]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - fs/nfs/dir.c
NFS: Correct the array bound calculation in nfs_readdir_add_to_array
[mirror_ubuntu-bionic-kernel.git] / fs / nfs / dir.c
... / ...
CommitLineData
1/*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20#include <linux/time.h>
21#include <linux/errno.h>
22#include <linux/stat.h>
23#include <linux/fcntl.h>
24#include <linux/string.h>
25#include <linux/kernel.h>
26#include <linux/slab.h>
27#include <linux/mm.h>
28#include <linux/sunrpc/clnt.h>
29#include <linux/nfs_fs.h>
30#include <linux/nfs_mount.h>
31#include <linux/pagemap.h>
32#include <linux/pagevec.h>
33#include <linux/namei.h>
34#include <linux/mount.h>
35#include <linux/sched.h>
36#include <linux/vmalloc.h>
37#include <linux/kmemleak.h>
38
39#include "delegation.h"
40#include "iostat.h"
41#include "internal.h"
42#include "fscache.h"
43
44/* #define NFS_DEBUG_VERBOSE 1 */
45
46static int nfs_opendir(struct inode *, struct file *);
47static int nfs_readdir(struct file *, void *, filldir_t);
48static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
49static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
50static int nfs_mkdir(struct inode *, struct dentry *, int);
51static int nfs_rmdir(struct inode *, struct dentry *);
52static int nfs_unlink(struct inode *, struct dentry *);
53static int nfs_symlink(struct inode *, struct dentry *, const char *);
54static int nfs_link(struct dentry *, struct inode *, struct dentry *);
55static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
56static int nfs_rename(struct inode *, struct dentry *,
57 struct inode *, struct dentry *);
58static int nfs_fsync_dir(struct file *, int);
59static loff_t nfs_llseek_dir(struct file *, loff_t, int);
60static int nfs_readdir_clear_array(struct page*, gfp_t);
61
62const struct file_operations nfs_dir_operations = {
63 .llseek = nfs_llseek_dir,
64 .read = generic_read_dir,
65 .readdir = nfs_readdir,
66 .open = nfs_opendir,
67 .release = nfs_release,
68 .fsync = nfs_fsync_dir,
69};
70
71const struct inode_operations nfs_dir_inode_operations = {
72 .create = nfs_create,
73 .lookup = nfs_lookup,
74 .link = nfs_link,
75 .unlink = nfs_unlink,
76 .symlink = nfs_symlink,
77 .mkdir = nfs_mkdir,
78 .rmdir = nfs_rmdir,
79 .mknod = nfs_mknod,
80 .rename = nfs_rename,
81 .permission = nfs_permission,
82 .getattr = nfs_getattr,
83 .setattr = nfs_setattr,
84};
85
86const struct address_space_operations nfs_dir_addr_space_ops = {
87 .releasepage = nfs_readdir_clear_array,
88};
89
90#ifdef CONFIG_NFS_V3
91const struct inode_operations nfs3_dir_inode_operations = {
92 .create = nfs_create,
93 .lookup = nfs_lookup,
94 .link = nfs_link,
95 .unlink = nfs_unlink,
96 .symlink = nfs_symlink,
97 .mkdir = nfs_mkdir,
98 .rmdir = nfs_rmdir,
99 .mknod = nfs_mknod,
100 .rename = nfs_rename,
101 .permission = nfs_permission,
102 .getattr = nfs_getattr,
103 .setattr = nfs_setattr,
104 .listxattr = nfs3_listxattr,
105 .getxattr = nfs3_getxattr,
106 .setxattr = nfs3_setxattr,
107 .removexattr = nfs3_removexattr,
108};
109#endif /* CONFIG_NFS_V3 */
110
111#ifdef CONFIG_NFS_V4
112
113static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
114static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd);
115const struct inode_operations nfs4_dir_inode_operations = {
116 .create = nfs_open_create,
117 .lookup = nfs_atomic_lookup,
118 .link = nfs_link,
119 .unlink = nfs_unlink,
120 .symlink = nfs_symlink,
121 .mkdir = nfs_mkdir,
122 .rmdir = nfs_rmdir,
123 .mknod = nfs_mknod,
124 .rename = nfs_rename,
125 .permission = nfs_permission,
126 .getattr = nfs_getattr,
127 .setattr = nfs_setattr,
128 .getxattr = nfs4_getxattr,
129 .setxattr = nfs4_setxattr,
130 .listxattr = nfs4_listxattr,
131};
132
133#endif /* CONFIG_NFS_V4 */
134
135/*
136 * Open file
137 */
138static int
139nfs_opendir(struct inode *inode, struct file *filp)
140{
141 int res;
142
143 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
144 filp->f_path.dentry->d_parent->d_name.name,
145 filp->f_path.dentry->d_name.name);
146
147 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
148
149 /* Call generic open code in order to cache credentials */
150 res = nfs_open(inode, filp);
151 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
152 /* This is a mountpoint, so d_revalidate will never
153 * have been called, so we need to refresh the
154 * inode (for close-open consistency) ourselves.
155 */
156 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
157 }
158 return res;
159}
160
161struct nfs_cache_array_entry {
162 u64 cookie;
163 u64 ino;
164 struct qstr string;
165};
166
167struct nfs_cache_array {
168 unsigned int size;
169 int eof_index;
170 u64 last_cookie;
171 struct nfs_cache_array_entry array[0];
172};
173
174typedef __be32 * (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, struct nfs_server *, int);
175typedef struct {
176 struct file *file;
177 struct page *page;
178 unsigned long page_index;
179 u64 *dir_cookie;
180 loff_t current_index;
181 decode_dirent_t decode;
182
183 unsigned long timestamp;
184 unsigned long gencount;
185 unsigned int cache_entry_index;
186 unsigned int plus:1;
187 unsigned int eof:1;
188} nfs_readdir_descriptor_t;
189
190/*
191 * The caller is responsible for calling nfs_readdir_release_array(page)
192 */
193static
194struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
195{
196 void *ptr;
197 if (page == NULL)
198 return ERR_PTR(-EIO);
199 ptr = kmap(page);
200 if (ptr == NULL)
201 return ERR_PTR(-ENOMEM);
202 return ptr;
203}
204
205static
206void nfs_readdir_release_array(struct page *page)
207{
208 kunmap(page);
209}
210
211/*
212 * we are freeing strings created by nfs_add_to_readdir_array()
213 */
214static
215int nfs_readdir_clear_array(struct page *page, gfp_t mask)
216{
217 struct nfs_cache_array *array = nfs_readdir_get_array(page);
218 int i;
219
220 if (IS_ERR(array))
221 return PTR_ERR(array);
222 for (i = 0; i < array->size; i++)
223 kfree(array->array[i].string.name);
224 nfs_readdir_release_array(page);
225 return 0;
226}
227
228/*
229 * the caller is responsible for freeing qstr.name
230 * when called by nfs_readdir_add_to_array, the strings will be freed in
231 * nfs_clear_readdir_array()
232 */
233static
234int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
235{
236 string->len = len;
237 string->name = kmemdup(name, len, GFP_KERNEL);
238 if (string->name == NULL)
239 return -ENOMEM;
240 /*
241 * Avoid a kmemleak false positive. The pointer to the name is stored
242 * in a page cache page which kmemleak does not scan.
243 */
244 kmemleak_not_leak(string->name);
245 string->hash = full_name_hash(name, len);
246 return 0;
247}
248
249static
250int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
251{
252 struct nfs_cache_array *array = nfs_readdir_get_array(page);
253 struct nfs_cache_array_entry *cache_entry;
254 int ret;
255
256 if (IS_ERR(array))
257 return PTR_ERR(array);
258
259 cache_entry = &array->array[array->size];
260
261 /* Check that this entry lies within the page bounds */
262 ret = -ENOSPC;
263 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
264 goto out;
265
266 cache_entry->cookie = entry->prev_cookie;
267 cache_entry->ino = entry->ino;
268 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
269 if (ret)
270 goto out;
271 array->last_cookie = entry->cookie;
272 array->size++;
273 if (entry->eof == 1)
274 array->eof_index = array->size;
275out:
276 nfs_readdir_release_array(page);
277 return ret;
278}
279
280static
281int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
282{
283 loff_t diff = desc->file->f_pos - desc->current_index;
284 unsigned int index;
285
286 if (diff < 0)
287 goto out_eof;
288 if (diff >= array->size) {
289 if (array->eof_index >= 0)
290 goto out_eof;
291 desc->current_index += array->size;
292 return -EAGAIN;
293 }
294
295 index = (unsigned int)diff;
296 *desc->dir_cookie = array->array[index].cookie;
297 desc->cache_entry_index = index;
298 return 0;
299out_eof:
300 desc->eof = 1;
301 return -EBADCOOKIE;
302}
303
304static
305int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
306{
307 int i;
308 int status = -EAGAIN;
309
310 for (i = 0; i < array->size; i++) {
311 if (array->array[i].cookie == *desc->dir_cookie) {
312 desc->cache_entry_index = i;
313 status = 0;
314 goto out;
315 }
316 }
317 if (i == array->eof_index) {
318 desc->eof = 1;
319 status = -EBADCOOKIE;
320 }
321out:
322 return status;
323}
324
325static
326int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
327{
328 struct nfs_cache_array *array;
329 int status = -EBADCOOKIE;
330
331 if (desc->dir_cookie == NULL)
332 goto out;
333
334 array = nfs_readdir_get_array(desc->page);
335 if (IS_ERR(array)) {
336 status = PTR_ERR(array);
337 goto out;
338 }
339
340 if (*desc->dir_cookie == 0)
341 status = nfs_readdir_search_for_pos(array, desc);
342 else
343 status = nfs_readdir_search_for_cookie(array, desc);
344
345 nfs_readdir_release_array(desc->page);
346out:
347 return status;
348}
349
350/* Fill a page with xdr information before transferring to the cache page */
351static
352int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
353 struct nfs_entry *entry, struct file *file, struct inode *inode)
354{
355 struct rpc_cred *cred = nfs_file_cred(file);
356 unsigned long timestamp, gencount;
357 int error;
358
359 again:
360 timestamp = jiffies;
361 gencount = nfs_inc_attr_generation_counter();
362 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
363 NFS_SERVER(inode)->dtsize, desc->plus);
364 if (error < 0) {
365 /* We requested READDIRPLUS, but the server doesn't grok it */
366 if (error == -ENOTSUPP && desc->plus) {
367 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
368 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
369 desc->plus = 0;
370 goto again;
371 }
372 goto error;
373 }
374 desc->timestamp = timestamp;
375 desc->gencount = gencount;
376error:
377 return error;
378}
379
380/* Fill in an entry based on the xdr code stored in desc->page */
381static
382int xdr_decode(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, struct xdr_stream *stream)
383{
384 __be32 *p = desc->decode(stream, entry, NFS_SERVER(desc->file->f_path.dentry->d_inode), desc->plus);
385 if (IS_ERR(p))
386 return PTR_ERR(p);
387
388 entry->fattr->time_start = desc->timestamp;
389 entry->fattr->gencount = desc->gencount;
390 return 0;
391}
392
393static
394int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
395{
396 struct nfs_inode *node;
397 if (dentry->d_inode == NULL)
398 goto different;
399 node = NFS_I(dentry->d_inode);
400 if (node->fh.size != entry->fh->size)
401 goto different;
402 if (strncmp(node->fh.data, entry->fh->data, node->fh.size) != 0)
403 goto different;
404 return 1;
405different:
406 return 0;
407}
408
409static
410void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
411{
412 struct qstr filename = {
413 .len = entry->len,
414 .name = entry->name,
415 };
416 struct dentry *dentry;
417 struct dentry *alias;
418 struct inode *dir = parent->d_inode;
419 struct inode *inode;
420
421 if (filename.name[0] == '.') {
422 if (filename.len == 1)
423 return;
424 if (filename.len == 2 && filename.name[1] == '.')
425 return;
426 }
427 filename.hash = full_name_hash(filename.name, filename.len);
428
429 dentry = d_lookup(parent, &filename);
430 if (dentry != NULL) {
431 if (nfs_same_file(dentry, entry)) {
432 nfs_refresh_inode(dentry->d_inode, entry->fattr);
433 goto out;
434 } else {
435 d_drop(dentry);
436 dput(dentry);
437 }
438 }
439
440 dentry = d_alloc(parent, &filename);
441 if (dentry == NULL)
442 return;
443
444 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
445 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
446 if (IS_ERR(inode))
447 goto out;
448
449 alias = d_materialise_unique(dentry, inode);
450 if (IS_ERR(alias))
451 goto out;
452 else if (alias) {
453 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
454 dput(alias);
455 } else
456 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
457
458out:
459 dput(dentry);
460}
461
462/* Perform conversion from xdr to cache array */
463static
464int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
465 void *xdr_page, struct page *page, unsigned int buflen)
466{
467 struct xdr_stream stream;
468 struct xdr_buf buf;
469 __be32 *ptr = xdr_page;
470 struct nfs_cache_array *array;
471 unsigned int count = 0;
472 int status;
473
474 buf.head->iov_base = xdr_page;
475 buf.head->iov_len = buflen;
476 buf.tail->iov_len = 0;
477 buf.page_base = 0;
478 buf.page_len = 0;
479 buf.buflen = buf.head->iov_len;
480 buf.len = buf.head->iov_len;
481
482 xdr_init_decode(&stream, &buf, ptr);
483
484
485 do {
486 status = xdr_decode(desc, entry, &stream);
487 if (status != 0) {
488 if (status == -EAGAIN)
489 status = 0;
490 break;
491 }
492
493 count++;
494
495 if (desc->plus == 1)
496 nfs_prime_dcache(desc->file->f_path.dentry, entry);
497
498 status = nfs_readdir_add_to_array(entry, page);
499 if (status != 0)
500 break;
501 } while (!entry->eof);
502
503 if (count == 0 || (status == -EBADCOOKIE && entry->eof == 1)) {
504 array = nfs_readdir_get_array(page);
505 if (!IS_ERR(array)) {
506 array->eof_index = array->size;
507 status = 0;
508 nfs_readdir_release_array(page);
509 } else
510 status = PTR_ERR(array);
511 }
512 return status;
513}
514
515static
516void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
517{
518 unsigned int i;
519 for (i = 0; i < npages; i++)
520 put_page(pages[i]);
521}
522
523static
524void nfs_readdir_free_large_page(void *ptr, struct page **pages,
525 unsigned int npages)
526{
527 vm_unmap_ram(ptr, npages);
528 nfs_readdir_free_pagearray(pages, npages);
529}
530
531/*
532 * nfs_readdir_large_page will allocate pages that must be freed with a call
533 * to nfs_readdir_free_large_page
534 */
535static
536void *nfs_readdir_large_page(struct page **pages, unsigned int npages)
537{
538 void *ptr;
539 unsigned int i;
540
541 for (i = 0; i < npages; i++) {
542 struct page *page = alloc_page(GFP_KERNEL);
543 if (page == NULL)
544 goto out_freepages;
545 pages[i] = page;
546 }
547
548 ptr = vm_map_ram(pages, npages, 0, PAGE_KERNEL);
549 if (!IS_ERR_OR_NULL(ptr))
550 return ptr;
551out_freepages:
552 nfs_readdir_free_pagearray(pages, i);
553 return NULL;
554}
555
556static
557int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
558{
559 struct page *pages[NFS_MAX_READDIR_PAGES];
560 void *pages_ptr = NULL;
561 struct nfs_entry entry;
562 struct file *file = desc->file;
563 struct nfs_cache_array *array;
564 int status = -ENOMEM;
565 unsigned int array_size = ARRAY_SIZE(pages);
566
567 entry.prev_cookie = 0;
568 entry.cookie = *desc->dir_cookie;
569 entry.eof = 0;
570 entry.fh = nfs_alloc_fhandle();
571 entry.fattr = nfs_alloc_fattr();
572 if (entry.fh == NULL || entry.fattr == NULL)
573 goto out;
574
575 array = nfs_readdir_get_array(page);
576 if (IS_ERR(array)) {
577 status = PTR_ERR(array);
578 goto out;
579 }
580 memset(array, 0, sizeof(struct nfs_cache_array));
581 array->eof_index = -1;
582
583 pages_ptr = nfs_readdir_large_page(pages, array_size);
584 if (!pages_ptr)
585 goto out_release_array;
586 do {
587 unsigned int pglen;
588 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
589
590 if (status < 0)
591 break;
592 pglen = status;
593 status = nfs_readdir_page_filler(desc, &entry, pages_ptr, page, pglen);
594 if (status < 0) {
595 if (status == -ENOSPC)
596 status = 0;
597 break;
598 }
599 } while (array->eof_index < 0);
600
601 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
602out_release_array:
603 nfs_readdir_release_array(page);
604out:
605 nfs_free_fattr(entry.fattr);
606 nfs_free_fhandle(entry.fh);
607 return status;
608}
609
610/*
611 * Now we cache directories properly, by converting xdr information
612 * to an array that can be used for lookups later. This results in
613 * fewer cache pages, since we can store more information on each page.
614 * We only need to convert from xdr once so future lookups are much simpler
615 */
616static
617int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
618{
619 struct inode *inode = desc->file->f_path.dentry->d_inode;
620 int ret;
621
622 ret = nfs_readdir_xdr_to_array(desc, page, inode);
623 if (ret < 0)
624 goto error;
625 SetPageUptodate(page);
626
627 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
628 /* Should never happen */
629 nfs_zap_mapping(inode, inode->i_mapping);
630 }
631 unlock_page(page);
632 return 0;
633 error:
634 unlock_page(page);
635 return ret;
636}
637
638static
639void cache_page_release(nfs_readdir_descriptor_t *desc)
640{
641 page_cache_release(desc->page);
642 desc->page = NULL;
643}
644
645static
646struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
647{
648 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
649 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
650}
651
652/*
653 * Returns 0 if desc->dir_cookie was found on page desc->page_index
654 */
655static
656int find_cache_page(nfs_readdir_descriptor_t *desc)
657{
658 int res;
659
660 desc->page = get_cache_page(desc);
661 if (IS_ERR(desc->page))
662 return PTR_ERR(desc->page);
663
664 res = nfs_readdir_search_array(desc);
665 if (res == 0)
666 return 0;
667 cache_page_release(desc);
668 return res;
669}
670
671/* Search for desc->dir_cookie from the beginning of the page cache */
672static inline
673int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
674{
675 int res;
676
677 if (desc->page_index == 0)
678 desc->current_index = 0;
679 while (1) {
680 res = find_cache_page(desc);
681 if (res != -EAGAIN)
682 break;
683 desc->page_index++;
684 }
685 return res;
686}
687
688static inline unsigned int dt_type(struct inode *inode)
689{
690 return (inode->i_mode >> 12) & 15;
691}
692
693/*
694 * Once we've found the start of the dirent within a page: fill 'er up...
695 */
696static
697int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
698 filldir_t filldir)
699{
700 struct file *file = desc->file;
701 int i = 0;
702 int res = 0;
703 struct nfs_cache_array *array = NULL;
704 unsigned int d_type = DT_UNKNOWN;
705
706 array = nfs_readdir_get_array(desc->page);
707 if (IS_ERR(array)) {
708 res = PTR_ERR(array);
709 goto out;
710 }
711
712 for (i = desc->cache_entry_index; i < array->size; i++) {
713 struct nfs_cache_array_entry *ent;
714 d_type = DT_UNKNOWN;
715
716 ent = &array->array[i];
717 if (filldir(dirent, ent->string.name, ent->string.len,
718 file->f_pos, nfs_compat_user_ino64(ent->ino), d_type) < 0) {
719 desc->eof = 1;
720 break;
721 }
722 file->f_pos++;
723 desc->cache_entry_index = i;
724 if (i < (array->size-1))
725 *desc->dir_cookie = array->array[i+1].cookie;
726 else
727 *desc->dir_cookie = array->last_cookie;
728 }
729 if (i == array->eof_index)
730 desc->eof = 1;
731
732 nfs_readdir_release_array(desc->page);
733out:
734 cache_page_release(desc);
735 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
736 (unsigned long long)*desc->dir_cookie, res);
737 return res;
738}
739
740/*
741 * If we cannot find a cookie in our cache, we suspect that this is
742 * because it points to a deleted file, so we ask the server to return
743 * whatever it thinks is the next entry. We then feed this to filldir.
744 * If all goes well, we should then be able to find our way round the
745 * cache on the next call to readdir_search_pagecache();
746 *
747 * NOTE: we cannot add the anonymous page to the pagecache because
748 * the data it contains might not be page aligned. Besides,
749 * we should already have a complete representation of the
750 * directory in the page cache by the time we get here.
751 */
752static inline
753int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
754 filldir_t filldir)
755{
756 struct page *page = NULL;
757 int status;
758 struct inode *inode = desc->file->f_path.dentry->d_inode;
759
760 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
761 (unsigned long long)*desc->dir_cookie);
762
763 page = alloc_page(GFP_HIGHUSER);
764 if (!page) {
765 status = -ENOMEM;
766 goto out;
767 }
768
769 desc->page_index = 0;
770 desc->page = page;
771
772 status = nfs_readdir_xdr_to_array(desc, page, inode);
773 if (status < 0)
774 goto out_release;
775
776 status = nfs_do_filldir(desc, dirent, filldir);
777
778 out:
779 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
780 __func__, status);
781 return status;
782 out_release:
783 cache_page_release(desc);
784 goto out;
785}
786
787/* The file offset position represents the dirent entry number. A
788 last cookie cache takes care of the common case of reading the
789 whole directory.
790 */
791static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
792{
793 struct dentry *dentry = filp->f_path.dentry;
794 struct inode *inode = dentry->d_inode;
795 nfs_readdir_descriptor_t my_desc,
796 *desc = &my_desc;
797 int res = -ENOMEM;
798
799 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
800 dentry->d_parent->d_name.name, dentry->d_name.name,
801 (long long)filp->f_pos);
802 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
803
804 /*
805 * filp->f_pos points to the dirent entry number.
806 * *desc->dir_cookie has the cookie for the next entry. We have
807 * to either find the entry with the appropriate number or
808 * revalidate the cookie.
809 */
810 memset(desc, 0, sizeof(*desc));
811
812 desc->file = filp;
813 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
814 desc->decode = NFS_PROTO(inode)->decode_dirent;
815 desc->plus = NFS_USE_READDIRPLUS(inode);
816
817 nfs_block_sillyrename(dentry);
818 res = nfs_revalidate_mapping(inode, filp->f_mapping);
819 if (res < 0)
820 goto out;
821
822 while (desc->eof != 1) {
823 res = readdir_search_pagecache(desc);
824
825 if (res == -EBADCOOKIE) {
826 res = 0;
827 /* This means either end of directory */
828 if (*desc->dir_cookie && desc->eof == 0) {
829 /* Or that the server has 'lost' a cookie */
830 res = uncached_readdir(desc, dirent, filldir);
831 if (res == 0)
832 continue;
833 }
834 break;
835 }
836 if (res == -ETOOSMALL && desc->plus) {
837 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
838 nfs_zap_caches(inode);
839 desc->page_index = 0;
840 desc->plus = 0;
841 desc->eof = 0;
842 continue;
843 }
844 if (res < 0)
845 break;
846
847 res = nfs_do_filldir(desc, dirent, filldir);
848 if (res < 0)
849 break;
850 }
851out:
852 nfs_unblock_sillyrename(dentry);
853 if (res > 0)
854 res = 0;
855 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
856 dentry->d_parent->d_name.name, dentry->d_name.name,
857 res);
858 return res;
859}
860
861static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
862{
863 struct dentry *dentry = filp->f_path.dentry;
864 struct inode *inode = dentry->d_inode;
865
866 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
867 dentry->d_parent->d_name.name,
868 dentry->d_name.name,
869 offset, origin);
870
871 mutex_lock(&inode->i_mutex);
872 switch (origin) {
873 case 1:
874 offset += filp->f_pos;
875 case 0:
876 if (offset >= 0)
877 break;
878 default:
879 offset = -EINVAL;
880 goto out;
881 }
882 if (offset != filp->f_pos) {
883 filp->f_pos = offset;
884 nfs_file_open_context(filp)->dir_cookie = 0;
885 }
886out:
887 mutex_unlock(&inode->i_mutex);
888 return offset;
889}
890
891/*
892 * All directory operations under NFS are synchronous, so fsync()
893 * is a dummy operation.
894 */
895static int nfs_fsync_dir(struct file *filp, int datasync)
896{
897 struct dentry *dentry = filp->f_path.dentry;
898
899 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
900 dentry->d_parent->d_name.name, dentry->d_name.name,
901 datasync);
902
903 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
904 return 0;
905}
906
907/**
908 * nfs_force_lookup_revalidate - Mark the directory as having changed
909 * @dir - pointer to directory inode
910 *
911 * This forces the revalidation code in nfs_lookup_revalidate() to do a
912 * full lookup on all child dentries of 'dir' whenever a change occurs
913 * on the server that might have invalidated our dcache.
914 *
915 * The caller should be holding dir->i_lock
916 */
917void nfs_force_lookup_revalidate(struct inode *dir)
918{
919 NFS_I(dir)->cache_change_attribute++;
920}
921
922/*
923 * A check for whether or not the parent directory has changed.
924 * In the case it has, we assume that the dentries are untrustworthy
925 * and may need to be looked up again.
926 */
927static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
928{
929 if (IS_ROOT(dentry))
930 return 1;
931 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
932 return 0;
933 if (!nfs_verify_change_attribute(dir, dentry->d_time))
934 return 0;
935 /* Revalidate nfsi->cache_change_attribute before we declare a match */
936 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
937 return 0;
938 if (!nfs_verify_change_attribute(dir, dentry->d_time))
939 return 0;
940 return 1;
941}
942
943/*
944 * Return the intent data that applies to this particular path component
945 *
946 * Note that the current set of intents only apply to the very last
947 * component of the path.
948 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
949 */
950static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
951{
952 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
953 return 0;
954 return nd->flags & mask;
955}
956
957/*
958 * Use intent information to check whether or not we're going to do
959 * an O_EXCL create using this path component.
960 */
961static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
962{
963 if (NFS_PROTO(dir)->version == 2)
964 return 0;
965 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
966}
967
968/*
969 * Inode and filehandle revalidation for lookups.
970 *
971 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
972 * or if the intent information indicates that we're about to open this
973 * particular file and the "nocto" mount flag is not set.
974 *
975 */
976static inline
977int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
978{
979 struct nfs_server *server = NFS_SERVER(inode);
980
981 if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
982 return 0;
983 if (nd != NULL) {
984 /* VFS wants an on-the-wire revalidation */
985 if (nd->flags & LOOKUP_REVAL)
986 goto out_force;
987 /* This is an open(2) */
988 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
989 !(server->flags & NFS_MOUNT_NOCTO) &&
990 (S_ISREG(inode->i_mode) ||
991 S_ISDIR(inode->i_mode)))
992 goto out_force;
993 return 0;
994 }
995 return nfs_revalidate_inode(server, inode);
996out_force:
997 return __nfs_revalidate_inode(server, inode);
998}
999
1000/*
1001 * We judge how long we want to trust negative
1002 * dentries by looking at the parent inode mtime.
1003 *
1004 * If parent mtime has changed, we revalidate, else we wait for a
1005 * period corresponding to the parent's attribute cache timeout value.
1006 */
1007static inline
1008int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1009 struct nameidata *nd)
1010{
1011 /* Don't revalidate a negative dentry if we're creating a new file */
1012 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
1013 return 0;
1014 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1015 return 1;
1016 return !nfs_check_verifier(dir, dentry);
1017}
1018
1019/*
1020 * This is called every time the dcache has a lookup hit,
1021 * and we should check whether we can really trust that
1022 * lookup.
1023 *
1024 * NOTE! The hit can be a negative hit too, don't assume
1025 * we have an inode!
1026 *
1027 * If the parent directory is seen to have changed, we throw out the
1028 * cached dentry and do a new lookup.
1029 */
1030static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
1031{
1032 struct inode *dir;
1033 struct inode *inode;
1034 struct dentry *parent;
1035 struct nfs_fh *fhandle = NULL;
1036 struct nfs_fattr *fattr = NULL;
1037 int error;
1038
1039 parent = dget_parent(dentry);
1040 dir = parent->d_inode;
1041 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1042 inode = dentry->d_inode;
1043
1044 if (!inode) {
1045 if (nfs_neg_need_reval(dir, dentry, nd))
1046 goto out_bad;
1047 goto out_valid;
1048 }
1049
1050 if (is_bad_inode(inode)) {
1051 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1052 __func__, dentry->d_parent->d_name.name,
1053 dentry->d_name.name);
1054 goto out_bad;
1055 }
1056
1057 if (nfs_have_delegation(inode, FMODE_READ))
1058 goto out_set_verifier;
1059
1060 /* Force a full look up iff the parent directory has changed */
1061 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
1062 if (nfs_lookup_verify_inode(inode, nd))
1063 goto out_zap_parent;
1064 goto out_valid;
1065 }
1066
1067 if (NFS_STALE(inode))
1068 goto out_bad;
1069
1070 error = -ENOMEM;
1071 fhandle = nfs_alloc_fhandle();
1072 fattr = nfs_alloc_fattr();
1073 if (fhandle == NULL || fattr == NULL)
1074 goto out_error;
1075
1076 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1077 if (error)
1078 goto out_bad;
1079 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1080 goto out_bad;
1081 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1082 goto out_bad;
1083
1084 nfs_free_fattr(fattr);
1085 nfs_free_fhandle(fhandle);
1086out_set_verifier:
1087 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1088 out_valid:
1089 dput(parent);
1090 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1091 __func__, dentry->d_parent->d_name.name,
1092 dentry->d_name.name);
1093 return 1;
1094out_zap_parent:
1095 nfs_zap_caches(dir);
1096 out_bad:
1097 nfs_mark_for_revalidate(dir);
1098 if (inode && S_ISDIR(inode->i_mode)) {
1099 /* Purge readdir caches. */
1100 nfs_zap_caches(inode);
1101 /* If we have submounts, don't unhash ! */
1102 if (have_submounts(dentry))
1103 goto out_valid;
1104 if (dentry->d_flags & DCACHE_DISCONNECTED)
1105 goto out_valid;
1106 shrink_dcache_parent(dentry);
1107 }
1108 d_drop(dentry);
1109 nfs_free_fattr(fattr);
1110 nfs_free_fhandle(fhandle);
1111 dput(parent);
1112 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1113 __func__, dentry->d_parent->d_name.name,
1114 dentry->d_name.name);
1115 return 0;
1116out_error:
1117 nfs_free_fattr(fattr);
1118 nfs_free_fhandle(fhandle);
1119 dput(parent);
1120 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1121 __func__, dentry->d_parent->d_name.name,
1122 dentry->d_name.name, error);
1123 return error;
1124}
1125
1126/*
1127 * This is called from dput() when d_count is going to 0.
1128 */
1129static int nfs_dentry_delete(struct dentry *dentry)
1130{
1131 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1132 dentry->d_parent->d_name.name, dentry->d_name.name,
1133 dentry->d_flags);
1134
1135 /* Unhash any dentry with a stale inode */
1136 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1137 return 1;
1138
1139 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1140 /* Unhash it, so that ->d_iput() would be called */
1141 return 1;
1142 }
1143 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1144 /* Unhash it, so that ancestors of killed async unlink
1145 * files will be cleaned up during umount */
1146 return 1;
1147 }
1148 return 0;
1149
1150}
1151
1152static void nfs_drop_nlink(struct inode *inode)
1153{
1154 spin_lock(&inode->i_lock);
1155 if (inode->i_nlink > 0)
1156 drop_nlink(inode);
1157 spin_unlock(&inode->i_lock);
1158}
1159
1160/*
1161 * Called when the dentry loses inode.
1162 * We use it to clean up silly-renamed files.
1163 */
1164static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1165{
1166 if (S_ISDIR(inode->i_mode))
1167 /* drop any readdir cache as it could easily be old */
1168 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1169
1170 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1171 drop_nlink(inode);
1172 nfs_complete_unlink(dentry, inode);
1173 }
1174 iput(inode);
1175}
1176
1177const struct dentry_operations nfs_dentry_operations = {
1178 .d_revalidate = nfs_lookup_revalidate,
1179 .d_delete = nfs_dentry_delete,
1180 .d_iput = nfs_dentry_iput,
1181};
1182
1183static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1184{
1185 struct dentry *res;
1186 struct dentry *parent;
1187 struct inode *inode = NULL;
1188 struct nfs_fh *fhandle = NULL;
1189 struct nfs_fattr *fattr = NULL;
1190 int error;
1191
1192 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1193 dentry->d_parent->d_name.name, dentry->d_name.name);
1194 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1195
1196 res = ERR_PTR(-ENAMETOOLONG);
1197 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1198 goto out;
1199
1200 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1201
1202 /*
1203 * If we're doing an exclusive create, optimize away the lookup
1204 * but don't hash the dentry.
1205 */
1206 if (nfs_is_exclusive_create(dir, nd)) {
1207 d_instantiate(dentry, NULL);
1208 res = NULL;
1209 goto out;
1210 }
1211
1212 res = ERR_PTR(-ENOMEM);
1213 fhandle = nfs_alloc_fhandle();
1214 fattr = nfs_alloc_fattr();
1215 if (fhandle == NULL || fattr == NULL)
1216 goto out;
1217
1218 parent = dentry->d_parent;
1219 /* Protect against concurrent sillydeletes */
1220 nfs_block_sillyrename(parent);
1221 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1222 if (error == -ENOENT)
1223 goto no_entry;
1224 if (error < 0) {
1225 res = ERR_PTR(error);
1226 goto out_unblock_sillyrename;
1227 }
1228 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1229 res = (struct dentry *)inode;
1230 if (IS_ERR(res))
1231 goto out_unblock_sillyrename;
1232
1233no_entry:
1234 res = d_materialise_unique(dentry, inode);
1235 if (res != NULL) {
1236 if (IS_ERR(res))
1237 goto out_unblock_sillyrename;
1238 dentry = res;
1239 }
1240 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1241out_unblock_sillyrename:
1242 nfs_unblock_sillyrename(parent);
1243out:
1244 nfs_free_fattr(fattr);
1245 nfs_free_fhandle(fhandle);
1246 return res;
1247}
1248
1249#ifdef CONFIG_NFS_V4
1250static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1251
1252const struct dentry_operations nfs4_dentry_operations = {
1253 .d_revalidate = nfs_open_revalidate,
1254 .d_delete = nfs_dentry_delete,
1255 .d_iput = nfs_dentry_iput,
1256};
1257
1258/*
1259 * Use intent information to determine whether we need to substitute
1260 * the NFSv4-style stateful OPEN for the LOOKUP call
1261 */
1262static int is_atomic_open(struct nameidata *nd)
1263{
1264 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1265 return 0;
1266 /* NFS does not (yet) have a stateful open for directories */
1267 if (nd->flags & LOOKUP_DIRECTORY)
1268 return 0;
1269 /* Are we trying to write to a read only partition? */
1270 if (__mnt_is_readonly(nd->path.mnt) &&
1271 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1272 return 0;
1273 return 1;
1274}
1275
1276static struct nfs_open_context *nameidata_to_nfs_open_context(struct dentry *dentry, struct nameidata *nd)
1277{
1278 struct path path = {
1279 .mnt = nd->path.mnt,
1280 .dentry = dentry,
1281 };
1282 struct nfs_open_context *ctx;
1283 struct rpc_cred *cred;
1284 fmode_t fmode = nd->intent.open.flags & (FMODE_READ | FMODE_WRITE | FMODE_EXEC);
1285
1286 cred = rpc_lookup_cred();
1287 if (IS_ERR(cred))
1288 return ERR_CAST(cred);
1289 ctx = alloc_nfs_open_context(&path, cred, fmode);
1290 put_rpccred(cred);
1291 if (ctx == NULL)
1292 return ERR_PTR(-ENOMEM);
1293 return ctx;
1294}
1295
1296static int do_open(struct inode *inode, struct file *filp)
1297{
1298 nfs_fscache_set_inode_cookie(inode, filp);
1299 return 0;
1300}
1301
1302static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
1303{
1304 struct file *filp;
1305 int ret = 0;
1306
1307 /* If the open_intent is for execute, we have an extra check to make */
1308 if (ctx->mode & FMODE_EXEC) {
1309 ret = nfs_may_open(ctx->path.dentry->d_inode,
1310 ctx->cred,
1311 nd->intent.open.flags);
1312 if (ret < 0)
1313 goto out;
1314 }
1315 filp = lookup_instantiate_filp(nd, ctx->path.dentry, do_open);
1316 if (IS_ERR(filp))
1317 ret = PTR_ERR(filp);
1318 else
1319 nfs_file_set_open_context(filp, ctx);
1320out:
1321 put_nfs_open_context(ctx);
1322 return ret;
1323}
1324
1325static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1326{
1327 struct nfs_open_context *ctx;
1328 struct iattr attr;
1329 struct dentry *res = NULL;
1330 struct inode *inode;
1331 int open_flags;
1332 int err;
1333
1334 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1335 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1336
1337 /* Check that we are indeed trying to open this file */
1338 if (!is_atomic_open(nd))
1339 goto no_open;
1340
1341 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1342 res = ERR_PTR(-ENAMETOOLONG);
1343 goto out;
1344 }
1345 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1346
1347 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1348 * the dentry. */
1349 if (nd->flags & LOOKUP_EXCL) {
1350 d_instantiate(dentry, NULL);
1351 goto out;
1352 }
1353
1354 ctx = nameidata_to_nfs_open_context(dentry, nd);
1355 res = ERR_CAST(ctx);
1356 if (IS_ERR(ctx))
1357 goto out;
1358
1359 open_flags = nd->intent.open.flags;
1360 if (nd->flags & LOOKUP_CREATE) {
1361 attr.ia_mode = nd->intent.open.create_mode;
1362 attr.ia_valid = ATTR_MODE;
1363 if (!IS_POSIXACL(dir))
1364 attr.ia_mode &= ~current_umask();
1365 } else {
1366 open_flags &= ~(O_EXCL | O_CREAT);
1367 attr.ia_valid = 0;
1368 }
1369
1370 /* Open the file on the server */
1371 nfs_block_sillyrename(dentry->d_parent);
1372 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1373 if (IS_ERR(inode)) {
1374 nfs_unblock_sillyrename(dentry->d_parent);
1375 put_nfs_open_context(ctx);
1376 switch (PTR_ERR(inode)) {
1377 /* Make a negative dentry */
1378 case -ENOENT:
1379 d_add(dentry, NULL);
1380 res = NULL;
1381 goto out;
1382 /* This turned out not to be a regular file */
1383 case -ENOTDIR:
1384 goto no_open;
1385 case -ELOOP:
1386 if (!(nd->intent.open.flags & O_NOFOLLOW))
1387 goto no_open;
1388 /* case -EISDIR: */
1389 /* case -EINVAL: */
1390 default:
1391 res = ERR_CAST(inode);
1392 goto out;
1393 }
1394 }
1395 res = d_add_unique(dentry, inode);
1396 nfs_unblock_sillyrename(dentry->d_parent);
1397 if (res != NULL) {
1398 dput(ctx->path.dentry);
1399 ctx->path.dentry = dget(res);
1400 dentry = res;
1401 }
1402 err = nfs_intent_set_file(nd, ctx);
1403 if (err < 0) {
1404 if (res != NULL)
1405 dput(res);
1406 return ERR_PTR(err);
1407 }
1408out:
1409 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1410 return res;
1411no_open:
1412 return nfs_lookup(dir, dentry, nd);
1413}
1414
1415static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1416{
1417 struct dentry *parent = NULL;
1418 struct inode *inode = dentry->d_inode;
1419 struct inode *dir;
1420 struct nfs_open_context *ctx;
1421 int openflags, ret = 0;
1422
1423 if (!is_atomic_open(nd) || d_mountpoint(dentry))
1424 goto no_open;
1425
1426 parent = dget_parent(dentry);
1427 dir = parent->d_inode;
1428
1429 /* We can't create new files in nfs_open_revalidate(), so we
1430 * optimize away revalidation of negative dentries.
1431 */
1432 if (inode == NULL) {
1433 if (!nfs_neg_need_reval(dir, dentry, nd))
1434 ret = 1;
1435 goto out;
1436 }
1437
1438 /* NFS only supports OPEN on regular files */
1439 if (!S_ISREG(inode->i_mode))
1440 goto no_open_dput;
1441 openflags = nd->intent.open.flags;
1442 /* We cannot do exclusive creation on a positive dentry */
1443 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1444 goto no_open_dput;
1445 /* We can't create new files, or truncate existing ones here */
1446 openflags &= ~(O_CREAT|O_EXCL|O_TRUNC);
1447
1448 ctx = nameidata_to_nfs_open_context(dentry, nd);
1449 ret = PTR_ERR(ctx);
1450 if (IS_ERR(ctx))
1451 goto out;
1452 /*
1453 * Note: we're not holding inode->i_mutex and so may be racing with
1454 * operations that change the directory. We therefore save the
1455 * change attribute *before* we do the RPC call.
1456 */
1457 inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, NULL);
1458 if (IS_ERR(inode)) {
1459 ret = PTR_ERR(inode);
1460 switch (ret) {
1461 case -EPERM:
1462 case -EACCES:
1463 case -EDQUOT:
1464 case -ENOSPC:
1465 case -EROFS:
1466 goto out_put_ctx;
1467 default:
1468 goto out_drop;
1469 }
1470 }
1471 iput(inode);
1472 if (inode != dentry->d_inode)
1473 goto out_drop;
1474
1475 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1476 ret = nfs_intent_set_file(nd, ctx);
1477 if (ret >= 0)
1478 ret = 1;
1479out:
1480 dput(parent);
1481 return ret;
1482out_drop:
1483 d_drop(dentry);
1484 ret = 0;
1485out_put_ctx:
1486 put_nfs_open_context(ctx);
1487 goto out;
1488
1489no_open_dput:
1490 dput(parent);
1491no_open:
1492 return nfs_lookup_revalidate(dentry, nd);
1493}
1494
1495static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode,
1496 struct nameidata *nd)
1497{
1498 struct nfs_open_context *ctx = NULL;
1499 struct iattr attr;
1500 int error;
1501 int open_flags = 0;
1502
1503 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1504 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1505
1506 attr.ia_mode = mode;
1507 attr.ia_valid = ATTR_MODE;
1508
1509 if ((nd->flags & LOOKUP_CREATE) != 0) {
1510 open_flags = nd->intent.open.flags;
1511
1512 ctx = nameidata_to_nfs_open_context(dentry, nd);
1513 error = PTR_ERR(ctx);
1514 if (IS_ERR(ctx))
1515 goto out_err_drop;
1516 }
1517
1518 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx);
1519 if (error != 0)
1520 goto out_put_ctx;
1521 if (ctx != NULL) {
1522 error = nfs_intent_set_file(nd, ctx);
1523 if (error < 0)
1524 goto out_err;
1525 }
1526 return 0;
1527out_put_ctx:
1528 if (ctx != NULL)
1529 put_nfs_open_context(ctx);
1530out_err_drop:
1531 d_drop(dentry);
1532out_err:
1533 return error;
1534}
1535
1536#endif /* CONFIG_NFSV4 */
1537
1538/*
1539 * Code common to create, mkdir, and mknod.
1540 */
1541int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1542 struct nfs_fattr *fattr)
1543{
1544 struct dentry *parent = dget_parent(dentry);
1545 struct inode *dir = parent->d_inode;
1546 struct inode *inode;
1547 int error = -EACCES;
1548
1549 d_drop(dentry);
1550
1551 /* We may have been initialized further down */
1552 if (dentry->d_inode)
1553 goto out;
1554 if (fhandle->size == 0) {
1555 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1556 if (error)
1557 goto out_error;
1558 }
1559 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1560 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1561 struct nfs_server *server = NFS_SB(dentry->d_sb);
1562 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1563 if (error < 0)
1564 goto out_error;
1565 }
1566 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1567 error = PTR_ERR(inode);
1568 if (IS_ERR(inode))
1569 goto out_error;
1570 d_add(dentry, inode);
1571out:
1572 dput(parent);
1573 return 0;
1574out_error:
1575 nfs_mark_for_revalidate(dir);
1576 dput(parent);
1577 return error;
1578}
1579
1580/*
1581 * Following a failed create operation, we drop the dentry rather
1582 * than retain a negative dentry. This avoids a problem in the event
1583 * that the operation succeeded on the server, but an error in the
1584 * reply path made it appear to have failed.
1585 */
1586static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1587 struct nameidata *nd)
1588{
1589 struct iattr attr;
1590 int error;
1591
1592 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1593 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1594
1595 attr.ia_mode = mode;
1596 attr.ia_valid = ATTR_MODE;
1597
1598 error = NFS_PROTO(dir)->create(dir, dentry, &attr, 0, NULL);
1599 if (error != 0)
1600 goto out_err;
1601 return 0;
1602out_err:
1603 d_drop(dentry);
1604 return error;
1605}
1606
1607/*
1608 * See comments for nfs_proc_create regarding failed operations.
1609 */
1610static int
1611nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1612{
1613 struct iattr attr;
1614 int status;
1615
1616 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1617 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1618
1619 if (!new_valid_dev(rdev))
1620 return -EINVAL;
1621
1622 attr.ia_mode = mode;
1623 attr.ia_valid = ATTR_MODE;
1624
1625 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1626 if (status != 0)
1627 goto out_err;
1628 return 0;
1629out_err:
1630 d_drop(dentry);
1631 return status;
1632}
1633
1634/*
1635 * See comments for nfs_proc_create regarding failed operations.
1636 */
1637static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1638{
1639 struct iattr attr;
1640 int error;
1641
1642 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1643 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1644
1645 attr.ia_valid = ATTR_MODE;
1646 attr.ia_mode = mode | S_IFDIR;
1647
1648 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1649 if (error != 0)
1650 goto out_err;
1651 return 0;
1652out_err:
1653 d_drop(dentry);
1654 return error;
1655}
1656
1657static void nfs_dentry_handle_enoent(struct dentry *dentry)
1658{
1659 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1660 d_delete(dentry);
1661}
1662
1663static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1664{
1665 int error;
1666
1667 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1668 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1669
1670 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1671 /* Ensure the VFS deletes this inode */
1672 if (error == 0 && dentry->d_inode != NULL)
1673 clear_nlink(dentry->d_inode);
1674 else if (error == -ENOENT)
1675 nfs_dentry_handle_enoent(dentry);
1676
1677 return error;
1678}
1679
1680/*
1681 * Remove a file after making sure there are no pending writes,
1682 * and after checking that the file has only one user.
1683 *
1684 * We invalidate the attribute cache and free the inode prior to the operation
1685 * to avoid possible races if the server reuses the inode.
1686 */
1687static int nfs_safe_remove(struct dentry *dentry)
1688{
1689 struct inode *dir = dentry->d_parent->d_inode;
1690 struct inode *inode = dentry->d_inode;
1691 int error = -EBUSY;
1692
1693 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1694 dentry->d_parent->d_name.name, dentry->d_name.name);
1695
1696 /* If the dentry was sillyrenamed, we simply call d_delete() */
1697 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1698 error = 0;
1699 goto out;
1700 }
1701
1702 if (inode != NULL) {
1703 nfs_inode_return_delegation(inode);
1704 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1705 /* The VFS may want to delete this inode */
1706 if (error == 0)
1707 nfs_drop_nlink(inode);
1708 nfs_mark_for_revalidate(inode);
1709 } else
1710 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1711 if (error == -ENOENT)
1712 nfs_dentry_handle_enoent(dentry);
1713out:
1714 return error;
1715}
1716
1717/* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1718 * belongs to an active ".nfs..." file and we return -EBUSY.
1719 *
1720 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1721 */
1722static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1723{
1724 int error;
1725 int need_rehash = 0;
1726
1727 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1728 dir->i_ino, dentry->d_name.name);
1729
1730 spin_lock(&dcache_lock);
1731 spin_lock(&dentry->d_lock);
1732 if (atomic_read(&dentry->d_count) > 1) {
1733 spin_unlock(&dentry->d_lock);
1734 spin_unlock(&dcache_lock);
1735 /* Start asynchronous writeout of the inode */
1736 write_inode_now(dentry->d_inode, 0);
1737 error = nfs_sillyrename(dir, dentry);
1738 return error;
1739 }
1740 if (!d_unhashed(dentry)) {
1741 __d_drop(dentry);
1742 need_rehash = 1;
1743 }
1744 spin_unlock(&dentry->d_lock);
1745 spin_unlock(&dcache_lock);
1746 error = nfs_safe_remove(dentry);
1747 if (!error || error == -ENOENT) {
1748 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1749 } else if (need_rehash)
1750 d_rehash(dentry);
1751 return error;
1752}
1753
1754/*
1755 * To create a symbolic link, most file systems instantiate a new inode,
1756 * add a page to it containing the path, then write it out to the disk
1757 * using prepare_write/commit_write.
1758 *
1759 * Unfortunately the NFS client can't create the in-core inode first
1760 * because it needs a file handle to create an in-core inode (see
1761 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1762 * symlink request has completed on the server.
1763 *
1764 * So instead we allocate a raw page, copy the symname into it, then do
1765 * the SYMLINK request with the page as the buffer. If it succeeds, we
1766 * now have a new file handle and can instantiate an in-core NFS inode
1767 * and move the raw page into its mapping.
1768 */
1769static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1770{
1771 struct pagevec lru_pvec;
1772 struct page *page;
1773 char *kaddr;
1774 struct iattr attr;
1775 unsigned int pathlen = strlen(symname);
1776 int error;
1777
1778 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1779 dir->i_ino, dentry->d_name.name, symname);
1780
1781 if (pathlen > PAGE_SIZE)
1782 return -ENAMETOOLONG;
1783
1784 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1785 attr.ia_valid = ATTR_MODE;
1786
1787 page = alloc_page(GFP_HIGHUSER);
1788 if (!page)
1789 return -ENOMEM;
1790
1791 kaddr = kmap_atomic(page, KM_USER0);
1792 memcpy(kaddr, symname, pathlen);
1793 if (pathlen < PAGE_SIZE)
1794 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1795 kunmap_atomic(kaddr, KM_USER0);
1796
1797 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1798 if (error != 0) {
1799 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1800 dir->i_sb->s_id, dir->i_ino,
1801 dentry->d_name.name, symname, error);
1802 d_drop(dentry);
1803 __free_page(page);
1804 return error;
1805 }
1806
1807 /*
1808 * No big deal if we can't add this page to the page cache here.
1809 * READLINK will get the missing page from the server if needed.
1810 */
1811 pagevec_init(&lru_pvec, 0);
1812 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1813 GFP_KERNEL)) {
1814 pagevec_add(&lru_pvec, page);
1815 pagevec_lru_add_file(&lru_pvec);
1816 SetPageUptodate(page);
1817 unlock_page(page);
1818 } else
1819 __free_page(page);
1820
1821 return 0;
1822}
1823
1824static int
1825nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1826{
1827 struct inode *inode = old_dentry->d_inode;
1828 int error;
1829
1830 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1831 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1832 dentry->d_parent->d_name.name, dentry->d_name.name);
1833
1834 nfs_inode_return_delegation(inode);
1835
1836 d_drop(dentry);
1837 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1838 if (error == 0) {
1839 ihold(inode);
1840 d_add(dentry, inode);
1841 }
1842 return error;
1843}
1844
1845/*
1846 * RENAME
1847 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1848 * different file handle for the same inode after a rename (e.g. when
1849 * moving to a different directory). A fail-safe method to do so would
1850 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1851 * rename the old file using the sillyrename stuff. This way, the original
1852 * file in old_dir will go away when the last process iput()s the inode.
1853 *
1854 * FIXED.
1855 *
1856 * It actually works quite well. One needs to have the possibility for
1857 * at least one ".nfs..." file in each directory the file ever gets
1858 * moved or linked to which happens automagically with the new
1859 * implementation that only depends on the dcache stuff instead of
1860 * using the inode layer
1861 *
1862 * Unfortunately, things are a little more complicated than indicated
1863 * above. For a cross-directory move, we want to make sure we can get
1864 * rid of the old inode after the operation. This means there must be
1865 * no pending writes (if it's a file), and the use count must be 1.
1866 * If these conditions are met, we can drop the dentries before doing
1867 * the rename.
1868 */
1869static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1870 struct inode *new_dir, struct dentry *new_dentry)
1871{
1872 struct inode *old_inode = old_dentry->d_inode;
1873 struct inode *new_inode = new_dentry->d_inode;
1874 struct dentry *dentry = NULL, *rehash = NULL;
1875 int error = -EBUSY;
1876
1877 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1878 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1879 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1880 atomic_read(&new_dentry->d_count));
1881
1882 /*
1883 * For non-directories, check whether the target is busy and if so,
1884 * make a copy of the dentry and then do a silly-rename. If the
1885 * silly-rename succeeds, the copied dentry is hashed and becomes
1886 * the new target.
1887 */
1888 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1889 /*
1890 * To prevent any new references to the target during the
1891 * rename, we unhash the dentry in advance.
1892 */
1893 if (!d_unhashed(new_dentry)) {
1894 d_drop(new_dentry);
1895 rehash = new_dentry;
1896 }
1897
1898 if (atomic_read(&new_dentry->d_count) > 2) {
1899 int err;
1900
1901 /* copy the target dentry's name */
1902 dentry = d_alloc(new_dentry->d_parent,
1903 &new_dentry->d_name);
1904 if (!dentry)
1905 goto out;
1906
1907 /* silly-rename the existing target ... */
1908 err = nfs_sillyrename(new_dir, new_dentry);
1909 if (err)
1910 goto out;
1911
1912 new_dentry = dentry;
1913 rehash = NULL;
1914 new_inode = NULL;
1915 }
1916 }
1917
1918 nfs_inode_return_delegation(old_inode);
1919 if (new_inode != NULL)
1920 nfs_inode_return_delegation(new_inode);
1921
1922 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1923 new_dir, &new_dentry->d_name);
1924 nfs_mark_for_revalidate(old_inode);
1925out:
1926 if (rehash)
1927 d_rehash(rehash);
1928 if (!error) {
1929 if (new_inode != NULL)
1930 nfs_drop_nlink(new_inode);
1931 d_move(old_dentry, new_dentry);
1932 nfs_set_verifier(new_dentry,
1933 nfs_save_change_attribute(new_dir));
1934 } else if (error == -ENOENT)
1935 nfs_dentry_handle_enoent(old_dentry);
1936
1937 /* new dentry created? */
1938 if (dentry)
1939 dput(dentry);
1940 return error;
1941}
1942
1943static DEFINE_SPINLOCK(nfs_access_lru_lock);
1944static LIST_HEAD(nfs_access_lru_list);
1945static atomic_long_t nfs_access_nr_entries;
1946
1947static void nfs_access_free_entry(struct nfs_access_entry *entry)
1948{
1949 put_rpccred(entry->cred);
1950 kfree(entry);
1951 smp_mb__before_atomic_dec();
1952 atomic_long_dec(&nfs_access_nr_entries);
1953 smp_mb__after_atomic_dec();
1954}
1955
1956static void nfs_access_free_list(struct list_head *head)
1957{
1958 struct nfs_access_entry *cache;
1959
1960 while (!list_empty(head)) {
1961 cache = list_entry(head->next, struct nfs_access_entry, lru);
1962 list_del(&cache->lru);
1963 nfs_access_free_entry(cache);
1964 }
1965}
1966
1967int nfs_access_cache_shrinker(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
1968{
1969 LIST_HEAD(head);
1970 struct nfs_inode *nfsi, *next;
1971 struct nfs_access_entry *cache;
1972
1973 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1974 return (nr_to_scan == 0) ? 0 : -1;
1975
1976 spin_lock(&nfs_access_lru_lock);
1977 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1978 struct inode *inode;
1979
1980 if (nr_to_scan-- == 0)
1981 break;
1982 inode = &nfsi->vfs_inode;
1983 spin_lock(&inode->i_lock);
1984 if (list_empty(&nfsi->access_cache_entry_lru))
1985 goto remove_lru_entry;
1986 cache = list_entry(nfsi->access_cache_entry_lru.next,
1987 struct nfs_access_entry, lru);
1988 list_move(&cache->lru, &head);
1989 rb_erase(&cache->rb_node, &nfsi->access_cache);
1990 if (!list_empty(&nfsi->access_cache_entry_lru))
1991 list_move_tail(&nfsi->access_cache_inode_lru,
1992 &nfs_access_lru_list);
1993 else {
1994remove_lru_entry:
1995 list_del_init(&nfsi->access_cache_inode_lru);
1996 smp_mb__before_clear_bit();
1997 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1998 smp_mb__after_clear_bit();
1999 }
2000 spin_unlock(&inode->i_lock);
2001 }
2002 spin_unlock(&nfs_access_lru_lock);
2003 nfs_access_free_list(&head);
2004 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
2005}
2006
2007static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2008{
2009 struct rb_root *root_node = &nfsi->access_cache;
2010 struct rb_node *n;
2011 struct nfs_access_entry *entry;
2012
2013 /* Unhook entries from the cache */
2014 while ((n = rb_first(root_node)) != NULL) {
2015 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2016 rb_erase(n, root_node);
2017 list_move(&entry->lru, head);
2018 }
2019 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2020}
2021
2022void nfs_access_zap_cache(struct inode *inode)
2023{
2024 LIST_HEAD(head);
2025
2026 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2027 return;
2028 /* Remove from global LRU init */
2029 spin_lock(&nfs_access_lru_lock);
2030 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2031 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2032
2033 spin_lock(&inode->i_lock);
2034 __nfs_access_zap_cache(NFS_I(inode), &head);
2035 spin_unlock(&inode->i_lock);
2036 spin_unlock(&nfs_access_lru_lock);
2037 nfs_access_free_list(&head);
2038}
2039
2040static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2041{
2042 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2043 struct nfs_access_entry *entry;
2044
2045 while (n != NULL) {
2046 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2047
2048 if (cred < entry->cred)
2049 n = n->rb_left;
2050 else if (cred > entry->cred)
2051 n = n->rb_right;
2052 else
2053 return entry;
2054 }
2055 return NULL;
2056}
2057
2058static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2059{
2060 struct nfs_inode *nfsi = NFS_I(inode);
2061 struct nfs_access_entry *cache;
2062 int err = -ENOENT;
2063
2064 spin_lock(&inode->i_lock);
2065 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2066 goto out_zap;
2067 cache = nfs_access_search_rbtree(inode, cred);
2068 if (cache == NULL)
2069 goto out;
2070 if (!nfs_have_delegated_attributes(inode) &&
2071 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2072 goto out_stale;
2073 res->jiffies = cache->jiffies;
2074 res->cred = cache->cred;
2075 res->mask = cache->mask;
2076 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2077 err = 0;
2078out:
2079 spin_unlock(&inode->i_lock);
2080 return err;
2081out_stale:
2082 rb_erase(&cache->rb_node, &nfsi->access_cache);
2083 list_del(&cache->lru);
2084 spin_unlock(&inode->i_lock);
2085 nfs_access_free_entry(cache);
2086 return -ENOENT;
2087out_zap:
2088 spin_unlock(&inode->i_lock);
2089 nfs_access_zap_cache(inode);
2090 return -ENOENT;
2091}
2092
2093static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2094{
2095 struct nfs_inode *nfsi = NFS_I(inode);
2096 struct rb_root *root_node = &nfsi->access_cache;
2097 struct rb_node **p = &root_node->rb_node;
2098 struct rb_node *parent = NULL;
2099 struct nfs_access_entry *entry;
2100
2101 spin_lock(&inode->i_lock);
2102 while (*p != NULL) {
2103 parent = *p;
2104 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2105
2106 if (set->cred < entry->cred)
2107 p = &parent->rb_left;
2108 else if (set->cred > entry->cred)
2109 p = &parent->rb_right;
2110 else
2111 goto found;
2112 }
2113 rb_link_node(&set->rb_node, parent, p);
2114 rb_insert_color(&set->rb_node, root_node);
2115 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2116 spin_unlock(&inode->i_lock);
2117 return;
2118found:
2119 rb_replace_node(parent, &set->rb_node, root_node);
2120 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2121 list_del(&entry->lru);
2122 spin_unlock(&inode->i_lock);
2123 nfs_access_free_entry(entry);
2124}
2125
2126static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2127{
2128 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2129 if (cache == NULL)
2130 return;
2131 RB_CLEAR_NODE(&cache->rb_node);
2132 cache->jiffies = set->jiffies;
2133 cache->cred = get_rpccred(set->cred);
2134 cache->mask = set->mask;
2135
2136 nfs_access_add_rbtree(inode, cache);
2137
2138 /* Update accounting */
2139 smp_mb__before_atomic_inc();
2140 atomic_long_inc(&nfs_access_nr_entries);
2141 smp_mb__after_atomic_inc();
2142
2143 /* Add inode to global LRU list */
2144 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2145 spin_lock(&nfs_access_lru_lock);
2146 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2147 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2148 &nfs_access_lru_list);
2149 spin_unlock(&nfs_access_lru_lock);
2150 }
2151}
2152
2153static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2154{
2155 struct nfs_access_entry cache;
2156 int status;
2157
2158 status = nfs_access_get_cached(inode, cred, &cache);
2159 if (status == 0)
2160 goto out;
2161
2162 /* Be clever: ask server to check for all possible rights */
2163 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2164 cache.cred = cred;
2165 cache.jiffies = jiffies;
2166 status = NFS_PROTO(inode)->access(inode, &cache);
2167 if (status != 0) {
2168 if (status == -ESTALE) {
2169 nfs_zap_caches(inode);
2170 if (!S_ISDIR(inode->i_mode))
2171 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2172 }
2173 return status;
2174 }
2175 nfs_access_add_cache(inode, &cache);
2176out:
2177 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2178 return 0;
2179 return -EACCES;
2180}
2181
2182static int nfs_open_permission_mask(int openflags)
2183{
2184 int mask = 0;
2185
2186 if (openflags & FMODE_READ)
2187 mask |= MAY_READ;
2188 if (openflags & FMODE_WRITE)
2189 mask |= MAY_WRITE;
2190 if (openflags & FMODE_EXEC)
2191 mask |= MAY_EXEC;
2192 return mask;
2193}
2194
2195int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2196{
2197 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2198}
2199
2200int nfs_permission(struct inode *inode, int mask)
2201{
2202 struct rpc_cred *cred;
2203 int res = 0;
2204
2205 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2206
2207 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2208 goto out;
2209 /* Is this sys_access() ? */
2210 if (mask & (MAY_ACCESS | MAY_CHDIR))
2211 goto force_lookup;
2212
2213 switch (inode->i_mode & S_IFMT) {
2214 case S_IFLNK:
2215 goto out;
2216 case S_IFREG:
2217 /* NFSv4 has atomic_open... */
2218 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2219 && (mask & MAY_OPEN)
2220 && !(mask & MAY_EXEC))
2221 goto out;
2222 break;
2223 case S_IFDIR:
2224 /*
2225 * Optimize away all write operations, since the server
2226 * will check permissions when we perform the op.
2227 */
2228 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2229 goto out;
2230 }
2231
2232force_lookup:
2233 if (!NFS_PROTO(inode)->access)
2234 goto out_notsup;
2235
2236 cred = rpc_lookup_cred();
2237 if (!IS_ERR(cred)) {
2238 res = nfs_do_access(inode, cred, mask);
2239 put_rpccred(cred);
2240 } else
2241 res = PTR_ERR(cred);
2242out:
2243 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2244 res = -EACCES;
2245
2246 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2247 inode->i_sb->s_id, inode->i_ino, mask, res);
2248 return res;
2249out_notsup:
2250 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2251 if (res == 0)
2252 res = generic_permission(inode, mask, NULL);
2253 goto out;
2254}
2255
2256/*
2257 * Local variables:
2258 * version-control: t
2259 * kept-new-versions: 5
2260 * End:
2261 */