]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - mm/page_alloc.c
mm, meminit: suppress unused memory variable warning
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
... / ...
CommitLineData
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/rwsem.h>
22#include <linux/pagemap.h>
23#include <linux/jiffies.h>
24#include <linux/bootmem.h>
25#include <linux/memblock.h>
26#include <linux/compiler.h>
27#include <linux/kernel.h>
28#include <linux/kmemcheck.h>
29#include <linux/kasan.h>
30#include <linux/module.h>
31#include <linux/suspend.h>
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/slab.h>
35#include <linux/ratelimit.h>
36#include <linux/oom.h>
37#include <linux/notifier.h>
38#include <linux/topology.h>
39#include <linux/sysctl.h>
40#include <linux/cpu.h>
41#include <linux/cpuset.h>
42#include <linux/memory_hotplug.h>
43#include <linux/nodemask.h>
44#include <linux/vmalloc.h>
45#include <linux/vmstat.h>
46#include <linux/mempolicy.h>
47#include <linux/stop_machine.h>
48#include <linux/sort.h>
49#include <linux/pfn.h>
50#include <linux/backing-dev.h>
51#include <linux/fault-inject.h>
52#include <linux/page-isolation.h>
53#include <linux/page_ext.h>
54#include <linux/debugobjects.h>
55#include <linux/kmemleak.h>
56#include <linux/compaction.h>
57#include <trace/events/kmem.h>
58#include <linux/prefetch.h>
59#include <linux/mm_inline.h>
60#include <linux/migrate.h>
61#include <linux/page_ext.h>
62#include <linux/hugetlb.h>
63#include <linux/sched/rt.h>
64#include <linux/page_owner.h>
65#include <linux/kthread.h>
66
67#include <asm/sections.h>
68#include <asm/tlbflush.h>
69#include <asm/div64.h>
70#include "internal.h"
71
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
74#define MIN_PERCPU_PAGELIST_FRACTION (8)
75
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90int _node_numa_mem_[MAX_NUMNODES];
91#endif
92
93/*
94 * Array of node states.
95 */
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
115unsigned long totalram_pages __read_mostly;
116unsigned long totalreserve_pages __read_mostly;
117unsigned long totalcma_pages __read_mostly;
118/*
119 * When calculating the number of globally allowed dirty pages, there
120 * is a certain number of per-zone reserves that should not be
121 * considered dirtyable memory. This is the sum of those reserves
122 * over all existing zones that contribute dirtyable memory.
123 */
124unsigned long dirty_balance_reserve __read_mostly;
125
126int percpu_pagelist_fraction;
127gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
128
129#ifdef CONFIG_PM_SLEEP
130/*
131 * The following functions are used by the suspend/hibernate code to temporarily
132 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
133 * while devices are suspended. To avoid races with the suspend/hibernate code,
134 * they should always be called with pm_mutex held (gfp_allowed_mask also should
135 * only be modified with pm_mutex held, unless the suspend/hibernate code is
136 * guaranteed not to run in parallel with that modification).
137 */
138
139static gfp_t saved_gfp_mask;
140
141void pm_restore_gfp_mask(void)
142{
143 WARN_ON(!mutex_is_locked(&pm_mutex));
144 if (saved_gfp_mask) {
145 gfp_allowed_mask = saved_gfp_mask;
146 saved_gfp_mask = 0;
147 }
148}
149
150void pm_restrict_gfp_mask(void)
151{
152 WARN_ON(!mutex_is_locked(&pm_mutex));
153 WARN_ON(saved_gfp_mask);
154 saved_gfp_mask = gfp_allowed_mask;
155 gfp_allowed_mask &= ~GFP_IOFS;
156}
157
158bool pm_suspended_storage(void)
159{
160 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
161 return false;
162 return true;
163}
164#endif /* CONFIG_PM_SLEEP */
165
166#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
167int pageblock_order __read_mostly;
168#endif
169
170static void __free_pages_ok(struct page *page, unsigned int order);
171
172/*
173 * results with 256, 32 in the lowmem_reserve sysctl:
174 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
175 * 1G machine -> (16M dma, 784M normal, 224M high)
176 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
177 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
178 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
179 *
180 * TBD: should special case ZONE_DMA32 machines here - in those we normally
181 * don't need any ZONE_NORMAL reservation
182 */
183int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
184#ifdef CONFIG_ZONE_DMA
185 256,
186#endif
187#ifdef CONFIG_ZONE_DMA32
188 256,
189#endif
190#ifdef CONFIG_HIGHMEM
191 32,
192#endif
193 32,
194};
195
196EXPORT_SYMBOL(totalram_pages);
197
198static char * const zone_names[MAX_NR_ZONES] = {
199#ifdef CONFIG_ZONE_DMA
200 "DMA",
201#endif
202#ifdef CONFIG_ZONE_DMA32
203 "DMA32",
204#endif
205 "Normal",
206#ifdef CONFIG_HIGHMEM
207 "HighMem",
208#endif
209 "Movable",
210};
211
212int min_free_kbytes = 1024;
213int user_min_free_kbytes = -1;
214
215static unsigned long __meminitdata nr_kernel_pages;
216static unsigned long __meminitdata nr_all_pages;
217static unsigned long __meminitdata dma_reserve;
218
219#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
220static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
221static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
222static unsigned long __initdata required_kernelcore;
223static unsigned long __initdata required_movablecore;
224static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
225
226/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
227int movable_zone;
228EXPORT_SYMBOL(movable_zone);
229#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
230
231#if MAX_NUMNODES > 1
232int nr_node_ids __read_mostly = MAX_NUMNODES;
233int nr_online_nodes __read_mostly = 1;
234EXPORT_SYMBOL(nr_node_ids);
235EXPORT_SYMBOL(nr_online_nodes);
236#endif
237
238int page_group_by_mobility_disabled __read_mostly;
239
240#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
241static inline void reset_deferred_meminit(pg_data_t *pgdat)
242{
243 pgdat->first_deferred_pfn = ULONG_MAX;
244}
245
246/* Returns true if the struct page for the pfn is uninitialised */
247static inline bool __meminit early_page_uninitialised(unsigned long pfn)
248{
249 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
250 return true;
251
252 return false;
253}
254
255static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
256{
257 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
258 return true;
259
260 return false;
261}
262
263/*
264 * Returns false when the remaining initialisation should be deferred until
265 * later in the boot cycle when it can be parallelised.
266 */
267static inline bool update_defer_init(pg_data_t *pgdat,
268 unsigned long pfn, unsigned long zone_end,
269 unsigned long *nr_initialised)
270{
271 /* Always populate low zones for address-contrained allocations */
272 if (zone_end < pgdat_end_pfn(pgdat))
273 return true;
274
275 /* Initialise at least 2G of the highest zone */
276 (*nr_initialised)++;
277 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
278 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
279 pgdat->first_deferred_pfn = pfn;
280 return false;
281 }
282
283 return true;
284}
285#else
286static inline void reset_deferred_meminit(pg_data_t *pgdat)
287{
288}
289
290static inline bool early_page_uninitialised(unsigned long pfn)
291{
292 return false;
293}
294
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 return false;
298}
299
300static inline bool update_defer_init(pg_data_t *pgdat,
301 unsigned long pfn, unsigned long zone_end,
302 unsigned long *nr_initialised)
303{
304 return true;
305}
306#endif
307
308
309void set_pageblock_migratetype(struct page *page, int migratetype)
310{
311 if (unlikely(page_group_by_mobility_disabled &&
312 migratetype < MIGRATE_PCPTYPES))
313 migratetype = MIGRATE_UNMOVABLE;
314
315 set_pageblock_flags_group(page, (unsigned long)migratetype,
316 PB_migrate, PB_migrate_end);
317}
318
319#ifdef CONFIG_DEBUG_VM
320static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
321{
322 int ret = 0;
323 unsigned seq;
324 unsigned long pfn = page_to_pfn(page);
325 unsigned long sp, start_pfn;
326
327 do {
328 seq = zone_span_seqbegin(zone);
329 start_pfn = zone->zone_start_pfn;
330 sp = zone->spanned_pages;
331 if (!zone_spans_pfn(zone, pfn))
332 ret = 1;
333 } while (zone_span_seqretry(zone, seq));
334
335 if (ret)
336 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
337 pfn, zone_to_nid(zone), zone->name,
338 start_pfn, start_pfn + sp);
339
340 return ret;
341}
342
343static int page_is_consistent(struct zone *zone, struct page *page)
344{
345 if (!pfn_valid_within(page_to_pfn(page)))
346 return 0;
347 if (zone != page_zone(page))
348 return 0;
349
350 return 1;
351}
352/*
353 * Temporary debugging check for pages not lying within a given zone.
354 */
355static int bad_range(struct zone *zone, struct page *page)
356{
357 if (page_outside_zone_boundaries(zone, page))
358 return 1;
359 if (!page_is_consistent(zone, page))
360 return 1;
361
362 return 0;
363}
364#else
365static inline int bad_range(struct zone *zone, struct page *page)
366{
367 return 0;
368}
369#endif
370
371static void bad_page(struct page *page, const char *reason,
372 unsigned long bad_flags)
373{
374 static unsigned long resume;
375 static unsigned long nr_shown;
376 static unsigned long nr_unshown;
377
378 /* Don't complain about poisoned pages */
379 if (PageHWPoison(page)) {
380 page_mapcount_reset(page); /* remove PageBuddy */
381 return;
382 }
383
384 /*
385 * Allow a burst of 60 reports, then keep quiet for that minute;
386 * or allow a steady drip of one report per second.
387 */
388 if (nr_shown == 60) {
389 if (time_before(jiffies, resume)) {
390 nr_unshown++;
391 goto out;
392 }
393 if (nr_unshown) {
394 printk(KERN_ALERT
395 "BUG: Bad page state: %lu messages suppressed\n",
396 nr_unshown);
397 nr_unshown = 0;
398 }
399 nr_shown = 0;
400 }
401 if (nr_shown++ == 0)
402 resume = jiffies + 60 * HZ;
403
404 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
405 current->comm, page_to_pfn(page));
406 dump_page_badflags(page, reason, bad_flags);
407
408 print_modules();
409 dump_stack();
410out:
411 /* Leave bad fields for debug, except PageBuddy could make trouble */
412 page_mapcount_reset(page); /* remove PageBuddy */
413 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
414}
415
416/*
417 * Higher-order pages are called "compound pages". They are structured thusly:
418 *
419 * The first PAGE_SIZE page is called the "head page".
420 *
421 * The remaining PAGE_SIZE pages are called "tail pages".
422 *
423 * All pages have PG_compound set. All tail pages have their ->first_page
424 * pointing at the head page.
425 *
426 * The first tail page's ->lru.next holds the address of the compound page's
427 * put_page() function. Its ->lru.prev holds the order of allocation.
428 * This usage means that zero-order pages may not be compound.
429 */
430
431static void free_compound_page(struct page *page)
432{
433 __free_pages_ok(page, compound_order(page));
434}
435
436void prep_compound_page(struct page *page, unsigned long order)
437{
438 int i;
439 int nr_pages = 1 << order;
440
441 set_compound_page_dtor(page, free_compound_page);
442 set_compound_order(page, order);
443 __SetPageHead(page);
444 for (i = 1; i < nr_pages; i++) {
445 struct page *p = page + i;
446 set_page_count(p, 0);
447 p->first_page = page;
448 /* Make sure p->first_page is always valid for PageTail() */
449 smp_wmb();
450 __SetPageTail(p);
451 }
452}
453
454#ifdef CONFIG_DEBUG_PAGEALLOC
455unsigned int _debug_guardpage_minorder;
456bool _debug_pagealloc_enabled __read_mostly;
457bool _debug_guardpage_enabled __read_mostly;
458
459static int __init early_debug_pagealloc(char *buf)
460{
461 if (!buf)
462 return -EINVAL;
463
464 if (strcmp(buf, "on") == 0)
465 _debug_pagealloc_enabled = true;
466
467 return 0;
468}
469early_param("debug_pagealloc", early_debug_pagealloc);
470
471static bool need_debug_guardpage(void)
472{
473 /* If we don't use debug_pagealloc, we don't need guard page */
474 if (!debug_pagealloc_enabled())
475 return false;
476
477 return true;
478}
479
480static void init_debug_guardpage(void)
481{
482 if (!debug_pagealloc_enabled())
483 return;
484
485 _debug_guardpage_enabled = true;
486}
487
488struct page_ext_operations debug_guardpage_ops = {
489 .need = need_debug_guardpage,
490 .init = init_debug_guardpage,
491};
492
493static int __init debug_guardpage_minorder_setup(char *buf)
494{
495 unsigned long res;
496
497 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
498 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
499 return 0;
500 }
501 _debug_guardpage_minorder = res;
502 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
503 return 0;
504}
505__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
506
507static inline void set_page_guard(struct zone *zone, struct page *page,
508 unsigned int order, int migratetype)
509{
510 struct page_ext *page_ext;
511
512 if (!debug_guardpage_enabled())
513 return;
514
515 page_ext = lookup_page_ext(page);
516 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
517
518 INIT_LIST_HEAD(&page->lru);
519 set_page_private(page, order);
520 /* Guard pages are not available for any usage */
521 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
522}
523
524static inline void clear_page_guard(struct zone *zone, struct page *page,
525 unsigned int order, int migratetype)
526{
527 struct page_ext *page_ext;
528
529 if (!debug_guardpage_enabled())
530 return;
531
532 page_ext = lookup_page_ext(page);
533 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
534
535 set_page_private(page, 0);
536 if (!is_migrate_isolate(migratetype))
537 __mod_zone_freepage_state(zone, (1 << order), migratetype);
538}
539#else
540struct page_ext_operations debug_guardpage_ops = { NULL, };
541static inline void set_page_guard(struct zone *zone, struct page *page,
542 unsigned int order, int migratetype) {}
543static inline void clear_page_guard(struct zone *zone, struct page *page,
544 unsigned int order, int migratetype) {}
545#endif
546
547static inline void set_page_order(struct page *page, unsigned int order)
548{
549 set_page_private(page, order);
550 __SetPageBuddy(page);
551}
552
553static inline void rmv_page_order(struct page *page)
554{
555 __ClearPageBuddy(page);
556 set_page_private(page, 0);
557}
558
559/*
560 * This function checks whether a page is free && is the buddy
561 * we can do coalesce a page and its buddy if
562 * (a) the buddy is not in a hole &&
563 * (b) the buddy is in the buddy system &&
564 * (c) a page and its buddy have the same order &&
565 * (d) a page and its buddy are in the same zone.
566 *
567 * For recording whether a page is in the buddy system, we set ->_mapcount
568 * PAGE_BUDDY_MAPCOUNT_VALUE.
569 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
570 * serialized by zone->lock.
571 *
572 * For recording page's order, we use page_private(page).
573 */
574static inline int page_is_buddy(struct page *page, struct page *buddy,
575 unsigned int order)
576{
577 if (!pfn_valid_within(page_to_pfn(buddy)))
578 return 0;
579
580 if (page_is_guard(buddy) && page_order(buddy) == order) {
581 if (page_zone_id(page) != page_zone_id(buddy))
582 return 0;
583
584 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
585
586 return 1;
587 }
588
589 if (PageBuddy(buddy) && page_order(buddy) == order) {
590 /*
591 * zone check is done late to avoid uselessly
592 * calculating zone/node ids for pages that could
593 * never merge.
594 */
595 if (page_zone_id(page) != page_zone_id(buddy))
596 return 0;
597
598 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
599
600 return 1;
601 }
602 return 0;
603}
604
605/*
606 * Freeing function for a buddy system allocator.
607 *
608 * The concept of a buddy system is to maintain direct-mapped table
609 * (containing bit values) for memory blocks of various "orders".
610 * The bottom level table contains the map for the smallest allocatable
611 * units of memory (here, pages), and each level above it describes
612 * pairs of units from the levels below, hence, "buddies".
613 * At a high level, all that happens here is marking the table entry
614 * at the bottom level available, and propagating the changes upward
615 * as necessary, plus some accounting needed to play nicely with other
616 * parts of the VM system.
617 * At each level, we keep a list of pages, which are heads of continuous
618 * free pages of length of (1 << order) and marked with _mapcount
619 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
620 * field.
621 * So when we are allocating or freeing one, we can derive the state of the
622 * other. That is, if we allocate a small block, and both were
623 * free, the remainder of the region must be split into blocks.
624 * If a block is freed, and its buddy is also free, then this
625 * triggers coalescing into a block of larger size.
626 *
627 * -- nyc
628 */
629
630static inline void __free_one_page(struct page *page,
631 unsigned long pfn,
632 struct zone *zone, unsigned int order,
633 int migratetype)
634{
635 unsigned long page_idx;
636 unsigned long combined_idx;
637 unsigned long uninitialized_var(buddy_idx);
638 struct page *buddy;
639 int max_order = MAX_ORDER;
640
641 VM_BUG_ON(!zone_is_initialized(zone));
642 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
643
644 VM_BUG_ON(migratetype == -1);
645 if (is_migrate_isolate(migratetype)) {
646 /*
647 * We restrict max order of merging to prevent merge
648 * between freepages on isolate pageblock and normal
649 * pageblock. Without this, pageblock isolation
650 * could cause incorrect freepage accounting.
651 */
652 max_order = min(MAX_ORDER, pageblock_order + 1);
653 } else {
654 __mod_zone_freepage_state(zone, 1 << order, migratetype);
655 }
656
657 page_idx = pfn & ((1 << max_order) - 1);
658
659 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
660 VM_BUG_ON_PAGE(bad_range(zone, page), page);
661
662 while (order < max_order - 1) {
663 buddy_idx = __find_buddy_index(page_idx, order);
664 buddy = page + (buddy_idx - page_idx);
665 if (!page_is_buddy(page, buddy, order))
666 break;
667 /*
668 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
669 * merge with it and move up one order.
670 */
671 if (page_is_guard(buddy)) {
672 clear_page_guard(zone, buddy, order, migratetype);
673 } else {
674 list_del(&buddy->lru);
675 zone->free_area[order].nr_free--;
676 rmv_page_order(buddy);
677 }
678 combined_idx = buddy_idx & page_idx;
679 page = page + (combined_idx - page_idx);
680 page_idx = combined_idx;
681 order++;
682 }
683 set_page_order(page, order);
684
685 /*
686 * If this is not the largest possible page, check if the buddy
687 * of the next-highest order is free. If it is, it's possible
688 * that pages are being freed that will coalesce soon. In case,
689 * that is happening, add the free page to the tail of the list
690 * so it's less likely to be used soon and more likely to be merged
691 * as a higher order page
692 */
693 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
694 struct page *higher_page, *higher_buddy;
695 combined_idx = buddy_idx & page_idx;
696 higher_page = page + (combined_idx - page_idx);
697 buddy_idx = __find_buddy_index(combined_idx, order + 1);
698 higher_buddy = higher_page + (buddy_idx - combined_idx);
699 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
700 list_add_tail(&page->lru,
701 &zone->free_area[order].free_list[migratetype]);
702 goto out;
703 }
704 }
705
706 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
707out:
708 zone->free_area[order].nr_free++;
709}
710
711static inline int free_pages_check(struct page *page)
712{
713 const char *bad_reason = NULL;
714 unsigned long bad_flags = 0;
715
716 if (unlikely(page_mapcount(page)))
717 bad_reason = "nonzero mapcount";
718 if (unlikely(page->mapping != NULL))
719 bad_reason = "non-NULL mapping";
720 if (unlikely(atomic_read(&page->_count) != 0))
721 bad_reason = "nonzero _count";
722 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
723 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
724 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
725 }
726#ifdef CONFIG_MEMCG
727 if (unlikely(page->mem_cgroup))
728 bad_reason = "page still charged to cgroup";
729#endif
730 if (unlikely(bad_reason)) {
731 bad_page(page, bad_reason, bad_flags);
732 return 1;
733 }
734 page_cpupid_reset_last(page);
735 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
736 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
737 return 0;
738}
739
740/*
741 * Frees a number of pages from the PCP lists
742 * Assumes all pages on list are in same zone, and of same order.
743 * count is the number of pages to free.
744 *
745 * If the zone was previously in an "all pages pinned" state then look to
746 * see if this freeing clears that state.
747 *
748 * And clear the zone's pages_scanned counter, to hold off the "all pages are
749 * pinned" detection logic.
750 */
751static void free_pcppages_bulk(struct zone *zone, int count,
752 struct per_cpu_pages *pcp)
753{
754 int migratetype = 0;
755 int batch_free = 0;
756 int to_free = count;
757 unsigned long nr_scanned;
758
759 spin_lock(&zone->lock);
760 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
761 if (nr_scanned)
762 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
763
764 while (to_free) {
765 struct page *page;
766 struct list_head *list;
767
768 /*
769 * Remove pages from lists in a round-robin fashion. A
770 * batch_free count is maintained that is incremented when an
771 * empty list is encountered. This is so more pages are freed
772 * off fuller lists instead of spinning excessively around empty
773 * lists
774 */
775 do {
776 batch_free++;
777 if (++migratetype == MIGRATE_PCPTYPES)
778 migratetype = 0;
779 list = &pcp->lists[migratetype];
780 } while (list_empty(list));
781
782 /* This is the only non-empty list. Free them all. */
783 if (batch_free == MIGRATE_PCPTYPES)
784 batch_free = to_free;
785
786 do {
787 int mt; /* migratetype of the to-be-freed page */
788
789 page = list_entry(list->prev, struct page, lru);
790 /* must delete as __free_one_page list manipulates */
791 list_del(&page->lru);
792 mt = get_freepage_migratetype(page);
793 if (unlikely(has_isolate_pageblock(zone)))
794 mt = get_pageblock_migratetype(page);
795
796 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
797 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
798 trace_mm_page_pcpu_drain(page, 0, mt);
799 } while (--to_free && --batch_free && !list_empty(list));
800 }
801 spin_unlock(&zone->lock);
802}
803
804static void free_one_page(struct zone *zone,
805 struct page *page, unsigned long pfn,
806 unsigned int order,
807 int migratetype)
808{
809 unsigned long nr_scanned;
810 spin_lock(&zone->lock);
811 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
812 if (nr_scanned)
813 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
814
815 if (unlikely(has_isolate_pageblock(zone) ||
816 is_migrate_isolate(migratetype))) {
817 migratetype = get_pfnblock_migratetype(page, pfn);
818 }
819 __free_one_page(page, pfn, zone, order, migratetype);
820 spin_unlock(&zone->lock);
821}
822
823static int free_tail_pages_check(struct page *head_page, struct page *page)
824{
825 if (!IS_ENABLED(CONFIG_DEBUG_VM))
826 return 0;
827 if (unlikely(!PageTail(page))) {
828 bad_page(page, "PageTail not set", 0);
829 return 1;
830 }
831 if (unlikely(page->first_page != head_page)) {
832 bad_page(page, "first_page not consistent", 0);
833 return 1;
834 }
835 return 0;
836}
837
838static void __meminit __init_single_page(struct page *page, unsigned long pfn,
839 unsigned long zone, int nid)
840{
841 set_page_links(page, zone, nid, pfn);
842 init_page_count(page);
843 page_mapcount_reset(page);
844 page_cpupid_reset_last(page);
845
846 INIT_LIST_HEAD(&page->lru);
847#ifdef WANT_PAGE_VIRTUAL
848 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
849 if (!is_highmem_idx(zone))
850 set_page_address(page, __va(pfn << PAGE_SHIFT));
851#endif
852}
853
854static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
855 int nid)
856{
857 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
858}
859
860#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
861static void init_reserved_page(unsigned long pfn)
862{
863 pg_data_t *pgdat;
864 int nid, zid;
865
866 if (!early_page_uninitialised(pfn))
867 return;
868
869 nid = early_pfn_to_nid(pfn);
870 pgdat = NODE_DATA(nid);
871
872 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
873 struct zone *zone = &pgdat->node_zones[zid];
874
875 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
876 break;
877 }
878 __init_single_pfn(pfn, zid, nid);
879}
880#else
881static inline void init_reserved_page(unsigned long pfn)
882{
883}
884#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
885
886/*
887 * Initialised pages do not have PageReserved set. This function is
888 * called for each range allocated by the bootmem allocator and
889 * marks the pages PageReserved. The remaining valid pages are later
890 * sent to the buddy page allocator.
891 */
892void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
893{
894 unsigned long start_pfn = PFN_DOWN(start);
895 unsigned long end_pfn = PFN_UP(end);
896
897 for (; start_pfn < end_pfn; start_pfn++) {
898 if (pfn_valid(start_pfn)) {
899 struct page *page = pfn_to_page(start_pfn);
900
901 init_reserved_page(start_pfn);
902 SetPageReserved(page);
903 }
904 }
905}
906
907static bool free_pages_prepare(struct page *page, unsigned int order)
908{
909 bool compound = PageCompound(page);
910 int i, bad = 0;
911
912 VM_BUG_ON_PAGE(PageTail(page), page);
913 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
914
915 trace_mm_page_free(page, order);
916 kmemcheck_free_shadow(page, order);
917 kasan_free_pages(page, order);
918
919 if (PageAnon(page))
920 page->mapping = NULL;
921 bad += free_pages_check(page);
922 for (i = 1; i < (1 << order); i++) {
923 if (compound)
924 bad += free_tail_pages_check(page, page + i);
925 bad += free_pages_check(page + i);
926 }
927 if (bad)
928 return false;
929
930 reset_page_owner(page, order);
931
932 if (!PageHighMem(page)) {
933 debug_check_no_locks_freed(page_address(page),
934 PAGE_SIZE << order);
935 debug_check_no_obj_freed(page_address(page),
936 PAGE_SIZE << order);
937 }
938 arch_free_page(page, order);
939 kernel_map_pages(page, 1 << order, 0);
940
941 return true;
942}
943
944static void __free_pages_ok(struct page *page, unsigned int order)
945{
946 unsigned long flags;
947 int migratetype;
948 unsigned long pfn = page_to_pfn(page);
949
950 if (!free_pages_prepare(page, order))
951 return;
952
953 migratetype = get_pfnblock_migratetype(page, pfn);
954 local_irq_save(flags);
955 __count_vm_events(PGFREE, 1 << order);
956 set_freepage_migratetype(page, migratetype);
957 free_one_page(page_zone(page), page, pfn, order, migratetype);
958 local_irq_restore(flags);
959}
960
961static void __init __free_pages_boot_core(struct page *page,
962 unsigned long pfn, unsigned int order)
963{
964 unsigned int nr_pages = 1 << order;
965 struct page *p = page;
966 unsigned int loop;
967
968 prefetchw(p);
969 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
970 prefetchw(p + 1);
971 __ClearPageReserved(p);
972 set_page_count(p, 0);
973 }
974 __ClearPageReserved(p);
975 set_page_count(p, 0);
976
977 page_zone(page)->managed_pages += nr_pages;
978 set_page_refcounted(page);
979 __free_pages(page, order);
980}
981
982#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
983 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
984/* Only safe to use early in boot when initialisation is single-threaded */
985static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
986
987int __meminit early_pfn_to_nid(unsigned long pfn)
988{
989 int nid;
990
991 /* The system will behave unpredictably otherwise */
992 BUG_ON(system_state != SYSTEM_BOOTING);
993
994 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
995 if (nid >= 0)
996 return nid;
997 /* just returns 0 */
998 return 0;
999}
1000#endif
1001
1002#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1003static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1004 struct mminit_pfnnid_cache *state)
1005{
1006 int nid;
1007
1008 nid = __early_pfn_to_nid(pfn, state);
1009 if (nid >= 0 && nid != node)
1010 return false;
1011 return true;
1012}
1013
1014/* Only safe to use early in boot when initialisation is single-threaded */
1015static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1016{
1017 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1018}
1019
1020#else
1021
1022static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1023{
1024 return true;
1025}
1026static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1027 struct mminit_pfnnid_cache *state)
1028{
1029 return true;
1030}
1031#endif
1032
1033
1034void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1035 unsigned int order)
1036{
1037 if (early_page_uninitialised(pfn))
1038 return;
1039 return __free_pages_boot_core(page, pfn, order);
1040}
1041
1042#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1043static void __init deferred_free_range(struct page *page,
1044 unsigned long pfn, int nr_pages)
1045{
1046 int i;
1047
1048 if (!page)
1049 return;
1050
1051 /* Free a large naturally-aligned chunk if possible */
1052 if (nr_pages == MAX_ORDER_NR_PAGES &&
1053 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1054 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1055 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1056 return;
1057 }
1058
1059 for (i = 0; i < nr_pages; i++, page++, pfn++)
1060 __free_pages_boot_core(page, pfn, 0);
1061}
1062
1063static __initdata DECLARE_RWSEM(pgdat_init_rwsem);
1064
1065/* Initialise remaining memory on a node */
1066static int __init deferred_init_memmap(void *data)
1067{
1068 pg_data_t *pgdat = data;
1069 int nid = pgdat->node_id;
1070 struct mminit_pfnnid_cache nid_init_state = { };
1071 unsigned long start = jiffies;
1072 unsigned long nr_pages = 0;
1073 unsigned long walk_start, walk_end;
1074 int i, zid;
1075 struct zone *zone;
1076 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1077 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1078
1079 if (first_init_pfn == ULONG_MAX) {
1080 up_read(&pgdat_init_rwsem);
1081 return 0;
1082 }
1083
1084 /* Bind memory initialisation thread to a local node if possible */
1085 if (!cpumask_empty(cpumask))
1086 set_cpus_allowed_ptr(current, cpumask);
1087
1088 /* Sanity check boundaries */
1089 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1090 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1091 pgdat->first_deferred_pfn = ULONG_MAX;
1092
1093 /* Only the highest zone is deferred so find it */
1094 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1095 zone = pgdat->node_zones + zid;
1096 if (first_init_pfn < zone_end_pfn(zone))
1097 break;
1098 }
1099
1100 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1101 unsigned long pfn, end_pfn;
1102 struct page *page = NULL;
1103 struct page *free_base_page = NULL;
1104 unsigned long free_base_pfn = 0;
1105 int nr_to_free = 0;
1106
1107 end_pfn = min(walk_end, zone_end_pfn(zone));
1108 pfn = first_init_pfn;
1109 if (pfn < walk_start)
1110 pfn = walk_start;
1111 if (pfn < zone->zone_start_pfn)
1112 pfn = zone->zone_start_pfn;
1113
1114 for (; pfn < end_pfn; pfn++) {
1115 if (!pfn_valid_within(pfn))
1116 goto free_range;
1117
1118 /*
1119 * Ensure pfn_valid is checked every
1120 * MAX_ORDER_NR_PAGES for memory holes
1121 */
1122 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1123 if (!pfn_valid(pfn)) {
1124 page = NULL;
1125 goto free_range;
1126 }
1127 }
1128
1129 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1130 page = NULL;
1131 goto free_range;
1132 }
1133
1134 /* Minimise pfn page lookups and scheduler checks */
1135 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1136 page++;
1137 } else {
1138 nr_pages += nr_to_free;
1139 deferred_free_range(free_base_page,
1140 free_base_pfn, nr_to_free);
1141 free_base_page = NULL;
1142 free_base_pfn = nr_to_free = 0;
1143
1144 page = pfn_to_page(pfn);
1145 cond_resched();
1146 }
1147
1148 if (page->flags) {
1149 VM_BUG_ON(page_zone(page) != zone);
1150 goto free_range;
1151 }
1152
1153 __init_single_page(page, pfn, zid, nid);
1154 if (!free_base_page) {
1155 free_base_page = page;
1156 free_base_pfn = pfn;
1157 nr_to_free = 0;
1158 }
1159 nr_to_free++;
1160
1161 /* Where possible, batch up pages for a single free */
1162 continue;
1163free_range:
1164 /* Free the current block of pages to allocator */
1165 nr_pages += nr_to_free;
1166 deferred_free_range(free_base_page, free_base_pfn,
1167 nr_to_free);
1168 free_base_page = NULL;
1169 free_base_pfn = nr_to_free = 0;
1170 }
1171
1172 first_init_pfn = max(end_pfn, first_init_pfn);
1173 }
1174
1175 /* Sanity check that the next zone really is unpopulated */
1176 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1177
1178 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1179 jiffies_to_msecs(jiffies - start));
1180 up_read(&pgdat_init_rwsem);
1181 return 0;
1182}
1183
1184void __init page_alloc_init_late(void)
1185{
1186 int nid;
1187
1188 for_each_node_state(nid, N_MEMORY) {
1189 down_read(&pgdat_init_rwsem);
1190 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1191 }
1192
1193 /* Block until all are initialised */
1194 down_write(&pgdat_init_rwsem);
1195 up_write(&pgdat_init_rwsem);
1196}
1197#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1198
1199#ifdef CONFIG_CMA
1200/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1201void __init init_cma_reserved_pageblock(struct page *page)
1202{
1203 unsigned i = pageblock_nr_pages;
1204 struct page *p = page;
1205
1206 do {
1207 __ClearPageReserved(p);
1208 set_page_count(p, 0);
1209 } while (++p, --i);
1210
1211 set_pageblock_migratetype(page, MIGRATE_CMA);
1212
1213 if (pageblock_order >= MAX_ORDER) {
1214 i = pageblock_nr_pages;
1215 p = page;
1216 do {
1217 set_page_refcounted(p);
1218 __free_pages(p, MAX_ORDER - 1);
1219 p += MAX_ORDER_NR_PAGES;
1220 } while (i -= MAX_ORDER_NR_PAGES);
1221 } else {
1222 set_page_refcounted(page);
1223 __free_pages(page, pageblock_order);
1224 }
1225
1226 adjust_managed_page_count(page, pageblock_nr_pages);
1227}
1228#endif
1229
1230/*
1231 * The order of subdivision here is critical for the IO subsystem.
1232 * Please do not alter this order without good reasons and regression
1233 * testing. Specifically, as large blocks of memory are subdivided,
1234 * the order in which smaller blocks are delivered depends on the order
1235 * they're subdivided in this function. This is the primary factor
1236 * influencing the order in which pages are delivered to the IO
1237 * subsystem according to empirical testing, and this is also justified
1238 * by considering the behavior of a buddy system containing a single
1239 * large block of memory acted on by a series of small allocations.
1240 * This behavior is a critical factor in sglist merging's success.
1241 *
1242 * -- nyc
1243 */
1244static inline void expand(struct zone *zone, struct page *page,
1245 int low, int high, struct free_area *area,
1246 int migratetype)
1247{
1248 unsigned long size = 1 << high;
1249
1250 while (high > low) {
1251 area--;
1252 high--;
1253 size >>= 1;
1254 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1255
1256 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1257 debug_guardpage_enabled() &&
1258 high < debug_guardpage_minorder()) {
1259 /*
1260 * Mark as guard pages (or page), that will allow to
1261 * merge back to allocator when buddy will be freed.
1262 * Corresponding page table entries will not be touched,
1263 * pages will stay not present in virtual address space
1264 */
1265 set_page_guard(zone, &page[size], high, migratetype);
1266 continue;
1267 }
1268 list_add(&page[size].lru, &area->free_list[migratetype]);
1269 area->nr_free++;
1270 set_page_order(&page[size], high);
1271 }
1272}
1273
1274/*
1275 * This page is about to be returned from the page allocator
1276 */
1277static inline int check_new_page(struct page *page)
1278{
1279 const char *bad_reason = NULL;
1280 unsigned long bad_flags = 0;
1281
1282 if (unlikely(page_mapcount(page)))
1283 bad_reason = "nonzero mapcount";
1284 if (unlikely(page->mapping != NULL))
1285 bad_reason = "non-NULL mapping";
1286 if (unlikely(atomic_read(&page->_count) != 0))
1287 bad_reason = "nonzero _count";
1288 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1289 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1290 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1291 }
1292#ifdef CONFIG_MEMCG
1293 if (unlikely(page->mem_cgroup))
1294 bad_reason = "page still charged to cgroup";
1295#endif
1296 if (unlikely(bad_reason)) {
1297 bad_page(page, bad_reason, bad_flags);
1298 return 1;
1299 }
1300 return 0;
1301}
1302
1303static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1304 int alloc_flags)
1305{
1306 int i;
1307
1308 for (i = 0; i < (1 << order); i++) {
1309 struct page *p = page + i;
1310 if (unlikely(check_new_page(p)))
1311 return 1;
1312 }
1313
1314 set_page_private(page, 0);
1315 set_page_refcounted(page);
1316
1317 arch_alloc_page(page, order);
1318 kernel_map_pages(page, 1 << order, 1);
1319 kasan_alloc_pages(page, order);
1320
1321 if (gfp_flags & __GFP_ZERO)
1322 for (i = 0; i < (1 << order); i++)
1323 clear_highpage(page + i);
1324
1325 if (order && (gfp_flags & __GFP_COMP))
1326 prep_compound_page(page, order);
1327
1328 set_page_owner(page, order, gfp_flags);
1329
1330 /*
1331 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
1332 * allocate the page. The expectation is that the caller is taking
1333 * steps that will free more memory. The caller should avoid the page
1334 * being used for !PFMEMALLOC purposes.
1335 */
1336 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1337
1338 return 0;
1339}
1340
1341/*
1342 * Go through the free lists for the given migratetype and remove
1343 * the smallest available page from the freelists
1344 */
1345static inline
1346struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1347 int migratetype)
1348{
1349 unsigned int current_order;
1350 struct free_area *area;
1351 struct page *page;
1352
1353 /* Find a page of the appropriate size in the preferred list */
1354 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1355 area = &(zone->free_area[current_order]);
1356 if (list_empty(&area->free_list[migratetype]))
1357 continue;
1358
1359 page = list_entry(area->free_list[migratetype].next,
1360 struct page, lru);
1361 list_del(&page->lru);
1362 rmv_page_order(page);
1363 area->nr_free--;
1364 expand(zone, page, order, current_order, area, migratetype);
1365 set_freepage_migratetype(page, migratetype);
1366 return page;
1367 }
1368
1369 return NULL;
1370}
1371
1372
1373/*
1374 * This array describes the order lists are fallen back to when
1375 * the free lists for the desirable migrate type are depleted
1376 */
1377static int fallbacks[MIGRATE_TYPES][4] = {
1378 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1379 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1380 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1381#ifdef CONFIG_CMA
1382 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1383#endif
1384 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1385#ifdef CONFIG_MEMORY_ISOLATION
1386 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1387#endif
1388};
1389
1390#ifdef CONFIG_CMA
1391static struct page *__rmqueue_cma_fallback(struct zone *zone,
1392 unsigned int order)
1393{
1394 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1395}
1396#else
1397static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1398 unsigned int order) { return NULL; }
1399#endif
1400
1401/*
1402 * Move the free pages in a range to the free lists of the requested type.
1403 * Note that start_page and end_pages are not aligned on a pageblock
1404 * boundary. If alignment is required, use move_freepages_block()
1405 */
1406int move_freepages(struct zone *zone,
1407 struct page *start_page, struct page *end_page,
1408 int migratetype)
1409{
1410 struct page *page;
1411 unsigned long order;
1412 int pages_moved = 0;
1413
1414#ifndef CONFIG_HOLES_IN_ZONE
1415 /*
1416 * page_zone is not safe to call in this context when
1417 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1418 * anyway as we check zone boundaries in move_freepages_block().
1419 * Remove at a later date when no bug reports exist related to
1420 * grouping pages by mobility
1421 */
1422 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1423#endif
1424
1425 for (page = start_page; page <= end_page;) {
1426 /* Make sure we are not inadvertently changing nodes */
1427 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1428
1429 if (!pfn_valid_within(page_to_pfn(page))) {
1430 page++;
1431 continue;
1432 }
1433
1434 if (!PageBuddy(page)) {
1435 page++;
1436 continue;
1437 }
1438
1439 order = page_order(page);
1440 list_move(&page->lru,
1441 &zone->free_area[order].free_list[migratetype]);
1442 set_freepage_migratetype(page, migratetype);
1443 page += 1 << order;
1444 pages_moved += 1 << order;
1445 }
1446
1447 return pages_moved;
1448}
1449
1450int move_freepages_block(struct zone *zone, struct page *page,
1451 int migratetype)
1452{
1453 unsigned long start_pfn, end_pfn;
1454 struct page *start_page, *end_page;
1455
1456 start_pfn = page_to_pfn(page);
1457 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1458 start_page = pfn_to_page(start_pfn);
1459 end_page = start_page + pageblock_nr_pages - 1;
1460 end_pfn = start_pfn + pageblock_nr_pages - 1;
1461
1462 /* Do not cross zone boundaries */
1463 if (!zone_spans_pfn(zone, start_pfn))
1464 start_page = page;
1465 if (!zone_spans_pfn(zone, end_pfn))
1466 return 0;
1467
1468 return move_freepages(zone, start_page, end_page, migratetype);
1469}
1470
1471static void change_pageblock_range(struct page *pageblock_page,
1472 int start_order, int migratetype)
1473{
1474 int nr_pageblocks = 1 << (start_order - pageblock_order);
1475
1476 while (nr_pageblocks--) {
1477 set_pageblock_migratetype(pageblock_page, migratetype);
1478 pageblock_page += pageblock_nr_pages;
1479 }
1480}
1481
1482/*
1483 * When we are falling back to another migratetype during allocation, try to
1484 * steal extra free pages from the same pageblocks to satisfy further
1485 * allocations, instead of polluting multiple pageblocks.
1486 *
1487 * If we are stealing a relatively large buddy page, it is likely there will
1488 * be more free pages in the pageblock, so try to steal them all. For
1489 * reclaimable and unmovable allocations, we steal regardless of page size,
1490 * as fragmentation caused by those allocations polluting movable pageblocks
1491 * is worse than movable allocations stealing from unmovable and reclaimable
1492 * pageblocks.
1493 */
1494static bool can_steal_fallback(unsigned int order, int start_mt)
1495{
1496 /*
1497 * Leaving this order check is intended, although there is
1498 * relaxed order check in next check. The reason is that
1499 * we can actually steal whole pageblock if this condition met,
1500 * but, below check doesn't guarantee it and that is just heuristic
1501 * so could be changed anytime.
1502 */
1503 if (order >= pageblock_order)
1504 return true;
1505
1506 if (order >= pageblock_order / 2 ||
1507 start_mt == MIGRATE_RECLAIMABLE ||
1508 start_mt == MIGRATE_UNMOVABLE ||
1509 page_group_by_mobility_disabled)
1510 return true;
1511
1512 return false;
1513}
1514
1515/*
1516 * This function implements actual steal behaviour. If order is large enough,
1517 * we can steal whole pageblock. If not, we first move freepages in this
1518 * pageblock and check whether half of pages are moved or not. If half of
1519 * pages are moved, we can change migratetype of pageblock and permanently
1520 * use it's pages as requested migratetype in the future.
1521 */
1522static void steal_suitable_fallback(struct zone *zone, struct page *page,
1523 int start_type)
1524{
1525 int current_order = page_order(page);
1526 int pages;
1527
1528 /* Take ownership for orders >= pageblock_order */
1529 if (current_order >= pageblock_order) {
1530 change_pageblock_range(page, current_order, start_type);
1531 return;
1532 }
1533
1534 pages = move_freepages_block(zone, page, start_type);
1535
1536 /* Claim the whole block if over half of it is free */
1537 if (pages >= (1 << (pageblock_order-1)) ||
1538 page_group_by_mobility_disabled)
1539 set_pageblock_migratetype(page, start_type);
1540}
1541
1542/*
1543 * Check whether there is a suitable fallback freepage with requested order.
1544 * If only_stealable is true, this function returns fallback_mt only if
1545 * we can steal other freepages all together. This would help to reduce
1546 * fragmentation due to mixed migratetype pages in one pageblock.
1547 */
1548int find_suitable_fallback(struct free_area *area, unsigned int order,
1549 int migratetype, bool only_stealable, bool *can_steal)
1550{
1551 int i;
1552 int fallback_mt;
1553
1554 if (area->nr_free == 0)
1555 return -1;
1556
1557 *can_steal = false;
1558 for (i = 0;; i++) {
1559 fallback_mt = fallbacks[migratetype][i];
1560 if (fallback_mt == MIGRATE_RESERVE)
1561 break;
1562
1563 if (list_empty(&area->free_list[fallback_mt]))
1564 continue;
1565
1566 if (can_steal_fallback(order, migratetype))
1567 *can_steal = true;
1568
1569 if (!only_stealable)
1570 return fallback_mt;
1571
1572 if (*can_steal)
1573 return fallback_mt;
1574 }
1575
1576 return -1;
1577}
1578
1579/* Remove an element from the buddy allocator from the fallback list */
1580static inline struct page *
1581__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1582{
1583 struct free_area *area;
1584 unsigned int current_order;
1585 struct page *page;
1586 int fallback_mt;
1587 bool can_steal;
1588
1589 /* Find the largest possible block of pages in the other list */
1590 for (current_order = MAX_ORDER-1;
1591 current_order >= order && current_order <= MAX_ORDER-1;
1592 --current_order) {
1593 area = &(zone->free_area[current_order]);
1594 fallback_mt = find_suitable_fallback(area, current_order,
1595 start_migratetype, false, &can_steal);
1596 if (fallback_mt == -1)
1597 continue;
1598
1599 page = list_entry(area->free_list[fallback_mt].next,
1600 struct page, lru);
1601 if (can_steal)
1602 steal_suitable_fallback(zone, page, start_migratetype);
1603
1604 /* Remove the page from the freelists */
1605 area->nr_free--;
1606 list_del(&page->lru);
1607 rmv_page_order(page);
1608
1609 expand(zone, page, order, current_order, area,
1610 start_migratetype);
1611 /*
1612 * The freepage_migratetype may differ from pageblock's
1613 * migratetype depending on the decisions in
1614 * try_to_steal_freepages(). This is OK as long as it
1615 * does not differ for MIGRATE_CMA pageblocks. For CMA
1616 * we need to make sure unallocated pages flushed from
1617 * pcp lists are returned to the correct freelist.
1618 */
1619 set_freepage_migratetype(page, start_migratetype);
1620
1621 trace_mm_page_alloc_extfrag(page, order, current_order,
1622 start_migratetype, fallback_mt);
1623
1624 return page;
1625 }
1626
1627 return NULL;
1628}
1629
1630/*
1631 * Do the hard work of removing an element from the buddy allocator.
1632 * Call me with the zone->lock already held.
1633 */
1634static struct page *__rmqueue(struct zone *zone, unsigned int order,
1635 int migratetype)
1636{
1637 struct page *page;
1638
1639retry_reserve:
1640 page = __rmqueue_smallest(zone, order, migratetype);
1641
1642 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1643 if (migratetype == MIGRATE_MOVABLE)
1644 page = __rmqueue_cma_fallback(zone, order);
1645
1646 if (!page)
1647 page = __rmqueue_fallback(zone, order, migratetype);
1648
1649 /*
1650 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1651 * is used because __rmqueue_smallest is an inline function
1652 * and we want just one call site
1653 */
1654 if (!page) {
1655 migratetype = MIGRATE_RESERVE;
1656 goto retry_reserve;
1657 }
1658 }
1659
1660 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1661 return page;
1662}
1663
1664/*
1665 * Obtain a specified number of elements from the buddy allocator, all under
1666 * a single hold of the lock, for efficiency. Add them to the supplied list.
1667 * Returns the number of new pages which were placed at *list.
1668 */
1669static int rmqueue_bulk(struct zone *zone, unsigned int order,
1670 unsigned long count, struct list_head *list,
1671 int migratetype, bool cold)
1672{
1673 int i;
1674
1675 spin_lock(&zone->lock);
1676 for (i = 0; i < count; ++i) {
1677 struct page *page = __rmqueue(zone, order, migratetype);
1678 if (unlikely(page == NULL))
1679 break;
1680
1681 /*
1682 * Split buddy pages returned by expand() are received here
1683 * in physical page order. The page is added to the callers and
1684 * list and the list head then moves forward. From the callers
1685 * perspective, the linked list is ordered by page number in
1686 * some conditions. This is useful for IO devices that can
1687 * merge IO requests if the physical pages are ordered
1688 * properly.
1689 */
1690 if (likely(!cold))
1691 list_add(&page->lru, list);
1692 else
1693 list_add_tail(&page->lru, list);
1694 list = &page->lru;
1695 if (is_migrate_cma(get_freepage_migratetype(page)))
1696 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1697 -(1 << order));
1698 }
1699 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1700 spin_unlock(&zone->lock);
1701 return i;
1702}
1703
1704#ifdef CONFIG_NUMA
1705/*
1706 * Called from the vmstat counter updater to drain pagesets of this
1707 * currently executing processor on remote nodes after they have
1708 * expired.
1709 *
1710 * Note that this function must be called with the thread pinned to
1711 * a single processor.
1712 */
1713void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1714{
1715 unsigned long flags;
1716 int to_drain, batch;
1717
1718 local_irq_save(flags);
1719 batch = READ_ONCE(pcp->batch);
1720 to_drain = min(pcp->count, batch);
1721 if (to_drain > 0) {
1722 free_pcppages_bulk(zone, to_drain, pcp);
1723 pcp->count -= to_drain;
1724 }
1725 local_irq_restore(flags);
1726}
1727#endif
1728
1729/*
1730 * Drain pcplists of the indicated processor and zone.
1731 *
1732 * The processor must either be the current processor and the
1733 * thread pinned to the current processor or a processor that
1734 * is not online.
1735 */
1736static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1737{
1738 unsigned long flags;
1739 struct per_cpu_pageset *pset;
1740 struct per_cpu_pages *pcp;
1741
1742 local_irq_save(flags);
1743 pset = per_cpu_ptr(zone->pageset, cpu);
1744
1745 pcp = &pset->pcp;
1746 if (pcp->count) {
1747 free_pcppages_bulk(zone, pcp->count, pcp);
1748 pcp->count = 0;
1749 }
1750 local_irq_restore(flags);
1751}
1752
1753/*
1754 * Drain pcplists of all zones on the indicated processor.
1755 *
1756 * The processor must either be the current processor and the
1757 * thread pinned to the current processor or a processor that
1758 * is not online.
1759 */
1760static void drain_pages(unsigned int cpu)
1761{
1762 struct zone *zone;
1763
1764 for_each_populated_zone(zone) {
1765 drain_pages_zone(cpu, zone);
1766 }
1767}
1768
1769/*
1770 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1771 *
1772 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1773 * the single zone's pages.
1774 */
1775void drain_local_pages(struct zone *zone)
1776{
1777 int cpu = smp_processor_id();
1778
1779 if (zone)
1780 drain_pages_zone(cpu, zone);
1781 else
1782 drain_pages(cpu);
1783}
1784
1785/*
1786 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1787 *
1788 * When zone parameter is non-NULL, spill just the single zone's pages.
1789 *
1790 * Note that this code is protected against sending an IPI to an offline
1791 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1792 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1793 * nothing keeps CPUs from showing up after we populated the cpumask and
1794 * before the call to on_each_cpu_mask().
1795 */
1796void drain_all_pages(struct zone *zone)
1797{
1798 int cpu;
1799
1800 /*
1801 * Allocate in the BSS so we wont require allocation in
1802 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1803 */
1804 static cpumask_t cpus_with_pcps;
1805
1806 /*
1807 * We don't care about racing with CPU hotplug event
1808 * as offline notification will cause the notified
1809 * cpu to drain that CPU pcps and on_each_cpu_mask
1810 * disables preemption as part of its processing
1811 */
1812 for_each_online_cpu(cpu) {
1813 struct per_cpu_pageset *pcp;
1814 struct zone *z;
1815 bool has_pcps = false;
1816
1817 if (zone) {
1818 pcp = per_cpu_ptr(zone->pageset, cpu);
1819 if (pcp->pcp.count)
1820 has_pcps = true;
1821 } else {
1822 for_each_populated_zone(z) {
1823 pcp = per_cpu_ptr(z->pageset, cpu);
1824 if (pcp->pcp.count) {
1825 has_pcps = true;
1826 break;
1827 }
1828 }
1829 }
1830
1831 if (has_pcps)
1832 cpumask_set_cpu(cpu, &cpus_with_pcps);
1833 else
1834 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1835 }
1836 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1837 zone, 1);
1838}
1839
1840#ifdef CONFIG_HIBERNATION
1841
1842void mark_free_pages(struct zone *zone)
1843{
1844 unsigned long pfn, max_zone_pfn;
1845 unsigned long flags;
1846 unsigned int order, t;
1847 struct list_head *curr;
1848
1849 if (zone_is_empty(zone))
1850 return;
1851
1852 spin_lock_irqsave(&zone->lock, flags);
1853
1854 max_zone_pfn = zone_end_pfn(zone);
1855 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1856 if (pfn_valid(pfn)) {
1857 struct page *page = pfn_to_page(pfn);
1858
1859 if (!swsusp_page_is_forbidden(page))
1860 swsusp_unset_page_free(page);
1861 }
1862
1863 for_each_migratetype_order(order, t) {
1864 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1865 unsigned long i;
1866
1867 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1868 for (i = 0; i < (1UL << order); i++)
1869 swsusp_set_page_free(pfn_to_page(pfn + i));
1870 }
1871 }
1872 spin_unlock_irqrestore(&zone->lock, flags);
1873}
1874#endif /* CONFIG_PM */
1875
1876/*
1877 * Free a 0-order page
1878 * cold == true ? free a cold page : free a hot page
1879 */
1880void free_hot_cold_page(struct page *page, bool cold)
1881{
1882 struct zone *zone = page_zone(page);
1883 struct per_cpu_pages *pcp;
1884 unsigned long flags;
1885 unsigned long pfn = page_to_pfn(page);
1886 int migratetype;
1887
1888 if (!free_pages_prepare(page, 0))
1889 return;
1890
1891 migratetype = get_pfnblock_migratetype(page, pfn);
1892 set_freepage_migratetype(page, migratetype);
1893 local_irq_save(flags);
1894 __count_vm_event(PGFREE);
1895
1896 /*
1897 * We only track unmovable, reclaimable and movable on pcp lists.
1898 * Free ISOLATE pages back to the allocator because they are being
1899 * offlined but treat RESERVE as movable pages so we can get those
1900 * areas back if necessary. Otherwise, we may have to free
1901 * excessively into the page allocator
1902 */
1903 if (migratetype >= MIGRATE_PCPTYPES) {
1904 if (unlikely(is_migrate_isolate(migratetype))) {
1905 free_one_page(zone, page, pfn, 0, migratetype);
1906 goto out;
1907 }
1908 migratetype = MIGRATE_MOVABLE;
1909 }
1910
1911 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1912 if (!cold)
1913 list_add(&page->lru, &pcp->lists[migratetype]);
1914 else
1915 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1916 pcp->count++;
1917 if (pcp->count >= pcp->high) {
1918 unsigned long batch = READ_ONCE(pcp->batch);
1919 free_pcppages_bulk(zone, batch, pcp);
1920 pcp->count -= batch;
1921 }
1922
1923out:
1924 local_irq_restore(flags);
1925}
1926
1927/*
1928 * Free a list of 0-order pages
1929 */
1930void free_hot_cold_page_list(struct list_head *list, bool cold)
1931{
1932 struct page *page, *next;
1933
1934 list_for_each_entry_safe(page, next, list, lru) {
1935 trace_mm_page_free_batched(page, cold);
1936 free_hot_cold_page(page, cold);
1937 }
1938}
1939
1940/*
1941 * split_page takes a non-compound higher-order page, and splits it into
1942 * n (1<<order) sub-pages: page[0..n]
1943 * Each sub-page must be freed individually.
1944 *
1945 * Note: this is probably too low level an operation for use in drivers.
1946 * Please consult with lkml before using this in your driver.
1947 */
1948void split_page(struct page *page, unsigned int order)
1949{
1950 int i;
1951
1952 VM_BUG_ON_PAGE(PageCompound(page), page);
1953 VM_BUG_ON_PAGE(!page_count(page), page);
1954
1955#ifdef CONFIG_KMEMCHECK
1956 /*
1957 * Split shadow pages too, because free(page[0]) would
1958 * otherwise free the whole shadow.
1959 */
1960 if (kmemcheck_page_is_tracked(page))
1961 split_page(virt_to_page(page[0].shadow), order);
1962#endif
1963
1964 set_page_owner(page, 0, 0);
1965 for (i = 1; i < (1 << order); i++) {
1966 set_page_refcounted(page + i);
1967 set_page_owner(page + i, 0, 0);
1968 }
1969}
1970EXPORT_SYMBOL_GPL(split_page);
1971
1972int __isolate_free_page(struct page *page, unsigned int order)
1973{
1974 unsigned long watermark;
1975 struct zone *zone;
1976 int mt;
1977
1978 BUG_ON(!PageBuddy(page));
1979
1980 zone = page_zone(page);
1981 mt = get_pageblock_migratetype(page);
1982
1983 if (!is_migrate_isolate(mt)) {
1984 /* Obey watermarks as if the page was being allocated */
1985 watermark = low_wmark_pages(zone) + (1 << order);
1986 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1987 return 0;
1988
1989 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1990 }
1991
1992 /* Remove page from free list */
1993 list_del(&page->lru);
1994 zone->free_area[order].nr_free--;
1995 rmv_page_order(page);
1996
1997 /* Set the pageblock if the isolated page is at least a pageblock */
1998 if (order >= pageblock_order - 1) {
1999 struct page *endpage = page + (1 << order) - 1;
2000 for (; page < endpage; page += pageblock_nr_pages) {
2001 int mt = get_pageblock_migratetype(page);
2002 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2003 set_pageblock_migratetype(page,
2004 MIGRATE_MOVABLE);
2005 }
2006 }
2007
2008 set_page_owner(page, order, 0);
2009 return 1UL << order;
2010}
2011
2012/*
2013 * Similar to split_page except the page is already free. As this is only
2014 * being used for migration, the migratetype of the block also changes.
2015 * As this is called with interrupts disabled, the caller is responsible
2016 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2017 * are enabled.
2018 *
2019 * Note: this is probably too low level an operation for use in drivers.
2020 * Please consult with lkml before using this in your driver.
2021 */
2022int split_free_page(struct page *page)
2023{
2024 unsigned int order;
2025 int nr_pages;
2026
2027 order = page_order(page);
2028
2029 nr_pages = __isolate_free_page(page, order);
2030 if (!nr_pages)
2031 return 0;
2032
2033 /* Split into individual pages */
2034 set_page_refcounted(page);
2035 split_page(page, order);
2036 return nr_pages;
2037}
2038
2039/*
2040 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2041 */
2042static inline
2043struct page *buffered_rmqueue(struct zone *preferred_zone,
2044 struct zone *zone, unsigned int order,
2045 gfp_t gfp_flags, int migratetype)
2046{
2047 unsigned long flags;
2048 struct page *page;
2049 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2050
2051 if (likely(order == 0)) {
2052 struct per_cpu_pages *pcp;
2053 struct list_head *list;
2054
2055 local_irq_save(flags);
2056 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2057 list = &pcp->lists[migratetype];
2058 if (list_empty(list)) {
2059 pcp->count += rmqueue_bulk(zone, 0,
2060 pcp->batch, list,
2061 migratetype, cold);
2062 if (unlikely(list_empty(list)))
2063 goto failed;
2064 }
2065
2066 if (cold)
2067 page = list_entry(list->prev, struct page, lru);
2068 else
2069 page = list_entry(list->next, struct page, lru);
2070
2071 list_del(&page->lru);
2072 pcp->count--;
2073 } else {
2074 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2075 /*
2076 * __GFP_NOFAIL is not to be used in new code.
2077 *
2078 * All __GFP_NOFAIL callers should be fixed so that they
2079 * properly detect and handle allocation failures.
2080 *
2081 * We most definitely don't want callers attempting to
2082 * allocate greater than order-1 page units with
2083 * __GFP_NOFAIL.
2084 */
2085 WARN_ON_ONCE(order > 1);
2086 }
2087 spin_lock_irqsave(&zone->lock, flags);
2088 page = __rmqueue(zone, order, migratetype);
2089 spin_unlock(&zone->lock);
2090 if (!page)
2091 goto failed;
2092 __mod_zone_freepage_state(zone, -(1 << order),
2093 get_freepage_migratetype(page));
2094 }
2095
2096 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2097 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2098 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2099 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2100
2101 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2102 zone_statistics(preferred_zone, zone, gfp_flags);
2103 local_irq_restore(flags);
2104
2105 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2106 return page;
2107
2108failed:
2109 local_irq_restore(flags);
2110 return NULL;
2111}
2112
2113#ifdef CONFIG_FAIL_PAGE_ALLOC
2114
2115static struct {
2116 struct fault_attr attr;
2117
2118 u32 ignore_gfp_highmem;
2119 u32 ignore_gfp_wait;
2120 u32 min_order;
2121} fail_page_alloc = {
2122 .attr = FAULT_ATTR_INITIALIZER,
2123 .ignore_gfp_wait = 1,
2124 .ignore_gfp_highmem = 1,
2125 .min_order = 1,
2126};
2127
2128static int __init setup_fail_page_alloc(char *str)
2129{
2130 return setup_fault_attr(&fail_page_alloc.attr, str);
2131}
2132__setup("fail_page_alloc=", setup_fail_page_alloc);
2133
2134static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2135{
2136 if (order < fail_page_alloc.min_order)
2137 return false;
2138 if (gfp_mask & __GFP_NOFAIL)
2139 return false;
2140 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2141 return false;
2142 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
2143 return false;
2144
2145 return should_fail(&fail_page_alloc.attr, 1 << order);
2146}
2147
2148#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2149
2150static int __init fail_page_alloc_debugfs(void)
2151{
2152 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2153 struct dentry *dir;
2154
2155 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2156 &fail_page_alloc.attr);
2157 if (IS_ERR(dir))
2158 return PTR_ERR(dir);
2159
2160 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2161 &fail_page_alloc.ignore_gfp_wait))
2162 goto fail;
2163 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2164 &fail_page_alloc.ignore_gfp_highmem))
2165 goto fail;
2166 if (!debugfs_create_u32("min-order", mode, dir,
2167 &fail_page_alloc.min_order))
2168 goto fail;
2169
2170 return 0;
2171fail:
2172 debugfs_remove_recursive(dir);
2173
2174 return -ENOMEM;
2175}
2176
2177late_initcall(fail_page_alloc_debugfs);
2178
2179#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2180
2181#else /* CONFIG_FAIL_PAGE_ALLOC */
2182
2183static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2184{
2185 return false;
2186}
2187
2188#endif /* CONFIG_FAIL_PAGE_ALLOC */
2189
2190/*
2191 * Return true if free pages are above 'mark'. This takes into account the order
2192 * of the allocation.
2193 */
2194static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2195 unsigned long mark, int classzone_idx, int alloc_flags,
2196 long free_pages)
2197{
2198 /* free_pages may go negative - that's OK */
2199 long min = mark;
2200 int o;
2201 long free_cma = 0;
2202
2203 free_pages -= (1 << order) - 1;
2204 if (alloc_flags & ALLOC_HIGH)
2205 min -= min / 2;
2206 if (alloc_flags & ALLOC_HARDER)
2207 min -= min / 4;
2208#ifdef CONFIG_CMA
2209 /* If allocation can't use CMA areas don't use free CMA pages */
2210 if (!(alloc_flags & ALLOC_CMA))
2211 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
2212#endif
2213
2214 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
2215 return false;
2216 for (o = 0; o < order; o++) {
2217 /* At the next order, this order's pages become unavailable */
2218 free_pages -= z->free_area[o].nr_free << o;
2219
2220 /* Require fewer higher order pages to be free */
2221 min >>= 1;
2222
2223 if (free_pages <= min)
2224 return false;
2225 }
2226 return true;
2227}
2228
2229bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2230 int classzone_idx, int alloc_flags)
2231{
2232 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2233 zone_page_state(z, NR_FREE_PAGES));
2234}
2235
2236bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2237 unsigned long mark, int classzone_idx, int alloc_flags)
2238{
2239 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2240
2241 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2242 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2243
2244 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2245 free_pages);
2246}
2247
2248#ifdef CONFIG_NUMA
2249/*
2250 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
2251 * skip over zones that are not allowed by the cpuset, or that have
2252 * been recently (in last second) found to be nearly full. See further
2253 * comments in mmzone.h. Reduces cache footprint of zonelist scans
2254 * that have to skip over a lot of full or unallowed zones.
2255 *
2256 * If the zonelist cache is present in the passed zonelist, then
2257 * returns a pointer to the allowed node mask (either the current
2258 * tasks mems_allowed, or node_states[N_MEMORY].)
2259 *
2260 * If the zonelist cache is not available for this zonelist, does
2261 * nothing and returns NULL.
2262 *
2263 * If the fullzones BITMAP in the zonelist cache is stale (more than
2264 * a second since last zap'd) then we zap it out (clear its bits.)
2265 *
2266 * We hold off even calling zlc_setup, until after we've checked the
2267 * first zone in the zonelist, on the theory that most allocations will
2268 * be satisfied from that first zone, so best to examine that zone as
2269 * quickly as we can.
2270 */
2271static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2272{
2273 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2274 nodemask_t *allowednodes; /* zonelist_cache approximation */
2275
2276 zlc = zonelist->zlcache_ptr;
2277 if (!zlc)
2278 return NULL;
2279
2280 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
2281 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2282 zlc->last_full_zap = jiffies;
2283 }
2284
2285 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
2286 &cpuset_current_mems_allowed :
2287 &node_states[N_MEMORY];
2288 return allowednodes;
2289}
2290
2291/*
2292 * Given 'z' scanning a zonelist, run a couple of quick checks to see
2293 * if it is worth looking at further for free memory:
2294 * 1) Check that the zone isn't thought to be full (doesn't have its
2295 * bit set in the zonelist_cache fullzones BITMAP).
2296 * 2) Check that the zones node (obtained from the zonelist_cache
2297 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
2298 * Return true (non-zero) if zone is worth looking at further, or
2299 * else return false (zero) if it is not.
2300 *
2301 * This check -ignores- the distinction between various watermarks,
2302 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
2303 * found to be full for any variation of these watermarks, it will
2304 * be considered full for up to one second by all requests, unless
2305 * we are so low on memory on all allowed nodes that we are forced
2306 * into the second scan of the zonelist.
2307 *
2308 * In the second scan we ignore this zonelist cache and exactly
2309 * apply the watermarks to all zones, even it is slower to do so.
2310 * We are low on memory in the second scan, and should leave no stone
2311 * unturned looking for a free page.
2312 */
2313static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2314 nodemask_t *allowednodes)
2315{
2316 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2317 int i; /* index of *z in zonelist zones */
2318 int n; /* node that zone *z is on */
2319
2320 zlc = zonelist->zlcache_ptr;
2321 if (!zlc)
2322 return 1;
2323
2324 i = z - zonelist->_zonerefs;
2325 n = zlc->z_to_n[i];
2326
2327 /* This zone is worth trying if it is allowed but not full */
2328 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
2329}
2330
2331/*
2332 * Given 'z' scanning a zonelist, set the corresponding bit in
2333 * zlc->fullzones, so that subsequent attempts to allocate a page
2334 * from that zone don't waste time re-examining it.
2335 */
2336static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2337{
2338 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2339 int i; /* index of *z in zonelist zones */
2340
2341 zlc = zonelist->zlcache_ptr;
2342 if (!zlc)
2343 return;
2344
2345 i = z - zonelist->_zonerefs;
2346
2347 set_bit(i, zlc->fullzones);
2348}
2349
2350/*
2351 * clear all zones full, called after direct reclaim makes progress so that
2352 * a zone that was recently full is not skipped over for up to a second
2353 */
2354static void zlc_clear_zones_full(struct zonelist *zonelist)
2355{
2356 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2357
2358 zlc = zonelist->zlcache_ptr;
2359 if (!zlc)
2360 return;
2361
2362 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2363}
2364
2365static bool zone_local(struct zone *local_zone, struct zone *zone)
2366{
2367 return local_zone->node == zone->node;
2368}
2369
2370static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2371{
2372 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2373 RECLAIM_DISTANCE;
2374}
2375
2376#else /* CONFIG_NUMA */
2377
2378static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2379{
2380 return NULL;
2381}
2382
2383static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2384 nodemask_t *allowednodes)
2385{
2386 return 1;
2387}
2388
2389static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2390{
2391}
2392
2393static void zlc_clear_zones_full(struct zonelist *zonelist)
2394{
2395}
2396
2397static bool zone_local(struct zone *local_zone, struct zone *zone)
2398{
2399 return true;
2400}
2401
2402static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2403{
2404 return true;
2405}
2406
2407#endif /* CONFIG_NUMA */
2408
2409static void reset_alloc_batches(struct zone *preferred_zone)
2410{
2411 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2412
2413 do {
2414 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2415 high_wmark_pages(zone) - low_wmark_pages(zone) -
2416 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2417 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2418 } while (zone++ != preferred_zone);
2419}
2420
2421/*
2422 * get_page_from_freelist goes through the zonelist trying to allocate
2423 * a page.
2424 */
2425static struct page *
2426get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2427 const struct alloc_context *ac)
2428{
2429 struct zonelist *zonelist = ac->zonelist;
2430 struct zoneref *z;
2431 struct page *page = NULL;
2432 struct zone *zone;
2433 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2434 int zlc_active = 0; /* set if using zonelist_cache */
2435 int did_zlc_setup = 0; /* just call zlc_setup() one time */
2436 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2437 (gfp_mask & __GFP_WRITE);
2438 int nr_fair_skipped = 0;
2439 bool zonelist_rescan;
2440
2441zonelist_scan:
2442 zonelist_rescan = false;
2443
2444 /*
2445 * Scan zonelist, looking for a zone with enough free.
2446 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2447 */
2448 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2449 ac->nodemask) {
2450 unsigned long mark;
2451
2452 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2453 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2454 continue;
2455 if (cpusets_enabled() &&
2456 (alloc_flags & ALLOC_CPUSET) &&
2457 !cpuset_zone_allowed(zone, gfp_mask))
2458 continue;
2459 /*
2460 * Distribute pages in proportion to the individual
2461 * zone size to ensure fair page aging. The zone a
2462 * page was allocated in should have no effect on the
2463 * time the page has in memory before being reclaimed.
2464 */
2465 if (alloc_flags & ALLOC_FAIR) {
2466 if (!zone_local(ac->preferred_zone, zone))
2467 break;
2468 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2469 nr_fair_skipped++;
2470 continue;
2471 }
2472 }
2473 /*
2474 * When allocating a page cache page for writing, we
2475 * want to get it from a zone that is within its dirty
2476 * limit, such that no single zone holds more than its
2477 * proportional share of globally allowed dirty pages.
2478 * The dirty limits take into account the zone's
2479 * lowmem reserves and high watermark so that kswapd
2480 * should be able to balance it without having to
2481 * write pages from its LRU list.
2482 *
2483 * This may look like it could increase pressure on
2484 * lower zones by failing allocations in higher zones
2485 * before they are full. But the pages that do spill
2486 * over are limited as the lower zones are protected
2487 * by this very same mechanism. It should not become
2488 * a practical burden to them.
2489 *
2490 * XXX: For now, allow allocations to potentially
2491 * exceed the per-zone dirty limit in the slowpath
2492 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2493 * which is important when on a NUMA setup the allowed
2494 * zones are together not big enough to reach the
2495 * global limit. The proper fix for these situations
2496 * will require awareness of zones in the
2497 * dirty-throttling and the flusher threads.
2498 */
2499 if (consider_zone_dirty && !zone_dirty_ok(zone))
2500 continue;
2501
2502 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2503 if (!zone_watermark_ok(zone, order, mark,
2504 ac->classzone_idx, alloc_flags)) {
2505 int ret;
2506
2507 /* Checked here to keep the fast path fast */
2508 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2509 if (alloc_flags & ALLOC_NO_WATERMARKS)
2510 goto try_this_zone;
2511
2512 if (IS_ENABLED(CONFIG_NUMA) &&
2513 !did_zlc_setup && nr_online_nodes > 1) {
2514 /*
2515 * we do zlc_setup if there are multiple nodes
2516 * and before considering the first zone allowed
2517 * by the cpuset.
2518 */
2519 allowednodes = zlc_setup(zonelist, alloc_flags);
2520 zlc_active = 1;
2521 did_zlc_setup = 1;
2522 }
2523
2524 if (zone_reclaim_mode == 0 ||
2525 !zone_allows_reclaim(ac->preferred_zone, zone))
2526 goto this_zone_full;
2527
2528 /*
2529 * As we may have just activated ZLC, check if the first
2530 * eligible zone has failed zone_reclaim recently.
2531 */
2532 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2533 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2534 continue;
2535
2536 ret = zone_reclaim(zone, gfp_mask, order);
2537 switch (ret) {
2538 case ZONE_RECLAIM_NOSCAN:
2539 /* did not scan */
2540 continue;
2541 case ZONE_RECLAIM_FULL:
2542 /* scanned but unreclaimable */
2543 continue;
2544 default:
2545 /* did we reclaim enough */
2546 if (zone_watermark_ok(zone, order, mark,
2547 ac->classzone_idx, alloc_flags))
2548 goto try_this_zone;
2549
2550 /*
2551 * Failed to reclaim enough to meet watermark.
2552 * Only mark the zone full if checking the min
2553 * watermark or if we failed to reclaim just
2554 * 1<<order pages or else the page allocator
2555 * fastpath will prematurely mark zones full
2556 * when the watermark is between the low and
2557 * min watermarks.
2558 */
2559 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2560 ret == ZONE_RECLAIM_SOME)
2561 goto this_zone_full;
2562
2563 continue;
2564 }
2565 }
2566
2567try_this_zone:
2568 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2569 gfp_mask, ac->migratetype);
2570 if (page) {
2571 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2572 goto try_this_zone;
2573 return page;
2574 }
2575this_zone_full:
2576 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2577 zlc_mark_zone_full(zonelist, z);
2578 }
2579
2580 /*
2581 * The first pass makes sure allocations are spread fairly within the
2582 * local node. However, the local node might have free pages left
2583 * after the fairness batches are exhausted, and remote zones haven't
2584 * even been considered yet. Try once more without fairness, and
2585 * include remote zones now, before entering the slowpath and waking
2586 * kswapd: prefer spilling to a remote zone over swapping locally.
2587 */
2588 if (alloc_flags & ALLOC_FAIR) {
2589 alloc_flags &= ~ALLOC_FAIR;
2590 if (nr_fair_skipped) {
2591 zonelist_rescan = true;
2592 reset_alloc_batches(ac->preferred_zone);
2593 }
2594 if (nr_online_nodes > 1)
2595 zonelist_rescan = true;
2596 }
2597
2598 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2599 /* Disable zlc cache for second zonelist scan */
2600 zlc_active = 0;
2601 zonelist_rescan = true;
2602 }
2603
2604 if (zonelist_rescan)
2605 goto zonelist_scan;
2606
2607 return NULL;
2608}
2609
2610/*
2611 * Large machines with many possible nodes should not always dump per-node
2612 * meminfo in irq context.
2613 */
2614static inline bool should_suppress_show_mem(void)
2615{
2616 bool ret = false;
2617
2618#if NODES_SHIFT > 8
2619 ret = in_interrupt();
2620#endif
2621 return ret;
2622}
2623
2624static DEFINE_RATELIMIT_STATE(nopage_rs,
2625 DEFAULT_RATELIMIT_INTERVAL,
2626 DEFAULT_RATELIMIT_BURST);
2627
2628void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2629{
2630 unsigned int filter = SHOW_MEM_FILTER_NODES;
2631
2632 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2633 debug_guardpage_minorder() > 0)
2634 return;
2635
2636 /*
2637 * This documents exceptions given to allocations in certain
2638 * contexts that are allowed to allocate outside current's set
2639 * of allowed nodes.
2640 */
2641 if (!(gfp_mask & __GFP_NOMEMALLOC))
2642 if (test_thread_flag(TIF_MEMDIE) ||
2643 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2644 filter &= ~SHOW_MEM_FILTER_NODES;
2645 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2646 filter &= ~SHOW_MEM_FILTER_NODES;
2647
2648 if (fmt) {
2649 struct va_format vaf;
2650 va_list args;
2651
2652 va_start(args, fmt);
2653
2654 vaf.fmt = fmt;
2655 vaf.va = &args;
2656
2657 pr_warn("%pV", &vaf);
2658
2659 va_end(args);
2660 }
2661
2662 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2663 current->comm, order, gfp_mask);
2664
2665 dump_stack();
2666 if (!should_suppress_show_mem())
2667 show_mem(filter);
2668}
2669
2670static inline struct page *
2671__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2672 const struct alloc_context *ac, unsigned long *did_some_progress)
2673{
2674 struct page *page;
2675
2676 *did_some_progress = 0;
2677
2678 /*
2679 * Acquire the oom lock. If that fails, somebody else is
2680 * making progress for us.
2681 */
2682 if (!mutex_trylock(&oom_lock)) {
2683 *did_some_progress = 1;
2684 schedule_timeout_uninterruptible(1);
2685 return NULL;
2686 }
2687
2688 /*
2689 * Go through the zonelist yet one more time, keep very high watermark
2690 * here, this is only to catch a parallel oom killing, we must fail if
2691 * we're still under heavy pressure.
2692 */
2693 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2694 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2695 if (page)
2696 goto out;
2697
2698 if (!(gfp_mask & __GFP_NOFAIL)) {
2699 /* Coredumps can quickly deplete all memory reserves */
2700 if (current->flags & PF_DUMPCORE)
2701 goto out;
2702 /* The OOM killer will not help higher order allocs */
2703 if (order > PAGE_ALLOC_COSTLY_ORDER)
2704 goto out;
2705 /* The OOM killer does not needlessly kill tasks for lowmem */
2706 if (ac->high_zoneidx < ZONE_NORMAL)
2707 goto out;
2708 /* The OOM killer does not compensate for IO-less reclaim */
2709 if (!(gfp_mask & __GFP_FS)) {
2710 /*
2711 * XXX: Page reclaim didn't yield anything,
2712 * and the OOM killer can't be invoked, but
2713 * keep looping as per tradition.
2714 */
2715 *did_some_progress = 1;
2716 goto out;
2717 }
2718 if (pm_suspended_storage())
2719 goto out;
2720 /* The OOM killer may not free memory on a specific node */
2721 if (gfp_mask & __GFP_THISNODE)
2722 goto out;
2723 }
2724 /* Exhausted what can be done so it's blamo time */
2725 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2726 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2727 *did_some_progress = 1;
2728out:
2729 mutex_unlock(&oom_lock);
2730 return page;
2731}
2732
2733#ifdef CONFIG_COMPACTION
2734/* Try memory compaction for high-order allocations before reclaim */
2735static struct page *
2736__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2737 int alloc_flags, const struct alloc_context *ac,
2738 enum migrate_mode mode, int *contended_compaction,
2739 bool *deferred_compaction)
2740{
2741 unsigned long compact_result;
2742 struct page *page;
2743
2744 if (!order)
2745 return NULL;
2746
2747 current->flags |= PF_MEMALLOC;
2748 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2749 mode, contended_compaction);
2750 current->flags &= ~PF_MEMALLOC;
2751
2752 switch (compact_result) {
2753 case COMPACT_DEFERRED:
2754 *deferred_compaction = true;
2755 /* fall-through */
2756 case COMPACT_SKIPPED:
2757 return NULL;
2758 default:
2759 break;
2760 }
2761
2762 /*
2763 * At least in one zone compaction wasn't deferred or skipped, so let's
2764 * count a compaction stall
2765 */
2766 count_vm_event(COMPACTSTALL);
2767
2768 page = get_page_from_freelist(gfp_mask, order,
2769 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2770
2771 if (page) {
2772 struct zone *zone = page_zone(page);
2773
2774 zone->compact_blockskip_flush = false;
2775 compaction_defer_reset(zone, order, true);
2776 count_vm_event(COMPACTSUCCESS);
2777 return page;
2778 }
2779
2780 /*
2781 * It's bad if compaction run occurs and fails. The most likely reason
2782 * is that pages exist, but not enough to satisfy watermarks.
2783 */
2784 count_vm_event(COMPACTFAIL);
2785
2786 cond_resched();
2787
2788 return NULL;
2789}
2790#else
2791static inline struct page *
2792__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2793 int alloc_flags, const struct alloc_context *ac,
2794 enum migrate_mode mode, int *contended_compaction,
2795 bool *deferred_compaction)
2796{
2797 return NULL;
2798}
2799#endif /* CONFIG_COMPACTION */
2800
2801/* Perform direct synchronous page reclaim */
2802static int
2803__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2804 const struct alloc_context *ac)
2805{
2806 struct reclaim_state reclaim_state;
2807 int progress;
2808
2809 cond_resched();
2810
2811 /* We now go into synchronous reclaim */
2812 cpuset_memory_pressure_bump();
2813 current->flags |= PF_MEMALLOC;
2814 lockdep_set_current_reclaim_state(gfp_mask);
2815 reclaim_state.reclaimed_slab = 0;
2816 current->reclaim_state = &reclaim_state;
2817
2818 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2819 ac->nodemask);
2820
2821 current->reclaim_state = NULL;
2822 lockdep_clear_current_reclaim_state();
2823 current->flags &= ~PF_MEMALLOC;
2824
2825 cond_resched();
2826
2827 return progress;
2828}
2829
2830/* The really slow allocator path where we enter direct reclaim */
2831static inline struct page *
2832__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2833 int alloc_flags, const struct alloc_context *ac,
2834 unsigned long *did_some_progress)
2835{
2836 struct page *page = NULL;
2837 bool drained = false;
2838
2839 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2840 if (unlikely(!(*did_some_progress)))
2841 return NULL;
2842
2843 /* After successful reclaim, reconsider all zones for allocation */
2844 if (IS_ENABLED(CONFIG_NUMA))
2845 zlc_clear_zones_full(ac->zonelist);
2846
2847retry:
2848 page = get_page_from_freelist(gfp_mask, order,
2849 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2850
2851 /*
2852 * If an allocation failed after direct reclaim, it could be because
2853 * pages are pinned on the per-cpu lists. Drain them and try again
2854 */
2855 if (!page && !drained) {
2856 drain_all_pages(NULL);
2857 drained = true;
2858 goto retry;
2859 }
2860
2861 return page;
2862}
2863
2864/*
2865 * This is called in the allocator slow-path if the allocation request is of
2866 * sufficient urgency to ignore watermarks and take other desperate measures
2867 */
2868static inline struct page *
2869__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2870 const struct alloc_context *ac)
2871{
2872 struct page *page;
2873
2874 do {
2875 page = get_page_from_freelist(gfp_mask, order,
2876 ALLOC_NO_WATERMARKS, ac);
2877
2878 if (!page && gfp_mask & __GFP_NOFAIL)
2879 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2880 HZ/50);
2881 } while (!page && (gfp_mask & __GFP_NOFAIL));
2882
2883 return page;
2884}
2885
2886static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2887{
2888 struct zoneref *z;
2889 struct zone *zone;
2890
2891 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2892 ac->high_zoneidx, ac->nodemask)
2893 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2894}
2895
2896static inline int
2897gfp_to_alloc_flags(gfp_t gfp_mask)
2898{
2899 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2900 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2901
2902 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2903 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2904
2905 /*
2906 * The caller may dip into page reserves a bit more if the caller
2907 * cannot run direct reclaim, or if the caller has realtime scheduling
2908 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2909 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2910 */
2911 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2912
2913 if (atomic) {
2914 /*
2915 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2916 * if it can't schedule.
2917 */
2918 if (!(gfp_mask & __GFP_NOMEMALLOC))
2919 alloc_flags |= ALLOC_HARDER;
2920 /*
2921 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2922 * comment for __cpuset_node_allowed().
2923 */
2924 alloc_flags &= ~ALLOC_CPUSET;
2925 } else if (unlikely(rt_task(current)) && !in_interrupt())
2926 alloc_flags |= ALLOC_HARDER;
2927
2928 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2929 if (gfp_mask & __GFP_MEMALLOC)
2930 alloc_flags |= ALLOC_NO_WATERMARKS;
2931 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2932 alloc_flags |= ALLOC_NO_WATERMARKS;
2933 else if (!in_interrupt() &&
2934 ((current->flags & PF_MEMALLOC) ||
2935 unlikely(test_thread_flag(TIF_MEMDIE))))
2936 alloc_flags |= ALLOC_NO_WATERMARKS;
2937 }
2938#ifdef CONFIG_CMA
2939 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2940 alloc_flags |= ALLOC_CMA;
2941#endif
2942 return alloc_flags;
2943}
2944
2945bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2946{
2947 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2948}
2949
2950static inline struct page *
2951__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2952 struct alloc_context *ac)
2953{
2954 const gfp_t wait = gfp_mask & __GFP_WAIT;
2955 struct page *page = NULL;
2956 int alloc_flags;
2957 unsigned long pages_reclaimed = 0;
2958 unsigned long did_some_progress;
2959 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2960 bool deferred_compaction = false;
2961 int contended_compaction = COMPACT_CONTENDED_NONE;
2962
2963 /*
2964 * In the slowpath, we sanity check order to avoid ever trying to
2965 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2966 * be using allocators in order of preference for an area that is
2967 * too large.
2968 */
2969 if (order >= MAX_ORDER) {
2970 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2971 return NULL;
2972 }
2973
2974 /*
2975 * If this allocation cannot block and it is for a specific node, then
2976 * fail early. There's no need to wakeup kswapd or retry for a
2977 * speculative node-specific allocation.
2978 */
2979 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
2980 goto nopage;
2981
2982retry:
2983 if (!(gfp_mask & __GFP_NO_KSWAPD))
2984 wake_all_kswapds(order, ac);
2985
2986 /*
2987 * OK, we're below the kswapd watermark and have kicked background
2988 * reclaim. Now things get more complex, so set up alloc_flags according
2989 * to how we want to proceed.
2990 */
2991 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2992
2993 /*
2994 * Find the true preferred zone if the allocation is unconstrained by
2995 * cpusets.
2996 */
2997 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
2998 struct zoneref *preferred_zoneref;
2999 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3000 ac->high_zoneidx, NULL, &ac->preferred_zone);
3001 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3002 }
3003
3004 /* This is the last chance, in general, before the goto nopage. */
3005 page = get_page_from_freelist(gfp_mask, order,
3006 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3007 if (page)
3008 goto got_pg;
3009
3010 /* Allocate without watermarks if the context allows */
3011 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3012 /*
3013 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3014 * the allocation is high priority and these type of
3015 * allocations are system rather than user orientated
3016 */
3017 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3018
3019 page = __alloc_pages_high_priority(gfp_mask, order, ac);
3020
3021 if (page) {
3022 goto got_pg;
3023 }
3024 }
3025
3026 /* Atomic allocations - we can't balance anything */
3027 if (!wait) {
3028 /*
3029 * All existing users of the deprecated __GFP_NOFAIL are
3030 * blockable, so warn of any new users that actually allow this
3031 * type of allocation to fail.
3032 */
3033 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3034 goto nopage;
3035 }
3036
3037 /* Avoid recursion of direct reclaim */
3038 if (current->flags & PF_MEMALLOC)
3039 goto nopage;
3040
3041 /* Avoid allocations with no watermarks from looping endlessly */
3042 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3043 goto nopage;
3044
3045 /*
3046 * Try direct compaction. The first pass is asynchronous. Subsequent
3047 * attempts after direct reclaim are synchronous
3048 */
3049 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3050 migration_mode,
3051 &contended_compaction,
3052 &deferred_compaction);
3053 if (page)
3054 goto got_pg;
3055
3056 /* Checks for THP-specific high-order allocations */
3057 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
3058 /*
3059 * If compaction is deferred for high-order allocations, it is
3060 * because sync compaction recently failed. If this is the case
3061 * and the caller requested a THP allocation, we do not want
3062 * to heavily disrupt the system, so we fail the allocation
3063 * instead of entering direct reclaim.
3064 */
3065 if (deferred_compaction)
3066 goto nopage;
3067
3068 /*
3069 * In all zones where compaction was attempted (and not
3070 * deferred or skipped), lock contention has been detected.
3071 * For THP allocation we do not want to disrupt the others
3072 * so we fallback to base pages instead.
3073 */
3074 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3075 goto nopage;
3076
3077 /*
3078 * If compaction was aborted due to need_resched(), we do not
3079 * want to further increase allocation latency, unless it is
3080 * khugepaged trying to collapse.
3081 */
3082 if (contended_compaction == COMPACT_CONTENDED_SCHED
3083 && !(current->flags & PF_KTHREAD))
3084 goto nopage;
3085 }
3086
3087 /*
3088 * It can become very expensive to allocate transparent hugepages at
3089 * fault, so use asynchronous memory compaction for THP unless it is
3090 * khugepaged trying to collapse.
3091 */
3092 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
3093 (current->flags & PF_KTHREAD))
3094 migration_mode = MIGRATE_SYNC_LIGHT;
3095
3096 /* Try direct reclaim and then allocating */
3097 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3098 &did_some_progress);
3099 if (page)
3100 goto got_pg;
3101
3102 /* Do not loop if specifically requested */
3103 if (gfp_mask & __GFP_NORETRY)
3104 goto noretry;
3105
3106 /* Keep reclaiming pages as long as there is reasonable progress */
3107 pages_reclaimed += did_some_progress;
3108 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3109 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3110 /* Wait for some write requests to complete then retry */
3111 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3112 goto retry;
3113 }
3114
3115 /* Reclaim has failed us, start killing things */
3116 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3117 if (page)
3118 goto got_pg;
3119
3120 /* Retry as long as the OOM killer is making progress */
3121 if (did_some_progress)
3122 goto retry;
3123
3124noretry:
3125 /*
3126 * High-order allocations do not necessarily loop after
3127 * direct reclaim and reclaim/compaction depends on compaction
3128 * being called after reclaim so call directly if necessary
3129 */
3130 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3131 ac, migration_mode,
3132 &contended_compaction,
3133 &deferred_compaction);
3134 if (page)
3135 goto got_pg;
3136nopage:
3137 warn_alloc_failed(gfp_mask, order, NULL);
3138got_pg:
3139 return page;
3140}
3141
3142/*
3143 * This is the 'heart' of the zoned buddy allocator.
3144 */
3145struct page *
3146__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3147 struct zonelist *zonelist, nodemask_t *nodemask)
3148{
3149 struct zoneref *preferred_zoneref;
3150 struct page *page = NULL;
3151 unsigned int cpuset_mems_cookie;
3152 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3153 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3154 struct alloc_context ac = {
3155 .high_zoneidx = gfp_zone(gfp_mask),
3156 .nodemask = nodemask,
3157 .migratetype = gfpflags_to_migratetype(gfp_mask),
3158 };
3159
3160 gfp_mask &= gfp_allowed_mask;
3161
3162 lockdep_trace_alloc(gfp_mask);
3163
3164 might_sleep_if(gfp_mask & __GFP_WAIT);
3165
3166 if (should_fail_alloc_page(gfp_mask, order))
3167 return NULL;
3168
3169 /*
3170 * Check the zones suitable for the gfp_mask contain at least one
3171 * valid zone. It's possible to have an empty zonelist as a result
3172 * of __GFP_THISNODE and a memoryless node
3173 */
3174 if (unlikely(!zonelist->_zonerefs->zone))
3175 return NULL;
3176
3177 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3178 alloc_flags |= ALLOC_CMA;
3179
3180retry_cpuset:
3181 cpuset_mems_cookie = read_mems_allowed_begin();
3182
3183 /* We set it here, as __alloc_pages_slowpath might have changed it */
3184 ac.zonelist = zonelist;
3185 /* The preferred zone is used for statistics later */
3186 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3187 ac.nodemask ? : &cpuset_current_mems_allowed,
3188 &ac.preferred_zone);
3189 if (!ac.preferred_zone)
3190 goto out;
3191 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3192
3193 /* First allocation attempt */
3194 alloc_mask = gfp_mask|__GFP_HARDWALL;
3195 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3196 if (unlikely(!page)) {
3197 /*
3198 * Runtime PM, block IO and its error handling path
3199 * can deadlock because I/O on the device might not
3200 * complete.
3201 */
3202 alloc_mask = memalloc_noio_flags(gfp_mask);
3203
3204 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3205 }
3206
3207 if (kmemcheck_enabled && page)
3208 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3209
3210 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3211
3212out:
3213 /*
3214 * When updating a task's mems_allowed, it is possible to race with
3215 * parallel threads in such a way that an allocation can fail while
3216 * the mask is being updated. If a page allocation is about to fail,
3217 * check if the cpuset changed during allocation and if so, retry.
3218 */
3219 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3220 goto retry_cpuset;
3221
3222 return page;
3223}
3224EXPORT_SYMBOL(__alloc_pages_nodemask);
3225
3226/*
3227 * Common helper functions.
3228 */
3229unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3230{
3231 struct page *page;
3232
3233 /*
3234 * __get_free_pages() returns a 32-bit address, which cannot represent
3235 * a highmem page
3236 */
3237 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3238
3239 page = alloc_pages(gfp_mask, order);
3240 if (!page)
3241 return 0;
3242 return (unsigned long) page_address(page);
3243}
3244EXPORT_SYMBOL(__get_free_pages);
3245
3246unsigned long get_zeroed_page(gfp_t gfp_mask)
3247{
3248 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3249}
3250EXPORT_SYMBOL(get_zeroed_page);
3251
3252void __free_pages(struct page *page, unsigned int order)
3253{
3254 if (put_page_testzero(page)) {
3255 if (order == 0)
3256 free_hot_cold_page(page, false);
3257 else
3258 __free_pages_ok(page, order);
3259 }
3260}
3261
3262EXPORT_SYMBOL(__free_pages);
3263
3264void free_pages(unsigned long addr, unsigned int order)
3265{
3266 if (addr != 0) {
3267 VM_BUG_ON(!virt_addr_valid((void *)addr));
3268 __free_pages(virt_to_page((void *)addr), order);
3269 }
3270}
3271
3272EXPORT_SYMBOL(free_pages);
3273
3274/*
3275 * Page Fragment:
3276 * An arbitrary-length arbitrary-offset area of memory which resides
3277 * within a 0 or higher order page. Multiple fragments within that page
3278 * are individually refcounted, in the page's reference counter.
3279 *
3280 * The page_frag functions below provide a simple allocation framework for
3281 * page fragments. This is used by the network stack and network device
3282 * drivers to provide a backing region of memory for use as either an
3283 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3284 */
3285static struct page *__page_frag_refill(struct page_frag_cache *nc,
3286 gfp_t gfp_mask)
3287{
3288 struct page *page = NULL;
3289 gfp_t gfp = gfp_mask;
3290
3291#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3292 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3293 __GFP_NOMEMALLOC;
3294 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3295 PAGE_FRAG_CACHE_MAX_ORDER);
3296 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3297#endif
3298 if (unlikely(!page))
3299 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3300
3301 nc->va = page ? page_address(page) : NULL;
3302
3303 return page;
3304}
3305
3306void *__alloc_page_frag(struct page_frag_cache *nc,
3307 unsigned int fragsz, gfp_t gfp_mask)
3308{
3309 unsigned int size = PAGE_SIZE;
3310 struct page *page;
3311 int offset;
3312
3313 if (unlikely(!nc->va)) {
3314refill:
3315 page = __page_frag_refill(nc, gfp_mask);
3316 if (!page)
3317 return NULL;
3318
3319#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3320 /* if size can vary use size else just use PAGE_SIZE */
3321 size = nc->size;
3322#endif
3323 /* Even if we own the page, we do not use atomic_set().
3324 * This would break get_page_unless_zero() users.
3325 */
3326 atomic_add(size - 1, &page->_count);
3327
3328 /* reset page count bias and offset to start of new frag */
3329 nc->pfmemalloc = page->pfmemalloc;
3330 nc->pagecnt_bias = size;
3331 nc->offset = size;
3332 }
3333
3334 offset = nc->offset - fragsz;
3335 if (unlikely(offset < 0)) {
3336 page = virt_to_page(nc->va);
3337
3338 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3339 goto refill;
3340
3341#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3342 /* if size can vary use size else just use PAGE_SIZE */
3343 size = nc->size;
3344#endif
3345 /* OK, page count is 0, we can safely set it */
3346 atomic_set(&page->_count, size);
3347
3348 /* reset page count bias and offset to start of new frag */
3349 nc->pagecnt_bias = size;
3350 offset = size - fragsz;
3351 }
3352
3353 nc->pagecnt_bias--;
3354 nc->offset = offset;
3355
3356 return nc->va + offset;
3357}
3358EXPORT_SYMBOL(__alloc_page_frag);
3359
3360/*
3361 * Frees a page fragment allocated out of either a compound or order 0 page.
3362 */
3363void __free_page_frag(void *addr)
3364{
3365 struct page *page = virt_to_head_page(addr);
3366
3367 if (unlikely(put_page_testzero(page)))
3368 __free_pages_ok(page, compound_order(page));
3369}
3370EXPORT_SYMBOL(__free_page_frag);
3371
3372/*
3373 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3374 * of the current memory cgroup.
3375 *
3376 * It should be used when the caller would like to use kmalloc, but since the
3377 * allocation is large, it has to fall back to the page allocator.
3378 */
3379struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3380{
3381 struct page *page;
3382 struct mem_cgroup *memcg = NULL;
3383
3384 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3385 return NULL;
3386 page = alloc_pages(gfp_mask, order);
3387 memcg_kmem_commit_charge(page, memcg, order);
3388 return page;
3389}
3390
3391struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3392{
3393 struct page *page;
3394 struct mem_cgroup *memcg = NULL;
3395
3396 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3397 return NULL;
3398 page = alloc_pages_node(nid, gfp_mask, order);
3399 memcg_kmem_commit_charge(page, memcg, order);
3400 return page;
3401}
3402
3403/*
3404 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3405 * alloc_kmem_pages.
3406 */
3407void __free_kmem_pages(struct page *page, unsigned int order)
3408{
3409 memcg_kmem_uncharge_pages(page, order);
3410 __free_pages(page, order);
3411}
3412
3413void free_kmem_pages(unsigned long addr, unsigned int order)
3414{
3415 if (addr != 0) {
3416 VM_BUG_ON(!virt_addr_valid((void *)addr));
3417 __free_kmem_pages(virt_to_page((void *)addr), order);
3418 }
3419}
3420
3421static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3422{
3423 if (addr) {
3424 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3425 unsigned long used = addr + PAGE_ALIGN(size);
3426
3427 split_page(virt_to_page((void *)addr), order);
3428 while (used < alloc_end) {
3429 free_page(used);
3430 used += PAGE_SIZE;
3431 }
3432 }
3433 return (void *)addr;
3434}
3435
3436/**
3437 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3438 * @size: the number of bytes to allocate
3439 * @gfp_mask: GFP flags for the allocation
3440 *
3441 * This function is similar to alloc_pages(), except that it allocates the
3442 * minimum number of pages to satisfy the request. alloc_pages() can only
3443 * allocate memory in power-of-two pages.
3444 *
3445 * This function is also limited by MAX_ORDER.
3446 *
3447 * Memory allocated by this function must be released by free_pages_exact().
3448 */
3449void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3450{
3451 unsigned int order = get_order(size);
3452 unsigned long addr;
3453
3454 addr = __get_free_pages(gfp_mask, order);
3455 return make_alloc_exact(addr, order, size);
3456}
3457EXPORT_SYMBOL(alloc_pages_exact);
3458
3459/**
3460 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3461 * pages on a node.
3462 * @nid: the preferred node ID where memory should be allocated
3463 * @size: the number of bytes to allocate
3464 * @gfp_mask: GFP flags for the allocation
3465 *
3466 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3467 * back.
3468 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3469 * but is not exact.
3470 */
3471void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3472{
3473 unsigned order = get_order(size);
3474 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3475 if (!p)
3476 return NULL;
3477 return make_alloc_exact((unsigned long)page_address(p), order, size);
3478}
3479
3480/**
3481 * free_pages_exact - release memory allocated via alloc_pages_exact()
3482 * @virt: the value returned by alloc_pages_exact.
3483 * @size: size of allocation, same value as passed to alloc_pages_exact().
3484 *
3485 * Release the memory allocated by a previous call to alloc_pages_exact.
3486 */
3487void free_pages_exact(void *virt, size_t size)
3488{
3489 unsigned long addr = (unsigned long)virt;
3490 unsigned long end = addr + PAGE_ALIGN(size);
3491
3492 while (addr < end) {
3493 free_page(addr);
3494 addr += PAGE_SIZE;
3495 }
3496}
3497EXPORT_SYMBOL(free_pages_exact);
3498
3499/**
3500 * nr_free_zone_pages - count number of pages beyond high watermark
3501 * @offset: The zone index of the highest zone
3502 *
3503 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3504 * high watermark within all zones at or below a given zone index. For each
3505 * zone, the number of pages is calculated as:
3506 * managed_pages - high_pages
3507 */
3508static unsigned long nr_free_zone_pages(int offset)
3509{
3510 struct zoneref *z;
3511 struct zone *zone;
3512
3513 /* Just pick one node, since fallback list is circular */
3514 unsigned long sum = 0;
3515
3516 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3517
3518 for_each_zone_zonelist(zone, z, zonelist, offset) {
3519 unsigned long size = zone->managed_pages;
3520 unsigned long high = high_wmark_pages(zone);
3521 if (size > high)
3522 sum += size - high;
3523 }
3524
3525 return sum;
3526}
3527
3528/**
3529 * nr_free_buffer_pages - count number of pages beyond high watermark
3530 *
3531 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3532 * watermark within ZONE_DMA and ZONE_NORMAL.
3533 */
3534unsigned long nr_free_buffer_pages(void)
3535{
3536 return nr_free_zone_pages(gfp_zone(GFP_USER));
3537}
3538EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3539
3540/**
3541 * nr_free_pagecache_pages - count number of pages beyond high watermark
3542 *
3543 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3544 * high watermark within all zones.
3545 */
3546unsigned long nr_free_pagecache_pages(void)
3547{
3548 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3549}
3550
3551static inline void show_node(struct zone *zone)
3552{
3553 if (IS_ENABLED(CONFIG_NUMA))
3554 printk("Node %d ", zone_to_nid(zone));
3555}
3556
3557void si_meminfo(struct sysinfo *val)
3558{
3559 val->totalram = totalram_pages;
3560 val->sharedram = global_page_state(NR_SHMEM);
3561 val->freeram = global_page_state(NR_FREE_PAGES);
3562 val->bufferram = nr_blockdev_pages();
3563 val->totalhigh = totalhigh_pages;
3564 val->freehigh = nr_free_highpages();
3565 val->mem_unit = PAGE_SIZE;
3566}
3567
3568EXPORT_SYMBOL(si_meminfo);
3569
3570#ifdef CONFIG_NUMA
3571void si_meminfo_node(struct sysinfo *val, int nid)
3572{
3573 int zone_type; /* needs to be signed */
3574 unsigned long managed_pages = 0;
3575 pg_data_t *pgdat = NODE_DATA(nid);
3576
3577 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3578 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3579 val->totalram = managed_pages;
3580 val->sharedram = node_page_state(nid, NR_SHMEM);
3581 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3582#ifdef CONFIG_HIGHMEM
3583 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3584 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3585 NR_FREE_PAGES);
3586#else
3587 val->totalhigh = 0;
3588 val->freehigh = 0;
3589#endif
3590 val->mem_unit = PAGE_SIZE;
3591}
3592#endif
3593
3594/*
3595 * Determine whether the node should be displayed or not, depending on whether
3596 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3597 */
3598bool skip_free_areas_node(unsigned int flags, int nid)
3599{
3600 bool ret = false;
3601 unsigned int cpuset_mems_cookie;
3602
3603 if (!(flags & SHOW_MEM_FILTER_NODES))
3604 goto out;
3605
3606 do {
3607 cpuset_mems_cookie = read_mems_allowed_begin();
3608 ret = !node_isset(nid, cpuset_current_mems_allowed);
3609 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3610out:
3611 return ret;
3612}
3613
3614#define K(x) ((x) << (PAGE_SHIFT-10))
3615
3616static void show_migration_types(unsigned char type)
3617{
3618 static const char types[MIGRATE_TYPES] = {
3619 [MIGRATE_UNMOVABLE] = 'U',
3620 [MIGRATE_RECLAIMABLE] = 'E',
3621 [MIGRATE_MOVABLE] = 'M',
3622 [MIGRATE_RESERVE] = 'R',
3623#ifdef CONFIG_CMA
3624 [MIGRATE_CMA] = 'C',
3625#endif
3626#ifdef CONFIG_MEMORY_ISOLATION
3627 [MIGRATE_ISOLATE] = 'I',
3628#endif
3629 };
3630 char tmp[MIGRATE_TYPES + 1];
3631 char *p = tmp;
3632 int i;
3633
3634 for (i = 0; i < MIGRATE_TYPES; i++) {
3635 if (type & (1 << i))
3636 *p++ = types[i];
3637 }
3638
3639 *p = '\0';
3640 printk("(%s) ", tmp);
3641}
3642
3643/*
3644 * Show free area list (used inside shift_scroll-lock stuff)
3645 * We also calculate the percentage fragmentation. We do this by counting the
3646 * memory on each free list with the exception of the first item on the list.
3647 *
3648 * Bits in @filter:
3649 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3650 * cpuset.
3651 */
3652void show_free_areas(unsigned int filter)
3653{
3654 unsigned long free_pcp = 0;
3655 int cpu;
3656 struct zone *zone;
3657
3658 for_each_populated_zone(zone) {
3659 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3660 continue;
3661
3662 for_each_online_cpu(cpu)
3663 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3664 }
3665
3666 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3667 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3668 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3669 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3670 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3671 " free:%lu free_pcp:%lu free_cma:%lu\n",
3672 global_page_state(NR_ACTIVE_ANON),
3673 global_page_state(NR_INACTIVE_ANON),
3674 global_page_state(NR_ISOLATED_ANON),
3675 global_page_state(NR_ACTIVE_FILE),
3676 global_page_state(NR_INACTIVE_FILE),
3677 global_page_state(NR_ISOLATED_FILE),
3678 global_page_state(NR_UNEVICTABLE),
3679 global_page_state(NR_FILE_DIRTY),
3680 global_page_state(NR_WRITEBACK),
3681 global_page_state(NR_UNSTABLE_NFS),
3682 global_page_state(NR_SLAB_RECLAIMABLE),
3683 global_page_state(NR_SLAB_UNRECLAIMABLE),
3684 global_page_state(NR_FILE_MAPPED),
3685 global_page_state(NR_SHMEM),
3686 global_page_state(NR_PAGETABLE),
3687 global_page_state(NR_BOUNCE),
3688 global_page_state(NR_FREE_PAGES),
3689 free_pcp,
3690 global_page_state(NR_FREE_CMA_PAGES));
3691
3692 for_each_populated_zone(zone) {
3693 int i;
3694
3695 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3696 continue;
3697
3698 free_pcp = 0;
3699 for_each_online_cpu(cpu)
3700 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3701
3702 show_node(zone);
3703 printk("%s"
3704 " free:%lukB"
3705 " min:%lukB"
3706 " low:%lukB"
3707 " high:%lukB"
3708 " active_anon:%lukB"
3709 " inactive_anon:%lukB"
3710 " active_file:%lukB"
3711 " inactive_file:%lukB"
3712 " unevictable:%lukB"
3713 " isolated(anon):%lukB"
3714 " isolated(file):%lukB"
3715 " present:%lukB"
3716 " managed:%lukB"
3717 " mlocked:%lukB"
3718 " dirty:%lukB"
3719 " writeback:%lukB"
3720 " mapped:%lukB"
3721 " shmem:%lukB"
3722 " slab_reclaimable:%lukB"
3723 " slab_unreclaimable:%lukB"
3724 " kernel_stack:%lukB"
3725 " pagetables:%lukB"
3726 " unstable:%lukB"
3727 " bounce:%lukB"
3728 " free_pcp:%lukB"
3729 " local_pcp:%ukB"
3730 " free_cma:%lukB"
3731 " writeback_tmp:%lukB"
3732 " pages_scanned:%lu"
3733 " all_unreclaimable? %s"
3734 "\n",
3735 zone->name,
3736 K(zone_page_state(zone, NR_FREE_PAGES)),
3737 K(min_wmark_pages(zone)),
3738 K(low_wmark_pages(zone)),
3739 K(high_wmark_pages(zone)),
3740 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3741 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3742 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3743 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3744 K(zone_page_state(zone, NR_UNEVICTABLE)),
3745 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3746 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3747 K(zone->present_pages),
3748 K(zone->managed_pages),
3749 K(zone_page_state(zone, NR_MLOCK)),
3750 K(zone_page_state(zone, NR_FILE_DIRTY)),
3751 K(zone_page_state(zone, NR_WRITEBACK)),
3752 K(zone_page_state(zone, NR_FILE_MAPPED)),
3753 K(zone_page_state(zone, NR_SHMEM)),
3754 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3755 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3756 zone_page_state(zone, NR_KERNEL_STACK) *
3757 THREAD_SIZE / 1024,
3758 K(zone_page_state(zone, NR_PAGETABLE)),
3759 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3760 K(zone_page_state(zone, NR_BOUNCE)),
3761 K(free_pcp),
3762 K(this_cpu_read(zone->pageset->pcp.count)),
3763 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3764 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3765 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3766 (!zone_reclaimable(zone) ? "yes" : "no")
3767 );
3768 printk("lowmem_reserve[]:");
3769 for (i = 0; i < MAX_NR_ZONES; i++)
3770 printk(" %ld", zone->lowmem_reserve[i]);
3771 printk("\n");
3772 }
3773
3774 for_each_populated_zone(zone) {
3775 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3776 unsigned char types[MAX_ORDER];
3777
3778 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3779 continue;
3780 show_node(zone);
3781 printk("%s: ", zone->name);
3782
3783 spin_lock_irqsave(&zone->lock, flags);
3784 for (order = 0; order < MAX_ORDER; order++) {
3785 struct free_area *area = &zone->free_area[order];
3786 int type;
3787
3788 nr[order] = area->nr_free;
3789 total += nr[order] << order;
3790
3791 types[order] = 0;
3792 for (type = 0; type < MIGRATE_TYPES; type++) {
3793 if (!list_empty(&area->free_list[type]))
3794 types[order] |= 1 << type;
3795 }
3796 }
3797 spin_unlock_irqrestore(&zone->lock, flags);
3798 for (order = 0; order < MAX_ORDER; order++) {
3799 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3800 if (nr[order])
3801 show_migration_types(types[order]);
3802 }
3803 printk("= %lukB\n", K(total));
3804 }
3805
3806 hugetlb_show_meminfo();
3807
3808 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3809
3810 show_swap_cache_info();
3811}
3812
3813static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3814{
3815 zoneref->zone = zone;
3816 zoneref->zone_idx = zone_idx(zone);
3817}
3818
3819/*
3820 * Builds allocation fallback zone lists.
3821 *
3822 * Add all populated zones of a node to the zonelist.
3823 */
3824static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3825 int nr_zones)
3826{
3827 struct zone *zone;
3828 enum zone_type zone_type = MAX_NR_ZONES;
3829
3830 do {
3831 zone_type--;
3832 zone = pgdat->node_zones + zone_type;
3833 if (populated_zone(zone)) {
3834 zoneref_set_zone(zone,
3835 &zonelist->_zonerefs[nr_zones++]);
3836 check_highest_zone(zone_type);
3837 }
3838 } while (zone_type);
3839
3840 return nr_zones;
3841}
3842
3843
3844/*
3845 * zonelist_order:
3846 * 0 = automatic detection of better ordering.
3847 * 1 = order by ([node] distance, -zonetype)
3848 * 2 = order by (-zonetype, [node] distance)
3849 *
3850 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3851 * the same zonelist. So only NUMA can configure this param.
3852 */
3853#define ZONELIST_ORDER_DEFAULT 0
3854#define ZONELIST_ORDER_NODE 1
3855#define ZONELIST_ORDER_ZONE 2
3856
3857/* zonelist order in the kernel.
3858 * set_zonelist_order() will set this to NODE or ZONE.
3859 */
3860static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3861static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3862
3863
3864#ifdef CONFIG_NUMA
3865/* The value user specified ....changed by config */
3866static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3867/* string for sysctl */
3868#define NUMA_ZONELIST_ORDER_LEN 16
3869char numa_zonelist_order[16] = "default";
3870
3871/*
3872 * interface for configure zonelist ordering.
3873 * command line option "numa_zonelist_order"
3874 * = "[dD]efault - default, automatic configuration.
3875 * = "[nN]ode - order by node locality, then by zone within node
3876 * = "[zZ]one - order by zone, then by locality within zone
3877 */
3878
3879static int __parse_numa_zonelist_order(char *s)
3880{
3881 if (*s == 'd' || *s == 'D') {
3882 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3883 } else if (*s == 'n' || *s == 'N') {
3884 user_zonelist_order = ZONELIST_ORDER_NODE;
3885 } else if (*s == 'z' || *s == 'Z') {
3886 user_zonelist_order = ZONELIST_ORDER_ZONE;
3887 } else {
3888 printk(KERN_WARNING
3889 "Ignoring invalid numa_zonelist_order value: "
3890 "%s\n", s);
3891 return -EINVAL;
3892 }
3893 return 0;
3894}
3895
3896static __init int setup_numa_zonelist_order(char *s)
3897{
3898 int ret;
3899
3900 if (!s)
3901 return 0;
3902
3903 ret = __parse_numa_zonelist_order(s);
3904 if (ret == 0)
3905 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3906
3907 return ret;
3908}
3909early_param("numa_zonelist_order", setup_numa_zonelist_order);
3910
3911/*
3912 * sysctl handler for numa_zonelist_order
3913 */
3914int numa_zonelist_order_handler(struct ctl_table *table, int write,
3915 void __user *buffer, size_t *length,
3916 loff_t *ppos)
3917{
3918 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3919 int ret;
3920 static DEFINE_MUTEX(zl_order_mutex);
3921
3922 mutex_lock(&zl_order_mutex);
3923 if (write) {
3924 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3925 ret = -EINVAL;
3926 goto out;
3927 }
3928 strcpy(saved_string, (char *)table->data);
3929 }
3930 ret = proc_dostring(table, write, buffer, length, ppos);
3931 if (ret)
3932 goto out;
3933 if (write) {
3934 int oldval = user_zonelist_order;
3935
3936 ret = __parse_numa_zonelist_order((char *)table->data);
3937 if (ret) {
3938 /*
3939 * bogus value. restore saved string
3940 */
3941 strncpy((char *)table->data, saved_string,
3942 NUMA_ZONELIST_ORDER_LEN);
3943 user_zonelist_order = oldval;
3944 } else if (oldval != user_zonelist_order) {
3945 mutex_lock(&zonelists_mutex);
3946 build_all_zonelists(NULL, NULL);
3947 mutex_unlock(&zonelists_mutex);
3948 }
3949 }
3950out:
3951 mutex_unlock(&zl_order_mutex);
3952 return ret;
3953}
3954
3955
3956#define MAX_NODE_LOAD (nr_online_nodes)
3957static int node_load[MAX_NUMNODES];
3958
3959/**
3960 * find_next_best_node - find the next node that should appear in a given node's fallback list
3961 * @node: node whose fallback list we're appending
3962 * @used_node_mask: nodemask_t of already used nodes
3963 *
3964 * We use a number of factors to determine which is the next node that should
3965 * appear on a given node's fallback list. The node should not have appeared
3966 * already in @node's fallback list, and it should be the next closest node
3967 * according to the distance array (which contains arbitrary distance values
3968 * from each node to each node in the system), and should also prefer nodes
3969 * with no CPUs, since presumably they'll have very little allocation pressure
3970 * on them otherwise.
3971 * It returns -1 if no node is found.
3972 */
3973static int find_next_best_node(int node, nodemask_t *used_node_mask)
3974{
3975 int n, val;
3976 int min_val = INT_MAX;
3977 int best_node = NUMA_NO_NODE;
3978 const struct cpumask *tmp = cpumask_of_node(0);
3979
3980 /* Use the local node if we haven't already */
3981 if (!node_isset(node, *used_node_mask)) {
3982 node_set(node, *used_node_mask);
3983 return node;
3984 }
3985
3986 for_each_node_state(n, N_MEMORY) {
3987
3988 /* Don't want a node to appear more than once */
3989 if (node_isset(n, *used_node_mask))
3990 continue;
3991
3992 /* Use the distance array to find the distance */
3993 val = node_distance(node, n);
3994
3995 /* Penalize nodes under us ("prefer the next node") */
3996 val += (n < node);
3997
3998 /* Give preference to headless and unused nodes */
3999 tmp = cpumask_of_node(n);
4000 if (!cpumask_empty(tmp))
4001 val += PENALTY_FOR_NODE_WITH_CPUS;
4002
4003 /* Slight preference for less loaded node */
4004 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4005 val += node_load[n];
4006
4007 if (val < min_val) {
4008 min_val = val;
4009 best_node = n;
4010 }
4011 }
4012
4013 if (best_node >= 0)
4014 node_set(best_node, *used_node_mask);
4015
4016 return best_node;
4017}
4018
4019
4020/*
4021 * Build zonelists ordered by node and zones within node.
4022 * This results in maximum locality--normal zone overflows into local
4023 * DMA zone, if any--but risks exhausting DMA zone.
4024 */
4025static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4026{
4027 int j;
4028 struct zonelist *zonelist;
4029
4030 zonelist = &pgdat->node_zonelists[0];
4031 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4032 ;
4033 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4034 zonelist->_zonerefs[j].zone = NULL;
4035 zonelist->_zonerefs[j].zone_idx = 0;
4036}
4037
4038/*
4039 * Build gfp_thisnode zonelists
4040 */
4041static void build_thisnode_zonelists(pg_data_t *pgdat)
4042{
4043 int j;
4044 struct zonelist *zonelist;
4045
4046 zonelist = &pgdat->node_zonelists[1];
4047 j = build_zonelists_node(pgdat, zonelist, 0);
4048 zonelist->_zonerefs[j].zone = NULL;
4049 zonelist->_zonerefs[j].zone_idx = 0;
4050}
4051
4052/*
4053 * Build zonelists ordered by zone and nodes within zones.
4054 * This results in conserving DMA zone[s] until all Normal memory is
4055 * exhausted, but results in overflowing to remote node while memory
4056 * may still exist in local DMA zone.
4057 */
4058static int node_order[MAX_NUMNODES];
4059
4060static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4061{
4062 int pos, j, node;
4063 int zone_type; /* needs to be signed */
4064 struct zone *z;
4065 struct zonelist *zonelist;
4066
4067 zonelist = &pgdat->node_zonelists[0];
4068 pos = 0;
4069 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4070 for (j = 0; j < nr_nodes; j++) {
4071 node = node_order[j];
4072 z = &NODE_DATA(node)->node_zones[zone_type];
4073 if (populated_zone(z)) {
4074 zoneref_set_zone(z,
4075 &zonelist->_zonerefs[pos++]);
4076 check_highest_zone(zone_type);
4077 }
4078 }
4079 }
4080 zonelist->_zonerefs[pos].zone = NULL;
4081 zonelist->_zonerefs[pos].zone_idx = 0;
4082}
4083
4084#if defined(CONFIG_64BIT)
4085/*
4086 * Devices that require DMA32/DMA are relatively rare and do not justify a
4087 * penalty to every machine in case the specialised case applies. Default
4088 * to Node-ordering on 64-bit NUMA machines
4089 */
4090static int default_zonelist_order(void)
4091{
4092 return ZONELIST_ORDER_NODE;
4093}
4094#else
4095/*
4096 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4097 * by the kernel. If processes running on node 0 deplete the low memory zone
4098 * then reclaim will occur more frequency increasing stalls and potentially
4099 * be easier to OOM if a large percentage of the zone is under writeback or
4100 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4101 * Hence, default to zone ordering on 32-bit.
4102 */
4103static int default_zonelist_order(void)
4104{
4105 return ZONELIST_ORDER_ZONE;
4106}
4107#endif /* CONFIG_64BIT */
4108
4109static void set_zonelist_order(void)
4110{
4111 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4112 current_zonelist_order = default_zonelist_order();
4113 else
4114 current_zonelist_order = user_zonelist_order;
4115}
4116
4117static void build_zonelists(pg_data_t *pgdat)
4118{
4119 int j, node, load;
4120 enum zone_type i;
4121 nodemask_t used_mask;
4122 int local_node, prev_node;
4123 struct zonelist *zonelist;
4124 int order = current_zonelist_order;
4125
4126 /* initialize zonelists */
4127 for (i = 0; i < MAX_ZONELISTS; i++) {
4128 zonelist = pgdat->node_zonelists + i;
4129 zonelist->_zonerefs[0].zone = NULL;
4130 zonelist->_zonerefs[0].zone_idx = 0;
4131 }
4132
4133 /* NUMA-aware ordering of nodes */
4134 local_node = pgdat->node_id;
4135 load = nr_online_nodes;
4136 prev_node = local_node;
4137 nodes_clear(used_mask);
4138
4139 memset(node_order, 0, sizeof(node_order));
4140 j = 0;
4141
4142 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4143 /*
4144 * We don't want to pressure a particular node.
4145 * So adding penalty to the first node in same
4146 * distance group to make it round-robin.
4147 */
4148 if (node_distance(local_node, node) !=
4149 node_distance(local_node, prev_node))
4150 node_load[node] = load;
4151
4152 prev_node = node;
4153 load--;
4154 if (order == ZONELIST_ORDER_NODE)
4155 build_zonelists_in_node_order(pgdat, node);
4156 else
4157 node_order[j++] = node; /* remember order */
4158 }
4159
4160 if (order == ZONELIST_ORDER_ZONE) {
4161 /* calculate node order -- i.e., DMA last! */
4162 build_zonelists_in_zone_order(pgdat, j);
4163 }
4164
4165 build_thisnode_zonelists(pgdat);
4166}
4167
4168/* Construct the zonelist performance cache - see further mmzone.h */
4169static void build_zonelist_cache(pg_data_t *pgdat)
4170{
4171 struct zonelist *zonelist;
4172 struct zonelist_cache *zlc;
4173 struct zoneref *z;
4174
4175 zonelist = &pgdat->node_zonelists[0];
4176 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
4177 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
4178 for (z = zonelist->_zonerefs; z->zone; z++)
4179 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
4180}
4181
4182#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4183/*
4184 * Return node id of node used for "local" allocations.
4185 * I.e., first node id of first zone in arg node's generic zonelist.
4186 * Used for initializing percpu 'numa_mem', which is used primarily
4187 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4188 */
4189int local_memory_node(int node)
4190{
4191 struct zone *zone;
4192
4193 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4194 gfp_zone(GFP_KERNEL),
4195 NULL,
4196 &zone);
4197 return zone->node;
4198}
4199#endif
4200
4201#else /* CONFIG_NUMA */
4202
4203static void set_zonelist_order(void)
4204{
4205 current_zonelist_order = ZONELIST_ORDER_ZONE;
4206}
4207
4208static void build_zonelists(pg_data_t *pgdat)
4209{
4210 int node, local_node;
4211 enum zone_type j;
4212 struct zonelist *zonelist;
4213
4214 local_node = pgdat->node_id;
4215
4216 zonelist = &pgdat->node_zonelists[0];
4217 j = build_zonelists_node(pgdat, zonelist, 0);
4218
4219 /*
4220 * Now we build the zonelist so that it contains the zones
4221 * of all the other nodes.
4222 * We don't want to pressure a particular node, so when
4223 * building the zones for node N, we make sure that the
4224 * zones coming right after the local ones are those from
4225 * node N+1 (modulo N)
4226 */
4227 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4228 if (!node_online(node))
4229 continue;
4230 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4231 }
4232 for (node = 0; node < local_node; node++) {
4233 if (!node_online(node))
4234 continue;
4235 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4236 }
4237
4238 zonelist->_zonerefs[j].zone = NULL;
4239 zonelist->_zonerefs[j].zone_idx = 0;
4240}
4241
4242/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
4243static void build_zonelist_cache(pg_data_t *pgdat)
4244{
4245 pgdat->node_zonelists[0].zlcache_ptr = NULL;
4246}
4247
4248#endif /* CONFIG_NUMA */
4249
4250/*
4251 * Boot pageset table. One per cpu which is going to be used for all
4252 * zones and all nodes. The parameters will be set in such a way
4253 * that an item put on a list will immediately be handed over to
4254 * the buddy list. This is safe since pageset manipulation is done
4255 * with interrupts disabled.
4256 *
4257 * The boot_pagesets must be kept even after bootup is complete for
4258 * unused processors and/or zones. They do play a role for bootstrapping
4259 * hotplugged processors.
4260 *
4261 * zoneinfo_show() and maybe other functions do
4262 * not check if the processor is online before following the pageset pointer.
4263 * Other parts of the kernel may not check if the zone is available.
4264 */
4265static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4266static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4267static void setup_zone_pageset(struct zone *zone);
4268
4269/*
4270 * Global mutex to protect against size modification of zonelists
4271 * as well as to serialize pageset setup for the new populated zone.
4272 */
4273DEFINE_MUTEX(zonelists_mutex);
4274
4275/* return values int ....just for stop_machine() */
4276static int __build_all_zonelists(void *data)
4277{
4278 int nid;
4279 int cpu;
4280 pg_data_t *self = data;
4281
4282#ifdef CONFIG_NUMA
4283 memset(node_load, 0, sizeof(node_load));
4284#endif
4285
4286 if (self && !node_online(self->node_id)) {
4287 build_zonelists(self);
4288 build_zonelist_cache(self);
4289 }
4290
4291 for_each_online_node(nid) {
4292 pg_data_t *pgdat = NODE_DATA(nid);
4293
4294 build_zonelists(pgdat);
4295 build_zonelist_cache(pgdat);
4296 }
4297
4298 /*
4299 * Initialize the boot_pagesets that are going to be used
4300 * for bootstrapping processors. The real pagesets for
4301 * each zone will be allocated later when the per cpu
4302 * allocator is available.
4303 *
4304 * boot_pagesets are used also for bootstrapping offline
4305 * cpus if the system is already booted because the pagesets
4306 * are needed to initialize allocators on a specific cpu too.
4307 * F.e. the percpu allocator needs the page allocator which
4308 * needs the percpu allocator in order to allocate its pagesets
4309 * (a chicken-egg dilemma).
4310 */
4311 for_each_possible_cpu(cpu) {
4312 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4313
4314#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4315 /*
4316 * We now know the "local memory node" for each node--
4317 * i.e., the node of the first zone in the generic zonelist.
4318 * Set up numa_mem percpu variable for on-line cpus. During
4319 * boot, only the boot cpu should be on-line; we'll init the
4320 * secondary cpus' numa_mem as they come on-line. During
4321 * node/memory hotplug, we'll fixup all on-line cpus.
4322 */
4323 if (cpu_online(cpu))
4324 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4325#endif
4326 }
4327
4328 return 0;
4329}
4330
4331static noinline void __init
4332build_all_zonelists_init(void)
4333{
4334 __build_all_zonelists(NULL);
4335 mminit_verify_zonelist();
4336 cpuset_init_current_mems_allowed();
4337}
4338
4339/*
4340 * Called with zonelists_mutex held always
4341 * unless system_state == SYSTEM_BOOTING.
4342 *
4343 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4344 * [we're only called with non-NULL zone through __meminit paths] and
4345 * (2) call of __init annotated helper build_all_zonelists_init
4346 * [protected by SYSTEM_BOOTING].
4347 */
4348void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4349{
4350 set_zonelist_order();
4351
4352 if (system_state == SYSTEM_BOOTING) {
4353 build_all_zonelists_init();
4354 } else {
4355#ifdef CONFIG_MEMORY_HOTPLUG
4356 if (zone)
4357 setup_zone_pageset(zone);
4358#endif
4359 /* we have to stop all cpus to guarantee there is no user
4360 of zonelist */
4361 stop_machine(__build_all_zonelists, pgdat, NULL);
4362 /* cpuset refresh routine should be here */
4363 }
4364 vm_total_pages = nr_free_pagecache_pages();
4365 /*
4366 * Disable grouping by mobility if the number of pages in the
4367 * system is too low to allow the mechanism to work. It would be
4368 * more accurate, but expensive to check per-zone. This check is
4369 * made on memory-hotadd so a system can start with mobility
4370 * disabled and enable it later
4371 */
4372 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4373 page_group_by_mobility_disabled = 1;
4374 else
4375 page_group_by_mobility_disabled = 0;
4376
4377 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4378 "Total pages: %ld\n",
4379 nr_online_nodes,
4380 zonelist_order_name[current_zonelist_order],
4381 page_group_by_mobility_disabled ? "off" : "on",
4382 vm_total_pages);
4383#ifdef CONFIG_NUMA
4384 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4385#endif
4386}
4387
4388/*
4389 * Helper functions to size the waitqueue hash table.
4390 * Essentially these want to choose hash table sizes sufficiently
4391 * large so that collisions trying to wait on pages are rare.
4392 * But in fact, the number of active page waitqueues on typical
4393 * systems is ridiculously low, less than 200. So this is even
4394 * conservative, even though it seems large.
4395 *
4396 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4397 * waitqueues, i.e. the size of the waitq table given the number of pages.
4398 */
4399#define PAGES_PER_WAITQUEUE 256
4400
4401#ifndef CONFIG_MEMORY_HOTPLUG
4402static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4403{
4404 unsigned long size = 1;
4405
4406 pages /= PAGES_PER_WAITQUEUE;
4407
4408 while (size < pages)
4409 size <<= 1;
4410
4411 /*
4412 * Once we have dozens or even hundreds of threads sleeping
4413 * on IO we've got bigger problems than wait queue collision.
4414 * Limit the size of the wait table to a reasonable size.
4415 */
4416 size = min(size, 4096UL);
4417
4418 return max(size, 4UL);
4419}
4420#else
4421/*
4422 * A zone's size might be changed by hot-add, so it is not possible to determine
4423 * a suitable size for its wait_table. So we use the maximum size now.
4424 *
4425 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4426 *
4427 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4428 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4429 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4430 *
4431 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4432 * or more by the traditional way. (See above). It equals:
4433 *
4434 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4435 * ia64(16K page size) : = ( 8G + 4M)byte.
4436 * powerpc (64K page size) : = (32G +16M)byte.
4437 */
4438static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4439{
4440 return 4096UL;
4441}
4442#endif
4443
4444/*
4445 * This is an integer logarithm so that shifts can be used later
4446 * to extract the more random high bits from the multiplicative
4447 * hash function before the remainder is taken.
4448 */
4449static inline unsigned long wait_table_bits(unsigned long size)
4450{
4451 return ffz(~size);
4452}
4453
4454/*
4455 * Check if a pageblock contains reserved pages
4456 */
4457static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4458{
4459 unsigned long pfn;
4460
4461 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4462 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4463 return 1;
4464 }
4465 return 0;
4466}
4467
4468/*
4469 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4470 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4471 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4472 * higher will lead to a bigger reserve which will get freed as contiguous
4473 * blocks as reclaim kicks in
4474 */
4475static void setup_zone_migrate_reserve(struct zone *zone)
4476{
4477 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4478 struct page *page;
4479 unsigned long block_migratetype;
4480 int reserve;
4481 int old_reserve;
4482
4483 /*
4484 * Get the start pfn, end pfn and the number of blocks to reserve
4485 * We have to be careful to be aligned to pageblock_nr_pages to
4486 * make sure that we always check pfn_valid for the first page in
4487 * the block.
4488 */
4489 start_pfn = zone->zone_start_pfn;
4490 end_pfn = zone_end_pfn(zone);
4491 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4492 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4493 pageblock_order;
4494
4495 /*
4496 * Reserve blocks are generally in place to help high-order atomic
4497 * allocations that are short-lived. A min_free_kbytes value that
4498 * would result in more than 2 reserve blocks for atomic allocations
4499 * is assumed to be in place to help anti-fragmentation for the
4500 * future allocation of hugepages at runtime.
4501 */
4502 reserve = min(2, reserve);
4503 old_reserve = zone->nr_migrate_reserve_block;
4504
4505 /* When memory hot-add, we almost always need to do nothing */
4506 if (reserve == old_reserve)
4507 return;
4508 zone->nr_migrate_reserve_block = reserve;
4509
4510 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4511 if (!early_page_nid_uninitialised(pfn, zone_to_nid(zone)))
4512 return;
4513
4514 if (!pfn_valid(pfn))
4515 continue;
4516 page = pfn_to_page(pfn);
4517
4518 /* Watch out for overlapping nodes */
4519 if (page_to_nid(page) != zone_to_nid(zone))
4520 continue;
4521
4522 block_migratetype = get_pageblock_migratetype(page);
4523
4524 /* Only test what is necessary when the reserves are not met */
4525 if (reserve > 0) {
4526 /*
4527 * Blocks with reserved pages will never free, skip
4528 * them.
4529 */
4530 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4531 if (pageblock_is_reserved(pfn, block_end_pfn))
4532 continue;
4533
4534 /* If this block is reserved, account for it */
4535 if (block_migratetype == MIGRATE_RESERVE) {
4536 reserve--;
4537 continue;
4538 }
4539
4540 /* Suitable for reserving if this block is movable */
4541 if (block_migratetype == MIGRATE_MOVABLE) {
4542 set_pageblock_migratetype(page,
4543 MIGRATE_RESERVE);
4544 move_freepages_block(zone, page,
4545 MIGRATE_RESERVE);
4546 reserve--;
4547 continue;
4548 }
4549 } else if (!old_reserve) {
4550 /*
4551 * At boot time we don't need to scan the whole zone
4552 * for turning off MIGRATE_RESERVE.
4553 */
4554 break;
4555 }
4556
4557 /*
4558 * If the reserve is met and this is a previous reserved block,
4559 * take it back
4560 */
4561 if (block_migratetype == MIGRATE_RESERVE) {
4562 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4563 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4564 }
4565 }
4566}
4567
4568/*
4569 * Initially all pages are reserved - free ones are freed
4570 * up by free_all_bootmem() once the early boot process is
4571 * done. Non-atomic initialization, single-pass.
4572 */
4573void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4574 unsigned long start_pfn, enum memmap_context context)
4575{
4576 pg_data_t *pgdat = NODE_DATA(nid);
4577 unsigned long end_pfn = start_pfn + size;
4578 unsigned long pfn;
4579 struct zone *z;
4580 unsigned long nr_initialised = 0;
4581
4582 if (highest_memmap_pfn < end_pfn - 1)
4583 highest_memmap_pfn = end_pfn - 1;
4584
4585 z = &pgdat->node_zones[zone];
4586 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4587 /*
4588 * There can be holes in boot-time mem_map[]s
4589 * handed to this function. They do not
4590 * exist on hotplugged memory.
4591 */
4592 if (context == MEMMAP_EARLY) {
4593 if (!early_pfn_valid(pfn))
4594 continue;
4595 if (!early_pfn_in_nid(pfn, nid))
4596 continue;
4597 if (!update_defer_init(pgdat, pfn, end_pfn,
4598 &nr_initialised))
4599 break;
4600 }
4601
4602 /*
4603 * Mark the block movable so that blocks are reserved for
4604 * movable at startup. This will force kernel allocations
4605 * to reserve their blocks rather than leaking throughout
4606 * the address space during boot when many long-lived
4607 * kernel allocations are made. Later some blocks near
4608 * the start are marked MIGRATE_RESERVE by
4609 * setup_zone_migrate_reserve()
4610 *
4611 * bitmap is created for zone's valid pfn range. but memmap
4612 * can be created for invalid pages (for alignment)
4613 * check here not to call set_pageblock_migratetype() against
4614 * pfn out of zone.
4615 */
4616 if (!(pfn & (pageblock_nr_pages - 1))) {
4617 struct page *page = pfn_to_page(pfn);
4618
4619 __init_single_page(page, pfn, zone, nid);
4620 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4621 } else {
4622 __init_single_pfn(pfn, zone, nid);
4623 }
4624 }
4625}
4626
4627static void __meminit zone_init_free_lists(struct zone *zone)
4628{
4629 unsigned int order, t;
4630 for_each_migratetype_order(order, t) {
4631 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4632 zone->free_area[order].nr_free = 0;
4633 }
4634}
4635
4636#ifndef __HAVE_ARCH_MEMMAP_INIT
4637#define memmap_init(size, nid, zone, start_pfn) \
4638 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4639#endif
4640
4641static int zone_batchsize(struct zone *zone)
4642{
4643#ifdef CONFIG_MMU
4644 int batch;
4645
4646 /*
4647 * The per-cpu-pages pools are set to around 1000th of the
4648 * size of the zone. But no more than 1/2 of a meg.
4649 *
4650 * OK, so we don't know how big the cache is. So guess.
4651 */
4652 batch = zone->managed_pages / 1024;
4653 if (batch * PAGE_SIZE > 512 * 1024)
4654 batch = (512 * 1024) / PAGE_SIZE;
4655 batch /= 4; /* We effectively *= 4 below */
4656 if (batch < 1)
4657 batch = 1;
4658
4659 /*
4660 * Clamp the batch to a 2^n - 1 value. Having a power
4661 * of 2 value was found to be more likely to have
4662 * suboptimal cache aliasing properties in some cases.
4663 *
4664 * For example if 2 tasks are alternately allocating
4665 * batches of pages, one task can end up with a lot
4666 * of pages of one half of the possible page colors
4667 * and the other with pages of the other colors.
4668 */
4669 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4670
4671 return batch;
4672
4673#else
4674 /* The deferral and batching of frees should be suppressed under NOMMU
4675 * conditions.
4676 *
4677 * The problem is that NOMMU needs to be able to allocate large chunks
4678 * of contiguous memory as there's no hardware page translation to
4679 * assemble apparent contiguous memory from discontiguous pages.
4680 *
4681 * Queueing large contiguous runs of pages for batching, however,
4682 * causes the pages to actually be freed in smaller chunks. As there
4683 * can be a significant delay between the individual batches being
4684 * recycled, this leads to the once large chunks of space being
4685 * fragmented and becoming unavailable for high-order allocations.
4686 */
4687 return 0;
4688#endif
4689}
4690
4691/*
4692 * pcp->high and pcp->batch values are related and dependent on one another:
4693 * ->batch must never be higher then ->high.
4694 * The following function updates them in a safe manner without read side
4695 * locking.
4696 *
4697 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4698 * those fields changing asynchronously (acording the the above rule).
4699 *
4700 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4701 * outside of boot time (or some other assurance that no concurrent updaters
4702 * exist).
4703 */
4704static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4705 unsigned long batch)
4706{
4707 /* start with a fail safe value for batch */
4708 pcp->batch = 1;
4709 smp_wmb();
4710
4711 /* Update high, then batch, in order */
4712 pcp->high = high;
4713 smp_wmb();
4714
4715 pcp->batch = batch;
4716}
4717
4718/* a companion to pageset_set_high() */
4719static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4720{
4721 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4722}
4723
4724static void pageset_init(struct per_cpu_pageset *p)
4725{
4726 struct per_cpu_pages *pcp;
4727 int migratetype;
4728
4729 memset(p, 0, sizeof(*p));
4730
4731 pcp = &p->pcp;
4732 pcp->count = 0;
4733 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4734 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4735}
4736
4737static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4738{
4739 pageset_init(p);
4740 pageset_set_batch(p, batch);
4741}
4742
4743/*
4744 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4745 * to the value high for the pageset p.
4746 */
4747static void pageset_set_high(struct per_cpu_pageset *p,
4748 unsigned long high)
4749{
4750 unsigned long batch = max(1UL, high / 4);
4751 if ((high / 4) > (PAGE_SHIFT * 8))
4752 batch = PAGE_SHIFT * 8;
4753
4754 pageset_update(&p->pcp, high, batch);
4755}
4756
4757static void pageset_set_high_and_batch(struct zone *zone,
4758 struct per_cpu_pageset *pcp)
4759{
4760 if (percpu_pagelist_fraction)
4761 pageset_set_high(pcp,
4762 (zone->managed_pages /
4763 percpu_pagelist_fraction));
4764 else
4765 pageset_set_batch(pcp, zone_batchsize(zone));
4766}
4767
4768static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4769{
4770 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4771
4772 pageset_init(pcp);
4773 pageset_set_high_and_batch(zone, pcp);
4774}
4775
4776static void __meminit setup_zone_pageset(struct zone *zone)
4777{
4778 int cpu;
4779 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4780 for_each_possible_cpu(cpu)
4781 zone_pageset_init(zone, cpu);
4782}
4783
4784/*
4785 * Allocate per cpu pagesets and initialize them.
4786 * Before this call only boot pagesets were available.
4787 */
4788void __init setup_per_cpu_pageset(void)
4789{
4790 struct zone *zone;
4791
4792 for_each_populated_zone(zone)
4793 setup_zone_pageset(zone);
4794}
4795
4796static noinline __init_refok
4797int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4798{
4799 int i;
4800 size_t alloc_size;
4801
4802 /*
4803 * The per-page waitqueue mechanism uses hashed waitqueues
4804 * per zone.
4805 */
4806 zone->wait_table_hash_nr_entries =
4807 wait_table_hash_nr_entries(zone_size_pages);
4808 zone->wait_table_bits =
4809 wait_table_bits(zone->wait_table_hash_nr_entries);
4810 alloc_size = zone->wait_table_hash_nr_entries
4811 * sizeof(wait_queue_head_t);
4812
4813 if (!slab_is_available()) {
4814 zone->wait_table = (wait_queue_head_t *)
4815 memblock_virt_alloc_node_nopanic(
4816 alloc_size, zone->zone_pgdat->node_id);
4817 } else {
4818 /*
4819 * This case means that a zone whose size was 0 gets new memory
4820 * via memory hot-add.
4821 * But it may be the case that a new node was hot-added. In
4822 * this case vmalloc() will not be able to use this new node's
4823 * memory - this wait_table must be initialized to use this new
4824 * node itself as well.
4825 * To use this new node's memory, further consideration will be
4826 * necessary.
4827 */
4828 zone->wait_table = vmalloc(alloc_size);
4829 }
4830 if (!zone->wait_table)
4831 return -ENOMEM;
4832
4833 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4834 init_waitqueue_head(zone->wait_table + i);
4835
4836 return 0;
4837}
4838
4839static __meminit void zone_pcp_init(struct zone *zone)
4840{
4841 /*
4842 * per cpu subsystem is not up at this point. The following code
4843 * relies on the ability of the linker to provide the
4844 * offset of a (static) per cpu variable into the per cpu area.
4845 */
4846 zone->pageset = &boot_pageset;
4847
4848 if (populated_zone(zone))
4849 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4850 zone->name, zone->present_pages,
4851 zone_batchsize(zone));
4852}
4853
4854int __meminit init_currently_empty_zone(struct zone *zone,
4855 unsigned long zone_start_pfn,
4856 unsigned long size,
4857 enum memmap_context context)
4858{
4859 struct pglist_data *pgdat = zone->zone_pgdat;
4860 int ret;
4861 ret = zone_wait_table_init(zone, size);
4862 if (ret)
4863 return ret;
4864 pgdat->nr_zones = zone_idx(zone) + 1;
4865
4866 zone->zone_start_pfn = zone_start_pfn;
4867
4868 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4869 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4870 pgdat->node_id,
4871 (unsigned long)zone_idx(zone),
4872 zone_start_pfn, (zone_start_pfn + size));
4873
4874 zone_init_free_lists(zone);
4875
4876 return 0;
4877}
4878
4879#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4880#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4881
4882/*
4883 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4884 */
4885int __meminit __early_pfn_to_nid(unsigned long pfn,
4886 struct mminit_pfnnid_cache *state)
4887{
4888 unsigned long start_pfn, end_pfn;
4889 int nid;
4890
4891 if (state->last_start <= pfn && pfn < state->last_end)
4892 return state->last_nid;
4893
4894 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4895 if (nid != -1) {
4896 state->last_start = start_pfn;
4897 state->last_end = end_pfn;
4898 state->last_nid = nid;
4899 }
4900
4901 return nid;
4902}
4903#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4904
4905/**
4906 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4907 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4908 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4909 *
4910 * If an architecture guarantees that all ranges registered contain no holes
4911 * and may be freed, this this function may be used instead of calling
4912 * memblock_free_early_nid() manually.
4913 */
4914void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4915{
4916 unsigned long start_pfn, end_pfn;
4917 int i, this_nid;
4918
4919 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4920 start_pfn = min(start_pfn, max_low_pfn);
4921 end_pfn = min(end_pfn, max_low_pfn);
4922
4923 if (start_pfn < end_pfn)
4924 memblock_free_early_nid(PFN_PHYS(start_pfn),
4925 (end_pfn - start_pfn) << PAGE_SHIFT,
4926 this_nid);
4927 }
4928}
4929
4930/**
4931 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4932 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4933 *
4934 * If an architecture guarantees that all ranges registered contain no holes and may
4935 * be freed, this function may be used instead of calling memory_present() manually.
4936 */
4937void __init sparse_memory_present_with_active_regions(int nid)
4938{
4939 unsigned long start_pfn, end_pfn;
4940 int i, this_nid;
4941
4942 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4943 memory_present(this_nid, start_pfn, end_pfn);
4944}
4945
4946/**
4947 * get_pfn_range_for_nid - Return the start and end page frames for a node
4948 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4949 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4950 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4951 *
4952 * It returns the start and end page frame of a node based on information
4953 * provided by memblock_set_node(). If called for a node
4954 * with no available memory, a warning is printed and the start and end
4955 * PFNs will be 0.
4956 */
4957void __meminit get_pfn_range_for_nid(unsigned int nid,
4958 unsigned long *start_pfn, unsigned long *end_pfn)
4959{
4960 unsigned long this_start_pfn, this_end_pfn;
4961 int i;
4962
4963 *start_pfn = -1UL;
4964 *end_pfn = 0;
4965
4966 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4967 *start_pfn = min(*start_pfn, this_start_pfn);
4968 *end_pfn = max(*end_pfn, this_end_pfn);
4969 }
4970
4971 if (*start_pfn == -1UL)
4972 *start_pfn = 0;
4973}
4974
4975/*
4976 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4977 * assumption is made that zones within a node are ordered in monotonic
4978 * increasing memory addresses so that the "highest" populated zone is used
4979 */
4980static void __init find_usable_zone_for_movable(void)
4981{
4982 int zone_index;
4983 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4984 if (zone_index == ZONE_MOVABLE)
4985 continue;
4986
4987 if (arch_zone_highest_possible_pfn[zone_index] >
4988 arch_zone_lowest_possible_pfn[zone_index])
4989 break;
4990 }
4991
4992 VM_BUG_ON(zone_index == -1);
4993 movable_zone = zone_index;
4994}
4995
4996/*
4997 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4998 * because it is sized independent of architecture. Unlike the other zones,
4999 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5000 * in each node depending on the size of each node and how evenly kernelcore
5001 * is distributed. This helper function adjusts the zone ranges
5002 * provided by the architecture for a given node by using the end of the
5003 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5004 * zones within a node are in order of monotonic increases memory addresses
5005 */
5006static void __meminit adjust_zone_range_for_zone_movable(int nid,
5007 unsigned long zone_type,
5008 unsigned long node_start_pfn,
5009 unsigned long node_end_pfn,
5010 unsigned long *zone_start_pfn,
5011 unsigned long *zone_end_pfn)
5012{
5013 /* Only adjust if ZONE_MOVABLE is on this node */
5014 if (zone_movable_pfn[nid]) {
5015 /* Size ZONE_MOVABLE */
5016 if (zone_type == ZONE_MOVABLE) {
5017 *zone_start_pfn = zone_movable_pfn[nid];
5018 *zone_end_pfn = min(node_end_pfn,
5019 arch_zone_highest_possible_pfn[movable_zone]);
5020
5021 /* Adjust for ZONE_MOVABLE starting within this range */
5022 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
5023 *zone_end_pfn > zone_movable_pfn[nid]) {
5024 *zone_end_pfn = zone_movable_pfn[nid];
5025
5026 /* Check if this whole range is within ZONE_MOVABLE */
5027 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5028 *zone_start_pfn = *zone_end_pfn;
5029 }
5030}
5031
5032/*
5033 * Return the number of pages a zone spans in a node, including holes
5034 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5035 */
5036static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5037 unsigned long zone_type,
5038 unsigned long node_start_pfn,
5039 unsigned long node_end_pfn,
5040 unsigned long *ignored)
5041{
5042 unsigned long zone_start_pfn, zone_end_pfn;
5043
5044 /* Get the start and end of the zone */
5045 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5046 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5047 adjust_zone_range_for_zone_movable(nid, zone_type,
5048 node_start_pfn, node_end_pfn,
5049 &zone_start_pfn, &zone_end_pfn);
5050
5051 /* Check that this node has pages within the zone's required range */
5052 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
5053 return 0;
5054
5055 /* Move the zone boundaries inside the node if necessary */
5056 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
5057 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
5058
5059 /* Return the spanned pages */
5060 return zone_end_pfn - zone_start_pfn;
5061}
5062
5063/*
5064 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5065 * then all holes in the requested range will be accounted for.
5066 */
5067unsigned long __meminit __absent_pages_in_range(int nid,
5068 unsigned long range_start_pfn,
5069 unsigned long range_end_pfn)
5070{
5071 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5072 unsigned long start_pfn, end_pfn;
5073 int i;
5074
5075 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5076 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5077 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5078 nr_absent -= end_pfn - start_pfn;
5079 }
5080 return nr_absent;
5081}
5082
5083/**
5084 * absent_pages_in_range - Return number of page frames in holes within a range
5085 * @start_pfn: The start PFN to start searching for holes
5086 * @end_pfn: The end PFN to stop searching for holes
5087 *
5088 * It returns the number of pages frames in memory holes within a range.
5089 */
5090unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5091 unsigned long end_pfn)
5092{
5093 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5094}
5095
5096/* Return the number of page frames in holes in a zone on a node */
5097static unsigned long __meminit zone_absent_pages_in_node(int nid,
5098 unsigned long zone_type,
5099 unsigned long node_start_pfn,
5100 unsigned long node_end_pfn,
5101 unsigned long *ignored)
5102{
5103 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5104 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5105 unsigned long zone_start_pfn, zone_end_pfn;
5106
5107 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5108 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5109
5110 adjust_zone_range_for_zone_movable(nid, zone_type,
5111 node_start_pfn, node_end_pfn,
5112 &zone_start_pfn, &zone_end_pfn);
5113 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5114}
5115
5116#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5117static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5118 unsigned long zone_type,
5119 unsigned long node_start_pfn,
5120 unsigned long node_end_pfn,
5121 unsigned long *zones_size)
5122{
5123 return zones_size[zone_type];
5124}
5125
5126static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5127 unsigned long zone_type,
5128 unsigned long node_start_pfn,
5129 unsigned long node_end_pfn,
5130 unsigned long *zholes_size)
5131{
5132 if (!zholes_size)
5133 return 0;
5134
5135 return zholes_size[zone_type];
5136}
5137
5138#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5139
5140static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5141 unsigned long node_start_pfn,
5142 unsigned long node_end_pfn,
5143 unsigned long *zones_size,
5144 unsigned long *zholes_size)
5145{
5146 unsigned long realtotalpages = 0, totalpages = 0;
5147 enum zone_type i;
5148
5149 for (i = 0; i < MAX_NR_ZONES; i++) {
5150 struct zone *zone = pgdat->node_zones + i;
5151 unsigned long size, real_size;
5152
5153 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5154 node_start_pfn,
5155 node_end_pfn,
5156 zones_size);
5157 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5158 node_start_pfn, node_end_pfn,
5159 zholes_size);
5160 zone->spanned_pages = size;
5161 zone->present_pages = real_size;
5162
5163 totalpages += size;
5164 realtotalpages += real_size;
5165 }
5166
5167 pgdat->node_spanned_pages = totalpages;
5168 pgdat->node_present_pages = realtotalpages;
5169 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5170 realtotalpages);
5171}
5172
5173#ifndef CONFIG_SPARSEMEM
5174/*
5175 * Calculate the size of the zone->blockflags rounded to an unsigned long
5176 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5177 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5178 * round what is now in bits to nearest long in bits, then return it in
5179 * bytes.
5180 */
5181static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5182{
5183 unsigned long usemapsize;
5184
5185 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5186 usemapsize = roundup(zonesize, pageblock_nr_pages);
5187 usemapsize = usemapsize >> pageblock_order;
5188 usemapsize *= NR_PAGEBLOCK_BITS;
5189 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5190
5191 return usemapsize / 8;
5192}
5193
5194static void __init setup_usemap(struct pglist_data *pgdat,
5195 struct zone *zone,
5196 unsigned long zone_start_pfn,
5197 unsigned long zonesize)
5198{
5199 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5200 zone->pageblock_flags = NULL;
5201 if (usemapsize)
5202 zone->pageblock_flags =
5203 memblock_virt_alloc_node_nopanic(usemapsize,
5204 pgdat->node_id);
5205}
5206#else
5207static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5208 unsigned long zone_start_pfn, unsigned long zonesize) {}
5209#endif /* CONFIG_SPARSEMEM */
5210
5211#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5212
5213/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5214void __paginginit set_pageblock_order(void)
5215{
5216 unsigned int order;
5217
5218 /* Check that pageblock_nr_pages has not already been setup */
5219 if (pageblock_order)
5220 return;
5221
5222 if (HPAGE_SHIFT > PAGE_SHIFT)
5223 order = HUGETLB_PAGE_ORDER;
5224 else
5225 order = MAX_ORDER - 1;
5226
5227 /*
5228 * Assume the largest contiguous order of interest is a huge page.
5229 * This value may be variable depending on boot parameters on IA64 and
5230 * powerpc.
5231 */
5232 pageblock_order = order;
5233}
5234#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5235
5236/*
5237 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5238 * is unused as pageblock_order is set at compile-time. See
5239 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5240 * the kernel config
5241 */
5242void __paginginit set_pageblock_order(void)
5243{
5244}
5245
5246#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5247
5248static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5249 unsigned long present_pages)
5250{
5251 unsigned long pages = spanned_pages;
5252
5253 /*
5254 * Provide a more accurate estimation if there are holes within
5255 * the zone and SPARSEMEM is in use. If there are holes within the
5256 * zone, each populated memory region may cost us one or two extra
5257 * memmap pages due to alignment because memmap pages for each
5258 * populated regions may not naturally algined on page boundary.
5259 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5260 */
5261 if (spanned_pages > present_pages + (present_pages >> 4) &&
5262 IS_ENABLED(CONFIG_SPARSEMEM))
5263 pages = present_pages;
5264
5265 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5266}
5267
5268/*
5269 * Set up the zone data structures:
5270 * - mark all pages reserved
5271 * - mark all memory queues empty
5272 * - clear the memory bitmaps
5273 *
5274 * NOTE: pgdat should get zeroed by caller.
5275 */
5276static void __paginginit free_area_init_core(struct pglist_data *pgdat,
5277 unsigned long node_start_pfn, unsigned long node_end_pfn)
5278{
5279 enum zone_type j;
5280 int nid = pgdat->node_id;
5281 unsigned long zone_start_pfn = pgdat->node_start_pfn;
5282 int ret;
5283
5284 pgdat_resize_init(pgdat);
5285#ifdef CONFIG_NUMA_BALANCING
5286 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5287 pgdat->numabalancing_migrate_nr_pages = 0;
5288 pgdat->numabalancing_migrate_next_window = jiffies;
5289#endif
5290 init_waitqueue_head(&pgdat->kswapd_wait);
5291 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5292 pgdat_page_ext_init(pgdat);
5293
5294 for (j = 0; j < MAX_NR_ZONES; j++) {
5295 struct zone *zone = pgdat->node_zones + j;
5296 unsigned long size, realsize, freesize, memmap_pages;
5297
5298 size = zone->spanned_pages;
5299 realsize = freesize = zone->present_pages;
5300
5301 /*
5302 * Adjust freesize so that it accounts for how much memory
5303 * is used by this zone for memmap. This affects the watermark
5304 * and per-cpu initialisations
5305 */
5306 memmap_pages = calc_memmap_size(size, realsize);
5307 if (!is_highmem_idx(j)) {
5308 if (freesize >= memmap_pages) {
5309 freesize -= memmap_pages;
5310 if (memmap_pages)
5311 printk(KERN_DEBUG
5312 " %s zone: %lu pages used for memmap\n",
5313 zone_names[j], memmap_pages);
5314 } else
5315 printk(KERN_WARNING
5316 " %s zone: %lu pages exceeds freesize %lu\n",
5317 zone_names[j], memmap_pages, freesize);
5318 }
5319
5320 /* Account for reserved pages */
5321 if (j == 0 && freesize > dma_reserve) {
5322 freesize -= dma_reserve;
5323 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5324 zone_names[0], dma_reserve);
5325 }
5326
5327 if (!is_highmem_idx(j))
5328 nr_kernel_pages += freesize;
5329 /* Charge for highmem memmap if there are enough kernel pages */
5330 else if (nr_kernel_pages > memmap_pages * 2)
5331 nr_kernel_pages -= memmap_pages;
5332 nr_all_pages += freesize;
5333
5334 /*
5335 * Set an approximate value for lowmem here, it will be adjusted
5336 * when the bootmem allocator frees pages into the buddy system.
5337 * And all highmem pages will be managed by the buddy system.
5338 */
5339 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5340#ifdef CONFIG_NUMA
5341 zone->node = nid;
5342 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5343 / 100;
5344 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5345#endif
5346 zone->name = zone_names[j];
5347 spin_lock_init(&zone->lock);
5348 spin_lock_init(&zone->lru_lock);
5349 zone_seqlock_init(zone);
5350 zone->zone_pgdat = pgdat;
5351 zone_pcp_init(zone);
5352
5353 /* For bootup, initialized properly in watermark setup */
5354 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5355
5356 lruvec_init(&zone->lruvec);
5357 if (!size)
5358 continue;
5359
5360 set_pageblock_order();
5361 setup_usemap(pgdat, zone, zone_start_pfn, size);
5362 ret = init_currently_empty_zone(zone, zone_start_pfn,
5363 size, MEMMAP_EARLY);
5364 BUG_ON(ret);
5365 memmap_init(size, nid, j, zone_start_pfn);
5366 zone_start_pfn += size;
5367 }
5368}
5369
5370static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5371{
5372 /* Skip empty nodes */
5373 if (!pgdat->node_spanned_pages)
5374 return;
5375
5376#ifdef CONFIG_FLAT_NODE_MEM_MAP
5377 /* ia64 gets its own node_mem_map, before this, without bootmem */
5378 if (!pgdat->node_mem_map) {
5379 unsigned long size, start, end;
5380 struct page *map;
5381
5382 /*
5383 * The zone's endpoints aren't required to be MAX_ORDER
5384 * aligned but the node_mem_map endpoints must be in order
5385 * for the buddy allocator to function correctly.
5386 */
5387 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5388 end = pgdat_end_pfn(pgdat);
5389 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5390 size = (end - start) * sizeof(struct page);
5391 map = alloc_remap(pgdat->node_id, size);
5392 if (!map)
5393 map = memblock_virt_alloc_node_nopanic(size,
5394 pgdat->node_id);
5395 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5396 }
5397#ifndef CONFIG_NEED_MULTIPLE_NODES
5398 /*
5399 * With no DISCONTIG, the global mem_map is just set as node 0's
5400 */
5401 if (pgdat == NODE_DATA(0)) {
5402 mem_map = NODE_DATA(0)->node_mem_map;
5403#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5404 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5405 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5406#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5407 }
5408#endif
5409#endif /* CONFIG_FLAT_NODE_MEM_MAP */
5410}
5411
5412void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5413 unsigned long node_start_pfn, unsigned long *zholes_size)
5414{
5415 pg_data_t *pgdat = NODE_DATA(nid);
5416 unsigned long start_pfn = 0;
5417 unsigned long end_pfn = 0;
5418
5419 /* pg_data_t should be reset to zero when it's allocated */
5420 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5421
5422 reset_deferred_meminit(pgdat);
5423 pgdat->node_id = nid;
5424 pgdat->node_start_pfn = node_start_pfn;
5425#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5426 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5427 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5428 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
5429#endif
5430 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5431 zones_size, zholes_size);
5432
5433 alloc_node_mem_map(pgdat);
5434#ifdef CONFIG_FLAT_NODE_MEM_MAP
5435 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5436 nid, (unsigned long)pgdat,
5437 (unsigned long)pgdat->node_mem_map);
5438#endif
5439
5440 free_area_init_core(pgdat, start_pfn, end_pfn);
5441}
5442
5443#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5444
5445#if MAX_NUMNODES > 1
5446/*
5447 * Figure out the number of possible node ids.
5448 */
5449void __init setup_nr_node_ids(void)
5450{
5451 unsigned int node;
5452 unsigned int highest = 0;
5453
5454 for_each_node_mask(node, node_possible_map)
5455 highest = node;
5456 nr_node_ids = highest + 1;
5457}
5458#endif
5459
5460/**
5461 * node_map_pfn_alignment - determine the maximum internode alignment
5462 *
5463 * This function should be called after node map is populated and sorted.
5464 * It calculates the maximum power of two alignment which can distinguish
5465 * all the nodes.
5466 *
5467 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5468 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5469 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5470 * shifted, 1GiB is enough and this function will indicate so.
5471 *
5472 * This is used to test whether pfn -> nid mapping of the chosen memory
5473 * model has fine enough granularity to avoid incorrect mapping for the
5474 * populated node map.
5475 *
5476 * Returns the determined alignment in pfn's. 0 if there is no alignment
5477 * requirement (single node).
5478 */
5479unsigned long __init node_map_pfn_alignment(void)
5480{
5481 unsigned long accl_mask = 0, last_end = 0;
5482 unsigned long start, end, mask;
5483 int last_nid = -1;
5484 int i, nid;
5485
5486 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5487 if (!start || last_nid < 0 || last_nid == nid) {
5488 last_nid = nid;
5489 last_end = end;
5490 continue;
5491 }
5492
5493 /*
5494 * Start with a mask granular enough to pin-point to the
5495 * start pfn and tick off bits one-by-one until it becomes
5496 * too coarse to separate the current node from the last.
5497 */
5498 mask = ~((1 << __ffs(start)) - 1);
5499 while (mask && last_end <= (start & (mask << 1)))
5500 mask <<= 1;
5501
5502 /* accumulate all internode masks */
5503 accl_mask |= mask;
5504 }
5505
5506 /* convert mask to number of pages */
5507 return ~accl_mask + 1;
5508}
5509
5510/* Find the lowest pfn for a node */
5511static unsigned long __init find_min_pfn_for_node(int nid)
5512{
5513 unsigned long min_pfn = ULONG_MAX;
5514 unsigned long start_pfn;
5515 int i;
5516
5517 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5518 min_pfn = min(min_pfn, start_pfn);
5519
5520 if (min_pfn == ULONG_MAX) {
5521 printk(KERN_WARNING
5522 "Could not find start_pfn for node %d\n", nid);
5523 return 0;
5524 }
5525
5526 return min_pfn;
5527}
5528
5529/**
5530 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5531 *
5532 * It returns the minimum PFN based on information provided via
5533 * memblock_set_node().
5534 */
5535unsigned long __init find_min_pfn_with_active_regions(void)
5536{
5537 return find_min_pfn_for_node(MAX_NUMNODES);
5538}
5539
5540/*
5541 * early_calculate_totalpages()
5542 * Sum pages in active regions for movable zone.
5543 * Populate N_MEMORY for calculating usable_nodes.
5544 */
5545static unsigned long __init early_calculate_totalpages(void)
5546{
5547 unsigned long totalpages = 0;
5548 unsigned long start_pfn, end_pfn;
5549 int i, nid;
5550
5551 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5552 unsigned long pages = end_pfn - start_pfn;
5553
5554 totalpages += pages;
5555 if (pages)
5556 node_set_state(nid, N_MEMORY);
5557 }
5558 return totalpages;
5559}
5560
5561/*
5562 * Find the PFN the Movable zone begins in each node. Kernel memory
5563 * is spread evenly between nodes as long as the nodes have enough
5564 * memory. When they don't, some nodes will have more kernelcore than
5565 * others
5566 */
5567static void __init find_zone_movable_pfns_for_nodes(void)
5568{
5569 int i, nid;
5570 unsigned long usable_startpfn;
5571 unsigned long kernelcore_node, kernelcore_remaining;
5572 /* save the state before borrow the nodemask */
5573 nodemask_t saved_node_state = node_states[N_MEMORY];
5574 unsigned long totalpages = early_calculate_totalpages();
5575 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5576 struct memblock_region *r;
5577
5578 /* Need to find movable_zone earlier when movable_node is specified. */
5579 find_usable_zone_for_movable();
5580
5581 /*
5582 * If movable_node is specified, ignore kernelcore and movablecore
5583 * options.
5584 */
5585 if (movable_node_is_enabled()) {
5586 for_each_memblock(memory, r) {
5587 if (!memblock_is_hotpluggable(r))
5588 continue;
5589
5590 nid = r->nid;
5591
5592 usable_startpfn = PFN_DOWN(r->base);
5593 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5594 min(usable_startpfn, zone_movable_pfn[nid]) :
5595 usable_startpfn;
5596 }
5597
5598 goto out2;
5599 }
5600
5601 /*
5602 * If movablecore=nn[KMG] was specified, calculate what size of
5603 * kernelcore that corresponds so that memory usable for
5604 * any allocation type is evenly spread. If both kernelcore
5605 * and movablecore are specified, then the value of kernelcore
5606 * will be used for required_kernelcore if it's greater than
5607 * what movablecore would have allowed.
5608 */
5609 if (required_movablecore) {
5610 unsigned long corepages;
5611
5612 /*
5613 * Round-up so that ZONE_MOVABLE is at least as large as what
5614 * was requested by the user
5615 */
5616 required_movablecore =
5617 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5618 corepages = totalpages - required_movablecore;
5619
5620 required_kernelcore = max(required_kernelcore, corepages);
5621 }
5622
5623 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5624 if (!required_kernelcore)
5625 goto out;
5626
5627 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5628 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5629
5630restart:
5631 /* Spread kernelcore memory as evenly as possible throughout nodes */
5632 kernelcore_node = required_kernelcore / usable_nodes;
5633 for_each_node_state(nid, N_MEMORY) {
5634 unsigned long start_pfn, end_pfn;
5635
5636 /*
5637 * Recalculate kernelcore_node if the division per node
5638 * now exceeds what is necessary to satisfy the requested
5639 * amount of memory for the kernel
5640 */
5641 if (required_kernelcore < kernelcore_node)
5642 kernelcore_node = required_kernelcore / usable_nodes;
5643
5644 /*
5645 * As the map is walked, we track how much memory is usable
5646 * by the kernel using kernelcore_remaining. When it is
5647 * 0, the rest of the node is usable by ZONE_MOVABLE
5648 */
5649 kernelcore_remaining = kernelcore_node;
5650
5651 /* Go through each range of PFNs within this node */
5652 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5653 unsigned long size_pages;
5654
5655 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5656 if (start_pfn >= end_pfn)
5657 continue;
5658
5659 /* Account for what is only usable for kernelcore */
5660 if (start_pfn < usable_startpfn) {
5661 unsigned long kernel_pages;
5662 kernel_pages = min(end_pfn, usable_startpfn)
5663 - start_pfn;
5664
5665 kernelcore_remaining -= min(kernel_pages,
5666 kernelcore_remaining);
5667 required_kernelcore -= min(kernel_pages,
5668 required_kernelcore);
5669
5670 /* Continue if range is now fully accounted */
5671 if (end_pfn <= usable_startpfn) {
5672
5673 /*
5674 * Push zone_movable_pfn to the end so
5675 * that if we have to rebalance
5676 * kernelcore across nodes, we will
5677 * not double account here
5678 */
5679 zone_movable_pfn[nid] = end_pfn;
5680 continue;
5681 }
5682 start_pfn = usable_startpfn;
5683 }
5684
5685 /*
5686 * The usable PFN range for ZONE_MOVABLE is from
5687 * start_pfn->end_pfn. Calculate size_pages as the
5688 * number of pages used as kernelcore
5689 */
5690 size_pages = end_pfn - start_pfn;
5691 if (size_pages > kernelcore_remaining)
5692 size_pages = kernelcore_remaining;
5693 zone_movable_pfn[nid] = start_pfn + size_pages;
5694
5695 /*
5696 * Some kernelcore has been met, update counts and
5697 * break if the kernelcore for this node has been
5698 * satisfied
5699 */
5700 required_kernelcore -= min(required_kernelcore,
5701 size_pages);
5702 kernelcore_remaining -= size_pages;
5703 if (!kernelcore_remaining)
5704 break;
5705 }
5706 }
5707
5708 /*
5709 * If there is still required_kernelcore, we do another pass with one
5710 * less node in the count. This will push zone_movable_pfn[nid] further
5711 * along on the nodes that still have memory until kernelcore is
5712 * satisfied
5713 */
5714 usable_nodes--;
5715 if (usable_nodes && required_kernelcore > usable_nodes)
5716 goto restart;
5717
5718out2:
5719 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5720 for (nid = 0; nid < MAX_NUMNODES; nid++)
5721 zone_movable_pfn[nid] =
5722 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5723
5724out:
5725 /* restore the node_state */
5726 node_states[N_MEMORY] = saved_node_state;
5727}
5728
5729/* Any regular or high memory on that node ? */
5730static void check_for_memory(pg_data_t *pgdat, int nid)
5731{
5732 enum zone_type zone_type;
5733
5734 if (N_MEMORY == N_NORMAL_MEMORY)
5735 return;
5736
5737 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5738 struct zone *zone = &pgdat->node_zones[zone_type];
5739 if (populated_zone(zone)) {
5740 node_set_state(nid, N_HIGH_MEMORY);
5741 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5742 zone_type <= ZONE_NORMAL)
5743 node_set_state(nid, N_NORMAL_MEMORY);
5744 break;
5745 }
5746 }
5747}
5748
5749/**
5750 * free_area_init_nodes - Initialise all pg_data_t and zone data
5751 * @max_zone_pfn: an array of max PFNs for each zone
5752 *
5753 * This will call free_area_init_node() for each active node in the system.
5754 * Using the page ranges provided by memblock_set_node(), the size of each
5755 * zone in each node and their holes is calculated. If the maximum PFN
5756 * between two adjacent zones match, it is assumed that the zone is empty.
5757 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5758 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5759 * starts where the previous one ended. For example, ZONE_DMA32 starts
5760 * at arch_max_dma_pfn.
5761 */
5762void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5763{
5764 unsigned long start_pfn, end_pfn;
5765 int i, nid;
5766
5767 /* Record where the zone boundaries are */
5768 memset(arch_zone_lowest_possible_pfn, 0,
5769 sizeof(arch_zone_lowest_possible_pfn));
5770 memset(arch_zone_highest_possible_pfn, 0,
5771 sizeof(arch_zone_highest_possible_pfn));
5772 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5773 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5774 for (i = 1; i < MAX_NR_ZONES; i++) {
5775 if (i == ZONE_MOVABLE)
5776 continue;
5777 arch_zone_lowest_possible_pfn[i] =
5778 arch_zone_highest_possible_pfn[i-1];
5779 arch_zone_highest_possible_pfn[i] =
5780 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5781 }
5782 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5783 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5784
5785 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5786 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5787 find_zone_movable_pfns_for_nodes();
5788
5789 /* Print out the zone ranges */
5790 pr_info("Zone ranges:\n");
5791 for (i = 0; i < MAX_NR_ZONES; i++) {
5792 if (i == ZONE_MOVABLE)
5793 continue;
5794 pr_info(" %-8s ", zone_names[i]);
5795 if (arch_zone_lowest_possible_pfn[i] ==
5796 arch_zone_highest_possible_pfn[i])
5797 pr_cont("empty\n");
5798 else
5799 pr_cont("[mem %#018Lx-%#018Lx]\n",
5800 (u64)arch_zone_lowest_possible_pfn[i]
5801 << PAGE_SHIFT,
5802 ((u64)arch_zone_highest_possible_pfn[i]
5803 << PAGE_SHIFT) - 1);
5804 }
5805
5806 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5807 pr_info("Movable zone start for each node\n");
5808 for (i = 0; i < MAX_NUMNODES; i++) {
5809 if (zone_movable_pfn[i])
5810 pr_info(" Node %d: %#018Lx\n", i,
5811 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5812 }
5813
5814 /* Print out the early node map */
5815 pr_info("Early memory node ranges\n");
5816 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5817 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5818 (u64)start_pfn << PAGE_SHIFT,
5819 ((u64)end_pfn << PAGE_SHIFT) - 1);
5820
5821 /* Initialise every node */
5822 mminit_verify_pageflags_layout();
5823 setup_nr_node_ids();
5824 for_each_online_node(nid) {
5825 pg_data_t *pgdat = NODE_DATA(nid);
5826 free_area_init_node(nid, NULL,
5827 find_min_pfn_for_node(nid), NULL);
5828
5829 /* Any memory on that node */
5830 if (pgdat->node_present_pages)
5831 node_set_state(nid, N_MEMORY);
5832 check_for_memory(pgdat, nid);
5833 }
5834}
5835
5836static int __init cmdline_parse_core(char *p, unsigned long *core)
5837{
5838 unsigned long long coremem;
5839 if (!p)
5840 return -EINVAL;
5841
5842 coremem = memparse(p, &p);
5843 *core = coremem >> PAGE_SHIFT;
5844
5845 /* Paranoid check that UL is enough for the coremem value */
5846 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5847
5848 return 0;
5849}
5850
5851/*
5852 * kernelcore=size sets the amount of memory for use for allocations that
5853 * cannot be reclaimed or migrated.
5854 */
5855static int __init cmdline_parse_kernelcore(char *p)
5856{
5857 return cmdline_parse_core(p, &required_kernelcore);
5858}
5859
5860/*
5861 * movablecore=size sets the amount of memory for use for allocations that
5862 * can be reclaimed or migrated.
5863 */
5864static int __init cmdline_parse_movablecore(char *p)
5865{
5866 return cmdline_parse_core(p, &required_movablecore);
5867}
5868
5869early_param("kernelcore", cmdline_parse_kernelcore);
5870early_param("movablecore", cmdline_parse_movablecore);
5871
5872#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5873
5874void adjust_managed_page_count(struct page *page, long count)
5875{
5876 spin_lock(&managed_page_count_lock);
5877 page_zone(page)->managed_pages += count;
5878 totalram_pages += count;
5879#ifdef CONFIG_HIGHMEM
5880 if (PageHighMem(page))
5881 totalhigh_pages += count;
5882#endif
5883 spin_unlock(&managed_page_count_lock);
5884}
5885EXPORT_SYMBOL(adjust_managed_page_count);
5886
5887unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5888{
5889 void *pos;
5890 unsigned long pages = 0;
5891
5892 start = (void *)PAGE_ALIGN((unsigned long)start);
5893 end = (void *)((unsigned long)end & PAGE_MASK);
5894 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5895 if ((unsigned int)poison <= 0xFF)
5896 memset(pos, poison, PAGE_SIZE);
5897 free_reserved_page(virt_to_page(pos));
5898 }
5899
5900 if (pages && s)
5901 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5902 s, pages << (PAGE_SHIFT - 10), start, end);
5903
5904 return pages;
5905}
5906EXPORT_SYMBOL(free_reserved_area);
5907
5908#ifdef CONFIG_HIGHMEM
5909void free_highmem_page(struct page *page)
5910{
5911 __free_reserved_page(page);
5912 totalram_pages++;
5913 page_zone(page)->managed_pages++;
5914 totalhigh_pages++;
5915}
5916#endif
5917
5918
5919void __init mem_init_print_info(const char *str)
5920{
5921 unsigned long physpages, codesize, datasize, rosize, bss_size;
5922 unsigned long init_code_size, init_data_size;
5923
5924 physpages = get_num_physpages();
5925 codesize = _etext - _stext;
5926 datasize = _edata - _sdata;
5927 rosize = __end_rodata - __start_rodata;
5928 bss_size = __bss_stop - __bss_start;
5929 init_data_size = __init_end - __init_begin;
5930 init_code_size = _einittext - _sinittext;
5931
5932 /*
5933 * Detect special cases and adjust section sizes accordingly:
5934 * 1) .init.* may be embedded into .data sections
5935 * 2) .init.text.* may be out of [__init_begin, __init_end],
5936 * please refer to arch/tile/kernel/vmlinux.lds.S.
5937 * 3) .rodata.* may be embedded into .text or .data sections.
5938 */
5939#define adj_init_size(start, end, size, pos, adj) \
5940 do { \
5941 if (start <= pos && pos < end && size > adj) \
5942 size -= adj; \
5943 } while (0)
5944
5945 adj_init_size(__init_begin, __init_end, init_data_size,
5946 _sinittext, init_code_size);
5947 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5948 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5949 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5950 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5951
5952#undef adj_init_size
5953
5954 pr_info("Memory: %luK/%luK available "
5955 "(%luK kernel code, %luK rwdata, %luK rodata, "
5956 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5957#ifdef CONFIG_HIGHMEM
5958 ", %luK highmem"
5959#endif
5960 "%s%s)\n",
5961 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5962 codesize >> 10, datasize >> 10, rosize >> 10,
5963 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5964 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5965 totalcma_pages << (PAGE_SHIFT-10),
5966#ifdef CONFIG_HIGHMEM
5967 totalhigh_pages << (PAGE_SHIFT-10),
5968#endif
5969 str ? ", " : "", str ? str : "");
5970}
5971
5972/**
5973 * set_dma_reserve - set the specified number of pages reserved in the first zone
5974 * @new_dma_reserve: The number of pages to mark reserved
5975 *
5976 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5977 * In the DMA zone, a significant percentage may be consumed by kernel image
5978 * and other unfreeable allocations which can skew the watermarks badly. This
5979 * function may optionally be used to account for unfreeable pages in the
5980 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5981 * smaller per-cpu batchsize.
5982 */
5983void __init set_dma_reserve(unsigned long new_dma_reserve)
5984{
5985 dma_reserve = new_dma_reserve;
5986}
5987
5988void __init free_area_init(unsigned long *zones_size)
5989{
5990 free_area_init_node(0, zones_size,
5991 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5992}
5993
5994static int page_alloc_cpu_notify(struct notifier_block *self,
5995 unsigned long action, void *hcpu)
5996{
5997 int cpu = (unsigned long)hcpu;
5998
5999 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6000 lru_add_drain_cpu(cpu);
6001 drain_pages(cpu);
6002
6003 /*
6004 * Spill the event counters of the dead processor
6005 * into the current processors event counters.
6006 * This artificially elevates the count of the current
6007 * processor.
6008 */
6009 vm_events_fold_cpu(cpu);
6010
6011 /*
6012 * Zero the differential counters of the dead processor
6013 * so that the vm statistics are consistent.
6014 *
6015 * This is only okay since the processor is dead and cannot
6016 * race with what we are doing.
6017 */
6018 cpu_vm_stats_fold(cpu);
6019 }
6020 return NOTIFY_OK;
6021}
6022
6023void __init page_alloc_init(void)
6024{
6025 hotcpu_notifier(page_alloc_cpu_notify, 0);
6026}
6027
6028/*
6029 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
6030 * or min_free_kbytes changes.
6031 */
6032static void calculate_totalreserve_pages(void)
6033{
6034 struct pglist_data *pgdat;
6035 unsigned long reserve_pages = 0;
6036 enum zone_type i, j;
6037
6038 for_each_online_pgdat(pgdat) {
6039 for (i = 0; i < MAX_NR_ZONES; i++) {
6040 struct zone *zone = pgdat->node_zones + i;
6041 long max = 0;
6042
6043 /* Find valid and maximum lowmem_reserve in the zone */
6044 for (j = i; j < MAX_NR_ZONES; j++) {
6045 if (zone->lowmem_reserve[j] > max)
6046 max = zone->lowmem_reserve[j];
6047 }
6048
6049 /* we treat the high watermark as reserved pages. */
6050 max += high_wmark_pages(zone);
6051
6052 if (max > zone->managed_pages)
6053 max = zone->managed_pages;
6054 reserve_pages += max;
6055 /*
6056 * Lowmem reserves are not available to
6057 * GFP_HIGHUSER page cache allocations and
6058 * kswapd tries to balance zones to their high
6059 * watermark. As a result, neither should be
6060 * regarded as dirtyable memory, to prevent a
6061 * situation where reclaim has to clean pages
6062 * in order to balance the zones.
6063 */
6064 zone->dirty_balance_reserve = max;
6065 }
6066 }
6067 dirty_balance_reserve = reserve_pages;
6068 totalreserve_pages = reserve_pages;
6069}
6070
6071/*
6072 * setup_per_zone_lowmem_reserve - called whenever
6073 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
6074 * has a correct pages reserved value, so an adequate number of
6075 * pages are left in the zone after a successful __alloc_pages().
6076 */
6077static void setup_per_zone_lowmem_reserve(void)
6078{
6079 struct pglist_data *pgdat;
6080 enum zone_type j, idx;
6081
6082 for_each_online_pgdat(pgdat) {
6083 for (j = 0; j < MAX_NR_ZONES; j++) {
6084 struct zone *zone = pgdat->node_zones + j;
6085 unsigned long managed_pages = zone->managed_pages;
6086
6087 zone->lowmem_reserve[j] = 0;
6088
6089 idx = j;
6090 while (idx) {
6091 struct zone *lower_zone;
6092
6093 idx--;
6094
6095 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6096 sysctl_lowmem_reserve_ratio[idx] = 1;
6097
6098 lower_zone = pgdat->node_zones + idx;
6099 lower_zone->lowmem_reserve[j] = managed_pages /
6100 sysctl_lowmem_reserve_ratio[idx];
6101 managed_pages += lower_zone->managed_pages;
6102 }
6103 }
6104 }
6105
6106 /* update totalreserve_pages */
6107 calculate_totalreserve_pages();
6108}
6109
6110static void __setup_per_zone_wmarks(void)
6111{
6112 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6113 unsigned long lowmem_pages = 0;
6114 struct zone *zone;
6115 unsigned long flags;
6116
6117 /* Calculate total number of !ZONE_HIGHMEM pages */
6118 for_each_zone(zone) {
6119 if (!is_highmem(zone))
6120 lowmem_pages += zone->managed_pages;
6121 }
6122
6123 for_each_zone(zone) {
6124 u64 tmp;
6125
6126 spin_lock_irqsave(&zone->lock, flags);
6127 tmp = (u64)pages_min * zone->managed_pages;
6128 do_div(tmp, lowmem_pages);
6129 if (is_highmem(zone)) {
6130 /*
6131 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6132 * need highmem pages, so cap pages_min to a small
6133 * value here.
6134 *
6135 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6136 * deltas control asynch page reclaim, and so should
6137 * not be capped for highmem.
6138 */
6139 unsigned long min_pages;
6140
6141 min_pages = zone->managed_pages / 1024;
6142 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6143 zone->watermark[WMARK_MIN] = min_pages;
6144 } else {
6145 /*
6146 * If it's a lowmem zone, reserve a number of pages
6147 * proportionate to the zone's size.
6148 */
6149 zone->watermark[WMARK_MIN] = tmp;
6150 }
6151
6152 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6153 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6154
6155 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6156 high_wmark_pages(zone) - low_wmark_pages(zone) -
6157 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6158
6159 setup_zone_migrate_reserve(zone);
6160 spin_unlock_irqrestore(&zone->lock, flags);
6161 }
6162
6163 /* update totalreserve_pages */
6164 calculate_totalreserve_pages();
6165}
6166
6167/**
6168 * setup_per_zone_wmarks - called when min_free_kbytes changes
6169 * or when memory is hot-{added|removed}
6170 *
6171 * Ensures that the watermark[min,low,high] values for each zone are set
6172 * correctly with respect to min_free_kbytes.
6173 */
6174void setup_per_zone_wmarks(void)
6175{
6176 mutex_lock(&zonelists_mutex);
6177 __setup_per_zone_wmarks();
6178 mutex_unlock(&zonelists_mutex);
6179}
6180
6181/*
6182 * The inactive anon list should be small enough that the VM never has to
6183 * do too much work, but large enough that each inactive page has a chance
6184 * to be referenced again before it is swapped out.
6185 *
6186 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6187 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6188 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6189 * the anonymous pages are kept on the inactive list.
6190 *
6191 * total target max
6192 * memory ratio inactive anon
6193 * -------------------------------------
6194 * 10MB 1 5MB
6195 * 100MB 1 50MB
6196 * 1GB 3 250MB
6197 * 10GB 10 0.9GB
6198 * 100GB 31 3GB
6199 * 1TB 101 10GB
6200 * 10TB 320 32GB
6201 */
6202static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6203{
6204 unsigned int gb, ratio;
6205
6206 /* Zone size in gigabytes */
6207 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6208 if (gb)
6209 ratio = int_sqrt(10 * gb);
6210 else
6211 ratio = 1;
6212
6213 zone->inactive_ratio = ratio;
6214}
6215
6216static void __meminit setup_per_zone_inactive_ratio(void)
6217{
6218 struct zone *zone;
6219
6220 for_each_zone(zone)
6221 calculate_zone_inactive_ratio(zone);
6222}
6223
6224/*
6225 * Initialise min_free_kbytes.
6226 *
6227 * For small machines we want it small (128k min). For large machines
6228 * we want it large (64MB max). But it is not linear, because network
6229 * bandwidth does not increase linearly with machine size. We use
6230 *
6231 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6232 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6233 *
6234 * which yields
6235 *
6236 * 16MB: 512k
6237 * 32MB: 724k
6238 * 64MB: 1024k
6239 * 128MB: 1448k
6240 * 256MB: 2048k
6241 * 512MB: 2896k
6242 * 1024MB: 4096k
6243 * 2048MB: 5792k
6244 * 4096MB: 8192k
6245 * 8192MB: 11584k
6246 * 16384MB: 16384k
6247 */
6248int __meminit init_per_zone_wmark_min(void)
6249{
6250 unsigned long lowmem_kbytes;
6251 int new_min_free_kbytes;
6252
6253 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6254 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6255
6256 if (new_min_free_kbytes > user_min_free_kbytes) {
6257 min_free_kbytes = new_min_free_kbytes;
6258 if (min_free_kbytes < 128)
6259 min_free_kbytes = 128;
6260 if (min_free_kbytes > 65536)
6261 min_free_kbytes = 65536;
6262 } else {
6263 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6264 new_min_free_kbytes, user_min_free_kbytes);
6265 }
6266 setup_per_zone_wmarks();
6267 refresh_zone_stat_thresholds();
6268 setup_per_zone_lowmem_reserve();
6269 setup_per_zone_inactive_ratio();
6270 return 0;
6271}
6272module_init(init_per_zone_wmark_min)
6273
6274/*
6275 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6276 * that we can call two helper functions whenever min_free_kbytes
6277 * changes.
6278 */
6279int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6280 void __user *buffer, size_t *length, loff_t *ppos)
6281{
6282 int rc;
6283
6284 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6285 if (rc)
6286 return rc;
6287
6288 if (write) {
6289 user_min_free_kbytes = min_free_kbytes;
6290 setup_per_zone_wmarks();
6291 }
6292 return 0;
6293}
6294
6295#ifdef CONFIG_NUMA
6296int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6297 void __user *buffer, size_t *length, loff_t *ppos)
6298{
6299 struct zone *zone;
6300 int rc;
6301
6302 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6303 if (rc)
6304 return rc;
6305
6306 for_each_zone(zone)
6307 zone->min_unmapped_pages = (zone->managed_pages *
6308 sysctl_min_unmapped_ratio) / 100;
6309 return 0;
6310}
6311
6312int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6313 void __user *buffer, size_t *length, loff_t *ppos)
6314{
6315 struct zone *zone;
6316 int rc;
6317
6318 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6319 if (rc)
6320 return rc;
6321
6322 for_each_zone(zone)
6323 zone->min_slab_pages = (zone->managed_pages *
6324 sysctl_min_slab_ratio) / 100;
6325 return 0;
6326}
6327#endif
6328
6329/*
6330 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6331 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6332 * whenever sysctl_lowmem_reserve_ratio changes.
6333 *
6334 * The reserve ratio obviously has absolutely no relation with the
6335 * minimum watermarks. The lowmem reserve ratio can only make sense
6336 * if in function of the boot time zone sizes.
6337 */
6338int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6339 void __user *buffer, size_t *length, loff_t *ppos)
6340{
6341 proc_dointvec_minmax(table, write, buffer, length, ppos);
6342 setup_per_zone_lowmem_reserve();
6343 return 0;
6344}
6345
6346/*
6347 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6348 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6349 * pagelist can have before it gets flushed back to buddy allocator.
6350 */
6351int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6352 void __user *buffer, size_t *length, loff_t *ppos)
6353{
6354 struct zone *zone;
6355 int old_percpu_pagelist_fraction;
6356 int ret;
6357
6358 mutex_lock(&pcp_batch_high_lock);
6359 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6360
6361 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6362 if (!write || ret < 0)
6363 goto out;
6364
6365 /* Sanity checking to avoid pcp imbalance */
6366 if (percpu_pagelist_fraction &&
6367 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6368 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6369 ret = -EINVAL;
6370 goto out;
6371 }
6372
6373 /* No change? */
6374 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6375 goto out;
6376
6377 for_each_populated_zone(zone) {
6378 unsigned int cpu;
6379
6380 for_each_possible_cpu(cpu)
6381 pageset_set_high_and_batch(zone,
6382 per_cpu_ptr(zone->pageset, cpu));
6383 }
6384out:
6385 mutex_unlock(&pcp_batch_high_lock);
6386 return ret;
6387}
6388
6389#ifdef CONFIG_NUMA
6390int hashdist = HASHDIST_DEFAULT;
6391
6392static int __init set_hashdist(char *str)
6393{
6394 if (!str)
6395 return 0;
6396 hashdist = simple_strtoul(str, &str, 0);
6397 return 1;
6398}
6399__setup("hashdist=", set_hashdist);
6400#endif
6401
6402/*
6403 * allocate a large system hash table from bootmem
6404 * - it is assumed that the hash table must contain an exact power-of-2
6405 * quantity of entries
6406 * - limit is the number of hash buckets, not the total allocation size
6407 */
6408void *__init alloc_large_system_hash(const char *tablename,
6409 unsigned long bucketsize,
6410 unsigned long numentries,
6411 int scale,
6412 int flags,
6413 unsigned int *_hash_shift,
6414 unsigned int *_hash_mask,
6415 unsigned long low_limit,
6416 unsigned long high_limit)
6417{
6418 unsigned long long max = high_limit;
6419 unsigned long log2qty, size;
6420 void *table = NULL;
6421
6422 /* allow the kernel cmdline to have a say */
6423 if (!numentries) {
6424 /* round applicable memory size up to nearest megabyte */
6425 numentries = nr_kernel_pages;
6426
6427 /* It isn't necessary when PAGE_SIZE >= 1MB */
6428 if (PAGE_SHIFT < 20)
6429 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6430
6431 /* limit to 1 bucket per 2^scale bytes of low memory */
6432 if (scale > PAGE_SHIFT)
6433 numentries >>= (scale - PAGE_SHIFT);
6434 else
6435 numentries <<= (PAGE_SHIFT - scale);
6436
6437 /* Make sure we've got at least a 0-order allocation.. */
6438 if (unlikely(flags & HASH_SMALL)) {
6439 /* Makes no sense without HASH_EARLY */
6440 WARN_ON(!(flags & HASH_EARLY));
6441 if (!(numentries >> *_hash_shift)) {
6442 numentries = 1UL << *_hash_shift;
6443 BUG_ON(!numentries);
6444 }
6445 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6446 numentries = PAGE_SIZE / bucketsize;
6447 }
6448 numentries = roundup_pow_of_two(numentries);
6449
6450 /* limit allocation size to 1/16 total memory by default */
6451 if (max == 0) {
6452 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6453 do_div(max, bucketsize);
6454 }
6455 max = min(max, 0x80000000ULL);
6456
6457 if (numentries < low_limit)
6458 numentries = low_limit;
6459 if (numentries > max)
6460 numentries = max;
6461
6462 log2qty = ilog2(numentries);
6463
6464 do {
6465 size = bucketsize << log2qty;
6466 if (flags & HASH_EARLY)
6467 table = memblock_virt_alloc_nopanic(size, 0);
6468 else if (hashdist)
6469 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6470 else {
6471 /*
6472 * If bucketsize is not a power-of-two, we may free
6473 * some pages at the end of hash table which
6474 * alloc_pages_exact() automatically does
6475 */
6476 if (get_order(size) < MAX_ORDER) {
6477 table = alloc_pages_exact(size, GFP_ATOMIC);
6478 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6479 }
6480 }
6481 } while (!table && size > PAGE_SIZE && --log2qty);
6482
6483 if (!table)
6484 panic("Failed to allocate %s hash table\n", tablename);
6485
6486 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6487 tablename,
6488 (1UL << log2qty),
6489 ilog2(size) - PAGE_SHIFT,
6490 size);
6491
6492 if (_hash_shift)
6493 *_hash_shift = log2qty;
6494 if (_hash_mask)
6495 *_hash_mask = (1 << log2qty) - 1;
6496
6497 return table;
6498}
6499
6500/* Return a pointer to the bitmap storing bits affecting a block of pages */
6501static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6502 unsigned long pfn)
6503{
6504#ifdef CONFIG_SPARSEMEM
6505 return __pfn_to_section(pfn)->pageblock_flags;
6506#else
6507 return zone->pageblock_flags;
6508#endif /* CONFIG_SPARSEMEM */
6509}
6510
6511static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6512{
6513#ifdef CONFIG_SPARSEMEM
6514 pfn &= (PAGES_PER_SECTION-1);
6515 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6516#else
6517 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6518 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6519#endif /* CONFIG_SPARSEMEM */
6520}
6521
6522/**
6523 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6524 * @page: The page within the block of interest
6525 * @pfn: The target page frame number
6526 * @end_bitidx: The last bit of interest to retrieve
6527 * @mask: mask of bits that the caller is interested in
6528 *
6529 * Return: pageblock_bits flags
6530 */
6531unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6532 unsigned long end_bitidx,
6533 unsigned long mask)
6534{
6535 struct zone *zone;
6536 unsigned long *bitmap;
6537 unsigned long bitidx, word_bitidx;
6538 unsigned long word;
6539
6540 zone = page_zone(page);
6541 bitmap = get_pageblock_bitmap(zone, pfn);
6542 bitidx = pfn_to_bitidx(zone, pfn);
6543 word_bitidx = bitidx / BITS_PER_LONG;
6544 bitidx &= (BITS_PER_LONG-1);
6545
6546 word = bitmap[word_bitidx];
6547 bitidx += end_bitidx;
6548 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6549}
6550
6551/**
6552 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6553 * @page: The page within the block of interest
6554 * @flags: The flags to set
6555 * @pfn: The target page frame number
6556 * @end_bitidx: The last bit of interest
6557 * @mask: mask of bits that the caller is interested in
6558 */
6559void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6560 unsigned long pfn,
6561 unsigned long end_bitidx,
6562 unsigned long mask)
6563{
6564 struct zone *zone;
6565 unsigned long *bitmap;
6566 unsigned long bitidx, word_bitidx;
6567 unsigned long old_word, word;
6568
6569 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6570
6571 zone = page_zone(page);
6572 bitmap = get_pageblock_bitmap(zone, pfn);
6573 bitidx = pfn_to_bitidx(zone, pfn);
6574 word_bitidx = bitidx / BITS_PER_LONG;
6575 bitidx &= (BITS_PER_LONG-1);
6576
6577 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6578
6579 bitidx += end_bitidx;
6580 mask <<= (BITS_PER_LONG - bitidx - 1);
6581 flags <<= (BITS_PER_LONG - bitidx - 1);
6582
6583 word = READ_ONCE(bitmap[word_bitidx]);
6584 for (;;) {
6585 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6586 if (word == old_word)
6587 break;
6588 word = old_word;
6589 }
6590}
6591
6592/*
6593 * This function checks whether pageblock includes unmovable pages or not.
6594 * If @count is not zero, it is okay to include less @count unmovable pages
6595 *
6596 * PageLRU check without isolation or lru_lock could race so that
6597 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6598 * expect this function should be exact.
6599 */
6600bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6601 bool skip_hwpoisoned_pages)
6602{
6603 unsigned long pfn, iter, found;
6604 int mt;
6605
6606 /*
6607 * For avoiding noise data, lru_add_drain_all() should be called
6608 * If ZONE_MOVABLE, the zone never contains unmovable pages
6609 */
6610 if (zone_idx(zone) == ZONE_MOVABLE)
6611 return false;
6612 mt = get_pageblock_migratetype(page);
6613 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6614 return false;
6615
6616 pfn = page_to_pfn(page);
6617 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6618 unsigned long check = pfn + iter;
6619
6620 if (!pfn_valid_within(check))
6621 continue;
6622
6623 page = pfn_to_page(check);
6624
6625 /*
6626 * Hugepages are not in LRU lists, but they're movable.
6627 * We need not scan over tail pages bacause we don't
6628 * handle each tail page individually in migration.
6629 */
6630 if (PageHuge(page)) {
6631 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6632 continue;
6633 }
6634
6635 /*
6636 * We can't use page_count without pin a page
6637 * because another CPU can free compound page.
6638 * This check already skips compound tails of THP
6639 * because their page->_count is zero at all time.
6640 */
6641 if (!atomic_read(&page->_count)) {
6642 if (PageBuddy(page))
6643 iter += (1 << page_order(page)) - 1;
6644 continue;
6645 }
6646
6647 /*
6648 * The HWPoisoned page may be not in buddy system, and
6649 * page_count() is not 0.
6650 */
6651 if (skip_hwpoisoned_pages && PageHWPoison(page))
6652 continue;
6653
6654 if (!PageLRU(page))
6655 found++;
6656 /*
6657 * If there are RECLAIMABLE pages, we need to check
6658 * it. But now, memory offline itself doesn't call
6659 * shrink_node_slabs() and it still to be fixed.
6660 */
6661 /*
6662 * If the page is not RAM, page_count()should be 0.
6663 * we don't need more check. This is an _used_ not-movable page.
6664 *
6665 * The problematic thing here is PG_reserved pages. PG_reserved
6666 * is set to both of a memory hole page and a _used_ kernel
6667 * page at boot.
6668 */
6669 if (found > count)
6670 return true;
6671 }
6672 return false;
6673}
6674
6675bool is_pageblock_removable_nolock(struct page *page)
6676{
6677 struct zone *zone;
6678 unsigned long pfn;
6679
6680 /*
6681 * We have to be careful here because we are iterating over memory
6682 * sections which are not zone aware so we might end up outside of
6683 * the zone but still within the section.
6684 * We have to take care about the node as well. If the node is offline
6685 * its NODE_DATA will be NULL - see page_zone.
6686 */
6687 if (!node_online(page_to_nid(page)))
6688 return false;
6689
6690 zone = page_zone(page);
6691 pfn = page_to_pfn(page);
6692 if (!zone_spans_pfn(zone, pfn))
6693 return false;
6694
6695 return !has_unmovable_pages(zone, page, 0, true);
6696}
6697
6698#ifdef CONFIG_CMA
6699
6700static unsigned long pfn_max_align_down(unsigned long pfn)
6701{
6702 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6703 pageblock_nr_pages) - 1);
6704}
6705
6706static unsigned long pfn_max_align_up(unsigned long pfn)
6707{
6708 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6709 pageblock_nr_pages));
6710}
6711
6712/* [start, end) must belong to a single zone. */
6713static int __alloc_contig_migrate_range(struct compact_control *cc,
6714 unsigned long start, unsigned long end)
6715{
6716 /* This function is based on compact_zone() from compaction.c. */
6717 unsigned long nr_reclaimed;
6718 unsigned long pfn = start;
6719 unsigned int tries = 0;
6720 int ret = 0;
6721
6722 migrate_prep();
6723
6724 while (pfn < end || !list_empty(&cc->migratepages)) {
6725 if (fatal_signal_pending(current)) {
6726 ret = -EINTR;
6727 break;
6728 }
6729
6730 if (list_empty(&cc->migratepages)) {
6731 cc->nr_migratepages = 0;
6732 pfn = isolate_migratepages_range(cc, pfn, end);
6733 if (!pfn) {
6734 ret = -EINTR;
6735 break;
6736 }
6737 tries = 0;
6738 } else if (++tries == 5) {
6739 ret = ret < 0 ? ret : -EBUSY;
6740 break;
6741 }
6742
6743 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6744 &cc->migratepages);
6745 cc->nr_migratepages -= nr_reclaimed;
6746
6747 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6748 NULL, 0, cc->mode, MR_CMA);
6749 }
6750 if (ret < 0) {
6751 putback_movable_pages(&cc->migratepages);
6752 return ret;
6753 }
6754 return 0;
6755}
6756
6757/**
6758 * alloc_contig_range() -- tries to allocate given range of pages
6759 * @start: start PFN to allocate
6760 * @end: one-past-the-last PFN to allocate
6761 * @migratetype: migratetype of the underlaying pageblocks (either
6762 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6763 * in range must have the same migratetype and it must
6764 * be either of the two.
6765 *
6766 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6767 * aligned, however it's the caller's responsibility to guarantee that
6768 * we are the only thread that changes migrate type of pageblocks the
6769 * pages fall in.
6770 *
6771 * The PFN range must belong to a single zone.
6772 *
6773 * Returns zero on success or negative error code. On success all
6774 * pages which PFN is in [start, end) are allocated for the caller and
6775 * need to be freed with free_contig_range().
6776 */
6777int alloc_contig_range(unsigned long start, unsigned long end,
6778 unsigned migratetype)
6779{
6780 unsigned long outer_start, outer_end;
6781 int ret = 0, order;
6782
6783 struct compact_control cc = {
6784 .nr_migratepages = 0,
6785 .order = -1,
6786 .zone = page_zone(pfn_to_page(start)),
6787 .mode = MIGRATE_SYNC,
6788 .ignore_skip_hint = true,
6789 };
6790 INIT_LIST_HEAD(&cc.migratepages);
6791
6792 /*
6793 * What we do here is we mark all pageblocks in range as
6794 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6795 * have different sizes, and due to the way page allocator
6796 * work, we align the range to biggest of the two pages so
6797 * that page allocator won't try to merge buddies from
6798 * different pageblocks and change MIGRATE_ISOLATE to some
6799 * other migration type.
6800 *
6801 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6802 * migrate the pages from an unaligned range (ie. pages that
6803 * we are interested in). This will put all the pages in
6804 * range back to page allocator as MIGRATE_ISOLATE.
6805 *
6806 * When this is done, we take the pages in range from page
6807 * allocator removing them from the buddy system. This way
6808 * page allocator will never consider using them.
6809 *
6810 * This lets us mark the pageblocks back as
6811 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6812 * aligned range but not in the unaligned, original range are
6813 * put back to page allocator so that buddy can use them.
6814 */
6815
6816 ret = start_isolate_page_range(pfn_max_align_down(start),
6817 pfn_max_align_up(end), migratetype,
6818 false);
6819 if (ret)
6820 return ret;
6821
6822 ret = __alloc_contig_migrate_range(&cc, start, end);
6823 if (ret)
6824 goto done;
6825
6826 /*
6827 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6828 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6829 * more, all pages in [start, end) are free in page allocator.
6830 * What we are going to do is to allocate all pages from
6831 * [start, end) (that is remove them from page allocator).
6832 *
6833 * The only problem is that pages at the beginning and at the
6834 * end of interesting range may be not aligned with pages that
6835 * page allocator holds, ie. they can be part of higher order
6836 * pages. Because of this, we reserve the bigger range and
6837 * once this is done free the pages we are not interested in.
6838 *
6839 * We don't have to hold zone->lock here because the pages are
6840 * isolated thus they won't get removed from buddy.
6841 */
6842
6843 lru_add_drain_all();
6844 drain_all_pages(cc.zone);
6845
6846 order = 0;
6847 outer_start = start;
6848 while (!PageBuddy(pfn_to_page(outer_start))) {
6849 if (++order >= MAX_ORDER) {
6850 ret = -EBUSY;
6851 goto done;
6852 }
6853 outer_start &= ~0UL << order;
6854 }
6855
6856 /* Make sure the range is really isolated. */
6857 if (test_pages_isolated(outer_start, end, false)) {
6858 pr_info("%s: [%lx, %lx) PFNs busy\n",
6859 __func__, outer_start, end);
6860 ret = -EBUSY;
6861 goto done;
6862 }
6863
6864 /* Grab isolated pages from freelists. */
6865 outer_end = isolate_freepages_range(&cc, outer_start, end);
6866 if (!outer_end) {
6867 ret = -EBUSY;
6868 goto done;
6869 }
6870
6871 /* Free head and tail (if any) */
6872 if (start != outer_start)
6873 free_contig_range(outer_start, start - outer_start);
6874 if (end != outer_end)
6875 free_contig_range(end, outer_end - end);
6876
6877done:
6878 undo_isolate_page_range(pfn_max_align_down(start),
6879 pfn_max_align_up(end), migratetype);
6880 return ret;
6881}
6882
6883void free_contig_range(unsigned long pfn, unsigned nr_pages)
6884{
6885 unsigned int count = 0;
6886
6887 for (; nr_pages--; pfn++) {
6888 struct page *page = pfn_to_page(pfn);
6889
6890 count += page_count(page) != 1;
6891 __free_page(page);
6892 }
6893 WARN(count != 0, "%d pages are still in use!\n", count);
6894}
6895#endif
6896
6897#ifdef CONFIG_MEMORY_HOTPLUG
6898/*
6899 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6900 * page high values need to be recalulated.
6901 */
6902void __meminit zone_pcp_update(struct zone *zone)
6903{
6904 unsigned cpu;
6905 mutex_lock(&pcp_batch_high_lock);
6906 for_each_possible_cpu(cpu)
6907 pageset_set_high_and_batch(zone,
6908 per_cpu_ptr(zone->pageset, cpu));
6909 mutex_unlock(&pcp_batch_high_lock);
6910}
6911#endif
6912
6913void zone_pcp_reset(struct zone *zone)
6914{
6915 unsigned long flags;
6916 int cpu;
6917 struct per_cpu_pageset *pset;
6918
6919 /* avoid races with drain_pages() */
6920 local_irq_save(flags);
6921 if (zone->pageset != &boot_pageset) {
6922 for_each_online_cpu(cpu) {
6923 pset = per_cpu_ptr(zone->pageset, cpu);
6924 drain_zonestat(zone, pset);
6925 }
6926 free_percpu(zone->pageset);
6927 zone->pageset = &boot_pageset;
6928 }
6929 local_irq_restore(flags);
6930}
6931
6932#ifdef CONFIG_MEMORY_HOTREMOVE
6933/*
6934 * All pages in the range must be isolated before calling this.
6935 */
6936void
6937__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6938{
6939 struct page *page;
6940 struct zone *zone;
6941 unsigned int order, i;
6942 unsigned long pfn;
6943 unsigned long flags;
6944 /* find the first valid pfn */
6945 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6946 if (pfn_valid(pfn))
6947 break;
6948 if (pfn == end_pfn)
6949 return;
6950 zone = page_zone(pfn_to_page(pfn));
6951 spin_lock_irqsave(&zone->lock, flags);
6952 pfn = start_pfn;
6953 while (pfn < end_pfn) {
6954 if (!pfn_valid(pfn)) {
6955 pfn++;
6956 continue;
6957 }
6958 page = pfn_to_page(pfn);
6959 /*
6960 * The HWPoisoned page may be not in buddy system, and
6961 * page_count() is not 0.
6962 */
6963 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6964 pfn++;
6965 SetPageReserved(page);
6966 continue;
6967 }
6968
6969 BUG_ON(page_count(page));
6970 BUG_ON(!PageBuddy(page));
6971 order = page_order(page);
6972#ifdef CONFIG_DEBUG_VM
6973 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6974 pfn, 1 << order, end_pfn);
6975#endif
6976 list_del(&page->lru);
6977 rmv_page_order(page);
6978 zone->free_area[order].nr_free--;
6979 for (i = 0; i < (1 << order); i++)
6980 SetPageReserved((page+i));
6981 pfn += (1 << order);
6982 }
6983 spin_unlock_irqrestore(&zone->lock, flags);
6984}
6985#endif
6986
6987#ifdef CONFIG_MEMORY_FAILURE
6988bool is_free_buddy_page(struct page *page)
6989{
6990 struct zone *zone = page_zone(page);
6991 unsigned long pfn = page_to_pfn(page);
6992 unsigned long flags;
6993 unsigned int order;
6994
6995 spin_lock_irqsave(&zone->lock, flags);
6996 for (order = 0; order < MAX_ORDER; order++) {
6997 struct page *page_head = page - (pfn & ((1 << order) - 1));
6998
6999 if (PageBuddy(page_head) && page_order(page_head) >= order)
7000 break;
7001 }
7002 spin_unlock_irqrestore(&zone->lock, flags);
7003
7004 return order < MAX_ORDER;
7005}
7006#endif