]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - kernel/dma/swiotlb.c
xen-swiotlb: remove the unused size argument from xen_swiotlb_fixup
[mirror_ubuntu-jammy-kernel.git] / kernel / dma / swiotlb.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Dynamic DMA mapping support.
4 *
5 * This implementation is a fallback for platforms that do not support
6 * I/O TLBs (aka DMA address translation hardware).
7 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
8 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
9 * Copyright (C) 2000, 2003 Hewlett-Packard Co
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 *
12 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
13 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
14 * unnecessary i-cache flushing.
15 * 04/07/.. ak Better overflow handling. Assorted fixes.
16 * 05/09/10 linville Add support for syncing ranges, support syncing for
17 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
18 * 08/12/11 beckyb Add highmem support
19 */
20
21#define pr_fmt(fmt) "software IO TLB: " fmt
22
23#include <linux/cache.h>
24#include <linux/dma-direct.h>
25#include <linux/dma-map-ops.h>
26#include <linux/mm.h>
27#include <linux/export.h>
28#include <linux/spinlock.h>
29#include <linux/string.h>
30#include <linux/swiotlb.h>
31#include <linux/pfn.h>
32#include <linux/types.h>
33#include <linux/ctype.h>
34#include <linux/highmem.h>
35#include <linux/gfp.h>
36#include <linux/scatterlist.h>
37#include <linux/mem_encrypt.h>
38#include <linux/set_memory.h>
39#ifdef CONFIG_DEBUG_FS
40#include <linux/debugfs.h>
41#endif
42
43#include <asm/io.h>
44#include <asm/dma.h>
45
46#include <linux/init.h>
47#include <linux/memblock.h>
48#include <linux/iommu-helper.h>
49
50#define CREATE_TRACE_POINTS
51#include <trace/events/swiotlb.h>
52
53#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
54
55/*
56 * Minimum IO TLB size to bother booting with. Systems with mainly
57 * 64bit capable cards will only lightly use the swiotlb. If we can't
58 * allocate a contiguous 1MB, we're probably in trouble anyway.
59 */
60#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
61
62enum swiotlb_force swiotlb_force;
63
64/*
65 * Used to do a quick range check in swiotlb_tbl_unmap_single and
66 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
67 * API.
68 */
69phys_addr_t io_tlb_start, io_tlb_end;
70
71/*
72 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
73 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
74 */
75static unsigned long io_tlb_nslabs;
76
77/*
78 * The number of used IO TLB block
79 */
80static unsigned long io_tlb_used;
81
82/*
83 * This is a free list describing the number of free entries available from
84 * each index
85 */
86static unsigned int *io_tlb_list;
87static unsigned int io_tlb_index;
88
89/*
90 * Max segment that we can provide which (if pages are contingous) will
91 * not be bounced (unless SWIOTLB_FORCE is set).
92 */
93static unsigned int max_segment;
94
95/*
96 * We need to save away the original address corresponding to a mapped entry
97 * for the sync operations.
98 */
99#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
100static phys_addr_t *io_tlb_orig_addr;
101
102/*
103 * The mapped buffer's size should be validated during a sync operation.
104 */
105static size_t *io_tlb_alloc_size;
106
107/*
108 * Protect the above data structures in the map and unmap calls
109 */
110static DEFINE_SPINLOCK(io_tlb_lock);
111
112static int late_alloc;
113
114static int __init
115setup_io_tlb_npages(char *str)
116{
117 if (isdigit(*str)) {
118 io_tlb_nslabs = simple_strtoul(str, &str, 0);
119 /* avoid tail segment of size < IO_TLB_SEGSIZE */
120 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
121 }
122 if (*str == ',')
123 ++str;
124 if (!strcmp(str, "force")) {
125 swiotlb_force = SWIOTLB_FORCE;
126 } else if (!strcmp(str, "noforce")) {
127 swiotlb_force = SWIOTLB_NO_FORCE;
128 io_tlb_nslabs = 1;
129 }
130
131 return 0;
132}
133early_param("swiotlb", setup_io_tlb_npages);
134
135static bool no_iotlb_memory;
136
137unsigned long swiotlb_nr_tbl(void)
138{
139 return unlikely(no_iotlb_memory) ? 0 : io_tlb_nslabs;
140}
141EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
142
143unsigned int swiotlb_max_segment(void)
144{
145 return unlikely(no_iotlb_memory) ? 0 : max_segment;
146}
147EXPORT_SYMBOL_GPL(swiotlb_max_segment);
148
149void swiotlb_set_max_segment(unsigned int val)
150{
151 if (swiotlb_force == SWIOTLB_FORCE)
152 max_segment = 1;
153 else
154 max_segment = rounddown(val, PAGE_SIZE);
155}
156
157unsigned long swiotlb_size_or_default(void)
158{
159 unsigned long size;
160
161 size = io_tlb_nslabs << IO_TLB_SHIFT;
162
163 return size ? size : (IO_TLB_DEFAULT_SIZE);
164}
165
166void __init swiotlb_adjust_size(unsigned long new_size)
167{
168 unsigned long size;
169
170 /*
171 * If swiotlb parameter has not been specified, give a chance to
172 * architectures such as those supporting memory encryption to
173 * adjust/expand SWIOTLB size for their use.
174 */
175 if (!io_tlb_nslabs) {
176 size = ALIGN(new_size, IO_TLB_SIZE);
177 io_tlb_nslabs = size >> IO_TLB_SHIFT;
178 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
179
180 pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
181 }
182}
183
184void swiotlb_print_info(void)
185{
186 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
187
188 if (no_iotlb_memory) {
189 pr_warn("No low mem\n");
190 return;
191 }
192
193 pr_info("mapped [mem %pa-%pa] (%luMB)\n", &io_tlb_start, &io_tlb_end,
194 bytes >> 20);
195}
196
197static inline unsigned long io_tlb_offset(unsigned long val)
198{
199 return val & (IO_TLB_SEGSIZE - 1);
200}
201
202static inline unsigned long nr_slots(u64 val)
203{
204 return DIV_ROUND_UP(val, IO_TLB_SIZE);
205}
206
207/*
208 * Early SWIOTLB allocation may be too early to allow an architecture to
209 * perform the desired operations. This function allows the architecture to
210 * call SWIOTLB when the operations are possible. It needs to be called
211 * before the SWIOTLB memory is used.
212 */
213void __init swiotlb_update_mem_attributes(void)
214{
215 void *vaddr;
216 unsigned long bytes;
217
218 if (no_iotlb_memory || late_alloc)
219 return;
220
221 vaddr = phys_to_virt(io_tlb_start);
222 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
223 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
224 memset(vaddr, 0, bytes);
225}
226
227int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
228{
229 unsigned long i, bytes;
230 size_t alloc_size;
231
232 /* protect against double initialization */
233 if (WARN_ON_ONCE(io_tlb_start))
234 return -ENOMEM;
235
236 bytes = nslabs << IO_TLB_SHIFT;
237
238 io_tlb_nslabs = nslabs;
239 io_tlb_start = __pa(tlb);
240 io_tlb_end = io_tlb_start + bytes;
241
242 /*
243 * Allocate and initialize the free list array. This array is used
244 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
245 * between io_tlb_start and io_tlb_end.
246 */
247 alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(int));
248 io_tlb_list = memblock_alloc(alloc_size, PAGE_SIZE);
249 if (!io_tlb_list)
250 panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
251 __func__, alloc_size, PAGE_SIZE);
252
253 alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t));
254 io_tlb_orig_addr = memblock_alloc(alloc_size, PAGE_SIZE);
255 if (!io_tlb_orig_addr)
256 panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
257 __func__, alloc_size, PAGE_SIZE);
258
259 alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(size_t));
260 io_tlb_alloc_size = memblock_alloc(alloc_size, PAGE_SIZE);
261 if (!io_tlb_alloc_size)
262 panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
263 __func__, alloc_size, PAGE_SIZE);
264
265 for (i = 0; i < io_tlb_nslabs; i++) {
266 io_tlb_list[i] = IO_TLB_SEGSIZE - io_tlb_offset(i);
267 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
268 io_tlb_alloc_size[i] = 0;
269 }
270 io_tlb_index = 0;
271 no_iotlb_memory = false;
272
273 if (verbose)
274 swiotlb_print_info();
275
276 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
277 return 0;
278}
279
280/*
281 * Statically reserve bounce buffer space and initialize bounce buffer data
282 * structures for the software IO TLB used to implement the DMA API.
283 */
284void __init
285swiotlb_init(int verbose)
286{
287 size_t default_size = IO_TLB_DEFAULT_SIZE;
288 unsigned char *vstart;
289 unsigned long bytes;
290
291 if (!io_tlb_nslabs) {
292 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
293 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
294 }
295
296 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
297
298 /* Get IO TLB memory from the low pages */
299 vstart = memblock_alloc_low(PAGE_ALIGN(bytes), PAGE_SIZE);
300 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
301 return;
302
303 if (io_tlb_start) {
304 memblock_free_early(io_tlb_start,
305 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
306 io_tlb_start = 0;
307 }
308 pr_warn("Cannot allocate buffer");
309 no_iotlb_memory = true;
310}
311
312/*
313 * Systems with larger DMA zones (those that don't support ISA) can
314 * initialize the swiotlb later using the slab allocator if needed.
315 * This should be just like above, but with some error catching.
316 */
317int
318swiotlb_late_init_with_default_size(size_t default_size)
319{
320 unsigned long bytes, req_nslabs = io_tlb_nslabs;
321 unsigned char *vstart = NULL;
322 unsigned int order;
323 int rc = 0;
324
325 if (!io_tlb_nslabs) {
326 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
327 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
328 }
329
330 /*
331 * Get IO TLB memory from the low pages
332 */
333 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
334 io_tlb_nslabs = SLABS_PER_PAGE << order;
335 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
336
337 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
338 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
339 order);
340 if (vstart)
341 break;
342 order--;
343 }
344
345 if (!vstart) {
346 io_tlb_nslabs = req_nslabs;
347 return -ENOMEM;
348 }
349 if (order != get_order(bytes)) {
350 pr_warn("only able to allocate %ld MB\n",
351 (PAGE_SIZE << order) >> 20);
352 io_tlb_nslabs = SLABS_PER_PAGE << order;
353 }
354 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
355 if (rc)
356 free_pages((unsigned long)vstart, order);
357
358 return rc;
359}
360
361static void swiotlb_cleanup(void)
362{
363 io_tlb_end = 0;
364 io_tlb_start = 0;
365 io_tlb_nslabs = 0;
366 max_segment = 0;
367}
368
369int
370swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
371{
372 unsigned long i, bytes;
373
374 /* protect against double initialization */
375 if (WARN_ON_ONCE(io_tlb_start))
376 return -ENOMEM;
377
378 bytes = nslabs << IO_TLB_SHIFT;
379
380 io_tlb_nslabs = nslabs;
381 io_tlb_start = virt_to_phys(tlb);
382 io_tlb_end = io_tlb_start + bytes;
383
384 set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
385 memset(tlb, 0, bytes);
386
387 /*
388 * Allocate and initialize the free list array. This array is used
389 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
390 * between io_tlb_start and io_tlb_end.
391 */
392 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
393 get_order(io_tlb_nslabs * sizeof(int)));
394 if (!io_tlb_list)
395 goto cleanup3;
396
397 io_tlb_orig_addr = (phys_addr_t *)
398 __get_free_pages(GFP_KERNEL,
399 get_order(io_tlb_nslabs *
400 sizeof(phys_addr_t)));
401 if (!io_tlb_orig_addr)
402 goto cleanup4;
403
404 io_tlb_alloc_size = (size_t *)
405 __get_free_pages(GFP_KERNEL,
406 get_order(io_tlb_nslabs *
407 sizeof(size_t)));
408 if (!io_tlb_alloc_size)
409 goto cleanup5;
410
411
412 for (i = 0; i < io_tlb_nslabs; i++) {
413 io_tlb_list[i] = IO_TLB_SEGSIZE - io_tlb_offset(i);
414 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
415 io_tlb_alloc_size[i] = 0;
416 }
417 io_tlb_index = 0;
418 no_iotlb_memory = false;
419
420 swiotlb_print_info();
421
422 late_alloc = 1;
423
424 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
425
426 return 0;
427
428cleanup5:
429 free_pages((unsigned long)io_tlb_orig_addr, get_order(io_tlb_nslabs *
430 sizeof(phys_addr_t)));
431
432cleanup4:
433 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
434 sizeof(int)));
435 io_tlb_list = NULL;
436cleanup3:
437 swiotlb_cleanup();
438 return -ENOMEM;
439}
440
441void __init swiotlb_exit(void)
442{
443 if (!io_tlb_orig_addr)
444 return;
445
446 if (late_alloc) {
447 free_pages((unsigned long)io_tlb_alloc_size,
448 get_order(io_tlb_nslabs * sizeof(size_t)));
449 free_pages((unsigned long)io_tlb_orig_addr,
450 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
451 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
452 sizeof(int)));
453 free_pages((unsigned long)phys_to_virt(io_tlb_start),
454 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
455 } else {
456 memblock_free_late(__pa(io_tlb_orig_addr),
457 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
458 memblock_free_late(__pa(io_tlb_alloc_size),
459 PAGE_ALIGN(io_tlb_nslabs * sizeof(size_t)));
460 memblock_free_late(__pa(io_tlb_list),
461 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
462 memblock_free_late(io_tlb_start,
463 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
464 }
465 swiotlb_cleanup();
466}
467
468/*
469 * Bounce: copy the swiotlb buffer from or back to the original dma location
470 */
471static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
472 enum dma_data_direction dir)
473{
474 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
475 size_t alloc_size = io_tlb_alloc_size[index];
476 phys_addr_t orig_addr = io_tlb_orig_addr[index];
477 unsigned long pfn = PFN_DOWN(orig_addr);
478 unsigned char *vaddr = phys_to_virt(tlb_addr);
479
480 if (orig_addr == INVALID_PHYS_ADDR)
481 return;
482
483 if (size > alloc_size) {
484 dev_WARN_ONCE(dev, 1,
485 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
486 alloc_size, size);
487 size = alloc_size;
488 }
489
490 if (PageHighMem(pfn_to_page(pfn))) {
491 /* The buffer does not have a mapping. Map it in and copy */
492 unsigned int offset = orig_addr & ~PAGE_MASK;
493 char *buffer;
494 unsigned int sz = 0;
495 unsigned long flags;
496
497 while (size) {
498 sz = min_t(size_t, PAGE_SIZE - offset, size);
499
500 local_irq_save(flags);
501 buffer = kmap_atomic(pfn_to_page(pfn));
502 if (dir == DMA_TO_DEVICE)
503 memcpy(vaddr, buffer + offset, sz);
504 else
505 memcpy(buffer + offset, vaddr, sz);
506 kunmap_atomic(buffer);
507 local_irq_restore(flags);
508
509 size -= sz;
510 pfn++;
511 vaddr += sz;
512 offset = 0;
513 }
514 } else if (dir == DMA_TO_DEVICE) {
515 memcpy(vaddr, phys_to_virt(orig_addr), size);
516 } else {
517 memcpy(phys_to_virt(orig_addr), vaddr, size);
518 }
519}
520
521#define slot_addr(start, idx) ((start) + ((idx) << IO_TLB_SHIFT))
522
523/*
524 * Return the offset into a iotlb slot required to keep the device happy.
525 */
526static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
527{
528 return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1);
529}
530
531/*
532 * Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
533 */
534static inline unsigned long get_max_slots(unsigned long boundary_mask)
535{
536 if (boundary_mask == ~0UL)
537 return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
538 return nr_slots(boundary_mask + 1);
539}
540
541static unsigned int wrap_index(unsigned int index)
542{
543 if (index >= io_tlb_nslabs)
544 return 0;
545 return index;
546}
547
548/*
549 * Find a suitable number of IO TLB entries size that will fit this request and
550 * allocate a buffer from that IO TLB pool.
551 */
552static int find_slots(struct device *dev, phys_addr_t orig_addr,
553 size_t alloc_size)
554{
555 unsigned long boundary_mask = dma_get_seg_boundary(dev);
556 dma_addr_t tbl_dma_addr =
557 phys_to_dma_unencrypted(dev, io_tlb_start) & boundary_mask;
558 unsigned long max_slots = get_max_slots(boundary_mask);
559 unsigned int iotlb_align_mask =
560 dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1);
561 unsigned int nslots = nr_slots(alloc_size), stride;
562 unsigned int index, wrap, count = 0, i;
563 unsigned long flags;
564
565 BUG_ON(!nslots);
566
567 /*
568 * For mappings with an alignment requirement don't bother looping to
569 * unaligned slots once we found an aligned one. For allocations of
570 * PAGE_SIZE or larger only look for page aligned allocations.
571 */
572 stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1;
573 if (alloc_size >= PAGE_SIZE)
574 stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT));
575
576 spin_lock_irqsave(&io_tlb_lock, flags);
577 if (unlikely(nslots > io_tlb_nslabs - io_tlb_used))
578 goto not_found;
579
580 index = wrap = wrap_index(ALIGN(io_tlb_index, stride));
581 do {
582 if ((slot_addr(tbl_dma_addr, index) & iotlb_align_mask) !=
583 (orig_addr & iotlb_align_mask)) {
584 index = wrap_index(index + 1);
585 continue;
586 }
587
588 /*
589 * If we find a slot that indicates we have 'nslots' number of
590 * contiguous buffers, we allocate the buffers from that slot
591 * and mark the entries as '0' indicating unavailable.
592 */
593 if (!iommu_is_span_boundary(index, nslots,
594 nr_slots(tbl_dma_addr),
595 max_slots)) {
596 if (io_tlb_list[index] >= nslots)
597 goto found;
598 }
599 index = wrap_index(index + stride);
600 } while (index != wrap);
601
602not_found:
603 spin_unlock_irqrestore(&io_tlb_lock, flags);
604 return -1;
605
606found:
607 for (i = index; i < index + nslots; i++)
608 io_tlb_list[i] = 0;
609 for (i = index - 1;
610 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
611 io_tlb_list[i]; i--)
612 io_tlb_list[i] = ++count;
613
614 /*
615 * Update the indices to avoid searching in the next round.
616 */
617 if (index + nslots < io_tlb_nslabs)
618 io_tlb_index = index + nslots;
619 else
620 io_tlb_index = 0;
621 io_tlb_used += nslots;
622
623 spin_unlock_irqrestore(&io_tlb_lock, flags);
624 return index;
625}
626
627phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
628 size_t mapping_size, size_t alloc_size,
629 enum dma_data_direction dir, unsigned long attrs)
630{
631 unsigned int offset = swiotlb_align_offset(dev, orig_addr);
632 unsigned int index, i;
633 phys_addr_t tlb_addr;
634
635 if (no_iotlb_memory)
636 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
637
638 if (mem_encrypt_active())
639 pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
640
641 if (mapping_size > alloc_size) {
642 dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
643 mapping_size, alloc_size);
644 return (phys_addr_t)DMA_MAPPING_ERROR;
645 }
646
647 index = find_slots(dev, orig_addr, alloc_size + offset);
648 if (index == -1) {
649 if (!(attrs & DMA_ATTR_NO_WARN))
650 dev_warn_ratelimited(dev,
651 "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
652 alloc_size, io_tlb_nslabs, io_tlb_used);
653 return (phys_addr_t)DMA_MAPPING_ERROR;
654 }
655
656 /*
657 * Save away the mapping from the original address to the DMA address.
658 * This is needed when we sync the memory. Then we sync the buffer if
659 * needed.
660 */
661 for (i = 0; i < nr_slots(alloc_size + offset); i++) {
662 io_tlb_orig_addr[index + i] = slot_addr(orig_addr, i);
663 io_tlb_alloc_size[index+i] = alloc_size - (i << IO_TLB_SHIFT);
664 }
665 tlb_addr = slot_addr(io_tlb_start, index) + offset;
666 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
667 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
668 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
669 return tlb_addr;
670}
671
672/*
673 * tlb_addr is the physical address of the bounce buffer to unmap.
674 */
675void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
676 size_t mapping_size, enum dma_data_direction dir,
677 unsigned long attrs)
678{
679 unsigned long flags;
680 unsigned int offset = swiotlb_align_offset(hwdev, tlb_addr);
681 int index = (tlb_addr - offset - io_tlb_start) >> IO_TLB_SHIFT;
682 int nslots = nr_slots(io_tlb_alloc_size[index] + offset);
683 int count, i;
684
685 /*
686 * First, sync the memory before unmapping the entry
687 */
688 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
689 (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
690 swiotlb_bounce(hwdev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
691
692 /*
693 * Return the buffer to the free list by setting the corresponding
694 * entries to indicate the number of contiguous entries available.
695 * While returning the entries to the free list, we merge the entries
696 * with slots below and above the pool being returned.
697 */
698 spin_lock_irqsave(&io_tlb_lock, flags);
699 if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
700 count = io_tlb_list[index + nslots];
701 else
702 count = 0;
703
704 /*
705 * Step 1: return the slots to the free list, merging the slots with
706 * superceeding slots
707 */
708 for (i = index + nslots - 1; i >= index; i--) {
709 io_tlb_list[i] = ++count;
710 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
711 io_tlb_alloc_size[i] = 0;
712 }
713
714 /*
715 * Step 2: merge the returned slots with the preceding slots, if
716 * available (non zero)
717 */
718 for (i = index - 1;
719 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && io_tlb_list[i];
720 i--)
721 io_tlb_list[i] = ++count;
722 io_tlb_used -= nslots;
723 spin_unlock_irqrestore(&io_tlb_lock, flags);
724}
725
726void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
727 size_t size, enum dma_data_direction dir)
728{
729 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
730 swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
731 else
732 BUG_ON(dir != DMA_FROM_DEVICE);
733}
734
735void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
736 size_t size, enum dma_data_direction dir)
737{
738 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
739 swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
740 else
741 BUG_ON(dir != DMA_TO_DEVICE);
742}
743
744/*
745 * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
746 * to the device copy the data into it as well.
747 */
748dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
749 enum dma_data_direction dir, unsigned long attrs)
750{
751 phys_addr_t swiotlb_addr;
752 dma_addr_t dma_addr;
753
754 trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size,
755 swiotlb_force);
756
757 swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, dir,
758 attrs);
759 if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
760 return DMA_MAPPING_ERROR;
761
762 /* Ensure that the address returned is DMA'ble */
763 dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
764 if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
765 swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
766 attrs | DMA_ATTR_SKIP_CPU_SYNC);
767 dev_WARN_ONCE(dev, 1,
768 "swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
769 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
770 return DMA_MAPPING_ERROR;
771 }
772
773 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
774 arch_sync_dma_for_device(swiotlb_addr, size, dir);
775 return dma_addr;
776}
777
778size_t swiotlb_max_mapping_size(struct device *dev)
779{
780 return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE;
781}
782
783bool is_swiotlb_active(void)
784{
785 /*
786 * When SWIOTLB is initialized, even if io_tlb_start points to physical
787 * address zero, io_tlb_end surely doesn't.
788 */
789 return io_tlb_end != 0;
790}
791
792#ifdef CONFIG_DEBUG_FS
793
794static int __init swiotlb_create_debugfs(void)
795{
796 struct dentry *root;
797
798 root = debugfs_create_dir("swiotlb", NULL);
799 debugfs_create_ulong("io_tlb_nslabs", 0400, root, &io_tlb_nslabs);
800 debugfs_create_ulong("io_tlb_used", 0400, root, &io_tlb_used);
801 return 0;
802}
803
804late_initcall(swiotlb_create_debugfs);
805
806#endif