]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - kernel/sched/fair.c
sched/numa: Rename p->numa_faults to numa_faults_memory
[mirror_ubuntu-artful-kernel.git] / kernel / sched / fair.c
... / ...
CommitLineData
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23#include <linux/latencytop.h>
24#include <linux/sched.h>
25#include <linux/cpumask.h>
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
29#include <linux/mempolicy.h>
30#include <linux/migrate.h>
31#include <linux/task_work.h>
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
36
37/*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74static unsigned int sched_nr_latency = 8;
75
76/*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82/*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#define WMULT_CONST (~0U)
182#define WMULT_SHIFT 32
183
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
200
201/*
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212 */
213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214{
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
217
218 __update_inv_weight(lw);
219
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
225 }
226
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
229
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
234
235 return mul_u64_u32_shr(delta_exec, fact, shift);
236}
237
238
239const struct sched_class fair_sched_class;
240
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
245#ifdef CONFIG_FAIR_GROUP_SCHED
246
247/* cpu runqueue to which this cfs_rq is attached */
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
250 return cfs_rq->rq;
251}
252
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
255
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
287
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
304 }
305
306 cfs_rq->on_list = 1;
307 /* We should have no load, but we need to update last_decay. */
308 update_cfs_rq_blocked_load(cfs_rq, 0);
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
325static inline int
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
329 return 1;
330
331 return 0;
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
339/* return depth at which a sched entity is present in the hierarchy */
340static inline int depth_se(struct sched_entity *se)
341{
342 int depth = 0;
343
344 for_each_sched_entity(se)
345 depth++;
346
347 return depth;
348}
349
350static void
351find_matching_se(struct sched_entity **se, struct sched_entity **pse)
352{
353 int se_depth, pse_depth;
354
355 /*
356 * preemption test can be made between sibling entities who are in the
357 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
358 * both tasks until we find their ancestors who are siblings of common
359 * parent.
360 */
361
362 /* First walk up until both entities are at same depth */
363 se_depth = depth_se(*se);
364 pse_depth = depth_se(*pse);
365
366 while (se_depth > pse_depth) {
367 se_depth--;
368 *se = parent_entity(*se);
369 }
370
371 while (pse_depth > se_depth) {
372 pse_depth--;
373 *pse = parent_entity(*pse);
374 }
375
376 while (!is_same_group(*se, *pse)) {
377 *se = parent_entity(*se);
378 *pse = parent_entity(*pse);
379 }
380}
381
382#else /* !CONFIG_FAIR_GROUP_SCHED */
383
384static inline struct task_struct *task_of(struct sched_entity *se)
385{
386 return container_of(se, struct task_struct, se);
387}
388
389static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
390{
391 return container_of(cfs_rq, struct rq, cfs);
392}
393
394#define entity_is_task(se) 1
395
396#define for_each_sched_entity(se) \
397 for (; se; se = NULL)
398
399static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
400{
401 return &task_rq(p)->cfs;
402}
403
404static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
405{
406 struct task_struct *p = task_of(se);
407 struct rq *rq = task_rq(p);
408
409 return &rq->cfs;
410}
411
412/* runqueue "owned" by this group */
413static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
414{
415 return NULL;
416}
417
418static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
419{
420}
421
422static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
423{
424}
425
426#define for_each_leaf_cfs_rq(rq, cfs_rq) \
427 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
428
429static inline int
430is_same_group(struct sched_entity *se, struct sched_entity *pse)
431{
432 return 1;
433}
434
435static inline struct sched_entity *parent_entity(struct sched_entity *se)
436{
437 return NULL;
438}
439
440static inline void
441find_matching_se(struct sched_entity **se, struct sched_entity **pse)
442{
443}
444
445#endif /* CONFIG_FAIR_GROUP_SCHED */
446
447static __always_inline
448void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
449
450/**************************************************************
451 * Scheduling class tree data structure manipulation methods:
452 */
453
454static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
455{
456 s64 delta = (s64)(vruntime - max_vruntime);
457 if (delta > 0)
458 max_vruntime = vruntime;
459
460 return max_vruntime;
461}
462
463static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
464{
465 s64 delta = (s64)(vruntime - min_vruntime);
466 if (delta < 0)
467 min_vruntime = vruntime;
468
469 return min_vruntime;
470}
471
472static inline int entity_before(struct sched_entity *a,
473 struct sched_entity *b)
474{
475 return (s64)(a->vruntime - b->vruntime) < 0;
476}
477
478static void update_min_vruntime(struct cfs_rq *cfs_rq)
479{
480 u64 vruntime = cfs_rq->min_vruntime;
481
482 if (cfs_rq->curr)
483 vruntime = cfs_rq->curr->vruntime;
484
485 if (cfs_rq->rb_leftmost) {
486 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
487 struct sched_entity,
488 run_node);
489
490 if (!cfs_rq->curr)
491 vruntime = se->vruntime;
492 else
493 vruntime = min_vruntime(vruntime, se->vruntime);
494 }
495
496 /* ensure we never gain time by being placed backwards. */
497 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
498#ifndef CONFIG_64BIT
499 smp_wmb();
500 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
501#endif
502}
503
504/*
505 * Enqueue an entity into the rb-tree:
506 */
507static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
508{
509 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
510 struct rb_node *parent = NULL;
511 struct sched_entity *entry;
512 int leftmost = 1;
513
514 /*
515 * Find the right place in the rbtree:
516 */
517 while (*link) {
518 parent = *link;
519 entry = rb_entry(parent, struct sched_entity, run_node);
520 /*
521 * We dont care about collisions. Nodes with
522 * the same key stay together.
523 */
524 if (entity_before(se, entry)) {
525 link = &parent->rb_left;
526 } else {
527 link = &parent->rb_right;
528 leftmost = 0;
529 }
530 }
531
532 /*
533 * Maintain a cache of leftmost tree entries (it is frequently
534 * used):
535 */
536 if (leftmost)
537 cfs_rq->rb_leftmost = &se->run_node;
538
539 rb_link_node(&se->run_node, parent, link);
540 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
541}
542
543static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
544{
545 if (cfs_rq->rb_leftmost == &se->run_node) {
546 struct rb_node *next_node;
547
548 next_node = rb_next(&se->run_node);
549 cfs_rq->rb_leftmost = next_node;
550 }
551
552 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
553}
554
555struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
556{
557 struct rb_node *left = cfs_rq->rb_leftmost;
558
559 if (!left)
560 return NULL;
561
562 return rb_entry(left, struct sched_entity, run_node);
563}
564
565static struct sched_entity *__pick_next_entity(struct sched_entity *se)
566{
567 struct rb_node *next = rb_next(&se->run_node);
568
569 if (!next)
570 return NULL;
571
572 return rb_entry(next, struct sched_entity, run_node);
573}
574
575#ifdef CONFIG_SCHED_DEBUG
576struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
577{
578 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
579
580 if (!last)
581 return NULL;
582
583 return rb_entry(last, struct sched_entity, run_node);
584}
585
586/**************************************************************
587 * Scheduling class statistics methods:
588 */
589
590int sched_proc_update_handler(struct ctl_table *table, int write,
591 void __user *buffer, size_t *lenp,
592 loff_t *ppos)
593{
594 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
595 int factor = get_update_sysctl_factor();
596
597 if (ret || !write)
598 return ret;
599
600 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
601 sysctl_sched_min_granularity);
602
603#define WRT_SYSCTL(name) \
604 (normalized_sysctl_##name = sysctl_##name / (factor))
605 WRT_SYSCTL(sched_min_granularity);
606 WRT_SYSCTL(sched_latency);
607 WRT_SYSCTL(sched_wakeup_granularity);
608#undef WRT_SYSCTL
609
610 return 0;
611}
612#endif
613
614/*
615 * delta /= w
616 */
617static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
618{
619 if (unlikely(se->load.weight != NICE_0_LOAD))
620 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
621
622 return delta;
623}
624
625/*
626 * The idea is to set a period in which each task runs once.
627 *
628 * When there are too many tasks (sched_nr_latency) we have to stretch
629 * this period because otherwise the slices get too small.
630 *
631 * p = (nr <= nl) ? l : l*nr/nl
632 */
633static u64 __sched_period(unsigned long nr_running)
634{
635 u64 period = sysctl_sched_latency;
636 unsigned long nr_latency = sched_nr_latency;
637
638 if (unlikely(nr_running > nr_latency)) {
639 period = sysctl_sched_min_granularity;
640 period *= nr_running;
641 }
642
643 return period;
644}
645
646/*
647 * We calculate the wall-time slice from the period by taking a part
648 * proportional to the weight.
649 *
650 * s = p*P[w/rw]
651 */
652static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
653{
654 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
655
656 for_each_sched_entity(se) {
657 struct load_weight *load;
658 struct load_weight lw;
659
660 cfs_rq = cfs_rq_of(se);
661 load = &cfs_rq->load;
662
663 if (unlikely(!se->on_rq)) {
664 lw = cfs_rq->load;
665
666 update_load_add(&lw, se->load.weight);
667 load = &lw;
668 }
669 slice = __calc_delta(slice, se->load.weight, load);
670 }
671 return slice;
672}
673
674/*
675 * We calculate the vruntime slice of a to-be-inserted task.
676 *
677 * vs = s/w
678 */
679static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
680{
681 return calc_delta_fair(sched_slice(cfs_rq, se), se);
682}
683
684#ifdef CONFIG_SMP
685static unsigned long task_h_load(struct task_struct *p);
686
687static inline void __update_task_entity_contrib(struct sched_entity *se);
688
689/* Give new task start runnable values to heavy its load in infant time */
690void init_task_runnable_average(struct task_struct *p)
691{
692 u32 slice;
693
694 p->se.avg.decay_count = 0;
695 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
696 p->se.avg.runnable_avg_sum = slice;
697 p->se.avg.runnable_avg_period = slice;
698 __update_task_entity_contrib(&p->se);
699}
700#else
701void init_task_runnable_average(struct task_struct *p)
702{
703}
704#endif
705
706/*
707 * Update the current task's runtime statistics.
708 */
709static void update_curr(struct cfs_rq *cfs_rq)
710{
711 struct sched_entity *curr = cfs_rq->curr;
712 u64 now = rq_clock_task(rq_of(cfs_rq));
713 u64 delta_exec;
714
715 if (unlikely(!curr))
716 return;
717
718 delta_exec = now - curr->exec_start;
719 if (unlikely((s64)delta_exec <= 0))
720 return;
721
722 curr->exec_start = now;
723
724 schedstat_set(curr->statistics.exec_max,
725 max(delta_exec, curr->statistics.exec_max));
726
727 curr->sum_exec_runtime += delta_exec;
728 schedstat_add(cfs_rq, exec_clock, delta_exec);
729
730 curr->vruntime += calc_delta_fair(delta_exec, curr);
731 update_min_vruntime(cfs_rq);
732
733 if (entity_is_task(curr)) {
734 struct task_struct *curtask = task_of(curr);
735
736 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
737 cpuacct_charge(curtask, delta_exec);
738 account_group_exec_runtime(curtask, delta_exec);
739 }
740
741 account_cfs_rq_runtime(cfs_rq, delta_exec);
742}
743
744static inline void
745update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
746{
747 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
748}
749
750/*
751 * Task is being enqueued - update stats:
752 */
753static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
754{
755 /*
756 * Are we enqueueing a waiting task? (for current tasks
757 * a dequeue/enqueue event is a NOP)
758 */
759 if (se != cfs_rq->curr)
760 update_stats_wait_start(cfs_rq, se);
761}
762
763static void
764update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
765{
766 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
768 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
769 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
771#ifdef CONFIG_SCHEDSTATS
772 if (entity_is_task(se)) {
773 trace_sched_stat_wait(task_of(se),
774 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
775 }
776#endif
777 schedstat_set(se->statistics.wait_start, 0);
778}
779
780static inline void
781update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
782{
783 /*
784 * Mark the end of the wait period if dequeueing a
785 * waiting task:
786 */
787 if (se != cfs_rq->curr)
788 update_stats_wait_end(cfs_rq, se);
789}
790
791/*
792 * We are picking a new current task - update its stats:
793 */
794static inline void
795update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
796{
797 /*
798 * We are starting a new run period:
799 */
800 se->exec_start = rq_clock_task(rq_of(cfs_rq));
801}
802
803/**************************************************
804 * Scheduling class queueing methods:
805 */
806
807#ifdef CONFIG_NUMA_BALANCING
808/*
809 * Approximate time to scan a full NUMA task in ms. The task scan period is
810 * calculated based on the tasks virtual memory size and
811 * numa_balancing_scan_size.
812 */
813unsigned int sysctl_numa_balancing_scan_period_min = 1000;
814unsigned int sysctl_numa_balancing_scan_period_max = 60000;
815
816/* Portion of address space to scan in MB */
817unsigned int sysctl_numa_balancing_scan_size = 256;
818
819/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
820unsigned int sysctl_numa_balancing_scan_delay = 1000;
821
822static unsigned int task_nr_scan_windows(struct task_struct *p)
823{
824 unsigned long rss = 0;
825 unsigned long nr_scan_pages;
826
827 /*
828 * Calculations based on RSS as non-present and empty pages are skipped
829 * by the PTE scanner and NUMA hinting faults should be trapped based
830 * on resident pages
831 */
832 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
833 rss = get_mm_rss(p->mm);
834 if (!rss)
835 rss = nr_scan_pages;
836
837 rss = round_up(rss, nr_scan_pages);
838 return rss / nr_scan_pages;
839}
840
841/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
842#define MAX_SCAN_WINDOW 2560
843
844static unsigned int task_scan_min(struct task_struct *p)
845{
846 unsigned int scan, floor;
847 unsigned int windows = 1;
848
849 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
850 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
851 floor = 1000 / windows;
852
853 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
854 return max_t(unsigned int, floor, scan);
855}
856
857static unsigned int task_scan_max(struct task_struct *p)
858{
859 unsigned int smin = task_scan_min(p);
860 unsigned int smax;
861
862 /* Watch for min being lower than max due to floor calculations */
863 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
864 return max(smin, smax);
865}
866
867static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
868{
869 rq->nr_numa_running += (p->numa_preferred_nid != -1);
870 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
871}
872
873static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
874{
875 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
876 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
877}
878
879struct numa_group {
880 atomic_t refcount;
881
882 spinlock_t lock; /* nr_tasks, tasks */
883 int nr_tasks;
884 pid_t gid;
885 struct list_head task_list;
886
887 struct rcu_head rcu;
888 unsigned long total_faults;
889 unsigned long faults[0];
890};
891
892pid_t task_numa_group_id(struct task_struct *p)
893{
894 return p->numa_group ? p->numa_group->gid : 0;
895}
896
897static inline int task_faults_idx(int nid, int priv)
898{
899 return 2 * nid + priv;
900}
901
902static inline unsigned long task_faults(struct task_struct *p, int nid)
903{
904 if (!p->numa_faults_memory)
905 return 0;
906
907 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
908 p->numa_faults_memory[task_faults_idx(nid, 1)];
909}
910
911static inline unsigned long group_faults(struct task_struct *p, int nid)
912{
913 if (!p->numa_group)
914 return 0;
915
916 return p->numa_group->faults[task_faults_idx(nid, 0)] +
917 p->numa_group->faults[task_faults_idx(nid, 1)];
918}
919
920/*
921 * These return the fraction of accesses done by a particular task, or
922 * task group, on a particular numa node. The group weight is given a
923 * larger multiplier, in order to group tasks together that are almost
924 * evenly spread out between numa nodes.
925 */
926static inline unsigned long task_weight(struct task_struct *p, int nid)
927{
928 unsigned long total_faults;
929
930 if (!p->numa_faults_memory)
931 return 0;
932
933 total_faults = p->total_numa_faults;
934
935 if (!total_faults)
936 return 0;
937
938 return 1000 * task_faults(p, nid) / total_faults;
939}
940
941static inline unsigned long group_weight(struct task_struct *p, int nid)
942{
943 if (!p->numa_group || !p->numa_group->total_faults)
944 return 0;
945
946 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
947}
948
949static unsigned long weighted_cpuload(const int cpu);
950static unsigned long source_load(int cpu, int type);
951static unsigned long target_load(int cpu, int type);
952static unsigned long power_of(int cpu);
953static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
954
955/* Cached statistics for all CPUs within a node */
956struct numa_stats {
957 unsigned long nr_running;
958 unsigned long load;
959
960 /* Total compute capacity of CPUs on a node */
961 unsigned long power;
962
963 /* Approximate capacity in terms of runnable tasks on a node */
964 unsigned long capacity;
965 int has_capacity;
966};
967
968/*
969 * XXX borrowed from update_sg_lb_stats
970 */
971static void update_numa_stats(struct numa_stats *ns, int nid)
972{
973 int cpu, cpus = 0;
974
975 memset(ns, 0, sizeof(*ns));
976 for_each_cpu(cpu, cpumask_of_node(nid)) {
977 struct rq *rq = cpu_rq(cpu);
978
979 ns->nr_running += rq->nr_running;
980 ns->load += weighted_cpuload(cpu);
981 ns->power += power_of(cpu);
982
983 cpus++;
984 }
985
986 /*
987 * If we raced with hotplug and there are no CPUs left in our mask
988 * the @ns structure is NULL'ed and task_numa_compare() will
989 * not find this node attractive.
990 *
991 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
992 * and bail there.
993 */
994 if (!cpus)
995 return;
996
997 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
998 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
999 ns->has_capacity = (ns->nr_running < ns->capacity);
1000}
1001
1002struct task_numa_env {
1003 struct task_struct *p;
1004
1005 int src_cpu, src_nid;
1006 int dst_cpu, dst_nid;
1007
1008 struct numa_stats src_stats, dst_stats;
1009
1010 int imbalance_pct;
1011
1012 struct task_struct *best_task;
1013 long best_imp;
1014 int best_cpu;
1015};
1016
1017static void task_numa_assign(struct task_numa_env *env,
1018 struct task_struct *p, long imp)
1019{
1020 if (env->best_task)
1021 put_task_struct(env->best_task);
1022 if (p)
1023 get_task_struct(p);
1024
1025 env->best_task = p;
1026 env->best_imp = imp;
1027 env->best_cpu = env->dst_cpu;
1028}
1029
1030/*
1031 * This checks if the overall compute and NUMA accesses of the system would
1032 * be improved if the source tasks was migrated to the target dst_cpu taking
1033 * into account that it might be best if task running on the dst_cpu should
1034 * be exchanged with the source task
1035 */
1036static void task_numa_compare(struct task_numa_env *env,
1037 long taskimp, long groupimp)
1038{
1039 struct rq *src_rq = cpu_rq(env->src_cpu);
1040 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1041 struct task_struct *cur;
1042 long dst_load, src_load;
1043 long load;
1044 long imp = (groupimp > 0) ? groupimp : taskimp;
1045
1046 rcu_read_lock();
1047 cur = ACCESS_ONCE(dst_rq->curr);
1048 if (cur->pid == 0) /* idle */
1049 cur = NULL;
1050
1051 /*
1052 * "imp" is the fault differential for the source task between the
1053 * source and destination node. Calculate the total differential for
1054 * the source task and potential destination task. The more negative
1055 * the value is, the more rmeote accesses that would be expected to
1056 * be incurred if the tasks were swapped.
1057 */
1058 if (cur) {
1059 /* Skip this swap candidate if cannot move to the source cpu */
1060 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1061 goto unlock;
1062
1063 /*
1064 * If dst and source tasks are in the same NUMA group, or not
1065 * in any group then look only at task weights.
1066 */
1067 if (cur->numa_group == env->p->numa_group) {
1068 imp = taskimp + task_weight(cur, env->src_nid) -
1069 task_weight(cur, env->dst_nid);
1070 /*
1071 * Add some hysteresis to prevent swapping the
1072 * tasks within a group over tiny differences.
1073 */
1074 if (cur->numa_group)
1075 imp -= imp/16;
1076 } else {
1077 /*
1078 * Compare the group weights. If a task is all by
1079 * itself (not part of a group), use the task weight
1080 * instead.
1081 */
1082 if (env->p->numa_group)
1083 imp = groupimp;
1084 else
1085 imp = taskimp;
1086
1087 if (cur->numa_group)
1088 imp += group_weight(cur, env->src_nid) -
1089 group_weight(cur, env->dst_nid);
1090 else
1091 imp += task_weight(cur, env->src_nid) -
1092 task_weight(cur, env->dst_nid);
1093 }
1094 }
1095
1096 if (imp < env->best_imp)
1097 goto unlock;
1098
1099 if (!cur) {
1100 /* Is there capacity at our destination? */
1101 if (env->src_stats.has_capacity &&
1102 !env->dst_stats.has_capacity)
1103 goto unlock;
1104
1105 goto balance;
1106 }
1107
1108 /* Balance doesn't matter much if we're running a task per cpu */
1109 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1110 goto assign;
1111
1112 /*
1113 * In the overloaded case, try and keep the load balanced.
1114 */
1115balance:
1116 dst_load = env->dst_stats.load;
1117 src_load = env->src_stats.load;
1118
1119 /* XXX missing power terms */
1120 load = task_h_load(env->p);
1121 dst_load += load;
1122 src_load -= load;
1123
1124 if (cur) {
1125 load = task_h_load(cur);
1126 dst_load -= load;
1127 src_load += load;
1128 }
1129
1130 /* make src_load the smaller */
1131 if (dst_load < src_load)
1132 swap(dst_load, src_load);
1133
1134 if (src_load * env->imbalance_pct < dst_load * 100)
1135 goto unlock;
1136
1137assign:
1138 task_numa_assign(env, cur, imp);
1139unlock:
1140 rcu_read_unlock();
1141}
1142
1143static void task_numa_find_cpu(struct task_numa_env *env,
1144 long taskimp, long groupimp)
1145{
1146 int cpu;
1147
1148 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1149 /* Skip this CPU if the source task cannot migrate */
1150 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1151 continue;
1152
1153 env->dst_cpu = cpu;
1154 task_numa_compare(env, taskimp, groupimp);
1155 }
1156}
1157
1158static int task_numa_migrate(struct task_struct *p)
1159{
1160 struct task_numa_env env = {
1161 .p = p,
1162
1163 .src_cpu = task_cpu(p),
1164 .src_nid = task_node(p),
1165
1166 .imbalance_pct = 112,
1167
1168 .best_task = NULL,
1169 .best_imp = 0,
1170 .best_cpu = -1
1171 };
1172 struct sched_domain *sd;
1173 unsigned long taskweight, groupweight;
1174 int nid, ret;
1175 long taskimp, groupimp;
1176
1177 /*
1178 * Pick the lowest SD_NUMA domain, as that would have the smallest
1179 * imbalance and would be the first to start moving tasks about.
1180 *
1181 * And we want to avoid any moving of tasks about, as that would create
1182 * random movement of tasks -- counter the numa conditions we're trying
1183 * to satisfy here.
1184 */
1185 rcu_read_lock();
1186 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1187 if (sd)
1188 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1189 rcu_read_unlock();
1190
1191 /*
1192 * Cpusets can break the scheduler domain tree into smaller
1193 * balance domains, some of which do not cross NUMA boundaries.
1194 * Tasks that are "trapped" in such domains cannot be migrated
1195 * elsewhere, so there is no point in (re)trying.
1196 */
1197 if (unlikely(!sd)) {
1198 p->numa_preferred_nid = task_node(p);
1199 return -EINVAL;
1200 }
1201
1202 taskweight = task_weight(p, env.src_nid);
1203 groupweight = group_weight(p, env.src_nid);
1204 update_numa_stats(&env.src_stats, env.src_nid);
1205 env.dst_nid = p->numa_preferred_nid;
1206 taskimp = task_weight(p, env.dst_nid) - taskweight;
1207 groupimp = group_weight(p, env.dst_nid) - groupweight;
1208 update_numa_stats(&env.dst_stats, env.dst_nid);
1209
1210 /* If the preferred nid has capacity, try to use it. */
1211 if (env.dst_stats.has_capacity)
1212 task_numa_find_cpu(&env, taskimp, groupimp);
1213
1214 /* No space available on the preferred nid. Look elsewhere. */
1215 if (env.best_cpu == -1) {
1216 for_each_online_node(nid) {
1217 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1218 continue;
1219
1220 /* Only consider nodes where both task and groups benefit */
1221 taskimp = task_weight(p, nid) - taskweight;
1222 groupimp = group_weight(p, nid) - groupweight;
1223 if (taskimp < 0 && groupimp < 0)
1224 continue;
1225
1226 env.dst_nid = nid;
1227 update_numa_stats(&env.dst_stats, env.dst_nid);
1228 task_numa_find_cpu(&env, taskimp, groupimp);
1229 }
1230 }
1231
1232 /* No better CPU than the current one was found. */
1233 if (env.best_cpu == -1)
1234 return -EAGAIN;
1235
1236 sched_setnuma(p, env.dst_nid);
1237
1238 /*
1239 * Reset the scan period if the task is being rescheduled on an
1240 * alternative node to recheck if the tasks is now properly placed.
1241 */
1242 p->numa_scan_period = task_scan_min(p);
1243
1244 if (env.best_task == NULL) {
1245 int ret = migrate_task_to(p, env.best_cpu);
1246 return ret;
1247 }
1248
1249 ret = migrate_swap(p, env.best_task);
1250 put_task_struct(env.best_task);
1251 return ret;
1252}
1253
1254/* Attempt to migrate a task to a CPU on the preferred node. */
1255static void numa_migrate_preferred(struct task_struct *p)
1256{
1257 /* This task has no NUMA fault statistics yet */
1258 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1259 return;
1260
1261 /* Periodically retry migrating the task to the preferred node */
1262 p->numa_migrate_retry = jiffies + HZ;
1263
1264 /* Success if task is already running on preferred CPU */
1265 if (task_node(p) == p->numa_preferred_nid)
1266 return;
1267
1268 /* Otherwise, try migrate to a CPU on the preferred node */
1269 task_numa_migrate(p);
1270}
1271
1272/*
1273 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1274 * increments. The more local the fault statistics are, the higher the scan
1275 * period will be for the next scan window. If local/remote ratio is below
1276 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1277 * scan period will decrease
1278 */
1279#define NUMA_PERIOD_SLOTS 10
1280#define NUMA_PERIOD_THRESHOLD 3
1281
1282/*
1283 * Increase the scan period (slow down scanning) if the majority of
1284 * our memory is already on our local node, or if the majority of
1285 * the page accesses are shared with other processes.
1286 * Otherwise, decrease the scan period.
1287 */
1288static void update_task_scan_period(struct task_struct *p,
1289 unsigned long shared, unsigned long private)
1290{
1291 unsigned int period_slot;
1292 int ratio;
1293 int diff;
1294
1295 unsigned long remote = p->numa_faults_locality[0];
1296 unsigned long local = p->numa_faults_locality[1];
1297
1298 /*
1299 * If there were no record hinting faults then either the task is
1300 * completely idle or all activity is areas that are not of interest
1301 * to automatic numa balancing. Scan slower
1302 */
1303 if (local + shared == 0) {
1304 p->numa_scan_period = min(p->numa_scan_period_max,
1305 p->numa_scan_period << 1);
1306
1307 p->mm->numa_next_scan = jiffies +
1308 msecs_to_jiffies(p->numa_scan_period);
1309
1310 return;
1311 }
1312
1313 /*
1314 * Prepare to scale scan period relative to the current period.
1315 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1316 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1317 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1318 */
1319 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1320 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1321 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1322 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1323 if (!slot)
1324 slot = 1;
1325 diff = slot * period_slot;
1326 } else {
1327 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1328
1329 /*
1330 * Scale scan rate increases based on sharing. There is an
1331 * inverse relationship between the degree of sharing and
1332 * the adjustment made to the scanning period. Broadly
1333 * speaking the intent is that there is little point
1334 * scanning faster if shared accesses dominate as it may
1335 * simply bounce migrations uselessly
1336 */
1337 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1338 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1339 }
1340
1341 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1342 task_scan_min(p), task_scan_max(p));
1343 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1344}
1345
1346static void task_numa_placement(struct task_struct *p)
1347{
1348 int seq, nid, max_nid = -1, max_group_nid = -1;
1349 unsigned long max_faults = 0, max_group_faults = 0;
1350 unsigned long fault_types[2] = { 0, 0 };
1351 spinlock_t *group_lock = NULL;
1352
1353 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1354 if (p->numa_scan_seq == seq)
1355 return;
1356 p->numa_scan_seq = seq;
1357 p->numa_scan_period_max = task_scan_max(p);
1358
1359 /* If the task is part of a group prevent parallel updates to group stats */
1360 if (p->numa_group) {
1361 group_lock = &p->numa_group->lock;
1362 spin_lock(group_lock);
1363 }
1364
1365 /* Find the node with the highest number of faults */
1366 for_each_online_node(nid) {
1367 unsigned long faults = 0, group_faults = 0;
1368 int priv, i;
1369
1370 for (priv = 0; priv < 2; priv++) {
1371 long diff;
1372
1373 i = task_faults_idx(nid, priv);
1374 diff = -p->numa_faults_memory[i];
1375
1376 /* Decay existing window, copy faults since last scan */
1377 p->numa_faults_memory[i] >>= 1;
1378 p->numa_faults_memory[i] += p->numa_faults_buffer_memory[i];
1379 fault_types[priv] += p->numa_faults_buffer_memory[i];
1380 p->numa_faults_buffer_memory[i] = 0;
1381
1382 faults += p->numa_faults_memory[i];
1383 diff += p->numa_faults_memory[i];
1384 p->total_numa_faults += diff;
1385 if (p->numa_group) {
1386 /* safe because we can only change our own group */
1387 p->numa_group->faults[i] += diff;
1388 p->numa_group->total_faults += diff;
1389 group_faults += p->numa_group->faults[i];
1390 }
1391 }
1392
1393 if (faults > max_faults) {
1394 max_faults = faults;
1395 max_nid = nid;
1396 }
1397
1398 if (group_faults > max_group_faults) {
1399 max_group_faults = group_faults;
1400 max_group_nid = nid;
1401 }
1402 }
1403
1404 update_task_scan_period(p, fault_types[0], fault_types[1]);
1405
1406 if (p->numa_group) {
1407 /*
1408 * If the preferred task and group nids are different,
1409 * iterate over the nodes again to find the best place.
1410 */
1411 if (max_nid != max_group_nid) {
1412 unsigned long weight, max_weight = 0;
1413
1414 for_each_online_node(nid) {
1415 weight = task_weight(p, nid) + group_weight(p, nid);
1416 if (weight > max_weight) {
1417 max_weight = weight;
1418 max_nid = nid;
1419 }
1420 }
1421 }
1422
1423 spin_unlock(group_lock);
1424 }
1425
1426 /* Preferred node as the node with the most faults */
1427 if (max_faults && max_nid != p->numa_preferred_nid) {
1428 /* Update the preferred nid and migrate task if possible */
1429 sched_setnuma(p, max_nid);
1430 numa_migrate_preferred(p);
1431 }
1432}
1433
1434static inline int get_numa_group(struct numa_group *grp)
1435{
1436 return atomic_inc_not_zero(&grp->refcount);
1437}
1438
1439static inline void put_numa_group(struct numa_group *grp)
1440{
1441 if (atomic_dec_and_test(&grp->refcount))
1442 kfree_rcu(grp, rcu);
1443}
1444
1445static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1446 int *priv)
1447{
1448 struct numa_group *grp, *my_grp;
1449 struct task_struct *tsk;
1450 bool join = false;
1451 int cpu = cpupid_to_cpu(cpupid);
1452 int i;
1453
1454 if (unlikely(!p->numa_group)) {
1455 unsigned int size = sizeof(struct numa_group) +
1456 2*nr_node_ids*sizeof(unsigned long);
1457
1458 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1459 if (!grp)
1460 return;
1461
1462 atomic_set(&grp->refcount, 1);
1463 spin_lock_init(&grp->lock);
1464 INIT_LIST_HEAD(&grp->task_list);
1465 grp->gid = p->pid;
1466
1467 for (i = 0; i < 2*nr_node_ids; i++)
1468 grp->faults[i] = p->numa_faults_memory[i];
1469
1470 grp->total_faults = p->total_numa_faults;
1471
1472 list_add(&p->numa_entry, &grp->task_list);
1473 grp->nr_tasks++;
1474 rcu_assign_pointer(p->numa_group, grp);
1475 }
1476
1477 rcu_read_lock();
1478 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1479
1480 if (!cpupid_match_pid(tsk, cpupid))
1481 goto no_join;
1482
1483 grp = rcu_dereference(tsk->numa_group);
1484 if (!grp)
1485 goto no_join;
1486
1487 my_grp = p->numa_group;
1488 if (grp == my_grp)
1489 goto no_join;
1490
1491 /*
1492 * Only join the other group if its bigger; if we're the bigger group,
1493 * the other task will join us.
1494 */
1495 if (my_grp->nr_tasks > grp->nr_tasks)
1496 goto no_join;
1497
1498 /*
1499 * Tie-break on the grp address.
1500 */
1501 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1502 goto no_join;
1503
1504 /* Always join threads in the same process. */
1505 if (tsk->mm == current->mm)
1506 join = true;
1507
1508 /* Simple filter to avoid false positives due to PID collisions */
1509 if (flags & TNF_SHARED)
1510 join = true;
1511
1512 /* Update priv based on whether false sharing was detected */
1513 *priv = !join;
1514
1515 if (join && !get_numa_group(grp))
1516 goto no_join;
1517
1518 rcu_read_unlock();
1519
1520 if (!join)
1521 return;
1522
1523 double_lock(&my_grp->lock, &grp->lock);
1524
1525 for (i = 0; i < 2*nr_node_ids; i++) {
1526 my_grp->faults[i] -= p->numa_faults_memory[i];
1527 grp->faults[i] += p->numa_faults_memory[i];
1528 }
1529 my_grp->total_faults -= p->total_numa_faults;
1530 grp->total_faults += p->total_numa_faults;
1531
1532 list_move(&p->numa_entry, &grp->task_list);
1533 my_grp->nr_tasks--;
1534 grp->nr_tasks++;
1535
1536 spin_unlock(&my_grp->lock);
1537 spin_unlock(&grp->lock);
1538
1539 rcu_assign_pointer(p->numa_group, grp);
1540
1541 put_numa_group(my_grp);
1542 return;
1543
1544no_join:
1545 rcu_read_unlock();
1546 return;
1547}
1548
1549void task_numa_free(struct task_struct *p)
1550{
1551 struct numa_group *grp = p->numa_group;
1552 int i;
1553 void *numa_faults = p->numa_faults_memory;
1554
1555 if (grp) {
1556 spin_lock(&grp->lock);
1557 for (i = 0; i < 2*nr_node_ids; i++)
1558 grp->faults[i] -= p->numa_faults_memory[i];
1559 grp->total_faults -= p->total_numa_faults;
1560
1561 list_del(&p->numa_entry);
1562 grp->nr_tasks--;
1563 spin_unlock(&grp->lock);
1564 rcu_assign_pointer(p->numa_group, NULL);
1565 put_numa_group(grp);
1566 }
1567
1568 p->numa_faults_memory = NULL;
1569 p->numa_faults_buffer_memory = NULL;
1570 kfree(numa_faults);
1571}
1572
1573/*
1574 * Got a PROT_NONE fault for a page on @node.
1575 */
1576void task_numa_fault(int last_cpupid, int node, int pages, int flags)
1577{
1578 struct task_struct *p = current;
1579 bool migrated = flags & TNF_MIGRATED;
1580 int priv;
1581
1582 if (!numabalancing_enabled)
1583 return;
1584
1585 /* for example, ksmd faulting in a user's mm */
1586 if (!p->mm)
1587 return;
1588
1589 /* Do not worry about placement if exiting */
1590 if (p->state == TASK_DEAD)
1591 return;
1592
1593 /* Allocate buffer to track faults on a per-node basis */
1594 if (unlikely(!p->numa_faults_memory)) {
1595 int size = sizeof(*p->numa_faults_memory) * 2 * nr_node_ids;
1596
1597 /* numa_faults and numa_faults_buffer share the allocation */
1598 p->numa_faults_memory = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
1599 if (!p->numa_faults_memory)
1600 return;
1601
1602 BUG_ON(p->numa_faults_buffer_memory);
1603 p->numa_faults_buffer_memory = p->numa_faults_memory + (2 * nr_node_ids);
1604 p->total_numa_faults = 0;
1605 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1606 }
1607
1608 /*
1609 * First accesses are treated as private, otherwise consider accesses
1610 * to be private if the accessing pid has not changed
1611 */
1612 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1613 priv = 1;
1614 } else {
1615 priv = cpupid_match_pid(p, last_cpupid);
1616 if (!priv && !(flags & TNF_NO_GROUP))
1617 task_numa_group(p, last_cpupid, flags, &priv);
1618 }
1619
1620 task_numa_placement(p);
1621
1622 /*
1623 * Retry task to preferred node migration periodically, in case it
1624 * case it previously failed, or the scheduler moved us.
1625 */
1626 if (time_after(jiffies, p->numa_migrate_retry))
1627 numa_migrate_preferred(p);
1628
1629 if (migrated)
1630 p->numa_pages_migrated += pages;
1631
1632 p->numa_faults_buffer_memory[task_faults_idx(node, priv)] += pages;
1633 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1634}
1635
1636static void reset_ptenuma_scan(struct task_struct *p)
1637{
1638 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1639 p->mm->numa_scan_offset = 0;
1640}
1641
1642/*
1643 * The expensive part of numa migration is done from task_work context.
1644 * Triggered from task_tick_numa().
1645 */
1646void task_numa_work(struct callback_head *work)
1647{
1648 unsigned long migrate, next_scan, now = jiffies;
1649 struct task_struct *p = current;
1650 struct mm_struct *mm = p->mm;
1651 struct vm_area_struct *vma;
1652 unsigned long start, end;
1653 unsigned long nr_pte_updates = 0;
1654 long pages;
1655
1656 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1657
1658 work->next = work; /* protect against double add */
1659 /*
1660 * Who cares about NUMA placement when they're dying.
1661 *
1662 * NOTE: make sure not to dereference p->mm before this check,
1663 * exit_task_work() happens _after_ exit_mm() so we could be called
1664 * without p->mm even though we still had it when we enqueued this
1665 * work.
1666 */
1667 if (p->flags & PF_EXITING)
1668 return;
1669
1670 if (!mm->numa_next_scan) {
1671 mm->numa_next_scan = now +
1672 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1673 }
1674
1675 /*
1676 * Enforce maximal scan/migration frequency..
1677 */
1678 migrate = mm->numa_next_scan;
1679 if (time_before(now, migrate))
1680 return;
1681
1682 if (p->numa_scan_period == 0) {
1683 p->numa_scan_period_max = task_scan_max(p);
1684 p->numa_scan_period = task_scan_min(p);
1685 }
1686
1687 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1688 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1689 return;
1690
1691 /*
1692 * Delay this task enough that another task of this mm will likely win
1693 * the next time around.
1694 */
1695 p->node_stamp += 2 * TICK_NSEC;
1696
1697 start = mm->numa_scan_offset;
1698 pages = sysctl_numa_balancing_scan_size;
1699 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1700 if (!pages)
1701 return;
1702
1703 down_read(&mm->mmap_sem);
1704 vma = find_vma(mm, start);
1705 if (!vma) {
1706 reset_ptenuma_scan(p);
1707 start = 0;
1708 vma = mm->mmap;
1709 }
1710 for (; vma; vma = vma->vm_next) {
1711 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1712 continue;
1713
1714 /*
1715 * Shared library pages mapped by multiple processes are not
1716 * migrated as it is expected they are cache replicated. Avoid
1717 * hinting faults in read-only file-backed mappings or the vdso
1718 * as migrating the pages will be of marginal benefit.
1719 */
1720 if (!vma->vm_mm ||
1721 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1722 continue;
1723
1724 /*
1725 * Skip inaccessible VMAs to avoid any confusion between
1726 * PROT_NONE and NUMA hinting ptes
1727 */
1728 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1729 continue;
1730
1731 do {
1732 start = max(start, vma->vm_start);
1733 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1734 end = min(end, vma->vm_end);
1735 nr_pte_updates += change_prot_numa(vma, start, end);
1736
1737 /*
1738 * Scan sysctl_numa_balancing_scan_size but ensure that
1739 * at least one PTE is updated so that unused virtual
1740 * address space is quickly skipped.
1741 */
1742 if (nr_pte_updates)
1743 pages -= (end - start) >> PAGE_SHIFT;
1744
1745 start = end;
1746 if (pages <= 0)
1747 goto out;
1748 } while (end != vma->vm_end);
1749 }
1750
1751out:
1752 /*
1753 * It is possible to reach the end of the VMA list but the last few
1754 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1755 * would find the !migratable VMA on the next scan but not reset the
1756 * scanner to the start so check it now.
1757 */
1758 if (vma)
1759 mm->numa_scan_offset = start;
1760 else
1761 reset_ptenuma_scan(p);
1762 up_read(&mm->mmap_sem);
1763}
1764
1765/*
1766 * Drive the periodic memory faults..
1767 */
1768void task_tick_numa(struct rq *rq, struct task_struct *curr)
1769{
1770 struct callback_head *work = &curr->numa_work;
1771 u64 period, now;
1772
1773 /*
1774 * We don't care about NUMA placement if we don't have memory.
1775 */
1776 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1777 return;
1778
1779 /*
1780 * Using runtime rather than walltime has the dual advantage that
1781 * we (mostly) drive the selection from busy threads and that the
1782 * task needs to have done some actual work before we bother with
1783 * NUMA placement.
1784 */
1785 now = curr->se.sum_exec_runtime;
1786 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1787
1788 if (now - curr->node_stamp > period) {
1789 if (!curr->node_stamp)
1790 curr->numa_scan_period = task_scan_min(curr);
1791 curr->node_stamp += period;
1792
1793 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1794 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1795 task_work_add(curr, work, true);
1796 }
1797 }
1798}
1799#else
1800static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1801{
1802}
1803
1804static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1805{
1806}
1807
1808static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1809{
1810}
1811#endif /* CONFIG_NUMA_BALANCING */
1812
1813static void
1814account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1815{
1816 update_load_add(&cfs_rq->load, se->load.weight);
1817 if (!parent_entity(se))
1818 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1819#ifdef CONFIG_SMP
1820 if (entity_is_task(se)) {
1821 struct rq *rq = rq_of(cfs_rq);
1822
1823 account_numa_enqueue(rq, task_of(se));
1824 list_add(&se->group_node, &rq->cfs_tasks);
1825 }
1826#endif
1827 cfs_rq->nr_running++;
1828}
1829
1830static void
1831account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1832{
1833 update_load_sub(&cfs_rq->load, se->load.weight);
1834 if (!parent_entity(se))
1835 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1836 if (entity_is_task(se)) {
1837 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
1838 list_del_init(&se->group_node);
1839 }
1840 cfs_rq->nr_running--;
1841}
1842
1843#ifdef CONFIG_FAIR_GROUP_SCHED
1844# ifdef CONFIG_SMP
1845static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1846{
1847 long tg_weight;
1848
1849 /*
1850 * Use this CPU's actual weight instead of the last load_contribution
1851 * to gain a more accurate current total weight. See
1852 * update_cfs_rq_load_contribution().
1853 */
1854 tg_weight = atomic_long_read(&tg->load_avg);
1855 tg_weight -= cfs_rq->tg_load_contrib;
1856 tg_weight += cfs_rq->load.weight;
1857
1858 return tg_weight;
1859}
1860
1861static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1862{
1863 long tg_weight, load, shares;
1864
1865 tg_weight = calc_tg_weight(tg, cfs_rq);
1866 load = cfs_rq->load.weight;
1867
1868 shares = (tg->shares * load);
1869 if (tg_weight)
1870 shares /= tg_weight;
1871
1872 if (shares < MIN_SHARES)
1873 shares = MIN_SHARES;
1874 if (shares > tg->shares)
1875 shares = tg->shares;
1876
1877 return shares;
1878}
1879# else /* CONFIG_SMP */
1880static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1881{
1882 return tg->shares;
1883}
1884# endif /* CONFIG_SMP */
1885static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1886 unsigned long weight)
1887{
1888 if (se->on_rq) {
1889 /* commit outstanding execution time */
1890 if (cfs_rq->curr == se)
1891 update_curr(cfs_rq);
1892 account_entity_dequeue(cfs_rq, se);
1893 }
1894
1895 update_load_set(&se->load, weight);
1896
1897 if (se->on_rq)
1898 account_entity_enqueue(cfs_rq, se);
1899}
1900
1901static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1902
1903static void update_cfs_shares(struct cfs_rq *cfs_rq)
1904{
1905 struct task_group *tg;
1906 struct sched_entity *se;
1907 long shares;
1908
1909 tg = cfs_rq->tg;
1910 se = tg->se[cpu_of(rq_of(cfs_rq))];
1911 if (!se || throttled_hierarchy(cfs_rq))
1912 return;
1913#ifndef CONFIG_SMP
1914 if (likely(se->load.weight == tg->shares))
1915 return;
1916#endif
1917 shares = calc_cfs_shares(cfs_rq, tg);
1918
1919 reweight_entity(cfs_rq_of(se), se, shares);
1920}
1921#else /* CONFIG_FAIR_GROUP_SCHED */
1922static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1923{
1924}
1925#endif /* CONFIG_FAIR_GROUP_SCHED */
1926
1927#ifdef CONFIG_SMP
1928/*
1929 * We choose a half-life close to 1 scheduling period.
1930 * Note: The tables below are dependent on this value.
1931 */
1932#define LOAD_AVG_PERIOD 32
1933#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1934#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1935
1936/* Precomputed fixed inverse multiplies for multiplication by y^n */
1937static const u32 runnable_avg_yN_inv[] = {
1938 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1939 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1940 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1941 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1942 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1943 0x85aac367, 0x82cd8698,
1944};
1945
1946/*
1947 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1948 * over-estimates when re-combining.
1949 */
1950static const u32 runnable_avg_yN_sum[] = {
1951 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1952 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1953 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1954};
1955
1956/*
1957 * Approximate:
1958 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1959 */
1960static __always_inline u64 decay_load(u64 val, u64 n)
1961{
1962 unsigned int local_n;
1963
1964 if (!n)
1965 return val;
1966 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1967 return 0;
1968
1969 /* after bounds checking we can collapse to 32-bit */
1970 local_n = n;
1971
1972 /*
1973 * As y^PERIOD = 1/2, we can combine
1974 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1975 * With a look-up table which covers k^n (n<PERIOD)
1976 *
1977 * To achieve constant time decay_load.
1978 */
1979 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1980 val >>= local_n / LOAD_AVG_PERIOD;
1981 local_n %= LOAD_AVG_PERIOD;
1982 }
1983
1984 val *= runnable_avg_yN_inv[local_n];
1985 /* We don't use SRR here since we always want to round down. */
1986 return val >> 32;
1987}
1988
1989/*
1990 * For updates fully spanning n periods, the contribution to runnable
1991 * average will be: \Sum 1024*y^n
1992 *
1993 * We can compute this reasonably efficiently by combining:
1994 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1995 */
1996static u32 __compute_runnable_contrib(u64 n)
1997{
1998 u32 contrib = 0;
1999
2000 if (likely(n <= LOAD_AVG_PERIOD))
2001 return runnable_avg_yN_sum[n];
2002 else if (unlikely(n >= LOAD_AVG_MAX_N))
2003 return LOAD_AVG_MAX;
2004
2005 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2006 do {
2007 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2008 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2009
2010 n -= LOAD_AVG_PERIOD;
2011 } while (n > LOAD_AVG_PERIOD);
2012
2013 contrib = decay_load(contrib, n);
2014 return contrib + runnable_avg_yN_sum[n];
2015}
2016
2017/*
2018 * We can represent the historical contribution to runnable average as the
2019 * coefficients of a geometric series. To do this we sub-divide our runnable
2020 * history into segments of approximately 1ms (1024us); label the segment that
2021 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2022 *
2023 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2024 * p0 p1 p2
2025 * (now) (~1ms ago) (~2ms ago)
2026 *
2027 * Let u_i denote the fraction of p_i that the entity was runnable.
2028 *
2029 * We then designate the fractions u_i as our co-efficients, yielding the
2030 * following representation of historical load:
2031 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2032 *
2033 * We choose y based on the with of a reasonably scheduling period, fixing:
2034 * y^32 = 0.5
2035 *
2036 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2037 * approximately half as much as the contribution to load within the last ms
2038 * (u_0).
2039 *
2040 * When a period "rolls over" and we have new u_0`, multiplying the previous
2041 * sum again by y is sufficient to update:
2042 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2043 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2044 */
2045static __always_inline int __update_entity_runnable_avg(u64 now,
2046 struct sched_avg *sa,
2047 int runnable)
2048{
2049 u64 delta, periods;
2050 u32 runnable_contrib;
2051 int delta_w, decayed = 0;
2052
2053 delta = now - sa->last_runnable_update;
2054 /*
2055 * This should only happen when time goes backwards, which it
2056 * unfortunately does during sched clock init when we swap over to TSC.
2057 */
2058 if ((s64)delta < 0) {
2059 sa->last_runnable_update = now;
2060 return 0;
2061 }
2062
2063 /*
2064 * Use 1024ns as the unit of measurement since it's a reasonable
2065 * approximation of 1us and fast to compute.
2066 */
2067 delta >>= 10;
2068 if (!delta)
2069 return 0;
2070 sa->last_runnable_update = now;
2071
2072 /* delta_w is the amount already accumulated against our next period */
2073 delta_w = sa->runnable_avg_period % 1024;
2074 if (delta + delta_w >= 1024) {
2075 /* period roll-over */
2076 decayed = 1;
2077
2078 /*
2079 * Now that we know we're crossing a period boundary, figure
2080 * out how much from delta we need to complete the current
2081 * period and accrue it.
2082 */
2083 delta_w = 1024 - delta_w;
2084 if (runnable)
2085 sa->runnable_avg_sum += delta_w;
2086 sa->runnable_avg_period += delta_w;
2087
2088 delta -= delta_w;
2089
2090 /* Figure out how many additional periods this update spans */
2091 periods = delta / 1024;
2092 delta %= 1024;
2093
2094 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2095 periods + 1);
2096 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2097 periods + 1);
2098
2099 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2100 runnable_contrib = __compute_runnable_contrib(periods);
2101 if (runnable)
2102 sa->runnable_avg_sum += runnable_contrib;
2103 sa->runnable_avg_period += runnable_contrib;
2104 }
2105
2106 /* Remainder of delta accrued against u_0` */
2107 if (runnable)
2108 sa->runnable_avg_sum += delta;
2109 sa->runnable_avg_period += delta;
2110
2111 return decayed;
2112}
2113
2114/* Synchronize an entity's decay with its parenting cfs_rq.*/
2115static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2116{
2117 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2118 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2119
2120 decays -= se->avg.decay_count;
2121 if (!decays)
2122 return 0;
2123
2124 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2125 se->avg.decay_count = 0;
2126
2127 return decays;
2128}
2129
2130#ifdef CONFIG_FAIR_GROUP_SCHED
2131static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2132 int force_update)
2133{
2134 struct task_group *tg = cfs_rq->tg;
2135 long tg_contrib;
2136
2137 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2138 tg_contrib -= cfs_rq->tg_load_contrib;
2139
2140 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2141 atomic_long_add(tg_contrib, &tg->load_avg);
2142 cfs_rq->tg_load_contrib += tg_contrib;
2143 }
2144}
2145
2146/*
2147 * Aggregate cfs_rq runnable averages into an equivalent task_group
2148 * representation for computing load contributions.
2149 */
2150static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2151 struct cfs_rq *cfs_rq)
2152{
2153 struct task_group *tg = cfs_rq->tg;
2154 long contrib;
2155
2156 /* The fraction of a cpu used by this cfs_rq */
2157 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2158 sa->runnable_avg_period + 1);
2159 contrib -= cfs_rq->tg_runnable_contrib;
2160
2161 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2162 atomic_add(contrib, &tg->runnable_avg);
2163 cfs_rq->tg_runnable_contrib += contrib;
2164 }
2165}
2166
2167static inline void __update_group_entity_contrib(struct sched_entity *se)
2168{
2169 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2170 struct task_group *tg = cfs_rq->tg;
2171 int runnable_avg;
2172
2173 u64 contrib;
2174
2175 contrib = cfs_rq->tg_load_contrib * tg->shares;
2176 se->avg.load_avg_contrib = div_u64(contrib,
2177 atomic_long_read(&tg->load_avg) + 1);
2178
2179 /*
2180 * For group entities we need to compute a correction term in the case
2181 * that they are consuming <1 cpu so that we would contribute the same
2182 * load as a task of equal weight.
2183 *
2184 * Explicitly co-ordinating this measurement would be expensive, but
2185 * fortunately the sum of each cpus contribution forms a usable
2186 * lower-bound on the true value.
2187 *
2188 * Consider the aggregate of 2 contributions. Either they are disjoint
2189 * (and the sum represents true value) or they are disjoint and we are
2190 * understating by the aggregate of their overlap.
2191 *
2192 * Extending this to N cpus, for a given overlap, the maximum amount we
2193 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2194 * cpus that overlap for this interval and w_i is the interval width.
2195 *
2196 * On a small machine; the first term is well-bounded which bounds the
2197 * total error since w_i is a subset of the period. Whereas on a
2198 * larger machine, while this first term can be larger, if w_i is the
2199 * of consequential size guaranteed to see n_i*w_i quickly converge to
2200 * our upper bound of 1-cpu.
2201 */
2202 runnable_avg = atomic_read(&tg->runnable_avg);
2203 if (runnable_avg < NICE_0_LOAD) {
2204 se->avg.load_avg_contrib *= runnable_avg;
2205 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2206 }
2207}
2208#else
2209static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2210 int force_update) {}
2211static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2212 struct cfs_rq *cfs_rq) {}
2213static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2214#endif
2215
2216static inline void __update_task_entity_contrib(struct sched_entity *se)
2217{
2218 u32 contrib;
2219
2220 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2221 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2222 contrib /= (se->avg.runnable_avg_period + 1);
2223 se->avg.load_avg_contrib = scale_load(contrib);
2224}
2225
2226/* Compute the current contribution to load_avg by se, return any delta */
2227static long __update_entity_load_avg_contrib(struct sched_entity *se)
2228{
2229 long old_contrib = se->avg.load_avg_contrib;
2230
2231 if (entity_is_task(se)) {
2232 __update_task_entity_contrib(se);
2233 } else {
2234 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2235 __update_group_entity_contrib(se);
2236 }
2237
2238 return se->avg.load_avg_contrib - old_contrib;
2239}
2240
2241static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2242 long load_contrib)
2243{
2244 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2245 cfs_rq->blocked_load_avg -= load_contrib;
2246 else
2247 cfs_rq->blocked_load_avg = 0;
2248}
2249
2250static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2251
2252/* Update a sched_entity's runnable average */
2253static inline void update_entity_load_avg(struct sched_entity *se,
2254 int update_cfs_rq)
2255{
2256 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2257 long contrib_delta;
2258 u64 now;
2259
2260 /*
2261 * For a group entity we need to use their owned cfs_rq_clock_task() in
2262 * case they are the parent of a throttled hierarchy.
2263 */
2264 if (entity_is_task(se))
2265 now = cfs_rq_clock_task(cfs_rq);
2266 else
2267 now = cfs_rq_clock_task(group_cfs_rq(se));
2268
2269 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2270 return;
2271
2272 contrib_delta = __update_entity_load_avg_contrib(se);
2273
2274 if (!update_cfs_rq)
2275 return;
2276
2277 if (se->on_rq)
2278 cfs_rq->runnable_load_avg += contrib_delta;
2279 else
2280 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2281}
2282
2283/*
2284 * Decay the load contributed by all blocked children and account this so that
2285 * their contribution may appropriately discounted when they wake up.
2286 */
2287static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2288{
2289 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2290 u64 decays;
2291
2292 decays = now - cfs_rq->last_decay;
2293 if (!decays && !force_update)
2294 return;
2295
2296 if (atomic_long_read(&cfs_rq->removed_load)) {
2297 unsigned long removed_load;
2298 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2299 subtract_blocked_load_contrib(cfs_rq, removed_load);
2300 }
2301
2302 if (decays) {
2303 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2304 decays);
2305 atomic64_add(decays, &cfs_rq->decay_counter);
2306 cfs_rq->last_decay = now;
2307 }
2308
2309 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2310}
2311
2312static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2313{
2314 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2315 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2316}
2317
2318/* Add the load generated by se into cfs_rq's child load-average */
2319static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2320 struct sched_entity *se,
2321 int wakeup)
2322{
2323 /*
2324 * We track migrations using entity decay_count <= 0, on a wake-up
2325 * migration we use a negative decay count to track the remote decays
2326 * accumulated while sleeping.
2327 *
2328 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2329 * are seen by enqueue_entity_load_avg() as a migration with an already
2330 * constructed load_avg_contrib.
2331 */
2332 if (unlikely(se->avg.decay_count <= 0)) {
2333 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2334 if (se->avg.decay_count) {
2335 /*
2336 * In a wake-up migration we have to approximate the
2337 * time sleeping. This is because we can't synchronize
2338 * clock_task between the two cpus, and it is not
2339 * guaranteed to be read-safe. Instead, we can
2340 * approximate this using our carried decays, which are
2341 * explicitly atomically readable.
2342 */
2343 se->avg.last_runnable_update -= (-se->avg.decay_count)
2344 << 20;
2345 update_entity_load_avg(se, 0);
2346 /* Indicate that we're now synchronized and on-rq */
2347 se->avg.decay_count = 0;
2348 }
2349 wakeup = 0;
2350 } else {
2351 __synchronize_entity_decay(se);
2352 }
2353
2354 /* migrated tasks did not contribute to our blocked load */
2355 if (wakeup) {
2356 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2357 update_entity_load_avg(se, 0);
2358 }
2359
2360 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2361 /* we force update consideration on load-balancer moves */
2362 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2363}
2364
2365/*
2366 * Remove se's load from this cfs_rq child load-average, if the entity is
2367 * transitioning to a blocked state we track its projected decay using
2368 * blocked_load_avg.
2369 */
2370static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2371 struct sched_entity *se,
2372 int sleep)
2373{
2374 update_entity_load_avg(se, 1);
2375 /* we force update consideration on load-balancer moves */
2376 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2377
2378 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2379 if (sleep) {
2380 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2381 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2382 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2383}
2384
2385/*
2386 * Update the rq's load with the elapsed running time before entering
2387 * idle. if the last scheduled task is not a CFS task, idle_enter will
2388 * be the only way to update the runnable statistic.
2389 */
2390void idle_enter_fair(struct rq *this_rq)
2391{
2392 update_rq_runnable_avg(this_rq, 1);
2393}
2394
2395/*
2396 * Update the rq's load with the elapsed idle time before a task is
2397 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2398 * be the only way to update the runnable statistic.
2399 */
2400void idle_exit_fair(struct rq *this_rq)
2401{
2402 update_rq_runnable_avg(this_rq, 0);
2403}
2404
2405#else
2406static inline void update_entity_load_avg(struct sched_entity *se,
2407 int update_cfs_rq) {}
2408static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2409static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2410 struct sched_entity *se,
2411 int wakeup) {}
2412static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2413 struct sched_entity *se,
2414 int sleep) {}
2415static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2416 int force_update) {}
2417#endif
2418
2419static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2420{
2421#ifdef CONFIG_SCHEDSTATS
2422 struct task_struct *tsk = NULL;
2423
2424 if (entity_is_task(se))
2425 tsk = task_of(se);
2426
2427 if (se->statistics.sleep_start) {
2428 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2429
2430 if ((s64)delta < 0)
2431 delta = 0;
2432
2433 if (unlikely(delta > se->statistics.sleep_max))
2434 se->statistics.sleep_max = delta;
2435
2436 se->statistics.sleep_start = 0;
2437 se->statistics.sum_sleep_runtime += delta;
2438
2439 if (tsk) {
2440 account_scheduler_latency(tsk, delta >> 10, 1);
2441 trace_sched_stat_sleep(tsk, delta);
2442 }
2443 }
2444 if (se->statistics.block_start) {
2445 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2446
2447 if ((s64)delta < 0)
2448 delta = 0;
2449
2450 if (unlikely(delta > se->statistics.block_max))
2451 se->statistics.block_max = delta;
2452
2453 se->statistics.block_start = 0;
2454 se->statistics.sum_sleep_runtime += delta;
2455
2456 if (tsk) {
2457 if (tsk->in_iowait) {
2458 se->statistics.iowait_sum += delta;
2459 se->statistics.iowait_count++;
2460 trace_sched_stat_iowait(tsk, delta);
2461 }
2462
2463 trace_sched_stat_blocked(tsk, delta);
2464
2465 /*
2466 * Blocking time is in units of nanosecs, so shift by
2467 * 20 to get a milliseconds-range estimation of the
2468 * amount of time that the task spent sleeping:
2469 */
2470 if (unlikely(prof_on == SLEEP_PROFILING)) {
2471 profile_hits(SLEEP_PROFILING,
2472 (void *)get_wchan(tsk),
2473 delta >> 20);
2474 }
2475 account_scheduler_latency(tsk, delta >> 10, 0);
2476 }
2477 }
2478#endif
2479}
2480
2481static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2482{
2483#ifdef CONFIG_SCHED_DEBUG
2484 s64 d = se->vruntime - cfs_rq->min_vruntime;
2485
2486 if (d < 0)
2487 d = -d;
2488
2489 if (d > 3*sysctl_sched_latency)
2490 schedstat_inc(cfs_rq, nr_spread_over);
2491#endif
2492}
2493
2494static void
2495place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2496{
2497 u64 vruntime = cfs_rq->min_vruntime;
2498
2499 /*
2500 * The 'current' period is already promised to the current tasks,
2501 * however the extra weight of the new task will slow them down a
2502 * little, place the new task so that it fits in the slot that
2503 * stays open at the end.
2504 */
2505 if (initial && sched_feat(START_DEBIT))
2506 vruntime += sched_vslice(cfs_rq, se);
2507
2508 /* sleeps up to a single latency don't count. */
2509 if (!initial) {
2510 unsigned long thresh = sysctl_sched_latency;
2511
2512 /*
2513 * Halve their sleep time's effect, to allow
2514 * for a gentler effect of sleepers:
2515 */
2516 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2517 thresh >>= 1;
2518
2519 vruntime -= thresh;
2520 }
2521
2522 /* ensure we never gain time by being placed backwards. */
2523 se->vruntime = max_vruntime(se->vruntime, vruntime);
2524}
2525
2526static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2527
2528static void
2529enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2530{
2531 /*
2532 * Update the normalized vruntime before updating min_vruntime
2533 * through calling update_curr().
2534 */
2535 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2536 se->vruntime += cfs_rq->min_vruntime;
2537
2538 /*
2539 * Update run-time statistics of the 'current'.
2540 */
2541 update_curr(cfs_rq);
2542 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2543 account_entity_enqueue(cfs_rq, se);
2544 update_cfs_shares(cfs_rq);
2545
2546 if (flags & ENQUEUE_WAKEUP) {
2547 place_entity(cfs_rq, se, 0);
2548 enqueue_sleeper(cfs_rq, se);
2549 }
2550
2551 update_stats_enqueue(cfs_rq, se);
2552 check_spread(cfs_rq, se);
2553 if (se != cfs_rq->curr)
2554 __enqueue_entity(cfs_rq, se);
2555 se->on_rq = 1;
2556
2557 if (cfs_rq->nr_running == 1) {
2558 list_add_leaf_cfs_rq(cfs_rq);
2559 check_enqueue_throttle(cfs_rq);
2560 }
2561}
2562
2563static void __clear_buddies_last(struct sched_entity *se)
2564{
2565 for_each_sched_entity(se) {
2566 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2567 if (cfs_rq->last == se)
2568 cfs_rq->last = NULL;
2569 else
2570 break;
2571 }
2572}
2573
2574static void __clear_buddies_next(struct sched_entity *se)
2575{
2576 for_each_sched_entity(se) {
2577 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2578 if (cfs_rq->next == se)
2579 cfs_rq->next = NULL;
2580 else
2581 break;
2582 }
2583}
2584
2585static void __clear_buddies_skip(struct sched_entity *se)
2586{
2587 for_each_sched_entity(se) {
2588 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2589 if (cfs_rq->skip == se)
2590 cfs_rq->skip = NULL;
2591 else
2592 break;
2593 }
2594}
2595
2596static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2597{
2598 if (cfs_rq->last == se)
2599 __clear_buddies_last(se);
2600
2601 if (cfs_rq->next == se)
2602 __clear_buddies_next(se);
2603
2604 if (cfs_rq->skip == se)
2605 __clear_buddies_skip(se);
2606}
2607
2608static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2609
2610static void
2611dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2612{
2613 /*
2614 * Update run-time statistics of the 'current'.
2615 */
2616 update_curr(cfs_rq);
2617 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2618
2619 update_stats_dequeue(cfs_rq, se);
2620 if (flags & DEQUEUE_SLEEP) {
2621#ifdef CONFIG_SCHEDSTATS
2622 if (entity_is_task(se)) {
2623 struct task_struct *tsk = task_of(se);
2624
2625 if (tsk->state & TASK_INTERRUPTIBLE)
2626 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2627 if (tsk->state & TASK_UNINTERRUPTIBLE)
2628 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2629 }
2630#endif
2631 }
2632
2633 clear_buddies(cfs_rq, se);
2634
2635 if (se != cfs_rq->curr)
2636 __dequeue_entity(cfs_rq, se);
2637 se->on_rq = 0;
2638 account_entity_dequeue(cfs_rq, se);
2639
2640 /*
2641 * Normalize the entity after updating the min_vruntime because the
2642 * update can refer to the ->curr item and we need to reflect this
2643 * movement in our normalized position.
2644 */
2645 if (!(flags & DEQUEUE_SLEEP))
2646 se->vruntime -= cfs_rq->min_vruntime;
2647
2648 /* return excess runtime on last dequeue */
2649 return_cfs_rq_runtime(cfs_rq);
2650
2651 update_min_vruntime(cfs_rq);
2652 update_cfs_shares(cfs_rq);
2653}
2654
2655/*
2656 * Preempt the current task with a newly woken task if needed:
2657 */
2658static void
2659check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2660{
2661 unsigned long ideal_runtime, delta_exec;
2662 struct sched_entity *se;
2663 s64 delta;
2664
2665 ideal_runtime = sched_slice(cfs_rq, curr);
2666 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2667 if (delta_exec > ideal_runtime) {
2668 resched_task(rq_of(cfs_rq)->curr);
2669 /*
2670 * The current task ran long enough, ensure it doesn't get
2671 * re-elected due to buddy favours.
2672 */
2673 clear_buddies(cfs_rq, curr);
2674 return;
2675 }
2676
2677 /*
2678 * Ensure that a task that missed wakeup preemption by a
2679 * narrow margin doesn't have to wait for a full slice.
2680 * This also mitigates buddy induced latencies under load.
2681 */
2682 if (delta_exec < sysctl_sched_min_granularity)
2683 return;
2684
2685 se = __pick_first_entity(cfs_rq);
2686 delta = curr->vruntime - se->vruntime;
2687
2688 if (delta < 0)
2689 return;
2690
2691 if (delta > ideal_runtime)
2692 resched_task(rq_of(cfs_rq)->curr);
2693}
2694
2695static void
2696set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2697{
2698 /* 'current' is not kept within the tree. */
2699 if (se->on_rq) {
2700 /*
2701 * Any task has to be enqueued before it get to execute on
2702 * a CPU. So account for the time it spent waiting on the
2703 * runqueue.
2704 */
2705 update_stats_wait_end(cfs_rq, se);
2706 __dequeue_entity(cfs_rq, se);
2707 }
2708
2709 update_stats_curr_start(cfs_rq, se);
2710 cfs_rq->curr = se;
2711#ifdef CONFIG_SCHEDSTATS
2712 /*
2713 * Track our maximum slice length, if the CPU's load is at
2714 * least twice that of our own weight (i.e. dont track it
2715 * when there are only lesser-weight tasks around):
2716 */
2717 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2718 se->statistics.slice_max = max(se->statistics.slice_max,
2719 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2720 }
2721#endif
2722 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2723}
2724
2725static int
2726wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2727
2728/*
2729 * Pick the next process, keeping these things in mind, in this order:
2730 * 1) keep things fair between processes/task groups
2731 * 2) pick the "next" process, since someone really wants that to run
2732 * 3) pick the "last" process, for cache locality
2733 * 4) do not run the "skip" process, if something else is available
2734 */
2735static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2736{
2737 struct sched_entity *se = __pick_first_entity(cfs_rq);
2738 struct sched_entity *left = se;
2739
2740 /*
2741 * Avoid running the skip buddy, if running something else can
2742 * be done without getting too unfair.
2743 */
2744 if (cfs_rq->skip == se) {
2745 struct sched_entity *second = __pick_next_entity(se);
2746 if (second && wakeup_preempt_entity(second, left) < 1)
2747 se = second;
2748 }
2749
2750 /*
2751 * Prefer last buddy, try to return the CPU to a preempted task.
2752 */
2753 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2754 se = cfs_rq->last;
2755
2756 /*
2757 * Someone really wants this to run. If it's not unfair, run it.
2758 */
2759 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2760 se = cfs_rq->next;
2761
2762 clear_buddies(cfs_rq, se);
2763
2764 return se;
2765}
2766
2767static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2768
2769static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2770{
2771 /*
2772 * If still on the runqueue then deactivate_task()
2773 * was not called and update_curr() has to be done:
2774 */
2775 if (prev->on_rq)
2776 update_curr(cfs_rq);
2777
2778 /* throttle cfs_rqs exceeding runtime */
2779 check_cfs_rq_runtime(cfs_rq);
2780
2781 check_spread(cfs_rq, prev);
2782 if (prev->on_rq) {
2783 update_stats_wait_start(cfs_rq, prev);
2784 /* Put 'current' back into the tree. */
2785 __enqueue_entity(cfs_rq, prev);
2786 /* in !on_rq case, update occurred at dequeue */
2787 update_entity_load_avg(prev, 1);
2788 }
2789 cfs_rq->curr = NULL;
2790}
2791
2792static void
2793entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2794{
2795 /*
2796 * Update run-time statistics of the 'current'.
2797 */
2798 update_curr(cfs_rq);
2799
2800 /*
2801 * Ensure that runnable average is periodically updated.
2802 */
2803 update_entity_load_avg(curr, 1);
2804 update_cfs_rq_blocked_load(cfs_rq, 1);
2805 update_cfs_shares(cfs_rq);
2806
2807#ifdef CONFIG_SCHED_HRTICK
2808 /*
2809 * queued ticks are scheduled to match the slice, so don't bother
2810 * validating it and just reschedule.
2811 */
2812 if (queued) {
2813 resched_task(rq_of(cfs_rq)->curr);
2814 return;
2815 }
2816 /*
2817 * don't let the period tick interfere with the hrtick preemption
2818 */
2819 if (!sched_feat(DOUBLE_TICK) &&
2820 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2821 return;
2822#endif
2823
2824 if (cfs_rq->nr_running > 1)
2825 check_preempt_tick(cfs_rq, curr);
2826}
2827
2828
2829/**************************************************
2830 * CFS bandwidth control machinery
2831 */
2832
2833#ifdef CONFIG_CFS_BANDWIDTH
2834
2835#ifdef HAVE_JUMP_LABEL
2836static struct static_key __cfs_bandwidth_used;
2837
2838static inline bool cfs_bandwidth_used(void)
2839{
2840 return static_key_false(&__cfs_bandwidth_used);
2841}
2842
2843void cfs_bandwidth_usage_inc(void)
2844{
2845 static_key_slow_inc(&__cfs_bandwidth_used);
2846}
2847
2848void cfs_bandwidth_usage_dec(void)
2849{
2850 static_key_slow_dec(&__cfs_bandwidth_used);
2851}
2852#else /* HAVE_JUMP_LABEL */
2853static bool cfs_bandwidth_used(void)
2854{
2855 return true;
2856}
2857
2858void cfs_bandwidth_usage_inc(void) {}
2859void cfs_bandwidth_usage_dec(void) {}
2860#endif /* HAVE_JUMP_LABEL */
2861
2862/*
2863 * default period for cfs group bandwidth.
2864 * default: 0.1s, units: nanoseconds
2865 */
2866static inline u64 default_cfs_period(void)
2867{
2868 return 100000000ULL;
2869}
2870
2871static inline u64 sched_cfs_bandwidth_slice(void)
2872{
2873 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2874}
2875
2876/*
2877 * Replenish runtime according to assigned quota and update expiration time.
2878 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2879 * additional synchronization around rq->lock.
2880 *
2881 * requires cfs_b->lock
2882 */
2883void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2884{
2885 u64 now;
2886
2887 if (cfs_b->quota == RUNTIME_INF)
2888 return;
2889
2890 now = sched_clock_cpu(smp_processor_id());
2891 cfs_b->runtime = cfs_b->quota;
2892 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2893}
2894
2895static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2896{
2897 return &tg->cfs_bandwidth;
2898}
2899
2900/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2901static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2902{
2903 if (unlikely(cfs_rq->throttle_count))
2904 return cfs_rq->throttled_clock_task;
2905
2906 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2907}
2908
2909/* returns 0 on failure to allocate runtime */
2910static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2911{
2912 struct task_group *tg = cfs_rq->tg;
2913 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2914 u64 amount = 0, min_amount, expires;
2915
2916 /* note: this is a positive sum as runtime_remaining <= 0 */
2917 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2918
2919 raw_spin_lock(&cfs_b->lock);
2920 if (cfs_b->quota == RUNTIME_INF)
2921 amount = min_amount;
2922 else {
2923 /*
2924 * If the bandwidth pool has become inactive, then at least one
2925 * period must have elapsed since the last consumption.
2926 * Refresh the global state and ensure bandwidth timer becomes
2927 * active.
2928 */
2929 if (!cfs_b->timer_active) {
2930 __refill_cfs_bandwidth_runtime(cfs_b);
2931 __start_cfs_bandwidth(cfs_b);
2932 }
2933
2934 if (cfs_b->runtime > 0) {
2935 amount = min(cfs_b->runtime, min_amount);
2936 cfs_b->runtime -= amount;
2937 cfs_b->idle = 0;
2938 }
2939 }
2940 expires = cfs_b->runtime_expires;
2941 raw_spin_unlock(&cfs_b->lock);
2942
2943 cfs_rq->runtime_remaining += amount;
2944 /*
2945 * we may have advanced our local expiration to account for allowed
2946 * spread between our sched_clock and the one on which runtime was
2947 * issued.
2948 */
2949 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2950 cfs_rq->runtime_expires = expires;
2951
2952 return cfs_rq->runtime_remaining > 0;
2953}
2954
2955/*
2956 * Note: This depends on the synchronization provided by sched_clock and the
2957 * fact that rq->clock snapshots this value.
2958 */
2959static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2960{
2961 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2962
2963 /* if the deadline is ahead of our clock, nothing to do */
2964 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2965 return;
2966
2967 if (cfs_rq->runtime_remaining < 0)
2968 return;
2969
2970 /*
2971 * If the local deadline has passed we have to consider the
2972 * possibility that our sched_clock is 'fast' and the global deadline
2973 * has not truly expired.
2974 *
2975 * Fortunately we can check determine whether this the case by checking
2976 * whether the global deadline has advanced.
2977 */
2978
2979 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2980 /* extend local deadline, drift is bounded above by 2 ticks */
2981 cfs_rq->runtime_expires += TICK_NSEC;
2982 } else {
2983 /* global deadline is ahead, expiration has passed */
2984 cfs_rq->runtime_remaining = 0;
2985 }
2986}
2987
2988static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
2989{
2990 /* dock delta_exec before expiring quota (as it could span periods) */
2991 cfs_rq->runtime_remaining -= delta_exec;
2992 expire_cfs_rq_runtime(cfs_rq);
2993
2994 if (likely(cfs_rq->runtime_remaining > 0))
2995 return;
2996
2997 /*
2998 * if we're unable to extend our runtime we resched so that the active
2999 * hierarchy can be throttled
3000 */
3001 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3002 resched_task(rq_of(cfs_rq)->curr);
3003}
3004
3005static __always_inline
3006void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3007{
3008 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3009 return;
3010
3011 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3012}
3013
3014static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3015{
3016 return cfs_bandwidth_used() && cfs_rq->throttled;
3017}
3018
3019/* check whether cfs_rq, or any parent, is throttled */
3020static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3021{
3022 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3023}
3024
3025/*
3026 * Ensure that neither of the group entities corresponding to src_cpu or
3027 * dest_cpu are members of a throttled hierarchy when performing group
3028 * load-balance operations.
3029 */
3030static inline int throttled_lb_pair(struct task_group *tg,
3031 int src_cpu, int dest_cpu)
3032{
3033 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3034
3035 src_cfs_rq = tg->cfs_rq[src_cpu];
3036 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3037
3038 return throttled_hierarchy(src_cfs_rq) ||
3039 throttled_hierarchy(dest_cfs_rq);
3040}
3041
3042/* updated child weight may affect parent so we have to do this bottom up */
3043static int tg_unthrottle_up(struct task_group *tg, void *data)
3044{
3045 struct rq *rq = data;
3046 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3047
3048 cfs_rq->throttle_count--;
3049#ifdef CONFIG_SMP
3050 if (!cfs_rq->throttle_count) {
3051 /* adjust cfs_rq_clock_task() */
3052 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3053 cfs_rq->throttled_clock_task;
3054 }
3055#endif
3056
3057 return 0;
3058}
3059
3060static int tg_throttle_down(struct task_group *tg, void *data)
3061{
3062 struct rq *rq = data;
3063 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3064
3065 /* group is entering throttled state, stop time */
3066 if (!cfs_rq->throttle_count)
3067 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3068 cfs_rq->throttle_count++;
3069
3070 return 0;
3071}
3072
3073static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3074{
3075 struct rq *rq = rq_of(cfs_rq);
3076 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3077 struct sched_entity *se;
3078 long task_delta, dequeue = 1;
3079
3080 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3081
3082 /* freeze hierarchy runnable averages while throttled */
3083 rcu_read_lock();
3084 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3085 rcu_read_unlock();
3086
3087 task_delta = cfs_rq->h_nr_running;
3088 for_each_sched_entity(se) {
3089 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3090 /* throttled entity or throttle-on-deactivate */
3091 if (!se->on_rq)
3092 break;
3093
3094 if (dequeue)
3095 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3096 qcfs_rq->h_nr_running -= task_delta;
3097
3098 if (qcfs_rq->load.weight)
3099 dequeue = 0;
3100 }
3101
3102 if (!se)
3103 rq->nr_running -= task_delta;
3104
3105 cfs_rq->throttled = 1;
3106 cfs_rq->throttled_clock = rq_clock(rq);
3107 raw_spin_lock(&cfs_b->lock);
3108 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3109 if (!cfs_b->timer_active)
3110 __start_cfs_bandwidth(cfs_b);
3111 raw_spin_unlock(&cfs_b->lock);
3112}
3113
3114void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3115{
3116 struct rq *rq = rq_of(cfs_rq);
3117 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3118 struct sched_entity *se;
3119 int enqueue = 1;
3120 long task_delta;
3121
3122 se = cfs_rq->tg->se[cpu_of(rq)];
3123
3124 cfs_rq->throttled = 0;
3125
3126 update_rq_clock(rq);
3127
3128 raw_spin_lock(&cfs_b->lock);
3129 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3130 list_del_rcu(&cfs_rq->throttled_list);
3131 raw_spin_unlock(&cfs_b->lock);
3132
3133 /* update hierarchical throttle state */
3134 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3135
3136 if (!cfs_rq->load.weight)
3137 return;
3138
3139 task_delta = cfs_rq->h_nr_running;
3140 for_each_sched_entity(se) {
3141 if (se->on_rq)
3142 enqueue = 0;
3143
3144 cfs_rq = cfs_rq_of(se);
3145 if (enqueue)
3146 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3147 cfs_rq->h_nr_running += task_delta;
3148
3149 if (cfs_rq_throttled(cfs_rq))
3150 break;
3151 }
3152
3153 if (!se)
3154 rq->nr_running += task_delta;
3155
3156 /* determine whether we need to wake up potentially idle cpu */
3157 if (rq->curr == rq->idle && rq->cfs.nr_running)
3158 resched_task(rq->curr);
3159}
3160
3161static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3162 u64 remaining, u64 expires)
3163{
3164 struct cfs_rq *cfs_rq;
3165 u64 runtime = remaining;
3166
3167 rcu_read_lock();
3168 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3169 throttled_list) {
3170 struct rq *rq = rq_of(cfs_rq);
3171
3172 raw_spin_lock(&rq->lock);
3173 if (!cfs_rq_throttled(cfs_rq))
3174 goto next;
3175
3176 runtime = -cfs_rq->runtime_remaining + 1;
3177 if (runtime > remaining)
3178 runtime = remaining;
3179 remaining -= runtime;
3180
3181 cfs_rq->runtime_remaining += runtime;
3182 cfs_rq->runtime_expires = expires;
3183
3184 /* we check whether we're throttled above */
3185 if (cfs_rq->runtime_remaining > 0)
3186 unthrottle_cfs_rq(cfs_rq);
3187
3188next:
3189 raw_spin_unlock(&rq->lock);
3190
3191 if (!remaining)
3192 break;
3193 }
3194 rcu_read_unlock();
3195
3196 return remaining;
3197}
3198
3199/*
3200 * Responsible for refilling a task_group's bandwidth and unthrottling its
3201 * cfs_rqs as appropriate. If there has been no activity within the last
3202 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3203 * used to track this state.
3204 */
3205static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3206{
3207 u64 runtime, runtime_expires;
3208 int idle = 1, throttled;
3209
3210 raw_spin_lock(&cfs_b->lock);
3211 /* no need to continue the timer with no bandwidth constraint */
3212 if (cfs_b->quota == RUNTIME_INF)
3213 goto out_unlock;
3214
3215 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3216 /* idle depends on !throttled (for the case of a large deficit) */
3217 idle = cfs_b->idle && !throttled;
3218 cfs_b->nr_periods += overrun;
3219
3220 /* if we're going inactive then everything else can be deferred */
3221 if (idle)
3222 goto out_unlock;
3223
3224 /*
3225 * if we have relooped after returning idle once, we need to update our
3226 * status as actually running, so that other cpus doing
3227 * __start_cfs_bandwidth will stop trying to cancel us.
3228 */
3229 cfs_b->timer_active = 1;
3230
3231 __refill_cfs_bandwidth_runtime(cfs_b);
3232
3233 if (!throttled) {
3234 /* mark as potentially idle for the upcoming period */
3235 cfs_b->idle = 1;
3236 goto out_unlock;
3237 }
3238
3239 /* account preceding periods in which throttling occurred */
3240 cfs_b->nr_throttled += overrun;
3241
3242 /*
3243 * There are throttled entities so we must first use the new bandwidth
3244 * to unthrottle them before making it generally available. This
3245 * ensures that all existing debts will be paid before a new cfs_rq is
3246 * allowed to run.
3247 */
3248 runtime = cfs_b->runtime;
3249 runtime_expires = cfs_b->runtime_expires;
3250 cfs_b->runtime = 0;
3251
3252 /*
3253 * This check is repeated as we are holding onto the new bandwidth
3254 * while we unthrottle. This can potentially race with an unthrottled
3255 * group trying to acquire new bandwidth from the global pool.
3256 */
3257 while (throttled && runtime > 0) {
3258 raw_spin_unlock(&cfs_b->lock);
3259 /* we can't nest cfs_b->lock while distributing bandwidth */
3260 runtime = distribute_cfs_runtime(cfs_b, runtime,
3261 runtime_expires);
3262 raw_spin_lock(&cfs_b->lock);
3263
3264 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3265 }
3266
3267 /* return (any) remaining runtime */
3268 cfs_b->runtime = runtime;
3269 /*
3270 * While we are ensured activity in the period following an
3271 * unthrottle, this also covers the case in which the new bandwidth is
3272 * insufficient to cover the existing bandwidth deficit. (Forcing the
3273 * timer to remain active while there are any throttled entities.)
3274 */
3275 cfs_b->idle = 0;
3276out_unlock:
3277 if (idle)
3278 cfs_b->timer_active = 0;
3279 raw_spin_unlock(&cfs_b->lock);
3280
3281 return idle;
3282}
3283
3284/* a cfs_rq won't donate quota below this amount */
3285static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3286/* minimum remaining period time to redistribute slack quota */
3287static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3288/* how long we wait to gather additional slack before distributing */
3289static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3290
3291/*
3292 * Are we near the end of the current quota period?
3293 *
3294 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3295 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3296 * migrate_hrtimers, base is never cleared, so we are fine.
3297 */
3298static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3299{
3300 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3301 u64 remaining;
3302
3303 /* if the call-back is running a quota refresh is already occurring */
3304 if (hrtimer_callback_running(refresh_timer))
3305 return 1;
3306
3307 /* is a quota refresh about to occur? */
3308 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3309 if (remaining < min_expire)
3310 return 1;
3311
3312 return 0;
3313}
3314
3315static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3316{
3317 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3318
3319 /* if there's a quota refresh soon don't bother with slack */
3320 if (runtime_refresh_within(cfs_b, min_left))
3321 return;
3322
3323 start_bandwidth_timer(&cfs_b->slack_timer,
3324 ns_to_ktime(cfs_bandwidth_slack_period));
3325}
3326
3327/* we know any runtime found here is valid as update_curr() precedes return */
3328static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3329{
3330 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3331 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3332
3333 if (slack_runtime <= 0)
3334 return;
3335
3336 raw_spin_lock(&cfs_b->lock);
3337 if (cfs_b->quota != RUNTIME_INF &&
3338 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3339 cfs_b->runtime += slack_runtime;
3340
3341 /* we are under rq->lock, defer unthrottling using a timer */
3342 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3343 !list_empty(&cfs_b->throttled_cfs_rq))
3344 start_cfs_slack_bandwidth(cfs_b);
3345 }
3346 raw_spin_unlock(&cfs_b->lock);
3347
3348 /* even if it's not valid for return we don't want to try again */
3349 cfs_rq->runtime_remaining -= slack_runtime;
3350}
3351
3352static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3353{
3354 if (!cfs_bandwidth_used())
3355 return;
3356
3357 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3358 return;
3359
3360 __return_cfs_rq_runtime(cfs_rq);
3361}
3362
3363/*
3364 * This is done with a timer (instead of inline with bandwidth return) since
3365 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3366 */
3367static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3368{
3369 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3370 u64 expires;
3371
3372 /* confirm we're still not at a refresh boundary */
3373 raw_spin_lock(&cfs_b->lock);
3374 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3375 raw_spin_unlock(&cfs_b->lock);
3376 return;
3377 }
3378
3379 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3380 runtime = cfs_b->runtime;
3381 cfs_b->runtime = 0;
3382 }
3383 expires = cfs_b->runtime_expires;
3384 raw_spin_unlock(&cfs_b->lock);
3385
3386 if (!runtime)
3387 return;
3388
3389 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3390
3391 raw_spin_lock(&cfs_b->lock);
3392 if (expires == cfs_b->runtime_expires)
3393 cfs_b->runtime = runtime;
3394 raw_spin_unlock(&cfs_b->lock);
3395}
3396
3397/*
3398 * When a group wakes up we want to make sure that its quota is not already
3399 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3400 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3401 */
3402static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3403{
3404 if (!cfs_bandwidth_used())
3405 return;
3406
3407 /* an active group must be handled by the update_curr()->put() path */
3408 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3409 return;
3410
3411 /* ensure the group is not already throttled */
3412 if (cfs_rq_throttled(cfs_rq))
3413 return;
3414
3415 /* update runtime allocation */
3416 account_cfs_rq_runtime(cfs_rq, 0);
3417 if (cfs_rq->runtime_remaining <= 0)
3418 throttle_cfs_rq(cfs_rq);
3419}
3420
3421/* conditionally throttle active cfs_rq's from put_prev_entity() */
3422static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3423{
3424 if (!cfs_bandwidth_used())
3425 return;
3426
3427 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3428 return;
3429
3430 /*
3431 * it's possible for a throttled entity to be forced into a running
3432 * state (e.g. set_curr_task), in this case we're finished.
3433 */
3434 if (cfs_rq_throttled(cfs_rq))
3435 return;
3436
3437 throttle_cfs_rq(cfs_rq);
3438}
3439
3440static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3441{
3442 struct cfs_bandwidth *cfs_b =
3443 container_of(timer, struct cfs_bandwidth, slack_timer);
3444 do_sched_cfs_slack_timer(cfs_b);
3445
3446 return HRTIMER_NORESTART;
3447}
3448
3449static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3450{
3451 struct cfs_bandwidth *cfs_b =
3452 container_of(timer, struct cfs_bandwidth, period_timer);
3453 ktime_t now;
3454 int overrun;
3455 int idle = 0;
3456
3457 for (;;) {
3458 now = hrtimer_cb_get_time(timer);
3459 overrun = hrtimer_forward(timer, now, cfs_b->period);
3460
3461 if (!overrun)
3462 break;
3463
3464 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3465 }
3466
3467 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3468}
3469
3470void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3471{
3472 raw_spin_lock_init(&cfs_b->lock);
3473 cfs_b->runtime = 0;
3474 cfs_b->quota = RUNTIME_INF;
3475 cfs_b->period = ns_to_ktime(default_cfs_period());
3476
3477 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3478 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3479 cfs_b->period_timer.function = sched_cfs_period_timer;
3480 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3481 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3482}
3483
3484static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3485{
3486 cfs_rq->runtime_enabled = 0;
3487 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3488}
3489
3490/* requires cfs_b->lock, may release to reprogram timer */
3491void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3492{
3493 /*
3494 * The timer may be active because we're trying to set a new bandwidth
3495 * period or because we're racing with the tear-down path
3496 * (timer_active==0 becomes visible before the hrtimer call-back
3497 * terminates). In either case we ensure that it's re-programmed
3498 */
3499 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3500 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3501 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3502 raw_spin_unlock(&cfs_b->lock);
3503 cpu_relax();
3504 raw_spin_lock(&cfs_b->lock);
3505 /* if someone else restarted the timer then we're done */
3506 if (cfs_b->timer_active)
3507 return;
3508 }
3509
3510 cfs_b->timer_active = 1;
3511 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3512}
3513
3514static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3515{
3516 hrtimer_cancel(&cfs_b->period_timer);
3517 hrtimer_cancel(&cfs_b->slack_timer);
3518}
3519
3520static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3521{
3522 struct cfs_rq *cfs_rq;
3523
3524 for_each_leaf_cfs_rq(rq, cfs_rq) {
3525 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3526
3527 if (!cfs_rq->runtime_enabled)
3528 continue;
3529
3530 /*
3531 * clock_task is not advancing so we just need to make sure
3532 * there's some valid quota amount
3533 */
3534 cfs_rq->runtime_remaining = cfs_b->quota;
3535 if (cfs_rq_throttled(cfs_rq))
3536 unthrottle_cfs_rq(cfs_rq);
3537 }
3538}
3539
3540#else /* CONFIG_CFS_BANDWIDTH */
3541static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3542{
3543 return rq_clock_task(rq_of(cfs_rq));
3544}
3545
3546static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3547static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3548static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3549static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3550
3551static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3552{
3553 return 0;
3554}
3555
3556static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3557{
3558 return 0;
3559}
3560
3561static inline int throttled_lb_pair(struct task_group *tg,
3562 int src_cpu, int dest_cpu)
3563{
3564 return 0;
3565}
3566
3567void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3568
3569#ifdef CONFIG_FAIR_GROUP_SCHED
3570static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3571#endif
3572
3573static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3574{
3575 return NULL;
3576}
3577static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3578static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3579
3580#endif /* CONFIG_CFS_BANDWIDTH */
3581
3582/**************************************************
3583 * CFS operations on tasks:
3584 */
3585
3586#ifdef CONFIG_SCHED_HRTICK
3587static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3588{
3589 struct sched_entity *se = &p->se;
3590 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3591
3592 WARN_ON(task_rq(p) != rq);
3593
3594 if (cfs_rq->nr_running > 1) {
3595 u64 slice = sched_slice(cfs_rq, se);
3596 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3597 s64 delta = slice - ran;
3598
3599 if (delta < 0) {
3600 if (rq->curr == p)
3601 resched_task(p);
3602 return;
3603 }
3604
3605 /*
3606 * Don't schedule slices shorter than 10000ns, that just
3607 * doesn't make sense. Rely on vruntime for fairness.
3608 */
3609 if (rq->curr != p)
3610 delta = max_t(s64, 10000LL, delta);
3611
3612 hrtick_start(rq, delta);
3613 }
3614}
3615
3616/*
3617 * called from enqueue/dequeue and updates the hrtick when the
3618 * current task is from our class and nr_running is low enough
3619 * to matter.
3620 */
3621static void hrtick_update(struct rq *rq)
3622{
3623 struct task_struct *curr = rq->curr;
3624
3625 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3626 return;
3627
3628 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3629 hrtick_start_fair(rq, curr);
3630}
3631#else /* !CONFIG_SCHED_HRTICK */
3632static inline void
3633hrtick_start_fair(struct rq *rq, struct task_struct *p)
3634{
3635}
3636
3637static inline void hrtick_update(struct rq *rq)
3638{
3639}
3640#endif
3641
3642/*
3643 * The enqueue_task method is called before nr_running is
3644 * increased. Here we update the fair scheduling stats and
3645 * then put the task into the rbtree:
3646 */
3647static void
3648enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3649{
3650 struct cfs_rq *cfs_rq;
3651 struct sched_entity *se = &p->se;
3652
3653 for_each_sched_entity(se) {
3654 if (se->on_rq)
3655 break;
3656 cfs_rq = cfs_rq_of(se);
3657 enqueue_entity(cfs_rq, se, flags);
3658
3659 /*
3660 * end evaluation on encountering a throttled cfs_rq
3661 *
3662 * note: in the case of encountering a throttled cfs_rq we will
3663 * post the final h_nr_running increment below.
3664 */
3665 if (cfs_rq_throttled(cfs_rq))
3666 break;
3667 cfs_rq->h_nr_running++;
3668
3669 flags = ENQUEUE_WAKEUP;
3670 }
3671
3672 for_each_sched_entity(se) {
3673 cfs_rq = cfs_rq_of(se);
3674 cfs_rq->h_nr_running++;
3675
3676 if (cfs_rq_throttled(cfs_rq))
3677 break;
3678
3679 update_cfs_shares(cfs_rq);
3680 update_entity_load_avg(se, 1);
3681 }
3682
3683 if (!se) {
3684 update_rq_runnable_avg(rq, rq->nr_running);
3685 inc_nr_running(rq);
3686 }
3687 hrtick_update(rq);
3688}
3689
3690static void set_next_buddy(struct sched_entity *se);
3691
3692/*
3693 * The dequeue_task method is called before nr_running is
3694 * decreased. We remove the task from the rbtree and
3695 * update the fair scheduling stats:
3696 */
3697static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3698{
3699 struct cfs_rq *cfs_rq;
3700 struct sched_entity *se = &p->se;
3701 int task_sleep = flags & DEQUEUE_SLEEP;
3702
3703 for_each_sched_entity(se) {
3704 cfs_rq = cfs_rq_of(se);
3705 dequeue_entity(cfs_rq, se, flags);
3706
3707 /*
3708 * end evaluation on encountering a throttled cfs_rq
3709 *
3710 * note: in the case of encountering a throttled cfs_rq we will
3711 * post the final h_nr_running decrement below.
3712 */
3713 if (cfs_rq_throttled(cfs_rq))
3714 break;
3715 cfs_rq->h_nr_running--;
3716
3717 /* Don't dequeue parent if it has other entities besides us */
3718 if (cfs_rq->load.weight) {
3719 /*
3720 * Bias pick_next to pick a task from this cfs_rq, as
3721 * p is sleeping when it is within its sched_slice.
3722 */
3723 if (task_sleep && parent_entity(se))
3724 set_next_buddy(parent_entity(se));
3725
3726 /* avoid re-evaluating load for this entity */
3727 se = parent_entity(se);
3728 break;
3729 }
3730 flags |= DEQUEUE_SLEEP;
3731 }
3732
3733 for_each_sched_entity(se) {
3734 cfs_rq = cfs_rq_of(se);
3735 cfs_rq->h_nr_running--;
3736
3737 if (cfs_rq_throttled(cfs_rq))
3738 break;
3739
3740 update_cfs_shares(cfs_rq);
3741 update_entity_load_avg(se, 1);
3742 }
3743
3744 if (!se) {
3745 dec_nr_running(rq);
3746 update_rq_runnable_avg(rq, 1);
3747 }
3748 hrtick_update(rq);
3749}
3750
3751#ifdef CONFIG_SMP
3752/* Used instead of source_load when we know the type == 0 */
3753static unsigned long weighted_cpuload(const int cpu)
3754{
3755 return cpu_rq(cpu)->cfs.runnable_load_avg;
3756}
3757
3758/*
3759 * Return a low guess at the load of a migration-source cpu weighted
3760 * according to the scheduling class and "nice" value.
3761 *
3762 * We want to under-estimate the load of migration sources, to
3763 * balance conservatively.
3764 */
3765static unsigned long source_load(int cpu, int type)
3766{
3767 struct rq *rq = cpu_rq(cpu);
3768 unsigned long total = weighted_cpuload(cpu);
3769
3770 if (type == 0 || !sched_feat(LB_BIAS))
3771 return total;
3772
3773 return min(rq->cpu_load[type-1], total);
3774}
3775
3776/*
3777 * Return a high guess at the load of a migration-target cpu weighted
3778 * according to the scheduling class and "nice" value.
3779 */
3780static unsigned long target_load(int cpu, int type)
3781{
3782 struct rq *rq = cpu_rq(cpu);
3783 unsigned long total = weighted_cpuload(cpu);
3784
3785 if (type == 0 || !sched_feat(LB_BIAS))
3786 return total;
3787
3788 return max(rq->cpu_load[type-1], total);
3789}
3790
3791static unsigned long power_of(int cpu)
3792{
3793 return cpu_rq(cpu)->cpu_power;
3794}
3795
3796static unsigned long cpu_avg_load_per_task(int cpu)
3797{
3798 struct rq *rq = cpu_rq(cpu);
3799 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3800 unsigned long load_avg = rq->cfs.runnable_load_avg;
3801
3802 if (nr_running)
3803 return load_avg / nr_running;
3804
3805 return 0;
3806}
3807
3808static void record_wakee(struct task_struct *p)
3809{
3810 /*
3811 * Rough decay (wiping) for cost saving, don't worry
3812 * about the boundary, really active task won't care
3813 * about the loss.
3814 */
3815 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3816 current->wakee_flips = 0;
3817 current->wakee_flip_decay_ts = jiffies;
3818 }
3819
3820 if (current->last_wakee != p) {
3821 current->last_wakee = p;
3822 current->wakee_flips++;
3823 }
3824}
3825
3826static void task_waking_fair(struct task_struct *p)
3827{
3828 struct sched_entity *se = &p->se;
3829 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3830 u64 min_vruntime;
3831
3832#ifndef CONFIG_64BIT
3833 u64 min_vruntime_copy;
3834
3835 do {
3836 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3837 smp_rmb();
3838 min_vruntime = cfs_rq->min_vruntime;
3839 } while (min_vruntime != min_vruntime_copy);
3840#else
3841 min_vruntime = cfs_rq->min_vruntime;
3842#endif
3843
3844 se->vruntime -= min_vruntime;
3845 record_wakee(p);
3846}
3847
3848#ifdef CONFIG_FAIR_GROUP_SCHED
3849/*
3850 * effective_load() calculates the load change as seen from the root_task_group
3851 *
3852 * Adding load to a group doesn't make a group heavier, but can cause movement
3853 * of group shares between cpus. Assuming the shares were perfectly aligned one
3854 * can calculate the shift in shares.
3855 *
3856 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3857 * on this @cpu and results in a total addition (subtraction) of @wg to the
3858 * total group weight.
3859 *
3860 * Given a runqueue weight distribution (rw_i) we can compute a shares
3861 * distribution (s_i) using:
3862 *
3863 * s_i = rw_i / \Sum rw_j (1)
3864 *
3865 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3866 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3867 * shares distribution (s_i):
3868 *
3869 * rw_i = { 2, 4, 1, 0 }
3870 * s_i = { 2/7, 4/7, 1/7, 0 }
3871 *
3872 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3873 * task used to run on and the CPU the waker is running on), we need to
3874 * compute the effect of waking a task on either CPU and, in case of a sync
3875 * wakeup, compute the effect of the current task going to sleep.
3876 *
3877 * So for a change of @wl to the local @cpu with an overall group weight change
3878 * of @wl we can compute the new shares distribution (s'_i) using:
3879 *
3880 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3881 *
3882 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3883 * differences in waking a task to CPU 0. The additional task changes the
3884 * weight and shares distributions like:
3885 *
3886 * rw'_i = { 3, 4, 1, 0 }
3887 * s'_i = { 3/8, 4/8, 1/8, 0 }
3888 *
3889 * We can then compute the difference in effective weight by using:
3890 *
3891 * dw_i = S * (s'_i - s_i) (3)
3892 *
3893 * Where 'S' is the group weight as seen by its parent.
3894 *
3895 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3896 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3897 * 4/7) times the weight of the group.
3898 */
3899static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3900{
3901 struct sched_entity *se = tg->se[cpu];
3902
3903 if (!tg->parent) /* the trivial, non-cgroup case */
3904 return wl;
3905
3906 for_each_sched_entity(se) {
3907 long w, W;
3908
3909 tg = se->my_q->tg;
3910
3911 /*
3912 * W = @wg + \Sum rw_j
3913 */
3914 W = wg + calc_tg_weight(tg, se->my_q);
3915
3916 /*
3917 * w = rw_i + @wl
3918 */
3919 w = se->my_q->load.weight + wl;
3920
3921 /*
3922 * wl = S * s'_i; see (2)
3923 */
3924 if (W > 0 && w < W)
3925 wl = (w * tg->shares) / W;
3926 else
3927 wl = tg->shares;
3928
3929 /*
3930 * Per the above, wl is the new se->load.weight value; since
3931 * those are clipped to [MIN_SHARES, ...) do so now. See
3932 * calc_cfs_shares().
3933 */
3934 if (wl < MIN_SHARES)
3935 wl = MIN_SHARES;
3936
3937 /*
3938 * wl = dw_i = S * (s'_i - s_i); see (3)
3939 */
3940 wl -= se->load.weight;
3941
3942 /*
3943 * Recursively apply this logic to all parent groups to compute
3944 * the final effective load change on the root group. Since
3945 * only the @tg group gets extra weight, all parent groups can
3946 * only redistribute existing shares. @wl is the shift in shares
3947 * resulting from this level per the above.
3948 */
3949 wg = 0;
3950 }
3951
3952 return wl;
3953}
3954#else
3955
3956static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3957{
3958 return wl;
3959}
3960
3961#endif
3962
3963static int wake_wide(struct task_struct *p)
3964{
3965 int factor = this_cpu_read(sd_llc_size);
3966
3967 /*
3968 * Yeah, it's the switching-frequency, could means many wakee or
3969 * rapidly switch, use factor here will just help to automatically
3970 * adjust the loose-degree, so bigger node will lead to more pull.
3971 */
3972 if (p->wakee_flips > factor) {
3973 /*
3974 * wakee is somewhat hot, it needs certain amount of cpu
3975 * resource, so if waker is far more hot, prefer to leave
3976 * it alone.
3977 */
3978 if (current->wakee_flips > (factor * p->wakee_flips))
3979 return 1;
3980 }
3981
3982 return 0;
3983}
3984
3985static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3986{
3987 s64 this_load, load;
3988 int idx, this_cpu, prev_cpu;
3989 unsigned long tl_per_task;
3990 struct task_group *tg;
3991 unsigned long weight;
3992 int balanced;
3993
3994 /*
3995 * If we wake multiple tasks be careful to not bounce
3996 * ourselves around too much.
3997 */
3998 if (wake_wide(p))
3999 return 0;
4000
4001 idx = sd->wake_idx;
4002 this_cpu = smp_processor_id();
4003 prev_cpu = task_cpu(p);
4004 load = source_load(prev_cpu, idx);
4005 this_load = target_load(this_cpu, idx);
4006
4007 /*
4008 * If sync wakeup then subtract the (maximum possible)
4009 * effect of the currently running task from the load
4010 * of the current CPU:
4011 */
4012 if (sync) {
4013 tg = task_group(current);
4014 weight = current->se.load.weight;
4015
4016 this_load += effective_load(tg, this_cpu, -weight, -weight);
4017 load += effective_load(tg, prev_cpu, 0, -weight);
4018 }
4019
4020 tg = task_group(p);
4021 weight = p->se.load.weight;
4022
4023 /*
4024 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4025 * due to the sync cause above having dropped this_load to 0, we'll
4026 * always have an imbalance, but there's really nothing you can do
4027 * about that, so that's good too.
4028 *
4029 * Otherwise check if either cpus are near enough in load to allow this
4030 * task to be woken on this_cpu.
4031 */
4032 if (this_load > 0) {
4033 s64 this_eff_load, prev_eff_load;
4034
4035 this_eff_load = 100;
4036 this_eff_load *= power_of(prev_cpu);
4037 this_eff_load *= this_load +
4038 effective_load(tg, this_cpu, weight, weight);
4039
4040 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4041 prev_eff_load *= power_of(this_cpu);
4042 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4043
4044 balanced = this_eff_load <= prev_eff_load;
4045 } else
4046 balanced = true;
4047
4048 /*
4049 * If the currently running task will sleep within
4050 * a reasonable amount of time then attract this newly
4051 * woken task:
4052 */
4053 if (sync && balanced)
4054 return 1;
4055
4056 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4057 tl_per_task = cpu_avg_load_per_task(this_cpu);
4058
4059 if (balanced ||
4060 (this_load <= load &&
4061 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4062 /*
4063 * This domain has SD_WAKE_AFFINE and
4064 * p is cache cold in this domain, and
4065 * there is no bad imbalance.
4066 */
4067 schedstat_inc(sd, ttwu_move_affine);
4068 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4069
4070 return 1;
4071 }
4072 return 0;
4073}
4074
4075/*
4076 * find_idlest_group finds and returns the least busy CPU group within the
4077 * domain.
4078 */
4079static struct sched_group *
4080find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4081 int this_cpu, int sd_flag)
4082{
4083 struct sched_group *idlest = NULL, *group = sd->groups;
4084 unsigned long min_load = ULONG_MAX, this_load = 0;
4085 int load_idx = sd->forkexec_idx;
4086 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4087
4088 if (sd_flag & SD_BALANCE_WAKE)
4089 load_idx = sd->wake_idx;
4090
4091 do {
4092 unsigned long load, avg_load;
4093 int local_group;
4094 int i;
4095
4096 /* Skip over this group if it has no CPUs allowed */
4097 if (!cpumask_intersects(sched_group_cpus(group),
4098 tsk_cpus_allowed(p)))
4099 continue;
4100
4101 local_group = cpumask_test_cpu(this_cpu,
4102 sched_group_cpus(group));
4103
4104 /* Tally up the load of all CPUs in the group */
4105 avg_load = 0;
4106
4107 for_each_cpu(i, sched_group_cpus(group)) {
4108 /* Bias balancing toward cpus of our domain */
4109 if (local_group)
4110 load = source_load(i, load_idx);
4111 else
4112 load = target_load(i, load_idx);
4113
4114 avg_load += load;
4115 }
4116
4117 /* Adjust by relative CPU power of the group */
4118 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4119
4120 if (local_group) {
4121 this_load = avg_load;
4122 } else if (avg_load < min_load) {
4123 min_load = avg_load;
4124 idlest = group;
4125 }
4126 } while (group = group->next, group != sd->groups);
4127
4128 if (!idlest || 100*this_load < imbalance*min_load)
4129 return NULL;
4130 return idlest;
4131}
4132
4133/*
4134 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4135 */
4136static int
4137find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4138{
4139 unsigned long load, min_load = ULONG_MAX;
4140 int idlest = -1;
4141 int i;
4142
4143 /* Traverse only the allowed CPUs */
4144 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4145 load = weighted_cpuload(i);
4146
4147 if (load < min_load || (load == min_load && i == this_cpu)) {
4148 min_load = load;
4149 idlest = i;
4150 }
4151 }
4152
4153 return idlest;
4154}
4155
4156/*
4157 * Try and locate an idle CPU in the sched_domain.
4158 */
4159static int select_idle_sibling(struct task_struct *p, int target)
4160{
4161 struct sched_domain *sd;
4162 struct sched_group *sg;
4163 int i = task_cpu(p);
4164
4165 if (idle_cpu(target))
4166 return target;
4167
4168 /*
4169 * If the prevous cpu is cache affine and idle, don't be stupid.
4170 */
4171 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4172 return i;
4173
4174 /*
4175 * Otherwise, iterate the domains and find an elegible idle cpu.
4176 */
4177 sd = rcu_dereference(per_cpu(sd_llc, target));
4178 for_each_lower_domain(sd) {
4179 sg = sd->groups;
4180 do {
4181 if (!cpumask_intersects(sched_group_cpus(sg),
4182 tsk_cpus_allowed(p)))
4183 goto next;
4184
4185 for_each_cpu(i, sched_group_cpus(sg)) {
4186 if (i == target || !idle_cpu(i))
4187 goto next;
4188 }
4189
4190 target = cpumask_first_and(sched_group_cpus(sg),
4191 tsk_cpus_allowed(p));
4192 goto done;
4193next:
4194 sg = sg->next;
4195 } while (sg != sd->groups);
4196 }
4197done:
4198 return target;
4199}
4200
4201/*
4202 * sched_balance_self: balance the current task (running on cpu) in domains
4203 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4204 * SD_BALANCE_EXEC.
4205 *
4206 * Balance, ie. select the least loaded group.
4207 *
4208 * Returns the target CPU number, or the same CPU if no balancing is needed.
4209 *
4210 * preempt must be disabled.
4211 */
4212static int
4213select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4214{
4215 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4216 int cpu = smp_processor_id();
4217 int new_cpu = cpu;
4218 int want_affine = 0;
4219 int sync = wake_flags & WF_SYNC;
4220
4221 if (p->nr_cpus_allowed == 1)
4222 return prev_cpu;
4223
4224 if (sd_flag & SD_BALANCE_WAKE) {
4225 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4226 want_affine = 1;
4227 new_cpu = prev_cpu;
4228 }
4229
4230 rcu_read_lock();
4231 for_each_domain(cpu, tmp) {
4232 if (!(tmp->flags & SD_LOAD_BALANCE))
4233 continue;
4234
4235 /*
4236 * If both cpu and prev_cpu are part of this domain,
4237 * cpu is a valid SD_WAKE_AFFINE target.
4238 */
4239 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4240 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4241 affine_sd = tmp;
4242 break;
4243 }
4244
4245 if (tmp->flags & sd_flag)
4246 sd = tmp;
4247 }
4248
4249 if (affine_sd) {
4250 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4251 prev_cpu = cpu;
4252
4253 new_cpu = select_idle_sibling(p, prev_cpu);
4254 goto unlock;
4255 }
4256
4257 while (sd) {
4258 struct sched_group *group;
4259 int weight;
4260
4261 if (!(sd->flags & sd_flag)) {
4262 sd = sd->child;
4263 continue;
4264 }
4265
4266 group = find_idlest_group(sd, p, cpu, sd_flag);
4267 if (!group) {
4268 sd = sd->child;
4269 continue;
4270 }
4271
4272 new_cpu = find_idlest_cpu(group, p, cpu);
4273 if (new_cpu == -1 || new_cpu == cpu) {
4274 /* Now try balancing at a lower domain level of cpu */
4275 sd = sd->child;
4276 continue;
4277 }
4278
4279 /* Now try balancing at a lower domain level of new_cpu */
4280 cpu = new_cpu;
4281 weight = sd->span_weight;
4282 sd = NULL;
4283 for_each_domain(cpu, tmp) {
4284 if (weight <= tmp->span_weight)
4285 break;
4286 if (tmp->flags & sd_flag)
4287 sd = tmp;
4288 }
4289 /* while loop will break here if sd == NULL */
4290 }
4291unlock:
4292 rcu_read_unlock();
4293
4294 return new_cpu;
4295}
4296
4297/*
4298 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4299 * cfs_rq_of(p) references at time of call are still valid and identify the
4300 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4301 * other assumptions, including the state of rq->lock, should be made.
4302 */
4303static void
4304migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4305{
4306 struct sched_entity *se = &p->se;
4307 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4308
4309 /*
4310 * Load tracking: accumulate removed load so that it can be processed
4311 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4312 * to blocked load iff they have a positive decay-count. It can never
4313 * be negative here since on-rq tasks have decay-count == 0.
4314 */
4315 if (se->avg.decay_count) {
4316 se->avg.decay_count = -__synchronize_entity_decay(se);
4317 atomic_long_add(se->avg.load_avg_contrib,
4318 &cfs_rq->removed_load);
4319 }
4320}
4321#endif /* CONFIG_SMP */
4322
4323static unsigned long
4324wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4325{
4326 unsigned long gran = sysctl_sched_wakeup_granularity;
4327
4328 /*
4329 * Since its curr running now, convert the gran from real-time
4330 * to virtual-time in his units.
4331 *
4332 * By using 'se' instead of 'curr' we penalize light tasks, so
4333 * they get preempted easier. That is, if 'se' < 'curr' then
4334 * the resulting gran will be larger, therefore penalizing the
4335 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4336 * be smaller, again penalizing the lighter task.
4337 *
4338 * This is especially important for buddies when the leftmost
4339 * task is higher priority than the buddy.
4340 */
4341 return calc_delta_fair(gran, se);
4342}
4343
4344/*
4345 * Should 'se' preempt 'curr'.
4346 *
4347 * |s1
4348 * |s2
4349 * |s3
4350 * g
4351 * |<--->|c
4352 *
4353 * w(c, s1) = -1
4354 * w(c, s2) = 0
4355 * w(c, s3) = 1
4356 *
4357 */
4358static int
4359wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4360{
4361 s64 gran, vdiff = curr->vruntime - se->vruntime;
4362
4363 if (vdiff <= 0)
4364 return -1;
4365
4366 gran = wakeup_gran(curr, se);
4367 if (vdiff > gran)
4368 return 1;
4369
4370 return 0;
4371}
4372
4373static void set_last_buddy(struct sched_entity *se)
4374{
4375 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4376 return;
4377
4378 for_each_sched_entity(se)
4379 cfs_rq_of(se)->last = se;
4380}
4381
4382static void set_next_buddy(struct sched_entity *se)
4383{
4384 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4385 return;
4386
4387 for_each_sched_entity(se)
4388 cfs_rq_of(se)->next = se;
4389}
4390
4391static void set_skip_buddy(struct sched_entity *se)
4392{
4393 for_each_sched_entity(se)
4394 cfs_rq_of(se)->skip = se;
4395}
4396
4397/*
4398 * Preempt the current task with a newly woken task if needed:
4399 */
4400static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4401{
4402 struct task_struct *curr = rq->curr;
4403 struct sched_entity *se = &curr->se, *pse = &p->se;
4404 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4405 int scale = cfs_rq->nr_running >= sched_nr_latency;
4406 int next_buddy_marked = 0;
4407
4408 if (unlikely(se == pse))
4409 return;
4410
4411 /*
4412 * This is possible from callers such as move_task(), in which we
4413 * unconditionally check_prempt_curr() after an enqueue (which may have
4414 * lead to a throttle). This both saves work and prevents false
4415 * next-buddy nomination below.
4416 */
4417 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4418 return;
4419
4420 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4421 set_next_buddy(pse);
4422 next_buddy_marked = 1;
4423 }
4424
4425 /*
4426 * We can come here with TIF_NEED_RESCHED already set from new task
4427 * wake up path.
4428 *
4429 * Note: this also catches the edge-case of curr being in a throttled
4430 * group (e.g. via set_curr_task), since update_curr() (in the
4431 * enqueue of curr) will have resulted in resched being set. This
4432 * prevents us from potentially nominating it as a false LAST_BUDDY
4433 * below.
4434 */
4435 if (test_tsk_need_resched(curr))
4436 return;
4437
4438 /* Idle tasks are by definition preempted by non-idle tasks. */
4439 if (unlikely(curr->policy == SCHED_IDLE) &&
4440 likely(p->policy != SCHED_IDLE))
4441 goto preempt;
4442
4443 /*
4444 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4445 * is driven by the tick):
4446 */
4447 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4448 return;
4449
4450 find_matching_se(&se, &pse);
4451 update_curr(cfs_rq_of(se));
4452 BUG_ON(!pse);
4453 if (wakeup_preempt_entity(se, pse) == 1) {
4454 /*
4455 * Bias pick_next to pick the sched entity that is
4456 * triggering this preemption.
4457 */
4458 if (!next_buddy_marked)
4459 set_next_buddy(pse);
4460 goto preempt;
4461 }
4462
4463 return;
4464
4465preempt:
4466 resched_task(curr);
4467 /*
4468 * Only set the backward buddy when the current task is still
4469 * on the rq. This can happen when a wakeup gets interleaved
4470 * with schedule on the ->pre_schedule() or idle_balance()
4471 * point, either of which can * drop the rq lock.
4472 *
4473 * Also, during early boot the idle thread is in the fair class,
4474 * for obvious reasons its a bad idea to schedule back to it.
4475 */
4476 if (unlikely(!se->on_rq || curr == rq->idle))
4477 return;
4478
4479 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4480 set_last_buddy(se);
4481}
4482
4483static struct task_struct *pick_next_task_fair(struct rq *rq)
4484{
4485 struct task_struct *p;
4486 struct cfs_rq *cfs_rq = &rq->cfs;
4487 struct sched_entity *se;
4488
4489 if (!cfs_rq->nr_running)
4490 return NULL;
4491
4492 do {
4493 se = pick_next_entity(cfs_rq);
4494 set_next_entity(cfs_rq, se);
4495 cfs_rq = group_cfs_rq(se);
4496 } while (cfs_rq);
4497
4498 p = task_of(se);
4499 if (hrtick_enabled(rq))
4500 hrtick_start_fair(rq, p);
4501
4502 return p;
4503}
4504
4505/*
4506 * Account for a descheduled task:
4507 */
4508static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4509{
4510 struct sched_entity *se = &prev->se;
4511 struct cfs_rq *cfs_rq;
4512
4513 for_each_sched_entity(se) {
4514 cfs_rq = cfs_rq_of(se);
4515 put_prev_entity(cfs_rq, se);
4516 }
4517}
4518
4519/*
4520 * sched_yield() is very simple
4521 *
4522 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4523 */
4524static void yield_task_fair(struct rq *rq)
4525{
4526 struct task_struct *curr = rq->curr;
4527 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4528 struct sched_entity *se = &curr->se;
4529
4530 /*
4531 * Are we the only task in the tree?
4532 */
4533 if (unlikely(rq->nr_running == 1))
4534 return;
4535
4536 clear_buddies(cfs_rq, se);
4537
4538 if (curr->policy != SCHED_BATCH) {
4539 update_rq_clock(rq);
4540 /*
4541 * Update run-time statistics of the 'current'.
4542 */
4543 update_curr(cfs_rq);
4544 /*
4545 * Tell update_rq_clock() that we've just updated,
4546 * so we don't do microscopic update in schedule()
4547 * and double the fastpath cost.
4548 */
4549 rq->skip_clock_update = 1;
4550 }
4551
4552 set_skip_buddy(se);
4553}
4554
4555static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4556{
4557 struct sched_entity *se = &p->se;
4558
4559 /* throttled hierarchies are not runnable */
4560 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4561 return false;
4562
4563 /* Tell the scheduler that we'd really like pse to run next. */
4564 set_next_buddy(se);
4565
4566 yield_task_fair(rq);
4567
4568 return true;
4569}
4570
4571#ifdef CONFIG_SMP
4572/**************************************************
4573 * Fair scheduling class load-balancing methods.
4574 *
4575 * BASICS
4576 *
4577 * The purpose of load-balancing is to achieve the same basic fairness the
4578 * per-cpu scheduler provides, namely provide a proportional amount of compute
4579 * time to each task. This is expressed in the following equation:
4580 *
4581 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4582 *
4583 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4584 * W_i,0 is defined as:
4585 *
4586 * W_i,0 = \Sum_j w_i,j (2)
4587 *
4588 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4589 * is derived from the nice value as per prio_to_weight[].
4590 *
4591 * The weight average is an exponential decay average of the instantaneous
4592 * weight:
4593 *
4594 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4595 *
4596 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4597 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4598 * can also include other factors [XXX].
4599 *
4600 * To achieve this balance we define a measure of imbalance which follows
4601 * directly from (1):
4602 *
4603 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4604 *
4605 * We them move tasks around to minimize the imbalance. In the continuous
4606 * function space it is obvious this converges, in the discrete case we get
4607 * a few fun cases generally called infeasible weight scenarios.
4608 *
4609 * [XXX expand on:
4610 * - infeasible weights;
4611 * - local vs global optima in the discrete case. ]
4612 *
4613 *
4614 * SCHED DOMAINS
4615 *
4616 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4617 * for all i,j solution, we create a tree of cpus that follows the hardware
4618 * topology where each level pairs two lower groups (or better). This results
4619 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4620 * tree to only the first of the previous level and we decrease the frequency
4621 * of load-balance at each level inv. proportional to the number of cpus in
4622 * the groups.
4623 *
4624 * This yields:
4625 *
4626 * log_2 n 1 n
4627 * \Sum { --- * --- * 2^i } = O(n) (5)
4628 * i = 0 2^i 2^i
4629 * `- size of each group
4630 * | | `- number of cpus doing load-balance
4631 * | `- freq
4632 * `- sum over all levels
4633 *
4634 * Coupled with a limit on how many tasks we can migrate every balance pass,
4635 * this makes (5) the runtime complexity of the balancer.
4636 *
4637 * An important property here is that each CPU is still (indirectly) connected
4638 * to every other cpu in at most O(log n) steps:
4639 *
4640 * The adjacency matrix of the resulting graph is given by:
4641 *
4642 * log_2 n
4643 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4644 * k = 0
4645 *
4646 * And you'll find that:
4647 *
4648 * A^(log_2 n)_i,j != 0 for all i,j (7)
4649 *
4650 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4651 * The task movement gives a factor of O(m), giving a convergence complexity
4652 * of:
4653 *
4654 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4655 *
4656 *
4657 * WORK CONSERVING
4658 *
4659 * In order to avoid CPUs going idle while there's still work to do, new idle
4660 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4661 * tree itself instead of relying on other CPUs to bring it work.
4662 *
4663 * This adds some complexity to both (5) and (8) but it reduces the total idle
4664 * time.
4665 *
4666 * [XXX more?]
4667 *
4668 *
4669 * CGROUPS
4670 *
4671 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4672 *
4673 * s_k,i
4674 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4675 * S_k
4676 *
4677 * Where
4678 *
4679 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4680 *
4681 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4682 *
4683 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4684 * property.
4685 *
4686 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4687 * rewrite all of this once again.]
4688 */
4689
4690static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4691
4692enum fbq_type { regular, remote, all };
4693
4694#define LBF_ALL_PINNED 0x01
4695#define LBF_NEED_BREAK 0x02
4696#define LBF_DST_PINNED 0x04
4697#define LBF_SOME_PINNED 0x08
4698
4699struct lb_env {
4700 struct sched_domain *sd;
4701
4702 struct rq *src_rq;
4703 int src_cpu;
4704
4705 int dst_cpu;
4706 struct rq *dst_rq;
4707
4708 struct cpumask *dst_grpmask;
4709 int new_dst_cpu;
4710 enum cpu_idle_type idle;
4711 long imbalance;
4712 /* The set of CPUs under consideration for load-balancing */
4713 struct cpumask *cpus;
4714
4715 unsigned int flags;
4716
4717 unsigned int loop;
4718 unsigned int loop_break;
4719 unsigned int loop_max;
4720
4721 enum fbq_type fbq_type;
4722};
4723
4724/*
4725 * move_task - move a task from one runqueue to another runqueue.
4726 * Both runqueues must be locked.
4727 */
4728static void move_task(struct task_struct *p, struct lb_env *env)
4729{
4730 deactivate_task(env->src_rq, p, 0);
4731 set_task_cpu(p, env->dst_cpu);
4732 activate_task(env->dst_rq, p, 0);
4733 check_preempt_curr(env->dst_rq, p, 0);
4734}
4735
4736/*
4737 * Is this task likely cache-hot:
4738 */
4739static int
4740task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4741{
4742 s64 delta;
4743
4744 if (p->sched_class != &fair_sched_class)
4745 return 0;
4746
4747 if (unlikely(p->policy == SCHED_IDLE))
4748 return 0;
4749
4750 /*
4751 * Buddy candidates are cache hot:
4752 */
4753 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4754 (&p->se == cfs_rq_of(&p->se)->next ||
4755 &p->se == cfs_rq_of(&p->se)->last))
4756 return 1;
4757
4758 if (sysctl_sched_migration_cost == -1)
4759 return 1;
4760 if (sysctl_sched_migration_cost == 0)
4761 return 0;
4762
4763 delta = now - p->se.exec_start;
4764
4765 return delta < (s64)sysctl_sched_migration_cost;
4766}
4767
4768#ifdef CONFIG_NUMA_BALANCING
4769/* Returns true if the destination node has incurred more faults */
4770static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4771{
4772 int src_nid, dst_nid;
4773
4774 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
4775 !(env->sd->flags & SD_NUMA)) {
4776 return false;
4777 }
4778
4779 src_nid = cpu_to_node(env->src_cpu);
4780 dst_nid = cpu_to_node(env->dst_cpu);
4781
4782 if (src_nid == dst_nid)
4783 return false;
4784
4785 /* Always encourage migration to the preferred node. */
4786 if (dst_nid == p->numa_preferred_nid)
4787 return true;
4788
4789 /* If both task and group weight improve, this move is a winner. */
4790 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4791 group_weight(p, dst_nid) > group_weight(p, src_nid))
4792 return true;
4793
4794 return false;
4795}
4796
4797
4798static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4799{
4800 int src_nid, dst_nid;
4801
4802 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4803 return false;
4804
4805 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
4806 return false;
4807
4808 src_nid = cpu_to_node(env->src_cpu);
4809 dst_nid = cpu_to_node(env->dst_cpu);
4810
4811 if (src_nid == dst_nid)
4812 return false;
4813
4814 /* Migrating away from the preferred node is always bad. */
4815 if (src_nid == p->numa_preferred_nid)
4816 return true;
4817
4818 /* If either task or group weight get worse, don't do it. */
4819 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4820 group_weight(p, dst_nid) < group_weight(p, src_nid))
4821 return true;
4822
4823 return false;
4824}
4825
4826#else
4827static inline bool migrate_improves_locality(struct task_struct *p,
4828 struct lb_env *env)
4829{
4830 return false;
4831}
4832
4833static inline bool migrate_degrades_locality(struct task_struct *p,
4834 struct lb_env *env)
4835{
4836 return false;
4837}
4838#endif
4839
4840/*
4841 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4842 */
4843static
4844int can_migrate_task(struct task_struct *p, struct lb_env *env)
4845{
4846 int tsk_cache_hot = 0;
4847 /*
4848 * We do not migrate tasks that are:
4849 * 1) throttled_lb_pair, or
4850 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4851 * 3) running (obviously), or
4852 * 4) are cache-hot on their current CPU.
4853 */
4854 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4855 return 0;
4856
4857 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4858 int cpu;
4859
4860 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4861
4862 env->flags |= LBF_SOME_PINNED;
4863
4864 /*
4865 * Remember if this task can be migrated to any other cpu in
4866 * our sched_group. We may want to revisit it if we couldn't
4867 * meet load balance goals by pulling other tasks on src_cpu.
4868 *
4869 * Also avoid computing new_dst_cpu if we have already computed
4870 * one in current iteration.
4871 */
4872 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4873 return 0;
4874
4875 /* Prevent to re-select dst_cpu via env's cpus */
4876 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4877 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4878 env->flags |= LBF_DST_PINNED;
4879 env->new_dst_cpu = cpu;
4880 break;
4881 }
4882 }
4883
4884 return 0;
4885 }
4886
4887 /* Record that we found atleast one task that could run on dst_cpu */
4888 env->flags &= ~LBF_ALL_PINNED;
4889
4890 if (task_running(env->src_rq, p)) {
4891 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4892 return 0;
4893 }
4894
4895 /*
4896 * Aggressive migration if:
4897 * 1) destination numa is preferred
4898 * 2) task is cache cold, or
4899 * 3) too many balance attempts have failed.
4900 */
4901 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4902 if (!tsk_cache_hot)
4903 tsk_cache_hot = migrate_degrades_locality(p, env);
4904
4905 if (migrate_improves_locality(p, env)) {
4906#ifdef CONFIG_SCHEDSTATS
4907 if (tsk_cache_hot) {
4908 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4909 schedstat_inc(p, se.statistics.nr_forced_migrations);
4910 }
4911#endif
4912 return 1;
4913 }
4914
4915 if (!tsk_cache_hot ||
4916 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4917
4918 if (tsk_cache_hot) {
4919 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4920 schedstat_inc(p, se.statistics.nr_forced_migrations);
4921 }
4922
4923 return 1;
4924 }
4925
4926 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4927 return 0;
4928}
4929
4930/*
4931 * move_one_task tries to move exactly one task from busiest to this_rq, as
4932 * part of active balancing operations within "domain".
4933 * Returns 1 if successful and 0 otherwise.
4934 *
4935 * Called with both runqueues locked.
4936 */
4937static int move_one_task(struct lb_env *env)
4938{
4939 struct task_struct *p, *n;
4940
4941 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
4942 if (!can_migrate_task(p, env))
4943 continue;
4944
4945 move_task(p, env);
4946 /*
4947 * Right now, this is only the second place move_task()
4948 * is called, so we can safely collect move_task()
4949 * stats here rather than inside move_task().
4950 */
4951 schedstat_inc(env->sd, lb_gained[env->idle]);
4952 return 1;
4953 }
4954 return 0;
4955}
4956
4957static const unsigned int sched_nr_migrate_break = 32;
4958
4959/*
4960 * move_tasks tries to move up to imbalance weighted load from busiest to
4961 * this_rq, as part of a balancing operation within domain "sd".
4962 * Returns 1 if successful and 0 otherwise.
4963 *
4964 * Called with both runqueues locked.
4965 */
4966static int move_tasks(struct lb_env *env)
4967{
4968 struct list_head *tasks = &env->src_rq->cfs_tasks;
4969 struct task_struct *p;
4970 unsigned long load;
4971 int pulled = 0;
4972
4973 if (env->imbalance <= 0)
4974 return 0;
4975
4976 while (!list_empty(tasks)) {
4977 p = list_first_entry(tasks, struct task_struct, se.group_node);
4978
4979 env->loop++;
4980 /* We've more or less seen every task there is, call it quits */
4981 if (env->loop > env->loop_max)
4982 break;
4983
4984 /* take a breather every nr_migrate tasks */
4985 if (env->loop > env->loop_break) {
4986 env->loop_break += sched_nr_migrate_break;
4987 env->flags |= LBF_NEED_BREAK;
4988 break;
4989 }
4990
4991 if (!can_migrate_task(p, env))
4992 goto next;
4993
4994 load = task_h_load(p);
4995
4996 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4997 goto next;
4998
4999 if ((load / 2) > env->imbalance)
5000 goto next;
5001
5002 move_task(p, env);
5003 pulled++;
5004 env->imbalance -= load;
5005
5006#ifdef CONFIG_PREEMPT
5007 /*
5008 * NEWIDLE balancing is a source of latency, so preemptible
5009 * kernels will stop after the first task is pulled to minimize
5010 * the critical section.
5011 */
5012 if (env->idle == CPU_NEWLY_IDLE)
5013 break;
5014#endif
5015
5016 /*
5017 * We only want to steal up to the prescribed amount of
5018 * weighted load.
5019 */
5020 if (env->imbalance <= 0)
5021 break;
5022
5023 continue;
5024next:
5025 list_move_tail(&p->se.group_node, tasks);
5026 }
5027
5028 /*
5029 * Right now, this is one of only two places move_task() is called,
5030 * so we can safely collect move_task() stats here rather than
5031 * inside move_task().
5032 */
5033 schedstat_add(env->sd, lb_gained[env->idle], pulled);
5034
5035 return pulled;
5036}
5037
5038#ifdef CONFIG_FAIR_GROUP_SCHED
5039/*
5040 * update tg->load_weight by folding this cpu's load_avg
5041 */
5042static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5043{
5044 struct sched_entity *se = tg->se[cpu];
5045 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5046
5047 /* throttled entities do not contribute to load */
5048 if (throttled_hierarchy(cfs_rq))
5049 return;
5050
5051 update_cfs_rq_blocked_load(cfs_rq, 1);
5052
5053 if (se) {
5054 update_entity_load_avg(se, 1);
5055 /*
5056 * We pivot on our runnable average having decayed to zero for
5057 * list removal. This generally implies that all our children
5058 * have also been removed (modulo rounding error or bandwidth
5059 * control); however, such cases are rare and we can fix these
5060 * at enqueue.
5061 *
5062 * TODO: fix up out-of-order children on enqueue.
5063 */
5064 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5065 list_del_leaf_cfs_rq(cfs_rq);
5066 } else {
5067 struct rq *rq = rq_of(cfs_rq);
5068 update_rq_runnable_avg(rq, rq->nr_running);
5069 }
5070}
5071
5072static void update_blocked_averages(int cpu)
5073{
5074 struct rq *rq = cpu_rq(cpu);
5075 struct cfs_rq *cfs_rq;
5076 unsigned long flags;
5077
5078 raw_spin_lock_irqsave(&rq->lock, flags);
5079 update_rq_clock(rq);
5080 /*
5081 * Iterates the task_group tree in a bottom up fashion, see
5082 * list_add_leaf_cfs_rq() for details.
5083 */
5084 for_each_leaf_cfs_rq(rq, cfs_rq) {
5085 /*
5086 * Note: We may want to consider periodically releasing
5087 * rq->lock about these updates so that creating many task
5088 * groups does not result in continually extending hold time.
5089 */
5090 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5091 }
5092
5093 raw_spin_unlock_irqrestore(&rq->lock, flags);
5094}
5095
5096/*
5097 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5098 * This needs to be done in a top-down fashion because the load of a child
5099 * group is a fraction of its parents load.
5100 */
5101static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5102{
5103 struct rq *rq = rq_of(cfs_rq);
5104 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5105 unsigned long now = jiffies;
5106 unsigned long load;
5107
5108 if (cfs_rq->last_h_load_update == now)
5109 return;
5110
5111 cfs_rq->h_load_next = NULL;
5112 for_each_sched_entity(se) {
5113 cfs_rq = cfs_rq_of(se);
5114 cfs_rq->h_load_next = se;
5115 if (cfs_rq->last_h_load_update == now)
5116 break;
5117 }
5118
5119 if (!se) {
5120 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5121 cfs_rq->last_h_load_update = now;
5122 }
5123
5124 while ((se = cfs_rq->h_load_next) != NULL) {
5125 load = cfs_rq->h_load;
5126 load = div64_ul(load * se->avg.load_avg_contrib,
5127 cfs_rq->runnable_load_avg + 1);
5128 cfs_rq = group_cfs_rq(se);
5129 cfs_rq->h_load = load;
5130 cfs_rq->last_h_load_update = now;
5131 }
5132}
5133
5134static unsigned long task_h_load(struct task_struct *p)
5135{
5136 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5137
5138 update_cfs_rq_h_load(cfs_rq);
5139 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5140 cfs_rq->runnable_load_avg + 1);
5141}
5142#else
5143static inline void update_blocked_averages(int cpu)
5144{
5145}
5146
5147static unsigned long task_h_load(struct task_struct *p)
5148{
5149 return p->se.avg.load_avg_contrib;
5150}
5151#endif
5152
5153/********** Helpers for find_busiest_group ************************/
5154/*
5155 * sg_lb_stats - stats of a sched_group required for load_balancing
5156 */
5157struct sg_lb_stats {
5158 unsigned long avg_load; /*Avg load across the CPUs of the group */
5159 unsigned long group_load; /* Total load over the CPUs of the group */
5160 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5161 unsigned long load_per_task;
5162 unsigned long group_power;
5163 unsigned int sum_nr_running; /* Nr tasks running in the group */
5164 unsigned int group_capacity;
5165 unsigned int idle_cpus;
5166 unsigned int group_weight;
5167 int group_imb; /* Is there an imbalance in the group ? */
5168 int group_has_capacity; /* Is there extra capacity in the group? */
5169#ifdef CONFIG_NUMA_BALANCING
5170 unsigned int nr_numa_running;
5171 unsigned int nr_preferred_running;
5172#endif
5173};
5174
5175/*
5176 * sd_lb_stats - Structure to store the statistics of a sched_domain
5177 * during load balancing.
5178 */
5179struct sd_lb_stats {
5180 struct sched_group *busiest; /* Busiest group in this sd */
5181 struct sched_group *local; /* Local group in this sd */
5182 unsigned long total_load; /* Total load of all groups in sd */
5183 unsigned long total_pwr; /* Total power of all groups in sd */
5184 unsigned long avg_load; /* Average load across all groups in sd */
5185
5186 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5187 struct sg_lb_stats local_stat; /* Statistics of the local group */
5188};
5189
5190static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5191{
5192 /*
5193 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5194 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5195 * We must however clear busiest_stat::avg_load because
5196 * update_sd_pick_busiest() reads this before assignment.
5197 */
5198 *sds = (struct sd_lb_stats){
5199 .busiest = NULL,
5200 .local = NULL,
5201 .total_load = 0UL,
5202 .total_pwr = 0UL,
5203 .busiest_stat = {
5204 .avg_load = 0UL,
5205 },
5206 };
5207}
5208
5209/**
5210 * get_sd_load_idx - Obtain the load index for a given sched domain.
5211 * @sd: The sched_domain whose load_idx is to be obtained.
5212 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5213 *
5214 * Return: The load index.
5215 */
5216static inline int get_sd_load_idx(struct sched_domain *sd,
5217 enum cpu_idle_type idle)
5218{
5219 int load_idx;
5220
5221 switch (idle) {
5222 case CPU_NOT_IDLE:
5223 load_idx = sd->busy_idx;
5224 break;
5225
5226 case CPU_NEWLY_IDLE:
5227 load_idx = sd->newidle_idx;
5228 break;
5229 default:
5230 load_idx = sd->idle_idx;
5231 break;
5232 }
5233
5234 return load_idx;
5235}
5236
5237static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5238{
5239 return SCHED_POWER_SCALE;
5240}
5241
5242unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5243{
5244 return default_scale_freq_power(sd, cpu);
5245}
5246
5247static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5248{
5249 unsigned long weight = sd->span_weight;
5250 unsigned long smt_gain = sd->smt_gain;
5251
5252 smt_gain /= weight;
5253
5254 return smt_gain;
5255}
5256
5257unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5258{
5259 return default_scale_smt_power(sd, cpu);
5260}
5261
5262static unsigned long scale_rt_power(int cpu)
5263{
5264 struct rq *rq = cpu_rq(cpu);
5265 u64 total, available, age_stamp, avg;
5266
5267 /*
5268 * Since we're reading these variables without serialization make sure
5269 * we read them once before doing sanity checks on them.
5270 */
5271 age_stamp = ACCESS_ONCE(rq->age_stamp);
5272 avg = ACCESS_ONCE(rq->rt_avg);
5273
5274 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5275
5276 if (unlikely(total < avg)) {
5277 /* Ensures that power won't end up being negative */
5278 available = 0;
5279 } else {
5280 available = total - avg;
5281 }
5282
5283 if (unlikely((s64)total < SCHED_POWER_SCALE))
5284 total = SCHED_POWER_SCALE;
5285
5286 total >>= SCHED_POWER_SHIFT;
5287
5288 return div_u64(available, total);
5289}
5290
5291static void update_cpu_power(struct sched_domain *sd, int cpu)
5292{
5293 unsigned long weight = sd->span_weight;
5294 unsigned long power = SCHED_POWER_SCALE;
5295 struct sched_group *sdg = sd->groups;
5296
5297 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5298 if (sched_feat(ARCH_POWER))
5299 power *= arch_scale_smt_power(sd, cpu);
5300 else
5301 power *= default_scale_smt_power(sd, cpu);
5302
5303 power >>= SCHED_POWER_SHIFT;
5304 }
5305
5306 sdg->sgp->power_orig = power;
5307
5308 if (sched_feat(ARCH_POWER))
5309 power *= arch_scale_freq_power(sd, cpu);
5310 else
5311 power *= default_scale_freq_power(sd, cpu);
5312
5313 power >>= SCHED_POWER_SHIFT;
5314
5315 power *= scale_rt_power(cpu);
5316 power >>= SCHED_POWER_SHIFT;
5317
5318 if (!power)
5319 power = 1;
5320
5321 cpu_rq(cpu)->cpu_power = power;
5322 sdg->sgp->power = power;
5323}
5324
5325void update_group_power(struct sched_domain *sd, int cpu)
5326{
5327 struct sched_domain *child = sd->child;
5328 struct sched_group *group, *sdg = sd->groups;
5329 unsigned long power, power_orig;
5330 unsigned long interval;
5331
5332 interval = msecs_to_jiffies(sd->balance_interval);
5333 interval = clamp(interval, 1UL, max_load_balance_interval);
5334 sdg->sgp->next_update = jiffies + interval;
5335
5336 if (!child) {
5337 update_cpu_power(sd, cpu);
5338 return;
5339 }
5340
5341 power_orig = power = 0;
5342
5343 if (child->flags & SD_OVERLAP) {
5344 /*
5345 * SD_OVERLAP domains cannot assume that child groups
5346 * span the current group.
5347 */
5348
5349 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5350 struct sched_group_power *sgp;
5351 struct rq *rq = cpu_rq(cpu);
5352
5353 /*
5354 * build_sched_domains() -> init_sched_groups_power()
5355 * gets here before we've attached the domains to the
5356 * runqueues.
5357 *
5358 * Use power_of(), which is set irrespective of domains
5359 * in update_cpu_power().
5360 *
5361 * This avoids power/power_orig from being 0 and
5362 * causing divide-by-zero issues on boot.
5363 *
5364 * Runtime updates will correct power_orig.
5365 */
5366 if (unlikely(!rq->sd)) {
5367 power_orig += power_of(cpu);
5368 power += power_of(cpu);
5369 continue;
5370 }
5371
5372 sgp = rq->sd->groups->sgp;
5373 power_orig += sgp->power_orig;
5374 power += sgp->power;
5375 }
5376 } else {
5377 /*
5378 * !SD_OVERLAP domains can assume that child groups
5379 * span the current group.
5380 */
5381
5382 group = child->groups;
5383 do {
5384 power_orig += group->sgp->power_orig;
5385 power += group->sgp->power;
5386 group = group->next;
5387 } while (group != child->groups);
5388 }
5389
5390 sdg->sgp->power_orig = power_orig;
5391 sdg->sgp->power = power;
5392}
5393
5394/*
5395 * Try and fix up capacity for tiny siblings, this is needed when
5396 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5397 * which on its own isn't powerful enough.
5398 *
5399 * See update_sd_pick_busiest() and check_asym_packing().
5400 */
5401static inline int
5402fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5403{
5404 /*
5405 * Only siblings can have significantly less than SCHED_POWER_SCALE
5406 */
5407 if (!(sd->flags & SD_SHARE_CPUPOWER))
5408 return 0;
5409
5410 /*
5411 * If ~90% of the cpu_power is still there, we're good.
5412 */
5413 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5414 return 1;
5415
5416 return 0;
5417}
5418
5419/*
5420 * Group imbalance indicates (and tries to solve) the problem where balancing
5421 * groups is inadequate due to tsk_cpus_allowed() constraints.
5422 *
5423 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5424 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5425 * Something like:
5426 *
5427 * { 0 1 2 3 } { 4 5 6 7 }
5428 * * * * *
5429 *
5430 * If we were to balance group-wise we'd place two tasks in the first group and
5431 * two tasks in the second group. Clearly this is undesired as it will overload
5432 * cpu 3 and leave one of the cpus in the second group unused.
5433 *
5434 * The current solution to this issue is detecting the skew in the first group
5435 * by noticing the lower domain failed to reach balance and had difficulty
5436 * moving tasks due to affinity constraints.
5437 *
5438 * When this is so detected; this group becomes a candidate for busiest; see
5439 * update_sd_pick_busiest(). And calculate_imbalance() and
5440 * find_busiest_group() avoid some of the usual balance conditions to allow it
5441 * to create an effective group imbalance.
5442 *
5443 * This is a somewhat tricky proposition since the next run might not find the
5444 * group imbalance and decide the groups need to be balanced again. A most
5445 * subtle and fragile situation.
5446 */
5447
5448static inline int sg_imbalanced(struct sched_group *group)
5449{
5450 return group->sgp->imbalance;
5451}
5452
5453/*
5454 * Compute the group capacity.
5455 *
5456 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5457 * first dividing out the smt factor and computing the actual number of cores
5458 * and limit power unit capacity with that.
5459 */
5460static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5461{
5462 unsigned int capacity, smt, cpus;
5463 unsigned int power, power_orig;
5464
5465 power = group->sgp->power;
5466 power_orig = group->sgp->power_orig;
5467 cpus = group->group_weight;
5468
5469 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5470 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5471 capacity = cpus / smt; /* cores */
5472
5473 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5474 if (!capacity)
5475 capacity = fix_small_capacity(env->sd, group);
5476
5477 return capacity;
5478}
5479
5480/**
5481 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5482 * @env: The load balancing environment.
5483 * @group: sched_group whose statistics are to be updated.
5484 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5485 * @local_group: Does group contain this_cpu.
5486 * @sgs: variable to hold the statistics for this group.
5487 */
5488static inline void update_sg_lb_stats(struct lb_env *env,
5489 struct sched_group *group, int load_idx,
5490 int local_group, struct sg_lb_stats *sgs)
5491{
5492 unsigned long load;
5493 int i;
5494
5495 memset(sgs, 0, sizeof(*sgs));
5496
5497 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5498 struct rq *rq = cpu_rq(i);
5499
5500 /* Bias balancing toward cpus of our domain */
5501 if (local_group)
5502 load = target_load(i, load_idx);
5503 else
5504 load = source_load(i, load_idx);
5505
5506 sgs->group_load += load;
5507 sgs->sum_nr_running += rq->nr_running;
5508#ifdef CONFIG_NUMA_BALANCING
5509 sgs->nr_numa_running += rq->nr_numa_running;
5510 sgs->nr_preferred_running += rq->nr_preferred_running;
5511#endif
5512 sgs->sum_weighted_load += weighted_cpuload(i);
5513 if (idle_cpu(i))
5514 sgs->idle_cpus++;
5515 }
5516
5517 /* Adjust by relative CPU power of the group */
5518 sgs->group_power = group->sgp->power;
5519 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5520
5521 if (sgs->sum_nr_running)
5522 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5523
5524 sgs->group_weight = group->group_weight;
5525
5526 sgs->group_imb = sg_imbalanced(group);
5527 sgs->group_capacity = sg_capacity(env, group);
5528
5529 if (sgs->group_capacity > sgs->sum_nr_running)
5530 sgs->group_has_capacity = 1;
5531}
5532
5533/**
5534 * update_sd_pick_busiest - return 1 on busiest group
5535 * @env: The load balancing environment.
5536 * @sds: sched_domain statistics
5537 * @sg: sched_group candidate to be checked for being the busiest
5538 * @sgs: sched_group statistics
5539 *
5540 * Determine if @sg is a busier group than the previously selected
5541 * busiest group.
5542 *
5543 * Return: %true if @sg is a busier group than the previously selected
5544 * busiest group. %false otherwise.
5545 */
5546static bool update_sd_pick_busiest(struct lb_env *env,
5547 struct sd_lb_stats *sds,
5548 struct sched_group *sg,
5549 struct sg_lb_stats *sgs)
5550{
5551 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5552 return false;
5553
5554 if (sgs->sum_nr_running > sgs->group_capacity)
5555 return true;
5556
5557 if (sgs->group_imb)
5558 return true;
5559
5560 /*
5561 * ASYM_PACKING needs to move all the work to the lowest
5562 * numbered CPUs in the group, therefore mark all groups
5563 * higher than ourself as busy.
5564 */
5565 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5566 env->dst_cpu < group_first_cpu(sg)) {
5567 if (!sds->busiest)
5568 return true;
5569
5570 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5571 return true;
5572 }
5573
5574 return false;
5575}
5576
5577#ifdef CONFIG_NUMA_BALANCING
5578static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5579{
5580 if (sgs->sum_nr_running > sgs->nr_numa_running)
5581 return regular;
5582 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5583 return remote;
5584 return all;
5585}
5586
5587static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5588{
5589 if (rq->nr_running > rq->nr_numa_running)
5590 return regular;
5591 if (rq->nr_running > rq->nr_preferred_running)
5592 return remote;
5593 return all;
5594}
5595#else
5596static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5597{
5598 return all;
5599}
5600
5601static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5602{
5603 return regular;
5604}
5605#endif /* CONFIG_NUMA_BALANCING */
5606
5607/**
5608 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5609 * @env: The load balancing environment.
5610 * @sds: variable to hold the statistics for this sched_domain.
5611 */
5612static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5613{
5614 struct sched_domain *child = env->sd->child;
5615 struct sched_group *sg = env->sd->groups;
5616 struct sg_lb_stats tmp_sgs;
5617 int load_idx, prefer_sibling = 0;
5618
5619 if (child && child->flags & SD_PREFER_SIBLING)
5620 prefer_sibling = 1;
5621
5622 load_idx = get_sd_load_idx(env->sd, env->idle);
5623
5624 do {
5625 struct sg_lb_stats *sgs = &tmp_sgs;
5626 int local_group;
5627
5628 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5629 if (local_group) {
5630 sds->local = sg;
5631 sgs = &sds->local_stat;
5632
5633 if (env->idle != CPU_NEWLY_IDLE ||
5634 time_after_eq(jiffies, sg->sgp->next_update))
5635 update_group_power(env->sd, env->dst_cpu);
5636 }
5637
5638 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5639
5640 if (local_group)
5641 goto next_group;
5642
5643 /*
5644 * In case the child domain prefers tasks go to siblings
5645 * first, lower the sg capacity to one so that we'll try
5646 * and move all the excess tasks away. We lower the capacity
5647 * of a group only if the local group has the capacity to fit
5648 * these excess tasks, i.e. nr_running < group_capacity. The
5649 * extra check prevents the case where you always pull from the
5650 * heaviest group when it is already under-utilized (possible
5651 * with a large weight task outweighs the tasks on the system).
5652 */
5653 if (prefer_sibling && sds->local &&
5654 sds->local_stat.group_has_capacity)
5655 sgs->group_capacity = min(sgs->group_capacity, 1U);
5656
5657 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5658 sds->busiest = sg;
5659 sds->busiest_stat = *sgs;
5660 }
5661
5662next_group:
5663 /* Now, start updating sd_lb_stats */
5664 sds->total_load += sgs->group_load;
5665 sds->total_pwr += sgs->group_power;
5666
5667 sg = sg->next;
5668 } while (sg != env->sd->groups);
5669
5670 if (env->sd->flags & SD_NUMA)
5671 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5672}
5673
5674/**
5675 * check_asym_packing - Check to see if the group is packed into the
5676 * sched doman.
5677 *
5678 * This is primarily intended to used at the sibling level. Some
5679 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5680 * case of POWER7, it can move to lower SMT modes only when higher
5681 * threads are idle. When in lower SMT modes, the threads will
5682 * perform better since they share less core resources. Hence when we
5683 * have idle threads, we want them to be the higher ones.
5684 *
5685 * This packing function is run on idle threads. It checks to see if
5686 * the busiest CPU in this domain (core in the P7 case) has a higher
5687 * CPU number than the packing function is being run on. Here we are
5688 * assuming lower CPU number will be equivalent to lower a SMT thread
5689 * number.
5690 *
5691 * Return: 1 when packing is required and a task should be moved to
5692 * this CPU. The amount of the imbalance is returned in *imbalance.
5693 *
5694 * @env: The load balancing environment.
5695 * @sds: Statistics of the sched_domain which is to be packed
5696 */
5697static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5698{
5699 int busiest_cpu;
5700
5701 if (!(env->sd->flags & SD_ASYM_PACKING))
5702 return 0;
5703
5704 if (!sds->busiest)
5705 return 0;
5706
5707 busiest_cpu = group_first_cpu(sds->busiest);
5708 if (env->dst_cpu > busiest_cpu)
5709 return 0;
5710
5711 env->imbalance = DIV_ROUND_CLOSEST(
5712 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5713 SCHED_POWER_SCALE);
5714
5715 return 1;
5716}
5717
5718/**
5719 * fix_small_imbalance - Calculate the minor imbalance that exists
5720 * amongst the groups of a sched_domain, during
5721 * load balancing.
5722 * @env: The load balancing environment.
5723 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
5724 */
5725static inline
5726void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5727{
5728 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5729 unsigned int imbn = 2;
5730 unsigned long scaled_busy_load_per_task;
5731 struct sg_lb_stats *local, *busiest;
5732
5733 local = &sds->local_stat;
5734 busiest = &sds->busiest_stat;
5735
5736 if (!local->sum_nr_running)
5737 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5738 else if (busiest->load_per_task > local->load_per_task)
5739 imbn = 1;
5740
5741 scaled_busy_load_per_task =
5742 (busiest->load_per_task * SCHED_POWER_SCALE) /
5743 busiest->group_power;
5744
5745 if (busiest->avg_load + scaled_busy_load_per_task >=
5746 local->avg_load + (scaled_busy_load_per_task * imbn)) {
5747 env->imbalance = busiest->load_per_task;
5748 return;
5749 }
5750
5751 /*
5752 * OK, we don't have enough imbalance to justify moving tasks,
5753 * however we may be able to increase total CPU power used by
5754 * moving them.
5755 */
5756
5757 pwr_now += busiest->group_power *
5758 min(busiest->load_per_task, busiest->avg_load);
5759 pwr_now += local->group_power *
5760 min(local->load_per_task, local->avg_load);
5761 pwr_now /= SCHED_POWER_SCALE;
5762
5763 /* Amount of load we'd subtract */
5764 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5765 busiest->group_power;
5766 if (busiest->avg_load > tmp) {
5767 pwr_move += busiest->group_power *
5768 min(busiest->load_per_task,
5769 busiest->avg_load - tmp);
5770 }
5771
5772 /* Amount of load we'd add */
5773 if (busiest->avg_load * busiest->group_power <
5774 busiest->load_per_task * SCHED_POWER_SCALE) {
5775 tmp = (busiest->avg_load * busiest->group_power) /
5776 local->group_power;
5777 } else {
5778 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5779 local->group_power;
5780 }
5781 pwr_move += local->group_power *
5782 min(local->load_per_task, local->avg_load + tmp);
5783 pwr_move /= SCHED_POWER_SCALE;
5784
5785 /* Move if we gain throughput */
5786 if (pwr_move > pwr_now)
5787 env->imbalance = busiest->load_per_task;
5788}
5789
5790/**
5791 * calculate_imbalance - Calculate the amount of imbalance present within the
5792 * groups of a given sched_domain during load balance.
5793 * @env: load balance environment
5794 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
5795 */
5796static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5797{
5798 unsigned long max_pull, load_above_capacity = ~0UL;
5799 struct sg_lb_stats *local, *busiest;
5800
5801 local = &sds->local_stat;
5802 busiest = &sds->busiest_stat;
5803
5804 if (busiest->group_imb) {
5805 /*
5806 * In the group_imb case we cannot rely on group-wide averages
5807 * to ensure cpu-load equilibrium, look at wider averages. XXX
5808 */
5809 busiest->load_per_task =
5810 min(busiest->load_per_task, sds->avg_load);
5811 }
5812
5813 /*
5814 * In the presence of smp nice balancing, certain scenarios can have
5815 * max load less than avg load(as we skip the groups at or below
5816 * its cpu_power, while calculating max_load..)
5817 */
5818 if (busiest->avg_load <= sds->avg_load ||
5819 local->avg_load >= sds->avg_load) {
5820 env->imbalance = 0;
5821 return fix_small_imbalance(env, sds);
5822 }
5823
5824 if (!busiest->group_imb) {
5825 /*
5826 * Don't want to pull so many tasks that a group would go idle.
5827 * Except of course for the group_imb case, since then we might
5828 * have to drop below capacity to reach cpu-load equilibrium.
5829 */
5830 load_above_capacity =
5831 (busiest->sum_nr_running - busiest->group_capacity);
5832
5833 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5834 load_above_capacity /= busiest->group_power;
5835 }
5836
5837 /*
5838 * We're trying to get all the cpus to the average_load, so we don't
5839 * want to push ourselves above the average load, nor do we wish to
5840 * reduce the max loaded cpu below the average load. At the same time,
5841 * we also don't want to reduce the group load below the group capacity
5842 * (so that we can implement power-savings policies etc). Thus we look
5843 * for the minimum possible imbalance.
5844 */
5845 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5846
5847 /* How much load to actually move to equalise the imbalance */
5848 env->imbalance = min(
5849 max_pull * busiest->group_power,
5850 (sds->avg_load - local->avg_load) * local->group_power
5851 ) / SCHED_POWER_SCALE;
5852
5853 /*
5854 * if *imbalance is less than the average load per runnable task
5855 * there is no guarantee that any tasks will be moved so we'll have
5856 * a think about bumping its value to force at least one task to be
5857 * moved
5858 */
5859 if (env->imbalance < busiest->load_per_task)
5860 return fix_small_imbalance(env, sds);
5861}
5862
5863/******* find_busiest_group() helpers end here *********************/
5864
5865/**
5866 * find_busiest_group - Returns the busiest group within the sched_domain
5867 * if there is an imbalance. If there isn't an imbalance, and
5868 * the user has opted for power-savings, it returns a group whose
5869 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5870 * such a group exists.
5871 *
5872 * Also calculates the amount of weighted load which should be moved
5873 * to restore balance.
5874 *
5875 * @env: The load balancing environment.
5876 *
5877 * Return: - The busiest group if imbalance exists.
5878 * - If no imbalance and user has opted for power-savings balance,
5879 * return the least loaded group whose CPUs can be
5880 * put to idle by rebalancing its tasks onto our group.
5881 */
5882static struct sched_group *find_busiest_group(struct lb_env *env)
5883{
5884 struct sg_lb_stats *local, *busiest;
5885 struct sd_lb_stats sds;
5886
5887 init_sd_lb_stats(&sds);
5888
5889 /*
5890 * Compute the various statistics relavent for load balancing at
5891 * this level.
5892 */
5893 update_sd_lb_stats(env, &sds);
5894 local = &sds.local_stat;
5895 busiest = &sds.busiest_stat;
5896
5897 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5898 check_asym_packing(env, &sds))
5899 return sds.busiest;
5900
5901 /* There is no busy sibling group to pull tasks from */
5902 if (!sds.busiest || busiest->sum_nr_running == 0)
5903 goto out_balanced;
5904
5905 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
5906
5907 /*
5908 * If the busiest group is imbalanced the below checks don't
5909 * work because they assume all things are equal, which typically
5910 * isn't true due to cpus_allowed constraints and the like.
5911 */
5912 if (busiest->group_imb)
5913 goto force_balance;
5914
5915 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
5916 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5917 !busiest->group_has_capacity)
5918 goto force_balance;
5919
5920 /*
5921 * If the local group is more busy than the selected busiest group
5922 * don't try and pull any tasks.
5923 */
5924 if (local->avg_load >= busiest->avg_load)
5925 goto out_balanced;
5926
5927 /*
5928 * Don't pull any tasks if this group is already above the domain
5929 * average load.
5930 */
5931 if (local->avg_load >= sds.avg_load)
5932 goto out_balanced;
5933
5934 if (env->idle == CPU_IDLE) {
5935 /*
5936 * This cpu is idle. If the busiest group load doesn't
5937 * have more tasks than the number of available cpu's and
5938 * there is no imbalance between this and busiest group
5939 * wrt to idle cpu's, it is balanced.
5940 */
5941 if ((local->idle_cpus < busiest->idle_cpus) &&
5942 busiest->sum_nr_running <= busiest->group_weight)
5943 goto out_balanced;
5944 } else {
5945 /*
5946 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5947 * imbalance_pct to be conservative.
5948 */
5949 if (100 * busiest->avg_load <=
5950 env->sd->imbalance_pct * local->avg_load)
5951 goto out_balanced;
5952 }
5953
5954force_balance:
5955 /* Looks like there is an imbalance. Compute it */
5956 calculate_imbalance(env, &sds);
5957 return sds.busiest;
5958
5959out_balanced:
5960 env->imbalance = 0;
5961 return NULL;
5962}
5963
5964/*
5965 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5966 */
5967static struct rq *find_busiest_queue(struct lb_env *env,
5968 struct sched_group *group)
5969{
5970 struct rq *busiest = NULL, *rq;
5971 unsigned long busiest_load = 0, busiest_power = 1;
5972 int i;
5973
5974 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5975 unsigned long power, capacity, wl;
5976 enum fbq_type rt;
5977
5978 rq = cpu_rq(i);
5979 rt = fbq_classify_rq(rq);
5980
5981 /*
5982 * We classify groups/runqueues into three groups:
5983 * - regular: there are !numa tasks
5984 * - remote: there are numa tasks that run on the 'wrong' node
5985 * - all: there is no distinction
5986 *
5987 * In order to avoid migrating ideally placed numa tasks,
5988 * ignore those when there's better options.
5989 *
5990 * If we ignore the actual busiest queue to migrate another
5991 * task, the next balance pass can still reduce the busiest
5992 * queue by moving tasks around inside the node.
5993 *
5994 * If we cannot move enough load due to this classification
5995 * the next pass will adjust the group classification and
5996 * allow migration of more tasks.
5997 *
5998 * Both cases only affect the total convergence complexity.
5999 */
6000 if (rt > env->fbq_type)
6001 continue;
6002
6003 power = power_of(i);
6004 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6005 if (!capacity)
6006 capacity = fix_small_capacity(env->sd, group);
6007
6008 wl = weighted_cpuload(i);
6009
6010 /*
6011 * When comparing with imbalance, use weighted_cpuload()
6012 * which is not scaled with the cpu power.
6013 */
6014 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6015 continue;
6016
6017 /*
6018 * For the load comparisons with the other cpu's, consider
6019 * the weighted_cpuload() scaled with the cpu power, so that
6020 * the load can be moved away from the cpu that is potentially
6021 * running at a lower capacity.
6022 *
6023 * Thus we're looking for max(wl_i / power_i), crosswise
6024 * multiplication to rid ourselves of the division works out
6025 * to: wl_i * power_j > wl_j * power_i; where j is our
6026 * previous maximum.
6027 */
6028 if (wl * busiest_power > busiest_load * power) {
6029 busiest_load = wl;
6030 busiest_power = power;
6031 busiest = rq;
6032 }
6033 }
6034
6035 return busiest;
6036}
6037
6038/*
6039 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6040 * so long as it is large enough.
6041 */
6042#define MAX_PINNED_INTERVAL 512
6043
6044/* Working cpumask for load_balance and load_balance_newidle. */
6045DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6046
6047static int need_active_balance(struct lb_env *env)
6048{
6049 struct sched_domain *sd = env->sd;
6050
6051 if (env->idle == CPU_NEWLY_IDLE) {
6052
6053 /*
6054 * ASYM_PACKING needs to force migrate tasks from busy but
6055 * higher numbered CPUs in order to pack all tasks in the
6056 * lowest numbered CPUs.
6057 */
6058 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6059 return 1;
6060 }
6061
6062 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6063}
6064
6065static int active_load_balance_cpu_stop(void *data);
6066
6067static int should_we_balance(struct lb_env *env)
6068{
6069 struct sched_group *sg = env->sd->groups;
6070 struct cpumask *sg_cpus, *sg_mask;
6071 int cpu, balance_cpu = -1;
6072
6073 /*
6074 * In the newly idle case, we will allow all the cpu's
6075 * to do the newly idle load balance.
6076 */
6077 if (env->idle == CPU_NEWLY_IDLE)
6078 return 1;
6079
6080 sg_cpus = sched_group_cpus(sg);
6081 sg_mask = sched_group_mask(sg);
6082 /* Try to find first idle cpu */
6083 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6084 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6085 continue;
6086
6087 balance_cpu = cpu;
6088 break;
6089 }
6090
6091 if (balance_cpu == -1)
6092 balance_cpu = group_balance_cpu(sg);
6093
6094 /*
6095 * First idle cpu or the first cpu(busiest) in this sched group
6096 * is eligible for doing load balancing at this and above domains.
6097 */
6098 return balance_cpu == env->dst_cpu;
6099}
6100
6101/*
6102 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6103 * tasks if there is an imbalance.
6104 */
6105static int load_balance(int this_cpu, struct rq *this_rq,
6106 struct sched_domain *sd, enum cpu_idle_type idle,
6107 int *continue_balancing)
6108{
6109 int ld_moved, cur_ld_moved, active_balance = 0;
6110 struct sched_domain *sd_parent = sd->parent;
6111 struct sched_group *group;
6112 struct rq *busiest;
6113 unsigned long flags;
6114 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6115
6116 struct lb_env env = {
6117 .sd = sd,
6118 .dst_cpu = this_cpu,
6119 .dst_rq = this_rq,
6120 .dst_grpmask = sched_group_cpus(sd->groups),
6121 .idle = idle,
6122 .loop_break = sched_nr_migrate_break,
6123 .cpus = cpus,
6124 .fbq_type = all,
6125 };
6126
6127 /*
6128 * For NEWLY_IDLE load_balancing, we don't need to consider
6129 * other cpus in our group
6130 */
6131 if (idle == CPU_NEWLY_IDLE)
6132 env.dst_grpmask = NULL;
6133
6134 cpumask_copy(cpus, cpu_active_mask);
6135
6136 schedstat_inc(sd, lb_count[idle]);
6137
6138redo:
6139 if (!should_we_balance(&env)) {
6140 *continue_balancing = 0;
6141 goto out_balanced;
6142 }
6143
6144 group = find_busiest_group(&env);
6145 if (!group) {
6146 schedstat_inc(sd, lb_nobusyg[idle]);
6147 goto out_balanced;
6148 }
6149
6150 busiest = find_busiest_queue(&env, group);
6151 if (!busiest) {
6152 schedstat_inc(sd, lb_nobusyq[idle]);
6153 goto out_balanced;
6154 }
6155
6156 BUG_ON(busiest == env.dst_rq);
6157
6158 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6159
6160 ld_moved = 0;
6161 if (busiest->nr_running > 1) {
6162 /*
6163 * Attempt to move tasks. If find_busiest_group has found
6164 * an imbalance but busiest->nr_running <= 1, the group is
6165 * still unbalanced. ld_moved simply stays zero, so it is
6166 * correctly treated as an imbalance.
6167 */
6168 env.flags |= LBF_ALL_PINNED;
6169 env.src_cpu = busiest->cpu;
6170 env.src_rq = busiest;
6171 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6172
6173more_balance:
6174 local_irq_save(flags);
6175 double_rq_lock(env.dst_rq, busiest);
6176
6177 /*
6178 * cur_ld_moved - load moved in current iteration
6179 * ld_moved - cumulative load moved across iterations
6180 */
6181 cur_ld_moved = move_tasks(&env);
6182 ld_moved += cur_ld_moved;
6183 double_rq_unlock(env.dst_rq, busiest);
6184 local_irq_restore(flags);
6185
6186 /*
6187 * some other cpu did the load balance for us.
6188 */
6189 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6190 resched_cpu(env.dst_cpu);
6191
6192 if (env.flags & LBF_NEED_BREAK) {
6193 env.flags &= ~LBF_NEED_BREAK;
6194 goto more_balance;
6195 }
6196
6197 /*
6198 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6199 * us and move them to an alternate dst_cpu in our sched_group
6200 * where they can run. The upper limit on how many times we
6201 * iterate on same src_cpu is dependent on number of cpus in our
6202 * sched_group.
6203 *
6204 * This changes load balance semantics a bit on who can move
6205 * load to a given_cpu. In addition to the given_cpu itself
6206 * (or a ilb_cpu acting on its behalf where given_cpu is
6207 * nohz-idle), we now have balance_cpu in a position to move
6208 * load to given_cpu. In rare situations, this may cause
6209 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6210 * _independently_ and at _same_ time to move some load to
6211 * given_cpu) causing exceess load to be moved to given_cpu.
6212 * This however should not happen so much in practice and
6213 * moreover subsequent load balance cycles should correct the
6214 * excess load moved.
6215 */
6216 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6217
6218 /* Prevent to re-select dst_cpu via env's cpus */
6219 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6220
6221 env.dst_rq = cpu_rq(env.new_dst_cpu);
6222 env.dst_cpu = env.new_dst_cpu;
6223 env.flags &= ~LBF_DST_PINNED;
6224 env.loop = 0;
6225 env.loop_break = sched_nr_migrate_break;
6226
6227 /*
6228 * Go back to "more_balance" rather than "redo" since we
6229 * need to continue with same src_cpu.
6230 */
6231 goto more_balance;
6232 }
6233
6234 /*
6235 * We failed to reach balance because of affinity.
6236 */
6237 if (sd_parent) {
6238 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6239
6240 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6241 *group_imbalance = 1;
6242 } else if (*group_imbalance)
6243 *group_imbalance = 0;
6244 }
6245
6246 /* All tasks on this runqueue were pinned by CPU affinity */
6247 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6248 cpumask_clear_cpu(cpu_of(busiest), cpus);
6249 if (!cpumask_empty(cpus)) {
6250 env.loop = 0;
6251 env.loop_break = sched_nr_migrate_break;
6252 goto redo;
6253 }
6254 goto out_balanced;
6255 }
6256 }
6257
6258 if (!ld_moved) {
6259 schedstat_inc(sd, lb_failed[idle]);
6260 /*
6261 * Increment the failure counter only on periodic balance.
6262 * We do not want newidle balance, which can be very
6263 * frequent, pollute the failure counter causing
6264 * excessive cache_hot migrations and active balances.
6265 */
6266 if (idle != CPU_NEWLY_IDLE)
6267 sd->nr_balance_failed++;
6268
6269 if (need_active_balance(&env)) {
6270 raw_spin_lock_irqsave(&busiest->lock, flags);
6271
6272 /* don't kick the active_load_balance_cpu_stop,
6273 * if the curr task on busiest cpu can't be
6274 * moved to this_cpu
6275 */
6276 if (!cpumask_test_cpu(this_cpu,
6277 tsk_cpus_allowed(busiest->curr))) {
6278 raw_spin_unlock_irqrestore(&busiest->lock,
6279 flags);
6280 env.flags |= LBF_ALL_PINNED;
6281 goto out_one_pinned;
6282 }
6283
6284 /*
6285 * ->active_balance synchronizes accesses to
6286 * ->active_balance_work. Once set, it's cleared
6287 * only after active load balance is finished.
6288 */
6289 if (!busiest->active_balance) {
6290 busiest->active_balance = 1;
6291 busiest->push_cpu = this_cpu;
6292 active_balance = 1;
6293 }
6294 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6295
6296 if (active_balance) {
6297 stop_one_cpu_nowait(cpu_of(busiest),
6298 active_load_balance_cpu_stop, busiest,
6299 &busiest->active_balance_work);
6300 }
6301
6302 /*
6303 * We've kicked active balancing, reset the failure
6304 * counter.
6305 */
6306 sd->nr_balance_failed = sd->cache_nice_tries+1;
6307 }
6308 } else
6309 sd->nr_balance_failed = 0;
6310
6311 if (likely(!active_balance)) {
6312 /* We were unbalanced, so reset the balancing interval */
6313 sd->balance_interval = sd->min_interval;
6314 } else {
6315 /*
6316 * If we've begun active balancing, start to back off. This
6317 * case may not be covered by the all_pinned logic if there
6318 * is only 1 task on the busy runqueue (because we don't call
6319 * move_tasks).
6320 */
6321 if (sd->balance_interval < sd->max_interval)
6322 sd->balance_interval *= 2;
6323 }
6324
6325 goto out;
6326
6327out_balanced:
6328 schedstat_inc(sd, lb_balanced[idle]);
6329
6330 sd->nr_balance_failed = 0;
6331
6332out_one_pinned:
6333 /* tune up the balancing interval */
6334 if (((env.flags & LBF_ALL_PINNED) &&
6335 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6336 (sd->balance_interval < sd->max_interval))
6337 sd->balance_interval *= 2;
6338
6339 ld_moved = 0;
6340out:
6341 return ld_moved;
6342}
6343
6344/*
6345 * idle_balance is called by schedule() if this_cpu is about to become
6346 * idle. Attempts to pull tasks from other CPUs.
6347 */
6348void idle_balance(int this_cpu, struct rq *this_rq)
6349{
6350 struct sched_domain *sd;
6351 int pulled_task = 0;
6352 unsigned long next_balance = jiffies + HZ;
6353 u64 curr_cost = 0;
6354
6355 this_rq->idle_stamp = rq_clock(this_rq);
6356
6357 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6358 return;
6359
6360 /*
6361 * Drop the rq->lock, but keep IRQ/preempt disabled.
6362 */
6363 raw_spin_unlock(&this_rq->lock);
6364
6365 update_blocked_averages(this_cpu);
6366 rcu_read_lock();
6367 for_each_domain(this_cpu, sd) {
6368 unsigned long interval;
6369 int continue_balancing = 1;
6370 u64 t0, domain_cost;
6371
6372 if (!(sd->flags & SD_LOAD_BALANCE))
6373 continue;
6374
6375 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6376 break;
6377
6378 if (sd->flags & SD_BALANCE_NEWIDLE) {
6379 t0 = sched_clock_cpu(this_cpu);
6380
6381 /* If we've pulled tasks over stop searching: */
6382 pulled_task = load_balance(this_cpu, this_rq,
6383 sd, CPU_NEWLY_IDLE,
6384 &continue_balancing);
6385
6386 domain_cost = sched_clock_cpu(this_cpu) - t0;
6387 if (domain_cost > sd->max_newidle_lb_cost)
6388 sd->max_newidle_lb_cost = domain_cost;
6389
6390 curr_cost += domain_cost;
6391 }
6392
6393 interval = msecs_to_jiffies(sd->balance_interval);
6394 if (time_after(next_balance, sd->last_balance + interval))
6395 next_balance = sd->last_balance + interval;
6396 if (pulled_task) {
6397 this_rq->idle_stamp = 0;
6398 break;
6399 }
6400 }
6401 rcu_read_unlock();
6402
6403 raw_spin_lock(&this_rq->lock);
6404
6405 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6406 /*
6407 * We are going idle. next_balance may be set based on
6408 * a busy processor. So reset next_balance.
6409 */
6410 this_rq->next_balance = next_balance;
6411 }
6412
6413 if (curr_cost > this_rq->max_idle_balance_cost)
6414 this_rq->max_idle_balance_cost = curr_cost;
6415}
6416
6417/*
6418 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6419 * running tasks off the busiest CPU onto idle CPUs. It requires at
6420 * least 1 task to be running on each physical CPU where possible, and
6421 * avoids physical / logical imbalances.
6422 */
6423static int active_load_balance_cpu_stop(void *data)
6424{
6425 struct rq *busiest_rq = data;
6426 int busiest_cpu = cpu_of(busiest_rq);
6427 int target_cpu = busiest_rq->push_cpu;
6428 struct rq *target_rq = cpu_rq(target_cpu);
6429 struct sched_domain *sd;
6430
6431 raw_spin_lock_irq(&busiest_rq->lock);
6432
6433 /* make sure the requested cpu hasn't gone down in the meantime */
6434 if (unlikely(busiest_cpu != smp_processor_id() ||
6435 !busiest_rq->active_balance))
6436 goto out_unlock;
6437
6438 /* Is there any task to move? */
6439 if (busiest_rq->nr_running <= 1)
6440 goto out_unlock;
6441
6442 /*
6443 * This condition is "impossible", if it occurs
6444 * we need to fix it. Originally reported by
6445 * Bjorn Helgaas on a 128-cpu setup.
6446 */
6447 BUG_ON(busiest_rq == target_rq);
6448
6449 /* move a task from busiest_rq to target_rq */
6450 double_lock_balance(busiest_rq, target_rq);
6451
6452 /* Search for an sd spanning us and the target CPU. */
6453 rcu_read_lock();
6454 for_each_domain(target_cpu, sd) {
6455 if ((sd->flags & SD_LOAD_BALANCE) &&
6456 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6457 break;
6458 }
6459
6460 if (likely(sd)) {
6461 struct lb_env env = {
6462 .sd = sd,
6463 .dst_cpu = target_cpu,
6464 .dst_rq = target_rq,
6465 .src_cpu = busiest_rq->cpu,
6466 .src_rq = busiest_rq,
6467 .idle = CPU_IDLE,
6468 };
6469
6470 schedstat_inc(sd, alb_count);
6471
6472 if (move_one_task(&env))
6473 schedstat_inc(sd, alb_pushed);
6474 else
6475 schedstat_inc(sd, alb_failed);
6476 }
6477 rcu_read_unlock();
6478 double_unlock_balance(busiest_rq, target_rq);
6479out_unlock:
6480 busiest_rq->active_balance = 0;
6481 raw_spin_unlock_irq(&busiest_rq->lock);
6482 return 0;
6483}
6484
6485#ifdef CONFIG_NO_HZ_COMMON
6486/*
6487 * idle load balancing details
6488 * - When one of the busy CPUs notice that there may be an idle rebalancing
6489 * needed, they will kick the idle load balancer, which then does idle
6490 * load balancing for all the idle CPUs.
6491 */
6492static struct {
6493 cpumask_var_t idle_cpus_mask;
6494 atomic_t nr_cpus;
6495 unsigned long next_balance; /* in jiffy units */
6496} nohz ____cacheline_aligned;
6497
6498static inline int find_new_ilb(void)
6499{
6500 int ilb = cpumask_first(nohz.idle_cpus_mask);
6501
6502 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6503 return ilb;
6504
6505 return nr_cpu_ids;
6506}
6507
6508/*
6509 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6510 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6511 * CPU (if there is one).
6512 */
6513static void nohz_balancer_kick(void)
6514{
6515 int ilb_cpu;
6516
6517 nohz.next_balance++;
6518
6519 ilb_cpu = find_new_ilb();
6520
6521 if (ilb_cpu >= nr_cpu_ids)
6522 return;
6523
6524 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6525 return;
6526 /*
6527 * Use smp_send_reschedule() instead of resched_cpu().
6528 * This way we generate a sched IPI on the target cpu which
6529 * is idle. And the softirq performing nohz idle load balance
6530 * will be run before returning from the IPI.
6531 */
6532 smp_send_reschedule(ilb_cpu);
6533 return;
6534}
6535
6536static inline void nohz_balance_exit_idle(int cpu)
6537{
6538 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6539 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6540 atomic_dec(&nohz.nr_cpus);
6541 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6542 }
6543}
6544
6545static inline void set_cpu_sd_state_busy(void)
6546{
6547 struct sched_domain *sd;
6548 int cpu = smp_processor_id();
6549
6550 rcu_read_lock();
6551 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6552
6553 if (!sd || !sd->nohz_idle)
6554 goto unlock;
6555 sd->nohz_idle = 0;
6556
6557 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6558unlock:
6559 rcu_read_unlock();
6560}
6561
6562void set_cpu_sd_state_idle(void)
6563{
6564 struct sched_domain *sd;
6565 int cpu = smp_processor_id();
6566
6567 rcu_read_lock();
6568 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6569
6570 if (!sd || sd->nohz_idle)
6571 goto unlock;
6572 sd->nohz_idle = 1;
6573
6574 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6575unlock:
6576 rcu_read_unlock();
6577}
6578
6579/*
6580 * This routine will record that the cpu is going idle with tick stopped.
6581 * This info will be used in performing idle load balancing in the future.
6582 */
6583void nohz_balance_enter_idle(int cpu)
6584{
6585 /*
6586 * If this cpu is going down, then nothing needs to be done.
6587 */
6588 if (!cpu_active(cpu))
6589 return;
6590
6591 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6592 return;
6593
6594 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6595 atomic_inc(&nohz.nr_cpus);
6596 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6597}
6598
6599static int sched_ilb_notifier(struct notifier_block *nfb,
6600 unsigned long action, void *hcpu)
6601{
6602 switch (action & ~CPU_TASKS_FROZEN) {
6603 case CPU_DYING:
6604 nohz_balance_exit_idle(smp_processor_id());
6605 return NOTIFY_OK;
6606 default:
6607 return NOTIFY_DONE;
6608 }
6609}
6610#endif
6611
6612static DEFINE_SPINLOCK(balancing);
6613
6614/*
6615 * Scale the max load_balance interval with the number of CPUs in the system.
6616 * This trades load-balance latency on larger machines for less cross talk.
6617 */
6618void update_max_interval(void)
6619{
6620 max_load_balance_interval = HZ*num_online_cpus()/10;
6621}
6622
6623/*
6624 * It checks each scheduling domain to see if it is due to be balanced,
6625 * and initiates a balancing operation if so.
6626 *
6627 * Balancing parameters are set up in init_sched_domains.
6628 */
6629static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
6630{
6631 int continue_balancing = 1;
6632 int cpu = rq->cpu;
6633 unsigned long interval;
6634 struct sched_domain *sd;
6635 /* Earliest time when we have to do rebalance again */
6636 unsigned long next_balance = jiffies + 60*HZ;
6637 int update_next_balance = 0;
6638 int need_serialize, need_decay = 0;
6639 u64 max_cost = 0;
6640
6641 update_blocked_averages(cpu);
6642
6643 rcu_read_lock();
6644 for_each_domain(cpu, sd) {
6645 /*
6646 * Decay the newidle max times here because this is a regular
6647 * visit to all the domains. Decay ~1% per second.
6648 */
6649 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6650 sd->max_newidle_lb_cost =
6651 (sd->max_newidle_lb_cost * 253) / 256;
6652 sd->next_decay_max_lb_cost = jiffies + HZ;
6653 need_decay = 1;
6654 }
6655 max_cost += sd->max_newidle_lb_cost;
6656
6657 if (!(sd->flags & SD_LOAD_BALANCE))
6658 continue;
6659
6660 /*
6661 * Stop the load balance at this level. There is another
6662 * CPU in our sched group which is doing load balancing more
6663 * actively.
6664 */
6665 if (!continue_balancing) {
6666 if (need_decay)
6667 continue;
6668 break;
6669 }
6670
6671 interval = sd->balance_interval;
6672 if (idle != CPU_IDLE)
6673 interval *= sd->busy_factor;
6674
6675 /* scale ms to jiffies */
6676 interval = msecs_to_jiffies(interval);
6677 interval = clamp(interval, 1UL, max_load_balance_interval);
6678
6679 need_serialize = sd->flags & SD_SERIALIZE;
6680
6681 if (need_serialize) {
6682 if (!spin_trylock(&balancing))
6683 goto out;
6684 }
6685
6686 if (time_after_eq(jiffies, sd->last_balance + interval)) {
6687 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6688 /*
6689 * The LBF_DST_PINNED logic could have changed
6690 * env->dst_cpu, so we can't know our idle
6691 * state even if we migrated tasks. Update it.
6692 */
6693 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6694 }
6695 sd->last_balance = jiffies;
6696 }
6697 if (need_serialize)
6698 spin_unlock(&balancing);
6699out:
6700 if (time_after(next_balance, sd->last_balance + interval)) {
6701 next_balance = sd->last_balance + interval;
6702 update_next_balance = 1;
6703 }
6704 }
6705 if (need_decay) {
6706 /*
6707 * Ensure the rq-wide value also decays but keep it at a
6708 * reasonable floor to avoid funnies with rq->avg_idle.
6709 */
6710 rq->max_idle_balance_cost =
6711 max((u64)sysctl_sched_migration_cost, max_cost);
6712 }
6713 rcu_read_unlock();
6714
6715 /*
6716 * next_balance will be updated only when there is a need.
6717 * When the cpu is attached to null domain for ex, it will not be
6718 * updated.
6719 */
6720 if (likely(update_next_balance))
6721 rq->next_balance = next_balance;
6722}
6723
6724#ifdef CONFIG_NO_HZ_COMMON
6725/*
6726 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6727 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6728 */
6729static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
6730{
6731 int this_cpu = this_rq->cpu;
6732 struct rq *rq;
6733 int balance_cpu;
6734
6735 if (idle != CPU_IDLE ||
6736 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6737 goto end;
6738
6739 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6740 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6741 continue;
6742
6743 /*
6744 * If this cpu gets work to do, stop the load balancing
6745 * work being done for other cpus. Next load
6746 * balancing owner will pick it up.
6747 */
6748 if (need_resched())
6749 break;
6750
6751 rq = cpu_rq(balance_cpu);
6752
6753 raw_spin_lock_irq(&rq->lock);
6754 update_rq_clock(rq);
6755 update_idle_cpu_load(rq);
6756 raw_spin_unlock_irq(&rq->lock);
6757
6758 rebalance_domains(rq, CPU_IDLE);
6759
6760 if (time_after(this_rq->next_balance, rq->next_balance))
6761 this_rq->next_balance = rq->next_balance;
6762 }
6763 nohz.next_balance = this_rq->next_balance;
6764end:
6765 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6766}
6767
6768/*
6769 * Current heuristic for kicking the idle load balancer in the presence
6770 * of an idle cpu is the system.
6771 * - This rq has more than one task.
6772 * - At any scheduler domain level, this cpu's scheduler group has multiple
6773 * busy cpu's exceeding the group's power.
6774 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6775 * domain span are idle.
6776 */
6777static inline int nohz_kick_needed(struct rq *rq)
6778{
6779 unsigned long now = jiffies;
6780 struct sched_domain *sd;
6781 struct sched_group_power *sgp;
6782 int nr_busy, cpu = rq->cpu;
6783
6784 if (unlikely(rq->idle_balance))
6785 return 0;
6786
6787 /*
6788 * We may be recently in ticked or tickless idle mode. At the first
6789 * busy tick after returning from idle, we will update the busy stats.
6790 */
6791 set_cpu_sd_state_busy();
6792 nohz_balance_exit_idle(cpu);
6793
6794 /*
6795 * None are in tickless mode and hence no need for NOHZ idle load
6796 * balancing.
6797 */
6798 if (likely(!atomic_read(&nohz.nr_cpus)))
6799 return 0;
6800
6801 if (time_before(now, nohz.next_balance))
6802 return 0;
6803
6804 if (rq->nr_running >= 2)
6805 goto need_kick;
6806
6807 rcu_read_lock();
6808 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6809
6810 if (sd) {
6811 sgp = sd->groups->sgp;
6812 nr_busy = atomic_read(&sgp->nr_busy_cpus);
6813
6814 if (nr_busy > 1)
6815 goto need_kick_unlock;
6816 }
6817
6818 sd = rcu_dereference(per_cpu(sd_asym, cpu));
6819
6820 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
6821 sched_domain_span(sd)) < cpu))
6822 goto need_kick_unlock;
6823
6824 rcu_read_unlock();
6825 return 0;
6826
6827need_kick_unlock:
6828 rcu_read_unlock();
6829need_kick:
6830 return 1;
6831}
6832#else
6833static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
6834#endif
6835
6836/*
6837 * run_rebalance_domains is triggered when needed from the scheduler tick.
6838 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6839 */
6840static void run_rebalance_domains(struct softirq_action *h)
6841{
6842 struct rq *this_rq = this_rq();
6843 enum cpu_idle_type idle = this_rq->idle_balance ?
6844 CPU_IDLE : CPU_NOT_IDLE;
6845
6846 rebalance_domains(this_rq, idle);
6847
6848 /*
6849 * If this cpu has a pending nohz_balance_kick, then do the
6850 * balancing on behalf of the other idle cpus whose ticks are
6851 * stopped.
6852 */
6853 nohz_idle_balance(this_rq, idle);
6854}
6855
6856static inline int on_null_domain(struct rq *rq)
6857{
6858 return !rcu_dereference_sched(rq->sd);
6859}
6860
6861/*
6862 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
6863 */
6864void trigger_load_balance(struct rq *rq)
6865{
6866 /* Don't need to rebalance while attached to NULL domain */
6867 if (unlikely(on_null_domain(rq)))
6868 return;
6869
6870 if (time_after_eq(jiffies, rq->next_balance))
6871 raise_softirq(SCHED_SOFTIRQ);
6872#ifdef CONFIG_NO_HZ_COMMON
6873 if (nohz_kick_needed(rq))
6874 nohz_balancer_kick();
6875#endif
6876}
6877
6878static void rq_online_fair(struct rq *rq)
6879{
6880 update_sysctl();
6881}
6882
6883static void rq_offline_fair(struct rq *rq)
6884{
6885 update_sysctl();
6886
6887 /* Ensure any throttled groups are reachable by pick_next_task */
6888 unthrottle_offline_cfs_rqs(rq);
6889}
6890
6891#endif /* CONFIG_SMP */
6892
6893/*
6894 * scheduler tick hitting a task of our scheduling class:
6895 */
6896static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
6897{
6898 struct cfs_rq *cfs_rq;
6899 struct sched_entity *se = &curr->se;
6900
6901 for_each_sched_entity(se) {
6902 cfs_rq = cfs_rq_of(se);
6903 entity_tick(cfs_rq, se, queued);
6904 }
6905
6906 if (numabalancing_enabled)
6907 task_tick_numa(rq, curr);
6908
6909 update_rq_runnable_avg(rq, 1);
6910}
6911
6912/*
6913 * called on fork with the child task as argument from the parent's context
6914 * - child not yet on the tasklist
6915 * - preemption disabled
6916 */
6917static void task_fork_fair(struct task_struct *p)
6918{
6919 struct cfs_rq *cfs_rq;
6920 struct sched_entity *se = &p->se, *curr;
6921 int this_cpu = smp_processor_id();
6922 struct rq *rq = this_rq();
6923 unsigned long flags;
6924
6925 raw_spin_lock_irqsave(&rq->lock, flags);
6926
6927 update_rq_clock(rq);
6928
6929 cfs_rq = task_cfs_rq(current);
6930 curr = cfs_rq->curr;
6931
6932 /*
6933 * Not only the cpu but also the task_group of the parent might have
6934 * been changed after parent->se.parent,cfs_rq were copied to
6935 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6936 * of child point to valid ones.
6937 */
6938 rcu_read_lock();
6939 __set_task_cpu(p, this_cpu);
6940 rcu_read_unlock();
6941
6942 update_curr(cfs_rq);
6943
6944 if (curr)
6945 se->vruntime = curr->vruntime;
6946 place_entity(cfs_rq, se, 1);
6947
6948 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
6949 /*
6950 * Upon rescheduling, sched_class::put_prev_task() will place
6951 * 'current' within the tree based on its new key value.
6952 */
6953 swap(curr->vruntime, se->vruntime);
6954 resched_task(rq->curr);
6955 }
6956
6957 se->vruntime -= cfs_rq->min_vruntime;
6958
6959 raw_spin_unlock_irqrestore(&rq->lock, flags);
6960}
6961
6962/*
6963 * Priority of the task has changed. Check to see if we preempt
6964 * the current task.
6965 */
6966static void
6967prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
6968{
6969 if (!p->se.on_rq)
6970 return;
6971
6972 /*
6973 * Reschedule if we are currently running on this runqueue and
6974 * our priority decreased, or if we are not currently running on
6975 * this runqueue and our priority is higher than the current's
6976 */
6977 if (rq->curr == p) {
6978 if (p->prio > oldprio)
6979 resched_task(rq->curr);
6980 } else
6981 check_preempt_curr(rq, p, 0);
6982}
6983
6984static void switched_from_fair(struct rq *rq, struct task_struct *p)
6985{
6986 struct sched_entity *se = &p->se;
6987 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6988
6989 /*
6990 * Ensure the task's vruntime is normalized, so that when its
6991 * switched back to the fair class the enqueue_entity(.flags=0) will
6992 * do the right thing.
6993 *
6994 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6995 * have normalized the vruntime, if it was !on_rq, then only when
6996 * the task is sleeping will it still have non-normalized vruntime.
6997 */
6998 if (!se->on_rq && p->state != TASK_RUNNING) {
6999 /*
7000 * Fix up our vruntime so that the current sleep doesn't
7001 * cause 'unlimited' sleep bonus.
7002 */
7003 place_entity(cfs_rq, se, 0);
7004 se->vruntime -= cfs_rq->min_vruntime;
7005 }
7006
7007#ifdef CONFIG_SMP
7008 /*
7009 * Remove our load from contribution when we leave sched_fair
7010 * and ensure we don't carry in an old decay_count if we
7011 * switch back.
7012 */
7013 if (se->avg.decay_count) {
7014 __synchronize_entity_decay(se);
7015 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7016 }
7017#endif
7018}
7019
7020/*
7021 * We switched to the sched_fair class.
7022 */
7023static void switched_to_fair(struct rq *rq, struct task_struct *p)
7024{
7025 if (!p->se.on_rq)
7026 return;
7027
7028 /*
7029 * We were most likely switched from sched_rt, so
7030 * kick off the schedule if running, otherwise just see
7031 * if we can still preempt the current task.
7032 */
7033 if (rq->curr == p)
7034 resched_task(rq->curr);
7035 else
7036 check_preempt_curr(rq, p, 0);
7037}
7038
7039/* Account for a task changing its policy or group.
7040 *
7041 * This routine is mostly called to set cfs_rq->curr field when a task
7042 * migrates between groups/classes.
7043 */
7044static void set_curr_task_fair(struct rq *rq)
7045{
7046 struct sched_entity *se = &rq->curr->se;
7047
7048 for_each_sched_entity(se) {
7049 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7050
7051 set_next_entity(cfs_rq, se);
7052 /* ensure bandwidth has been allocated on our new cfs_rq */
7053 account_cfs_rq_runtime(cfs_rq, 0);
7054 }
7055}
7056
7057void init_cfs_rq(struct cfs_rq *cfs_rq)
7058{
7059 cfs_rq->tasks_timeline = RB_ROOT;
7060 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7061#ifndef CONFIG_64BIT
7062 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7063#endif
7064#ifdef CONFIG_SMP
7065 atomic64_set(&cfs_rq->decay_counter, 1);
7066 atomic_long_set(&cfs_rq->removed_load, 0);
7067#endif
7068}
7069
7070#ifdef CONFIG_FAIR_GROUP_SCHED
7071static void task_move_group_fair(struct task_struct *p, int on_rq)
7072{
7073 struct cfs_rq *cfs_rq;
7074 /*
7075 * If the task was not on the rq at the time of this cgroup movement
7076 * it must have been asleep, sleeping tasks keep their ->vruntime
7077 * absolute on their old rq until wakeup (needed for the fair sleeper
7078 * bonus in place_entity()).
7079 *
7080 * If it was on the rq, we've just 'preempted' it, which does convert
7081 * ->vruntime to a relative base.
7082 *
7083 * Make sure both cases convert their relative position when migrating
7084 * to another cgroup's rq. This does somewhat interfere with the
7085 * fair sleeper stuff for the first placement, but who cares.
7086 */
7087 /*
7088 * When !on_rq, vruntime of the task has usually NOT been normalized.
7089 * But there are some cases where it has already been normalized:
7090 *
7091 * - Moving a forked child which is waiting for being woken up by
7092 * wake_up_new_task().
7093 * - Moving a task which has been woken up by try_to_wake_up() and
7094 * waiting for actually being woken up by sched_ttwu_pending().
7095 *
7096 * To prevent boost or penalty in the new cfs_rq caused by delta
7097 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7098 */
7099 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7100 on_rq = 1;
7101
7102 if (!on_rq)
7103 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7104 set_task_rq(p, task_cpu(p));
7105 if (!on_rq) {
7106 cfs_rq = cfs_rq_of(&p->se);
7107 p->se.vruntime += cfs_rq->min_vruntime;
7108#ifdef CONFIG_SMP
7109 /*
7110 * migrate_task_rq_fair() will have removed our previous
7111 * contribution, but we must synchronize for ongoing future
7112 * decay.
7113 */
7114 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7115 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7116#endif
7117 }
7118}
7119
7120void free_fair_sched_group(struct task_group *tg)
7121{
7122 int i;
7123
7124 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7125
7126 for_each_possible_cpu(i) {
7127 if (tg->cfs_rq)
7128 kfree(tg->cfs_rq[i]);
7129 if (tg->se)
7130 kfree(tg->se[i]);
7131 }
7132
7133 kfree(tg->cfs_rq);
7134 kfree(tg->se);
7135}
7136
7137int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7138{
7139 struct cfs_rq *cfs_rq;
7140 struct sched_entity *se;
7141 int i;
7142
7143 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7144 if (!tg->cfs_rq)
7145 goto err;
7146 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7147 if (!tg->se)
7148 goto err;
7149
7150 tg->shares = NICE_0_LOAD;
7151
7152 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7153
7154 for_each_possible_cpu(i) {
7155 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7156 GFP_KERNEL, cpu_to_node(i));
7157 if (!cfs_rq)
7158 goto err;
7159
7160 se = kzalloc_node(sizeof(struct sched_entity),
7161 GFP_KERNEL, cpu_to_node(i));
7162 if (!se)
7163 goto err_free_rq;
7164
7165 init_cfs_rq(cfs_rq);
7166 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7167 }
7168
7169 return 1;
7170
7171err_free_rq:
7172 kfree(cfs_rq);
7173err:
7174 return 0;
7175}
7176
7177void unregister_fair_sched_group(struct task_group *tg, int cpu)
7178{
7179 struct rq *rq = cpu_rq(cpu);
7180 unsigned long flags;
7181
7182 /*
7183 * Only empty task groups can be destroyed; so we can speculatively
7184 * check on_list without danger of it being re-added.
7185 */
7186 if (!tg->cfs_rq[cpu]->on_list)
7187 return;
7188
7189 raw_spin_lock_irqsave(&rq->lock, flags);
7190 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7191 raw_spin_unlock_irqrestore(&rq->lock, flags);
7192}
7193
7194void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7195 struct sched_entity *se, int cpu,
7196 struct sched_entity *parent)
7197{
7198 struct rq *rq = cpu_rq(cpu);
7199
7200 cfs_rq->tg = tg;
7201 cfs_rq->rq = rq;
7202 init_cfs_rq_runtime(cfs_rq);
7203
7204 tg->cfs_rq[cpu] = cfs_rq;
7205 tg->se[cpu] = se;
7206
7207 /* se could be NULL for root_task_group */
7208 if (!se)
7209 return;
7210
7211 if (!parent)
7212 se->cfs_rq = &rq->cfs;
7213 else
7214 se->cfs_rq = parent->my_q;
7215
7216 se->my_q = cfs_rq;
7217 /* guarantee group entities always have weight */
7218 update_load_set(&se->load, NICE_0_LOAD);
7219 se->parent = parent;
7220}
7221
7222static DEFINE_MUTEX(shares_mutex);
7223
7224int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7225{
7226 int i;
7227 unsigned long flags;
7228
7229 /*
7230 * We can't change the weight of the root cgroup.
7231 */
7232 if (!tg->se[0])
7233 return -EINVAL;
7234
7235 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7236
7237 mutex_lock(&shares_mutex);
7238 if (tg->shares == shares)
7239 goto done;
7240
7241 tg->shares = shares;
7242 for_each_possible_cpu(i) {
7243 struct rq *rq = cpu_rq(i);
7244 struct sched_entity *se;
7245
7246 se = tg->se[i];
7247 /* Propagate contribution to hierarchy */
7248 raw_spin_lock_irqsave(&rq->lock, flags);
7249
7250 /* Possible calls to update_curr() need rq clock */
7251 update_rq_clock(rq);
7252 for_each_sched_entity(se)
7253 update_cfs_shares(group_cfs_rq(se));
7254 raw_spin_unlock_irqrestore(&rq->lock, flags);
7255 }
7256
7257done:
7258 mutex_unlock(&shares_mutex);
7259 return 0;
7260}
7261#else /* CONFIG_FAIR_GROUP_SCHED */
7262
7263void free_fair_sched_group(struct task_group *tg) { }
7264
7265int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7266{
7267 return 1;
7268}
7269
7270void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7271
7272#endif /* CONFIG_FAIR_GROUP_SCHED */
7273
7274
7275static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7276{
7277 struct sched_entity *se = &task->se;
7278 unsigned int rr_interval = 0;
7279
7280 /*
7281 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7282 * idle runqueue:
7283 */
7284 if (rq->cfs.load.weight)
7285 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7286
7287 return rr_interval;
7288}
7289
7290/*
7291 * All the scheduling class methods:
7292 */
7293const struct sched_class fair_sched_class = {
7294 .next = &idle_sched_class,
7295 .enqueue_task = enqueue_task_fair,
7296 .dequeue_task = dequeue_task_fair,
7297 .yield_task = yield_task_fair,
7298 .yield_to_task = yield_to_task_fair,
7299
7300 .check_preempt_curr = check_preempt_wakeup,
7301
7302 .pick_next_task = pick_next_task_fair,
7303 .put_prev_task = put_prev_task_fair,
7304
7305#ifdef CONFIG_SMP
7306 .select_task_rq = select_task_rq_fair,
7307 .migrate_task_rq = migrate_task_rq_fair,
7308
7309 .rq_online = rq_online_fair,
7310 .rq_offline = rq_offline_fair,
7311
7312 .task_waking = task_waking_fair,
7313#endif
7314
7315 .set_curr_task = set_curr_task_fair,
7316 .task_tick = task_tick_fair,
7317 .task_fork = task_fork_fair,
7318
7319 .prio_changed = prio_changed_fair,
7320 .switched_from = switched_from_fair,
7321 .switched_to = switched_to_fair,
7322
7323 .get_rr_interval = get_rr_interval_fair,
7324
7325#ifdef CONFIG_FAIR_GROUP_SCHED
7326 .task_move_group = task_move_group_fair,
7327#endif
7328};
7329
7330#ifdef CONFIG_SCHED_DEBUG
7331void print_cfs_stats(struct seq_file *m, int cpu)
7332{
7333 struct cfs_rq *cfs_rq;
7334
7335 rcu_read_lock();
7336 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7337 print_cfs_rq(m, cpu, cfs_rq);
7338 rcu_read_unlock();
7339}
7340#endif
7341
7342__init void init_sched_fair_class(void)
7343{
7344#ifdef CONFIG_SMP
7345 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7346
7347#ifdef CONFIG_NO_HZ_COMMON
7348 nohz.next_balance = jiffies;
7349 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7350 cpu_notifier(sched_ilb_notifier, 0);
7351#endif
7352#endif /* SMP */
7353
7354}