]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - include/linux/memcontrol.h
mm: memcontrol: use generic mod_memcg_page_state for kmem pages
[mirror_ubuntu-jammy-kernel.git] / include / linux / memcontrol.h
... / ...
CommitLineData
1/* memcontrol.h - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#ifndef _LINUX_MEMCONTROL_H
21#define _LINUX_MEMCONTROL_H
22#include <linux/cgroup.h>
23#include <linux/vm_event_item.h>
24#include <linux/hardirq.h>
25#include <linux/jump_label.h>
26#include <linux/page_counter.h>
27#include <linux/vmpressure.h>
28#include <linux/eventfd.h>
29#include <linux/mmzone.h>
30#include <linux/writeback.h>
31#include <linux/page-flags.h>
32
33struct mem_cgroup;
34struct page;
35struct mm_struct;
36struct kmem_cache;
37
38/* Cgroup-specific page state, on top of universal node page state */
39enum memcg_stat_item {
40 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
41 MEMCG_RSS,
42 MEMCG_RSS_HUGE,
43 MEMCG_SWAP,
44 MEMCG_SOCK,
45 /* XXX: why are these zone and not node counters? */
46 MEMCG_KERNEL_STACK_KB,
47 MEMCG_NR_STAT,
48};
49
50/* Cgroup-specific events, on top of universal VM events */
51enum memcg_event_item {
52 MEMCG_LOW = NR_VM_EVENT_ITEMS,
53 MEMCG_HIGH,
54 MEMCG_MAX,
55 MEMCG_OOM,
56 MEMCG_NR_EVENTS,
57};
58
59struct mem_cgroup_reclaim_cookie {
60 pg_data_t *pgdat;
61 int priority;
62 unsigned int generation;
63};
64
65#ifdef CONFIG_MEMCG
66
67#define MEM_CGROUP_ID_SHIFT 16
68#define MEM_CGROUP_ID_MAX USHRT_MAX
69
70struct mem_cgroup_id {
71 int id;
72 atomic_t ref;
73};
74
75/*
76 * Per memcg event counter is incremented at every pagein/pageout. With THP,
77 * it will be incremated by the number of pages. This counter is used for
78 * for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 */
81enum mem_cgroup_events_target {
82 MEM_CGROUP_TARGET_THRESH,
83 MEM_CGROUP_TARGET_SOFTLIMIT,
84 MEM_CGROUP_TARGET_NUMAINFO,
85 MEM_CGROUP_NTARGETS,
86};
87
88struct mem_cgroup_stat_cpu {
89 long count[MEMCG_NR_STAT];
90 unsigned long events[MEMCG_NR_EVENTS];
91 unsigned long nr_page_events;
92 unsigned long targets[MEM_CGROUP_NTARGETS];
93};
94
95struct mem_cgroup_reclaim_iter {
96 struct mem_cgroup *position;
97 /* scan generation, increased every round-trip */
98 unsigned int generation;
99};
100
101/*
102 * per-zone information in memory controller.
103 */
104struct mem_cgroup_per_node {
105 struct lruvec lruvec;
106 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
107
108 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1];
109
110 struct rb_node tree_node; /* RB tree node */
111 unsigned long usage_in_excess;/* Set to the value by which */
112 /* the soft limit is exceeded*/
113 bool on_tree;
114 struct mem_cgroup *memcg; /* Back pointer, we cannot */
115 /* use container_of */
116};
117
118struct mem_cgroup_threshold {
119 struct eventfd_ctx *eventfd;
120 unsigned long threshold;
121};
122
123/* For threshold */
124struct mem_cgroup_threshold_ary {
125 /* An array index points to threshold just below or equal to usage. */
126 int current_threshold;
127 /* Size of entries[] */
128 unsigned int size;
129 /* Array of thresholds */
130 struct mem_cgroup_threshold entries[0];
131};
132
133struct mem_cgroup_thresholds {
134 /* Primary thresholds array */
135 struct mem_cgroup_threshold_ary *primary;
136 /*
137 * Spare threshold array.
138 * This is needed to make mem_cgroup_unregister_event() "never fail".
139 * It must be able to store at least primary->size - 1 entries.
140 */
141 struct mem_cgroup_threshold_ary *spare;
142};
143
144enum memcg_kmem_state {
145 KMEM_NONE,
146 KMEM_ALLOCATED,
147 KMEM_ONLINE,
148};
149
150/*
151 * The memory controller data structure. The memory controller controls both
152 * page cache and RSS per cgroup. We would eventually like to provide
153 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
154 * to help the administrator determine what knobs to tune.
155 */
156struct mem_cgroup {
157 struct cgroup_subsys_state css;
158
159 /* Private memcg ID. Used to ID objects that outlive the cgroup */
160 struct mem_cgroup_id id;
161
162 /* Accounted resources */
163 struct page_counter memory;
164 struct page_counter swap;
165
166 /* Legacy consumer-oriented counters */
167 struct page_counter memsw;
168 struct page_counter kmem;
169 struct page_counter tcpmem;
170
171 /* Normal memory consumption range */
172 unsigned long low;
173 unsigned long high;
174
175 /* Range enforcement for interrupt charges */
176 struct work_struct high_work;
177
178 unsigned long soft_limit;
179
180 /* vmpressure notifications */
181 struct vmpressure vmpressure;
182
183 /*
184 * Should the accounting and control be hierarchical, per subtree?
185 */
186 bool use_hierarchy;
187
188 /* protected by memcg_oom_lock */
189 bool oom_lock;
190 int under_oom;
191
192 int swappiness;
193 /* OOM-Killer disable */
194 int oom_kill_disable;
195
196 /* handle for "memory.events" */
197 struct cgroup_file events_file;
198
199 /* protect arrays of thresholds */
200 struct mutex thresholds_lock;
201
202 /* thresholds for memory usage. RCU-protected */
203 struct mem_cgroup_thresholds thresholds;
204
205 /* thresholds for mem+swap usage. RCU-protected */
206 struct mem_cgroup_thresholds memsw_thresholds;
207
208 /* For oom notifier event fd */
209 struct list_head oom_notify;
210
211 /*
212 * Should we move charges of a task when a task is moved into this
213 * mem_cgroup ? And what type of charges should we move ?
214 */
215 unsigned long move_charge_at_immigrate;
216 /*
217 * set > 0 if pages under this cgroup are moving to other cgroup.
218 */
219 atomic_t moving_account;
220 /* taken only while moving_account > 0 */
221 spinlock_t move_lock;
222 struct task_struct *move_lock_task;
223 unsigned long move_lock_flags;
224 /*
225 * percpu counter.
226 */
227 struct mem_cgroup_stat_cpu __percpu *stat;
228
229 unsigned long socket_pressure;
230
231 /* Legacy tcp memory accounting */
232 bool tcpmem_active;
233 int tcpmem_pressure;
234
235#ifndef CONFIG_SLOB
236 /* Index in the kmem_cache->memcg_params.memcg_caches array */
237 int kmemcg_id;
238 enum memcg_kmem_state kmem_state;
239 struct list_head kmem_caches;
240#endif
241
242 int last_scanned_node;
243#if MAX_NUMNODES > 1
244 nodemask_t scan_nodes;
245 atomic_t numainfo_events;
246 atomic_t numainfo_updating;
247#endif
248
249#ifdef CONFIG_CGROUP_WRITEBACK
250 struct list_head cgwb_list;
251 struct wb_domain cgwb_domain;
252#endif
253
254 /* List of events which userspace want to receive */
255 struct list_head event_list;
256 spinlock_t event_list_lock;
257
258 struct mem_cgroup_per_node *nodeinfo[0];
259 /* WARNING: nodeinfo must be the last member here */
260};
261
262extern struct mem_cgroup *root_mem_cgroup;
263
264static inline bool mem_cgroup_disabled(void)
265{
266 return !cgroup_subsys_enabled(memory_cgrp_subsys);
267}
268
269static inline void mem_cgroup_event(struct mem_cgroup *memcg,
270 enum memcg_event_item event)
271{
272 this_cpu_inc(memcg->stat->events[event]);
273 cgroup_file_notify(&memcg->events_file);
274}
275
276bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg);
277
278int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
279 gfp_t gfp_mask, struct mem_cgroup **memcgp,
280 bool compound);
281void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
282 bool lrucare, bool compound);
283void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
284 bool compound);
285void mem_cgroup_uncharge(struct page *page);
286void mem_cgroup_uncharge_list(struct list_head *page_list);
287
288void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
289
290static struct mem_cgroup_per_node *
291mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
292{
293 return memcg->nodeinfo[nid];
294}
295
296/**
297 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone
298 * @node: node of the wanted lruvec
299 * @memcg: memcg of the wanted lruvec
300 *
301 * Returns the lru list vector holding pages for a given @node or a given
302 * @memcg and @zone. This can be the node lruvec, if the memory controller
303 * is disabled.
304 */
305static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
306 struct mem_cgroup *memcg)
307{
308 struct mem_cgroup_per_node *mz;
309 struct lruvec *lruvec;
310
311 if (mem_cgroup_disabled()) {
312 lruvec = node_lruvec(pgdat);
313 goto out;
314 }
315
316 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
317 lruvec = &mz->lruvec;
318out:
319 /*
320 * Since a node can be onlined after the mem_cgroup was created,
321 * we have to be prepared to initialize lruvec->pgdat here;
322 * and if offlined then reonlined, we need to reinitialize it.
323 */
324 if (unlikely(lruvec->pgdat != pgdat))
325 lruvec->pgdat = pgdat;
326 return lruvec;
327}
328
329struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
330
331bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
332struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
333
334static inline
335struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
336 return css ? container_of(css, struct mem_cgroup, css) : NULL;
337}
338
339#define mem_cgroup_from_counter(counter, member) \
340 container_of(counter, struct mem_cgroup, member)
341
342struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
343 struct mem_cgroup *,
344 struct mem_cgroup_reclaim_cookie *);
345void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
346int mem_cgroup_scan_tasks(struct mem_cgroup *,
347 int (*)(struct task_struct *, void *), void *);
348
349static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
350{
351 if (mem_cgroup_disabled())
352 return 0;
353
354 return memcg->id.id;
355}
356struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
357
358static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
359{
360 struct mem_cgroup_per_node *mz;
361
362 if (mem_cgroup_disabled())
363 return NULL;
364
365 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
366 return mz->memcg;
367}
368
369/**
370 * parent_mem_cgroup - find the accounting parent of a memcg
371 * @memcg: memcg whose parent to find
372 *
373 * Returns the parent memcg, or NULL if this is the root or the memory
374 * controller is in legacy no-hierarchy mode.
375 */
376static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
377{
378 if (!memcg->memory.parent)
379 return NULL;
380 return mem_cgroup_from_counter(memcg->memory.parent, memory);
381}
382
383static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
384 struct mem_cgroup *root)
385{
386 if (root == memcg)
387 return true;
388 if (!root->use_hierarchy)
389 return false;
390 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
391}
392
393static inline bool mm_match_cgroup(struct mm_struct *mm,
394 struct mem_cgroup *memcg)
395{
396 struct mem_cgroup *task_memcg;
397 bool match = false;
398
399 rcu_read_lock();
400 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
401 if (task_memcg)
402 match = mem_cgroup_is_descendant(task_memcg, memcg);
403 rcu_read_unlock();
404 return match;
405}
406
407struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
408ino_t page_cgroup_ino(struct page *page);
409
410static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
411{
412 if (mem_cgroup_disabled())
413 return true;
414 return !!(memcg->css.flags & CSS_ONLINE);
415}
416
417/*
418 * For memory reclaim.
419 */
420int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
421
422void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
423 int zid, int nr_pages);
424
425unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
426 int nid, unsigned int lru_mask);
427
428static inline
429unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
430{
431 struct mem_cgroup_per_node *mz;
432 unsigned long nr_pages = 0;
433 int zid;
434
435 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
436 for (zid = 0; zid < MAX_NR_ZONES; zid++)
437 nr_pages += mz->lru_zone_size[zid][lru];
438 return nr_pages;
439}
440
441static inline
442unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
443 enum lru_list lru, int zone_idx)
444{
445 struct mem_cgroup_per_node *mz;
446
447 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
448 return mz->lru_zone_size[zone_idx][lru];
449}
450
451void mem_cgroup_handle_over_high(void);
452
453unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg);
454
455void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
456 struct task_struct *p);
457
458static inline void mem_cgroup_oom_enable(void)
459{
460 WARN_ON(current->memcg_may_oom);
461 current->memcg_may_oom = 1;
462}
463
464static inline void mem_cgroup_oom_disable(void)
465{
466 WARN_ON(!current->memcg_may_oom);
467 current->memcg_may_oom = 0;
468}
469
470static inline bool task_in_memcg_oom(struct task_struct *p)
471{
472 return p->memcg_in_oom;
473}
474
475bool mem_cgroup_oom_synchronize(bool wait);
476
477#ifdef CONFIG_MEMCG_SWAP
478extern int do_swap_account;
479#endif
480
481void lock_page_memcg(struct page *page);
482void unlock_page_memcg(struct page *page);
483
484static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
485 enum memcg_stat_item idx)
486{
487 long val = 0;
488 int cpu;
489
490 for_each_possible_cpu(cpu)
491 val += per_cpu(memcg->stat->count[idx], cpu);
492
493 if (val < 0)
494 val = 0;
495
496 return val;
497}
498
499static inline void mod_memcg_state(struct mem_cgroup *memcg,
500 enum memcg_stat_item idx, int val)
501{
502 if (!mem_cgroup_disabled())
503 this_cpu_add(memcg->stat->count[idx], val);
504}
505
506static inline void inc_memcg_state(struct mem_cgroup *memcg,
507 enum memcg_stat_item idx)
508{
509 mod_memcg_state(memcg, idx, 1);
510}
511
512static inline void dec_memcg_state(struct mem_cgroup *memcg,
513 enum memcg_stat_item idx)
514{
515 mod_memcg_state(memcg, idx, -1);
516}
517
518/**
519 * mod_memcg_page_state - update page state statistics
520 * @page: the page
521 * @idx: page state item to account
522 * @val: number of pages (positive or negative)
523 *
524 * The @page must be locked or the caller must use lock_page_memcg()
525 * to prevent double accounting when the page is concurrently being
526 * moved to another memcg:
527 *
528 * lock_page(page) or lock_page_memcg(page)
529 * if (TestClearPageState(page))
530 * mod_memcg_page_state(page, state, -1);
531 * unlock_page(page) or unlock_page_memcg(page)
532 *
533 * Kernel pages are an exception to this, since they'll never move.
534 */
535static inline void mod_memcg_page_state(struct page *page,
536 enum memcg_stat_item idx, int val)
537{
538 if (page->mem_cgroup)
539 mod_memcg_state(page->mem_cgroup, idx, val);
540}
541
542static inline void inc_memcg_page_state(struct page *page,
543 enum memcg_stat_item idx)
544{
545 mod_memcg_page_state(page, idx, 1);
546}
547
548static inline void dec_memcg_page_state(struct page *page,
549 enum memcg_stat_item idx)
550{
551 mod_memcg_page_state(page, idx, -1);
552}
553
554unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
555 gfp_t gfp_mask,
556 unsigned long *total_scanned);
557
558static inline void count_memcg_events(struct mem_cgroup *memcg,
559 enum vm_event_item idx,
560 unsigned long count)
561{
562 if (!mem_cgroup_disabled())
563 this_cpu_add(memcg->stat->events[idx], count);
564}
565
566static inline void count_memcg_page_event(struct page *page,
567 enum memcg_stat_item idx)
568{
569 if (page->mem_cgroup)
570 count_memcg_events(page->mem_cgroup, idx, 1);
571}
572
573static inline void count_memcg_event_mm(struct mm_struct *mm,
574 enum vm_event_item idx)
575{
576 struct mem_cgroup *memcg;
577
578 if (mem_cgroup_disabled())
579 return;
580
581 rcu_read_lock();
582 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
583 if (likely(memcg)) {
584 this_cpu_inc(memcg->stat->events[idx]);
585 if (idx == OOM_KILL)
586 cgroup_file_notify(&memcg->events_file);
587 }
588 rcu_read_unlock();
589}
590#ifdef CONFIG_TRANSPARENT_HUGEPAGE
591void mem_cgroup_split_huge_fixup(struct page *head);
592#endif
593
594#else /* CONFIG_MEMCG */
595
596#define MEM_CGROUP_ID_SHIFT 0
597#define MEM_CGROUP_ID_MAX 0
598
599struct mem_cgroup;
600
601static inline bool mem_cgroup_disabled(void)
602{
603 return true;
604}
605
606static inline void mem_cgroup_event(struct mem_cgroup *memcg,
607 enum memcg_event_item event)
608{
609}
610
611static inline bool mem_cgroup_low(struct mem_cgroup *root,
612 struct mem_cgroup *memcg)
613{
614 return false;
615}
616
617static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
618 gfp_t gfp_mask,
619 struct mem_cgroup **memcgp,
620 bool compound)
621{
622 *memcgp = NULL;
623 return 0;
624}
625
626static inline void mem_cgroup_commit_charge(struct page *page,
627 struct mem_cgroup *memcg,
628 bool lrucare, bool compound)
629{
630}
631
632static inline void mem_cgroup_cancel_charge(struct page *page,
633 struct mem_cgroup *memcg,
634 bool compound)
635{
636}
637
638static inline void mem_cgroup_uncharge(struct page *page)
639{
640}
641
642static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
643{
644}
645
646static inline void mem_cgroup_migrate(struct page *old, struct page *new)
647{
648}
649
650static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
651 struct mem_cgroup *memcg)
652{
653 return node_lruvec(pgdat);
654}
655
656static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
657 struct pglist_data *pgdat)
658{
659 return &pgdat->lruvec;
660}
661
662static inline bool mm_match_cgroup(struct mm_struct *mm,
663 struct mem_cgroup *memcg)
664{
665 return true;
666}
667
668static inline bool task_in_mem_cgroup(struct task_struct *task,
669 const struct mem_cgroup *memcg)
670{
671 return true;
672}
673
674static inline struct mem_cgroup *
675mem_cgroup_iter(struct mem_cgroup *root,
676 struct mem_cgroup *prev,
677 struct mem_cgroup_reclaim_cookie *reclaim)
678{
679 return NULL;
680}
681
682static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
683 struct mem_cgroup *prev)
684{
685}
686
687static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
688 int (*fn)(struct task_struct *, void *), void *arg)
689{
690 return 0;
691}
692
693static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
694{
695 return 0;
696}
697
698static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
699{
700 WARN_ON_ONCE(id);
701 /* XXX: This should always return root_mem_cgroup */
702 return NULL;
703}
704
705static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
706{
707 return NULL;
708}
709
710static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
711{
712 return true;
713}
714
715static inline unsigned long
716mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
717{
718 return 0;
719}
720static inline
721unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
722 enum lru_list lru, int zone_idx)
723{
724 return 0;
725}
726
727static inline unsigned long
728mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
729 int nid, unsigned int lru_mask)
730{
731 return 0;
732}
733
734static inline unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
735{
736 return 0;
737}
738
739static inline void
740mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
741{
742}
743
744static inline void lock_page_memcg(struct page *page)
745{
746}
747
748static inline void unlock_page_memcg(struct page *page)
749{
750}
751
752static inline void mem_cgroup_handle_over_high(void)
753{
754}
755
756static inline void mem_cgroup_oom_enable(void)
757{
758}
759
760static inline void mem_cgroup_oom_disable(void)
761{
762}
763
764static inline bool task_in_memcg_oom(struct task_struct *p)
765{
766 return false;
767}
768
769static inline bool mem_cgroup_oom_synchronize(bool wait)
770{
771 return false;
772}
773
774static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
775 enum memcg_stat_item idx)
776{
777 return 0;
778}
779
780static inline void mod_memcg_state(struct mem_cgroup *memcg,
781 enum memcg_stat_item idx,
782 int nr)
783{
784}
785
786static inline void inc_memcg_state(struct mem_cgroup *memcg,
787 enum memcg_stat_item idx)
788{
789}
790
791static inline void dec_memcg_state(struct mem_cgroup *memcg,
792 enum memcg_stat_item idx)
793{
794}
795
796static inline void mod_memcg_page_state(struct page *page,
797 enum memcg_stat_item idx,
798 int nr)
799{
800}
801
802static inline void inc_memcg_page_state(struct page *page,
803 enum memcg_stat_item idx)
804{
805}
806
807static inline void dec_memcg_page_state(struct page *page,
808 enum memcg_stat_item idx)
809{
810}
811
812static inline
813unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
814 gfp_t gfp_mask,
815 unsigned long *total_scanned)
816{
817 return 0;
818}
819
820static inline void mem_cgroup_split_huge_fixup(struct page *head)
821{
822}
823
824static inline void count_memcg_events(struct mem_cgroup *memcg,
825 enum vm_event_item idx,
826 unsigned long count)
827{
828}
829
830static inline void count_memcg_page_event(struct page *page,
831 enum memcg_stat_item idx)
832{
833}
834
835static inline
836void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
837{
838}
839#endif /* CONFIG_MEMCG */
840
841#ifdef CONFIG_CGROUP_WRITEBACK
842
843struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg);
844struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
845void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
846 unsigned long *pheadroom, unsigned long *pdirty,
847 unsigned long *pwriteback);
848
849#else /* CONFIG_CGROUP_WRITEBACK */
850
851static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
852{
853 return NULL;
854}
855
856static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
857 unsigned long *pfilepages,
858 unsigned long *pheadroom,
859 unsigned long *pdirty,
860 unsigned long *pwriteback)
861{
862}
863
864#endif /* CONFIG_CGROUP_WRITEBACK */
865
866struct sock;
867bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
868void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
869#ifdef CONFIG_MEMCG
870extern struct static_key_false memcg_sockets_enabled_key;
871#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
872void mem_cgroup_sk_alloc(struct sock *sk);
873void mem_cgroup_sk_free(struct sock *sk);
874static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
875{
876 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
877 return true;
878 do {
879 if (time_before(jiffies, memcg->socket_pressure))
880 return true;
881 } while ((memcg = parent_mem_cgroup(memcg)));
882 return false;
883}
884#else
885#define mem_cgroup_sockets_enabled 0
886static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
887static inline void mem_cgroup_sk_free(struct sock *sk) { };
888static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
889{
890 return false;
891}
892#endif
893
894struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
895void memcg_kmem_put_cache(struct kmem_cache *cachep);
896int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
897 struct mem_cgroup *memcg);
898int memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
899void memcg_kmem_uncharge(struct page *page, int order);
900
901#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
902extern struct static_key_false memcg_kmem_enabled_key;
903extern struct workqueue_struct *memcg_kmem_cache_wq;
904
905extern int memcg_nr_cache_ids;
906void memcg_get_cache_ids(void);
907void memcg_put_cache_ids(void);
908
909/*
910 * Helper macro to loop through all memcg-specific caches. Callers must still
911 * check if the cache is valid (it is either valid or NULL).
912 * the slab_mutex must be held when looping through those caches
913 */
914#define for_each_memcg_cache_index(_idx) \
915 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
916
917static inline bool memcg_kmem_enabled(void)
918{
919 return static_branch_unlikely(&memcg_kmem_enabled_key);
920}
921
922/*
923 * helper for accessing a memcg's index. It will be used as an index in the
924 * child cache array in kmem_cache, and also to derive its name. This function
925 * will return -1 when this is not a kmem-limited memcg.
926 */
927static inline int memcg_cache_id(struct mem_cgroup *memcg)
928{
929 return memcg ? memcg->kmemcg_id : -1;
930}
931
932#else
933#define for_each_memcg_cache_index(_idx) \
934 for (; NULL; )
935
936static inline bool memcg_kmem_enabled(void)
937{
938 return false;
939}
940
941static inline int memcg_cache_id(struct mem_cgroup *memcg)
942{
943 return -1;
944}
945
946static inline void memcg_get_cache_ids(void)
947{
948}
949
950static inline void memcg_put_cache_ids(void)
951{
952}
953
954#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
955
956#endif /* _LINUX_MEMCONTROL_H */