent->start,
765 async_extent->start +
766 async_extent->ram_size - 1,
767 btrfs_get_extent,
768 WB_SYNC_ALL);
769 else if (ret)
770 unlock_page(async_cow->locked_page);
771 kfree(async_extent);
772 cond_resched();
773 continue;
774 }
775
776 lock_extent(io_tree, async_extent->start,
777 async_extent->start + async_extent->ram_size - 1);
778
779 ret = btrfs_reserve_extent(root, async_extent->ram_size,
780 async_extent->compressed_size,
781 async_extent->compressed_size,
782 0, alloc_hint, &ins, 1, 1);
783 if (ret) {
784 free_async_extent_pages(async_extent);
785
786 if (ret == -ENOSPC) {
787 unlock_extent(io_tree, async_extent->start,
788 async_extent->start +
789 async_extent->ram_size - 1);
790
791 /*
792 * we need to redirty the pages if we decide to
793 * fallback to uncompressed IO, otherwise we
794 * will not submit these pages down to lower
795 * layers.
796 */
797 extent_range_redirty_for_io(inode,
798 async_extent->start,
799 async_extent->start +
800 async_extent->ram_size - 1);
801
802 goto retry;
803 }
804 goto out_free;
805 }
806 /*
807 * here we're doing allocation and writeback of the
808 * compressed pages
809 */
810 em = create_io_em(inode, async_extent->start,
811 async_extent->ram_size, /* len */
812 async_extent->start, /* orig_start */
813 ins.objectid, /* block_start */
814 ins.offset, /* block_len */
815 ins.offset, /* orig_block_len */
816 async_extent->ram_size, /* ram_bytes */
817 async_extent->compress_type,
818 BTRFS_ORDERED_COMPRESSED);
819 if (IS_ERR(em))
820 /* ret value is not necessary due to void function */
821 goto out_free_reserve;
822 free_extent_map(em);
823
824 ret = btrfs_add_ordered_extent_compress(inode,
825 async_extent->start,
826 ins.objectid,
827 async_extent->ram_size,
828 ins.offset,
829 BTRFS_ORDERED_COMPRESSED,
830 async_extent->compress_type);
831 if (ret) {
832 btrfs_drop_extent_cache(BTRFS_I(inode),
833 async_extent->start,
834 async_extent->start +
835 async_extent->ram_size - 1, 0);
836 goto out_free_reserve;
837 }
838 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
839
840 /*
841 * clear dirty, set writeback and unlock the pages.
842 */
843 extent_clear_unlock_delalloc(inode, async_extent->start,
844 async_extent->start +
845 async_extent->ram_size - 1,
846 async_extent->start +
847 async_extent->ram_size - 1,
848 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
849 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
850 PAGE_SET_WRITEBACK);
851 if (btrfs_submit_compressed_write(inode,
852 async_extent->start,
853 async_extent->ram_size,
854 ins.objectid,
855 ins.offset, async_extent->pages,
856 async_extent->nr_pages)) {
857 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
858 struct page *p = async_extent->pages[0];
859 const u64 start = async_extent->start;
860 const u64 end = start + async_extent->ram_size - 1;
861
862 p->mapping = inode->i_mapping;
863 tree->ops->writepage_end_io_hook(p, start, end,
864 NULL, 0);
865 p->mapping = NULL;
866 extent_clear_unlock_delalloc(inode, start, end, end,
867 NULL, 0,
868 PAGE_END_WRITEBACK |
869 PAGE_SET_ERROR);
870 free_async_extent_pages(async_extent);
871 }
872 alloc_hint = ins.objectid + ins.offset;
873 kfree(async_extent);
874 cond_resched();
875 }
876 return;
877out_free_reserve:
878 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
879 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
880out_free:
881 extent_clear_unlock_delalloc(inode, async_extent->start,
882 async_extent->start +
883 async_extent->ram_size - 1,
884 async_extent->start +
885 async_extent->ram_size - 1,
886 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
887 EXTENT_DELALLOC_NEW |
888 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
889 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
890 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
891 PAGE_SET_ERROR);
892 free_async_extent_pages(async_extent);
893 kfree(async_extent);
894 goto again;
895}
896
897static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
898 u64 num_bytes)
899{
900 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
901 struct extent_map *em;
902 u64 alloc_hint = 0;
903
904 read_lock(&em_tree->lock);
905 em = search_extent_mapping(em_tree, start, num_bytes);
906 if (em) {
907 /*
908 * if block start isn't an actual block number then find the
909 * first block in this inode and use that as a hint. If that
910 * block is also bogus then just don't worry about it.
911 */
912 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
913 free_extent_map(em);
914 em = search_extent_mapping(em_tree, 0, 0);
915 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
916 alloc_hint = em->block_start;
917 if (em)
918 free_extent_map(em);
919 } else {
920 alloc_hint = em->block_start;
921 free_extent_map(em);
922 }
923 }
924 read_unlock(&em_tree->lock);
925
926 return alloc_hint;
927}
928
929/*
930 * when extent_io.c finds a delayed allocation range in the file,
931 * the call backs end up in this code. The basic idea is to
932 * allocate extents on disk for the range, and create ordered data structs
933 * in ram to track those extents.
934 *
935 * locked_page is the page that writepage had locked already. We use
936 * it to make sure we don't do extra locks or unlocks.
937 *
938 * *page_started is set to one if we unlock locked_page and do everything
939 * required to start IO on it. It may be clean and already done with
940 * IO when we return.
941 */
942static noinline int cow_file_range(struct inode *inode,
943 struct page *locked_page,
944 u64 start, u64 end, u64 delalloc_end,
945 int *page_started, unsigned long *nr_written,
946 int unlock, struct btrfs_dedupe_hash *hash)
947{
948 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
949 struct btrfs_root *root = BTRFS_I(inode)->root;
950 u64 alloc_hint = 0;
951 u64 num_bytes;
952 unsigned long ram_size;
953 u64 disk_num_bytes;
954 u64 cur_alloc_size = 0;
955 u64 blocksize = fs_info->sectorsize;
956 struct btrfs_key ins;
957 struct extent_map *em;
958 unsigned clear_bits;
959 unsigned long page_ops;
960 bool extent_reserved = false;
961 int ret = 0;
962
963 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
964 WARN_ON_ONCE(1);
965 ret = -EINVAL;
966 goto out_unlock;
967 }
968
969 num_bytes = ALIGN(end - start + 1, blocksize);
970 num_bytes = max(blocksize, num_bytes);
971 disk_num_bytes = num_bytes;
972
973 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
974
975 if (start == 0) {
976 /* lets try to make an inline extent */
977 ret = cow_file_range_inline(root, inode, start, end, 0,
978 BTRFS_COMPRESS_NONE, NULL);
979 if (ret == 0) {
980 extent_clear_unlock_delalloc(inode, start, end,
981 delalloc_end, NULL,
982 EXTENT_LOCKED | EXTENT_DELALLOC |
983 EXTENT_DELALLOC_NEW |
984 EXTENT_DEFRAG, PAGE_UNLOCK |
985 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
986 PAGE_END_WRITEBACK);
987 btrfs_free_reserved_data_space_noquota(inode, start,
988 end - start + 1);
989 *nr_written = *nr_written +
990 (end - start + PAGE_SIZE) / PAGE_SIZE;
991 *page_started = 1;
992 goto out;
993 } else if (ret < 0) {
994 goto out_unlock;
995 }
996 }
997
998 BUG_ON(disk_num_bytes >
999 btrfs_super_total_bytes(fs_info->super_copy));
1000
1001 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1002 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1003 start + num_bytes - 1, 0);
1004
1005 while (disk_num_bytes > 0) {
1006 cur_alloc_size = disk_num_bytes;
1007 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1008 fs_info->sectorsize, 0, alloc_hint,
1009 &ins, 1, 1);
1010 if (ret < 0)
1011 goto out_unlock;
1012 cur_alloc_size = ins.offset;
1013 extent_reserved = true;
1014
1015 ram_size = ins.offset;
1016 em = create_io_em(inode, start, ins.offset, /* len */
1017 start, /* orig_start */
1018 ins.objectid, /* block_start */
1019 ins.offset, /* block_len */
1020 ins.offset, /* orig_block_len */
1021 ram_size, /* ram_bytes */
1022 BTRFS_COMPRESS_NONE, /* compress_type */
1023 BTRFS_ORDERED_REGULAR /* type */);
1024 if (IS_ERR(em))
1025 goto out_reserve;
1026 free_extent_map(em);
1027
1028 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1029 ram_size, cur_alloc_size, 0);
1030 if (ret)
1031 goto out_drop_extent_cache;
1032
1033 if (root->root_key.objectid ==
1034 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1035 ret = btrfs_reloc_clone_csums(inode, start,
1036 cur_alloc_size);
1037 /*
1038 * Only drop cache here, and process as normal.
1039 *
1040 * We must not allow extent_clear_unlock_delalloc()
1041 * at out_unlock label to free meta of this ordered
1042 * extent, as its meta should be freed by
1043 * btrfs_finish_ordered_io().
1044 *
1045 * So we must continue until @start is increased to
1046 * skip current ordered extent.
1047 */
1048 if (ret)
1049 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1050 start + ram_size - 1, 0);
1051 }
1052
1053 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1054
1055 /* we're not doing compressed IO, don't unlock the first
1056 * page (which the caller expects to stay locked), don't
1057 * clear any dirty bits and don't set any writeback bits
1058 *
1059 * Do set the Private2 bit so we know this page was properly
1060 * setup for writepage
1061 */
1062 page_ops = unlock ? PAGE_UNLOCK : 0;
1063 page_ops |= PAGE_SET_PRIVATE2;
1064
1065 extent_clear_unlock_delalloc(inode, start,
1066 start + ram_size - 1,
1067 delalloc_end, locked_page,
1068 EXTENT_LOCKED | EXTENT_DELALLOC,
1069 page_ops);
1070 if (disk_num_bytes < cur_alloc_size)
1071 disk_num_bytes = 0;
1072 else
1073 disk_num_bytes -= cur_alloc_size;
1074 num_bytes -= cur_alloc_size;
1075 alloc_hint = ins.objectid + ins.offset;
1076 start += cur_alloc_size;
1077 extent_reserved = false;
1078
1079 /*
1080 * btrfs_reloc_clone_csums() error, since start is increased
1081 * extent_clear_unlock_delalloc() at out_unlock label won't
1082 * free metadata of current ordered extent, we're OK to exit.
1083 */
1084 if (ret)
1085 goto out_unlock;
1086 }
1087out:
1088 return ret;
1089
1090out_drop_extent_cache:
1091 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1092out_reserve:
1093 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1094 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1095out_unlock:
1096 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1097 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1098 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1099 PAGE_END_WRITEBACK;
1100 /*
1101 * If we reserved an extent for our delalloc range (or a subrange) and
1102 * failed to create the respective ordered extent, then it means that
1103 * when we reserved the extent we decremented the extent's size from
1104 * the data space_info's bytes_may_use counter and incremented the
1105 * space_info's bytes_reserved counter by the same amount. We must make
1106 * sure extent_clear_unlock_delalloc() does not try to decrement again
1107 * the data space_info's bytes_may_use counter, therefore we do not pass
1108 * it the flag EXTENT_CLEAR_DATA_RESV.
1109 */
1110 if (extent_reserved) {
1111 extent_clear_unlock_delalloc(inode, start,
1112 start + cur_alloc_size,
1113 start + cur_alloc_size,
1114 locked_page,
1115 clear_bits,
1116 page_ops);
1117 start += cur_alloc_size;
1118 if (start >= end)
1119 goto out;
1120 }
1121 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1122 locked_page,
1123 clear_bits | EXTENT_CLEAR_DATA_RESV,
1124 page_ops);
1125 goto out;
1126}
1127
1128/*
1129 * work queue call back to started compression on a file and pages
1130 */
1131static noinline void async_cow_start(struct btrfs_work *work)
1132{
1133 struct async_cow *async_cow;
1134 int num_added = 0;
1135 async_cow = container_of(work, struct async_cow, work);
1136
1137 compress_file_range(async_cow->inode, async_cow->locked_page,
1138 async_cow->start, async_cow->end, async_cow,
1139 &num_added);
1140 if (num_added == 0) {
1141 btrfs_add_delayed_iput(async_cow->inode);
1142 async_cow->inode = NULL;
1143 }
1144}
1145
1146/*
1147 * work queue call back to submit previously compressed pages
1148 */
1149static noinline void async_cow_submit(struct btrfs_work *work)
1150{
1151 struct btrfs_fs_info *fs_info;
1152 struct async_cow *async_cow;
1153 struct btrfs_root *root;
1154 unsigned long nr_pages;
1155
1156 async_cow = container_of(work, struct async_cow, work);
1157
1158 root = async_cow->root;
1159 fs_info = root->fs_info;
1160 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1161 PAGE_SHIFT;
1162
1163 /*
1164 * atomic_sub_return implies a barrier for waitqueue_active
1165 */
1166 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1167 5 * SZ_1M &&
1168 waitqueue_active(&fs_info->async_submit_wait))
1169 wake_up(&fs_info->async_submit_wait);
1170
1171 if (async_cow->inode)
1172 submit_compressed_extents(async_cow->inode, async_cow);
1173}
1174
1175static noinline void async_cow_free(struct btrfs_work *work)
1176{
1177 struct async_cow *async_cow;
1178 async_cow = container_of(work, struct async_cow, work);
1179 if (async_cow->inode)
1180 btrfs_add_delayed_iput(async_cow->inode);
1181 kfree(async_cow);
1182}
1183
1184static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1185 u64 start, u64 end, int *page_started,
1186 unsigned long *nr_written)
1187{
1188 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1189 struct async_cow *async_cow;
1190 struct btrfs_root *root = BTRFS_I(inode)->root;
1191 unsigned long nr_pages;
1192 u64 cur_end;
1193
1194 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1195 1, 0, NULL, GFP_NOFS);
1196 while (start < end) {
1197 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1198 BUG_ON(!async_cow); /* -ENOMEM */
1199 async_cow->inode = igrab(inode);
1200 async_cow->root = root;
1201 async_cow->locked_page = locked_page;
1202 async_cow->start = start;
1203
1204 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1205 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1206 cur_end = end;
1207 else
1208 cur_end = min(end, start + SZ_512K - 1);
1209
1210 async_cow->end = cur_end;
1211 INIT_LIST_HEAD(&async_cow->extents);
1212
1213 btrfs_init_work(&async_cow->work,
1214 btrfs_delalloc_helper,
1215 async_cow_start, async_cow_submit,
1216 async_cow_free);
1217
1218 nr_pages = (cur_end - start + PAGE_SIZE) >>
1219 PAGE_SHIFT;
1220 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1221
1222 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1223
1224 while (atomic_read(&fs_info->async_submit_draining) &&
1225 atomic_read(&fs_info->async_delalloc_pages)) {
1226 wait_event(fs_info->async_submit_wait,
1227 (atomic_read(&fs_info->async_delalloc_pages) ==
1228 0));
1229 }
1230
1231 *nr_written += nr_pages;
1232 start = cur_end + 1;
1233 }
1234 *page_started = 1;
1235 return 0;
1236}
1237
1238static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1239 u64 bytenr, u64 num_bytes)
1240{
1241 int ret;
1242 struct btrfs_ordered_sum *sums;
1243 LIST_HEAD(list);
1244
1245 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1246 bytenr + num_bytes - 1, &list, 0);
1247 if (ret == 0 && list_empty(&list))
1248 return 0;
1249
1250 while (!list_empty(&list)) {
1251 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1252 list_del(&sums->list);
1253 kfree(sums);
1254 }
1255 return 1;
1256}
1257
1258/*
1259 * when nowcow writeback call back. This checks for snapshots or COW copies
1260 * of the extents that exist in the file, and COWs the file as required.
1261 *
1262 * If no cow copies or snapshots exist, we write directly to the existing
1263 * blocks on disk
1264 */
1265static noinline int run_delalloc_nocow(struct inode *inode,
1266 struct page *locked_page,
1267 u64 start, u64 end, int *page_started, int force,
1268 unsigned long *nr_written)
1269{
1270 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1271 struct btrfs_root *root = BTRFS_I(inode)->root;
1272 struct extent_buffer *leaf;
1273 struct btrfs_path *path;
1274 struct btrfs_file_extent_item *fi;
1275 struct btrfs_key found_key;
1276 struct extent_map *em;
1277 u64 cow_start;
1278 u64 cur_offset;
1279 u64 extent_end;
1280 u64 extent_offset;
1281 u64 disk_bytenr;
1282 u64 num_bytes;
1283 u64 disk_num_bytes;
1284 u64 ram_bytes;
1285 int extent_type;
1286 int ret, err;
1287 int type;
1288 int nocow;
1289 int check_prev = 1;
1290 bool nolock;
1291 u64 ino = btrfs_ino(BTRFS_I(inode));
1292
1293 path = btrfs_alloc_path();
1294 if (!path) {
1295 extent_clear_unlock_delalloc(inode, start, end, end,
1296 locked_page,
1297 EXTENT_LOCKED | EXTENT_DELALLOC |
1298 EXTENT_DO_ACCOUNTING |
1299 EXTENT_DEFRAG, PAGE_UNLOCK |
1300 PAGE_CLEAR_DIRTY |
1301 PAGE_SET_WRITEBACK |
1302 PAGE_END_WRITEBACK);
1303 return -ENOMEM;
1304 }
1305
1306 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1307
1308 cow_start = (u64)-1;
1309 cur_offset = start;
1310 while (1) {
1311 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1312 cur_offset, 0);
1313 if (ret < 0)
1314 goto error;
1315 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1316 leaf = path->nodes[0];
1317 btrfs_item_key_to_cpu(leaf, &found_key,
1318 path->slots[0] - 1);
1319 if (found_key.objectid == ino &&
1320 found_key.type == BTRFS_EXTENT_DATA_KEY)
1321 path->slots[0]--;
1322 }
1323 check_prev = 0;
1324next_slot:
1325 leaf = path->nodes[0];
1326 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1327 ret = btrfs_next_leaf(root, path);
1328 if (ret < 0)
1329 goto error;
1330 if (ret > 0)
1331 break;
1332 leaf = path->nodes[0];
1333 }
1334
1335 nocow = 0;
1336 disk_bytenr = 0;
1337 num_bytes = 0;
1338 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1339
1340 if (found_key.objectid > ino)
1341 break;
1342 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1343 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1344 path->slots[0]++;
1345 goto next_slot;
1346 }
1347 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1348 found_key.offset > end)
1349 break;
1350
1351 if (found_key.offset > cur_offset) {
1352 extent_end = found_key.offset;
1353 extent_type = 0;
1354 goto out_check;
1355 }
1356
1357 fi = btrfs_item_ptr(leaf, path->slots[0],
1358 struct btrfs_file_extent_item);
1359 extent_type = btrfs_file_extent_type(leaf, fi);
1360
1361 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1362 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1363 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1364 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1365 extent_offset = btrfs_file_extent_offset(leaf, fi);
1366 extent_end = found_key.offset +
1367 btrfs_file_extent_num_bytes(leaf, fi);
1368 disk_num_bytes =
1369 btrfs_file_extent_disk_num_bytes(leaf, fi);
1370 if (extent_end <= start) {
1371 path->slots[0]++;
1372 goto next_slot;
1373 }
1374 if (disk_bytenr == 0)
1375 goto out_check;
1376 if (btrfs_file_extent_compression(leaf, fi) ||
1377 btrfs_file_extent_encryption(leaf, fi) ||
1378 btrfs_file_extent_other_encoding(leaf, fi))
1379 goto out_check;
1380 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1381 goto out_check;
1382 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1383 goto out_check;
1384 if (btrfs_cross_ref_exist(root, ino,
1385 found_key.offset -
1386 extent_offset, disk_bytenr))
1387 goto out_check;
1388 disk_bytenr += extent_offset;
1389 disk_bytenr += cur_offset - found_key.offset;
1390 num_bytes = min(end + 1, extent_end) - cur_offset;
1391 /*
1392 * if there are pending snapshots for this root,
1393 * we fall into common COW way.
1394 */
1395 if (!nolock) {
1396 err = btrfs_start_write_no_snapshoting(root);
1397 if (!err)
1398 goto out_check;
1399 }
1400 /*
1401 * force cow if csum exists in the range.
1402 * this ensure that csum for a given extent are
1403 * either valid or do not exist.
1404 */
1405 if (csum_exist_in_range(fs_info, disk_bytenr,
1406 num_bytes)) {
1407 if (!nolock)
1408 btrfs_end_write_no_snapshoting(root);
1409 goto out_check;
1410 }
1411 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1412 if (!nolock)
1413 btrfs_end_write_no_snapshoting(root);
1414 goto out_check;
1415 }
1416 nocow = 1;
1417 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1418 extent_end = found_key.offset +
1419 btrfs_file_extent_inline_len(leaf,
1420 path->slots[0], fi);
1421 extent_end = ALIGN(extent_end,
1422 fs_info->sectorsize);
1423 } else {
1424 BUG_ON(1);
1425 }
1426out_check:
1427 if (extent_end <= start) {
1428 path->slots[0]++;
1429 if (!nolock && nocow)
1430 btrfs_end_write_no_snapshoting(root);
1431 if (nocow)
1432 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1433 goto next_slot;
1434 }
1435 if (!nocow) {
1436 if (cow_start == (u64)-1)
1437 cow_start = cur_offset;
1438 cur_offset = extent_end;
1439 if (cur_offset > end)
1440 break;
1441 path->slots[0]++;
1442 goto next_slot;
1443 }
1444
1445 btrfs_release_path(path);
1446 if (cow_start != (u64)-1) {
1447 ret = cow_file_range(inode, locked_page,
1448 cow_start, found_key.offset - 1,
1449 end, page_started, nr_written, 1,
1450 NULL);
1451 if (ret) {
1452 if (!nolock && nocow)
1453 btrfs_end_write_no_snapshoting(root);
1454 if (nocow)
1455 btrfs_dec_nocow_writers(fs_info,
1456 disk_bytenr);
1457 goto error;
1458 }
1459 cow_start = (u64)-1;
1460 }
1461
1462 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1463 u64 orig_start = found_key.offset - extent_offset;
1464
1465 em = create_io_em(inode, cur_offset, num_bytes,
1466 orig_start,
1467 disk_bytenr, /* block_start */
1468 num_bytes, /* block_len */
1469 disk_num_bytes, /* orig_block_len */
1470 ram_bytes, BTRFS_COMPRESS_NONE,
1471 BTRFS_ORDERED_PREALLOC);
1472 if (IS_ERR(em)) {
1473 if (!nolock && nocow)
1474 btrfs_end_write_no_snapshoting(root);
1475 if (nocow)
1476 btrfs_dec_nocow_writers(fs_info,
1477 disk_bytenr);
1478 ret = PTR_ERR(em);
1479 goto error;
1480 }
1481 free_extent_map(em);
1482 }
1483
1484 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1485 type = BTRFS_ORDERED_PREALLOC;
1486 } else {
1487 type = BTRFS_ORDERED_NOCOW;
1488 }
1489
1490 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1491 num_bytes, num_bytes, type);
1492 if (nocow)
1493 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1494 BUG_ON(ret); /* -ENOMEM */
1495
1496 if (root->root_key.objectid ==
1497 BTRFS_DATA_RELOC_TREE_OBJECTID)
1498 /*
1499 * Error handled later, as we must prevent
1500 * extent_clear_unlock_delalloc() in error handler
1501 * from freeing metadata of created ordered extent.
1502 */
1503 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1504 num_bytes);
1505
1506 extent_clear_unlock_delalloc(inode, cur_offset,
1507 cur_offset + num_bytes - 1, end,
1508 locked_page, EXTENT_LOCKED |
1509 EXTENT_DELALLOC |
1510 EXTENT_CLEAR_DATA_RESV,
1511 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1512
1513 if (!nolock && nocow)
1514 btrfs_end_write_no_snapshoting(root);
1515 cur_offset = extent_end;
1516
1517 /*
1518 * btrfs_reloc_clone_csums() error, now we're OK to call error
1519 * handler, as metadata for created ordered extent will only
1520 * be freed by btrfs_finish_ordered_io().
1521 */
1522 if (ret)
1523 goto error;
1524 if (cur_offset > end)
1525 break;
1526 }
1527 btrfs_release_path(path);
1528
1529 if (cur_offset <= end && cow_start == (u64)-1) {
1530 cow_start = cur_offset;
1531 cur_offset = end;
1532 }
1533
1534 if (cow_start != (u64)-1) {
1535 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1536 page_started, nr_written, 1, NULL);
1537 if (ret)
1538 goto error;
1539 }
1540
1541error:
1542 if (ret && cur_offset < end)
1543 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1544 locked_page, EXTENT_LOCKED |
1545 EXTENT_DELALLOC | EXTENT_DEFRAG |
1546 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1547 PAGE_CLEAR_DIRTY |
1548 PAGE_SET_WRITEBACK |
1549 PAGE_END_WRITEBACK);
1550 btrfs_free_path(path);
1551 return ret;
1552}
1553
1554static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1555{
1556
1557 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1558 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1559 return 0;
1560
1561 /*
1562 * @defrag_bytes is a hint value, no spinlock held here,
1563 * if is not zero, it means the file is defragging.
1564 * Force cow if given extent needs to be defragged.
1565 */
1566 if (BTRFS_I(inode)->defrag_bytes &&
1567 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1568 EXTENT_DEFRAG, 0, NULL))
1569 return 1;
1570
1571 return 0;
1572}
1573
1574/*
1575 * extent_io.c call back to do delayed allocation processing
1576 */
1577static int run_delalloc_range(void *private_data, struct page *locked_page,
1578 u64 start, u64 end, int *page_started,
1579 unsigned long *nr_written)
1580{
1581 struct inode *inode = private_data;
1582 int ret;
1583 int force_cow = need_force_cow(inode, start, end);
1584
1585 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1586 ret = run_delalloc_nocow(inode, locked_page, start, end,
1587 page_started, 1, nr_written);
1588 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1589 ret = run_delalloc_nocow(inode, locked_page, start, end,
1590 page_started, 0, nr_written);
1591 } else if (!inode_need_compress(inode)) {
1592 ret = cow_file_range(inode, locked_page, start, end, end,
1593 page_started, nr_written, 1, NULL);
1594 } else {
1595 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1596 &BTRFS_I(inode)->runtime_flags);
1597 ret = cow_file_range_async(inode, locked_page, start, end,
1598 page_started, nr_written);
1599 }
1600 if (ret)
1601 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1602 return ret;
1603}
1604
1605static void btrfs_split_extent_hook(void *private_data,
1606 struct extent_state *orig, u64 split)
1607{
1608 struct inode *inode = private_data;
1609 u64 size;
1610
1611 /* not delalloc, ignore it */
1612 if (!(orig->state & EXTENT_DELALLOC))
1613 return;
1614
1615 size = orig->end - orig->start + 1;
1616 if (size > BTRFS_MAX_EXTENT_SIZE) {
1617 u32 num_extents;
1618 u64 new_size;
1619
1620 /*
1621 * See the explanation in btrfs_merge_extent_hook, the same
1622 * applies here, just in reverse.
1623 */
1624 new_size = orig->end - split + 1;
1625 num_extents = count_max_extents(new_size);
1626 new_size = split - orig->start;
1627 num_extents += count_max_extents(new_size);
1628 if (count_max_extents(size) >= num_extents)
1629 return;
1630 }
1631
1632 spin_lock(&BTRFS_I(inode)->lock);
1633 BTRFS_I(inode)->outstanding_extents++;
1634 spin_unlock(&BTRFS_I(inode)->lock);
1635}
1636
1637/*
1638 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1639 * extents so we can keep track of new extents that are just merged onto old
1640 * extents, such as when we are doing sequential writes, so we can properly
1641 * account for the metadata space we'll need.
1642 */
1643static void btrfs_merge_extent_hook(void *private_data,
1644 struct extent_state *new,
1645 struct extent_state *other)
1646{
1647 struct inode *inode = private_data;
1648 u64 new_size, old_size;
1649 u32 num_extents;
1650
1651 /* not delalloc, ignore it */
1652 if (!(other->state & EXTENT_DELALLOC))
1653 return;
1654
1655 if (new->start > other->start)
1656 new_size = new->end - other->start + 1;
1657 else
1658 new_size = other->end - new->start + 1;
1659
1660 /* we're not bigger than the max, unreserve the space and go */
1661 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1662 spin_lock(&BTRFS_I(inode)->lock);
1663 BTRFS_I(inode)->outstanding_extents--;
1664 spin_unlock(&BTRFS_I(inode)->lock);
1665 return;
1666 }
1667
1668 /*
1669 * We have to add up either side to figure out how many extents were
1670 * accounted for before we merged into one big extent. If the number of
1671 * extents we accounted for is <= the amount we need for the new range
1672 * then we can return, otherwise drop. Think of it like this
1673 *
1674 * [ 4k][MAX_SIZE]
1675 *
1676 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1677 * need 2 outstanding extents, on one side we have 1 and the other side
1678 * we have 1 so they are == and we can return. But in this case
1679 *
1680 * [MAX_SIZE+4k][MAX_SIZE+4k]
1681 *
1682 * Each range on their own accounts for 2 extents, but merged together
1683 * they are only 3 extents worth of accounting, so we need to drop in
1684 * this case.
1685 */
1686 old_size = other->end - other->start + 1;
1687 num_extents = count_max_extents(old_size);
1688 old_size = new->end - new->start + 1;
1689 num_extents += count_max_extents(old_size);
1690 if (count_max_extents(new_size) >= num_extents)
1691 return;
1692
1693 spin_lock(&BTRFS_I(inode)->lock);
1694 BTRFS_I(inode)->outstanding_extents--;
1695 spin_unlock(&BTRFS_I(inode)->lock);
1696}
1697
1698static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1699 struct inode *inode)
1700{
1701 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1702
1703 spin_lock(&root->delalloc_lock);
1704 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1705 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1706 &root->delalloc_inodes);
1707 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1708 &BTRFS_I(inode)->runtime_flags);
1709 root->nr_delalloc_inodes++;
1710 if (root->nr_delalloc_inodes == 1) {
1711 spin_lock(&fs_info->delalloc_root_lock);
1712 BUG_ON(!list_empty(&root->delalloc_root));
1713 list_add_tail(&root->delalloc_root,
1714 &fs_info->delalloc_roots);
1715 spin_unlock(&fs_info->delalloc_root_lock);
1716 }
1717 }
1718 spin_unlock(&root->delalloc_lock);
1719}
1720
1721static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1722 struct btrfs_inode *inode)
1723{
1724 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1725
1726 spin_lock(&root->delalloc_lock);
1727 if (!list_empty(&inode->delalloc_inodes)) {
1728 list_del_init(&inode->delalloc_inodes);
1729 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1730 &inode->runtime_flags);
1731 root->nr_delalloc_inodes--;
1732 if (!root->nr_delalloc_inodes) {
1733 spin_lock(&fs_info->delalloc_root_lock);
1734 BUG_ON(list_empty(&root->delalloc_root));
1735 list_del_init(&root->delalloc_root);
1736 spin_unlock(&fs_info->delalloc_root_lock);
1737 }
1738 }
1739 spin_unlock(&root->delalloc_lock);
1740}
1741
1742/*
1743 * extent_io.c set_bit_hook, used to track delayed allocation
1744 * bytes in this file, and to maintain the list of inodes that
1745 * have pending delalloc work to be done.
1746 */
1747static void btrfs_set_bit_hook(void *private_data,
1748 struct extent_state *state, unsigned *bits)
1749{
1750 struct inode *inode = private_data;
1751
1752 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1753
1754 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1755 WARN_ON(1);
1756 /*
1757 * set_bit and clear bit hooks normally require _irqsave/restore
1758 * but in this case, we are only testing for the DELALLOC
1759 * bit, which is only set or cleared with irqs on
1760 */
1761 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1762 struct btrfs_root *root = BTRFS_I(inode)->root;
1763 u64 len = state->end + 1 - state->start;
1764 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1765
1766 if (*bits & EXTENT_FIRST_DELALLOC) {
1767 *bits &= ~EXTENT_FIRST_DELALLOC;
1768 } else {
1769 spin_lock(&BTRFS_I(inode)->lock);
1770 BTRFS_I(inode)->outstanding_extents++;
1771 spin_unlock(&BTRFS_I(inode)->lock);
1772 }
1773
1774 /* For sanity tests */
1775 if (btrfs_is_testing(fs_info))
1776 return;
1777
1778 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1779 fs_info->delalloc_batch);
1780 spin_lock(&BTRFS_I(inode)->lock);
1781 BTRFS_I(inode)->delalloc_bytes += len;
1782 if (*bits & EXTENT_DEFRAG)
1783 BTRFS_I(inode)->defrag_bytes += len;
1784 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1785 &BTRFS_I(inode)->runtime_flags))
1786 btrfs_add_delalloc_inodes(root, inode);
1787 spin_unlock(&BTRFS_I(inode)->lock);
1788 }
1789
1790 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1791 (*bits & EXTENT_DELALLOC_NEW)) {
1792 spin_lock(&BTRFS_I(inode)->lock);
1793 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1794 state->start;
1795 spin_unlock(&BTRFS_I(inode)->lock);
1796 }
1797}
1798
1799/*
1800 * extent_io.c clear_bit_hook, see set_bit_hook for why
1801 */
1802static void btrfs_clear_bit_hook(void *private_data,
1803 struct extent_state *state,
1804 unsigned *bits)
1805{
1806 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1807 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1808 u64 len = state->end + 1 - state->start;
1809 u32 num_extents = count_max_extents(len);
1810
1811 spin_lock(&inode->lock);
1812 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1813 inode->defrag_bytes -= len;
1814 spin_unlock(&inode->lock);
1815
1816 /*
1817 * set_bit and clear bit hooks normally require _irqsave/restore
1818 * but in this case, we are only testing for the DELALLOC
1819 * bit, which is only set or cleared with irqs on
1820 */
1821 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1822 struct btrfs_root *root = inode->root;
1823 bool do_list = !btrfs_is_free_space_inode(inode);
1824
1825 if (*bits & EXTENT_FIRST_DELALLOC) {
1826 *bits &= ~EXTENT_FIRST_DELALLOC;
1827 } else if (!(*bits & EXTENT_CLEAR_META_RESV)) {
1828 spin_lock(&inode->lock);
1829 inode->outstanding_extents -= num_extents;
1830 spin_unlock(&inode->lock);
1831 }
1832
1833 /*
1834 * We don't reserve metadata space for space cache inodes so we
1835 * don't need to call dellalloc_release_metadata if there is an
1836 * error.
1837 */
1838 if (*bits & EXTENT_CLEAR_META_RESV &&
1839 root != fs_info->tree_root)
1840 btrfs_delalloc_release_metadata(inode, len);
1841
1842 /* For sanity tests. */
1843 if (btrfs_is_testing(fs_info))
1844 return;
1845
1846 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1847 do_list && !(state->state & EXTENT_NORESERVE) &&
1848 (*bits & EXTENT_CLEAR_DATA_RESV))
1849 btrfs_free_reserved_data_space_noquota(
1850 &inode->vfs_inode,
1851 state->start, len);
1852
1853 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1854 fs_info->delalloc_batch);
1855 spin_lock(&inode->lock);
1856 inode->delalloc_bytes -= len;
1857 if (do_list && inode->delalloc_bytes == 0 &&
1858 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1859 &inode->runtime_flags))
1860 btrfs_del_delalloc_inode(root, inode);
1861 spin_unlock(&inode->lock);
1862 }
1863
1864 if ((state->state & EXTENT_DELALLOC_NEW) &&
1865 (*bits & EXTENT_DELALLOC_NEW)) {
1866 spin_lock(&inode->lock);
1867 ASSERT(inode->new_delalloc_bytes >= len);
1868 inode->new_delalloc_bytes -= len;
1869 spin_unlock(&inode->lock);
1870 }
1871}
1872
1873/*
1874 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1875 * we don't create bios that span stripes or chunks
1876 *
1877 * return 1 if page cannot be merged to bio
1878 * return 0 if page can be merged to bio
1879 * return error otherwise
1880 */
1881int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1882 size_t size, struct bio *bio,
1883 unsigned long bio_flags)
1884{
1885 struct inode *inode = page->mapping->host;
1886 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1887 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1888 u64 length = 0;
1889 u64 map_length;
1890 int ret;
1891
1892 if (bio_flags & EXTENT_BIO_COMPRESSED)
1893 return 0;
1894
1895 length = bio->bi_iter.bi_size;
1896 map_length = length;
1897 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1898 NULL, 0);
1899 if (ret < 0)
1900 return ret;
1901 if (map_length < length + size)
1902 return 1;
1903 return 0;
1904}
1905
1906/*
1907 * in order to insert checksums into the metadata in large chunks,
1908 * we wait until bio submission time. All the pages in the bio are
1909 * checksummed and sums are attached onto the ordered extent record.
1910 *
1911 * At IO completion time the cums attached on the ordered extent record
1912 * are inserted into the btree
1913 */
1914static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio,
1915 int mirror_num, unsigned long bio_flags,
1916 u64 bio_offset)
1917{
1918 struct inode *inode = private_data;
1919 blk_status_t ret = 0;
1920
1921 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1922 BUG_ON(ret); /* -ENOMEM */
1923 return 0;
1924}
1925
1926/*
1927 * in order to insert checksums into the metadata in large chunks,
1928 * we wait until bio submission time. All the pages in the bio are
1929 * checksummed and sums are attached onto the ordered extent record.
1930 *
1931 * At IO completion time the cums attached on the ordered extent record
1932 * are inserted into the btree
1933 */
1934static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio,
1935 int mirror_num, unsigned long bio_flags,
1936 u64 bio_offset)
1937{
1938 struct inode *inode = private_data;
1939 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1940 blk_status_t ret;
1941
1942 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1943 if (ret) {
1944 bio->bi_status = ret;
1945 bio_endio(bio);
1946 }
1947 return ret;
1948}
1949
1950/*
1951 * extent_io.c submission hook. This does the right thing for csum calculation
1952 * on write, or reading the csums from the tree before a read
1953 */
1954static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1955 int mirror_num, unsigned long bio_flags,
1956 u64 bio_offset)
1957{
1958 struct inode *inode = private_data;
1959 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1960 struct btrfs_root *root = BTRFS_I(inode)->root;
1961 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1962 blk_status_t ret = 0;
1963 int skip_sum;
1964 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1965
1966 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1967
1968 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1969 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1970
1971 if (bio_op(bio) != REQ_OP_WRITE) {
1972 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1973 if (ret)
1974 goto out;
1975
1976 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1977 ret = btrfs_submit_compressed_read(inode, bio,
1978 mirror_num,
1979 bio_flags);
1980 goto out;
1981 } else if (!skip_sum) {
1982 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
1983 if (ret)
1984 goto out;
1985 }
1986 goto mapit;
1987 } else if (async && !skip_sum) {
1988 /* csum items have already been cloned */
1989 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1990 goto mapit;
1991 /* we're doing a write, do the async checksumming */
1992 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
1993 bio_offset, inode,
1994 __btrfs_submit_bio_start,
1995 __btrfs_submit_bio_done);
1996 goto out;
1997 } else if (!skip_sum) {
1998 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1999 if (ret)
2000 goto out;
2001 }
2002
2003mapit:
2004 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2005
2006out:
2007 if (ret) {
2008 bio->bi_status = ret;
2009 bio_endio(bio);
2010 }
2011 return ret;
2012}
2013
2014/*
2015 * given a list of ordered sums record them in the inode. This happens
2016 * at IO completion time based on sums calculated at bio submission time.
2017 */
2018static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2019 struct inode *inode, struct list_head *list)
2020{
2021 struct btrfs_ordered_sum *sum;
2022
2023 list_for_each_entry(sum, list, list) {
2024 trans->adding_csums = 1;
2025 btrfs_csum_file_blocks(trans,
2026 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2027 trans->adding_csums = 0;
2028 }
2029 return 0;
2030}
2031
2032int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2033 unsigned int extra_bits,
2034 struct extent_state **cached_state, int dedupe)
2035{
2036 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2037 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2038 extra_bits, cached_state);
2039}
2040
2041/* see btrfs_writepage_start_hook for details on why this is required */
2042struct btrfs_writepage_fixup {
2043 struct page *page;
2044 struct btrfs_work work;
2045};
2046
2047static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2048{
2049 struct btrfs_writepage_fixup *fixup;
2050 struct btrfs_ordered_extent *ordered;
2051 struct extent_state *cached_state = NULL;
2052 struct extent_changeset *data_reserved = NULL;
2053 struct page *page;
2054 struct inode *inode;
2055 u64 page_start;
2056 u64 page_end;
2057 int ret;
2058
2059 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2060 page = fixup->page;
2061again:
2062 lock_page(page);
2063 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2064 ClearPageChecked(page);
2065 goto out_page;
2066 }
2067
2068 inode = page->mapping->host;
2069 page_start = page_offset(page);
2070 page_end = page_offset(page) + PAGE_SIZE - 1;
2071
2072 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2073 &cached_state);
2074
2075 /* already ordered? We're done */
2076 if (PagePrivate2(page))
2077 goto out;
2078
2079 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2080 PAGE_SIZE);
2081 if (ordered) {
2082 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2083 page_end, &cached_state, GFP_NOFS);
2084 unlock_page(page);
2085 btrfs_start_ordered_extent(inode, ordered, 1);
2086 btrfs_put_ordered_extent(ordered);
2087 goto again;
2088 }
2089
2090 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2091 PAGE_SIZE);
2092 if (ret) {
2093 mapping_set_error(page->mapping, ret);
2094 end_extent_writepage(page, ret, page_start, page_end);
2095 ClearPageChecked(page);
2096 goto out;
2097 }
2098
2099 btrfs_set_extent_delalloc(inode, page_start, page_end, 0, &cached_state,
2100 0);
2101 ClearPageChecked(page);
2102 set_page_dirty(page);
2103out:
2104 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2105 &cached_state, GFP_NOFS);
2106out_page:
2107 unlock_page(page);
2108 put_page(page);
2109 kfree(fixup);
2110 extent_changeset_free(data_reserved);
2111}
2112
2113/*
2114 * There are a few paths in the higher layers of the kernel that directly
2115 * set the page dirty bit without asking the filesystem if it is a
2116 * good idea. This causes problems because we want to make sure COW
2117 * properly happens and the data=ordered rules are followed.
2118 *
2119 * In our case any range that doesn't have the ORDERED bit set
2120 * hasn't been properly setup for IO. We kick off an async process
2121 * to fix it up. The async helper will wait for ordered extents, set
2122 * the delalloc bit and make it safe to write the page.
2123 */
2124static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2125{
2126 struct inode *inode = page->mapping->host;
2127 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2128 struct btrfs_writepage_fixup *fixup;
2129
2130 /* this page is properly in the ordered list */
2131 if (TestClearPagePrivate2(page))
2132 return 0;
2133
2134 if (PageChecked(page))
2135 return -EAGAIN;
2136
2137 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2138 if (!fixup)
2139 return -EAGAIN;
2140
2141 SetPageChecked(page);
2142 get_page(page);
2143 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2144 btrfs_writepage_fixup_worker, NULL, NULL);
2145 fixup->page = page;
2146 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2147 return -EBUSY;
2148}
2149
2150static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2151 struct inode *inode, u64 file_pos,
2152 u64 disk_bytenr, u64 disk_num_bytes,
2153 u64 num_bytes, u64 ram_bytes,
2154 u8 compression, u8 encryption,
2155 u16 other_encoding, int extent_type)
2156{
2157 struct btrfs_root *root = BTRFS_I(inode)->root;
2158 struct btrfs_file_extent_item *fi;
2159 struct btrfs_path *path;
2160 struct extent_buffer *leaf;
2161 struct btrfs_key ins;
2162 u64 qg_released;
2163 int extent_inserted = 0;
2164 int ret;
2165
2166 path = btrfs_alloc_path();
2167 if (!path)
2168 return -ENOMEM;
2169
2170 /*
2171 * we may be replacing one extent in the tree with another.
2172 * The new extent is pinned in the extent map, and we don't want
2173 * to drop it from the cache until it is completely in the btree.
2174 *
2175 * So, tell btrfs_drop_extents to leave this extent in the cache.
2176 * the caller is expected to unpin it and allow it to be merged
2177 * with the others.
2178 */
2179 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2180 file_pos + num_bytes, NULL, 0,
2181 1, sizeof(*fi), &extent_inserted);
2182 if (ret)
2183 goto out;
2184
2185 if (!extent_inserted) {
2186 ins.objectid = btrfs_ino(BTRFS_I(inode));
2187 ins.offset = file_pos;
2188 ins.type = BTRFS_EXTENT_DATA_KEY;
2189
2190 path->leave_spinning = 1;
2191 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2192 sizeof(*fi));
2193 if (ret)
2194 goto out;
2195 }
2196 leaf = path->nodes[0];
2197 fi = btrfs_item_ptr(leaf, path->slots[0],
2198 struct btrfs_file_extent_item);
2199 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2200 btrfs_set_file_extent_type(leaf, fi, extent_type);
2201 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2202 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2203 btrfs_set_file_extent_offset(leaf, fi, 0);
2204 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2205 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2206 btrfs_set_file_extent_compression(leaf, fi, compression);
2207 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2208 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2209
2210 btrfs_mark_buffer_dirty(leaf);
2211 btrfs_release_path(path);
2212
2213 inode_add_bytes(inode, num_bytes);
2214
2215 ins.objectid = disk_bytenr;
2216 ins.offset = disk_num_bytes;
2217 ins.type = BTRFS_EXTENT_ITEM_KEY;
2218
2219 /*
2220 * Release the reserved range from inode dirty range map, as it is
2221 * already moved into delayed_ref_head
2222 */
2223 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2224 if (ret < 0)
2225 goto out;
2226 qg_released = ret;
2227 ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid,
2228 btrfs_ino(BTRFS_I(inode)), file_pos, qg_released, &ins);
2229out:
2230 btrfs_free_path(path);
2231
2232 return ret;
2233}
2234
2235/* snapshot-aware defrag */
2236struct sa_defrag_extent_backref {
2237 struct rb_node node;
2238 struct old_sa_defrag_extent *old;
2239 u64 root_id;
2240 u64 inum;
2241 u64 file_pos;
2242 u64 extent_offset;
2243 u64 num_bytes;
2244 u64 generation;
2245};
2246
2247struct old_sa_defrag_extent {
2248 struct list_head list;
2249 struct new_sa_defrag_extent *new;
2250
2251 u64 extent_offset;
2252 u64 bytenr;
2253 u64 offset;
2254 u64 len;
2255 int count;
2256};
2257
2258struct new_sa_defrag_extent {
2259 struct rb_root root;
2260 struct list_head head;
2261 struct btrfs_path *path;
2262 struct inode *inode;
2263 u64 file_pos;
2264 u64 len;
2265 u64 bytenr;
2266 u64 disk_len;
2267 u8 compress_type;
2268};
2269
2270static int backref_comp(struct sa_defrag_extent_backref *b1,
2271 struct sa_defrag_extent_backref *b2)
2272{
2273 if (b1->root_id < b2->root_id)
2274 return -1;
2275 else if (b1->root_id > b2->root_id)
2276 return 1;
2277
2278 if (b1->inum < b2->inum)
2279 return -1;
2280 else if (b1->inum > b2->inum)
2281 return 1;
2282
2283 if (b1->file_pos < b2->file_pos)
2284 return -1;
2285 else if (b1->file_pos > b2->file_pos)
2286 return 1;
2287
2288 /*
2289 * [------------------------------] ===> (a range of space)
2290 * |<--->| |<---->| =============> (fs/file tree A)
2291 * |<---------------------------->| ===> (fs/file tree B)
2292 *
2293 * A range of space can refer to two file extents in one tree while
2294 * refer to only one file extent in another tree.
2295 *
2296 * So we may process a disk offset more than one time(two extents in A)
2297 * and locate at the same extent(one extent in B), then insert two same
2298 * backrefs(both refer to the extent in B).
2299 */
2300 return 0;
2301}
2302
2303static void backref_insert(struct rb_root *root,
2304 struct sa_defrag_extent_backref *backref)
2305{
2306 struct rb_node **p = &root->rb_node;
2307 struct rb_node *parent = NULL;
2308 struct sa_defrag_extent_backref *entry;
2309 int ret;
2310
2311 while (*p) {
2312 parent = *p;
2313 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2314
2315 ret = backref_comp(backref, entry);
2316 if (ret < 0)
2317 p = &(*p)->rb_left;
2318 else
2319 p = &(*p)->rb_right;
2320 }
2321
2322 rb_link_node(&backref->node, parent, p);
2323 rb_insert_color(&backref->node, root);
2324}
2325
2326/*
2327 * Note the backref might has changed, and in this case we just return 0.
2328 */
2329static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2330 void *ctx)
2331{
2332 struct btrfs_file_extent_item *extent;
2333 struct old_sa_defrag_extent *old = ctx;
2334 struct new_sa_defrag_extent *new = old->new;
2335 struct btrfs_path *path = new->path;
2336 struct btrfs_key key;
2337 struct btrfs_root *root;
2338 struct sa_defrag_extent_backref *backref;
2339 struct extent_buffer *leaf;
2340 struct inode *inode = new->inode;
2341 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2342 int slot;
2343 int ret;
2344 u64 extent_offset;
2345 u64 num_bytes;
2346
2347 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2348 inum == btrfs_ino(BTRFS_I(inode)))
2349 return 0;
2350
2351 key.objectid = root_id;
2352 key.type = BTRFS_ROOT_ITEM_KEY;
2353 key.offset = (u64)-1;
2354
2355 root = btrfs_read_fs_root_no_name(fs_info, &key);
2356 if (IS_ERR(root)) {
2357 if (PTR_ERR(root) == -ENOENT)
2358 return 0;
2359 WARN_ON(1);
2360 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2361 inum, offset, root_id);
2362 return PTR_ERR(root);
2363 }
2364
2365 key.objectid = inum;
2366 key.type = BTRFS_EXTENT_DATA_KEY;
2367 if (offset > (u64)-1 << 32)
2368 key.offset = 0;
2369 else
2370 key.offset = offset;
2371
2372 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2373 if (WARN_ON(ret < 0))
2374 return ret;
2375 ret = 0;
2376
2377 while (1) {
2378 cond_resched();
2379
2380 leaf = path->nodes[0];
2381 slot = path->slots[0];
2382
2383 if (slot >= btrfs_header_nritems(leaf)) {
2384 ret = btrfs_next_leaf(root, path);
2385 if (ret < 0) {
2386 goto out;
2387 } else if (ret > 0) {
2388 ret = 0;
2389 goto out;
2390 }
2391 continue;
2392 }
2393
2394 path->slots[0]++;
2395
2396 btrfs_item_key_to_cpu(leaf, &key, slot);
2397
2398 if (key.objectid > inum)
2399 goto out;
2400
2401 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2402 continue;
2403
2404 extent = btrfs_item_ptr(leaf, slot,
2405 struct btrfs_file_extent_item);
2406
2407 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2408 continue;
2409
2410 /*
2411 * 'offset' refers to the exact key.offset,
2412 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2413 * (key.offset - extent_offset).
2414 */
2415 if (key.offset != offset)
2416 continue;
2417
2418 extent_offset = btrfs_file_extent_offset(leaf, extent);
2419 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2420
2421 if (extent_offset >= old->extent_offset + old->offset +
2422 old->len || extent_offset + num_bytes <=
2423 old->extent_offset + old->offset)
2424 continue;
2425 break;
2426 }
2427
2428 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2429 if (!backref) {
2430 ret = -ENOENT;
2431 goto out;
2432 }
2433
2434 backref->root_id = root_id;
2435 backref->inum = inum;
2436 backref->file_pos = offset;
2437 backref->num_bytes = num_bytes;
2438 backref->extent_offset = extent_offset;
2439 backref->generation = btrfs_file_extent_generation(leaf, extent);
2440 backref->old = old;
2441 backref_insert(&new->root, backref);
2442 old->count++;
2443out:
2444 btrfs_release_path(path);
2445 WARN_ON(ret);
2446 return ret;
2447}
2448
2449static noinline bool record_extent_backrefs(struct btrfs_path *path,
2450 struct new_sa_defrag_extent *new)
2451{
2452 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2453 struct old_sa_defrag_extent *old, *tmp;
2454 int ret;
2455
2456 new->path = path;
2457
2458 list_for_each_entry_safe(old, tmp, &new->head, list) {
2459 ret = iterate_inodes_from_logical(old->bytenr +
2460 old->extent_offset, fs_info,
2461 path, record_one_backref,
2462 old);
2463 if (ret < 0 && ret != -ENOENT)
2464 return false;
2465
2466 /* no backref to be processed for this extent */
2467 if (!old->count) {
2468 list_del(&old->list);
2469 kfree(old);
2470 }
2471 }
2472
2473 if (list_empty(&new->head))
2474 return false;
2475
2476 return true;
2477}
2478
2479static int relink_is_mergable(struct extent_buffer *leaf,
2480 struct btrfs_file_extent_item *fi,
2481 struct new_sa_defrag_extent *new)
2482{
2483 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2484 return 0;
2485
2486 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2487 return 0;
2488
2489 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2490 return 0;
2491
2492 if (btrfs_file_extent_encryption(leaf, fi) ||
2493 btrfs_file_extent_other_encoding(leaf, fi))
2494 return 0;
2495
2496 return 1;
2497}
2498
2499/*
2500 * Note the backref might has changed, and in this case we just return 0.
2501 */
2502static noinline int relink_extent_backref(struct btrfs_path *path,
2503 struct sa_defrag_extent_backref *prev,
2504 struct sa_defrag_extent_backref *backref)
2505{
2506 struct btrfs_file_extent_item *extent;
2507 struct btrfs_file_extent_item *item;
2508 struct btrfs_ordered_extent *ordered;
2509 struct btrfs_trans_handle *trans;
2510 struct btrfs_root *root;
2511 struct btrfs_key key;
2512 struct extent_buffer *leaf;
2513 struct old_sa_defrag_extent *old = backref->old;
2514 struct new_sa_defrag_extent *new = old->new;
2515 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2516 struct inode *inode;
2517 struct extent_state *cached = NULL;
2518 int ret = 0;
2519 u64 start;
2520 u64 len;
2521 u64 lock_start;
2522 u64 lock_end;
2523 bool merge = false;
2524 int index;
2525
2526 if (prev && prev->root_id == backref->root_id &&
2527 prev->inum == backref->inum &&
2528 prev->file_pos + prev->num_bytes == backref->file_pos)
2529 merge = true;
2530
2531 /* step 1: get root */
2532 key.objectid = backref->root_id;
2533 key.type = BTRFS_ROOT_ITEM_KEY;
2534 key.offset = (u64)-1;
2535
2536 index = srcu_read_lock(&fs_info->subvol_srcu);
2537
2538 root = btrfs_read_fs_root_no_name(fs_info, &key);
2539 if (IS_ERR(root)) {
2540 srcu_read_unlock(&fs_info->subvol_srcu, index);
2541 if (PTR_ERR(root) == -ENOENT)
2542 return 0;
2543 return PTR_ERR(root);
2544 }
2545
2546 if (btrfs_root_readonly(root)) {
2547 srcu_read_unlock(&fs_info->subvol_srcu, index);
2548 return 0;
2549 }
2550
2551 /* step 2: get inode */
2552 key.objectid = backref->inum;
2553 key.type = BTRFS_INODE_ITEM_KEY;
2554 key.offset = 0;
2555
2556 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2557 if (IS_ERR(inode)) {
2558 srcu_read_unlock(&fs_info->subvol_srcu, index);
2559 return 0;
2560 }
2561
2562 srcu_read_unlock(&fs_info->subvol_srcu, index);
2563
2564 /* step 3: relink backref */
2565 lock_start = backref->file_pos;
2566 lock_end = backref->file_pos + backref->num_bytes - 1;
2567 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2568 &cached);
2569
2570 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2571 if (ordered) {
2572 btrfs_put_ordered_extent(ordered);
2573 goto out_unlock;
2574 }
2575
2576 trans = btrfs_join_transaction(root);
2577 if (IS_ERR(trans)) {
2578 ret = PTR_ERR(trans);
2579 goto out_unlock;
2580 }
2581
2582 key.objectid = backref->inum;
2583 key.type = BTRFS_EXTENT_DATA_KEY;
2584 key.offset = backref->file_pos;
2585
2586 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2587 if (ret < 0) {
2588 goto out_free_path;
2589 } else if (ret > 0) {
2590 ret = 0;
2591 goto out_free_path;
2592 }
2593
2594 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2595 struct btrfs_file_extent_item);
2596
2597 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2598 backref->generation)
2599 goto out_free_path;
2600
2601 btrfs_release_path(path);
2602
2603 start = backref->file_pos;
2604 if (backref->extent_offset < old->extent_offset + old->offset)
2605 start += old->extent_offset + old->offset -
2606 backref->extent_offset;
2607
2608 len = min(backref->extent_offset + backref->num_bytes,
2609 old->extent_offset + old->offset + old->len);
2610 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2611
2612 ret = btrfs_drop_extents(trans, root, inode, start,
2613 start + len, 1);
2614 if (ret)
2615 goto out_free_path;
2616again:
2617 key.objectid = btrfs_ino(BTRFS_I(inode));
2618 key.type = BTRFS_EXTENT_DATA_KEY;
2619 key.offset = start;
2620
2621 path->leave_spinning = 1;
2622 if (merge) {
2623 struct btrfs_file_extent_item *fi;
2624 u64 extent_len;
2625 struct btrfs_key found_key;
2626
2627 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2628 if (ret < 0)
2629 goto out_free_path;
2630
2631 path->slots[0]--;
2632 leaf = path->nodes[0];
2633 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2634
2635 fi = btrfs_item_ptr(leaf, path->slots[0],
2636 struct btrfs_file_extent_item);
2637 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2638
2639 if (extent_len + found_key.offset == start &&
2640 relink_is_mergable(leaf, fi, new)) {
2641 btrfs_set_file_extent_num_bytes(leaf, fi,
2642 extent_len + len);
2643 btrfs_mark_buffer_dirty(leaf);
2644 inode_add_bytes(inode, len);
2645
2646 ret = 1;
2647 goto out_free_path;
2648 } else {
2649 merge = false;
2650 btrfs_release_path(path);
2651 goto again;
2652 }
2653 }
2654
2655 ret = btrfs_insert_empty_item(trans, root, path, &key,
2656 sizeof(*extent));
2657 if (ret) {
2658 btrfs_abort_transaction(trans, ret);
2659 goto out_free_path;
2660 }
2661
2662 leaf = path->nodes[0];
2663 item = btrfs_item_ptr(leaf, path->slots[0],
2664 struct btrfs_file_extent_item);
2665 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2666 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2667 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2668 btrfs_set_file_extent_num_bytes(leaf, item, len);
2669 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2670 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2671 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2672 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2673 btrfs_set_file_extent_encryption(leaf, item, 0);
2674 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2675
2676 btrfs_mark_buffer_dirty(leaf);
2677 inode_add_bytes(inode, len);
2678 btrfs_release_path(path);
2679
2680 ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr,
2681 new->disk_len, 0,
2682 backref->root_id, backref->inum,
2683 new->file_pos); /* start - extent_offset */
2684 if (ret) {
2685 btrfs_abort_transaction(trans, ret);
2686 goto out_free_path;
2687 }
2688
2689 ret = 1;
2690out_free_path:
2691 btrfs_release_path(path);
2692 path->leave_spinning = 0;
2693 btrfs_end_transaction(trans);
2694out_unlock:
2695 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2696 &cached, GFP_NOFS);
2697 iput(inode);
2698 return ret;
2699}
2700
2701static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2702{
2703 struct old_sa_defrag_extent *old, *tmp;
2704
2705 if (!new)
2706 return;
2707
2708 list_for_each_entry_safe(old, tmp, &new->head, list) {
2709 kfree(old);
2710 }
2711 kfree(new);
2712}
2713
2714static void relink_file_extents(struct new_sa_defrag_extent *new)
2715{
2716 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2717 struct btrfs_path *path;
2718 struct sa_defrag_extent_backref *backref;
2719 struct sa_defrag_extent_backref *prev = NULL;
2720 struct inode *inode;
2721 struct btrfs_root *root;
2722 struct rb_node *node;
2723 int ret;
2724
2725 inode = new->inode;
2726 root = BTRFS_I(inode)->root;
2727
2728 path = btrfs_alloc_path();
2729 if (!path)
2730 return;
2731
2732 if (!record_extent_backrefs(path, new)) {
2733 btrfs_free_path(path);
2734 goto out;
2735 }
2736 btrfs_release_path(path);
2737
2738 while (1) {
2739 node = rb_first(&new->root);
2740 if (!node)
2741 break;
2742 rb_erase(node, &new->root);
2743
2744 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2745
2746 ret = relink_extent_backref(path, prev, backref);
2747 WARN_ON(ret < 0);
2748
2749 kfree(prev);
2750
2751 if (ret == 1)
2752 prev = backref;
2753 else
2754 prev = NULL;
2755 cond_resched();
2756 }
2757 kfree(prev);
2758
2759 btrfs_free_path(path);
2760out:
2761 free_sa_defrag_extent(new);
2762
2763 atomic_dec(&fs_info->defrag_running);
2764 wake_up(&fs_info->transaction_wait);
2765}
2766
2767static struct new_sa_defrag_extent *
2768record_old_file_extents(struct inode *inode,
2769 struct btrfs_ordered_extent *ordered)
2770{
2771 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2772 struct btrfs_root *root = BTRFS_I(inode)->root;
2773 struct btrfs_path *path;
2774 struct btrfs_key key;
2775 struct old_sa_defrag_extent *old;
2776 struct new_sa_defrag_extent *new;
2777 int ret;
2778
2779 new = kmalloc(sizeof(*new), GFP_NOFS);
2780 if (!new)
2781 return NULL;
2782
2783 new->inode = inode;
2784 new->file_pos = ordered->file_offset;
2785 new->len = ordered->len;
2786 new->bytenr = ordered->start;
2787 new->disk_len = ordered->disk_len;
2788 new->compress_type = ordered->compress_type;
2789 new->root = RB_ROOT;
2790 INIT_LIST_HEAD(&new->head);
2791
2792 path = btrfs_alloc_path();
2793 if (!path)
2794 goto out_kfree;
2795
2796 key.objectid = btrfs_ino(BTRFS_I(inode));
2797 key.type = BTRFS_EXTENT_DATA_KEY;
2798 key.offset = new->file_pos;
2799
2800 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2801 if (ret < 0)
2802 goto out_free_path;
2803 if (ret > 0 && path->slots[0] > 0)
2804 path->slots[0]--;
2805
2806 /* find out all the old extents for the file range */
2807 while (1) {
2808 struct btrfs_file_extent_item *extent;
2809 struct extent_buffer *l;
2810 int slot;
2811 u64 num_bytes;
2812 u64 offset;
2813 u64 end;
2814 u64 disk_bytenr;
2815 u64 extent_offset;
2816
2817 l = path->nodes[0];
2818 slot = path->slots[0];
2819
2820 if (slot >= btrfs_header_nritems(l)) {
2821 ret = btrfs_next_leaf(root, path);
2822 if (ret < 0)
2823 goto out_free_path;
2824 else if (ret > 0)
2825 break;
2826 continue;
2827 }
2828
2829 btrfs_item_key_to_cpu(l, &key, slot);
2830
2831 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2832 break;
2833 if (key.type != BTRFS_EXTENT_DATA_KEY)
2834 break;
2835 if (key.offset >= new->file_pos + new->len)
2836 break;
2837
2838 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2839
2840 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2841 if (key.offset + num_bytes < new->file_pos)
2842 goto next;
2843
2844 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2845 if (!disk_bytenr)
2846 goto next;
2847
2848 extent_offset = btrfs_file_extent_offset(l, extent);
2849
2850 old = kmalloc(sizeof(*old), GFP_NOFS);
2851 if (!old)
2852 goto out_free_path;
2853
2854 offset = max(new->file_pos, key.offset);
2855 end = min(new->file_pos + new->len, key.offset + num_bytes);
2856
2857 old->bytenr = disk_bytenr;
2858 old->extent_offset = extent_offset;
2859 old->offset = offset - key.offset;
2860 old->len = end - offset;
2861 old->new = new;
2862 old->count = 0;
2863 list_add_tail(&old->list, &new->head);
2864next:
2865 path->slots[0]++;
2866 cond_resched();
2867 }
2868
2869 btrfs_free_path(path);
2870 atomic_inc(&fs_info->defrag_running);
2871
2872 return new;
2873
2874out_free_path:
2875 btrfs_free_path(path);
2876out_kfree:
2877 free_sa_defrag_extent(new);
2878 return NULL;
2879}
2880
2881static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2882 u64 start, u64 len)
2883{
2884 struct btrfs_block_group_cache *cache;
2885
2886 cache = btrfs_lookup_block_group(fs_info, start);
2887 ASSERT(cache);
2888
2889 spin_lock(&cache->lock);
2890 cache->delalloc_bytes -= len;
2891 spin_unlock(&cache->lock);
2892
2893 btrfs_put_block_group(cache);
2894}
2895
2896/* as ordered data IO finishes, this gets called so we can finish
2897 * an ordered extent if the range of bytes in the file it covers are
2898 * fully written.
2899 */
2900static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2901{
2902 struct inode *inode = ordered_extent->inode;
2903 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2904 struct btrfs_root *root = BTRFS_I(inode)->root;
2905 struct btrfs_trans_handle *trans = NULL;
2906 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2907 struct extent_state *cached_state = NULL;
2908 struct new_sa_defrag_extent *new = NULL;
2909 int compress_type = 0;
2910 int ret = 0;
2911 u64 logical_len = ordered_extent->len;
2912 bool nolock;
2913 bool truncated = false;
2914 bool range_locked = false;
2915 bool clear_new_delalloc_bytes = false;
2916
2917 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2918 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2919 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2920 clear_new_delalloc_bytes = true;
2921
2922 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2923
2924 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2925 ret = -EIO;
2926 goto out;
2927 }
2928
2929 btrfs_free_io_failure_record(BTRFS_I(inode),
2930 ordered_extent->file_offset,
2931 ordered_extent->file_offset +
2932 ordered_extent->len - 1);
2933
2934 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2935 truncated = true;
2936 logical_len = ordered_extent->truncated_len;
2937 /* Truncated the entire extent, don't bother adding */
2938 if (!logical_len)
2939 goto out;
2940 }
2941
2942 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2943 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2944
2945 /*
2946 * For mwrite(mmap + memset to write) case, we still reserve
2947 * space for NOCOW range.
2948 * As NOCOW won't cause a new delayed ref, just free the space
2949 */
2950 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2951 ordered_extent->len);
2952 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2953 if (nolock)
2954 trans = btrfs_join_transaction_nolock(root);
2955 else
2956 trans = btrfs_join_transaction(root);
2957 if (IS_ERR(trans)) {
2958 ret = PTR_ERR(trans);
2959 trans = NULL;
2960 goto out;
2961 }
2962 trans->block_rsv = &fs_info->delalloc_block_rsv;
2963 ret = btrfs_update_inode_fallback(trans, root, inode);
2964 if (ret) /* -ENOMEM or corruption */
2965 btrfs_abort_transaction(trans, ret);
2966 goto out;
2967 }
2968
2969 range_locked = true;
2970 lock_extent_bits(io_tree, ordered_extent->file_offset,
2971 ordered_extent->file_offset + ordered_extent->len - 1,
2972 &cached_state);
2973
2974 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2975 ordered_extent->file_offset + ordered_extent->len - 1,
2976 EXTENT_DEFRAG, 0, cached_state);
2977 if (ret) {
2978 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2979 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2980 /* the inode is shared */
2981 new = record_old_file_extents(inode, ordered_extent);
2982
2983 clear_extent_bit(io_tree, ordered_extent->file_offset,
2984 ordered_extent->file_offset + ordered_extent->len - 1,
2985 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2986 }
2987
2988 if (nolock)
2989 trans = btrfs_join_transaction_nolock(root);
2990 else
2991 trans = btrfs_join_transaction(root);
2992 if (IS_ERR(trans)) {
2993 ret = PTR_ERR(trans);
2994 trans = NULL;
2995 goto out;
2996 }
2997
2998 trans->block_rsv = &fs_info->delalloc_block_rsv;
2999
3000 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3001 compress_type = ordered_extent->compress_type;
3002 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3003 BUG_ON(compress_type);
3004 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3005 ordered_extent->file_offset,
3006 ordered_extent->file_offset +
3007 logical_len);
3008 } else {
3009 BUG_ON(root == fs_info->tree_root);
3010 ret = insert_reserved_file_extent(trans, inode,
3011 ordered_extent->file_offset,
3012 ordered_extent->start,
3013 ordered_extent->disk_len,
3014 logical_len, logical_len,
3015 compress_type, 0, 0,
3016 BTRFS_FILE_EXTENT_REG);
3017 if (!ret)
3018 btrfs_release_delalloc_bytes(fs_info,
3019 ordered_extent->start,
3020 ordered_extent->disk_len);
3021 }
3022 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3023 ordered_extent->file_offset, ordered_extent->len,
3024 trans->transid);
3025 if (ret < 0) {
3026 btrfs_abort_transaction(trans, ret);
3027 goto out;
3028 }
3029
3030 add_pending_csums(trans, inode, &ordered_extent->list);
3031
3032 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3033 ret = btrfs_update_inode_fallback(trans, root, inode);
3034 if (ret) { /* -ENOMEM or corruption */
3035 btrfs_abort_transaction(trans, ret);
3036 goto out;
3037 }
3038 ret = 0;
3039out:
3040 if (range_locked || clear_new_delalloc_bytes) {
3041 unsigned int clear_bits = 0;
3042
3043 if (range_locked)
3044 clear_bits |= EXTENT_LOCKED;
3045 if (clear_new_delalloc_bytes)
3046 clear_bits |= EXTENT_DELALLOC_NEW;
3047 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3048 ordered_extent->file_offset,
3049 ordered_extent->file_offset +
3050 ordered_extent->len - 1,
3051 clear_bits,
3052 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3053 0, &cached_state, GFP_NOFS);
3054 }
3055
3056 if (root != fs_info->tree_root)
3057 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3058 ordered_extent->len);
3059 if (trans)
3060 btrfs_end_transaction(trans);
3061
3062 if (ret || truncated) {
3063 u64 start, end;
3064
3065 if (truncated)
3066 start = ordered_extent->file_offset + logical_len;
3067 else
3068 start = ordered_extent->file_offset;
3069 end = ordered_extent->file_offset + ordered_extent->len - 1;
3070 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3071
3072 /* Drop the cache for the part of the extent we didn't write. */
3073 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3074
3075 /*
3076 * If the ordered extent had an IOERR or something else went
3077 * wrong we need to return the space for this ordered extent
3078 * back to the allocator. We only free the extent in the
3079 * truncated case if we didn't write out the extent at all.
3080 */
3081 if ((ret || !logical_len) &&
3082 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3083 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3084 btrfs_free_reserved_extent(fs_info,
3085 ordered_extent->start,
3086 ordered_extent->disk_len, 1);
3087 }
3088
3089
3090 /*
3091 * This needs to be done to make sure anybody waiting knows we are done
3092 * updating everything for this ordered extent.
3093 */
3094 btrfs_remove_ordered_extent(inode, ordered_extent);
3095
3096 /* for snapshot-aware defrag */
3097 if (new) {
3098 if (ret) {
3099 free_sa_defrag_extent(new);
3100 atomic_dec(&fs_info->defrag_running);
3101 } else {
3102 relink_file_extents(new);
3103 }
3104 }
3105
3106 /* once for us */
3107 btrfs_put_ordered_extent(ordered_extent);
3108 /* once for the tree */
3109 btrfs_put_ordered_extent(ordered_extent);
3110
3111 return ret;
3112}
3113
3114static void finish_ordered_fn(struct btrfs_work *work)
3115{
3116 struct btrfs_ordered_extent *ordered_extent;
3117 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3118 btrfs_finish_ordered_io(ordered_extent);
3119}
3120
3121static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3122 struct extent_state *state, int uptodate)
3123{
3124 struct inode *inode = page->mapping->host;
3125 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3126 struct btrfs_ordered_extent *ordered_extent = NULL;
3127 struct btrfs_workqueue *wq;
3128 btrfs_work_func_t func;
3129
3130 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3131
3132 ClearPagePrivate2(page);
3133 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3134 end - start + 1, uptodate))
3135 return;
3136
3137 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3138 wq = fs_info->endio_freespace_worker;
3139 func = btrfs_freespace_write_helper;
3140 } else {
3141 wq = fs_info->endio_write_workers;
3142 func = btrfs_endio_write_helper;
3143 }
3144
3145 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3146 NULL);
3147 btrfs_queue_work(wq, &ordered_extent->work);
3148}
3149
3150static int __readpage_endio_check(struct inode *inode,
3151 struct btrfs_io_bio *io_bio,
3152 int icsum, struct page *page,
3153 int pgoff, u64 start, size_t len)
3154{
3155 char *kaddr;
3156 u32 csum_expected;
3157 u32 csum = ~(u32)0;
3158
3159 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3160
3161 kaddr = kmap_atomic(page);
3162 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3163 btrfs_csum_final(csum, (u8 *)&csum);
3164 if (csum != csum_expected)
3165 goto zeroit;
3166
3167 kunmap_atomic(kaddr);
3168 return 0;
3169zeroit:
3170 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3171 io_bio->mirror_num);
3172 memset(kaddr + pgoff, 1, len);
3173 flush_dcache_page(page);
3174 kunmap_atomic(kaddr);
3175 if (csum_expected == 0)
3176 return 0;
3177 return -EIO;
3178}
3179
3180/*
3181 * when reads are done, we need to check csums to verify the data is correct
3182 * if there's a match, we allow the bio to finish. If not, the code in
3183 * extent_io.c will try to find good copies for us.
3184 */
3185static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3186 u64 phy_offset, struct page *page,
3187 u64 start, u64 end, int mirror)
3188{
3189 size_t offset = start - page_offset(page);
3190 struct inode *inode = page->mapping->host;
3191 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3192 struct btrfs_root *root = BTRFS_I(inode)->root;
3193
3194 if (PageChecked(page)) {
3195 ClearPageChecked(page);
3196 return 0;
3197 }
3198
3199 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3200 return 0;
3201
3202 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3203 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3204 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3205 return 0;
3206 }
3207
3208 phy_offset >>= inode->i_sb->s_blocksize_bits;
3209 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3210 start, (size_t)(end - start + 1));
3211}
3212
3213void btrfs_add_delayed_iput(struct inode *inode)
3214{
3215 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3216 struct btrfs_inode *binode = BTRFS_I(inode);
3217
3218 if (atomic_add_unless(&inode->i_count, -1, 1))
3219 return;
3220
3221 spin_lock(&fs_info->delayed_iput_lock);
3222 if (binode->delayed_iput_count == 0) {
3223 ASSERT(list_empty(&binode->delayed_iput));
3224 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3225 } else {
3226 binode->delayed_iput_count++;
3227 }
3228 spin_unlock(&fs_info->delayed_iput_lock);
3229}
3230
3231void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3232{
3233
3234 spin_lock(&fs_info->delayed_iput_lock);
3235 while (!list_empty(&fs_info->delayed_iputs)) {
3236 struct btrfs_inode *inode;
3237
3238 inode = list_first_entry(&fs_info->delayed_iputs,
3239 struct btrfs_inode, delayed_iput);
3240 if (inode->delayed_iput_count) {
3241 inode->delayed_iput_count--;
3242 list_move_tail(&inode->delayed_iput,
3243 &fs_info->delayed_iputs);
3244 } else {
3245 list_del_init(&inode->delayed_iput);
3246 }
3247 spin_unlock(&fs_info->delayed_iput_lock);
3248 iput(&inode->vfs_inode);
3249 spin_lock(&fs_info->delayed_iput_lock);
3250 }
3251 spin_unlock(&fs_info->delayed_iput_lock);
3252}
3253
3254/*
3255 * This is called in transaction commit time. If there are no orphan
3256 * files in the subvolume, it removes orphan item and frees block_rsv
3257 * structure.
3258 */
3259void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3260 struct btrfs_root *root)
3261{
3262 struct btrfs_fs_info *fs_info = root->fs_info;
3263 struct btrfs_block_rsv *block_rsv;
3264 int ret;
3265
3266 if (atomic_read(&root->orphan_inodes) ||
3267 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3268 return;
3269
3270 spin_lock(&root->orphan_lock);
3271 if (atomic_read(&root->orphan_inodes)) {
3272 spin_unlock(&root->orphan_lock);
3273 return;
3274 }
3275
3276 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3277 spin_unlock(&root->orphan_lock);
3278 return;
3279 }
3280
3281 block_rsv = root->orphan_block_rsv;
3282 root->orphan_block_rsv = NULL;
3283 spin_unlock(&root->orphan_lock);
3284
3285 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3286 btrfs_root_refs(&root->root_item) > 0) {
3287 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
3288 root->root_key.objectid);
3289 if (ret)
3290 btrfs_abort_transaction(trans, ret);
3291 else
3292 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3293 &root->state);
3294 }
3295
3296 if (block_rsv) {
3297 WARN_ON(block_rsv->size > 0);
3298 btrfs_free_block_rsv(fs_info, block_rsv);
3299 }
3300}
3301
3302/*
3303 * This creates an orphan entry for the given inode in case something goes
3304 * wrong in the middle of an unlink/truncate.
3305 *
3306 * NOTE: caller of this function should reserve 5 units of metadata for
3307 * this function.
3308 */
3309int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3310 struct btrfs_inode *inode)
3311{
3312 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3313 struct btrfs_root *root = inode->root;
3314 struct btrfs_block_rsv *block_rsv = NULL;
3315 int reserve = 0;
3316 int insert = 0;
3317 int ret;
3318
3319 if (!root->orphan_block_rsv) {
3320 block_rsv = btrfs_alloc_block_rsv(fs_info,
3321 BTRFS_BLOCK_RSV_TEMP);
3322 if (!block_rsv)
3323 return -ENOMEM;
3324 }
3325
3326 spin_lock(&root->orphan_lock);
3327 if (!root->orphan_block_rsv) {
3328 root->orphan_block_rsv = block_rsv;
3329 } else if (block_rsv) {
3330 btrfs_free_block_rsv(fs_info, block_rsv);
3331 block_rsv = NULL;
3332 }
3333
3334 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3335 &inode->runtime_flags)) {
3336#if 0
3337 /*
3338 * For proper ENOSPC handling, we should do orphan
3339 * cleanup when mounting. But this introduces backward
3340 * compatibility issue.
3341 */
3342 if (!xchg(&root->orphan_item_inserted, 1))
3343 insert = 2;
3344 else
3345 insert = 1;
3346#endif
3347 insert = 1;
3348 atomic_inc(&root->orphan_inodes);
3349 }
3350
3351 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3352 &inode->runtime_flags))
3353 reserve = 1;
3354 spin_unlock(&root->orphan_lock);
3355
3356 /* grab metadata reservation from transaction handle */
3357 if (reserve) {
3358 ret = btrfs_orphan_reserve_metadata(trans, inode);
3359 ASSERT(!ret);
3360 if (ret) {
3361 atomic_dec(&root->orphan_inodes);
3362 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3363 &inode->runtime_flags);
3364 if (insert)
3365 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3366 &inode->runtime_flags);
3367 return ret;
3368 }
3369 }
3370
3371 /* insert an orphan item to track this unlinked/truncated file */
3372 if (insert >= 1) {
3373 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3374 if (ret) {
3375 atomic_dec(&root->orphan_inodes);
3376 if (reserve) {
3377 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3378 &inode->runtime_flags);
3379 btrfs_orphan_release_metadata(inode);
3380 }
3381 if (ret != -EEXIST) {
3382 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3383 &inode->runtime_flags);
3384 btrfs_abort_transaction(trans, ret);
3385 return ret;
3386 }
3387 }
3388 ret = 0;
3389 }
3390
3391 /* insert an orphan item to track subvolume contains orphan files */
3392 if (insert >= 2) {
3393 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
3394 root->root_key.objectid);
3395 if (ret && ret != -EEXIST) {
3396 btrfs_abort_transaction(trans, ret);
3397 return ret;
3398 }
3399 }
3400 return 0;
3401}
3402
3403/*
3404 * We have done the truncate/delete so we can go ahead and remove the orphan
3405 * item for this particular inode.
3406 */
3407static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3408 struct btrfs_inode *inode)
3409{
3410 struct btrfs_root *root = inode->root;
3411 int delete_item = 0;
3412 int release_rsv = 0;
3413 int ret = 0;
3414
3415 spin_lock(&root->orphan_lock);
3416 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3417 &inode->runtime_flags))
3418 delete_item = 1;
3419
3420 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3421 &inode->runtime_flags))
3422 release_rsv = 1;
3423 spin_unlock(&root->orphan_lock);
3424
3425 if (delete_item) {
3426 atomic_dec(&root->orphan_inodes);
3427 if (trans)
3428 ret = btrfs_del_orphan_item(trans, root,
3429 btrfs_ino(inode));
3430 }
3431
3432 if (release_rsv)
3433 btrfs_orphan_release_metadata(inode);
3434
3435 return ret;
3436}
3437
3438/*
3439 * this cleans up any orphans that may be left on the list from the last use
3440 * of this root.
3441 */
3442int btrfs_orphan_cleanup(struct btrfs_root *root)
3443{
3444 struct btrfs_fs_info *fs_info = root->fs_info;
3445 struct btrfs_path *path;
3446 struct extent_buffer *leaf;
3447 struct btrfs_key key, found_key;
3448 struct btrfs_trans_handle *trans;
3449 struct inode *inode;
3450 u64 last_objectid = 0;
3451 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3452
3453 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3454 return 0;
3455
3456 path = btrfs_alloc_path();
3457 if (!path) {
3458 ret = -ENOMEM;
3459 goto out;
3460 }
3461 path->reada = READA_BACK;
3462
3463 key.objectid = BTRFS_ORPHAN_OBJECTID;
3464 key.type = BTRFS_ORPHAN_ITEM_KEY;
3465 key.offset = (u64)-1;
3466
3467 while (1) {
3468 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3469 if (ret < 0)
3470 goto out;
3471
3472 /*
3473 * if ret == 0 means we found what we were searching for, which
3474 * is weird, but possible, so only screw with path if we didn't
3475 * find the key and see if we have stuff that matches
3476 */
3477 if (ret > 0) {
3478 ret = 0;
3479 if (path->slots[0] == 0)
3480 break;
3481 path->slots[0]--;
3482 }
3483
3484 /* pull out the item */
3485 leaf = path->nodes[0];
3486 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3487
3488 /* make sure the item matches what we want */
3489 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3490 break;
3491 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3492 break;
3493
3494 /* release the path since we're done with it */
3495 btrfs_release_path(path);
3496
3497 /*
3498 * this is where we are basically btrfs_lookup, without the
3499 * crossing root thing. we store the inode number in the
3500 * offset of the orphan item.
3501 */
3502
3503 if (found_key.offset == last_objectid) {
3504 btrfs_err(fs_info,
3505 "Error removing orphan entry, stopping orphan cleanup");
3506 ret = -EINVAL;
3507 goto out;
3508 }
3509
3510 last_objectid = found_key.offset;
3511
3512 found_key.objectid = found_key.offset;
3513 found_key.type = BTRFS_INODE_ITEM_KEY;
3514 found_key.offset = 0;
3515 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3516 ret = PTR_ERR_OR_ZERO(inode);
3517 if (ret && ret != -ENOENT)
3518 goto out;
3519
3520 if (ret == -ENOENT && root == fs_info->tree_root) {
3521 struct btrfs_root *dead_root;
3522 struct btrfs_fs_info *fs_info = root->fs_info;
3523 int is_dead_root = 0;
3524
3525 /*
3526 * this is an orphan in the tree root. Currently these
3527 * could come from 2 sources:
3528 * a) a snapshot deletion in progress
3529 * b) a free space cache inode
3530 * We need to distinguish those two, as the snapshot
3531 * orphan must not get deleted.
3532 * find_dead_roots already ran before us, so if this
3533 * is a snapshot deletion, we should find the root
3534 * in the dead_roots list
3535 */
3536 spin_lock(&fs_info->trans_lock);
3537 list_for_each_entry(dead_root, &fs_info->dead_roots,
3538 root_list) {
3539 if (dead_root->root_key.objectid ==
3540 found_key.objectid) {
3541 is_dead_root = 1;
3542 break;
3543 }
3544 }
3545 spin_unlock(&fs_info->trans_lock);
3546 if (is_dead_root) {
3547 /* prevent this orphan from being found again */
3548 key.offset = found_key.objectid - 1;
3549 continue;
3550 }
3551 }
3552 /*
3553 * Inode is already gone but the orphan item is still there,
3554 * kill the orphan item.
3555 */
3556 if (ret == -ENOENT) {
3557 trans = btrfs_start_transaction(root, 1);
3558 if (IS_ERR(trans)) {
3559 ret = PTR_ERR(trans);
3560 goto out;
3561 }
3562 btrfs_debug(fs_info, "auto deleting %Lu",
3563 found_key.objectid);
3564 ret = btrfs_del_orphan_item(trans, root,
3565 found_key.objectid);
3566 btrfs_end_transaction(trans);
3567 if (ret)
3568 goto out;
3569 continue;
3570 }
3571
3572 /*
3573 * add this inode to the orphan list so btrfs_orphan_del does
3574 * the proper thing when we hit it
3575 */
3576 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3577 &BTRFS_I(inode)->runtime_flags);
3578 atomic_inc(&root->orphan_inodes);
3579
3580 /* if we have links, this was a truncate, lets do that */
3581 if (inode->i_nlink) {
3582 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3583 iput(inode);
3584 continue;
3585 }
3586 nr_truncate++;
3587
3588 /* 1 for the orphan item deletion. */
3589 trans = btrfs_start_transaction(root, 1);
3590 if (IS_ERR(trans)) {
3591 iput(inode);
3592 ret = PTR_ERR(trans);
3593 goto out;
3594 }
3595 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3596 btrfs_end_transaction(trans);
3597 if (ret) {
3598 iput(inode);
3599 goto out;
3600 }
3601
3602 ret = btrfs_truncate(inode);
3603 if (ret)
3604 btrfs_orphan_del(NULL, BTRFS_I(inode));
3605 } else {
3606 nr_unlink++;
3607 }
3608
3609 /* this will do delete_inode and everything for us */
3610 iput(inode);
3611 if (ret)
3612 goto out;
3613 }
3614 /* release the path since we're done with it */
3615 btrfs_release_path(path);
3616
3617 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3618
3619 if (root->orphan_block_rsv)
3620 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
3621 (u64)-1);
3622
3623 if (root->orphan_block_rsv ||
3624 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3625 trans = btrfs_join_transaction(root);
3626 if (!IS_ERR(trans))
3627 btrfs_end_transaction(trans);
3628 }
3629
3630 if (nr_unlink)
3631 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3632 if (nr_truncate)
3633 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
3634
3635out:
3636 if (ret)
3637 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3638 btrfs_free_path(path);
3639 return ret;
3640}
3641
3642/*
3643 * very simple check to peek ahead in the leaf looking for xattrs. If we
3644 * don't find any xattrs, we know there can't be any acls.
3645 *
3646 * slot is the slot the inode is in, objectid is the objectid of the inode
3647 */
3648static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3649 int slot, u64 objectid,
3650 int *first_xattr_slot)
3651{
3652 u32 nritems = btrfs_header_nritems(leaf);
3653 struct btrfs_key found_key;
3654 static u64 xattr_access = 0;
3655 static u64 xattr_default = 0;
3656 int scanned = 0;
3657
3658 if (!xattr_access) {
3659 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3660 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3661 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3662 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3663 }
3664
3665 slot++;
3666 *first_xattr_slot = -1;
3667 while (slot < nritems) {
3668 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3669
3670 /* we found a different objectid, there must not be acls */
3671 if (found_key.objectid != objectid)
3672 return 0;
3673
3674 /* we found an xattr, assume we've got an acl */
3675 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3676 if (*first_xattr_slot == -1)
3677 *first_xattr_slot = slot;
3678 if (found_key.offset == xattr_access ||
3679 found_key.offset == xattr_default)
3680 return 1;
3681 }
3682
3683 /*
3684 * we found a key greater than an xattr key, there can't
3685 * be any acls later on
3686 */
3687 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3688 return 0;
3689
3690 slot++;
3691 scanned++;
3692
3693 /*
3694 * it goes inode, inode backrefs, xattrs, extents,
3695 * so if there are a ton of hard links to an inode there can
3696 * be a lot of backrefs. Don't waste time searching too hard,
3697 * this is just an optimization
3698 */
3699 if (scanned >= 8)
3700 break;
3701 }
3702 /* we hit the end of the leaf before we found an xattr or
3703 * something larger than an xattr. We have to assume the inode
3704 * has acls
3705 */
3706 if (*first_xattr_slot == -1)
3707 *first_xattr_slot = slot;
3708 return 1;
3709}
3710
3711/*
3712 * read an inode from the btree into the in-memory inode
3713 */
3714static int btrfs_read_locked_inode(struct inode *inode)
3715{
3716 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3717 struct btrfs_path *path;
3718 struct extent_buffer *leaf;
3719 struct btrfs_inode_item *inode_item;
3720 struct btrfs_root *root = BTRFS_I(inode)->root;
3721 struct btrfs_key location;
3722 unsigned long ptr;
3723 int maybe_acls;
3724 u32 rdev;
3725 int ret;
3726 bool filled = false;
3727 int first_xattr_slot;
3728
3729 ret = btrfs_fill_inode(inode, &rdev);
3730 if (!ret)
3731 filled = true;
3732
3733 path = btrfs_alloc_path();
3734 if (!path) {
3735 ret = -ENOMEM;
3736 goto make_bad;
3737 }
3738
3739 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3740
3741 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3742 if (ret) {
3743 if (ret > 0)
3744 ret = -ENOENT;
3745 goto make_bad;
3746 }
3747
3748 leaf = path->nodes[0];
3749
3750 if (filled)
3751 goto cache_index;
3752
3753 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3754 struct btrfs_inode_item);
3755 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3756 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3757 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3758 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3759 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3760
3761 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3762 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3763
3764 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3765 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3766
3767 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3768 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3769
3770 BTRFS_I(inode)->i_otime.tv_sec =
3771 btrfs_timespec_sec(leaf, &inode_item->otime);
3772 BTRFS_I(inode)->i_otime.tv_nsec =
3773 btrfs_timespec_nsec(leaf, &inode_item->otime);
3774
3775 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3776 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3777 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3778
3779 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3780 inode->i_generation = BTRFS_I(inode)->generation;
3781 inode->i_rdev = 0;
3782 rdev = btrfs_inode_rdev(leaf, inode_item);
3783
3784 BTRFS_I(inode)->index_cnt = (u64)-1;
3785 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3786
3787cache_index:
3788 /*
3789 * If we were modified in the current generation and evicted from memory
3790 * and then re-read we need to do a full sync since we don't have any
3791 * idea about which extents were modified before we were evicted from
3792 * cache.
3793 *
3794 * This is required for both inode re-read from disk and delayed inode
3795 * in delayed_nodes_tree.
3796 */
3797 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3798 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3799 &BTRFS_I(inode)->runtime_flags);
3800
3801 /*
3802 * We don't persist the id of the transaction where an unlink operation
3803 * against the inode was last made. So here we assume the inode might
3804 * have been evicted, and therefore the exact value of last_unlink_trans
3805 * lost, and set it to last_trans to avoid metadata inconsistencies
3806 * between the inode and its parent if the inode is fsync'ed and the log
3807 * replayed. For example, in the scenario:
3808 *
3809 * touch mydir/foo
3810 * ln mydir/foo mydir/bar
3811 * sync
3812 * unlink mydir/bar
3813 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3814 * xfs_io -c fsync mydir/foo
3815 * <power failure>
3816 * mount fs, triggers fsync log replay
3817 *
3818 * We must make sure that when we fsync our inode foo we also log its
3819 * parent inode, otherwise after log replay the parent still has the
3820 * dentry with the "bar" name but our inode foo has a link count of 1
3821 * and doesn't have an inode ref with the name "bar" anymore.
3822 *
3823 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3824 * but it guarantees correctness at the expense of occasional full
3825 * transaction commits on fsync if our inode is a directory, or if our
3826 * inode is not a directory, logging its parent unnecessarily.
3827 */
3828 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3829
3830 path->slots[0]++;
3831 if (inode->i_nlink != 1 ||
3832 path->slots[0] >= btrfs_header_nritems(leaf))
3833 goto cache_acl;
3834
3835 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3836 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3837 goto cache_acl;
3838
3839 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3840 if (location.type == BTRFS_INODE_REF_KEY) {
3841 struct btrfs_inode_ref *ref;
3842
3843 ref = (struct btrfs_inode_ref *)ptr;
3844 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3845 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3846 struct btrfs_inode_extref *extref;
3847
3848 extref = (struct btrfs_inode_extref *)ptr;
3849 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3850 extref);
3851 }
3852cache_acl:
3853 /*
3854 * try to precache a NULL acl entry for files that don't have
3855 * any xattrs or acls
3856 */
3857 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3858 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3859 if (first_xattr_slot != -1) {
3860 path->slots[0] = first_xattr_slot;
3861 ret = btrfs_load_inode_props(inode, path);
3862 if (ret)
3863 btrfs_err(fs_info,
3864 "error loading props for ino %llu (root %llu): %d",
3865 btrfs_ino(BTRFS_I(inode)),
3866 root->root_key.objectid, ret);
3867 }
3868 btrfs_free_path(path);
3869
3870 if (!maybe_acls)
3871 cache_no_acl(inode);
3872
3873 switch (inode->i_mode & S_IFMT) {
3874 case S_IFREG:
3875 inode->i_mapping->a_ops = &btrfs_aops;
3876 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3877 inode->i_fop = &btrfs_file_operations;
3878 inode->i_op = &btrfs_file_inode_operations;
3879 break;
3880 case S_IFDIR:
3881 inode->i_fop = &btrfs_dir_file_operations;
3882 inode->i_op = &btrfs_dir_inode_operations;
3883 break;
3884 case S_IFLNK:
3885 inode->i_op = &btrfs_symlink_inode_operations;
3886 inode_nohighmem(inode);
3887 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3888 break;
3889 default:
3890 inode->i_op = &btrfs_special_inode_operations;
3891 init_special_inode(inode, inode->i_mode, rdev);
3892 break;
3893 }
3894
3895 btrfs_update_iflags(inode);
3896 return 0;
3897
3898make_bad:
3899 btrfs_free_path(path);
3900 make_bad_inode(inode);
3901 return ret;
3902}
3903
3904/*
3905 * given a leaf and an inode, copy the inode fields into the leaf
3906 */
3907static void fill_inode_item(struct btrfs_trans_handle *trans,
3908 struct extent_buffer *leaf,
3909 struct btrfs_inode_item *item,
3910 struct inode *inode)
3911{
3912 struct btrfs_map_token token;
3913
3914 btrfs_init_map_token(&token);
3915
3916 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3917 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3918 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3919 &token);
3920 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3921 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3922
3923 btrfs_set_token_timespec_sec(leaf, &item->atime,
3924 inode->i_atime.tv_sec, &token);
3925 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3926 inode->i_atime.tv_nsec, &token);
3927
3928 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3929 inode->i_mtime.tv_sec, &token);
3930 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3931 inode->i_mtime.tv_nsec, &token);
3932
3933 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3934 inode->i_ctime.tv_sec, &token);
3935 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3936 inode->i_ctime.tv_nsec, &token);
3937
3938 btrfs_set_token_timespec_sec(leaf, &item->otime,
3939 BTRFS_I(inode)->i_otime.tv_sec, &token);
3940 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3941 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3942
3943 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3944 &token);
3945 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3946 &token);
3947 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3948 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3949 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3950 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3951 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3952}
3953
3954/*
3955 * copy everything in the in-memory inode into the btree.
3956 */
3957static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3958 struct btrfs_root *root, struct inode *inode)
3959{
3960 struct btrfs_inode_item *inode_item;
3961 struct btrfs_path *path;
3962 struct extent_buffer *leaf;
3963 int ret;
3964
3965 path = btrfs_alloc_path();
3966 if (!path)
3967 return -ENOMEM;
3968
3969 path->leave_spinning = 1;
3970 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3971 1);
3972 if (ret) {
3973 if (ret > 0)
3974 ret = -ENOENT;
3975 goto failed;
3976 }
3977
3978 leaf = path->nodes[0];
3979 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3980 struct btrfs_inode_item);
3981
3982 fill_inode_item(trans, leaf, inode_item, inode);
3983 btrfs_mark_buffer_dirty(leaf);
3984 btrfs_set_inode_last_trans(trans, inode);
3985 ret = 0;
3986failed:
3987 btrfs_free_path(path);
3988 return ret;
3989}
3990
3991/*
3992 * copy everything in the in-memory inode into the btree.
3993 */
3994noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3995 struct btrfs_root *root, struct inode *inode)
3996{
3997 struct btrfs_fs_info *fs_info = root->fs_info;
3998 int ret;
3999
4000 /*
4001 * If the inode is a free space inode, we can deadlock during commit
4002 * if we put it into the delayed code.
4003 *
4004 * The data relocation inode should also be directly updated
4005 * without delay
4006 */
4007 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
4008 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
4009 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4010 btrfs_update_root_times(trans, root);
4011
4012 ret = btrfs_delayed_update_inode(trans, root, inode);
4013 if (!ret)
4014 btrfs_set_inode_last_trans(trans, inode);
4015 return ret;
4016 }
4017
4018 return btrfs_update_inode_item(trans, root, inode);
4019}
4020
4021noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4022 struct btrfs_root *root,
4023 struct inode *inode)
4024{
4025 int ret;
4026
4027 ret = btrfs_update_inode(trans, root, inode);
4028 if (ret == -ENOSPC)
4029 return btrfs_update_inode_item(trans, root, inode);
4030 return ret;
4031}
4032
4033/*
4034 * unlink helper that gets used here in inode.c and in the tree logging
4035 * recovery code. It remove a link in a directory with a given name, and
4036 * also drops the back refs in the inode to the directory
4037 */
4038static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4039 struct btrfs_root *root,
4040 struct btrfs_inode *dir,
4041 struct btrfs_inode *inode,
4042 const char *name, int name_len)
4043{
4044 struct btrfs_fs_info *fs_info = root->fs_info;
4045 struct btrfs_path *path;
4046 int ret = 0;
4047 struct extent_buffer *leaf;
4048 struct btrfs_dir_item *di;
4049 struct btrfs_key key;
4050 u64 index;
4051 u64 ino = btrfs_ino(inode);
4052 u64 dir_ino = btrfs_ino(dir);
4053
4054 path = btrfs_alloc_path();
4055 if (!path) {
4056 ret = -ENOMEM;
4057 goto out;
4058 }
4059
4060 path->leave_spinning = 1;
4061 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4062 name, name_len, -1);
4063 if (IS_ERR(di)) {
4064 ret = PTR_ERR(di);
4065 goto err;
4066 }
4067 if (!di) {
4068 ret = -ENOENT;
4069 goto err;
4070 }
4071 leaf = path->nodes[0];
4072 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4073 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4074 if (ret)
4075 goto err;
4076 btrfs_release_path(path);
4077
4078 /*
4079 * If we don't have dir index, we have to get it by looking up
4080 * the inode ref, since we get the inode ref, remove it directly,
4081 * it is unnecessary to do delayed deletion.
4082 *
4083 * But if we have dir index, needn't search inode ref to get it.
4084 * Since the inode ref is close to the inode item, it is better
4085 * that we delay to delete it, and just do this deletion when
4086 * we update the inode item.
4087 */
4088 if (inode->dir_index) {
4089 ret = btrfs_delayed_delete_inode_ref(inode);
4090 if (!ret) {
4091 index = inode->dir_index;
4092 goto skip_backref;
4093 }
4094 }
4095
4096 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4097 dir_ino, &index);
4098 if (ret) {
4099 btrfs_info(fs_info,
4100 "failed to delete reference to %.*s, inode %llu parent %llu",
4101 name_len, name, ino, dir_ino);
4102 btrfs_abort_transaction(trans, ret);
4103 goto err;
4104 }
4105skip_backref:
4106 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
4107 if (ret) {
4108 btrfs_abort_transaction(trans, ret);
4109 goto err;
4110 }
4111
4112 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4113 dir_ino);
4114 if (ret != 0 && ret != -ENOENT) {
4115 btrfs_abort_transaction(trans, ret);
4116 goto err;
4117 }
4118
4119 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4120 index);
4121 if (ret == -ENOENT)
4122 ret = 0;
4123 else if (ret)
4124 btrfs_abort_transaction(trans, ret);
4125err:
4126 btrfs_free_path(path);
4127 if (ret)
4128 goto out;
4129
4130 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4131 inode_inc_iversion(&inode->vfs_inode);
4132 inode_inc_iversion(&dir->vfs_inode);
4133 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4134 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4135 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4136out:
4137 return ret;
4138}
4139
4140int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4141 struct btrfs_root *root,
4142 struct btrfs_inode *dir, struct btrfs_inode *inode,
4143 const char *name, int name_len)
4144{
4145 int ret;
4146 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4147 if (!ret) {
4148 drop_nlink(&inode->vfs_inode);
4149 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4150 }
4151 return ret;
4152}
4153
4154/*
4155 * helper to start transaction for unlink and rmdir.
4156 *
4157 * unlink and rmdir are special in btrfs, they do not always free space, so
4158 * if we cannot make our reservations the normal way try and see if there is
4159 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4160 * allow the unlink to occur.
4161 */
4162static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4163{
4164 struct btrfs_root *root = BTRFS_I(dir)->root;
4165
4166 /*
4167 * 1 for the possible orphan item
4168 * 1 for the dir item
4169 * 1 for the dir index
4170 * 1 for the inode ref
4171 * 1 for the inode
4172 */
4173 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4174}
4175
4176static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4177{
4178 struct btrfs_root *root = BTRFS_I(dir)->root;
4179 struct btrfs_trans_handle *trans;
4180 struct inode *inode = d_inode(dentry);
4181 int ret;
4182
4183 trans = __unlink_start_trans(dir);
4184 if (IS_ERR(trans))
4185 return PTR_ERR(trans);
4186
4187 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4188 0);
4189
4190 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4191 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4192 dentry->d_name.len);
4193 if (ret)
4194 goto out;
4195
4196 if (inode->i_nlink == 0) {
4197 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4198 if (ret)
4199 goto out;
4200 }
4201
4202out:
4203 btrfs_end_transaction(trans);
4204 btrfs_btree_balance_dirty(root->fs_info);
4205 return ret;
4206}
4207
4208int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4209 struct btrfs_root *root,
4210 struct inode *dir, u64 objectid,
4211 const char *name, int name_len)
4212{
4213 struct btrfs_fs_info *fs_info = root->fs_info;
4214 struct btrfs_path *path;
4215 struct extent_buffer *leaf;
4216 struct btrfs_dir_item *di;
4217 struct btrfs_key key;
4218 u64 index;
4219 int ret;
4220 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4221
4222 path = btrfs_alloc_path();
4223 if (!path)
4224 return -ENOMEM;
4225
4226 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4227 name, name_len, -1);
4228 if (IS_ERR_OR_NULL(di)) {
4229 if (!di)
4230 ret = -ENOENT;
4231 else
4232 ret = PTR_ERR(di);
4233 goto out;
4234 }
4235
4236 leaf = path->nodes[0];
4237 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4238 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4239 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4240 if (ret) {
4241 btrfs_abort_transaction(trans, ret);
4242 goto out;
4243 }
4244 btrfs_release_path(path);
4245
4246 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4247 root->root_key.objectid, dir_ino,
4248 &index, name, name_len);
4249 if (ret < 0) {
4250 if (ret != -ENOENT) {
4251 btrfs_abort_transaction(trans, ret);
4252 goto out;
4253 }
4254 di = btrfs_search_dir_index_item(root, path, dir_ino,
4255 name, name_len);
4256 if (IS_ERR_OR_NULL(di)) {
4257 if (!di)
4258 ret = -ENOENT;
4259 else
4260 ret = PTR_ERR(di);
4261 btrfs_abort_transaction(trans, ret);
4262 goto out;
4263 }
4264
4265 leaf = path->nodes[0];
4266 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4267 btrfs_release_path(path);
4268 index = key.offset;
4269 }
4270 btrfs_release_path(path);
4271
4272 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
4273 if (ret) {
4274 btrfs_abort_transaction(trans, ret);
4275 goto out;
4276 }
4277
4278 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4279 inode_inc_iversion(dir);
4280 dir->i_mtime = dir->i_ctime = current_time(dir);
4281 ret = btrfs_update_inode_fallback(trans, root, dir);
4282 if (ret)
4283 btrfs_abort_transaction(trans, ret);
4284out:
4285 btrfs_free_path(path);
4286 return ret;
4287}
4288
4289static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4290{
4291 struct inode *inode = d_inode(dentry);
4292 int err = 0;
4293 struct btrfs_root *root = BTRFS_I(dir)->root;
4294 struct btrfs_trans_handle *trans;
4295 u64 last_unlink_trans;
4296
4297 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4298 return -ENOTEMPTY;
4299 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4300 return -EPERM;
4301
4302 trans = __unlink_start_trans(dir);
4303 if (IS_ERR(trans))
4304 return PTR_ERR(trans);
4305
4306 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4307 err = btrfs_unlink_subvol(trans, root, dir,
4308 BTRFS_I(inode)->location.objectid,
4309 dentry->d_name.name,
4310 dentry->d_name.len);
4311 goto out;
4312 }
4313
4314 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4315 if (err)
4316 goto out;
4317
4318 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4319
4320 /* now the directory is empty */
4321 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4322 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4323 dentry->d_name.len);
4324 if (!err) {
4325 btrfs_i_size_write(BTRFS_I(inode), 0);
4326 /*
4327 * Propagate the last_unlink_trans value of the deleted dir to
4328 * its parent directory. This is to prevent an unrecoverable
4329 * log tree in the case we do something like this:
4330 * 1) create dir foo
4331 * 2) create snapshot under dir foo
4332 * 3) delete the snapshot
4333 * 4) rmdir foo
4334 * 5) mkdir foo
4335 * 6) fsync foo or some file inside foo
4336 */
4337 if (last_unlink_trans >= trans->transid)
4338 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4339 }
4340out:
4341 btrfs_end_transaction(trans);
4342 btrfs_btree_balance_dirty(root->fs_info);
4343
4344 return err;
4345}
4346
4347static int truncate_space_check(struct btrfs_trans_handle *trans,
4348 struct btrfs_root *root,
4349 u64 bytes_deleted)
4350{
4351 struct btrfs_fs_info *fs_info = root->fs_info;
4352 int ret;
4353
4354 /*
4355 * This is only used to apply pressure to the enospc system, we don't
4356 * intend to use this reservation at all.
4357 */
4358 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4359 bytes_deleted *= fs_info->nodesize;
4360 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4361 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4362 if (!ret) {
4363 trace_btrfs_space_reservation(fs_info, "transaction",
4364 trans->transid,
4365 bytes_deleted, 1);
4366 trans->bytes_reserved += bytes_deleted;
4367 }
4368 return ret;
4369
4370}
4371
4372static int truncate_inline_extent(struct inode *inode,
4373 struct btrfs_path *path,
4374 struct btrfs_key *found_key,
4375 const u64 item_end,
4376 const u64 new_size)
4377{
4378 struct extent_buffer *leaf = path->nodes[0];
4379 int slot = path->slots[0];
4380 struct btrfs_file_extent_item *fi;
4381 u32 size = (u32)(new_size - found_key->offset);
4382 struct btrfs_root *root = BTRFS_I(inode)->root;
4383
4384 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4385
4386 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4387 loff_t offset = new_size;
4388 loff_t page_end = ALIGN(offset, PAGE_SIZE);
4389
4390 /*
4391 * Zero out the remaining of the last page of our inline extent,
4392 * instead of directly truncating our inline extent here - that
4393 * would be much more complex (decompressing all the data, then
4394 * compressing the truncated data, which might be bigger than
4395 * the size of the inline extent, resize the extent, etc).
4396 * We release the path because to get the page we might need to
4397 * read the extent item from disk (data not in the page cache).
4398 */
4399 btrfs_release_path(path);
4400 return btrfs_truncate_block(inode, offset, page_end - offset,
4401 0);
4402 }
4403
4404 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4405 size = btrfs_file_extent_calc_inline_size(size);
4406 btrfs_truncate_item(root->fs_info, path, size, 1);
4407
4408 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4409 inode_sub_bytes(inode, item_end + 1 - new_size);
4410
4411 return 0;
4412}
4413
4414/*
4415 * this can truncate away extent items, csum items and directory items.
4416 * It starts at a high offset and removes keys until it can't find
4417 * any higher than new_size
4418 *
4419 * csum items that cross the new i_size are truncated to the new size
4420 * as well.
4421 *
4422 * min_type is the minimum key type to truncate down to. If set to 0, this
4423 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4424 */
4425int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4426 struct btrfs_root *root,
4427 struct inode *inode,
4428 u64 new_size, u32 min_type)
4429{
4430 struct btrfs_fs_info *fs_info = root->fs_info;
4431 struct btrfs_path *path;
4432 struct extent_buffer *leaf;
4433 struct btrfs_file_extent_item *fi;
4434 struct btrfs_key key;
4435 struct btrfs_key found_key;
4436 u64 extent_start = 0;
4437 u64 extent_num_bytes = 0;
4438 u64 extent_offset = 0;
4439 u64 item_end = 0;
4440 u64 last_size = new_size;
4441 u32 found_type = (u8)-1;
4442 int found_extent;
4443 int del_item;
4444 int pending_del_nr = 0;
4445 int pending_del_slot = 0;
4446 int extent_type = -1;
4447 int ret;
4448 int err = 0;
4449 u64 ino = btrfs_ino(BTRFS_I(inode));
4450 u64 bytes_deleted = 0;
4451 bool be_nice = 0;
4452 bool should_throttle = 0;
4453 bool should_end = 0;
4454
4455 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4456
4457 /*
4458 * for non-free space inodes and ref cows, we want to back off from
4459 * time to time
4460 */
4461 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4462 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4463 be_nice = 1;
4464
4465 path = btrfs_alloc_path();
4466 if (!path)
4467 return -ENOMEM;
4468 path->reada = READA_BACK;
4469
4470 /*
4471 * We want to drop from the next block forward in case this new size is
4472 * not block aligned since we will be keeping the last block of the
4473 * extent just the way it is.
4474 */
4475 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4476 root == fs_info->tree_root)
4477 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4478 fs_info->sectorsize),
4479 (u64)-1, 0);
4480
4481 /*
4482 * This function is also used to drop the items in the log tree before
4483 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4484 * it is used to drop the loged items. So we shouldn't kill the delayed
4485 * items.
4486 */
4487 if (min_type == 0 && root == BTRFS_I(inode)->root)
4488 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4489
4490 key.objectid = ino;
4491 key.offset = (u64)-1;
4492 key.type = (u8)-1;
4493
4494search_again:
4495 /*
4496 * with a 16K leaf size and 128MB extents, you can actually queue
4497 * up a huge file in a single leaf. Most of the time that
4498 * bytes_deleted is > 0, it will be huge by the time we get here
4499 */
4500 if (be_nice && bytes_deleted > SZ_32M) {
4501 if (btrfs_should_end_transaction(trans)) {
4502 err = -EAGAIN;
4503 goto error;
4504 }
4505 }
4506
4507
4508 path->leave_spinning = 1;
4509 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4510 if (ret < 0) {
4511 err = ret;
4512 goto out;
4513 }
4514
4515 if (ret > 0) {
4516 /* there are no items in the tree for us to truncate, we're
4517 * done
4518 */
4519 if (path->slots[0] == 0)
4520 goto out;
4521 path->slots[0]--;
4522 }
4523
4524 while (1) {
4525 fi = NULL;
4526 leaf = path->nodes[0];
4527 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4528 found_type = found_key.type;
4529
4530 if (found_key.objectid != ino)
4531 break;
4532
4533 if (found_type < min_type)
4534 break;
4535
4536 item_end = found_key.offset;
4537 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4538 fi = btrfs_item_ptr(leaf, path->slots[0],
4539 struct btrfs_file_extent_item);
4540 extent_type = btrfs_file_extent_type(leaf, fi);
4541 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4542 item_end +=
4543 btrfs_file_extent_num_bytes(leaf, fi);
4544
4545 trace_btrfs_truncate_show_fi_regular(
4546 BTRFS_I(inode), leaf, fi,
4547 found_key.offset);
4548 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4549 item_end += btrfs_file_extent_inline_len(leaf,
4550 path->slots[0], fi);
4551
4552 trace_btrfs_truncate_show_fi_inline(
4553 BTRFS_I(inode), leaf, fi, path->slots[0],
4554 found_key.offset);
4555 }
4556 item_end--;
4557 }
4558 if (found_type > min_type) {
4559 del_item = 1;
4560 } else {
4561 if (item_end < new_size)
4562 break;
4563 if (found_key.offset >= new_size)
4564 del_item = 1;
4565 else
4566 del_item = 0;
4567 }
4568 found_extent = 0;
4569 /* FIXME, shrink the extent if the ref count is only 1 */
4570 if (found_type != BTRFS_EXTENT_DATA_KEY)
4571 goto delete;
4572
4573 if (del_item)
4574 last_size = found_key.offset;
4575 else
4576 last_size = new_size;
4577
4578 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4579 u64 num_dec;
4580 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4581 if (!del_item) {
4582 u64 orig_num_bytes =
4583 btrfs_file_extent_num_bytes(leaf, fi);
4584 extent_num_bytes = ALIGN(new_size -
4585 found_key.offset,
4586 fs_info->sectorsize);
4587 btrfs_set_file_extent_num_bytes(leaf, fi,
4588 extent_num_bytes);
4589 num_dec = (orig_num_bytes -
4590 extent_num_bytes);
4591 if (test_bit(BTRFS_ROOT_REF_COWS,
4592 &root->state) &&
4593 extent_start != 0)
4594 inode_sub_bytes(inode, num_dec);
4595 btrfs_mark_buffer_dirty(leaf);
4596 } else {
4597 extent_num_bytes =
4598 btrfs_file_extent_disk_num_bytes(leaf,
4599 fi);
4600 extent_offset = found_key.offset -
4601 btrfs_file_extent_offset(leaf, fi);
4602
4603 /* FIXME blocksize != 4096 */
4604 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4605 if (extent_start != 0) {
4606 found_extent = 1;
4607 if (test_bit(BTRFS_ROOT_REF_COWS,
4608 &root->state))
4609 inode_sub_bytes(inode, num_dec);
4610 }
4611 }
4612 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4613 /*
4614 * we can't truncate inline items that have had
4615 * special encodings
4616 */
4617 if (!del_item &&
4618 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4619 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4620
4621 /*
4622 * Need to release path in order to truncate a
4623 * compressed extent. So delete any accumulated
4624 * extent items so far.
4625 */
4626 if (btrfs_file_extent_compression(leaf, fi) !=
4627 BTRFS_COMPRESS_NONE && pending_del_nr) {
4628 err = btrfs_del_items(trans, root, path,
4629 pending_del_slot,
4630 pending_del_nr);
4631 if (err) {
4632 btrfs_abort_transaction(trans,
4633 err);
4634 goto error;
4635 }
4636 pending_del_nr = 0;
4637 }
4638
4639 err = truncate_inline_extent(inode, path,
4640 &found_key,
4641 item_end,
4642 new_size);
4643 if (err) {
4644 btrfs_abort_transaction(trans, err);
4645 goto error;
4646 }
4647 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4648 &root->state)) {
4649 inode_sub_bytes(inode, item_end + 1 - new_size);
4650 }
4651 }
4652delete:
4653 if (del_item) {
4654 if (!pending_del_nr) {
4655 /* no pending yet, add ourselves */
4656 pending_del_slot = path->slots[0];
4657 pending_del_nr = 1;
4658 } else if (pending_del_nr &&
4659 path->slots[0] + 1 == pending_del_slot) {
4660 /* hop on the pending chunk */
4661 pending_del_nr++;
4662 pending_del_slot = path->slots[0];
4663 } else {
4664 BUG();
4665 }
4666 } else {
4667 break;
4668 }
4669 should_throttle = 0;
4670
4671 if (found_extent &&
4672 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4673 root == fs_info->tree_root)) {
4674 btrfs_set_path_blocking(path);
4675 bytes_deleted += extent_num_bytes;
4676 ret = btrfs_free_extent(trans, fs_info, extent_start,
4677 extent_num_bytes, 0,
4678 btrfs_header_owner(leaf),
4679 ino, extent_offset);
4680 BUG_ON(ret);
4681 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4682 btrfs_async_run_delayed_refs(fs_info,
4683 trans->delayed_ref_updates * 2,
4684 trans->transid, 0);
4685 if (be_nice) {
4686 if (truncate_space_check(trans, root,
4687 extent_num_bytes)) {
4688 should_end = 1;
4689 }
4690 if (btrfs_should_throttle_delayed_refs(trans,
4691 fs_info))
4692 should_throttle = 1;
4693 }
4694 }
4695
4696 if (found_type == BTRFS_INODE_ITEM_KEY)
4697 break;
4698
4699 if (path->slots[0] == 0 ||
4700 path->slots[0] != pending_del_slot ||
4701 should_throttle || should_end) {
4702 if (pending_del_nr) {
4703 ret = btrfs_del_items(trans, root, path,
4704 pending_del_slot,
4705 pending_del_nr);
4706 if (ret) {
4707 btrfs_abort_transaction(trans, ret);
4708 goto error;
4709 }
4710 pending_del_nr = 0;
4711 }
4712 btrfs_release_path(path);
4713 if (should_throttle) {
4714 unsigned long updates = trans->delayed_ref_updates;
4715 if (updates) {
4716 trans->delayed_ref_updates = 0;
4717 ret = btrfs_run_delayed_refs(trans,
4718 fs_info,
4719 updates * 2);
4720 if (ret && !err)
4721 err = ret;
4722 }
4723 }
4724 /*
4725 * if we failed to refill our space rsv, bail out
4726 * and let the transaction restart
4727 */
4728 if (should_end) {
4729 err = -EAGAIN;
4730 goto error;
4731 }
4732 goto search_again;
4733 } else {
4734 path->slots[0]--;
4735 }
4736 }
4737out:
4738 if (pending_del_nr) {
4739 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4740 pending_del_nr);
4741 if (ret)
4742 btrfs_abort_transaction(trans, ret);
4743 }
4744error:
4745 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4746 ASSERT(last_size >= new_size);
4747 if (!err && last_size > new_size)
4748 last_size = new_size;
4749 btrfs_ordered_update_i_size(inode, last_size, NULL);
4750 }
4751
4752 btrfs_free_path(path);
4753
4754 if (be_nice && bytes_deleted > SZ_32M) {
4755 unsigned long updates = trans->delayed_ref_updates;
4756 if (updates) {
4757 trans->delayed_ref_updates = 0;
4758 ret = btrfs_run_delayed_refs(trans, fs_info,
4759 updates * 2);
4760 if (ret && !err)
4761 err = ret;
4762 }
4763 }
4764 return err;
4765}
4766
4767/*
4768 * btrfs_truncate_block - read, zero a chunk and write a block
4769 * @inode - inode that we're zeroing
4770 * @from - the offset to start zeroing
4771 * @len - the length to zero, 0 to zero the entire range respective to the
4772 * offset
4773 * @front - zero up to the offset instead of from the offset on
4774 *
4775 * This will find the block for the "from" offset and cow the block and zero the
4776 * part we want to zero. This is used with truncate and hole punching.
4777 */
4778int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4779 int front)
4780{
4781 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4782 struct address_space *mapping = inode->i_mapping;
4783 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4784 struct btrfs_ordered_extent *ordered;
4785 struct extent_state *cached_state = NULL;
4786 struct extent_changeset *data_reserved = NULL;
4787 char *kaddr;
4788 u32 blocksize = fs_info->sectorsize;
4789 pgoff_t index = from >> PAGE_SHIFT;
4790 unsigned offset = from & (blocksize - 1);
4791 struct page *page;
4792 gfp_t mask = btrfs_alloc_write_mask(mapping);
4793 int ret = 0;
4794 u64 block_start;
4795 u64 block_end;
4796
4797 if ((offset & (blocksize - 1)) == 0 &&
4798 (!len || ((len & (blocksize - 1)) == 0)))
4799 goto out;
4800
4801 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4802 round_down(from, blocksize), blocksize);
4803 if (ret)
4804 goto out;
4805
4806again:
4807 page = find_or_create_page(mapping, index, mask);
4808 if (!page) {
4809 btrfs_delalloc_release_space(inode, data_reserved,
4810 round_down(from, blocksize),
4811 blocksize);
4812 ret = -ENOMEM;
4813 goto out;
4814 }
4815
4816 block_start = round_down(from, blocksize);
4817 block_end = block_start + blocksize - 1;
4818
4819 if (!PageUptodate(page)) {
4820 ret = btrfs_readpage(NULL, page);
4821 lock_page(page);
4822 if (page->mapping != mapping) {
4823 unlock_page(page);
4824 put_page(page);
4825 goto again;
4826 }
4827 if (!PageUptodate(page)) {
4828 ret = -EIO;
4829 goto out_unlock;
4830 }
4831 }
4832 wait_on_page_writeback(page);
4833
4834 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4835 set_page_extent_mapped(page);
4836
4837 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4838 if (ordered) {
4839 unlock_extent_cached(io_tree, block_start, block_end,
4840 &cached_state, GFP_NOFS);
4841 unlock_page(page);
4842 put_page(page);
4843 btrfs_start_ordered_extent(inode, ordered, 1);
4844 btrfs_put_ordered_extent(ordered);
4845 goto again;
4846 }
4847
4848 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4849 EXTENT_DIRTY | EXTENT_DELALLOC |
4850 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4851 0, 0, &cached_state, GFP_NOFS);
4852
4853 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4854 &cached_state, 0);
4855 if (ret) {
4856 unlock_extent_cached(io_tree, block_start, block_end,
4857 &cached_state, GFP_NOFS);
4858 goto out_unlock;
4859 }
4860
4861 if (offset != blocksize) {
4862 if (!len)
4863 len = blocksize - offset;
4864 kaddr = kmap(page);
4865 if (front)
4866 memset(kaddr + (block_start - page_offset(page)),
4867 0, offset);
4868 else
4869 memset(kaddr + (block_start - page_offset(page)) + offset,
4870 0, len);
4871 flush_dcache_page(page);
4872 kunmap(page);
4873 }
4874 ClearPageChecked(page);
4875 set_page_dirty(page);
4876 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4877 GFP_NOFS);
4878
4879out_unlock:
4880 if (ret)
4881 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4882 blocksize);
4883 unlock_page(page);
4884 put_page(page);
4885out:
4886 extent_changeset_free(data_reserved);
4887 return ret;
4888}
4889
4890static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4891 u64 offset, u64 len)
4892{
4893 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4894 struct btrfs_trans_handle *trans;
4895 int ret;
4896
4897 /*
4898 * Still need to make sure the inode looks like it's been updated so
4899 * that any holes get logged if we fsync.
4900 */
4901 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4902 BTRFS_I(inode)->last_trans = fs_info->generation;
4903 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4904 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4905 return 0;
4906 }
4907
4908 /*
4909 * 1 - for the one we're dropping
4910 * 1 - for the one we're adding
4911 * 1 - for updating the inode.
4912 */
4913 trans = btrfs_start_transaction(root, 3);
4914 if (IS_ERR(trans))
4915 return PTR_ERR(trans);
4916
4917 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4918 if (ret) {
4919 btrfs_abort_transaction(trans, ret);
4920 btrfs_end_transaction(trans);
4921 return ret;
4922 }
4923
4924 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4925 offset, 0, 0, len, 0, len, 0, 0, 0);
4926 if (ret)
4927 btrfs_abort_transaction(trans, ret);
4928 else
4929 btrfs_update_inode(trans, root, inode);
4930 btrfs_end_transaction(trans);
4931 return ret;
4932}
4933
4934/*
4935 * This function puts in dummy file extents for the area we're creating a hole
4936 * for. So if we are truncating this file to a larger size we need to insert
4937 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4938 * the range between oldsize and size
4939 */
4940int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4941{
4942 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4943 struct btrfs_root *root = BTRFS_I(inode)->root;
4944 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4945 struct extent_map *em = NULL;
4946 struct extent_state *cached_state = NULL;
4947 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4948 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4949 u64 block_end = ALIGN(size, fs_info->sectorsize);
4950 u64 last_byte;
4951 u64 cur_offset;
4952 u64 hole_size;
4953 int err = 0;
4954
4955 /*
4956 * If our size started in the middle of a block we need to zero out the
4957 * rest of the block before we expand the i_size, otherwise we could
4958 * expose stale data.
4959 */
4960 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4961 if (err)
4962 return err;
4963
4964 if (size <= hole_start)
4965 return 0;
4966
4967 while (1) {
4968 struct btrfs_ordered_extent *ordered;
4969
4970 lock_extent_bits(io_tree, hole_start, block_end - 1,
4971 &cached_state);
4972 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
4973 block_end - hole_start);
4974 if (!ordered)
4975 break;
4976 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4977 &cached_state, GFP_NOFS);
4978 btrfs_start_ordered_extent(inode, ordered, 1);
4979 btrfs_put_ordered_extent(ordered);
4980 }
4981
4982 cur_offset = hole_start;
4983 while (1) {
4984 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4985 block_end - cur_offset, 0);
4986 if (IS_ERR(em)) {
4987 err = PTR_ERR(em);
4988 em = NULL;
4989 break;
4990 }
4991 last_byte = min(extent_map_end(em), block_end);
4992 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4993 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4994 struct extent_map *hole_em;
4995 hole_size = last_byte - cur_offset;
4996
4997 err = maybe_insert_hole(root, inode, cur_offset,
4998 hole_size);
4999 if (err)
5000 break;
5001 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5002 cur_offset + hole_size - 1, 0);
5003 hole_em = alloc_extent_map();
5004 if (!hole_em) {
5005 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5006 &BTRFS_I(inode)->runtime_flags);
5007 goto next;
5008 }
5009 hole_em->start = cur_offset;
5010 hole_em->len = hole_size;
5011 hole_em->orig_start = cur_offset;
5012
5013 hole_em->block_start = EXTENT_MAP_HOLE;
5014 hole_em->block_len = 0;
5015 hole_em->orig_block_len = 0;
5016 hole_em->ram_bytes = hole_size;
5017 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5018 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5019 hole_em->generation = fs_info->generation;
5020
5021 while (1) {
5022 write_lock(&em_tree->lock);
5023 err = add_extent_mapping(em_tree, hole_em, 1);
5024 write_unlock(&em_tree->lock);
5025 if (err != -EEXIST)
5026 break;
5027 btrfs_drop_extent_cache(BTRFS_I(inode),
5028 cur_offset,
5029 cur_offset +
5030 hole_size - 1, 0);
5031 }
5032 free_extent_map(hole_em);
5033 }
5034next:
5035 free_extent_map(em);
5036 em = NULL;
5037 cur_offset = last_byte;
5038 if (cur_offset >= block_end)
5039 break;
5040 }
5041 free_extent_map(em);
5042 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
5043 GFP_NOFS);
5044 return err;
5045}
5046
5047static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5048{
5049 struct btrfs_root *root = BTRFS_I(inode)->root;
5050 struct btrfs_trans_handle *trans;
5051 loff_t oldsize = i_size_read(inode);
5052 loff_t newsize = attr->ia_size;
5053 int mask = attr->ia_valid;
5054 int ret;
5055
5056 /*
5057 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5058 * special case where we need to update the times despite not having
5059 * these flags set. For all other operations the VFS set these flags
5060 * explicitly if it wants a timestamp update.
5061 */
5062 if (newsize != oldsize) {
5063 inode_inc_iversion(inode);
5064 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5065 inode->i_ctime = inode->i_mtime =
5066 current_time(inode);
5067 }
5068
5069 if (newsize > oldsize) {
5070 /*
5071 * Don't do an expanding truncate while snapshoting is ongoing.
5072 * This is to ensure the snapshot captures a fully consistent
5073 * state of this file - if the snapshot captures this expanding
5074 * truncation, it must capture all writes that happened before
5075 * this truncation.
5076 */
5077 btrfs_wait_for_snapshot_creation(root);
5078 ret = btrfs_cont_expand(inode, oldsize, newsize);
5079 if (ret) {
5080 btrfs_end_write_no_snapshoting(root);
5081 return ret;
5082 }
5083
5084 trans = btrfs_start_transaction(root, 1);
5085 if (IS_ERR(trans)) {
5086 btrfs_end_write_no_snapshoting(root);
5087 return PTR_ERR(trans);
5088 }
5089
5090 i_size_write(inode, newsize);
5091 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5092 pagecache_isize_extended(inode, oldsize, newsize);
5093 ret = btrfs_update_inode(trans, root, inode);
5094 btrfs_end_write_no_snapshoting(root);
5095 btrfs_end_transaction(trans);
5096 } else {
5097
5098 /*
5099 * We're truncating a file that used to have good data down to
5100 * zero. Make sure it gets into the ordered flush list so that
5101 * any new writes get down to disk quickly.
5102 */
5103 if (newsize == 0)
5104 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5105 &BTRFS_I(inode)->runtime_flags);
5106
5107 /*
5108 * 1 for the orphan item we're going to add
5109 * 1 for the orphan item deletion.
5110 */
5111 trans = btrfs_start_transaction(root, 2);
5112 if (IS_ERR(trans))
5113 return PTR_ERR(trans);
5114
5115 /*
5116 * We need to do this in case we fail at _any_ point during the
5117 * actual truncate. Once we do the truncate_setsize we could
5118 * invalidate pages which forces any outstanding ordered io to
5119 * be instantly completed which will give us extents that need
5120 * to be truncated. If we fail to get an orphan inode down we
5121 * could have left over extents that were never meant to live,
5122 * so we need to guarantee from this point on that everything
5123 * will be consistent.
5124 */
5125 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
5126 btrfs_end_transaction(trans);
5127 if (ret)
5128 return ret;
5129
5130 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5131 truncate_setsize(inode, newsize);
5132
5133 /* Disable nonlocked read DIO to avoid the end less truncate */
5134 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5135 inode_dio_wait(inode);
5136 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5137
5138 ret = btrfs_truncate(inode);
5139 if (ret && inode->i_nlink) {
5140 int err;
5141
5142 /* To get a stable disk_i_size */
5143 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5144 if (err) {
5145 btrfs_orphan_del(NULL, BTRFS_I(inode));
5146 return err;
5147 }
5148
5149 /*
5150 * failed to truncate, disk_i_size is only adjusted down
5151 * as we remove extents, so it should represent the true
5152 * size of the inode, so reset the in memory size and
5153 * delete our orphan entry.
5154 */
5155 trans = btrfs_join_transaction(root);
5156 if (IS_ERR(trans)) {
5157 btrfs_orphan_del(NULL, BTRFS_I(inode));
5158 return ret;
5159 }
5160 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5161 err = btrfs_orphan_del(trans, BTRFS_I(inode));
5162 if (err)
5163 btrfs_abort_transaction(trans, err);
5164 btrfs_end_transaction(trans);
5165 }
5166 }
5167
5168 return ret;
5169}
5170
5171static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5172{
5173 struct inode *inode = d_inode(dentry);
5174 struct btrfs_root *root = BTRFS_I(inode)->root;
5175 int err;
5176
5177 if (btrfs_root_readonly(root))
5178 return -EROFS;
5179
5180 err = setattr_prepare(dentry, attr);
5181 if (err)
5182 return err;
5183
5184 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5185 err = btrfs_setsize(inode, attr);
5186 if (err)
5187 return err;
5188 }
5189
5190 if (attr->ia_valid) {
5191 setattr_copy(inode, attr);
5192 inode_inc_iversion(inode);
5193 err = btrfs_dirty_inode(inode);
5194
5195 if (!err && attr->ia_valid & ATTR_MODE)
5196 err = posix_acl_chmod(inode, inode->i_mode);
5197 }
5198
5199 return err;
5200}
5201
5202/*
5203 * While truncating the inode pages during eviction, we get the VFS calling
5204 * btrfs_invalidatepage() against each page of the inode. This is slow because
5205 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5206 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5207 * extent_state structures over and over, wasting lots of time.
5208 *
5209 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5210 * those expensive operations on a per page basis and do only the ordered io
5211 * finishing, while we release here the extent_map and extent_state structures,
5212 * without the excessive merging and splitting.
5213 */
5214static void evict_inode_truncate_pages(struct inode *inode)
5215{
5216 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5217 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5218 struct rb_node *node;
5219
5220 ASSERT(inode->i_state & I_FREEING);
5221 truncate_inode_pages_final(&inode->i_data);
5222
5223 write_lock(&map_tree->lock);
5224 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5225 struct extent_map *em;
5226
5227 node = rb_first(&map_tree->map);
5228 em = rb_entry(node, struct extent_map, rb_node);
5229 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5230 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5231 remove_extent_mapping(map_tree, em);
5232 free_extent_map(em);
5233 if (need_resched()) {
5234 write_unlock(&map_tree->lock);
5235 cond_resched();
5236 write_lock(&map_tree->lock);
5237 }
5238 }
5239 write_unlock(&map_tree->lock);
5240
5241 /*
5242 * Keep looping until we have no more ranges in the io tree.
5243 * We can have ongoing bios started by readpages (called from readahead)
5244 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5245 * still in progress (unlocked the pages in the bio but did not yet
5246 * unlocked the ranges in the io tree). Therefore this means some
5247 * ranges can still be locked and eviction started because before
5248 * submitting those bios, which are executed by a separate task (work
5249 * queue kthread), inode references (inode->i_count) were not taken
5250 * (which would be dropped in the end io callback of each bio).
5251 * Therefore here we effectively end up waiting for those bios and
5252 * anyone else holding locked ranges without having bumped the inode's
5253 * reference count - if we don't do it, when they access the inode's
5254 * io_tree to unlock a range it may be too late, leading to an
5255 * use-after-free issue.
5256 */
5257 spin_lock(&io_tree->lock);
5258 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5259 struct extent_state *state;
5260 struct extent_state *cached_state = NULL;
5261 u64 start;
5262 u64 end;
5263
5264 node = rb_first(&io_tree->state);
5265 state = rb_entry(node, struct extent_state, rb_node);
5266 start = state->start;
5267 end = state->end;
5268 spin_unlock(&io_tree->lock);
5269
5270 lock_extent_bits(io_tree, start, end, &cached_state);
5271
5272 /*
5273 * If still has DELALLOC flag, the extent didn't reach disk,
5274 * and its reserved space won't be freed by delayed_ref.
5275 * So we need to free its reserved space here.
5276 * (Refer to comment in btrfs_invalidatepage, case 2)
5277 *
5278 * Note, end is the bytenr of last byte, so we need + 1 here.
5279 */
5280 if (state->state & EXTENT_DELALLOC)
5281 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5282
5283 clear_extent_bit(io_tree, start, end,
5284 EXTENT_LOCKED | EXTENT_DIRTY |
5285 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5286 EXTENT_DEFRAG, 1, 1,
5287 &cached_state, GFP_NOFS);
5288
5289 cond_resched();
5290 spin_lock(&io_tree->lock);
5291 }
5292 spin_unlock(&io_tree->lock);
5293}
5294
5295void btrfs_evict_inode(struct inode *inode)
5296{
5297 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5298 struct btrfs_trans_handle *trans;
5299 struct btrfs_root *root = BTRFS_I(inode)->root;
5300 struct btrfs_block_rsv *rsv, *global_rsv;
5301 int steal_from_global = 0;
5302 u64 min_size;
5303 int ret;
5304
5305 trace_btrfs_inode_evict(inode);
5306
5307 if (!root) {
5308 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5309 return;
5310 }
5311
5312 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5313
5314 evict_inode_truncate_pages(inode);
5315
5316 if (inode->i_nlink &&
5317 ((btrfs_root_refs(&root->root_item) != 0 &&
5318 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5319 btrfs_is_free_space_inode(BTRFS_I(inode))))
5320 goto no_delete;
5321
5322 if (is_bad_inode(inode)) {
5323 btrfs_orphan_del(NULL, BTRFS_I(inode));
5324 goto no_delete;
5325 }
5326 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5327 if (!special_file(inode->i_mode))
5328 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5329
5330 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5331
5332 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
5333 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5334 &BTRFS_I(inode)->runtime_flags));
5335 goto no_delete;
5336 }
5337
5338 if (inode->i_nlink > 0) {
5339 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5340 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5341 goto no_delete;
5342 }
5343
5344 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5345 if (ret) {
5346 btrfs_orphan_del(NULL, BTRFS_I(inode));
5347 goto no_delete;
5348 }
5349
5350 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5351 if (!rsv) {
5352 btrfs_orphan_del(NULL, BTRFS_I(inode));
5353 goto no_delete;
5354 }
5355 rsv->size = min_size;
5356 rsv->failfast = 1;
5357 global_rsv = &fs_info->global_block_rsv;
5358
5359 btrfs_i_size_write(BTRFS_I(inode), 0);
5360
5361 /*
5362 * This is a bit simpler than btrfs_truncate since we've already
5363 * reserved our space for our orphan item in the unlink, so we just
5364 * need to reserve some slack space in case we add bytes and update
5365 * inode item when doing the truncate.
5366 */
5367 while (1) {
5368 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5369 BTRFS_RESERVE_FLUSH_LIMIT);
5370
5371 /*
5372 * Try and steal from the global reserve since we will
5373 * likely not use this space anyway, we want to try as
5374 * hard as possible to get this to work.
5375 */
5376 if (ret)
5377 steal_from_global++;
5378 else
5379 steal_from_global = 0;
5380 ret = 0;
5381
5382 /*
5383 * steal_from_global == 0: we reserved stuff, hooray!
5384 * steal_from_global == 1: we didn't reserve stuff, boo!
5385 * steal_from_global == 2: we've committed, still not a lot of
5386 * room but maybe we'll have room in the global reserve this
5387 * time.
5388 * steal_from_global == 3: abandon all hope!
5389 */
5390 if (steal_from_global > 2) {
5391 btrfs_warn(fs_info,
5392 "Could not get space for a delete, will truncate on mount %d",
5393 ret);
5394 btrfs_orphan_del(NULL, BTRFS_I(inode));
5395 btrfs_free_block_rsv(fs_info, rsv);
5396 goto no_delete;
5397 }
5398
5399 trans = btrfs_join_transaction(root);
5400 if (IS_ERR(trans)) {
5401 btrfs_orphan_del(NULL, BTRFS_I(inode));
5402 btrfs_free_block_rsv(fs_info, rsv);
5403 goto no_delete;
5404 }
5405
5406 /*
5407 * We can't just steal from the global reserve, we need to make
5408 * sure there is room to do it, if not we need to commit and try
5409 * again.
5410 */
5411 if (steal_from_global) {
5412 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
5413 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5414 min_size, 0);
5415 else
5416 ret = -ENOSPC;
5417 }
5418
5419 /*
5420 * Couldn't steal from the global reserve, we have too much
5421 * pending stuff built up, commit the transaction and try it
5422 * again.
5423 */
5424 if (ret) {
5425 ret = btrfs_commit_transaction(trans);
5426 if (ret) {
5427 btrfs_orphan_del(NULL, BTRFS_I(inode));
5428 btrfs_free_block_rsv(fs_info, rsv);
5429 goto no_delete;
5430 }
5431 continue;
5432 } else {
5433 steal_from_global = 0;
5434 }
5435
5436 trans->block_rsv = rsv;
5437
5438 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5439 if (ret != -ENOSPC && ret != -EAGAIN)
5440 break;
5441
5442 trans->block_rsv = &fs_info->trans_block_rsv;
5443 btrfs_end_transaction(trans);
5444 trans = NULL;
5445 btrfs_btree_balance_dirty(fs_info);
5446 }
5447
5448 btrfs_free_block_rsv(fs_info, rsv);
5449
5450 /*
5451 * Errors here aren't a big deal, it just means we leave orphan items
5452 * in the tree. They will be cleaned up on the next mount.
5453 */
5454 if (ret == 0) {
5455 trans->block_rsv = root->orphan_block_rsv;
5456 btrfs_orphan_del(trans, BTRFS_I(inode));
5457 } else {
5458 btrfs_orphan_del(NULL, BTRFS_I(inode));
5459 }
5460
5461 trans->block_rsv = &fs_info->trans_block_rsv;
5462 if (!(root == fs_info->tree_root ||
5463 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5464 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5465
5466 btrfs_end_transaction(trans);
5467 btrfs_btree_balance_dirty(fs_info);
5468no_delete:
5469 btrfs_remove_delayed_node(BTRFS_I(inode));
5470 clear_inode(inode);
5471}
5472
5473/*
5474 * this returns the key found in the dir entry in the location pointer.
5475 * If no dir entries were found, location->objectid is 0.
5476 */
5477static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5478 struct btrfs_key *location)
5479{
5480 const char *name = dentry->d_name.name;
5481 int namelen = dentry->d_name.len;
5482 struct btrfs_dir_item *di;
5483 struct btrfs_path *path;
5484 struct btrfs_root *root = BTRFS_I(dir)->root;
5485 int ret = 0;
5486
5487 path = btrfs_alloc_path();
5488 if (!path)
5489 return -ENOMEM;
5490
5491 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5492 name, namelen, 0);
5493 if (IS_ERR(di))
5494 ret = PTR_ERR(di);
5495
5496 if (IS_ERR_OR_NULL(di))
5497 goto out_err;
5498
5499 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5500out:
5501 btrfs_free_path(path);
5502 return ret;
5503out_err:
5504 location->objectid = 0;
5505 goto out;
5506}
5507
5508/*
5509 * when we hit a tree root in a directory, the btrfs part of the inode
5510 * needs to be changed to reflect the root directory of the tree root. This
5511 * is kind of like crossing a mount point.
5512 */
5513static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5514 struct inode *dir,
5515 struct dentry *dentry,
5516 struct btrfs_key *location,
5517 struct btrfs_root **sub_root)
5518{
5519 struct btrfs_path *path;
5520 struct btrfs_root *new_root;
5521 struct btrfs_root_ref *ref;
5522 struct extent_buffer *leaf;
5523 struct btrfs_key key;
5524 int ret;
5525 int err = 0;
5526
5527 path = btrfs_alloc_path();
5528 if (!path) {
5529 err = -ENOMEM;
5530 goto out;
5531 }
5532
5533 err = -ENOENT;
5534 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5535 key.type = BTRFS_ROOT_REF_KEY;
5536 key.offset = location->objectid;
5537
5538 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5539 if (ret) {
5540 if (ret < 0)
5541 err = ret;
5542 goto out;
5543 }
5544
5545 leaf = path->nodes[0];
5546 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5547 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5548 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5549 goto out;
5550
5551 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5552 (unsigned long)(ref + 1),
5553 dentry->d_name.len);
5554 if (ret)
5555 goto out;
5556
5557 btrfs_release_path(path);
5558
5559 new_root = btrfs_read_fs_root_no_name(fs_info, location);
5560 if (IS_ERR(new_root)) {
5561 err = PTR_ERR(new_root);
5562 goto out;
5563 }
5564
5565 *sub_root = new_root;
5566 location->objectid = btrfs_root_dirid(&new_root->root_item);
5567 location->type = BTRFS_INODE_ITEM_KEY;
5568 location->offset = 0;
5569 err = 0;
5570out:
5571 btrfs_free_path(path);
5572 return err;
5573}
5574
5575static void inode_tree_add(struct inode *inode)
5576{
5577 struct btrfs_root *root = BTRFS_I(inode)->root;
5578 struct btrfs_inode *entry;
5579 struct rb_node **p;
5580 struct rb_node *parent;
5581 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5582 u64 ino = btrfs_ino(BTRFS_I(inode));
5583
5584 if (inode_unhashed(inode))
5585 return;
5586 parent = NULL;
5587 spin_lock(&root->inode_lock);
5588 p = &root->inode_tree.rb_node;
5589 while (*p) {
5590 parent = *p;
5591 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5592
5593 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5594 p = &parent->rb_left;
5595 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5596 p = &parent->rb_right;
5597 else {
5598 WARN_ON(!(entry->vfs_inode.i_state &
5599 (I_WILL_FREE | I_FREEING)));
5600 rb_replace_node(parent, new, &root->inode_tree);
5601 RB_CLEAR_NODE(parent);
5602 spin_unlock(&root->inode_lock);
5603 return;
5604 }
5605 }
5606 rb_link_node(new, parent, p);
5607 rb_insert_color(new, &root->inode_tree);
5608 spin_unlock(&root->inode_lock);
5609}
5610
5611static void inode_tree_del(struct inode *inode)
5612{
5613 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5614 struct btrfs_root *root = BTRFS_I(inode)->root;
5615 int empty = 0;
5616
5617 spin_lock(&root->inode_lock);
5618 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5619 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5620 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5621 empty = RB_EMPTY_ROOT(&root->inode_tree);
5622 }
5623 spin_unlock(&root->inode_lock);
5624
5625 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5626 synchronize_srcu(&fs_info->subvol_srcu);
5627 spin_lock(&root->inode_lock);
5628 empty = RB_EMPTY_ROOT(&root->inode_tree);
5629 spin_unlock(&root->inode_lock);
5630 if (empty)
5631 btrfs_add_dead_root(root);
5632 }
5633}
5634
5635void btrfs_invalidate_inodes(struct btrfs_root *root)
5636{
5637 struct btrfs_fs_info *fs_info = root->fs_info;
5638 struct rb_node *node;
5639 struct rb_node *prev;
5640 struct btrfs_inode *entry;
5641 struct inode *inode;
5642 u64 objectid = 0;
5643
5644 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
5645 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5646
5647 spin_lock(&root->inode_lock);
5648again:
5649 node = root->inode_tree.rb_node;
5650 prev = NULL;
5651 while (node) {
5652 prev = node;
5653 entry = rb_entry(node, struct btrfs_inode, rb_node);
5654
5655 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5656 node = node->rb_left;
5657 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5658 node = node->rb_right;
5659 else
5660 break;
5661 }
5662 if (!node) {
5663 while (prev) {
5664 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5665 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
5666 node = prev;
5667 break;
5668 }
5669 prev = rb_next(prev);
5670 }
5671 }
5672 while (node) {
5673 entry = rb_entry(node, struct btrfs_inode, rb_node);
5674 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
5675 inode = igrab(&entry->vfs_inode);
5676 if (inode) {
5677 spin_unlock(&root->inode_lock);
5678 if (atomic_read(&inode->i_count) > 1)
5679 d_prune_aliases(inode);
5680 /*
5681 * btrfs_drop_inode will have it removed from
5682 * the inode cache when its usage count
5683 * hits zero.
5684 */
5685 iput(inode);
5686 cond_resched();
5687 spin_lock(&root->inode_lock);
5688 goto again;
5689 }
5690
5691 if (cond_resched_lock(&root->inode_lock))
5692 goto again;
5693
5694 node = rb_next(node);
5695 }
5696 spin_unlock(&root->inode_lock);
5697}
5698
5699static int btrfs_init_locked_inode(struct inode *inode, void *p)
5700{
5701 struct btrfs_iget_args *args = p;
5702 inode->i_ino = args->location->objectid;
5703 memcpy(&BTRFS_I(inode)->location, args->location,
5704 sizeof(*args->location));
5705 BTRFS_I(inode)->root = args->root;
5706 return 0;
5707}
5708
5709static int btrfs_find_actor(struct inode *inode, void *opaque)
5710{
5711 struct btrfs_iget_args *args = opaque;
5712 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5713 args->root == BTRFS_I(inode)->root;
5714}
5715
5716static struct inode *btrfs_iget_locked(struct super_block *s,
5717 struct btrfs_key *location,
5718 struct btrfs_root *root)
5719{
5720 struct inode *inode;
5721 struct btrfs_iget_args args;
5722 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5723
5724 args.location = location;
5725 args.root = root;
5726
5727 inode = iget5_locked(s, hashval, btrfs_find_actor,
5728 btrfs_init_locked_inode,
5729 (void *)&args);
5730 return inode;
5731}
5732
5733/* Get an inode object given its location and corresponding root.
5734 * Returns in *is_new if the inode was read from disk
5735 */
5736struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5737 struct btrfs_root *root, int *new)
5738{
5739 struct inode *inode;
5740
5741 inode = btrfs_iget_locked(s, location, root);
5742 if (!inode)
5743 return ERR_PTR(-ENOMEM);
5744
5745 if (inode->i_state & I_NEW) {
5746 int ret;
5747
5748 ret = btrfs_read_locked_inode(inode);
5749 if (!is_bad_inode(inode)) {
5750 inode_tree_add(inode);
5751 unlock_new_inode(inode);
5752 if (new)
5753 *new = 1;
5754 } else {
5755 unlock_new_inode(inode);
5756 iput(inode);
5757 ASSERT(ret < 0);
5758 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
5759 }
5760 }
5761
5762 return inode;
5763}
5764
5765static struct inode *new_simple_dir(struct super_block *s,
5766 struct btrfs_key *key,
5767 struct btrfs_root *root)
5768{
5769 struct inode *inode = new_inode(s);
5770
5771 if (!inode)
5772 return ERR_PTR(-ENOMEM);
5773
5774 BTRFS_I(inode)->root = root;
5775 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5776 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5777
5778 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5779 inode->i_op = &btrfs_dir_ro_inode_operations;
5780 inode->i_opflags &= ~IOP_XATTR;
5781 inode->i_fop = &simple_dir_operations;
5782 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5783 inode->i_mtime = current_time(inode);
5784 inode->i_atime = inode->i_mtime;
5785 inode->i_ctime = inode->i_mtime;
5786 BTRFS_I(inode)->i_otime = inode->i_mtime;
5787
5788 return inode;
5789}
5790
5791struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5792{
5793 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5794 struct inode *inode;
5795 struct btrfs_root *root = BTRFS_I(dir)->root;
5796 struct btrfs_root *sub_root = root;
5797 struct btrfs_key location;
5798 int index;
5799 int ret = 0;
5800
5801 if (dentry->d_name.len > BTRFS_NAME_LEN)
5802 return ERR_PTR(-ENAMETOOLONG);
5803
5804 ret = btrfs_inode_by_name(dir, dentry, &location);
5805 if (ret < 0)
5806 return ERR_PTR(ret);
5807
5808 if (location.objectid == 0)
5809 return ERR_PTR(-ENOENT);
5810
5811 if (location.type == BTRFS_INODE_ITEM_KEY) {
5812 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5813 return inode;
5814 }
5815
5816 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5817
5818 index = srcu_read_lock(&fs_info->subvol_srcu);
5819 ret = fixup_tree_root_location(fs_info, dir, dentry,
5820 &location, &sub_root);
5821 if (ret < 0) {
5822 if (ret != -ENOENT)
5823 inode = ERR_PTR(ret);
5824 else
5825 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5826 } else {
5827 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5828 }
5829 srcu_read_unlock(&fs_info->subvol_srcu, index);
5830
5831 if (!IS_ERR(inode) && root != sub_root) {
5832 down_read(&fs_info->cleanup_work_sem);
5833 if (!(inode->i_sb->s_flags & MS_RDONLY))
5834 ret = btrfs_orphan_cleanup(sub_root);
5835 up_read(&fs_info->cleanup_work_sem);
5836 if (ret) {
5837 iput(inode);
5838 inode = ERR_PTR(ret);
5839 }
5840 }
5841
5842 return inode;
5843}
5844
5845static int btrfs_dentry_delete(const struct dentry *dentry)
5846{
5847 struct btrfs_root *root;
5848 struct inode *inode = d_inode(dentry);
5849
5850 if (!inode && !IS_ROOT(dentry))
5851 inode = d_inode(dentry->d_parent);
5852
5853 if (inode) {
5854 root = BTRFS_I(inode)->root;
5855 if (btrfs_root_refs(&root->root_item) == 0)
5856 return 1;
5857
5858 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5859 return 1;
5860 }
5861 return 0;
5862}
5863
5864static void btrfs_dentry_release(struct dentry *dentry)
5865{
5866 kfree(dentry->d_fsdata);
5867}
5868
5869static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5870 unsigned int flags)
5871{
5872 struct inode *inode;
5873
5874 inode = btrfs_lookup_dentry(dir, dentry);
5875 if (IS_ERR(inode)) {
5876 if (PTR_ERR(inode) == -ENOENT)
5877 inode = NULL;
5878 else
5879 return ERR_CAST(inode);
5880 }
5881
5882 return d_splice_alias(inode, dentry);
5883}
5884
5885unsigned char btrfs_filetype_table[] = {
5886 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5887};
5888
5889static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5890{
5891 struct inode *inode = file_inode(file);
5892 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5893 struct btrfs_root *root = BTRFS_I(inode)->root;
5894 struct btrfs_dir_item *di;
5895 struct btrfs_key key;
5896 struct btrfs_key found_key;
5897 struct btrfs_path *path;
5898 struct list_head ins_list;
5899 struct list_head del_list;
5900 int ret;
5901 struct extent_buffer *leaf;
5902 int slot;
5903 unsigned char d_type;
5904 int over = 0;
5905 char tmp_name[32];
5906 char *name_ptr;
5907 int name_len;
5908 bool put = false;
5909 struct btrfs_key location;
5910
5911 if (!dir_emit_dots(file, ctx))
5912 return 0;
5913
5914 path = btrfs_alloc_path();
5915 if (!path)
5916 return -ENOMEM;
5917
5918 path->reada = READA_FORWARD;
5919
5920 INIT_LIST_HEAD(&ins_list);
5921 INIT_LIST_HEAD(&del_list);
5922 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5923
5924 key.type = BTRFS_DIR_INDEX_KEY;
5925 key.offset = ctx->pos;
5926 key.objectid = btrfs_ino(BTRFS_I(inode));
5927
5928 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5929 if (ret < 0)
5930 goto err;
5931
5932 while (1) {
5933 leaf = path->nodes[0];
5934 slot = path->slots[0];
5935 if (slot >= btrfs_header_nritems(leaf)) {
5936 ret = btrfs_next_leaf(root, path);
5937 if (ret < 0)
5938 goto err;
5939 else if (ret > 0)
5940 break;
5941 continue;
5942 }
5943
5944 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5945
5946 if (found_key.objectid != key.objectid)
5947 break;
5948 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5949 break;
5950 if (found_key.offset < ctx->pos)
5951 goto next;
5952 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5953 goto next;
5954
5955 ctx->pos = found_key.offset;
5956
5957 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5958 if (verify_dir_item(fs_info, leaf, slot, di))
5959 goto next;
5960
5961 name_len = btrfs_dir_name_len(leaf, di);
5962 if (name_len <= sizeof(tmp_name)) {
5963 name_ptr = tmp_name;
5964 } else {
5965 name_ptr = kmalloc(name_len, GFP_KERNEL);
5966 if (!name_ptr) {
5967 ret = -ENOMEM;
5968 goto err;
5969 }
5970 }
5971 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5972 name_len);
5973
5974 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5975 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5976
5977 over = !dir_emit(ctx, name_ptr, name_len, location.objectid,
5978 d_type);
5979
5980 if (name_ptr != tmp_name)
5981 kfree(name_ptr);
5982
5983 if (over)
5984 goto nopos;
5985 ctx->pos++;
5986next:
5987 path->slots[0]++;
5988 }
5989
5990 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5991 if (ret)
5992 goto nopos;
5993
5994 /*
5995 * Stop new entries from being returned after we return the last
5996 * entry.
5997 *
5998 * New directory entries are assigned a strictly increasing
5999 * offset. This means that new entries created during readdir
6000 * are *guaranteed* to be seen in the future by that readdir.
6001 * This has broken buggy programs which operate on names as
6002 * they're returned by readdir. Until we re-use freed offsets
6003 * we have this hack to stop new entries from being returned
6004 * under the assumption that they'll never reach this huge
6005 * offset.
6006 *
6007 * This is being careful not to overflow 32bit loff_t unless the
6008 * last entry requires it because doing so has broken 32bit apps
6009 * in the past.
6010 */
6011 if (ctx->pos >= INT_MAX)
6012 ctx->pos = LLONG_MAX;
6013 else
6014 ctx->pos = INT_MAX;
6015nopos:
6016 ret = 0;
6017err:
6018 if (put)
6019 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6020 btrfs_free_path(path);
6021 return ret;
6022}
6023
6024int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
6025{
6026 struct btrfs_root *root = BTRFS_I(inode)->root;
6027 struct btrfs_trans_handle *trans;
6028 int ret = 0;
6029 bool nolock = false;
6030
6031 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6032 return 0;
6033
6034 if (btrfs_fs_closing(root->fs_info) &&
6035 btrfs_is_free_space_inode(BTRFS_I(inode)))
6036 nolock = true;
6037
6038 if (wbc->sync_mode == WB_SYNC_ALL) {
6039 if (nolock)
6040 trans = btrfs_join_transaction_nolock(root);
6041 else
6042 trans = btrfs_join_transaction(root);
6043 if (IS_ERR(trans))
6044 return PTR_ERR(trans);
6045 ret = btrfs_commit_transaction(trans);
6046 }
6047 return ret;
6048}
6049
6050/*
6051 * This is somewhat expensive, updating the tree every time the
6052 * inode changes. But, it is most likely to find the inode in cache.
6053 * FIXME, needs more benchmarking...there are no reasons other than performance
6054 * to keep or drop this code.
6055 */
6056static int btrfs_dirty_inode(struct inode *inode)
6057{
6058 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6059 struct btrfs_root *root = BTRFS_I(inode)->root;
6060 struct btrfs_trans_handle *trans;
6061 int ret;
6062
6063 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6064 return 0;
6065
6066 trans = btrfs_join_transaction(root);
6067 if (IS_ERR(trans))
6068 return PTR_ERR(trans);
6069
6070 ret = btrfs_update_inode(trans, root, inode);
6071 if (ret && ret == -ENOSPC) {
6072 /* whoops, lets try again with the full transaction */
6073 btrfs_end_transaction(trans);
6074 trans = btrfs_start_transaction(root, 1);
6075 if (IS_ERR(trans))
6076 return PTR_ERR(trans);
6077
6078 ret = btrfs_update_inode(trans, root, inode);
6079 }
6080 btrfs_end_transaction(trans);
6081 if (BTRFS_I(inode)->delayed_node)
6082 btrfs_balance_delayed_items(fs_info);
6083
6084 return ret;
6085}
6086
6087/*
6088 * This is a copy of file_update_time. We need this so we can return error on
6089 * ENOSPC for updating the inode in the case of file write and mmap writes.
6090 */
6091static int btrfs_update_time(struct inode *inode, struct timespec *now,
6092 int flags)
6093{
6094 struct btrfs_root *root = BTRFS_I(inode)->root;
6095
6096 if (btrfs_root_readonly(root))
6097 return -EROFS;
6098
6099 if (flags & S_VERSION)
6100 inode_inc_iversion(inode);
6101 if (flags & S_CTIME)
6102 inode->i_ctime = *now;
6103 if (flags & S_MTIME)
6104 inode->i_mtime = *now;
6105 if (flags & S_ATIME)
6106 inode->i_atime = *now;
6107 return btrfs_dirty_inode(inode);
6108}
6109
6110/*
6111 * find the highest existing sequence number in a directory
6112 * and then set the in-memory index_cnt variable to reflect
6113 * free sequence numbers
6114 */
6115static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6116{
6117 struct btrfs_root *root = inode->root;
6118 struct btrfs_key key, found_key;
6119 struct btrfs_path *path;
6120 struct extent_buffer *leaf;
6121 int ret;
6122
6123 key.objectid = btrfs_ino(inode);
6124 key.type = BTRFS_DIR_INDEX_KEY;
6125 key.offset = (u64)-1;
6126
6127 path = btrfs_alloc_path();
6128 if (!path)
6129 return -ENOMEM;
6130
6131 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6132 if (ret < 0)
6133 goto out;
6134 /* FIXME: we should be able to handle this */
6135 if (ret == 0)
6136 goto out;
6137 ret = 0;
6138
6139 /*
6140 * MAGIC NUMBER EXPLANATION:
6141 * since we search a directory based on f_pos we have to start at 2
6142 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6143 * else has to start at 2
6144 */
6145 if (path->slots[0] == 0) {
6146 inode->index_cnt = 2;
6147 goto out;
6148 }
6149
6150 path->slots[0]--;
6151
6152 leaf = path->nodes[0];
6153 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6154
6155 if (found_key.objectid != btrfs_ino(inode) ||
6156 found_key.type != BTRFS_DIR_INDEX_KEY) {
6157 inode->index_cnt = 2;
6158 goto out;
6159 }
6160
6161 inode->index_cnt = found_key.offset + 1;
6162out:
6163 btrfs_free_path(path);
6164 return ret;
6165}
6166
6167/*
6168 * helper to find a free sequence number in a given directory. This current
6169 * code is very simple, later versions will do smarter things in the btree
6170 */
6171int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6172{
6173 int ret = 0;
6174
6175 if (dir->index_cnt == (u64)-1) {
6176 ret = btrfs_inode_delayed_dir_index_count(dir);
6177 if (ret) {
6178 ret = btrfs_set_inode_index_count(dir);
6179 if (ret)
6180 return ret;
6181 }
6182 }
6183
6184 *index = dir->index_cnt;
6185 dir->index_cnt++;
6186
6187 return ret;
6188}
6189
6190static int btrfs_insert_inode_locked(struct inode *inode)
6191{
6192 struct btrfs_iget_args args;
6193 args.location = &BTRFS_I(inode)->location;
6194 args.root = BTRFS_I(inode)->root;
6195
6196 return insert_inode_locked4(inode,
6197 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6198 btrfs_find_actor, &args);
6199}
6200
6201static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6202 struct btrfs_root *root,
6203 struct inode *dir,
6204 const char *name, int name_len,
6205 u64 ref_objectid, u64 objectid,
6206 umode_t mode, u64 *index)
6207{
6208 struct btrfs_fs_info *fs_info = root->fs_info;
6209 struct inode *inode;
6210 struct btrfs_inode_item *inode_item;
6211 struct btrfs_key *location;
6212 struct btrfs_path *path;
6213 struct btrfs_inode_ref *ref;
6214 struct btrfs_key key[2];
6215 u32 sizes[2];
6216 int nitems = name ? 2 : 1;
6217 unsigned long ptr;
6218 int ret;
6219
6220 path = btrfs_alloc_path();
6221 if (!path)
6222 return ERR_PTR(-ENOMEM);
6223
6224 inode = new_inode(fs_info->sb);
6225 if (!inode) {
6226 btrfs_free_path(path);
6227 return ERR_PTR(-ENOMEM);
6228 }
6229
6230 /*
6231 * O_TMPFILE, set link count to 0, so that after this point,
6232 * we fill in an inode item with the correct link count.
6233 */
6234 if (!name)
6235 set_nlink(inode, 0);
6236
6237 /*
6238 * we have to initialize this early, so we can reclaim the inode
6239 * number if we fail afterwards in this function.
6240 */
6241 inode->i_ino = objectid;
6242
6243 if (dir && name) {
6244 trace_btrfs_inode_request(dir);
6245
6246 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6247 if (ret) {
6248 btrfs_free_path(path);
6249 iput(inode);
6250 return ERR_PTR(ret);
6251 }
6252 } else if (dir) {
6253 *index = 0;
6254 }
6255 /*
6256 * index_cnt is ignored for everything but a dir,
6257 * btrfs_get_inode_index_count has an explanation for the magic
6258 * number
6259 */
6260 BTRFS_I(inode)->index_cnt = 2;
6261 BTRFS_I(inode)->dir_index = *index;
6262 BTRFS_I(inode)->root = root;
6263 BTRFS_I(inode)->generation = trans->transid;
6264 inode->i_generation = BTRFS_I(inode)->generation;
6265
6266 /*
6267 * We could have gotten an inode number from somebody who was fsynced
6268 * and then removed in this same transaction, so let's just set full
6269 * sync since it will be a full sync anyway and this will blow away the
6270 * old info in the log.
6271 */
6272 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6273
6274 key[0].objectid = objectid;
6275 key[0].type = BTRFS_INODE_ITEM_KEY;
6276 key[0].offset = 0;
6277
6278 sizes[0] = sizeof(struct btrfs_inode_item);
6279
6280 if (name) {
6281 /*
6282 * Start new inodes with an inode_ref. This is slightly more
6283 * efficient for small numbers of hard links since they will
6284 * be packed into one item. Extended refs will kick in if we
6285 * add more hard links than can fit in the ref item.
6286 */
6287 key[1].objectid = objectid;
6288 key[1].type = BTRFS_INODE_REF_KEY;
6289 key[1].offset = ref_objectid;
6290
6291 sizes[1] = name_len + sizeof(*ref);
6292 }
6293
6294 location = &BTRFS_I(inode)->location;
6295 location->objectid = objectid;
6296 location->offset = 0;
6297 location->type = BTRFS_INODE_ITEM_KEY;
6298
6299 ret = btrfs_insert_inode_locked(inode);
6300 if (ret < 0)
6301 goto fail;
6302
6303 path->leave_spinning = 1;
6304 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6305 if (ret != 0)
6306 goto fail_unlock;
6307
6308 inode_init_owner(inode, dir, mode);
6309 inode_set_bytes(inode, 0);
6310
6311 inode->i_mtime = current_time(inode);
6312 inode->i_atime = inode->i_mtime;
6313 inode->i_ctime = inode->i_mtime;
6314 BTRFS_I(inode)->i_otime = inode->i_mtime;
6315
6316 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6317 struct btrfs_inode_item);
6318 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6319 sizeof(*inode_item));
6320 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6321
6322 if (name) {
6323 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6324 struct btrfs_inode_ref);
6325 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6326 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6327 ptr = (unsigned long)(ref + 1);
6328 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6329 }
6330
6331 btrfs_mark_buffer_dirty(path->nodes[0]);
6332 btrfs_free_path(path);
6333
6334 btrfs_inherit_iflags(inode, dir);
6335
6336 if (S_ISREG(mode)) {
6337 if (btrfs_test_opt(fs_info, NODATASUM))
6338 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6339 if (btrfs_test_opt(fs_info, NODATACOW))
6340 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6341 BTRFS_INODE_NODATASUM;
6342 }
6343
6344 inode_tree_add(inode);
6345
6346 trace_btrfs_inode_new(inode);
6347 btrfs_set_inode_last_trans(trans, inode);
6348
6349 btrfs_update_root_times(trans, root);
6350
6351 ret = btrfs_inode_inherit_props(trans, inode, dir);
6352 if (ret)
6353 btrfs_err(fs_info,
6354 "error inheriting props for ino %llu (root %llu): %d",
6355 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6356
6357 return inode;
6358
6359fail_unlock:
6360 unlock_new_inode(inode);
6361fail:
6362 if (dir && name)
6363 BTRFS_I(dir)->index_cnt--;
6364 btrfs_free_path(path);
6365 iput(inode);
6366 return ERR_PTR(ret);
6367}
6368
6369static inline u8 btrfs_inode_type(struct inode *inode)
6370{
6371 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6372}
6373
6374/*
6375 * utility function to add 'inode' into 'parent_inode' with
6376 * a give name and a given sequence number.
6377 * if 'add_backref' is true, also insert a backref from the
6378 * inode to the parent directory.
6379 */
6380int btrfs_add_link(struct btrfs_trans_handle *trans,
6381 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6382 const char *name, int name_len, int add_backref, u64 index)
6383{
6384 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6385 int ret = 0;
6386 struct btrfs_key key;
6387 struct btrfs_root *root = parent_inode->root;
6388 u64 ino = btrfs_ino(inode);
6389 u64 parent_ino = btrfs_ino(parent_inode);
6390
6391 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6392 memcpy(&key, &inode->root->root_key, sizeof(key));
6393 } else {
6394 key.objectid = ino;
6395 key.type = BTRFS_INODE_ITEM_KEY;
6396 key.offset = 0;
6397 }
6398
6399 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6400 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6401 root->root_key.objectid, parent_ino,
6402 index, name, name_len);
6403 } else if (add_backref) {
6404 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6405 parent_ino, index);
6406 }
6407
6408 /* Nothing to clean up yet */
6409 if (ret)
6410 return ret;
6411
6412 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6413 parent_inode, &key,
6414 btrfs_inode_type(&inode->vfs_inode), index);
6415 if (ret == -EEXIST || ret == -EOVERFLOW)
6416 goto fail_dir_item;
6417 else if (ret) {
6418 btrfs_abort_transaction(trans, ret);
6419 return ret;
6420 }
6421
6422 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6423 name_len * 2);
6424 inode_inc_iversion(&parent_inode->vfs_inode);
6425 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6426 current_time(&parent_inode->vfs_inode);
6427 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6428 if (ret)
6429 btrfs_abort_transaction(trans, ret);
6430 return ret;
6431
6432fail_dir_item:
6433 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6434 u64 local_index;
6435 int err;
6436 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6437 root->root_key.objectid, parent_ino,
6438 &local_index, name, name_len);
6439
6440 } else if (add_backref) {
6441 u64 local_index;
6442 int err;
6443
6444 err = btrfs_del_inode_ref(trans, root, name, name_len,
6445 ino, parent_ino, &local_index);
6446 }
6447 return ret;
6448}
6449
6450static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6451 struct btrfs_inode *dir, struct dentry *dentry,
6452 struct btrfs_inode *inode, int backref, u64 index)
6453{
6454 int err = btrfs_add_link(trans, dir, inode,
6455 dentry->d_name.name, dentry->d_name.len,
6456 backref, index);
6457 if (err > 0)
6458 err = -EEXIST;
6459 return err;
6460}
6461
6462static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6463 umode_t mode, dev_t rdev)
6464{
6465 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6466 struct btrfs_trans_handle *trans;
6467 struct btrfs_root *root = BTRFS_I(dir)->root;
6468 struct inode *inode = NULL;
6469 int err;
6470 int drop_inode = 0;
6471 u64 objectid;
6472 u64 index = 0;
6473
6474 /*
6475 * 2 for inode item and ref
6476 * 2 for dir items
6477 * 1 for xattr if selinux is on
6478 */
6479 trans = btrfs_start_transaction(root, 5);
6480 if (IS_ERR(trans))
6481 return PTR_ERR(trans);
6482
6483 err = btrfs_find_free_ino(root, &objectid);
6484 if (err)
6485 goto out_unlock;
6486
6487 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6488 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6489 mode, &index);
6490 if (IS_ERR(inode)) {
6491 err = PTR_ERR(inode);
6492 goto out_unlock;
6493 }
6494
6495 /*
6496 * If the active LSM wants to access the inode during
6497 * d_instantiate it needs these. Smack checks to see
6498 * if the filesystem supports xattrs by looking at the
6499 * ops vector.
6500 */
6501 inode->i_op = &btrfs_special_inode_operations;
6502 init_special_inode(inode, inode->i_mode, rdev);
6503
6504 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6505 if (err)
6506 goto out_unlock_inode;
6507
6508 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6509 0, index);
6510 if (err) {
6511 goto out_unlock_inode;
6512 } else {
6513 btrfs_update_inode(trans, root, inode);
6514 unlock_new_inode(inode);
6515 d_instantiate(dentry, inode);
6516 }
6517
6518out_unlock:
6519 btrfs_end_transaction(trans);
6520 btrfs_balance_delayed_items(fs_info);
6521 btrfs_btree_balance_dirty(fs_info);
6522 if (drop_inode) {
6523 inode_dec_link_count(inode);
6524 iput(inode);
6525 }
6526 return err;
6527
6528out_unlock_inode:
6529 drop_inode = 1;
6530 unlock_new_inode(inode);
6531 goto out_unlock;
6532
6533}
6534
6535static int btrfs_create(struct inode *dir, struct dentry *dentry,
6536 umode_t mode, bool excl)
6537{
6538 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6539 struct btrfs_trans_handle *trans;
6540 struct btrfs_root *root = BTRFS_I(dir)->root;
6541 struct inode *inode = NULL;
6542 int drop_inode_on_err = 0;
6543 int err;
6544 u64 objectid;
6545 u64 index = 0;
6546
6547 /*
6548 * 2 for inode item and ref
6549 * 2 for dir items
6550 * 1 for xattr if selinux is on
6551 */
6552 trans = btrfs_start_transaction(root, 5);
6553 if (IS_ERR(trans))
6554 return PTR_ERR(trans);
6555
6556 err = btrfs_find_free_ino(root, &objectid);
6557 if (err)
6558 goto out_unlock;
6559
6560 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6561 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6562 mode, &index);
6563 if (IS_ERR(inode)) {
6564 err = PTR_ERR(inode);
6565 goto out_unlock;
6566 }
6567 drop_inode_on_err = 1;
6568 /*
6569 * If the active LSM wants to access the inode during
6570 * d_instantiate it needs these. Smack checks to see
6571 * if the filesystem supports xattrs by looking at the
6572 * ops vector.
6573 */
6574 inode->i_fop = &btrfs_file_operations;
6575 inode->i_op = &btrfs_file_inode_operations;
6576 inode->i_mapping->a_ops = &btrfs_aops;
6577
6578 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6579 if (err)
6580 goto out_unlock_inode;
6581
6582 err = btrfs_update_inode(trans, root, inode);
6583 if (err)
6584 goto out_unlock_inode;
6585
6586 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6587 0, index);
6588 if (err)
6589 goto out_unlock_inode;
6590
6591 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6592 unlock_new_inode(inode);
6593 d_instantiate(dentry, inode);
6594
6595out_unlock:
6596 btrfs_end_transaction(trans);
6597 if (err && drop_inode_on_err) {
6598 inode_dec_link_count(inode);
6599 iput(inode);
6600 }
6601 btrfs_balance_delayed_items(fs_info);
6602 btrfs_btree_balance_dirty(fs_info);
6603 return err;
6604
6605out_unlock_inode:
6606 unlock_new_inode(inode);
6607 goto out_unlock;
6608
6609}
6610
6611static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6612 struct dentry *dentry)
6613{
6614 struct btrfs_trans_handle *trans = NULL;
6615 struct btrfs_root *root = BTRFS_I(dir)->root;
6616 struct inode *inode = d_inode(old_dentry);
6617 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6618 u64 index;
6619 int err;
6620 int drop_inode = 0;
6621
6622 /* do not allow sys_link's with other subvols of the same device */
6623 if (root->objectid != BTRFS_I(inode)->root->objectid)
6624 return -EXDEV;
6625
6626 if (inode->i_nlink >= BTRFS_LINK_MAX)
6627 return -EMLINK;
6628
6629 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6630 if (err)
6631 goto fail;
6632
6633 /*
6634 * 2 items for inode and inode ref
6635 * 2 items for dir items
6636 * 1 item for parent inode
6637 */
6638 trans = btrfs_start_transaction(root, 5);
6639 if (IS_ERR(trans)) {
6640 err = PTR_ERR(trans);
6641 trans = NULL;
6642 goto fail;
6643 }
6644
6645 /* There are several dir indexes for this inode, clear the cache. */
6646 BTRFS_I(inode)->dir_index = 0ULL;
6647 inc_nlink(inode);
6648 inode_inc_iversion(inode);
6649 inode->i_ctime = current_time(inode);
6650 ihold(inode);
6651 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6652
6653 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6654 1, index);
6655
6656 if (err) {
6657 drop_inode = 1;
6658 } else {
6659 struct dentry *parent = dentry->d_parent;
6660 err = btrfs_update_inode(trans, root, inode);
6661 if (err)
6662 goto fail;
6663 if (inode->i_nlink == 1) {
6664 /*
6665 * If new hard link count is 1, it's a file created
6666 * with open(2) O_TMPFILE flag.
6667 */
6668 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6669 if (err)
6670 goto fail;
6671 }
6672 d_instantiate(dentry, inode);
6673 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6674 }
6675
6676 btrfs_balance_delayed_items(fs_info);
6677fail:
6678 if (trans)
6679 btrfs_end_transaction(trans);
6680 if (drop_inode) {
6681 inode_dec_link_count(inode);
6682 iput(inode);
6683 }
6684 btrfs_btree_balance_dirty(fs_info);
6685 return err;
6686}
6687
6688static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6689{
6690 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6691 struct inode *inode = NULL;
6692 struct btrfs_trans_handle *trans;
6693 struct btrfs_root *root = BTRFS_I(dir)->root;
6694 int err = 0;
6695 int drop_on_err = 0;
6696 u64 objectid = 0;
6697 u64 index = 0;
6698
6699 /*
6700 * 2 items for inode and ref
6701 * 2 items for dir items
6702 * 1 for xattr if selinux is on
6703 */
6704 trans = btrfs_start_transaction(root, 5);
6705 if (IS_ERR(trans))
6706 return PTR_ERR(trans);
6707
6708 err = btrfs_find_free_ino(root, &objectid);
6709 if (err)
6710 goto out_fail;
6711
6712 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6713 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6714 S_IFDIR | mode, &index);
6715 if (IS_ERR(inode)) {
6716 err = PTR_ERR(inode);
6717 goto out_fail;
6718 }
6719
6720 drop_on_err = 1;
6721 /* these must be set before we unlock the inode */
6722 inode->i_op = &btrfs_dir_inode_operations;
6723 inode->i_fop = &btrfs_dir_file_operations;
6724
6725 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6726 if (err)
6727 goto out_fail_inode;
6728
6729 btrfs_i_size_write(BTRFS_I(inode), 0);
6730 err = btrfs_update_inode(trans, root, inode);
6731 if (err)
6732 goto out_fail_inode;
6733
6734 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6735 dentry->d_name.name,
6736 dentry->d_name.len, 0, index);
6737 if (err)
6738 goto out_fail_inode;
6739
6740 d_instantiate(dentry, inode);
6741 /*
6742 * mkdir is special. We're unlocking after we call d_instantiate
6743 * to avoid a race with nfsd calling d_instantiate.
6744 */
6745 unlock_new_inode(inode);
6746 drop_on_err = 0;
6747
6748out_fail:
6749 btrfs_end_transaction(trans);
6750 if (drop_on_err) {
6751 inode_dec_link_count(inode);
6752 iput(inode);
6753 }
6754 btrfs_balance_delayed_items(fs_info);
6755 btrfs_btree_balance_dirty(fs_info);
6756 return err;
6757
6758out_fail_inode:
6759 unlock_new_inode(inode);
6760 goto out_fail;
6761}
6762
6763/* Find next extent map of a given extent map, caller needs to ensure locks */
6764static struct extent_map *next_extent_map(struct extent_map *em)
6765{
6766 struct rb_node *next;
6767
6768 next = rb_next(&em->rb_node);
6769 if (!next)
6770 return NULL;
6771 return container_of(next, struct extent_map, rb_node);
6772}
6773
6774static struct extent_map *prev_extent_map(struct extent_map *em)
6775{
6776 struct rb_node *prev;
6777
6778 prev = rb_prev(&em->rb_node);
6779 if (!prev)
6780 return NULL;
6781 return container_of(prev, struct extent_map, rb_node);
6782}
6783
6784/* helper for btfs_get_extent. Given an existing extent in the tree,
6785 * the existing extent is the nearest extent to map_start,
6786 * and an extent that you want to insert, deal with overlap and insert
6787 * the best fitted new extent into the tree.
6788 */
6789static int merge_extent_mapping(struct extent_map_tree *em_tree,
6790 struct extent_map *existing,
6791 struct extent_map *em,
6792 u64 map_start)
6793{
6794 struct extent_map *prev;
6795 struct extent_map *next;
6796 u64 start;
6797 u64 end;
6798 u64 start_diff;
6799
6800 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6801
6802 if (existing->start > map_start) {
6803 next = existing;
6804 prev = prev_extent_map(next);
6805 } else {
6806 prev = existing;
6807 next = next_extent_map(prev);
6808 }
6809
6810 start = prev ? extent_map_end(prev) : em->start;
6811 start = max_t(u64, start, em->start);
6812 end = next ? next->start : extent_map_end(em);
6813 end = min_t(u64, end, extent_map_end(em));
6814 start_diff = start - em->start;
6815 em->start = start;
6816 em->len = end - start;
6817 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6818 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6819 em->block_start += start_diff;
6820 em->block_len -= start_diff;
6821 }
6822 return add_extent_mapping(em_tree, em, 0);
6823}
6824
6825static noinline int uncompress_inline(struct btrfs_path *path,
6826 struct page *page,
6827 size_t pg_offset, u64 extent_offset,
6828 struct btrfs_file_extent_item *item)
6829{
6830 int ret;
6831 struct extent_buffer *leaf = path->nodes[0];
6832 char *tmp;
6833 size_t max_size;
6834 unsigned long inline_size;
6835 unsigned long ptr;
6836 int compress_type;
6837
6838 WARN_ON(pg_offset != 0);
6839 compress_type = btrfs_file_extent_compression(leaf, item);
6840 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6841 inline_size = btrfs_file_extent_inline_item_len(leaf,
6842 btrfs_item_nr(path->slots[0]));
6843 tmp = kmalloc(inline_size, GFP_NOFS);
6844 if (!tmp)
6845 return -ENOMEM;
6846 ptr = btrfs_file_extent_inline_start(item);
6847
6848 read_extent_buffer(leaf, tmp, ptr, inline_size);
6849
6850 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6851 ret = btrfs_decompress(compress_type, tmp, page,
6852 extent_offset, inline_size, max_size);
6853
6854 /*
6855 * decompression code contains a memset to fill in any space between the end
6856 * of the uncompressed data and the end of max_size in case the decompressed
6857 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6858 * the end of an inline extent and the beginning of the next block, so we
6859 * cover that region here.
6860 */
6861
6862 if (max_size + pg_offset < PAGE_SIZE) {
6863 char *map = kmap(page);
6864 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6865 kunmap(page);
6866 }
6867 kfree(tmp);
6868 return ret;
6869}
6870
6871/*
6872 * a bit scary, this does extent mapping from logical file offset to the disk.
6873 * the ugly parts come from merging extents from the disk with the in-ram
6874 * representation. This gets more complex because of the data=ordered code,
6875 * where the in-ram extents might be locked pending data=ordered completion.
6876 *
6877 * This also copies inline extents directly into the page.
6878 */
6879struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6880 struct page *page,
6881 size_t pg_offset, u64 start, u64 len,
6882 int create)
6883{
6884 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6885 int ret;
6886 int err = 0;
6887 u64 extent_start = 0;
6888 u64 extent_end = 0;
6889 u64 objectid = btrfs_ino(inode);
6890 u32 found_type;
6891 struct btrfs_path *path = NULL;
6892 struct btrfs_root *root = inode->root;
6893 struct btrfs_file_extent_item *item;
6894 struct extent_buffer *leaf;
6895 struct btrfs_key found_key;
6896 struct extent_map *em = NULL;
6897 struct extent_map_tree *em_tree = &inode->extent_tree;
6898 struct extent_io_tree *io_tree = &inode->io_tree;
6899 struct btrfs_trans_handle *trans = NULL;
6900 const bool new_inline = !page || create;
6901
6902again:
6903 read_lock(&em_tree->lock);
6904 em = lookup_extent_mapping(em_tree, start, len);
6905 if (em)
6906 em->bdev = fs_info->fs_devices->latest_bdev;
6907 read_unlock(&em_tree->lock);
6908
6909 if (em) {
6910 if (em->start > start || em->start + em->len <= start)
6911 free_extent_map(em);
6912 else if (em->block_start == EXTENT_MAP_INLINE && page)
6913 free_extent_map(em);
6914 else
6915 goto out;
6916 }
6917 em = alloc_extent_map();
6918 if (!em) {
6919 err = -ENOMEM;
6920 goto out;
6921 }
6922 em->bdev = fs_info->fs_devices->latest_bdev;
6923 em->start = EXTENT_MAP_HOLE;
6924 em->orig_start = EXTENT_MAP_HOLE;
6925 em->len = (u64)-1;
6926 em->block_len = (u64)-1;
6927
6928 if (!path) {
6929 path = btrfs_alloc_path();
6930 if (!path) {
6931 err = -ENOMEM;
6932 goto out;
6933 }
6934 /*
6935 * Chances are we'll be called again, so go ahead and do
6936 * readahead
6937 */
6938 path->reada = READA_FORWARD;
6939 }
6940
6941 ret = btrfs_lookup_file_extent(trans, root, path,
6942 objectid, start, trans != NULL);
6943 if (ret < 0) {
6944 err = ret;
6945 goto out;
6946 }
6947
6948 if (ret != 0) {
6949 if (path->slots[0] == 0)
6950 goto not_found;
6951 path->slots[0]--;
6952 }
6953
6954 leaf = path->nodes[0];
6955 item = btrfs_item_ptr(leaf, path->slots[0],
6956 struct btrfs_file_extent_item);
6957 /* are we inside the extent that was found? */
6958 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6959 found_type = found_key.type;
6960 if (found_key.objectid != objectid ||
6961 found_type != BTRFS_EXTENT_DATA_KEY) {
6962 /*
6963 * If we backup past the first extent we want to move forward
6964 * and see if there is an extent in front of us, otherwise we'll
6965 * say there is a hole for our whole search range which can
6966 * cause problems.
6967 */
6968 extent_end = start;
6969 goto next;
6970 }
6971
6972 found_type = btrfs_file_extent_type(leaf, item);
6973 extent_start = found_key.offset;
6974 if (found_type == BTRFS_FILE_EXTENT_REG ||
6975 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6976 extent_end = extent_start +
6977 btrfs_file_extent_num_bytes(leaf, item);
6978
6979 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6980 extent_start);
6981 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6982 size_t size;
6983 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6984 extent_end = ALIGN(extent_start + size,
6985 fs_info->sectorsize);
6986
6987 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6988 path->slots[0],
6989 extent_start);
6990 }
6991next:
6992 if (start >= extent_end) {
6993 path->slots[0]++;
6994 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6995 ret = btrfs_next_leaf(root, path);
6996 if (ret < 0) {
6997 err = ret;
6998 goto out;
6999 }
7000 if (ret > 0)
7001 goto not_found;
7002 leaf = path->nodes[0];
7003 }
7004 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7005 if (found_key.objectid != objectid ||
7006 found_key.type != BTRFS_EXTENT_DATA_KEY)
7007 goto not_found;
7008 if (start + len <= found_key.offset)
7009 goto not_found;
7010 if (start > found_key.offset)
7011 goto next;
7012 em->start = start;
7013 em->orig_start = start;
7014 em->len = found_key.offset - start;
7015 goto not_found_em;
7016 }
7017
7018 btrfs_extent_item_to_extent_map(inode, path, item,
7019 new_inline, em);
7020
7021 if (found_type == BTRFS_FILE_EXTENT_REG ||
7022 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7023 goto insert;
7024 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7025 unsigned long ptr;
7026 char *map;
7027 size_t size;
7028 size_t extent_offset;
7029 size_t copy_size;
7030
7031 if (new_inline)
7032 goto out;
7033
7034 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
7035 extent_offset = page_offset(page) + pg_offset - extent_start;
7036 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7037 size - extent_offset);
7038 em->start = extent_start + extent_offset;
7039 em->len = ALIGN(copy_size, fs_info->sectorsize);
7040 em->orig_block_len = em->len;
7041 em->orig_start = em->start;
7042 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7043 if (create == 0 && !PageUptodate(page)) {
7044 if (btrfs_file_extent_compression(leaf, item) !=
7045 BTRFS_COMPRESS_NONE) {
7046 ret = uncompress_inline(path, page, pg_offset,
7047 extent_offset, item);
7048 if (ret) {
7049 err = ret;
7050 goto out;
7051 }
7052 } else {
7053 map = kmap(page);
7054 read_extent_buffer(leaf, map + pg_offset, ptr,
7055 copy_size);
7056 if (pg_offset + copy_size < PAGE_SIZE) {
7057 memset(map + pg_offset + copy_size, 0,
7058 PAGE_SIZE - pg_offset -
7059 copy_size);
7060 }
7061 kunmap(page);
7062 }
7063 flush_dcache_page(page);
7064 } else if (create && PageUptodate(page)) {
7065 BUG();
7066 if (!trans) {
7067 kunmap(page);
7068 free_extent_map(em);
7069 em = NULL;
7070
7071 btrfs_release_path(path);
7072 trans = btrfs_join_transaction(root);
7073
7074 if (IS_ERR(trans))
7075 return ERR_CAST(trans);
7076 goto again;
7077 }
7078 map = kmap(page);
7079 write_extent_buffer(leaf, map + pg_offset, ptr,
7080 copy_size);
7081 kunmap(page);
7082 btrfs_mark_buffer_dirty(leaf);
7083 }
7084 set_extent_uptodate(io_tree, em->start,
7085 extent_map_end(em) - 1, NULL, GFP_NOFS);
7086 goto insert;
7087 }
7088not_found:
7089 em->start = start;
7090 em->orig_start = start;
7091 em->len = len;
7092not_found_em:
7093 em->block_start = EXTENT_MAP_HOLE;
7094 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
7095insert:
7096 btrfs_release_path(path);
7097 if (em->start > start || extent_map_end(em) <= start) {
7098 btrfs_err(fs_info,
7099 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7100 em->start, em->len, start, len);
7101 err = -EIO;
7102 goto out;
7103 }
7104
7105 err = 0;
7106 write_lock(&em_tree->lock);
7107 ret = add_extent_mapping(em_tree, em, 0);
7108 /* it is possible that someone inserted the extent into the tree
7109 * while we had the lock dropped. It is also possible that
7110 * an overlapping map exists in the tree
7111 */
7112 if (ret == -EEXIST) {
7113 struct extent_map *existing;
7114
7115 ret = 0;
7116
7117 existing = search_extent_mapping(em_tree, start, len);
7118 /*
7119 * existing will always be non-NULL, since there must be
7120 * extent causing the -EEXIST.
7121 */
7122 if (existing->start == em->start &&
7123 extent_map_end(existing) >= extent_map_end(em) &&
7124 em->block_start == existing->block_start) {
7125 /*
7126 * The existing extent map already encompasses the
7127 * entire extent map we tried to add.
7128 */
7129 free_extent_map(em);
7130 em = existing;
7131 err = 0;
7132
7133 } else if (start >= extent_map_end(existing) ||
7134 start <= existing->start) {
7135 /*
7136 * The existing extent map is the one nearest to
7137 * the [start, start + len) range which overlaps
7138 */
7139 err = merge_extent_mapping(em_tree, existing,
7140 em, start);
7141 free_extent_map(existing);
7142 if (err) {
7143 free_extent_map(em);
7144 em = NULL;
7145 }
7146 } else {
7147 free_extent_map(em);
7148 em = existing;
7149 err = 0;
7150 }
7151 }
7152 write_unlock(&em_tree->lock);
7153out:
7154
7155 trace_btrfs_get_extent(root, inode, em);
7156
7157 btrfs_free_path(path);
7158 if (trans) {
7159 ret = btrfs_end_transaction(trans);
7160 if (!err)
7161 err = ret;
7162 }
7163 if (err) {
7164 free_extent_map(em);
7165 return ERR_PTR(err);
7166 }
7167 BUG_ON(!em); /* Error is always set */
7168 return em;
7169}
7170
7171struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7172 struct page *page,
7173 size_t pg_offset, u64 start, u64 len,
7174 int create)
7175{
7176 struct extent_map *em;
7177 struct extent_map *hole_em = NULL;
7178 u64 range_start = start;
7179 u64 end;
7180 u64 found;
7181 u64 found_end;
7182 int err = 0;
7183
7184 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7185 if (IS_ERR(em))
7186 return em;
7187 /*
7188 * If our em maps to:
7189 * - a hole or
7190 * - a pre-alloc extent,
7191 * there might actually be delalloc bytes behind it.
7192 */
7193 if (em->block_start != EXTENT_MAP_HOLE &&
7194 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7195 return em;
7196 else
7197 hole_em = em;
7198
7199 /* check to see if we've wrapped (len == -1 or similar) */
7200 end = start + len;
7201 if (end < start)
7202 end = (u64)-1;
7203 else
7204 end -= 1;
7205
7206 em = NULL;
7207
7208 /* ok, we didn't find anything, lets look for delalloc */
7209 found = count_range_bits(&inode->io_tree, &range_start,
7210 end, len, EXTENT_DELALLOC, 1);
7211 found_end = range_start + found;
7212 if (found_end < range_start)
7213 found_end = (u64)-1;
7214
7215 /*
7216 * we didn't find anything useful, return
7217 * the original results from get_extent()
7218 */
7219 if (range_start > end || found_end <= start) {
7220 em = hole_em;
7221 hole_em = NULL;
7222 goto out;
7223 }
7224
7225 /* adjust the range_start to make sure it doesn't
7226 * go backwards from the start they passed in
7227 */
7228 range_start = max(start, range_start);
7229 found = found_end - range_start;
7230
7231 if (found > 0) {
7232 u64 hole_start = start;
7233 u64 hole_len = len;
7234
7235 em = alloc_extent_map();
7236 if (!em) {
7237 err = -ENOMEM;
7238 goto out;
7239 }
7240 /*
7241 * when btrfs_get_extent can't find anything it
7242 * returns one huge hole
7243 *
7244 * make sure what it found really fits our range, and
7245 * adjust to make sure it is based on the start from
7246 * the caller
7247 */
7248 if (hole_em) {
7249 u64 calc_end = extent_map_end(hole_em);
7250
7251 if (calc_end <= start || (hole_em->start > end)) {
7252 free_extent_map(hole_em);
7253 hole_em = NULL;
7254 } else {
7255 hole_start = max(hole_em->start, start);
7256 hole_len = calc_end - hole_start;
7257 }
7258 }
7259 em->bdev = NULL;
7260 if (hole_em && range_start > hole_start) {
7261 /* our hole starts before our delalloc, so we
7262 * have to return just the parts of the hole
7263 * that go until the delalloc starts
7264 */
7265 em->len = min(hole_len,
7266 range_start - hole_start);
7267 em->start = hole_start;
7268 em->orig_start = hole_start;
7269 /*
7270 * don't adjust block start at all,
7271 * it is fixed at EXTENT_MAP_HOLE
7272 */
7273 em->block_start = hole_em->block_start;
7274 em->block_len = hole_len;
7275 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7276 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7277 } else {
7278 em->start = range_start;
7279 em->len = found;
7280 em->orig_start = range_start;
7281 em->block_start = EXTENT_MAP_DELALLOC;
7282 em->block_len = found;
7283 }
7284 } else if (hole_em) {
7285 return hole_em;
7286 }
7287out:
7288
7289 free_extent_map(hole_em);
7290 if (err) {
7291 free_extent_map(em);
7292 return ERR_PTR(err);
7293 }
7294 return em;
7295}
7296
7297static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7298 const u64 start,
7299 const u64 len,
7300 const u64 orig_start,
7301 const u64 block_start,
7302 const u64 block_len,
7303 const u64 orig_block_len,
7304 const u64 ram_bytes,
7305 const int type)
7306{
7307 struct extent_map *em = NULL;
7308 int ret;
7309
7310 if (type != BTRFS_ORDERED_NOCOW) {
7311 em = create_io_em(inode, start, len, orig_start,
7312 block_start, block_len, orig_block_len,
7313 ram_bytes,
7314 BTRFS_COMPRESS_NONE, /* compress_type */
7315 type);
7316 if (IS_ERR(em))
7317 goto out;
7318 }
7319 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7320 len, block_len, type);
7321 if (ret) {
7322 if (em) {
7323 free_extent_map(em);
7324 btrfs_drop_extent_cache(BTRFS_I(inode), start,
7325 start + len - 1, 0);
7326 }
7327 em = ERR_PTR(ret);
7328 }
7329 out:
7330
7331 return em;
7332}
7333
7334static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7335 u64 start, u64 len)
7336{
7337 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7338 struct btrfs_root *root = BTRFS_I(inode)->root;
7339 struct extent_map *em;
7340 struct btrfs_key ins;
7341 u64 alloc_hint;
7342 int ret;
7343
7344 alloc_hint = get_extent_allocation_hint(inode, start, len);
7345 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7346 0, alloc_hint, &ins, 1, 1);
7347 if (ret)
7348 return ERR_PTR(ret);
7349
7350 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7351 ins.objectid, ins.offset, ins.offset,
7352 ins.offset, BTRFS_ORDERED_REGULAR);
7353 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7354 if (IS_ERR(em))
7355 btrfs_free_reserved_extent(fs_info, ins.objectid,
7356 ins.offset, 1);
7357
7358 return em;
7359}
7360
7361/*
7362 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7363 * block must be cow'd
7364 */
7365noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7366 u64 *orig_start, u64 *orig_block_len,
7367 u64 *ram_bytes)
7368{
7369 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7370 struct btrfs_path *path;
7371 int ret;
7372 struct extent_buffer *leaf;
7373 struct btrfs_root *root = BTRFS_I(inode)->root;
7374 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7375 struct btrfs_file_extent_item *fi;
7376 struct btrfs_key key;
7377 u64 disk_bytenr;
7378 u64 backref_offset;
7379 u64 extent_end;
7380 u64 num_bytes;
7381 int slot;
7382 int found_type;
7383 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7384
7385 path = btrfs_alloc_path();
7386 if (!path)
7387 return -ENOMEM;
7388
7389 ret = btrfs_lookup_file_extent(NULL, root, path,
7390 btrfs_ino(BTRFS_I(inode)), offset, 0);
7391 if (ret < 0)
7392 goto out;
7393
7394 slot = path->slots[0];
7395 if (ret == 1) {
7396 if (slot == 0) {
7397 /* can't find the item, must cow */
7398 ret = 0;
7399 goto out;
7400 }
7401 slot--;
7402 }
7403 ret = 0;
7404 leaf = path->nodes[0];
7405 btrfs_item_key_to_cpu(leaf, &key, slot);
7406 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7407 key.type != BTRFS_EXTENT_DATA_KEY) {
7408 /* not our file or wrong item type, must cow */
7409 goto out;
7410 }
7411
7412 if (key.offset > offset) {
7413 /* Wrong offset, must cow */
7414 goto out;
7415 }
7416
7417 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7418 found_type = btrfs_file_extent_type(leaf, fi);
7419 if (found_type != BTRFS_FILE_EXTENT_REG &&
7420 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7421 /* not a regular extent, must cow */
7422 goto out;
7423 }
7424
7425 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7426 goto out;
7427
7428 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7429 if (extent_end <= offset)
7430 goto out;
7431
7432 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7433 if (disk_bytenr == 0)
7434 goto out;
7435
7436 if (btrfs_file_extent_compression(leaf, fi) ||
7437 btrfs_file_extent_encryption(leaf, fi) ||
7438 btrfs_file_extent_other_encoding(leaf, fi))
7439 goto out;
7440
7441 backref_offset = btrfs_file_extent_offset(leaf, fi);
7442
7443 if (orig_start) {
7444 *orig_start = key.offset - backref_offset;
7445 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7446 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7447 }
7448
7449 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7450 goto out;
7451
7452 num_bytes = min(offset + *len, extent_end) - offset;
7453 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7454 u64 range_end;
7455
7456 range_end = round_up(offset + num_bytes,
7457 root->fs_info->sectorsize) - 1;
7458 ret = test_range_bit(io_tree, offset, range_end,
7459 EXTENT_DELALLOC, 0, NULL);
7460 if (ret) {
7461 ret = -EAGAIN;
7462 goto out;
7463 }
7464 }
7465
7466 btrfs_release_path(path);
7467
7468 /*
7469 * look for other files referencing this extent, if we
7470 * find any we must cow
7471 */
7472
7473 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7474 key.offset - backref_offset, disk_bytenr);
7475 if (ret) {
7476 ret = 0;
7477 goto out;
7478 }
7479
7480 /*
7481 * adjust disk_bytenr and num_bytes to cover just the bytes
7482 * in this extent we are about to write. If there
7483 * are any csums in that range we have to cow in order
7484 * to keep the csums correct
7485 */
7486 disk_bytenr += backref_offset;
7487 disk_bytenr += offset - key.offset;
7488 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7489 goto out;
7490 /*
7491 * all of the above have passed, it is safe to overwrite this extent
7492 * without cow
7493 */
7494 *len = num_bytes;
7495 ret = 1;
7496out:
7497 btrfs_free_path(path);
7498 return ret;
7499}
7500
7501bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7502{
7503 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7504 bool found = false;
7505 void **pagep = NULL;
7506 struct page *page = NULL;
7507 unsigned long start_idx;
7508 unsigned long end_idx;
7509
7510 start_idx = start >> PAGE_SHIFT;
7511
7512 /*
7513 * end is the last byte in the last page. end == start is legal
7514 */
7515 end_idx = end >> PAGE_SHIFT;
7516
7517 rcu_read_lock();
7518
7519 /* Most of the code in this while loop is lifted from
7520 * find_get_page. It's been modified to begin searching from a
7521 * page and return just the first page found in that range. If the
7522 * found idx is less than or equal to the end idx then we know that
7523 * a page exists. If no pages are found or if those pages are
7524 * outside of the range then we're fine (yay!) */
7525 while (page == NULL &&
7526 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7527 page = radix_tree_deref_slot(pagep);
7528 if (unlikely(!page))
7529 break;
7530
7531 if (radix_tree_exception(page)) {
7532 if (radix_tree_deref_retry(page)) {
7533 page = NULL;
7534 continue;
7535 }
7536 /*
7537 * Otherwise, shmem/tmpfs must be storing a swap entry
7538 * here as an exceptional entry: so return it without
7539 * attempting to raise page count.
7540 */
7541 page = NULL;
7542 break; /* TODO: Is this relevant for this use case? */
7543 }
7544
7545 if (!page_cache_get_speculative(page)) {
7546 page = NULL;
7547 continue;
7548 }
7549
7550 /*
7551 * Has the page moved?
7552 * This is part of the lockless pagecache protocol. See
7553 * include/linux/pagemap.h for details.
7554 */
7555 if (unlikely(page != *pagep)) {
7556 put_page(page);
7557 page = NULL;
7558 }
7559 }
7560
7561 if (page) {
7562 if (page->index <= end_idx)
7563 found = true;
7564 put_page(page);
7565 }
7566
7567 rcu_read_unlock();
7568 return found;
7569}
7570
7571static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7572 struct extent_state **cached_state, int writing)
7573{
7574 struct btrfs_ordered_extent *ordered;
7575 int ret = 0;
7576
7577 while (1) {
7578 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7579 cached_state);
7580 /*
7581 * We're concerned with the entire range that we're going to be
7582 * doing DIO to, so we need to make sure there's no ordered
7583 * extents in this range.
7584 */
7585 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7586 lockend - lockstart + 1);
7587
7588 /*
7589 * We need to make sure there are no buffered pages in this
7590 * range either, we could have raced between the invalidate in
7591 * generic_file_direct_write and locking the extent. The
7592 * invalidate needs to happen so that reads after a write do not
7593 * get stale data.
7594 */
7595 if (!ordered &&
7596 (!writing ||
7597 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7598 break;
7599
7600 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7601 cached_state, GFP_NOFS);
7602
7603 if (ordered) {
7604 /*
7605 * If we are doing a DIO read and the ordered extent we
7606 * found is for a buffered write, we can not wait for it
7607 * to complete and retry, because if we do so we can
7608 * deadlock with concurrent buffered writes on page
7609 * locks. This happens only if our DIO read covers more
7610 * than one extent map, if at this point has already
7611 * created an ordered extent for a previous extent map
7612 * and locked its range in the inode's io tree, and a
7613 * concurrent write against that previous extent map's
7614 * range and this range started (we unlock the ranges
7615 * in the io tree only when the bios complete and
7616 * buffered writes always lock pages before attempting
7617 * to lock range in the io tree).
7618 */
7619 if (writing ||
7620 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7621 btrfs_start_ordered_extent(inode, ordered, 1);
7622 else
7623 ret = -ENOTBLK;
7624 btrfs_put_ordered_extent(ordered);
7625 } else {
7626 /*
7627 * We could trigger writeback for this range (and wait
7628 * for it to complete) and then invalidate the pages for
7629 * this range (through invalidate_inode_pages2_range()),
7630 * but that can lead us to a deadlock with a concurrent
7631 * call to readpages() (a buffered read or a defrag call
7632 * triggered a readahead) on a page lock due to an
7633 * ordered dio extent we created before but did not have
7634 * yet a corresponding bio submitted (whence it can not
7635 * complete), which makes readpages() wait for that
7636 * ordered extent to complete while holding a lock on
7637 * that page.
7638 */
7639 ret = -ENOTBLK;
7640 }
7641
7642 if (ret)
7643 break;
7644
7645 cond_resched();
7646 }
7647
7648 return ret;
7649}
7650
7651/* The callers of this must take lock_extent() */
7652static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7653 u64 orig_start, u64 block_start,
7654 u64 block_len, u64 orig_block_len,
7655 u64 ram_bytes, int compress_type,
7656 int type)
7657{
7658 struct extent_map_tree *em_tree;
7659 struct extent_map *em;
7660 struct btrfs_root *root = BTRFS_I(inode)->root;
7661 int ret;
7662
7663 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7664 type == BTRFS_ORDERED_COMPRESSED ||
7665 type == BTRFS_ORDERED_NOCOW ||
7666 type == BTRFS_ORDERED_REGULAR);
7667
7668 em_tree = &BTRFS_I(inode)->extent_tree;
7669 em = alloc_extent_map();
7670 if (!em)
7671 return ERR_PTR(-ENOMEM);
7672
7673 em->start = start;
7674 em->orig_start = orig_start;
7675 em->len = len;
7676 em->block_len = block_len;
7677 em->block_start = block_start;
7678 em->bdev = root->fs_info->fs_devices->latest_bdev;
7679 em->orig_block_len = orig_block_len;
7680 em->ram_bytes = ram_bytes;
7681 em->generation = -1;
7682 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7683 if (type == BTRFS_ORDERED_PREALLOC) {
7684 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7685 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7686 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7687 em->compress_type = compress_type;
7688 }
7689
7690 do {
7691 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7692 em->start + em->len - 1, 0);
7693 write_lock(&em_tree->lock);
7694 ret = add_extent_mapping(em_tree, em, 1);
7695 write_unlock(&em_tree->lock);
7696 /*
7697 * The caller has taken lock_extent(), who could race with us
7698 * to add em?
7699 */
7700 } while (ret == -EEXIST);
7701
7702 if (ret) {
7703 free_extent_map(em);
7704 return ERR_PTR(ret);
7705 }
7706
7707 /* em got 2 refs now, callers needs to do free_extent_map once. */
7708 return em;
7709}
7710
7711static void adjust_dio_outstanding_extents(struct inode *inode,
7712 struct btrfs_dio_data *dio_data,
7713 const u64 len)
7714{
7715 unsigned num_extents = count_max_extents(len);
7716
7717 /*
7718 * If we have an outstanding_extents count still set then we're
7719 * within our reservation, otherwise we need to adjust our inode
7720 * counter appropriately.
7721 */
7722 if (dio_data->outstanding_extents >= num_extents) {
7723 dio_data->outstanding_extents -= num_extents;
7724 } else {
7725 /*
7726 * If dio write length has been split due to no large enough
7727 * contiguous space, we need to compensate our inode counter
7728 * appropriately.
7729 */
7730 u64 num_needed = num_extents - dio_data->outstanding_extents;
7731
7732 spin_lock(&BTRFS_I(inode)->lock);
7733 BTRFS_I(inode)->outstanding_extents += num_needed;
7734 spin_unlock(&BTRFS_I(inode)->lock);
7735 }
7736}
7737
7738static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7739 struct buffer_head *bh_result, int create)
7740{
7741 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7742 struct extent_map *em;
7743 struct extent_state *cached_state = NULL;
7744 struct btrfs_dio_data *dio_data = NULL;
7745 u64 start = iblock << inode->i_blkbits;
7746 u64 lockstart, lockend;
7747 u64 len = bh_result->b_size;
7748 int unlock_bits = EXTENT_LOCKED;
7749 int ret = 0;
7750
7751 if (create)
7752 unlock_bits |= EXTENT_DIRTY;
7753 else
7754 len = min_t(u64, len, fs_info->sectorsize);
7755
7756 lockstart = start;
7757 lockend = start + len - 1;
7758
7759 if (current->journal_info) {
7760 /*
7761 * Need to pull our outstanding extents and set journal_info to NULL so
7762 * that anything that needs to check if there's a transaction doesn't get
7763 * confused.
7764 */
7765 dio_data = current->journal_info;
7766 current->journal_info = NULL;
7767 }
7768
7769 /*
7770 * If this errors out it's because we couldn't invalidate pagecache for
7771 * this range and we need to fallback to buffered.
7772 */
7773 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7774 create)) {
7775 ret = -ENOTBLK;
7776 goto err;
7777 }
7778
7779 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7780 if (IS_ERR(em)) {
7781 ret = PTR_ERR(em);
7782 goto unlock_err;
7783 }
7784
7785 /*
7786 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7787 * io. INLINE is special, and we could probably kludge it in here, but
7788 * it's still buffered so for safety lets just fall back to the generic
7789 * buffered path.
7790 *
7791 * For COMPRESSED we _have_ to read the entire extent in so we can
7792 * decompress it, so there will be buffering required no matter what we
7793 * do, so go ahead and fallback to buffered.
7794 *
7795 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7796 * to buffered IO. Don't blame me, this is the price we pay for using
7797 * the generic code.
7798 */
7799 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7800 em->block_start == EXTENT_MAP_INLINE) {
7801 free_extent_map(em);
7802 ret = -ENOTBLK;
7803 goto unlock_err;
7804 }
7805
7806 /* Just a good old fashioned hole, return */
7807 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7808 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7809 free_extent_map(em);
7810 goto unlock_err;
7811 }
7812
7813 /*
7814 * We don't allocate a new extent in the following cases
7815 *
7816 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7817 * existing extent.
7818 * 2) The extent is marked as PREALLOC. We're good to go here and can
7819 * just use the extent.
7820 *
7821 */
7822 if (!create) {
7823 len = min(len, em->len - (start - em->start));
7824 lockstart = start + len;
7825 goto unlock;
7826 }
7827
7828 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7829 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7830 em->block_start != EXTENT_MAP_HOLE)) {
7831 int type;
7832 u64 block_start, orig_start, orig_block_len, ram_bytes;
7833
7834 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7835 type = BTRFS_ORDERED_PREALLOC;
7836 else
7837 type = BTRFS_ORDERED_NOCOW;
7838 len = min(len, em->len - (start - em->start));
7839 block_start = em->block_start + (start - em->start);
7840
7841 if (can_nocow_extent(inode, start, &len, &orig_start,
7842 &orig_block_len, &ram_bytes) == 1 &&
7843 btrfs_inc_nocow_writers(fs_info, block_start)) {
7844 struct extent_map *em2;
7845
7846 em2 = btrfs_create_dio_extent(inode, start, len,
7847 orig_start, block_start,
7848 len, orig_block_len,
7849 ram_bytes, type);
7850 btrfs_dec_nocow_writers(fs_info, block_start);
7851 if (type == BTRFS_ORDERED_PREALLOC) {
7852 free_extent_map(em);
7853 em = em2;
7854 }
7855 if (em2 && IS_ERR(em2)) {
7856 ret = PTR_ERR(em2);
7857 goto unlock_err;
7858 }
7859 /*
7860 * For inode marked NODATACOW or extent marked PREALLOC,
7861 * use the existing or preallocated extent, so does not
7862 * need to adjust btrfs_space_info's bytes_may_use.
7863 */
7864 btrfs_free_reserved_data_space_noquota(inode,
7865 start, len);
7866 goto unlock;
7867 }
7868 }
7869
7870 /*
7871 * this will cow the extent, reset the len in case we changed
7872 * it above
7873 */
7874 len = bh_result->b_size;
7875 free_extent_map(em);
7876 em = btrfs_new_extent_direct(inode, start, len);
7877 if (IS_ERR(em)) {
7878 ret = PTR_ERR(em);
7879 goto unlock_err;
7880 }
7881 len = min(len, em->len - (start - em->start));
7882unlock:
7883 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7884 inode->i_blkbits;
7885 bh_result->b_size = len;
7886 bh_result->b_bdev = em->bdev;
7887 set_buffer_mapped(bh_result);
7888 if (create) {
7889 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7890 set_buffer_new(bh_result);
7891
7892 /*
7893 * Need to update the i_size under the extent lock so buffered
7894 * readers will get the updated i_size when we unlock.
7895 */
7896 if (!dio_data->overwrite && start + len > i_size_read(inode))
7897 i_size_write(inode, start + len);
7898
7899 adjust_dio_outstanding_extents(inode, dio_data, len);
7900 WARN_ON(dio_data->reserve < len);
7901 dio_data->reserve -= len;
7902 dio_data->unsubmitted_oe_range_end = start + len;
7903 current->journal_info = dio_data;
7904 }
7905
7906 /*
7907 * In the case of write we need to clear and unlock the entire range,
7908 * in the case of read we need to unlock only the end area that we
7909 * aren't using if there is any left over space.
7910 */
7911 if (lockstart < lockend) {
7912 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7913 lockend, unlock_bits, 1, 0,
7914 &cached_state, GFP_NOFS);
7915 } else {
7916 free_extent_state(cached_state);
7917 }
7918
7919 free_extent_map(em);
7920
7921 return 0;
7922
7923unlock_err:
7924 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7925 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7926err:
7927 if (dio_data)
7928 current->journal_info = dio_data;
7929 /*
7930 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7931 * write less data then expected, so that we don't underflow our inode's
7932 * outstanding extents counter.
7933 */
7934 if (create && dio_data)
7935 adjust_dio_outstanding_extents(inode, dio_data, len);
7936
7937 return ret;
7938}
7939
7940static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7941 struct bio *bio,
7942 int mirror_num)
7943{
7944 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7945 blk_status_t ret;
7946
7947 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7948
7949 bio_get(bio);
7950
7951 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7952 if (ret)
7953 goto err;
7954
7955 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7956err:
7957 bio_put(bio);
7958 return ret;
7959}
7960
7961static int btrfs_check_dio_repairable(struct inode *inode,
7962 struct bio *failed_bio,
7963 struct io_failure_record *failrec,
7964 int failed_mirror)
7965{
7966 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7967 int num_copies;
7968
7969 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7970 if (num_copies == 1) {
7971 /*
7972 * we only have a single copy of the data, so don't bother with
7973 * all the retry and error correction code that follows. no
7974 * matter what the error is, it is very likely to persist.
7975 */
7976 btrfs_debug(fs_info,
7977 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7978 num_copies, failrec->this_mirror, failed_mirror);
7979 return 0;
7980 }
7981
7982 failrec->failed_mirror = failed_mirror;
7983 failrec->this_mirror++;
7984 if (failrec->this_mirror == failed_mirror)
7985 failrec->this_mirror++;
7986
7987 if (failrec->this_mirror > num_copies) {
7988 btrfs_debug(fs_info,
7989 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7990 num_copies, failrec->this_mirror, failed_mirror);
7991 return 0;
7992 }
7993
7994 return 1;
7995}
7996
7997static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7998 struct page *page, unsigned int pgoff,
7999 u64 start, u64 end, int failed_mirror,
8000 bio_end_io_t *repair_endio, void *repair_arg)
8001{
8002 struct io_failure_record *failrec;
8003 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8004 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8005 struct bio *bio;
8006 int isector;
8007 int read_mode = 0;
8008 int segs;
8009 int ret;
8010 blk_status_t status;
8011
8012 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8013
8014 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
8015 if (ret)
8016 return errno_to_blk_status(ret);
8017
8018 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
8019 failed_mirror);
8020 if (!ret) {
8021 free_io_failure(failure_tree, io_tree, failrec);
8022 return BLK_STS_IOERR;
8023 }
8024
8025 segs = bio_segments(failed_bio);
8026 if (segs > 1 ||
8027 (failed_bio->bi_io_vec->bv_len > btrfs_inode_sectorsize(inode)))
8028 read_mode |= REQ_FAILFAST_DEV;
8029
8030 isector = start - btrfs_io_bio(failed_bio)->logical;
8031 isector >>= inode->i_sb->s_blocksize_bits;
8032 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
8033 pgoff, isector, repair_endio, repair_arg);
8034 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8035
8036 btrfs_debug(BTRFS_I(inode)->root->fs_info,
8037 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
8038 read_mode, failrec->this_mirror, failrec->in_validation);
8039
8040 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8041 if (status) {
8042 free_io_failure(failure_tree, io_tree, failrec);
8043 bio_put(bio);
8044 }
8045
8046 return status;
8047}
8048
8049struct btrfs_retry_complete {
8050 struct completion done;
8051 struct inode *inode;
8052 u64 start;
8053 int uptodate;
8054};
8055
8056static void btrfs_retry_endio_nocsum(struct bio *bio)
8057{
8058 struct btrfs_retry_complete *done = bio->bi_private;
8059 struct inode *inode = done->inode;
8060 struct bio_vec *bvec;
8061 struct extent_io_tree *io_tree, *failure_tree;
8062 int i;
8063
8064 if (bio->bi_status)
8065 goto end;
8066
8067 ASSERT(bio->bi_vcnt == 1);
8068 io_tree = &BTRFS_I(inode)->io_tree;
8069 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8070 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
8071
8072 done->uptodate = 1;
8073 ASSERT(!bio_flagged(bio, BIO_CLONED));
8074 bio_for_each_segment_all(bvec, bio, i)
8075 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8076 io_tree, done->start, bvec->bv_page,
8077 btrfs_ino(BTRFS_I(inode)), 0);
8078end:
8079 complete(&done->done);
8080 bio_put(bio);
8081}
8082
8083static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
8084 struct btrfs_io_bio *io_bio)
8085{
8086 struct btrfs_fs_info *fs_info;
8087 struct bio_vec bvec;
8088 struct bvec_iter iter;
8089 struct btrfs_retry_complete done;
8090 u64 start;
8091 unsigned int pgoff;
8092 u32 sectorsize;
8093 int nr_sectors;
8094 blk_status_t ret;
8095 blk_status_t err = BLK_STS_OK;
8096
8097 fs_info = BTRFS_I(inode)->root->fs_info;
8098 sectorsize = fs_info->sectorsize;
8099
8100 start = io_bio->logical;
8101 done.inode = inode;
8102 io_bio->bio.bi_iter = io_bio->iter;
8103
8104 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8105 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8106 pgoff = bvec.bv_offset;
8107
8108next_block_or_try_again:
8109 done.uptodate = 0;
8110 done.start = start;
8111 init_completion(&done.done);
8112
8113 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8114 pgoff, start, start + sectorsize - 1,
8115 io_bio->mirror_num,
8116 btrfs_retry_endio_nocsum, &done);
8117 if (ret) {
8118 err = ret;
8119 goto next;
8120 }
8121
8122 wait_for_completion(&done.done);
8123
8124 if (!done.uptodate) {
8125 /* We might have another mirror, so try again */
8126 goto next_block_or_try_again;
8127 }
8128
8129next:
8130 start += sectorsize;
8131
8132 nr_sectors--;
8133 if (nr_sectors) {
8134 pgoff += sectorsize;
8135 ASSERT(pgoff < PAGE_SIZE);
8136 goto next_block_or_try_again;
8137 }
8138 }
8139
8140 return err;
8141}
8142
8143static void btrfs_retry_endio(struct bio *bio)
8144{
8145 struct btrfs_retry_complete *done = bio->bi_private;
8146 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8147 struct extent_io_tree *io_tree, *failure_tree;
8148 struct inode *inode = done->inode;
8149 struct bio_vec *bvec;
8150 int uptodate;
8151 int ret;
8152 int i;
8153
8154 if (bio->bi_status)
8155 goto end;
8156
8157 uptodate = 1;
8158
8159 ASSERT(bio->bi_vcnt == 1);
8160 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
8161
8162 io_tree = &BTRFS_I(inode)->io_tree;
8163 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8164
8165 ASSERT(!bio_flagged(bio, BIO_CLONED));
8166 bio_for_each_segment_all(bvec, bio, i) {
8167 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8168 bvec->bv_offset, done->start,
8169 bvec->bv_len);
8170 if (!ret)
8171 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8172 failure_tree, io_tree, done->start,
8173 bvec->bv_page,
8174 btrfs_ino(BTRFS_I(inode)),
8175 bvec->bv_offset);
8176 else
8177 uptodate = 0;
8178 }
8179
8180 done->uptodate = uptodate;
8181end:
8182 complete(&done->done);
8183 bio_put(bio);
8184}
8185
8186static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8187 struct btrfs_io_bio *io_bio, blk_status_t err)
8188{
8189 struct btrfs_fs_info *fs_info;
8190 struct bio_vec bvec;
8191 struct bvec_iter iter;
8192 struct btrfs_retry_complete done;
8193 u64 start;
8194 u64 offset = 0;
8195 u32 sectorsize;
8196 int nr_sectors;
8197 unsigned int pgoff;
8198 int csum_pos;
8199 bool uptodate = (err == 0);
8200 int ret;
8201 blk_status_t status;
8202
8203 fs_info = BTRFS_I(inode)->root->fs_info;
8204 sectorsize = fs_info->sectorsize;
8205
8206 err = BLK_STS_OK;
8207 start = io_bio->logical;
8208 done.inode = inode;
8209 io_bio->bio.bi_iter = io_bio->iter;
8210
8211 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8212 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8213
8214 pgoff = bvec.bv_offset;
8215next_block:
8216 if (uptodate) {
8217 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8218 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8219 bvec.bv_page, pgoff, start, sectorsize);
8220 if (likely(!ret))
8221 goto next;
8222 }
8223try_again:
8224 done.uptodate = 0;
8225 done.start = start;
8226 init_completion(&done.done);
8227
8228 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8229 pgoff, start, start + sectorsize - 1,
8230 io_bio->mirror_num, btrfs_retry_endio,
8231 &done);
8232 if (status) {
8233 err = status;
8234 goto next;
8235 }
8236
8237 wait_for_completion(&done.done);
8238
8239 if (!done.uptodate) {
8240 /* We might have another mirror, so try again */
8241 goto try_again;
8242 }
8243next:
8244 offset += sectorsize;
8245 start += sectorsize;
8246
8247 ASSERT(nr_sectors);
8248
8249 nr_sectors--;
8250 if (nr_sectors) {
8251 pgoff += sectorsize;
8252 ASSERT(pgoff < PAGE_SIZE);
8253 goto next_block;
8254 }
8255 }
8256
8257 return err;
8258}
8259
8260static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8261 struct btrfs_io_bio *io_bio, blk_status_t err)
8262{
8263 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8264
8265 if (skip_csum) {
8266 if (unlikely(err))
8267 return __btrfs_correct_data_nocsum(inode, io_bio);
8268 else
8269 return BLK_STS_OK;
8270 } else {
8271 return __btrfs_subio_endio_read(inode, io_bio, err);
8272 }
8273}
8274
8275static void btrfs_endio_direct_read(struct bio *bio)
8276{
8277 struct btrfs_dio_private *dip = bio->bi_private;
8278 struct inode *inode = dip->inode;
8279 struct bio *dio_bio;
8280 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8281 blk_status_t err = bio->bi_status;
8282
8283 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) {
8284 err = btrfs_subio_endio_read(inode, io_bio, err);
8285 if (!err)
8286 bio->bi_status = 0;
8287 }
8288
8289 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8290 dip->logical_offset + dip->bytes - 1);
8291 dio_bio = dip->dio_bio;
8292
8293 kfree(dip);
8294
8295 dio_bio->bi_status = bio->bi_status;
8296 dio_end_io(dio_bio);
8297
8298 if (io_bio->end_io)
8299 io_bio->end_io(io_bio, blk_status_to_errno(err));
8300 bio_put(bio);
8301}
8302
8303static void __endio_write_update_ordered(struct inode *inode,
8304 const u64 offset, const u64 bytes,
8305 const bool uptodate)
8306{
8307 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8308 struct btrfs_ordered_extent *ordered = NULL;
8309 struct btrfs_workqueue *wq;
8310 btrfs_work_func_t func;
8311 u64 ordered_offset = offset;
8312 u64 ordered_bytes = bytes;
8313 u64 last_offset;
8314 int ret;
8315
8316 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8317 wq = fs_info->endio_freespace_worker;
8318 func = btrfs_freespace_write_helper;
8319 } else {
8320 wq = fs_info->endio_write_workers;
8321 func = btrfs_endio_write_helper;
8322 }
8323
8324again:
8325 last_offset = ordered_offset;
8326 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8327 &ordered_offset,
8328 ordered_bytes,
8329 uptodate);
8330 if (!ret)
8331 goto out_test;
8332
8333 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8334 btrfs_queue_work(wq, &ordered->work);
8335out_test:
8336 /*
8337 * If btrfs_dec_test_ordered_pending does not find any ordered extent
8338 * in the range, we can exit.
8339 */
8340 if (ordered_offset == last_offset)
8341 return;
8342 /*
8343 * our bio might span multiple ordered extents. If we haven't
8344 * completed the accounting for the whole dio, go back and try again
8345 */
8346 if (ordered_offset < offset + bytes) {
8347 ordered_bytes = offset + bytes - ordered_offset;
8348 ordered = NULL;
8349 goto again;
8350 }
8351}
8352
8353static void btrfs_endio_direct_write(struct bio *bio)
8354{
8355 struct btrfs_dio_private *dip = bio->bi_private;
8356 struct bio *dio_bio = dip->dio_bio;
8357
8358 __endio_write_update_ordered(dip->inode, dip->logical_offset,
8359 dip->bytes, !bio->bi_status);
8360
8361 kfree(dip);
8362
8363 dio_bio->bi_status = bio->bi_status;
8364 dio_end_io(dio_bio);
8365 bio_put(bio);
8366}
8367
8368static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data,
8369 struct bio *bio, int mirror_num,
8370 unsigned long bio_flags, u64 offset)
8371{
8372 struct inode *inode = private_data;
8373 blk_status_t ret;
8374 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8375 BUG_ON(ret); /* -ENOMEM */
8376 return 0;
8377}
8378
8379static void btrfs_end_dio_bio(struct bio *bio)
8380{
8381 struct btrfs_dio_private *dip = bio->bi_private;
8382 blk_status_t err = bio->bi_status;
8383
8384 if (err)
8385 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8386 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8387 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8388 bio->bi_opf,
8389 (unsigned long long)bio->bi_iter.bi_sector,
8390 bio->bi_iter.bi_size, err);
8391
8392 if (dip->subio_endio)
8393 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8394
8395 if (err) {
8396 dip->errors = 1;
8397
8398 /*
8399 * before atomic variable goto zero, we must make sure
8400 * dip->errors is perceived to be set.
8401 */
8402 smp_mb__before_atomic();
8403 }
8404
8405 /* if there are more bios still pending for this dio, just exit */
8406 if (!atomic_dec_and_test(&dip->pending_bios))
8407 goto out;
8408
8409 if (dip->errors) {
8410 bio_io_error(dip->orig_bio);
8411 } else {
8412 dip->dio_bio->bi_status = 0;
8413 bio_endio(dip->orig_bio);
8414 }
8415out:
8416 bio_put(bio);
8417}
8418
8419static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8420 struct btrfs_dio_private *dip,
8421 struct bio *bio,
8422 u64 file_offset)
8423{
8424 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8425 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8426 blk_status_t ret;
8427
8428 /*
8429 * We load all the csum data we need when we submit
8430 * the first bio to reduce the csum tree search and
8431 * contention.
8432 */
8433 if (dip->logical_offset == file_offset) {
8434 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8435 file_offset);
8436 if (ret)
8437 return ret;
8438 }
8439
8440 if (bio == dip->orig_bio)
8441 return 0;
8442
8443 file_offset -= dip->logical_offset;
8444 file_offset >>= inode->i_sb->s_blocksize_bits;
8445 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8446
8447 return 0;
8448}
8449
8450static inline blk_status_t
8451__btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset,
8452 int skip_sum, int async_submit)
8453{
8454 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8455 struct btrfs_dio_private *dip = bio->bi_private;
8456 bool write = bio_op(bio) == REQ_OP_WRITE;
8457 blk_status_t ret;
8458
8459 if (async_submit)
8460 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8461
8462 bio_get(bio);
8463
8464 if (!write) {
8465 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8466 if (ret)
8467 goto err;
8468 }
8469
8470 if (skip_sum)
8471 goto map;
8472
8473 if (write && async_submit) {
8474 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8475 file_offset, inode,
8476 __btrfs_submit_bio_start_direct_io,
8477 __btrfs_submit_bio_done);
8478 goto err;
8479 } else if (write) {
8480 /*
8481 * If we aren't doing async submit, calculate the csum of the
8482 * bio now.
8483 */
8484 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8485 if (ret)
8486 goto err;
8487 } else {
8488 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8489 file_offset);
8490 if (ret)
8491 goto err;
8492 }
8493map:
8494 ret = btrfs_map_bio(fs_info, bio, 0, async_submit);
8495err:
8496 bio_put(bio);
8497 return ret;
8498}
8499
8500static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
8501 int skip_sum)
8502{
8503 struct inode *inode = dip->inode;
8504 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8505 struct bio *bio;
8506 struct bio *orig_bio = dip->orig_bio;
8507 u64 start_sector = orig_bio->bi_iter.bi_sector;
8508 u64 file_offset = dip->logical_offset;
8509 u64 map_length;
8510 int async_submit = 0;
8511 u64 submit_len;
8512 int clone_offset = 0;
8513 int clone_len;
8514 int ret;
8515 blk_status_t status;
8516
8517 map_length = orig_bio->bi_iter.bi_size;
8518 submit_len = map_length;
8519 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8520 &map_length, NULL, 0);
8521 if (ret)
8522 return -EIO;
8523
8524 if (map_length >= submit_len) {
8525 bio = orig_bio;
8526 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8527 goto submit;
8528 }
8529
8530 /* async crcs make it difficult to collect full stripe writes. */
8531 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8532 async_submit = 0;
8533 else
8534 async_submit = 1;
8535
8536 /* bio split */
8537 ASSERT(map_length <= INT_MAX);
8538 atomic_inc(&dip->pending_bios);
8539 do {
8540 clone_len = min_t(int, submit_len, map_length);
8541
8542 /*
8543 * This will never fail as it's passing GPF_NOFS and
8544 * the allocation is backed by btrfs_bioset.
8545 */
8546 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8547 clone_len);
8548 bio->bi_private = dip;
8549 bio->bi_end_io = btrfs_end_dio_bio;
8550 btrfs_io_bio(bio)->logical = file_offset;
8551
8552 ASSERT(submit_len >= clone_len);
8553 submit_len -= clone_len;
8554 if (submit_len == 0)
8555 break;
8556
8557 /*
8558 * Increase the count before we submit the bio so we know
8559 * the end IO handler won't happen before we increase the
8560 * count. Otherwise, the dip might get freed before we're
8561 * done setting it up.
8562 */
8563 atomic_inc(&dip->pending_bios);
8564
8565 status = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8566 async_submit);
8567 if (status) {
8568 bio_put(bio);
8569 atomic_dec(&dip->pending_bios);
8570 goto out_err;
8571 }
8572
8573 clone_offset += clone_len;
8574 start_sector += clone_len >> 9;
8575 file_offset += clone_len;
8576
8577 map_length = submit_len;
8578 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8579 start_sector << 9, &map_length, NULL, 0);
8580 if (ret)
8581 goto out_err;
8582 } while (submit_len > 0);
8583
8584submit:
8585 status = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8586 async_submit);
8587 if (!status)
8588 return 0;
8589
8590 bio_put(bio);
8591out_err:
8592 dip->errors = 1;
8593 /*
8594 * before atomic variable goto zero, we must
8595 * make sure dip->errors is perceived to be set.
8596 */
8597 smp_mb__before_atomic();
8598 if (atomic_dec_and_test(&dip->pending_bios))
8599 bio_io_error(dip->orig_bio);
8600
8601 /* bio_end_io() will handle error, so we needn't return it */
8602 return 0;
8603}
8604
8605static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8606 loff_t file_offset)
8607{
8608 struct btrfs_dio_private *dip = NULL;
8609 struct bio *bio = NULL;
8610 struct btrfs_io_bio *io_bio;
8611 int skip_sum;
8612 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8613 int ret = 0;
8614
8615 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8616
8617 bio = btrfs_bio_clone(dio_bio);
8618
8619 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8620 if (!dip) {
8621 ret = -ENOMEM;
8622 goto free_ordered;
8623 }
8624
8625 dip->private = dio_bio->bi_private;
8626 dip->inode = inode;
8627 dip->logical_offset = file_offset;
8628 dip->bytes = dio_bio->bi_iter.bi_size;
8629 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8630 bio->bi_private = dip;
8631 dip->orig_bio = bio;
8632 dip->dio_bio = dio_bio;
8633 atomic_set(&dip->pending_bios, 0);
8634 io_bio = btrfs_io_bio(bio);
8635 io_bio->logical = file_offset;
8636
8637 if (write) {
8638 bio->bi_end_io = btrfs_endio_direct_write;
8639 } else {
8640 bio->bi_end_io = btrfs_endio_direct_read;
8641 dip->subio_endio = btrfs_subio_endio_read;
8642 }
8643
8644 /*
8645 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8646 * even if we fail to submit a bio, because in such case we do the
8647 * corresponding error handling below and it must not be done a second
8648 * time by btrfs_direct_IO().
8649 */
8650 if (write) {
8651 struct btrfs_dio_data *dio_data = current->journal_info;
8652
8653 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8654 dip->bytes;
8655 dio_data->unsubmitted_oe_range_start =
8656 dio_data->unsubmitted_oe_range_end;
8657 }
8658
8659 ret = btrfs_submit_direct_hook(dip, skip_sum);
8660 if (!ret)
8661 return;
8662
8663 if (io_bio->end_io)
8664 io_bio->end_io(io_bio, ret);
8665
8666free_ordered:
8667 /*
8668 * If we arrived here it means either we failed to submit the dip
8669 * or we either failed to clone the dio_bio or failed to allocate the
8670 * dip. If we cloned the dio_bio and allocated the dip, we can just
8671 * call bio_endio against our io_bio so that we get proper resource
8672 * cleanup if we fail to submit the dip, otherwise, we must do the
8673 * same as btrfs_endio_direct_[write|read] because we can't call these
8674 * callbacks - they require an allocated dip and a clone of dio_bio.
8675 */
8676 if (bio && dip) {
8677 bio_io_error(bio);
8678 /*
8679 * The end io callbacks free our dip, do the final put on bio
8680 * and all the cleanup and final put for dio_bio (through
8681 * dio_end_io()).
8682 */
8683 dip = NULL;
8684 bio = NULL;
8685 } else {
8686 if (write)
8687 __endio_write_update_ordered(inode,
8688 file_offset,
8689 dio_bio->bi_iter.bi_size,
8690 false);
8691 else
8692 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8693 file_offset + dio_bio->bi_iter.bi_size - 1);
8694
8695 dio_bio->bi_status = BLK_STS_IOERR;
8696 /*
8697 * Releases and cleans up our dio_bio, no need to bio_put()
8698 * nor bio_endio()/bio_io_error() against dio_bio.
8699 */
8700 dio_end_io(dio_bio);
8701 }
8702 if (bio)
8703 bio_put(bio);
8704 kfree(dip);
8705}
8706
8707static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8708 struct kiocb *iocb,
8709 const struct iov_iter *iter, loff_t offset)
8710{
8711 int seg;
8712 int i;
8713 unsigned int blocksize_mask = fs_info->sectorsize - 1;
8714 ssize_t retval = -EINVAL;
8715
8716 if (offset & blocksize_mask)
8717 goto out;
8718
8719 if (iov_iter_alignment(iter) & blocksize_mask)
8720 goto out;
8721
8722 /* If this is a write we don't need to check anymore */
8723 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8724 return 0;
8725 /*
8726 * Check to make sure we don't have duplicate iov_base's in this
8727 * iovec, if so return EINVAL, otherwise we'll get csum errors
8728 * when reading back.
8729 */
8730 for (seg = 0; seg < iter->nr_segs; seg++) {
8731 for (i = seg + 1; i < iter->nr_segs; i++) {
8732 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8733 goto out;
8734 }
8735 }
8736 retval = 0;
8737out:
8738 return retval;
8739}
8740
8741static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8742{
8743 struct file *file = iocb->ki_filp;
8744 struct inode *inode = file->f_mapping->host;
8745 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8746 struct btrfs_dio_data dio_data = { 0 };
8747 struct extent_changeset *data_reserved = NULL;
8748 loff_t offset = iocb->ki_pos;
8749 size_t count = 0;
8750 int flags = 0;
8751 bool wakeup = true;
8752 bool relock = false;
8753 ssize_t ret;
8754
8755 if (check_direct_IO(fs_info, iocb, iter, offset))
8756 return 0;
8757
8758 inode_dio_begin(inode);
8759 smp_mb__after_atomic();
8760
8761 /*
8762 * The generic stuff only does filemap_write_and_wait_range, which
8763 * isn't enough if we've written compressed pages to this area, so
8764 * we need to flush the dirty pages again to make absolutely sure
8765 * that any outstanding dirty pages are on disk.
8766 */
8767 count = iov_iter_count(iter);
8768 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8769 &BTRFS_I(inode)->runtime_flags))
8770 filemap_fdatawrite_range(inode->i_mapping, offset,
8771 offset + count - 1);
8772
8773 if (iov_iter_rw(iter) == WRITE) {
8774 /*
8775 * If the write DIO is beyond the EOF, we need update
8776 * the isize, but it is protected by i_mutex. So we can
8777 * not unlock the i_mutex at this case.
8778 */
8779 if (offset + count <= inode->i_size) {
8780 dio_data.overwrite = 1;
8781 inode_unlock(inode);
8782 relock = true;
8783 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8784 ret = -EAGAIN;
8785 goto out;
8786 }
8787 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8788 offset, count);
8789 if (ret)
8790 goto out;
8791 dio_data.outstanding_extents = count_max_extents(count);
8792
8793 /*
8794 * We need to know how many extents we reserved so that we can
8795 * do the accounting properly if we go over the number we
8796 * originally calculated. Abuse current->journal_info for this.
8797 */
8798 dio_data.reserve = round_up(count,
8799 fs_info->sectorsize);
8800 dio_data.unsubmitted_oe_range_start = (u64)offset;
8801 dio_data.unsubmitted_oe_range_end = (u64)offset;
8802 current->journal_info = &dio_data;
8803 down_read(&BTRFS_I(inode)->dio_sem);
8804 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8805 &BTRFS_I(inode)->runtime_flags)) {
8806 inode_dio_end(inode);
8807 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8808 wakeup = false;
8809 }
8810
8811 ret = __blockdev_direct_IO(iocb, inode,
8812 fs_info->fs_devices->latest_bdev,
8813 iter, btrfs_get_blocks_direct, NULL,
8814 btrfs_submit_direct, flags);
8815 if (iov_iter_rw(iter) == WRITE) {
8816 up_read(&BTRFS_I(inode)->dio_sem);
8817 current->journal_info = NULL;
8818 if (ret < 0 && ret != -EIOCBQUEUED) {
8819 if (dio_data.reserve)
8820 btrfs_delalloc_release_space(inode, data_reserved,
8821 offset, dio_data.reserve);
8822 /*
8823 * On error we might have left some ordered extents
8824 * without submitting corresponding bios for them, so
8825 * cleanup them up to avoid other tasks getting them
8826 * and waiting for them to complete forever.
8827 */
8828 if (dio_data.unsubmitted_oe_range_start <
8829 dio_data.unsubmitted_oe_range_end)
8830 __endio_write_update_ordered(inode,
8831 dio_data.unsubmitted_oe_range_start,
8832 dio_data.unsubmitted_oe_range_end -
8833 dio_data.unsubmitted_oe_range_start,
8834 false);
8835 } else if (ret >= 0 && (size_t)ret < count)
8836 btrfs_delalloc_release_space(inode, data_reserved,
8837 offset, count - (size_t)ret);
8838 }
8839out:
8840 if (wakeup)
8841 inode_dio_end(inode);
8842 if (relock)
8843 inode_lock(inode);
8844
8845 extent_changeset_free(data_reserved);
8846 return ret;
8847}
8848
8849#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8850
8851static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8852 __u64 start, __u64 len)
8853{
8854 int ret;
8855
8856 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8857 if (ret)
8858 return ret;
8859
8860 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8861}
8862
8863int btrfs_readpage(struct file *file, struct page *page)
8864{
8865 struct extent_io_tree *tree;
8866 tree = &BTRFS_I(page->mapping->host)->io_tree;
8867 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8868}
8869
8870static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8871{
8872 struct extent_io_tree *tree;
8873 struct inode *inode = page->mapping->host;
8874 int ret;
8875
8876 if (current->flags & PF_MEMALLOC) {
8877 redirty_page_for_writepage(wbc, page);
8878 unlock_page(page);
8879 return 0;
8880 }
8881
8882 /*
8883 * If we are under memory pressure we will call this directly from the
8884 * VM, we need to make sure we have the inode referenced for the ordered
8885 * extent. If not just return like we didn't do anything.
8886 */
8887 if (!igrab(inode)) {
8888 redirty_page_for_writepage(wbc, page);
8889 return AOP_WRITEPAGE_ACTIVATE;
8890 }
8891 tree = &BTRFS_I(page->mapping->host)->io_tree;
8892 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8893 btrfs_add_delayed_iput(inode);
8894 return ret;
8895}
8896
8897static int btrfs_writepages(struct address_space *mapping,
8898 struct writeback_control *wbc)
8899{
8900 struct extent_io_tree *tree;
8901
8902 tree = &BTRFS_I(mapping->host)->io_tree;
8903 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8904}
8905
8906static int
8907btrfs_readpages(struct file *file, struct address_space *mapping,
8908 struct list_head *pages, unsigned nr_pages)
8909{
8910 struct extent_io_tree *tree;
8911 tree = &BTRFS_I(mapping->host)->io_tree;
8912 return extent_readpages(tree, mapping, pages, nr_pages,
8913 btrfs_get_extent);
8914}
8915static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8916{
8917 struct extent_io_tree *tree;
8918 struct extent_map_tree *map;
8919 int ret;
8920
8921 tree = &BTRFS_I(page->mapping->host)->io_tree;
8922 map = &BTRFS_I(page->mapping->host)->extent_tree;
8923 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8924 if (ret == 1) {
8925 ClearPagePrivate(page);
8926 set_page_private(page, 0);
8927 put_page(page);
8928 }
8929 return ret;
8930}
8931
8932static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8933{
8934 if (PageWriteback(page) || PageDirty(page))
8935 return 0;
8936 return __btrfs_releasepage(page, gfp_flags);
8937}
8938
8939static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8940 unsigned int length)
8941{
8942 struct inode *inode = page->mapping->host;
8943 struct extent_io_tree *tree;
8944 struct btrfs_ordered_extent *ordered;
8945 struct extent_state *cached_state = NULL;
8946 u64 page_start = page_offset(page);
8947 u64 page_end = page_start + PAGE_SIZE - 1;
8948 u64 start;
8949 u64 end;
8950 int inode_evicting = inode->i_state & I_FREEING;
8951
8952 /*
8953 * we have the page locked, so new writeback can't start,
8954 * and the dirty bit won't be cleared while we are here.
8955 *
8956 * Wait for IO on this page so that we can safely clear
8957 * the PagePrivate2 bit and do ordered accounting
8958 */
8959 wait_on_page_writeback(page);
8960
8961 tree = &BTRFS_I(inode)->io_tree;
8962 if (offset) {
8963 btrfs_releasepage(page, GFP_NOFS);
8964 return;
8965 }
8966
8967 if (!inode_evicting)
8968 lock_extent_bits(tree, page_start, page_end, &cached_state);
8969again:
8970 start = page_start;
8971 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8972 page_end - start + 1);
8973 if (ordered) {
8974 end = min(page_end, ordered->file_offset + ordered->len - 1);
8975 /*
8976 * IO on this page will never be started, so we need
8977 * to account for any ordered extents now
8978 */
8979 if (!inode_evicting)
8980 clear_extent_bit(tree, start, end,
8981 EXTENT_DIRTY | EXTENT_DELALLOC |
8982 EXTENT_DELALLOC_NEW |
8983 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8984 EXTENT_DEFRAG, 1, 0, &cached_state,
8985 GFP_NOFS);
8986 /*
8987 * whoever cleared the private bit is responsible
8988 * for the finish_ordered_io
8989 */
8990 if (TestClearPagePrivate2(page)) {
8991 struct btrfs_ordered_inode_tree *tree;
8992 u64 new_len;
8993
8994 tree = &BTRFS_I(inode)->ordered_tree;
8995
8996 spin_lock_irq(&tree->lock);
8997 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8998 new_len = start - ordered->file_offset;
8999 if (new_len < ordered->truncated_len)
9000 ordered->truncated_len = new_len;
9001 spin_unlock_irq(&tree->lock);
9002
9003 if (btrfs_dec_test_ordered_pending(inode, &ordered,
9004 start,
9005 end - start + 1, 1))
9006 btrfs_finish_ordered_io(ordered);
9007 }
9008 btrfs_put_ordered_extent(ordered);
9009 if (!inode_evicting) {
9010 cached_state = NULL;
9011 lock_extent_bits(tree, start, end,
9012 &cached_state);
9013 }
9014
9015 start = end + 1;
9016 if (start < page_end)
9017 goto again;
9018 }
9019
9020 /*
9021 * Qgroup reserved space handler
9022 * Page here will be either
9023 * 1) Already written to disk
9024 * In this case, its reserved space is released from data rsv map
9025 * and will be freed by delayed_ref handler finally.
9026 * So even we call qgroup_free_data(), it won't decrease reserved
9027 * space.
9028 * 2) Not written to disk
9029 * This means the reserved space should be freed here. However,
9030 * if a truncate invalidates the page (by clearing PageDirty)
9031 * and the page is accounted for while allocating extent
9032 * in btrfs_check_data_free_space() we let delayed_ref to
9033 * free the entire extent.
9034 */
9035 if (PageDirty(page))
9036 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
9037 if (!inode_evicting) {
9038 clear_extent_bit(tree, page_start, page_end,
9039 EXTENT_LOCKED | EXTENT_DIRTY |
9040 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
9041 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
9042 &cached_state, GFP_NOFS);
9043
9044 __btrfs_releasepage(page, GFP_NOFS);
9045 }
9046
9047 ClearPageChecked(page);
9048 if (PagePrivate(page)) {
9049 ClearPagePrivate(page);
9050 set_page_private(page, 0);
9051 put_page(page);
9052 }
9053}
9054
9055/*
9056 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9057 * called from a page fault handler when a page is first dirtied. Hence we must
9058 * be careful to check for EOF conditions here. We set the page up correctly
9059 * for a written page which means we get ENOSPC checking when writing into
9060 * holes and correct delalloc and unwritten extent mapping on filesystems that
9061 * support these features.
9062 *
9063 * We are not allowed to take the i_mutex here so we have to play games to
9064 * protect against truncate races as the page could now be beyond EOF. Because
9065 * vmtruncate() writes the inode size before removing pages, once we have the
9066 * page lock we can determine safely if the page is beyond EOF. If it is not
9067 * beyond EOF, then the page is guaranteed safe against truncation until we
9068 * unlock the page.
9069 */
9070int btrfs_page_mkwrite(struct vm_fault *vmf)
9071{
9072 struct page *page = vmf->page;
9073 struct inode *inode = file_inode(vmf->vma->vm_file);
9074 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9075 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9076 struct btrfs_ordered_extent *ordered;
9077 struct extent_state *cached_state = NULL;
9078 struct extent_changeset *data_reserved = NULL;
9079 char *kaddr;
9080 unsigned long zero_start;
9081 loff_t size;
9082 int ret;
9083 int reserved = 0;
9084 u64 reserved_space;
9085 u64 page_start;
9086 u64 page_end;
9087 u64 end;
9088
9089 reserved_space = PAGE_SIZE;
9090
9091 sb_start_pagefault(inode->i_sb);
9092 page_start = page_offset(page);
9093 page_end = page_start + PAGE_SIZE - 1;
9094 end = page_end;
9095
9096 /*
9097 * Reserving delalloc space after obtaining the page lock can lead to
9098 * deadlock. For example, if a dirty page is locked by this function
9099 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9100 * dirty page write out, then the btrfs_writepage() function could
9101 * end up waiting indefinitely to get a lock on the page currently
9102 * being processed by btrfs_page_mkwrite() function.
9103 */
9104 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
9105 reserved_space);
9106 if (!ret) {
9107 ret = file_update_time(vmf->vma->vm_file);
9108 reserved = 1;
9109 }
9110 if (ret) {
9111 if (ret == -ENOMEM)
9112 ret = VM_FAULT_OOM;
9113 else /* -ENOSPC, -EIO, etc */
9114 ret = VM_FAULT_SIGBUS;
9115 if (reserved)
9116 goto out;
9117 goto out_noreserve;
9118 }
9119
9120 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9121again:
9122 lock_page(page);
9123 size = i_size_read(inode);
9124
9125 if ((page->mapping != inode->i_mapping) ||
9126 (page_start >= size)) {
9127 /* page got truncated out from underneath us */
9128 goto out_unlock;
9129 }
9130 wait_on_page_writeback(page);
9131
9132 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9133 set_page_extent_mapped(page);
9134
9135 /*
9136 * we can't set the delalloc bits if there are pending ordered
9137 * extents. Drop our locks and wait for them to finish
9138 */
9139 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9140 PAGE_SIZE);
9141 if (ordered) {
9142 unlock_extent_cached(io_tree, page_start, page_end,
9143 &cached_state, GFP_NOFS);
9144 unlock_page(page);
9145 btrfs_start_ordered_extent(inode, ordered, 1);
9146 btrfs_put_ordered_extent(ordered);
9147 goto again;
9148 }
9149
9150 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9151 reserved_space = round_up(size - page_start,
9152 fs_info->sectorsize);
9153 if (reserved_space < PAGE_SIZE) {
9154 end = page_start + reserved_space - 1;
9155 spin_lock(&BTRFS_I(inode)->lock);
9156 BTRFS_I(inode)->outstanding_extents++;
9157 spin_unlock(&BTRFS_I(inode)->lock);
9158 btrfs_delalloc_release_space(inode, data_reserved,
9159 page_start, PAGE_SIZE - reserved_space);
9160 }
9161 }
9162
9163 /*
9164 * page_mkwrite gets called when the page is firstly dirtied after it's
9165 * faulted in, but write(2) could also dirty a page and set delalloc
9166 * bits, thus in this case for space account reason, we still need to
9167 * clear any delalloc bits within this page range since we have to
9168 * reserve data&meta space before lock_page() (see above comments).
9169 */
9170 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9171 EXTENT_DIRTY | EXTENT_DELALLOC |
9172 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9173 0, 0, &cached_state, GFP_NOFS);
9174
9175 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0,
9176 &cached_state, 0);
9177 if (ret) {
9178 unlock_extent_cached(io_tree, page_start, page_end,
9179 &cached_state, GFP_NOFS);
9180 ret = VM_FAULT_SIGBUS;
9181 goto out_unlock;
9182 }
9183 ret = 0;
9184
9185 /* page is wholly or partially inside EOF */
9186 if (page_start + PAGE_SIZE > size)
9187 zero_start = size & ~PAGE_MASK;
9188 else
9189 zero_start = PAGE_SIZE;
9190
9191 if (zero_start != PAGE_SIZE) {
9192 kaddr = kmap(page);
9193 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9194 flush_dcache_page(page);
9195 kunmap(page);
9196 }
9197 ClearPageChecked(page);
9198 set_page_dirty(page);
9199 SetPageUptodate(page);
9200
9201 BTRFS_I(inode)->last_trans = fs_info->generation;
9202 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9203 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9204
9205 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9206
9207out_unlock:
9208 if (!ret) {
9209 sb_end_pagefault(inode->i_sb);
9210 extent_changeset_free(data_reserved);
9211 return VM_FAULT_LOCKED;
9212 }
9213 unlock_page(page);
9214out:
9215 btrfs_delalloc_release_space(inode, data_reserved, page_start,
9216 reserved_space);
9217out_noreserve:
9218 sb_end_pagefault(inode->i_sb);
9219 extent_changeset_free(data_reserved);
9220 return ret;
9221}
9222
9223static int btrfs_truncate(struct inode *inode)
9224{
9225 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9226 struct btrfs_root *root = BTRFS_I(inode)->root;
9227 struct btrfs_block_rsv *rsv;
9228 int ret = 0;
9229 int err = 0;
9230 struct btrfs_trans_handle *trans;
9231 u64 mask = fs_info->sectorsize - 1;
9232 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9233
9234 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9235 (u64)-1);
9236 if (ret)
9237 return ret;
9238
9239 /*
9240 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
9241 * 3 things going on here
9242 *
9243 * 1) We need to reserve space for our orphan item and the space to
9244 * delete our orphan item. Lord knows we don't want to have a dangling
9245 * orphan item because we didn't reserve space to remove it.
9246 *
9247 * 2) We need to reserve space to update our inode.
9248 *
9249 * 3) We need to have something to cache all the space that is going to
9250 * be free'd up by the truncate operation, but also have some slack
9251 * space reserved in case it uses space during the truncate (thank you
9252 * very much snapshotting).
9253 *
9254 * And we need these to all be separate. The fact is we can use a lot of
9255 * space doing the truncate, and we have no earthly idea how much space
9256 * we will use, so we need the truncate reservation to be separate so it
9257 * doesn't end up using space reserved for updating the inode or
9258 * removing the orphan item. We also need to be able to stop the
9259 * transaction and start a new one, which means we need to be able to
9260 * update the inode several times, and we have no idea of knowing how
9261 * many times that will be, so we can't just reserve 1 item for the
9262 * entirety of the operation, so that has to be done separately as well.
9263 * Then there is the orphan item, which does indeed need to be held on
9264 * to for the whole operation, and we need nobody to touch this reserved
9265 * space except the orphan code.
9266 *
9267 * So that leaves us with
9268 *
9269 * 1) root->orphan_block_rsv - for the orphan deletion.
9270 * 2) rsv - for the truncate reservation, which we will steal from the
9271 * transaction reservation.
9272 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9273 * updating the inode.
9274 */
9275 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9276 if (!rsv)
9277 return -ENOMEM;
9278 rsv->size = min_size;
9279 rsv->failfast = 1;
9280
9281 /*
9282 * 1 for the truncate slack space
9283 * 1 for updating the inode.
9284 */
9285 trans = btrfs_start_transaction(root, 2);
9286 if (IS_ERR(trans)) {
9287 err = PTR_ERR(trans);
9288 goto out;
9289 }
9290
9291 /* Migrate the slack space for the truncate to our reserve */
9292 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9293 min_size, 0);
9294 BUG_ON(ret);
9295
9296 /*
9297 * So if we truncate and then write and fsync we normally would just
9298 * write the extents that changed, which is a problem if we need to
9299 * first truncate that entire inode. So set this flag so we write out
9300 * all of the extents in the inode to the sync log so we're completely
9301 * safe.
9302 */
9303 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9304 trans->block_rsv = rsv;
9305
9306 while (1) {
9307 ret = btrfs_truncate_inode_items(trans, root, inode,
9308 inode->i_size,
9309 BTRFS_EXTENT_DATA_KEY);
9310 if (ret != -ENOSPC && ret != -EAGAIN) {
9311 err = ret;
9312 break;
9313 }
9314
9315 trans->block_rsv = &fs_info->trans_block_rsv;
9316 ret = btrfs_update_inode(trans, root, inode);
9317 if (ret) {
9318 err = ret;
9319 break;
9320 }
9321
9322 btrfs_end_transaction(trans);
9323 btrfs_btree_balance_dirty(fs_info);
9324
9325 trans = btrfs_start_transaction(root, 2);
9326 if (IS_ERR(trans)) {
9327 ret = err = PTR_ERR(trans);
9328 trans = NULL;
9329 break;
9330 }
9331
9332 btrfs_block_rsv_release(fs_info, rsv, -1);
9333 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9334 rsv, min_size, 0);
9335 BUG_ON(ret); /* shouldn't happen */
9336 trans->block_rsv = rsv;
9337 }
9338
9339 if (ret == 0 && inode->i_nlink > 0) {
9340 trans->block_rsv = root->orphan_block_rsv;
9341 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
9342 if (ret)
9343 err = ret;
9344 }
9345
9346 if (trans) {
9347 trans->block_rsv = &fs_info->trans_block_rsv;
9348 ret = btrfs_update_inode(trans, root, inode);
9349 if (ret && !err)
9350 err = ret;
9351
9352 ret = btrfs_end_transaction(trans);
9353 btrfs_btree_balance_dirty(fs_info);
9354 }
9355out:
9356 btrfs_free_block_rsv(fs_info, rsv);
9357
9358 if (ret && !err)
9359 err = ret;
9360
9361 return err;
9362}
9363
9364/*
9365 * create a new subvolume directory/inode (helper for the ioctl).
9366 */
9367int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9368 struct btrfs_root *new_root,
9369 struct btrfs_root *parent_root,
9370 u64 new_dirid)
9371{
9372 struct inode *inode;
9373 int err;
9374 u64 index = 0;
9375
9376 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9377 new_dirid, new_dirid,
9378 S_IFDIR | (~current_umask() & S_IRWXUGO),
9379 &index);
9380 if (IS_ERR(inode))
9381 return PTR_ERR(inode);
9382 inode->i_op = &btrfs_dir_inode_operations;
9383 inode->i_fop = &btrfs_dir_file_operations;
9384
9385 set_nlink(inode, 1);
9386 btrfs_i_size_write(BTRFS_I(inode), 0);
9387 unlock_new_inode(inode);
9388
9389 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9390 if (err)
9391 btrfs_err(new_root->fs_info,
9392 "error inheriting subvolume %llu properties: %d",
9393 new_root->root_key.objectid, err);
9394
9395 err = btrfs_update_inode(trans, new_root, inode);
9396
9397 iput(inode);
9398 return err;
9399}
9400
9401struct inode *btrfs_alloc_inode(struct super_block *sb)
9402{
9403 struct btrfs_inode *ei;
9404 struct inode *inode;
9405
9406 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9407 if (!ei)
9408 return NULL;
9409
9410 ei->root = NULL;
9411 ei->generation = 0;
9412 ei->last_trans = 0;
9413 ei->last_sub_trans = 0;
9414 ei->logged_trans = 0;
9415 ei->delalloc_bytes = 0;
9416 ei->new_delalloc_bytes = 0;
9417 ei->defrag_bytes = 0;
9418 ei->disk_i_size = 0;
9419 ei->flags = 0;
9420 ei->csum_bytes = 0;
9421 ei->index_cnt = (u64)-1;
9422 ei->dir_index = 0;
9423 ei->last_unlink_trans = 0;
9424 ei->last_log_commit = 0;
9425 ei->delayed_iput_count = 0;
9426
9427 spin_lock_init(&ei->lock);
9428 ei->outstanding_extents = 0;
9429 ei->reserved_extents = 0;
9430
9431 ei->runtime_flags = 0;
9432 ei->force_compress = BTRFS_COMPRESS_NONE;
9433
9434 ei->delayed_node = NULL;
9435
9436 ei->i_otime.tv_sec = 0;
9437 ei->i_otime.tv_nsec = 0;
9438
9439 inode = &ei->vfs_inode;
9440 extent_map_tree_init(&ei->extent_tree);
9441 extent_io_tree_init(&ei->io_tree, inode);
9442 extent_io_tree_init(&ei->io_failure_tree, inode);
9443 ei->io_tree.track_uptodate = 1;
9444 ei->io_failure_tree.track_uptodate = 1;
9445 atomic_set(&ei->sync_writers, 0);
9446 mutex_init(&ei->log_mutex);
9447 mutex_init(&ei->delalloc_mutex);
9448 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9449 INIT_LIST_HEAD(&ei->delalloc_inodes);
9450 INIT_LIST_HEAD(&ei->delayed_iput);
9451 RB_CLEAR_NODE(&ei->rb_node);
9452 init_rwsem(&ei->dio_sem);
9453
9454 return inode;
9455}
9456
9457#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9458void btrfs_test_destroy_inode(struct inode *inode)
9459{
9460 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9461 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9462}
9463#endif
9464
9465static void btrfs_i_callback(struct rcu_head *head)
9466{
9467 struct inode *inode = container_of(head, struct inode, i_rcu);
9468 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9469}
9470
9471void btrfs_destroy_inode(struct inode *inode)
9472{
9473 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9474 struct btrfs_ordered_extent *ordered;
9475 struct btrfs_root *root = BTRFS_I(inode)->root;
9476
9477 WARN_ON(!hlist_empty(&inode->i_dentry));
9478 WARN_ON(inode->i_data.nrpages);
9479 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9480 WARN_ON(BTRFS_I(inode)->reserved_extents);
9481 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9482 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9483 WARN_ON(BTRFS_I(inode)->csum_bytes);
9484 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9485
9486 /*
9487 * This can happen where we create an inode, but somebody else also
9488 * created the same inode and we need to destroy the one we already
9489 * created.
9490 */
9491 if (!root)
9492 goto free;
9493
9494 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9495 &BTRFS_I(inode)->runtime_flags)) {
9496 btrfs_info(fs_info, "inode %llu still on the orphan list",
9497 btrfs_ino(BTRFS_I(inode)));
9498 atomic_dec(&root->orphan_inodes);
9499 }
9500
9501 while (1) {
9502 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9503 if (!ordered)
9504 break;
9505 else {
9506 btrfs_err(fs_info,
9507 "found ordered extent %llu %llu on inode cleanup",
9508 ordered->file_offset, ordered->len);
9509 btrfs_remove_ordered_extent(inode, ordered);
9510 btrfs_put_ordered_extent(ordered);
9511 btrfs_put_ordered_extent(ordered);
9512 }
9513 }
9514 btrfs_qgroup_check_reserved_leak(inode);
9515 inode_tree_del(inode);
9516 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9517free:
9518 call_rcu(&inode->i_rcu, btrfs_i_callback);
9519}
9520
9521int btrfs_drop_inode(struct inode *inode)
9522{
9523 struct btrfs_root *root = BTRFS_I(inode)->root;
9524
9525 if (root == NULL)
9526 return 1;
9527
9528 /* the snap/subvol tree is on deleting */
9529 if (btrfs_root_refs(&root->root_item) == 0)
9530 return 1;
9531 else
9532 return generic_drop_inode(inode);
9533}
9534
9535static void init_once(void *foo)
9536{
9537 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9538
9539 inode_init_once(&ei->vfs_inode);
9540}
9541
9542void btrfs_destroy_cachep(void)
9543{
9544 /*
9545 * Make sure all delayed rcu free inodes are flushed before we
9546 * destroy cache.
9547 */
9548 rcu_barrier();
9549 kmem_cache_destroy(btrfs_inode_cachep);
9550 kmem_cache_destroy(btrfs_trans_handle_cachep);
9551 kmem_cache_destroy(btrfs_path_cachep);
9552 kmem_cache_destroy(btrfs_free_space_cachep);
9553}
9554
9555int btrfs_init_cachep(void)
9556{
9557 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9558 sizeof(struct btrfs_inode), 0,
9559 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9560 init_once);
9561 if (!btrfs_inode_cachep)
9562 goto fail;
9563
9564 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9565 sizeof(struct btrfs_trans_handle), 0,
9566 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9567 if (!btrfs_trans_handle_cachep)
9568 goto fail;
9569
9570 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9571 sizeof(struct btrfs_path), 0,
9572 SLAB_MEM_SPREAD, NULL);
9573 if (!btrfs_path_cachep)
9574 goto fail;
9575
9576 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9577 sizeof(struct btrfs_free_space), 0,
9578 SLAB_MEM_SPREAD, NULL);
9579 if (!btrfs_free_space_cachep)
9580 goto fail;
9581
9582 return 0;
9583fail:
9584 btrfs_destroy_cachep();
9585 return -ENOMEM;
9586}
9587
9588static int btrfs_getattr(const struct path *path, struct kstat *stat,
9589 u32 request_mask, unsigned int flags)
9590{
9591 u64 delalloc_bytes;
9592 struct inode *inode = d_inode(path->dentry);
9593 u32 blocksize = inode->i_sb->s_blocksize;
9594 u32 bi_flags = BTRFS_I(inode)->flags;
9595
9596 stat->result_mask |= STATX_BTIME;
9597 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9598 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9599 if (bi_flags & BTRFS_INODE_APPEND)
9600 stat->attributes |= STATX_ATTR_APPEND;
9601 if (bi_flags & BTRFS_INODE_COMPRESS)
9602 stat->attributes |= STATX_ATTR_COMPRESSED;
9603 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9604 stat->attributes |= STATX_ATTR_IMMUTABLE;
9605 if (bi_flags & BTRFS_INODE_NODUMP)
9606 stat->attributes |= STATX_ATTR_NODUMP;
9607
9608 stat->attributes_mask |= (STATX_ATTR_APPEND |
9609 STATX_ATTR_COMPRESSED |
9610 STATX_ATTR_IMMUTABLE |
9611 STATX_ATTR_NODUMP);
9612
9613 generic_fillattr(inode, stat);
9614 stat->dev = BTRFS_I(inode)->root->anon_dev;
9615
9616 spin_lock(&BTRFS_I(inode)->lock);
9617 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9618 spin_unlock(&BTRFS_I(inode)->lock);
9619 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9620 ALIGN(delalloc_bytes, blocksize)) >> 9;
9621 return 0;
9622}
9623
9624static int btrfs_rename_exchange(struct inode *old_dir,
9625 struct dentry *old_dentry,
9626 struct inode *new_dir,
9627 struct dentry *new_dentry)
9628{
9629 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9630 struct btrfs_trans_handle *trans;
9631 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9632 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9633 struct inode *new_inode = new_dentry->d_inode;
9634 struct inode *old_inode = old_dentry->d_inode;
9635 struct timespec ctime = current_time(old_inode);
9636 struct dentry *parent;
9637 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9638 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9639 u64 old_idx = 0;
9640 u64 new_idx = 0;
9641 u64 root_objectid;
9642 int ret;
9643 bool root_log_pinned = false;
9644 bool dest_log_pinned = false;
9645
9646 /* we only allow rename subvolume link between subvolumes */
9647 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9648 return -EXDEV;
9649
9650 /* close the race window with snapshot create/destroy ioctl */
9651 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9652 down_read(&fs_info->subvol_sem);
9653 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9654 down_read(&fs_info->subvol_sem);
9655
9656 /*
9657 * We want to reserve the absolute worst case amount of items. So if
9658 * both inodes are subvols and we need to unlink them then that would
9659 * require 4 item modifications, but if they are both normal inodes it
9660 * would require 5 item modifications, so we'll assume their normal
9661 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9662 * should cover the worst case number of items we'll modify.
9663 */
9664 trans = btrfs_start_transaction(root, 12);
9665 if (IS_ERR(trans)) {
9666 ret = PTR_ERR(trans);
9667 goto out_notrans;
9668 }
9669
9670 /*
9671 * We need to find a free sequence number both in the source and
9672 * in the destination directory for the exchange.
9673 */
9674 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9675 if (ret)
9676 goto out_fail;
9677 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9678 if (ret)
9679 goto out_fail;
9680
9681 BTRFS_I(old_inode)->dir_index = 0ULL;
9682 BTRFS_I(new_inode)->dir_index = 0ULL;
9683
9684 /* Reference for the source. */
9685 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9686 /* force full log commit if subvolume involved. */
9687 btrfs_set_log_full_commit(fs_info, trans);
9688 } else {
9689 btrfs_pin_log_trans(root);
9690 root_log_pinned = true;
9691 ret = btrfs_insert_inode_ref(trans, dest,
9692 new_dentry->d_name.name,
9693 new_dentry->d_name.len,
9694 old_ino,
9695 btrfs_ino(BTRFS_I(new_dir)),
9696 old_idx);
9697 if (ret)
9698 goto out_fail;
9699 }
9700
9701 /* And now for the dest. */
9702 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9703 /* force full log commit if subvolume involved. */
9704 btrfs_set_log_full_commit(fs_info, trans);
9705 } else {
9706 btrfs_pin_log_trans(dest);
9707 dest_log_pinned = true;
9708 ret = btrfs_insert_inode_ref(trans, root,
9709 old_dentry->d_name.name,
9710 old_dentry->d_name.len,
9711 new_ino,
9712 btrfs_ino(BTRFS_I(old_dir)),
9713 new_idx);
9714 if (ret)
9715 goto out_fail;
9716 }
9717
9718 /* Update inode version and ctime/mtime. */
9719 inode_inc_iversion(old_dir);
9720 inode_inc_iversion(new_dir);
9721 inode_inc_iversion(old_inode);
9722 inode_inc_iversion(new_inode);
9723 old_dir->i_ctime = old_dir->i_mtime = ctime;
9724 new_dir->i_ctime = new_dir->i_mtime = ctime;
9725 old_inode->i_ctime = ctime;
9726 new_inode->i_ctime = ctime;
9727
9728 if (old_dentry->d_parent != new_dentry->d_parent) {
9729 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9730 BTRFS_I(old_inode), 1);
9731 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9732 BTRFS_I(new_inode), 1);
9733 }
9734
9735 /* src is a subvolume */
9736 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9737 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9738 ret = btrfs_unlink_subvol(trans, root, old_dir,
9739 root_objectid,
9740 old_dentry->d_name.name,
9741 old_dentry->d_name.len);
9742 } else { /* src is an inode */
9743 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9744 BTRFS_I(old_dentry->d_inode),
9745 old_dentry->d_name.name,
9746 old_dentry->d_name.len);
9747 if (!ret)
9748 ret = btrfs_update_inode(trans, root, old_inode);
9749 }
9750 if (ret) {
9751 btrfs_abort_transaction(trans, ret);
9752 goto out_fail;
9753 }
9754
9755 /* dest is a subvolume */
9756 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9757 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9758 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9759 root_objectid,
9760 new_dentry->d_name.name,
9761 new_dentry->d_name.len);
9762 } else { /* dest is an inode */
9763 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9764 BTRFS_I(new_dentry->d_inode),
9765 new_dentry->d_name.name,
9766 new_dentry->d_name.len);
9767 if (!ret)
9768 ret = btrfs_update_inode(trans, dest, new_inode);
9769 }
9770 if (ret) {
9771 btrfs_abort_transaction(trans, ret);
9772 goto out_fail;
9773 }
9774
9775 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9776 new_dentry->d_name.name,
9777 new_dentry->d_name.len, 0, old_idx);
9778 if (ret) {
9779 btrfs_abort_transaction(trans, ret);
9780 goto out_fail;
9781 }
9782
9783 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9784 old_dentry->d_name.name,
9785 old_dentry->d_name.len, 0, new_idx);
9786 if (ret) {
9787 btrfs_abort_transaction(trans, ret);
9788 goto out_fail;
9789 }
9790
9791 if (old_inode->i_nlink == 1)
9792 BTRFS_I(old_inode)->dir_index = old_idx;
9793 if (new_inode->i_nlink == 1)
9794 BTRFS_I(new_inode)->dir_index = new_idx;
9795
9796 if (root_log_pinned) {
9797 parent = new_dentry->d_parent;
9798 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9799 parent);
9800 btrfs_end_log_trans(root);
9801 root_log_pinned = false;
9802 }
9803 if (dest_log_pinned) {
9804 parent = old_dentry->d_parent;
9805 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9806 parent);
9807 btrfs_end_log_trans(dest);
9808 dest_log_pinned = false;
9809 }
9810out_fail:
9811 /*
9812 * If we have pinned a log and an error happened, we unpin tasks
9813 * trying to sync the log and force them to fallback to a transaction
9814 * commit if the log currently contains any of the inodes involved in
9815 * this rename operation (to ensure we do not persist a log with an
9816 * inconsistent state for any of these inodes or leading to any
9817 * inconsistencies when replayed). If the transaction was aborted, the
9818 * abortion reason is propagated to userspace when attempting to commit
9819 * the transaction. If the log does not contain any of these inodes, we
9820 * allow the tasks to sync it.
9821 */
9822 if (ret && (root_log_pinned || dest_log_pinned)) {
9823 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9824 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9825 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9826 (new_inode &&
9827 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9828 btrfs_set_log_full_commit(fs_info, trans);
9829
9830 if (root_log_pinned) {
9831 btrfs_end_log_trans(root);
9832 root_log_pinned = false;
9833 }
9834 if (dest_log_pinned) {
9835 btrfs_end_log_trans(dest);
9836 dest_log_pinned = false;
9837 }
9838 }
9839 ret = btrfs_end_transaction(trans);
9840out_notrans:
9841 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9842 up_read(&fs_info->subvol_sem);
9843 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9844 up_read(&fs_info->subvol_sem);
9845
9846 return ret;
9847}
9848
9849static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9850 struct btrfs_root *root,
9851 struct inode *dir,
9852 struct dentry *dentry)
9853{
9854 int ret;
9855 struct inode *inode;
9856 u64 objectid;
9857 u64 index;
9858
9859 ret = btrfs_find_free_ino(root, &objectid);
9860 if (ret)
9861 return ret;
9862
9863 inode = btrfs_new_inode(trans, root, dir,
9864 dentry->d_name.name,
9865 dentry->d_name.len,
9866 btrfs_ino(BTRFS_I(dir)),
9867 objectid,
9868 S_IFCHR | WHITEOUT_MODE,
9869 &index);
9870
9871 if (IS_ERR(inode)) {
9872 ret = PTR_ERR(inode);
9873 return ret;
9874 }
9875
9876 inode->i_op = &btrfs_special_inode_operations;
9877 init_special_inode(inode, inode->i_mode,
9878 WHITEOUT_DEV);
9879
9880 ret = btrfs_init_inode_security(trans, inode, dir,
9881 &dentry->d_name);
9882 if (ret)
9883 goto out;
9884
9885 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9886 BTRFS_I(inode), 0, index);
9887 if (ret)
9888 goto out;
9889
9890 ret = btrfs_update_inode(trans, root, inode);
9891out:
9892 unlock_new_inode(inode);
9893 if (ret)
9894 inode_dec_link_count(inode);
9895 iput(inode);
9896
9897 return ret;
9898}
9899
9900static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9901 struct inode *new_dir, struct dentry *new_dentry,
9902 unsigned int flags)
9903{
9904 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9905 struct btrfs_trans_handle *trans;
9906 unsigned int trans_num_items;
9907 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9908 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9909 struct inode *new_inode = d_inode(new_dentry);
9910 struct inode *old_inode = d_inode(old_dentry);
9911 u64 index = 0;
9912 u64 root_objectid;
9913 int ret;
9914 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9915 bool log_pinned = false;
9916
9917 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9918 return -EPERM;
9919
9920 /* we only allow rename subvolume link between subvolumes */
9921 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9922 return -EXDEV;
9923
9924 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9925 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9926 return -ENOTEMPTY;
9927
9928 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9929 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9930 return -ENOTEMPTY;
9931
9932
9933 /* check for collisions, even if the name isn't there */
9934 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9935 new_dentry->d_name.name,
9936 new_dentry->d_name.len);
9937
9938 if (ret) {
9939 if (ret == -EEXIST) {
9940 /* we shouldn't get
9941 * eexist without a new_inode */
9942 if (WARN_ON(!new_inode)) {
9943 return ret;
9944 }
9945 } else {
9946 /* maybe -EOVERFLOW */
9947 return ret;
9948 }
9949 }
9950 ret = 0;
9951
9952 /*
9953 * we're using rename to replace one file with another. Start IO on it
9954 * now so we don't add too much work to the end of the transaction
9955 */
9956 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9957 filemap_flush(old_inode->i_mapping);
9958
9959 /* close the racy window with snapshot create/destroy ioctl */
9960 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9961 down_read(&fs_info->subvol_sem);
9962 /*
9963 * We want to reserve the absolute worst case amount of items. So if
9964 * both inodes are subvols and we need to unlink them then that would
9965 * require 4 item modifications, but if they are both normal inodes it
9966 * would require 5 item modifications, so we'll assume they are normal
9967 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9968 * should cover the worst case number of items we'll modify.
9969 * If our rename has the whiteout flag, we need more 5 units for the
9970 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9971 * when selinux is enabled).
9972 */
9973 trans_num_items = 11;
9974 if (flags & RENAME_WHITEOUT)
9975 trans_num_items += 5;
9976 trans = btrfs_start_transaction(root, trans_num_items);
9977 if (IS_ERR(trans)) {
9978 ret = PTR_ERR(trans);
9979 goto out_notrans;
9980 }
9981
9982 if (dest != root)
9983 btrfs_record_root_in_trans(trans, dest);
9984
9985 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9986 if (ret)
9987 goto out_fail;
9988
9989 BTRFS_I(old_inode)->dir_index = 0ULL;
9990 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9991 /* force full log commit if subvolume involved. */
9992 btrfs_set_log_full_commit(fs_info, trans);
9993 } else {
9994 btrfs_pin_log_trans(root);
9995 log_pinned = true;
9996 ret = btrfs_insert_inode_ref(trans, dest,
9997 new_dentry->d_name.name,
9998 new_dentry->d_name.len,
9999 old_ino,
10000 btrfs_ino(BTRFS_I(new_dir)), index);
10001 if (ret)
10002 goto out_fail;
10003 }
10004
10005 inode_inc_iversion(old_dir);
10006 inode_inc_iversion(new_dir);
10007 inode_inc_iversion(old_inode);
10008 old_dir->i_ctime = old_dir->i_mtime =
10009 new_dir->i_ctime = new_dir->i_mtime =
10010 old_inode->i_ctime = current_time(old_dir);
10011
10012 if (old_dentry->d_parent != new_dentry->d_parent)
10013 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
10014 BTRFS_I(old_inode), 1);
10015
10016 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
10017 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
10018 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
10019 old_dentry->d_name.name,
10020 old_dentry->d_name.len);
10021 } else {
10022 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
10023 BTRFS_I(d_inode(old_dentry)),
10024 old_dentry->d_name.name,
10025 old_dentry->d_name.len);
10026 if (!ret)
10027 ret = btrfs_update_inode(trans, root, old_inode);
10028 }
10029 if (ret) {
10030 btrfs_abort_transaction(trans, ret);
10031 goto out_fail;
10032 }
10033
10034 if (new_inode) {
10035 inode_inc_iversion(new_inode);
10036 new_inode->i_ctime = current_time(new_inode);
10037 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
10038 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
10039 root_objectid = BTRFS_I(new_inode)->location.objectid;
10040 ret = btrfs_unlink_subvol(trans, dest, new_dir,
10041 root_objectid,
10042 new_dentry->d_name.name,
10043 new_dentry->d_name.len);
10044 BUG_ON(new_inode->i_nlink == 0);
10045 } else {
10046 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10047 BTRFS_I(d_inode(new_dentry)),
10048 new_dentry->d_name.name,
10049 new_dentry->d_name.len);
10050 }
10051 if (!ret && new_inode->i_nlink == 0)
10052 ret = btrfs_orphan_add(trans,
10053 BTRFS_I(d_inode(new_dentry)));
10054 if (ret) {
10055 btrfs_abort_transaction(trans, ret);
10056 goto out_fail;
10057 }
10058 }
10059
10060 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
10061 new_dentry->d_name.name,
10062 new_dentry->d_name.len, 0, index);
10063 if (ret) {
10064 btrfs_abort_transaction(trans, ret);
10065 goto out_fail;
10066 }
10067
10068 if (old_inode->i_nlink == 1)
10069 BTRFS_I(old_inode)->dir_index = index;
10070
10071 if (log_pinned) {
10072 struct dentry *parent = new_dentry->d_parent;
10073
10074 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
10075 parent);
10076 btrfs_end_log_trans(root);
10077 log_pinned = false;
10078 }
10079
10080 if (flags & RENAME_WHITEOUT) {
10081 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10082 old_dentry);
10083
10084 if (ret) {
10085 btrfs_abort_transaction(trans, ret);
10086 goto out_fail;
10087 }
10088 }
10089out_fail:
10090 /*
10091 * If we have pinned the log and an error happened, we unpin tasks
10092 * trying to sync the log and force them to fallback to a transaction
10093 * commit if the log currently contains any of the inodes involved in
10094 * this rename operation (to ensure we do not persist a log with an
10095 * inconsistent state for any of these inodes or leading to any
10096 * inconsistencies when replayed). If the transaction was aborted, the
10097 * abortion reason is propagated to userspace when attempting to commit
10098 * the transaction. If the log does not contain any of these inodes, we
10099 * allow the tasks to sync it.
10100 */
10101 if (ret && log_pinned) {
10102 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10103 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10104 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
10105 (new_inode &&
10106 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10107 btrfs_set_log_full_commit(fs_info, trans);
10108
10109 btrfs_end_log_trans(root);
10110 log_pinned = false;
10111 }
10112 btrfs_end_transaction(trans);
10113out_notrans:
10114 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10115 up_read(&fs_info->subvol_sem);
10116
10117 return ret;
10118}
10119
10120static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10121 struct inode *new_dir, struct dentry *new_dentry,
10122 unsigned int flags)
10123{
10124 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10125 return -EINVAL;
10126
10127 if (flags & RENAME_EXCHANGE)
10128 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10129 new_dentry);
10130
10131 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10132}
10133
10134static void btrfs_run_delalloc_work(struct btrfs_work *work)
10135{
10136 struct btrfs_delalloc_work *delalloc_work;
10137 struct inode *inode;
10138
10139 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10140 work);
10141 inode = delalloc_work->inode;
10142 filemap_flush(inode->i_mapping);
10143 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10144 &BTRFS_I(inode)->runtime_flags))
10145 filemap_flush(inode->i_mapping);
10146
10147 if (delalloc_work->delay_iput)
10148 btrfs_add_delayed_iput(inode);
10149 else
10150 iput(inode);
10151 complete(&delalloc_work->completion);
10152}
10153
10154struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
10155 int delay_iput)
10156{
10157 struct btrfs_delalloc_work *work;
10158
10159 work = kmalloc(sizeof(*work), GFP_NOFS);
10160 if (!work)
10161 return NULL;
10162
10163 init_completion(&work->completion);
10164 INIT_LIST_HEAD(&work->list);
10165 work->inode = inode;
10166 work->delay_iput = delay_iput;
10167 WARN_ON_ONCE(!inode);
10168 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10169 btrfs_run_delalloc_work, NULL, NULL);
10170
10171 return work;
10172}
10173
10174void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10175{
10176 wait_for_completion(&work->completion);
10177 kfree(work);
10178}
10179
10180/*
10181 * some fairly slow code that needs optimization. This walks the list
10182 * of all the inodes with pending delalloc and forces them to disk.
10183 */
10184static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10185 int nr)
10186{
10187 struct btrfs_inode *binode;
10188 struct inode *inode;
10189 struct btrfs_delalloc_work *work, *next;
10190 struct list_head works;
10191 struct list_head splice;
10192 int ret = 0;
10193
10194 INIT_LIST_HEAD(&works);
10195 INIT_LIST_HEAD(&splice);
10196
10197 mutex_lock(&root->delalloc_mutex);
10198 spin_lock(&root->delalloc_lock);
10199 list_splice_init(&root->delalloc_inodes, &splice);
10200 while (!list_empty(&splice)) {
10201 binode = list_entry(splice.next, struct btrfs_inode,
10202 delalloc_inodes);
10203
10204 list_move_tail(&binode->delalloc_inodes,
10205 &root->delalloc_inodes);
10206 inode = igrab(&binode->vfs_inode);
10207 if (!inode) {
10208 cond_resched_lock(&root->delalloc_lock);
10209 continue;
10210 }
10211 spin_unlock(&root->delalloc_lock);
10212
10213 work = btrfs_alloc_delalloc_work(inode, delay_iput);
10214 if (!work) {
10215 if (delay_iput)
10216 btrfs_add_delayed_iput(inode);
10217 else
10218 iput(inode);
10219 ret = -ENOMEM;
10220 goto out;
10221 }
10222 list_add_tail(&work->list, &works);
10223 btrfs_queue_work(root->fs_info->flush_workers,
10224 &work->work);
10225 ret++;
10226 if (nr != -1 && ret >= nr)
10227 goto out;
10228 cond_resched();
10229 spin_lock(&root->delalloc_lock);
10230 }
10231 spin_unlock(&root->delalloc_lock);
10232
10233out:
10234 list_for_each_entry_safe(work, next, &works, list) {
10235 list_del_init(&work->list);
10236 btrfs_wait_and_free_delalloc_work(work);
10237 }
10238
10239 if (!list_empty_careful(&splice)) {
10240 spin_lock(&root->delalloc_lock);
10241 list_splice_tail(&splice, &root->delalloc_inodes);
10242 spin_unlock(&root->delalloc_lock);
10243 }
10244 mutex_unlock(&root->delalloc_mutex);
10245 return ret;
10246}
10247
10248int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10249{
10250 struct btrfs_fs_info *fs_info = root->fs_info;
10251 int ret;
10252
10253 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10254 return -EROFS;
10255
10256 ret = __start_delalloc_inodes(root, delay_iput, -1);
10257 if (ret > 0)
10258 ret = 0;
10259 /*
10260 * the filemap_flush will queue IO into the worker threads, but
10261 * we have to make sure the IO is actually started and that
10262 * ordered extents get created before we return
10263 */
10264 atomic_inc(&fs_info->async_submit_draining);
10265 while (atomic_read(&fs_info->nr_async_submits) ||
10266 atomic_read(&fs_info->async_delalloc_pages)) {
10267 wait_event(fs_info->async_submit_wait,
10268 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10269 atomic_read(&fs_info->async_delalloc_pages) == 0));
10270 }
10271 atomic_dec(&fs_info->async_submit_draining);
10272 return ret;
10273}
10274
10275int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10276 int nr)
10277{
10278 struct btrfs_root *root;
10279 struct list_head splice;
10280 int ret;
10281
10282 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10283 return -EROFS;
10284
10285 INIT_LIST_HEAD(&splice);
10286
10287 mutex_lock(&fs_info->delalloc_root_mutex);
10288 spin_lock(&fs_info->delalloc_root_lock);
10289 list_splice_init(&fs_info->delalloc_roots, &splice);
10290 while (!list_empty(&splice) && nr) {
10291 root = list_first_entry(&splice, struct btrfs_root,
10292 delalloc_root);
10293 root = btrfs_grab_fs_root(root);
10294 BUG_ON(!root);
10295 list_move_tail(&root->delalloc_root,
10296 &fs_info->delalloc_roots);
10297 spin_unlock(&fs_info->delalloc_root_lock);
10298
10299 ret = __start_delalloc_inodes(root, delay_iput, nr);
10300 btrfs_put_fs_root(root);
10301 if (ret < 0)
10302 goto out;
10303
10304 if (nr != -1) {
10305 nr -= ret;
10306 WARN_ON(nr < 0);
10307 }
10308 spin_lock(&fs_info->delalloc_root_lock);
10309 }
10310 spin_unlock(&fs_info->delalloc_root_lock);
10311
10312 ret = 0;
10313 atomic_inc(&fs_info->async_submit_draining);
10314 while (atomic_read(&fs_info->nr_async_submits) ||
10315 atomic_read(&fs_info->async_delalloc_pages)) {
10316 wait_event(fs_info->async_submit_wait,
10317 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10318 atomic_read(&fs_info->async_delalloc_pages) == 0));
10319 }
10320 atomic_dec(&fs_info->async_submit_draining);
10321out:
10322 if (!list_empty_careful(&splice)) {
10323 spin_lock(&fs_info->delalloc_root_lock);
10324 list_splice_tail(&splice, &fs_info->delalloc_roots);
10325 spin_unlock(&fs_info->delalloc_root_lock);
10326 }
10327 mutex_unlock(&fs_info->delalloc_root_mutex);
10328 return ret;
10329}
10330
10331static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10332 const char *symname)
10333{
10334 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10335 struct btrfs_trans_handle *trans;
10336 struct btrfs_root *root = BTRFS_I(dir)->root;
10337 struct btrfs_path *path;
10338 struct btrfs_key key;
10339 struct inode *inode = NULL;
10340 int err;
10341 int drop_inode = 0;
10342 u64 objectid;
10343 u64 index = 0;
10344 int name_len;
10345 int datasize;
10346 unsigned long ptr;
10347 struct btrfs_file_extent_item *ei;
10348 struct extent_buffer *leaf;
10349
10350 name_len = strlen(symname);
10351 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10352 return -ENAMETOOLONG;
10353
10354 /*
10355 * 2 items for inode item and ref
10356 * 2 items for dir items
10357 * 1 item for updating parent inode item
10358 * 1 item for the inline extent item
10359 * 1 item for xattr if selinux is on
10360 */
10361 trans = btrfs_start_transaction(root, 7);
10362 if (IS_ERR(trans))
10363 return PTR_ERR(trans);
10364
10365 err = btrfs_find_free_ino(root, &objectid);
10366 if (err)
10367 goto out_unlock;
10368
10369 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10370 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10371 objectid, S_IFLNK|S_IRWXUGO, &index);
10372 if (IS_ERR(inode)) {
10373 err = PTR_ERR(inode);
10374 goto out_unlock;
10375 }
10376
10377 /*
10378 * If the active LSM wants to access the inode during
10379 * d_instantiate it needs these. Smack checks to see
10380 * if the filesystem supports xattrs by looking at the
10381 * ops vector.
10382 */
10383 inode->i_fop = &btrfs_file_operations;
10384 inode->i_op = &btrfs_file_inode_operations;
10385 inode->i_mapping->a_ops = &btrfs_aops;
10386 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10387
10388 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10389 if (err)
10390 goto out_unlock_inode;
10391
10392 path = btrfs_alloc_path();
10393 if (!path) {
10394 err = -ENOMEM;
10395 goto out_unlock_inode;
10396 }
10397 key.objectid = btrfs_ino(BTRFS_I(inode));
10398 key.offset = 0;
10399 key.type = BTRFS_EXTENT_DATA_KEY;
10400 datasize = btrfs_file_extent_calc_inline_size(name_len);
10401 err = btrfs_insert_empty_item(trans, root, path, &key,
10402 datasize);
10403 if (err) {
10404 btrfs_free_path(path);
10405 goto out_unlock_inode;
10406 }
10407 leaf = path->nodes[0];
10408 ei = btrfs_item_ptr(leaf, path->slots[0],
10409 struct btrfs_file_extent_item);
10410 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10411 btrfs_set_file_extent_type(leaf, ei,
10412 BTRFS_FILE_EXTENT_INLINE);
10413 btrfs_set_file_extent_encryption(leaf, ei, 0);
10414 btrfs_set_file_extent_compression(leaf, ei, 0);
10415 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10416 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10417
10418 ptr = btrfs_file_extent_inline_start(ei);
10419 write_extent_buffer(leaf, symname, ptr, name_len);
10420 btrfs_mark_buffer_dirty(leaf);
10421 btrfs_free_path(path);
10422
10423 inode->i_op = &btrfs_symlink_inode_operations;
10424 inode_nohighmem(inode);
10425 inode->i_mapping->a_ops = &btrfs_symlink_aops;
10426 inode_set_bytes(inode, name_len);
10427 btrfs_i_size_write(BTRFS_I(inode), name_len);
10428 err = btrfs_update_inode(trans, root, inode);
10429 /*
10430 * Last step, add directory indexes for our symlink inode. This is the
10431 * last step to avoid extra cleanup of these indexes if an error happens
10432 * elsewhere above.
10433 */
10434 if (!err)
10435 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10436 BTRFS_I(inode), 0, index);
10437 if (err) {
10438 drop_inode = 1;
10439 goto out_unlock_inode;
10440 }
10441
10442 unlock_new_inode(inode);
10443 d_instantiate(dentry, inode);
10444
10445out_unlock:
10446 btrfs_end_transaction(trans);
10447 if (drop_inode) {
10448 inode_dec_link_count(inode);
10449 iput(inode);
10450 }
10451 btrfs_btree_balance_dirty(fs_info);
10452 return err;
10453
10454out_unlock_inode:
10455 drop_inode = 1;
10456 unlock_new_inode(inode);
10457 goto out_unlock;
10458}
10459
10460static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10461 u64 start, u64 num_bytes, u64 min_size,
10462 loff_t actual_len, u64 *alloc_hint,
10463 struct btrfs_trans_handle *trans)
10464{
10465 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10466 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10467 struct extent_map *em;
10468 struct btrfs_root *root = BTRFS_I(inode)->root;
10469 struct btrfs_key ins;
10470 u64 cur_offset = start;
10471 u64 i_size;
10472 u64 cur_bytes;
10473 u64 last_alloc = (u64)-1;
10474 int ret = 0;
10475 bool own_trans = true;
10476 u64 end = start + num_bytes - 1;
10477
10478 if (trans)
10479 own_trans = false;
10480 while (num_bytes > 0) {
10481 if (own_trans) {
10482 trans = btrfs_start_transaction(root, 3);
10483 if (IS_ERR(trans)) {
10484 ret = PTR_ERR(trans);
10485 break;
10486 }
10487 }
10488
10489 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10490 cur_bytes = max(cur_bytes, min_size);
10491 /*
10492 * If we are severely fragmented we could end up with really
10493 * small allocations, so if the allocator is returning small
10494 * chunks lets make its job easier by only searching for those
10495 * sized chunks.
10496 */
10497 cur_bytes = min(cur_bytes, last_alloc);
10498 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10499 min_size, 0, *alloc_hint, &ins, 1, 0);
10500 if (ret) {
10501 if (own_trans)
10502 btrfs_end_transaction(trans);
10503 break;
10504 }
10505 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10506
10507 last_alloc = ins.offset;
10508 ret = insert_reserved_file_extent(trans, inode,
10509 cur_offset, ins.objectid,
10510 ins.offset, ins.offset,
10511 ins.offset, 0, 0, 0,
10512 BTRFS_FILE_EXTENT_PREALLOC);
10513 if (ret) {
10514 btrfs_free_reserved_extent(fs_info, ins.objectid,
10515 ins.offset, 0);
10516 btrfs_abort_transaction(trans, ret);
10517 if (own_trans)
10518 btrfs_end_transaction(trans);
10519 break;
10520 }
10521
10522 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10523 cur_offset + ins.offset -1, 0);
10524
10525 em = alloc_extent_map();
10526 if (!em) {
10527 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10528 &BTRFS_I(inode)->runtime_flags);
10529 goto next;
10530 }
10531
10532 em->start = cur_offset;
10533 em->orig_start = cur_offset;
10534 em->len = ins.offset;
10535 em->block_start = ins.objectid;
10536 em->block_len = ins.offset;
10537 em->orig_block_len = ins.offset;
10538 em->ram_bytes = ins.offset;
10539 em->bdev = fs_info->fs_devices->latest_bdev;
10540 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10541 em->generation = trans->transid;
10542
10543 while (1) {
10544 write_lock(&em_tree->lock);
10545 ret = add_extent_mapping(em_tree, em, 1);
10546 write_unlock(&em_tree->lock);
10547 if (ret != -EEXIST)
10548 break;
10549 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10550 cur_offset + ins.offset - 1,
10551 0);
10552 }
10553 free_extent_map(em);
10554next:
10555 num_bytes -= ins.offset;
10556 cur_offset += ins.offset;
10557 *alloc_hint = ins.objectid + ins.offset;
10558
10559 inode_inc_iversion(inode);
10560 inode->i_ctime = current_time(inode);
10561 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10562 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10563 (actual_len > inode->i_size) &&
10564 (cur_offset > inode->i_size)) {
10565 if (cur_offset > actual_len)
10566 i_size = actual_len;
10567 else
10568 i_size = cur_offset;
10569 i_size_write(inode, i_size);
10570 btrfs_ordered_update_i_size(inode, i_size, NULL);
10571 }
10572
10573 ret = btrfs_update_inode(trans, root, inode);
10574
10575 if (ret) {
10576 btrfs_abort_transaction(trans, ret);
10577 if (own_trans)
10578 btrfs_end_transaction(trans);
10579 break;
10580 }
10581
10582 if (own_trans)
10583 btrfs_end_transaction(trans);
10584 }
10585 if (cur_offset < end)
10586 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10587 end - cur_offset + 1);
10588 return ret;
10589}
10590
10591int btrfs_prealloc_file_range(struct inode *inode, int mode,
10592 u64 start, u64 num_bytes, u64 min_size,
10593 loff_t actual_len, u64 *alloc_hint)
10594{
10595 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10596 min_size, actual_len, alloc_hint,
10597 NULL);
10598}
10599
10600int btrfs_prealloc_file_range_trans(struct inode *inode,
10601 struct btrfs_trans_handle *trans, int mode,
10602 u64 start, u64 num_bytes, u64 min_size,
10603 loff_t actual_len, u64 *alloc_hint)
10604{
10605 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10606 min_size, actual_len, alloc_hint, trans);
10607}
10608
10609static int btrfs_set_page_dirty(struct page *page)
10610{
10611 return __set_page_dirty_nobuffers(page);
10612}
10613
10614static int btrfs_permission(struct inode *inode, int mask)
10615{
10616 struct btrfs_root *root = BTRFS_I(inode)->root;
10617 umode_t mode = inode->i_mode;
10618
10619 if (mask & MAY_WRITE &&
10620 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10621 if (btrfs_root_readonly(root))
10622 return -EROFS;
10623 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10624 return -EACCES;
10625 }
10626 return generic_permission(inode, mask);
10627}
10628
10629static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10630{
10631 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10632 struct btrfs_trans_handle *trans;
10633 struct btrfs_root *root = BTRFS_I(dir)->root;
10634 struct inode *inode = NULL;
10635 u64 objectid;
10636 u64 index;
10637 int ret = 0;
10638
10639 /*
10640 * 5 units required for adding orphan entry
10641 */
10642 trans = btrfs_start_transaction(root, 5);
10643 if (IS_ERR(trans))
10644 return PTR_ERR(trans);
10645
10646 ret = btrfs_find_free_ino(root, &objectid);
10647 if (ret)
10648 goto out;
10649
10650 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10651 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10652 if (IS_ERR(inode)) {
10653 ret = PTR_ERR(inode);
10654 inode = NULL;
10655 goto out;
10656 }
10657
10658 inode->i_fop = &btrfs_file_operations;
10659 inode->i_op = &btrfs_file_inode_operations;
10660
10661 inode->i_mapping->a_ops = &btrfs_aops;
10662 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10663
10664 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10665 if (ret)
10666 goto out_inode;
10667
10668 ret = btrfs_update_inode(trans, root, inode);
10669 if (ret)
10670 goto out_inode;
10671 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10672 if (ret)
10673 goto out_inode;
10674
10675 /*
10676 * We set number of links to 0 in btrfs_new_inode(), and here we set
10677 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10678 * through:
10679 *
10680 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10681 */
10682 set_nlink(inode, 1);
10683 unlock_new_inode(inode);
10684 d_tmpfile(dentry, inode);
10685 mark_inode_dirty(inode);
10686
10687out:
10688 btrfs_end_transaction(trans);
10689 if (ret)
10690 iput(inode);
10691 btrfs_balance_delayed_items(fs_info);
10692 btrfs_btree_balance_dirty(fs_info);
10693 return ret;
10694
10695out_inode:
10696 unlock_new_inode(inode);
10697 goto out;
10698
10699}
10700
10701__attribute__((const))
10702static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10703{
10704 return -EAGAIN;
10705}
10706
10707static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10708{
10709 struct inode *inode = private_data;
10710 return btrfs_sb(inode->i_sb);
10711}
10712
10713static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10714 u64 start, u64 end)
10715{
10716 struct inode *inode = private_data;
10717 u64 isize;
10718
10719 isize = i_size_read(inode);
10720 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10721 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10722 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10723 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10724 }
10725}
10726
10727void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10728{
10729 struct inode *inode = private_data;
10730 unsigned long index = start >> PAGE_SHIFT;
10731 unsigned long end_index = end >> PAGE_SHIFT;
10732 struct page *page;
10733
10734 while (index <= end_index) {
10735 page = find_get_page(inode->i_mapping, index);
10736 ASSERT(page); /* Pages should be in the extent_io_tree */
10737 set_page_writeback(page);
10738 put_page(page);
10739 index++;
10740 }
10741}
10742
10743static const struct inode_operations btrfs_dir_inode_operations = {
10744 .getattr = btrfs_getattr,
10745 .lookup = btrfs_lookup,
10746 .create = btrfs_create,
10747 .unlink = btrfs_unlink,
10748 .link = btrfs_link,
10749 .mkdir = btrfs_mkdir,
10750 .rmdir = btrfs_rmdir,
10751 .rename = btrfs_rename2,
10752 .symlink = btrfs_symlink,
10753 .setattr = btrfs_setattr,
10754 .mknod = btrfs_mknod,
10755 .listxattr = btrfs_listxattr,
10756 .permission = btrfs_permission,
10757 .get_acl = btrfs_get_acl,
10758 .set_acl = btrfs_set_acl,
10759 .update_time = btrfs_update_time,
10760 .tmpfile = btrfs_tmpfile,
10761};
10762static const struct inode_operations btrfs_dir_ro_inode_operations = {
10763 .lookup = btrfs_lookup,
10764 .permission = btrfs_permission,
10765 .update_time = btrfs_update_time,
10766};
10767
10768static const struct file_operations btrfs_dir_file_operations = {
10769 .llseek = generic_file_llseek,
10770 .read = generic_read_dir,
10771 .iterate_shared = btrfs_real_readdir,
10772 .unlocked_ioctl = btrfs_ioctl,
10773#ifdef CONFIG_COMPAT
10774 .compat_ioctl = btrfs_compat_ioctl,
10775#endif
10776 .release = btrfs_release_file,
10777 .fsync = btrfs_sync_file,
10778};
10779
10780static const struct extent_io_ops btrfs_extent_io_ops = {
10781 /* mandatory callbacks */
10782 .submit_bio_hook = btrfs_submit_bio_hook,
10783 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10784 .merge_bio_hook = btrfs_merge_bio_hook,
10785 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10786 .tree_fs_info = iotree_fs_info,
10787 .set_range_writeback = btrfs_set_range_writeback,
10788
10789 /* optional callbacks */
10790 .fill_delalloc = run_delalloc_range,
10791 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10792 .writepage_start_hook = btrfs_writepage_start_hook,
10793 .set_bit_hook = btrfs_set_bit_hook,
10794 .clear_bit_hook = btrfs_clear_bit_hook,
10795 .merge_extent_hook = btrfs_merge_extent_hook,
10796 .split_extent_hook = btrfs_split_extent_hook,
10797 .check_extent_io_range = btrfs_check_extent_io_range,
10798};
10799
10800/*
10801 * btrfs doesn't support the bmap operation because swapfiles
10802 * use bmap to make a mapping of extents in the file. They assume
10803 * these extents won't change over the life of the file and they
10804 * use the bmap result to do IO directly to the drive.
10805 *
10806 * the btrfs bmap call would return logical addresses that aren't
10807 * suitable for IO and they also will change frequently as COW
10808 * operations happen. So, swapfile + btrfs == corruption.
10809 *
10810 * For now we're avoiding this by dropping bmap.
10811 */
10812static const struct address_space_operations btrfs_aops = {
10813 .readpage = btrfs_readpage,
10814 .writepage = btrfs_writepage,
10815 .writepages = btrfs_writepages,
10816 .readpages = btrfs_readpages,
10817 .direct_IO = btrfs_direct_IO,
10818 .invalidatepage = btrfs_invalidatepage,
10819 .releasepage = btrfs_releasepage,
10820 .set_page_dirty = btrfs_set_page_dirty,
10821 .error_remove_page = generic_error_remove_page,
10822};
10823
10824static const struct address_space_operations btrfs_symlink_aops = {
10825 .readpage = btrfs_readpage,
10826 .writepage = btrfs_writepage,
10827 .invalidatepage = btrfs_invalidatepage,
10828 .releasepage = btrfs_releasepage,
10829};
10830
10831static const struct inode_operations btrfs_file_inode_operations = {
10832 .getattr = btrfs_getattr,
10833 .setattr = btrfs_setattr,
10834 .listxattr = btrfs_listxattr,
10835 .permission = btrfs_permission,
10836 .fiemap = btrfs_fiemap,
10837 .get_acl = btrfs_get_acl,
10838 .set_acl = btrfs_set_acl,
10839 .update_time = btrfs_update_time,
10840};
10841static const struct inode_operations btrfs_special_inode_operations = {
10842 .getattr = btrfs_getattr,
10843 .setattr = btrfs_setattr,
10844 .permission = btrfs_permission,
10845 .listxattr = btrfs_listxattr,
10846 .get_acl = btrfs_get_acl,
10847 .set_acl = btrfs_set_acl,
10848 .update_time = btrfs_update_time,
10849};
10850static const struct inode_operations btrfs_symlink_inode_operations = {
10851 .get_link = page_get_link,
10852 .getattr = btrfs_getattr,
10853 .setattr = btrfs_setattr,
10854 .permission = btrfs_permission,
10855 .listxattr = btrfs_listxattr,
10856 .update_time = btrfs_update_time,
10857};
10858
10859const struct dentry_operations btrfs_dentry_operations = {
10860 .d_delete = btrfs_dentry_delete,
10861 .d_release = btrfs_dentry_release,
10862};