]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame_incremental - mm/page_alloc.c
mm: Serialize access to min_free_kbytes
[mirror_ubuntu-hirsute-kernel.git] / mm / page_alloc.c
... / ...
CommitLineData
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/memblock.h>
25#include <linux/compiler.h>
26#include <linux/kernel.h>
27#include <linux/kmemcheck.h>
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
33#include <linux/ratelimit.h>
34#include <linux/oom.h>
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
40#include <linux/memory_hotplug.h>
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
43#include <linux/vmstat.h>
44#include <linux/mempolicy.h>
45#include <linux/stop_machine.h>
46#include <linux/sort.h>
47#include <linux/pfn.h>
48#include <linux/backing-dev.h>
49#include <linux/fault-inject.h>
50#include <linux/page-isolation.h>
51#include <linux/page_cgroup.h>
52#include <linux/debugobjects.h>
53#include <linux/kmemleak.h>
54#include <linux/memory.h>
55#include <linux/compaction.h>
56#include <trace/events/kmem.h>
57#include <linux/ftrace_event.h>
58#include <linux/memcontrol.h>
59#include <linux/prefetch.h>
60#include <linux/migrate.h>
61#include <linux/page-debug-flags.h>
62
63#include <asm/tlbflush.h>
64#include <asm/div64.h>
65#include "internal.h"
66
67#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
68DEFINE_PER_CPU(int, numa_node);
69EXPORT_PER_CPU_SYMBOL(numa_node);
70#endif
71
72#ifdef CONFIG_HAVE_MEMORYLESS_NODES
73/*
74 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
75 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
76 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
77 * defined in <linux/topology.h>.
78 */
79DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
80EXPORT_PER_CPU_SYMBOL(_numa_mem_);
81#endif
82
83/*
84 * Array of node states.
85 */
86nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
87 [N_POSSIBLE] = NODE_MASK_ALL,
88 [N_ONLINE] = { { [0] = 1UL } },
89#ifndef CONFIG_NUMA
90 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
91#ifdef CONFIG_HIGHMEM
92 [N_HIGH_MEMORY] = { { [0] = 1UL } },
93#endif
94 [N_CPU] = { { [0] = 1UL } },
95#endif /* NUMA */
96};
97EXPORT_SYMBOL(node_states);
98
99unsigned long totalram_pages __read_mostly;
100unsigned long totalreserve_pages __read_mostly;
101/*
102 * When calculating the number of globally allowed dirty pages, there
103 * is a certain number of per-zone reserves that should not be
104 * considered dirtyable memory. This is the sum of those reserves
105 * over all existing zones that contribute dirtyable memory.
106 */
107unsigned long dirty_balance_reserve __read_mostly;
108
109int percpu_pagelist_fraction;
110gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
111
112#ifdef CONFIG_PM_SLEEP
113/*
114 * The following functions are used by the suspend/hibernate code to temporarily
115 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
116 * while devices are suspended. To avoid races with the suspend/hibernate code,
117 * they should always be called with pm_mutex held (gfp_allowed_mask also should
118 * only be modified with pm_mutex held, unless the suspend/hibernate code is
119 * guaranteed not to run in parallel with that modification).
120 */
121
122static gfp_t saved_gfp_mask;
123
124void pm_restore_gfp_mask(void)
125{
126 WARN_ON(!mutex_is_locked(&pm_mutex));
127 if (saved_gfp_mask) {
128 gfp_allowed_mask = saved_gfp_mask;
129 saved_gfp_mask = 0;
130 }
131}
132
133void pm_restrict_gfp_mask(void)
134{
135 WARN_ON(!mutex_is_locked(&pm_mutex));
136 WARN_ON(saved_gfp_mask);
137 saved_gfp_mask = gfp_allowed_mask;
138 gfp_allowed_mask &= ~GFP_IOFS;
139}
140
141bool pm_suspended_storage(void)
142{
143 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
144 return false;
145 return true;
146}
147#endif /* CONFIG_PM_SLEEP */
148
149#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
150int pageblock_order __read_mostly;
151#endif
152
153static void __free_pages_ok(struct page *page, unsigned int order);
154
155/*
156 * results with 256, 32 in the lowmem_reserve sysctl:
157 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
158 * 1G machine -> (16M dma, 784M normal, 224M high)
159 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
160 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
161 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
162 *
163 * TBD: should special case ZONE_DMA32 machines here - in those we normally
164 * don't need any ZONE_NORMAL reservation
165 */
166int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
167#ifdef CONFIG_ZONE_DMA
168 256,
169#endif
170#ifdef CONFIG_ZONE_DMA32
171 256,
172#endif
173#ifdef CONFIG_HIGHMEM
174 32,
175#endif
176 32,
177};
178
179EXPORT_SYMBOL(totalram_pages);
180
181static char * const zone_names[MAX_NR_ZONES] = {
182#ifdef CONFIG_ZONE_DMA
183 "DMA",
184#endif
185#ifdef CONFIG_ZONE_DMA32
186 "DMA32",
187#endif
188 "Normal",
189#ifdef CONFIG_HIGHMEM
190 "HighMem",
191#endif
192 "Movable",
193};
194
195int min_free_kbytes = 1024;
196
197static unsigned long __meminitdata nr_kernel_pages;
198static unsigned long __meminitdata nr_all_pages;
199static unsigned long __meminitdata dma_reserve;
200
201#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
202static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
203static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
204static unsigned long __initdata required_kernelcore;
205static unsigned long __initdata required_movablecore;
206static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
207
208/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
209int movable_zone;
210EXPORT_SYMBOL(movable_zone);
211#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
212
213#if MAX_NUMNODES > 1
214int nr_node_ids __read_mostly = MAX_NUMNODES;
215int nr_online_nodes __read_mostly = 1;
216EXPORT_SYMBOL(nr_node_ids);
217EXPORT_SYMBOL(nr_online_nodes);
218#endif
219
220int page_group_by_mobility_disabled __read_mostly;
221
222static void set_pageblock_migratetype(struct page *page, int migratetype)
223{
224
225 if (unlikely(page_group_by_mobility_disabled))
226 migratetype = MIGRATE_UNMOVABLE;
227
228 set_pageblock_flags_group(page, (unsigned long)migratetype,
229 PB_migrate, PB_migrate_end);
230}
231
232bool oom_killer_disabled __read_mostly;
233
234#ifdef CONFIG_DEBUG_VM
235static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
236{
237 int ret = 0;
238 unsigned seq;
239 unsigned long pfn = page_to_pfn(page);
240
241 do {
242 seq = zone_span_seqbegin(zone);
243 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
244 ret = 1;
245 else if (pfn < zone->zone_start_pfn)
246 ret = 1;
247 } while (zone_span_seqretry(zone, seq));
248
249 return ret;
250}
251
252static int page_is_consistent(struct zone *zone, struct page *page)
253{
254 if (!pfn_valid_within(page_to_pfn(page)))
255 return 0;
256 if (zone != page_zone(page))
257 return 0;
258
259 return 1;
260}
261/*
262 * Temporary debugging check for pages not lying within a given zone.
263 */
264static int bad_range(struct zone *zone, struct page *page)
265{
266 if (page_outside_zone_boundaries(zone, page))
267 return 1;
268 if (!page_is_consistent(zone, page))
269 return 1;
270
271 return 0;
272}
273#else
274static inline int bad_range(struct zone *zone, struct page *page)
275{
276 return 0;
277}
278#endif
279
280static void bad_page(struct page *page)
281{
282 static unsigned long resume;
283 static unsigned long nr_shown;
284 static unsigned long nr_unshown;
285
286 /* Don't complain about poisoned pages */
287 if (PageHWPoison(page)) {
288 reset_page_mapcount(page); /* remove PageBuddy */
289 return;
290 }
291
292 /*
293 * Allow a burst of 60 reports, then keep quiet for that minute;
294 * or allow a steady drip of one report per second.
295 */
296 if (nr_shown == 60) {
297 if (time_before(jiffies, resume)) {
298 nr_unshown++;
299 goto out;
300 }
301 if (nr_unshown) {
302 printk(KERN_ALERT
303 "BUG: Bad page state: %lu messages suppressed\n",
304 nr_unshown);
305 nr_unshown = 0;
306 }
307 nr_shown = 0;
308 }
309 if (nr_shown++ == 0)
310 resume = jiffies + 60 * HZ;
311
312 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
313 current->comm, page_to_pfn(page));
314 dump_page(page);
315
316 print_modules();
317 dump_stack();
318out:
319 /* Leave bad fields for debug, except PageBuddy could make trouble */
320 reset_page_mapcount(page); /* remove PageBuddy */
321 add_taint(TAINT_BAD_PAGE);
322}
323
324/*
325 * Higher-order pages are called "compound pages". They are structured thusly:
326 *
327 * The first PAGE_SIZE page is called the "head page".
328 *
329 * The remaining PAGE_SIZE pages are called "tail pages".
330 *
331 * All pages have PG_compound set. All tail pages have their ->first_page
332 * pointing at the head page.
333 *
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
337 */
338
339static void free_compound_page(struct page *page)
340{
341 __free_pages_ok(page, compound_order(page));
342}
343
344void prep_compound_page(struct page *page, unsigned long order)
345{
346 int i;
347 int nr_pages = 1 << order;
348
349 set_compound_page_dtor(page, free_compound_page);
350 set_compound_order(page, order);
351 __SetPageHead(page);
352 for (i = 1; i < nr_pages; i++) {
353 struct page *p = page + i;
354 __SetPageTail(p);
355 set_page_count(p, 0);
356 p->first_page = page;
357 }
358}
359
360/* update __split_huge_page_refcount if you change this function */
361static int destroy_compound_page(struct page *page, unsigned long order)
362{
363 int i;
364 int nr_pages = 1 << order;
365 int bad = 0;
366
367 if (unlikely(compound_order(page) != order) ||
368 unlikely(!PageHead(page))) {
369 bad_page(page);
370 bad++;
371 }
372
373 __ClearPageHead(page);
374
375 for (i = 1; i < nr_pages; i++) {
376 struct page *p = page + i;
377
378 if (unlikely(!PageTail(p) || (p->first_page != page))) {
379 bad_page(page);
380 bad++;
381 }
382 __ClearPageTail(p);
383 }
384
385 return bad;
386}
387
388static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
389{
390 int i;
391
392 /*
393 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
394 * and __GFP_HIGHMEM from hard or soft interrupt context.
395 */
396 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
397 for (i = 0; i < (1 << order); i++)
398 clear_highpage(page + i);
399}
400
401#ifdef CONFIG_DEBUG_PAGEALLOC
402unsigned int _debug_guardpage_minorder;
403
404static int __init debug_guardpage_minorder_setup(char *buf)
405{
406 unsigned long res;
407
408 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
409 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
410 return 0;
411 }
412 _debug_guardpage_minorder = res;
413 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
414 return 0;
415}
416__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
417
418static inline void set_page_guard_flag(struct page *page)
419{
420 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
421}
422
423static inline void clear_page_guard_flag(struct page *page)
424{
425 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
426}
427#else
428static inline void set_page_guard_flag(struct page *page) { }
429static inline void clear_page_guard_flag(struct page *page) { }
430#endif
431
432static inline void set_page_order(struct page *page, int order)
433{
434 set_page_private(page, order);
435 __SetPageBuddy(page);
436}
437
438static inline void rmv_page_order(struct page *page)
439{
440 __ClearPageBuddy(page);
441 set_page_private(page, 0);
442}
443
444/*
445 * Locate the struct page for both the matching buddy in our
446 * pair (buddy1) and the combined O(n+1) page they form (page).
447 *
448 * 1) Any buddy B1 will have an order O twin B2 which satisfies
449 * the following equation:
450 * B2 = B1 ^ (1 << O)
451 * For example, if the starting buddy (buddy2) is #8 its order
452 * 1 buddy is #10:
453 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
454 *
455 * 2) Any buddy B will have an order O+1 parent P which
456 * satisfies the following equation:
457 * P = B & ~(1 << O)
458 *
459 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
460 */
461static inline unsigned long
462__find_buddy_index(unsigned long page_idx, unsigned int order)
463{
464 return page_idx ^ (1 << order);
465}
466
467/*
468 * This function checks whether a page is free && is the buddy
469 * we can do coalesce a page and its buddy if
470 * (a) the buddy is not in a hole &&
471 * (b) the buddy is in the buddy system &&
472 * (c) a page and its buddy have the same order &&
473 * (d) a page and its buddy are in the same zone.
474 *
475 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
476 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
477 *
478 * For recording page's order, we use page_private(page).
479 */
480static inline int page_is_buddy(struct page *page, struct page *buddy,
481 int order)
482{
483 if (!pfn_valid_within(page_to_pfn(buddy)))
484 return 0;
485
486 if (page_zone_id(page) != page_zone_id(buddy))
487 return 0;
488
489 if (page_is_guard(buddy) && page_order(buddy) == order) {
490 VM_BUG_ON(page_count(buddy) != 0);
491 return 1;
492 }
493
494 if (PageBuddy(buddy) && page_order(buddy) == order) {
495 VM_BUG_ON(page_count(buddy) != 0);
496 return 1;
497 }
498 return 0;
499}
500
501/*
502 * Freeing function for a buddy system allocator.
503 *
504 * The concept of a buddy system is to maintain direct-mapped table
505 * (containing bit values) for memory blocks of various "orders".
506 * The bottom level table contains the map for the smallest allocatable
507 * units of memory (here, pages), and each level above it describes
508 * pairs of units from the levels below, hence, "buddies".
509 * At a high level, all that happens here is marking the table entry
510 * at the bottom level available, and propagating the changes upward
511 * as necessary, plus some accounting needed to play nicely with other
512 * parts of the VM system.
513 * At each level, we keep a list of pages, which are heads of continuous
514 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
515 * order is recorded in page_private(page) field.
516 * So when we are allocating or freeing one, we can derive the state of the
517 * other. That is, if we allocate a small block, and both were
518 * free, the remainder of the region must be split into blocks.
519 * If a block is freed, and its buddy is also free, then this
520 * triggers coalescing into a block of larger size.
521 *
522 * -- wli
523 */
524
525static inline void __free_one_page(struct page *page,
526 struct zone *zone, unsigned int order,
527 int migratetype)
528{
529 unsigned long page_idx;
530 unsigned long combined_idx;
531 unsigned long uninitialized_var(buddy_idx);
532 struct page *buddy;
533
534 if (unlikely(PageCompound(page)))
535 if (unlikely(destroy_compound_page(page, order)))
536 return;
537
538 VM_BUG_ON(migratetype == -1);
539
540 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
541
542 VM_BUG_ON(page_idx & ((1 << order) - 1));
543 VM_BUG_ON(bad_range(zone, page));
544
545 while (order < MAX_ORDER-1) {
546 buddy_idx = __find_buddy_index(page_idx, order);
547 buddy = page + (buddy_idx - page_idx);
548 if (!page_is_buddy(page, buddy, order))
549 break;
550 /*
551 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
552 * merge with it and move up one order.
553 */
554 if (page_is_guard(buddy)) {
555 clear_page_guard_flag(buddy);
556 set_page_private(page, 0);
557 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
558 } else {
559 list_del(&buddy->lru);
560 zone->free_area[order].nr_free--;
561 rmv_page_order(buddy);
562 }
563 combined_idx = buddy_idx & page_idx;
564 page = page + (combined_idx - page_idx);
565 page_idx = combined_idx;
566 order++;
567 }
568 set_page_order(page, order);
569
570 /*
571 * If this is not the largest possible page, check if the buddy
572 * of the next-highest order is free. If it is, it's possible
573 * that pages are being freed that will coalesce soon. In case,
574 * that is happening, add the free page to the tail of the list
575 * so it's less likely to be used soon and more likely to be merged
576 * as a higher order page
577 */
578 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
579 struct page *higher_page, *higher_buddy;
580 combined_idx = buddy_idx & page_idx;
581 higher_page = page + (combined_idx - page_idx);
582 buddy_idx = __find_buddy_index(combined_idx, order + 1);
583 higher_buddy = page + (buddy_idx - combined_idx);
584 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
585 list_add_tail(&page->lru,
586 &zone->free_area[order].free_list[migratetype]);
587 goto out;
588 }
589 }
590
591 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
592out:
593 zone->free_area[order].nr_free++;
594}
595
596/*
597 * free_page_mlock() -- clean up attempts to free and mlocked() page.
598 * Page should not be on lru, so no need to fix that up.
599 * free_pages_check() will verify...
600 */
601static inline void free_page_mlock(struct page *page)
602{
603 __dec_zone_page_state(page, NR_MLOCK);
604 __count_vm_event(UNEVICTABLE_MLOCKFREED);
605}
606
607static inline int free_pages_check(struct page *page)
608{
609 if (unlikely(page_mapcount(page) |
610 (page->mapping != NULL) |
611 (atomic_read(&page->_count) != 0) |
612 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
613 (mem_cgroup_bad_page_check(page)))) {
614 bad_page(page);
615 return 1;
616 }
617 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
618 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
619 return 0;
620}
621
622/*
623 * Frees a number of pages from the PCP lists
624 * Assumes all pages on list are in same zone, and of same order.
625 * count is the number of pages to free.
626 *
627 * If the zone was previously in an "all pages pinned" state then look to
628 * see if this freeing clears that state.
629 *
630 * And clear the zone's pages_scanned counter, to hold off the "all pages are
631 * pinned" detection logic.
632 */
633static void free_pcppages_bulk(struct zone *zone, int count,
634 struct per_cpu_pages *pcp)
635{
636 int migratetype = 0;
637 int batch_free = 0;
638 int to_free = count;
639
640 spin_lock(&zone->lock);
641 zone->all_unreclaimable = 0;
642 zone->pages_scanned = 0;
643
644 while (to_free) {
645 struct page *page;
646 struct list_head *list;
647
648 /*
649 * Remove pages from lists in a round-robin fashion. A
650 * batch_free count is maintained that is incremented when an
651 * empty list is encountered. This is so more pages are freed
652 * off fuller lists instead of spinning excessively around empty
653 * lists
654 */
655 do {
656 batch_free++;
657 if (++migratetype == MIGRATE_PCPTYPES)
658 migratetype = 0;
659 list = &pcp->lists[migratetype];
660 } while (list_empty(list));
661
662 /* This is the only non-empty list. Free them all. */
663 if (batch_free == MIGRATE_PCPTYPES)
664 batch_free = to_free;
665
666 do {
667 page = list_entry(list->prev, struct page, lru);
668 /* must delete as __free_one_page list manipulates */
669 list_del(&page->lru);
670 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
671 __free_one_page(page, zone, 0, page_private(page));
672 trace_mm_page_pcpu_drain(page, 0, page_private(page));
673 } while (--to_free && --batch_free && !list_empty(list));
674 }
675 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
676 spin_unlock(&zone->lock);
677}
678
679static void free_one_page(struct zone *zone, struct page *page, int order,
680 int migratetype)
681{
682 spin_lock(&zone->lock);
683 zone->all_unreclaimable = 0;
684 zone->pages_scanned = 0;
685
686 __free_one_page(page, zone, order, migratetype);
687 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
688 spin_unlock(&zone->lock);
689}
690
691static bool free_pages_prepare(struct page *page, unsigned int order)
692{
693 int i;
694 int bad = 0;
695
696 trace_mm_page_free(page, order);
697 kmemcheck_free_shadow(page, order);
698
699 if (PageAnon(page))
700 page->mapping = NULL;
701 for (i = 0; i < (1 << order); i++)
702 bad += free_pages_check(page + i);
703 if (bad)
704 return false;
705
706 if (!PageHighMem(page)) {
707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
708 debug_check_no_obj_freed(page_address(page),
709 PAGE_SIZE << order);
710 }
711 arch_free_page(page, order);
712 kernel_map_pages(page, 1 << order, 0);
713
714 return true;
715}
716
717static void __free_pages_ok(struct page *page, unsigned int order)
718{
719 unsigned long flags;
720 int wasMlocked = __TestClearPageMlocked(page);
721
722 if (!free_pages_prepare(page, order))
723 return;
724
725 local_irq_save(flags);
726 if (unlikely(wasMlocked))
727 free_page_mlock(page);
728 __count_vm_events(PGFREE, 1 << order);
729 free_one_page(page_zone(page), page, order,
730 get_pageblock_migratetype(page));
731 local_irq_restore(flags);
732}
733
734void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
735{
736 unsigned int nr_pages = 1 << order;
737 unsigned int loop;
738
739 prefetchw(page);
740 for (loop = 0; loop < nr_pages; loop++) {
741 struct page *p = &page[loop];
742
743 if (loop + 1 < nr_pages)
744 prefetchw(p + 1);
745 __ClearPageReserved(p);
746 set_page_count(p, 0);
747 }
748
749 set_page_refcounted(page);
750 __free_pages(page, order);
751}
752
753#ifdef CONFIG_CMA
754/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
755void __init init_cma_reserved_pageblock(struct page *page)
756{
757 unsigned i = pageblock_nr_pages;
758 struct page *p = page;
759
760 do {
761 __ClearPageReserved(p);
762 set_page_count(p, 0);
763 } while (++p, --i);
764
765 set_page_refcounted(page);
766 set_pageblock_migratetype(page, MIGRATE_CMA);
767 __free_pages(page, pageblock_order);
768 totalram_pages += pageblock_nr_pages;
769}
770#endif
771
772/*
773 * The order of subdivision here is critical for the IO subsystem.
774 * Please do not alter this order without good reasons and regression
775 * testing. Specifically, as large blocks of memory are subdivided,
776 * the order in which smaller blocks are delivered depends on the order
777 * they're subdivided in this function. This is the primary factor
778 * influencing the order in which pages are delivered to the IO
779 * subsystem according to empirical testing, and this is also justified
780 * by considering the behavior of a buddy system containing a single
781 * large block of memory acted on by a series of small allocations.
782 * This behavior is a critical factor in sglist merging's success.
783 *
784 * -- wli
785 */
786static inline void expand(struct zone *zone, struct page *page,
787 int low, int high, struct free_area *area,
788 int migratetype)
789{
790 unsigned long size = 1 << high;
791
792 while (high > low) {
793 area--;
794 high--;
795 size >>= 1;
796 VM_BUG_ON(bad_range(zone, &page[size]));
797
798#ifdef CONFIG_DEBUG_PAGEALLOC
799 if (high < debug_guardpage_minorder()) {
800 /*
801 * Mark as guard pages (or page), that will allow to
802 * merge back to allocator when buddy will be freed.
803 * Corresponding page table entries will not be touched,
804 * pages will stay not present in virtual address space
805 */
806 INIT_LIST_HEAD(&page[size].lru);
807 set_page_guard_flag(&page[size]);
808 set_page_private(&page[size], high);
809 /* Guard pages are not available for any usage */
810 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
811 continue;
812 }
813#endif
814 list_add(&page[size].lru, &area->free_list[migratetype]);
815 area->nr_free++;
816 set_page_order(&page[size], high);
817 }
818}
819
820/*
821 * This page is about to be returned from the page allocator
822 */
823static inline int check_new_page(struct page *page)
824{
825 if (unlikely(page_mapcount(page) |
826 (page->mapping != NULL) |
827 (atomic_read(&page->_count) != 0) |
828 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
829 (mem_cgroup_bad_page_check(page)))) {
830 bad_page(page);
831 return 1;
832 }
833 return 0;
834}
835
836static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
837{
838 int i;
839
840 for (i = 0; i < (1 << order); i++) {
841 struct page *p = page + i;
842 if (unlikely(check_new_page(p)))
843 return 1;
844 }
845
846 set_page_private(page, 0);
847 set_page_refcounted(page);
848
849 arch_alloc_page(page, order);
850 kernel_map_pages(page, 1 << order, 1);
851
852 if (gfp_flags & __GFP_ZERO)
853 prep_zero_page(page, order, gfp_flags);
854
855 if (order && (gfp_flags & __GFP_COMP))
856 prep_compound_page(page, order);
857
858 return 0;
859}
860
861/*
862 * Go through the free lists for the given migratetype and remove
863 * the smallest available page from the freelists
864 */
865static inline
866struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
867 int migratetype)
868{
869 unsigned int current_order;
870 struct free_area * area;
871 struct page *page;
872
873 /* Find a page of the appropriate size in the preferred list */
874 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
875 area = &(zone->free_area[current_order]);
876 if (list_empty(&area->free_list[migratetype]))
877 continue;
878
879 page = list_entry(area->free_list[migratetype].next,
880 struct page, lru);
881 list_del(&page->lru);
882 rmv_page_order(page);
883 area->nr_free--;
884 expand(zone, page, order, current_order, area, migratetype);
885 return page;
886 }
887
888 return NULL;
889}
890
891
892/*
893 * This array describes the order lists are fallen back to when
894 * the free lists for the desirable migrate type are depleted
895 */
896static int fallbacks[MIGRATE_TYPES][4] = {
897 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
898 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
899#ifdef CONFIG_CMA
900 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
901 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
902#else
903 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
904#endif
905 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
906 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
907};
908
909/*
910 * Move the free pages in a range to the free lists of the requested type.
911 * Note that start_page and end_pages are not aligned on a pageblock
912 * boundary. If alignment is required, use move_freepages_block()
913 */
914static int move_freepages(struct zone *zone,
915 struct page *start_page, struct page *end_page,
916 int migratetype)
917{
918 struct page *page;
919 unsigned long order;
920 int pages_moved = 0;
921
922#ifndef CONFIG_HOLES_IN_ZONE
923 /*
924 * page_zone is not safe to call in this context when
925 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
926 * anyway as we check zone boundaries in move_freepages_block().
927 * Remove at a later date when no bug reports exist related to
928 * grouping pages by mobility
929 */
930 BUG_ON(page_zone(start_page) != page_zone(end_page));
931#endif
932
933 for (page = start_page; page <= end_page;) {
934 /* Make sure we are not inadvertently changing nodes */
935 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
936
937 if (!pfn_valid_within(page_to_pfn(page))) {
938 page++;
939 continue;
940 }
941
942 if (!PageBuddy(page)) {
943 page++;
944 continue;
945 }
946
947 order = page_order(page);
948 list_move(&page->lru,
949 &zone->free_area[order].free_list[migratetype]);
950 page += 1 << order;
951 pages_moved += 1 << order;
952 }
953
954 return pages_moved;
955}
956
957static int move_freepages_block(struct zone *zone, struct page *page,
958 int migratetype)
959{
960 unsigned long start_pfn, end_pfn;
961 struct page *start_page, *end_page;
962
963 start_pfn = page_to_pfn(page);
964 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
965 start_page = pfn_to_page(start_pfn);
966 end_page = start_page + pageblock_nr_pages - 1;
967 end_pfn = start_pfn + pageblock_nr_pages - 1;
968
969 /* Do not cross zone boundaries */
970 if (start_pfn < zone->zone_start_pfn)
971 start_page = page;
972 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
973 return 0;
974
975 return move_freepages(zone, start_page, end_page, migratetype);
976}
977
978static void change_pageblock_range(struct page *pageblock_page,
979 int start_order, int migratetype)
980{
981 int nr_pageblocks = 1 << (start_order - pageblock_order);
982
983 while (nr_pageblocks--) {
984 set_pageblock_migratetype(pageblock_page, migratetype);
985 pageblock_page += pageblock_nr_pages;
986 }
987}
988
989/* Remove an element from the buddy allocator from the fallback list */
990static inline struct page *
991__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
992{
993 struct free_area * area;
994 int current_order;
995 struct page *page;
996 int migratetype, i;
997
998 /* Find the largest possible block of pages in the other list */
999 for (current_order = MAX_ORDER-1; current_order >= order;
1000 --current_order) {
1001 for (i = 0;; i++) {
1002 migratetype = fallbacks[start_migratetype][i];
1003
1004 /* MIGRATE_RESERVE handled later if necessary */
1005 if (migratetype == MIGRATE_RESERVE)
1006 break;
1007
1008 area = &(zone->free_area[current_order]);
1009 if (list_empty(&area->free_list[migratetype]))
1010 continue;
1011
1012 page = list_entry(area->free_list[migratetype].next,
1013 struct page, lru);
1014 area->nr_free--;
1015
1016 /*
1017 * If breaking a large block of pages, move all free
1018 * pages to the preferred allocation list. If falling
1019 * back for a reclaimable kernel allocation, be more
1020 * aggressive about taking ownership of free pages
1021 *
1022 * On the other hand, never change migration
1023 * type of MIGRATE_CMA pageblocks nor move CMA
1024 * pages on different free lists. We don't
1025 * want unmovable pages to be allocated from
1026 * MIGRATE_CMA areas.
1027 */
1028 if (!is_migrate_cma(migratetype) &&
1029 (unlikely(current_order >= pageblock_order / 2) ||
1030 start_migratetype == MIGRATE_RECLAIMABLE ||
1031 page_group_by_mobility_disabled)) {
1032 int pages;
1033 pages = move_freepages_block(zone, page,
1034 start_migratetype);
1035
1036 /* Claim the whole block if over half of it is free */
1037 if (pages >= (1 << (pageblock_order-1)) ||
1038 page_group_by_mobility_disabled)
1039 set_pageblock_migratetype(page,
1040 start_migratetype);
1041
1042 migratetype = start_migratetype;
1043 }
1044
1045 /* Remove the page from the freelists */
1046 list_del(&page->lru);
1047 rmv_page_order(page);
1048
1049 /* Take ownership for orders >= pageblock_order */
1050 if (current_order >= pageblock_order &&
1051 !is_migrate_cma(migratetype))
1052 change_pageblock_range(page, current_order,
1053 start_migratetype);
1054
1055 expand(zone, page, order, current_order, area,
1056 is_migrate_cma(migratetype)
1057 ? migratetype : start_migratetype);
1058
1059 trace_mm_page_alloc_extfrag(page, order, current_order,
1060 start_migratetype, migratetype);
1061
1062 return page;
1063 }
1064 }
1065
1066 return NULL;
1067}
1068
1069/*
1070 * Do the hard work of removing an element from the buddy allocator.
1071 * Call me with the zone->lock already held.
1072 */
1073static struct page *__rmqueue(struct zone *zone, unsigned int order,
1074 int migratetype)
1075{
1076 struct page *page;
1077
1078retry_reserve:
1079 page = __rmqueue_smallest(zone, order, migratetype);
1080
1081 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1082 page = __rmqueue_fallback(zone, order, migratetype);
1083
1084 /*
1085 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1086 * is used because __rmqueue_smallest is an inline function
1087 * and we want just one call site
1088 */
1089 if (!page) {
1090 migratetype = MIGRATE_RESERVE;
1091 goto retry_reserve;
1092 }
1093 }
1094
1095 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1096 return page;
1097}
1098
1099/*
1100 * Obtain a specified number of elements from the buddy allocator, all under
1101 * a single hold of the lock, for efficiency. Add them to the supplied list.
1102 * Returns the number of new pages which were placed at *list.
1103 */
1104static int rmqueue_bulk(struct zone *zone, unsigned int order,
1105 unsigned long count, struct list_head *list,
1106 int migratetype, int cold)
1107{
1108 int mt = migratetype, i;
1109
1110 spin_lock(&zone->lock);
1111 for (i = 0; i < count; ++i) {
1112 struct page *page = __rmqueue(zone, order, migratetype);
1113 if (unlikely(page == NULL))
1114 break;
1115
1116 /*
1117 * Split buddy pages returned by expand() are received here
1118 * in physical page order. The page is added to the callers and
1119 * list and the list head then moves forward. From the callers
1120 * perspective, the linked list is ordered by page number in
1121 * some conditions. This is useful for IO devices that can
1122 * merge IO requests if the physical pages are ordered
1123 * properly.
1124 */
1125 if (likely(cold == 0))
1126 list_add(&page->lru, list);
1127 else
1128 list_add_tail(&page->lru, list);
1129 if (IS_ENABLED(CONFIG_CMA)) {
1130 mt = get_pageblock_migratetype(page);
1131 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1132 mt = migratetype;
1133 }
1134 set_page_private(page, mt);
1135 list = &page->lru;
1136 }
1137 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1138 spin_unlock(&zone->lock);
1139 return i;
1140}
1141
1142#ifdef CONFIG_NUMA
1143/*
1144 * Called from the vmstat counter updater to drain pagesets of this
1145 * currently executing processor on remote nodes after they have
1146 * expired.
1147 *
1148 * Note that this function must be called with the thread pinned to
1149 * a single processor.
1150 */
1151void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1152{
1153 unsigned long flags;
1154 int to_drain;
1155
1156 local_irq_save(flags);
1157 if (pcp->count >= pcp->batch)
1158 to_drain = pcp->batch;
1159 else
1160 to_drain = pcp->count;
1161 free_pcppages_bulk(zone, to_drain, pcp);
1162 pcp->count -= to_drain;
1163 local_irq_restore(flags);
1164}
1165#endif
1166
1167/*
1168 * Drain pages of the indicated processor.
1169 *
1170 * The processor must either be the current processor and the
1171 * thread pinned to the current processor or a processor that
1172 * is not online.
1173 */
1174static void drain_pages(unsigned int cpu)
1175{
1176 unsigned long flags;
1177 struct zone *zone;
1178
1179 for_each_populated_zone(zone) {
1180 struct per_cpu_pageset *pset;
1181 struct per_cpu_pages *pcp;
1182
1183 local_irq_save(flags);
1184 pset = per_cpu_ptr(zone->pageset, cpu);
1185
1186 pcp = &pset->pcp;
1187 if (pcp->count) {
1188 free_pcppages_bulk(zone, pcp->count, pcp);
1189 pcp->count = 0;
1190 }
1191 local_irq_restore(flags);
1192 }
1193}
1194
1195/*
1196 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1197 */
1198void drain_local_pages(void *arg)
1199{
1200 drain_pages(smp_processor_id());
1201}
1202
1203/*
1204 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1205 *
1206 * Note that this code is protected against sending an IPI to an offline
1207 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1208 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1209 * nothing keeps CPUs from showing up after we populated the cpumask and
1210 * before the call to on_each_cpu_mask().
1211 */
1212void drain_all_pages(void)
1213{
1214 int cpu;
1215 struct per_cpu_pageset *pcp;
1216 struct zone *zone;
1217
1218 /*
1219 * Allocate in the BSS so we wont require allocation in
1220 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1221 */
1222 static cpumask_t cpus_with_pcps;
1223
1224 /*
1225 * We don't care about racing with CPU hotplug event
1226 * as offline notification will cause the notified
1227 * cpu to drain that CPU pcps and on_each_cpu_mask
1228 * disables preemption as part of its processing
1229 */
1230 for_each_online_cpu(cpu) {
1231 bool has_pcps = false;
1232 for_each_populated_zone(zone) {
1233 pcp = per_cpu_ptr(zone->pageset, cpu);
1234 if (pcp->pcp.count) {
1235 has_pcps = true;
1236 break;
1237 }
1238 }
1239 if (has_pcps)
1240 cpumask_set_cpu(cpu, &cpus_with_pcps);
1241 else
1242 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1243 }
1244 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1245}
1246
1247#ifdef CONFIG_HIBERNATION
1248
1249void mark_free_pages(struct zone *zone)
1250{
1251 unsigned long pfn, max_zone_pfn;
1252 unsigned long flags;
1253 int order, t;
1254 struct list_head *curr;
1255
1256 if (!zone->spanned_pages)
1257 return;
1258
1259 spin_lock_irqsave(&zone->lock, flags);
1260
1261 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1262 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1263 if (pfn_valid(pfn)) {
1264 struct page *page = pfn_to_page(pfn);
1265
1266 if (!swsusp_page_is_forbidden(page))
1267 swsusp_unset_page_free(page);
1268 }
1269
1270 for_each_migratetype_order(order, t) {
1271 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1272 unsigned long i;
1273
1274 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1275 for (i = 0; i < (1UL << order); i++)
1276 swsusp_set_page_free(pfn_to_page(pfn + i));
1277 }
1278 }
1279 spin_unlock_irqrestore(&zone->lock, flags);
1280}
1281#endif /* CONFIG_PM */
1282
1283/*
1284 * Free a 0-order page
1285 * cold == 1 ? free a cold page : free a hot page
1286 */
1287void free_hot_cold_page(struct page *page, int cold)
1288{
1289 struct zone *zone = page_zone(page);
1290 struct per_cpu_pages *pcp;
1291 unsigned long flags;
1292 int migratetype;
1293 int wasMlocked = __TestClearPageMlocked(page);
1294
1295 if (!free_pages_prepare(page, 0))
1296 return;
1297
1298 migratetype = get_pageblock_migratetype(page);
1299 set_page_private(page, migratetype);
1300 local_irq_save(flags);
1301 if (unlikely(wasMlocked))
1302 free_page_mlock(page);
1303 __count_vm_event(PGFREE);
1304
1305 /*
1306 * We only track unmovable, reclaimable and movable on pcp lists.
1307 * Free ISOLATE pages back to the allocator because they are being
1308 * offlined but treat RESERVE as movable pages so we can get those
1309 * areas back if necessary. Otherwise, we may have to free
1310 * excessively into the page allocator
1311 */
1312 if (migratetype >= MIGRATE_PCPTYPES) {
1313 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1314 free_one_page(zone, page, 0, migratetype);
1315 goto out;
1316 }
1317 migratetype = MIGRATE_MOVABLE;
1318 }
1319
1320 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1321 if (cold)
1322 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1323 else
1324 list_add(&page->lru, &pcp->lists[migratetype]);
1325 pcp->count++;
1326 if (pcp->count >= pcp->high) {
1327 free_pcppages_bulk(zone, pcp->batch, pcp);
1328 pcp->count -= pcp->batch;
1329 }
1330
1331out:
1332 local_irq_restore(flags);
1333}
1334
1335/*
1336 * Free a list of 0-order pages
1337 */
1338void free_hot_cold_page_list(struct list_head *list, int cold)
1339{
1340 struct page *page, *next;
1341
1342 list_for_each_entry_safe(page, next, list, lru) {
1343 trace_mm_page_free_batched(page, cold);
1344 free_hot_cold_page(page, cold);
1345 }
1346}
1347
1348/*
1349 * split_page takes a non-compound higher-order page, and splits it into
1350 * n (1<<order) sub-pages: page[0..n]
1351 * Each sub-page must be freed individually.
1352 *
1353 * Note: this is probably too low level an operation for use in drivers.
1354 * Please consult with lkml before using this in your driver.
1355 */
1356void split_page(struct page *page, unsigned int order)
1357{
1358 int i;
1359
1360 VM_BUG_ON(PageCompound(page));
1361 VM_BUG_ON(!page_count(page));
1362
1363#ifdef CONFIG_KMEMCHECK
1364 /*
1365 * Split shadow pages too, because free(page[0]) would
1366 * otherwise free the whole shadow.
1367 */
1368 if (kmemcheck_page_is_tracked(page))
1369 split_page(virt_to_page(page[0].shadow), order);
1370#endif
1371
1372 for (i = 1; i < (1 << order); i++)
1373 set_page_refcounted(page + i);
1374}
1375
1376/*
1377 * Similar to split_page except the page is already free. As this is only
1378 * being used for migration, the migratetype of the block also changes.
1379 * As this is called with interrupts disabled, the caller is responsible
1380 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1381 * are enabled.
1382 *
1383 * Note: this is probably too low level an operation for use in drivers.
1384 * Please consult with lkml before using this in your driver.
1385 */
1386int split_free_page(struct page *page)
1387{
1388 unsigned int order;
1389 unsigned long watermark;
1390 struct zone *zone;
1391
1392 BUG_ON(!PageBuddy(page));
1393
1394 zone = page_zone(page);
1395 order = page_order(page);
1396
1397 /* Obey watermarks as if the page was being allocated */
1398 watermark = low_wmark_pages(zone) + (1 << order);
1399 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1400 return 0;
1401
1402 /* Remove page from free list */
1403 list_del(&page->lru);
1404 zone->free_area[order].nr_free--;
1405 rmv_page_order(page);
1406 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1407
1408 /* Split into individual pages */
1409 set_page_refcounted(page);
1410 split_page(page, order);
1411
1412 if (order >= pageblock_order - 1) {
1413 struct page *endpage = page + (1 << order) - 1;
1414 for (; page < endpage; page += pageblock_nr_pages) {
1415 int mt = get_pageblock_migratetype(page);
1416 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1417 set_pageblock_migratetype(page,
1418 MIGRATE_MOVABLE);
1419 }
1420 }
1421
1422 return 1 << order;
1423}
1424
1425/*
1426 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1427 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1428 * or two.
1429 */
1430static inline
1431struct page *buffered_rmqueue(struct zone *preferred_zone,
1432 struct zone *zone, int order, gfp_t gfp_flags,
1433 int migratetype)
1434{
1435 unsigned long flags;
1436 struct page *page;
1437 int cold = !!(gfp_flags & __GFP_COLD);
1438
1439again:
1440 if (likely(order == 0)) {
1441 struct per_cpu_pages *pcp;
1442 struct list_head *list;
1443
1444 local_irq_save(flags);
1445 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1446 list = &pcp->lists[migratetype];
1447 if (list_empty(list)) {
1448 pcp->count += rmqueue_bulk(zone, 0,
1449 pcp->batch, list,
1450 migratetype, cold);
1451 if (unlikely(list_empty(list)))
1452 goto failed;
1453 }
1454
1455 if (cold)
1456 page = list_entry(list->prev, struct page, lru);
1457 else
1458 page = list_entry(list->next, struct page, lru);
1459
1460 list_del(&page->lru);
1461 pcp->count--;
1462 } else {
1463 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1464 /*
1465 * __GFP_NOFAIL is not to be used in new code.
1466 *
1467 * All __GFP_NOFAIL callers should be fixed so that they
1468 * properly detect and handle allocation failures.
1469 *
1470 * We most definitely don't want callers attempting to
1471 * allocate greater than order-1 page units with
1472 * __GFP_NOFAIL.
1473 */
1474 WARN_ON_ONCE(order > 1);
1475 }
1476 spin_lock_irqsave(&zone->lock, flags);
1477 page = __rmqueue(zone, order, migratetype);
1478 spin_unlock(&zone->lock);
1479 if (!page)
1480 goto failed;
1481 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1482 }
1483
1484 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1485 zone_statistics(preferred_zone, zone, gfp_flags);
1486 local_irq_restore(flags);
1487
1488 VM_BUG_ON(bad_range(zone, page));
1489 if (prep_new_page(page, order, gfp_flags))
1490 goto again;
1491 return page;
1492
1493failed:
1494 local_irq_restore(flags);
1495 return NULL;
1496}
1497
1498/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1499#define ALLOC_WMARK_MIN WMARK_MIN
1500#define ALLOC_WMARK_LOW WMARK_LOW
1501#define ALLOC_WMARK_HIGH WMARK_HIGH
1502#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1503
1504/* Mask to get the watermark bits */
1505#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1506
1507#define ALLOC_HARDER 0x10 /* try to alloc harder */
1508#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1509#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1510
1511#ifdef CONFIG_FAIL_PAGE_ALLOC
1512
1513static struct {
1514 struct fault_attr attr;
1515
1516 u32 ignore_gfp_highmem;
1517 u32 ignore_gfp_wait;
1518 u32 min_order;
1519} fail_page_alloc = {
1520 .attr = FAULT_ATTR_INITIALIZER,
1521 .ignore_gfp_wait = 1,
1522 .ignore_gfp_highmem = 1,
1523 .min_order = 1,
1524};
1525
1526static int __init setup_fail_page_alloc(char *str)
1527{
1528 return setup_fault_attr(&fail_page_alloc.attr, str);
1529}
1530__setup("fail_page_alloc=", setup_fail_page_alloc);
1531
1532static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1533{
1534 if (order < fail_page_alloc.min_order)
1535 return 0;
1536 if (gfp_mask & __GFP_NOFAIL)
1537 return 0;
1538 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1539 return 0;
1540 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1541 return 0;
1542
1543 return should_fail(&fail_page_alloc.attr, 1 << order);
1544}
1545
1546#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1547
1548static int __init fail_page_alloc_debugfs(void)
1549{
1550 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1551 struct dentry *dir;
1552
1553 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1554 &fail_page_alloc.attr);
1555 if (IS_ERR(dir))
1556 return PTR_ERR(dir);
1557
1558 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1559 &fail_page_alloc.ignore_gfp_wait))
1560 goto fail;
1561 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1562 &fail_page_alloc.ignore_gfp_highmem))
1563 goto fail;
1564 if (!debugfs_create_u32("min-order", mode, dir,
1565 &fail_page_alloc.min_order))
1566 goto fail;
1567
1568 return 0;
1569fail:
1570 debugfs_remove_recursive(dir);
1571
1572 return -ENOMEM;
1573}
1574
1575late_initcall(fail_page_alloc_debugfs);
1576
1577#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1578
1579#else /* CONFIG_FAIL_PAGE_ALLOC */
1580
1581static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1582{
1583 return 0;
1584}
1585
1586#endif /* CONFIG_FAIL_PAGE_ALLOC */
1587
1588/*
1589 * Return true if free pages are above 'mark'. This takes into account the order
1590 * of the allocation.
1591 */
1592static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1593 int classzone_idx, int alloc_flags, long free_pages)
1594{
1595 /* free_pages my go negative - that's OK */
1596 long min = mark;
1597 int o;
1598
1599 free_pages -= (1 << order) - 1;
1600 if (alloc_flags & ALLOC_HIGH)
1601 min -= min / 2;
1602 if (alloc_flags & ALLOC_HARDER)
1603 min -= min / 4;
1604
1605 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1606 return false;
1607 for (o = 0; o < order; o++) {
1608 /* At the next order, this order's pages become unavailable */
1609 free_pages -= z->free_area[o].nr_free << o;
1610
1611 /* Require fewer higher order pages to be free */
1612 min >>= 1;
1613
1614 if (free_pages <= min)
1615 return false;
1616 }
1617 return true;
1618}
1619
1620bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1621 int classzone_idx, int alloc_flags)
1622{
1623 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1624 zone_page_state(z, NR_FREE_PAGES));
1625}
1626
1627bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1628 int classzone_idx, int alloc_flags)
1629{
1630 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1631
1632 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1633 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1634
1635 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1636 free_pages);
1637}
1638
1639#ifdef CONFIG_NUMA
1640/*
1641 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1642 * skip over zones that are not allowed by the cpuset, or that have
1643 * been recently (in last second) found to be nearly full. See further
1644 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1645 * that have to skip over a lot of full or unallowed zones.
1646 *
1647 * If the zonelist cache is present in the passed in zonelist, then
1648 * returns a pointer to the allowed node mask (either the current
1649 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1650 *
1651 * If the zonelist cache is not available for this zonelist, does
1652 * nothing and returns NULL.
1653 *
1654 * If the fullzones BITMAP in the zonelist cache is stale (more than
1655 * a second since last zap'd) then we zap it out (clear its bits.)
1656 *
1657 * We hold off even calling zlc_setup, until after we've checked the
1658 * first zone in the zonelist, on the theory that most allocations will
1659 * be satisfied from that first zone, so best to examine that zone as
1660 * quickly as we can.
1661 */
1662static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1663{
1664 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1665 nodemask_t *allowednodes; /* zonelist_cache approximation */
1666
1667 zlc = zonelist->zlcache_ptr;
1668 if (!zlc)
1669 return NULL;
1670
1671 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1672 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1673 zlc->last_full_zap = jiffies;
1674 }
1675
1676 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1677 &cpuset_current_mems_allowed :
1678 &node_states[N_HIGH_MEMORY];
1679 return allowednodes;
1680}
1681
1682/*
1683 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1684 * if it is worth looking at further for free memory:
1685 * 1) Check that the zone isn't thought to be full (doesn't have its
1686 * bit set in the zonelist_cache fullzones BITMAP).
1687 * 2) Check that the zones node (obtained from the zonelist_cache
1688 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1689 * Return true (non-zero) if zone is worth looking at further, or
1690 * else return false (zero) if it is not.
1691 *
1692 * This check -ignores- the distinction between various watermarks,
1693 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1694 * found to be full for any variation of these watermarks, it will
1695 * be considered full for up to one second by all requests, unless
1696 * we are so low on memory on all allowed nodes that we are forced
1697 * into the second scan of the zonelist.
1698 *
1699 * In the second scan we ignore this zonelist cache and exactly
1700 * apply the watermarks to all zones, even it is slower to do so.
1701 * We are low on memory in the second scan, and should leave no stone
1702 * unturned looking for a free page.
1703 */
1704static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1705 nodemask_t *allowednodes)
1706{
1707 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1708 int i; /* index of *z in zonelist zones */
1709 int n; /* node that zone *z is on */
1710
1711 zlc = zonelist->zlcache_ptr;
1712 if (!zlc)
1713 return 1;
1714
1715 i = z - zonelist->_zonerefs;
1716 n = zlc->z_to_n[i];
1717
1718 /* This zone is worth trying if it is allowed but not full */
1719 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1720}
1721
1722/*
1723 * Given 'z' scanning a zonelist, set the corresponding bit in
1724 * zlc->fullzones, so that subsequent attempts to allocate a page
1725 * from that zone don't waste time re-examining it.
1726 */
1727static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1728{
1729 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1730 int i; /* index of *z in zonelist zones */
1731
1732 zlc = zonelist->zlcache_ptr;
1733 if (!zlc)
1734 return;
1735
1736 i = z - zonelist->_zonerefs;
1737
1738 set_bit(i, zlc->fullzones);
1739}
1740
1741/*
1742 * clear all zones full, called after direct reclaim makes progress so that
1743 * a zone that was recently full is not skipped over for up to a second
1744 */
1745static void zlc_clear_zones_full(struct zonelist *zonelist)
1746{
1747 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1748
1749 zlc = zonelist->zlcache_ptr;
1750 if (!zlc)
1751 return;
1752
1753 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1754}
1755
1756#else /* CONFIG_NUMA */
1757
1758static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1759{
1760 return NULL;
1761}
1762
1763static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1764 nodemask_t *allowednodes)
1765{
1766 return 1;
1767}
1768
1769static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1770{
1771}
1772
1773static void zlc_clear_zones_full(struct zonelist *zonelist)
1774{
1775}
1776#endif /* CONFIG_NUMA */
1777
1778/*
1779 * get_page_from_freelist goes through the zonelist trying to allocate
1780 * a page.
1781 */
1782static struct page *
1783get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1784 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1785 struct zone *preferred_zone, int migratetype)
1786{
1787 struct zoneref *z;
1788 struct page *page = NULL;
1789 int classzone_idx;
1790 struct zone *zone;
1791 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1792 int zlc_active = 0; /* set if using zonelist_cache */
1793 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1794
1795 classzone_idx = zone_idx(preferred_zone);
1796zonelist_scan:
1797 /*
1798 * Scan zonelist, looking for a zone with enough free.
1799 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1800 */
1801 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1802 high_zoneidx, nodemask) {
1803 if (NUMA_BUILD && zlc_active &&
1804 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1805 continue;
1806 if ((alloc_flags & ALLOC_CPUSET) &&
1807 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1808 continue;
1809 /*
1810 * When allocating a page cache page for writing, we
1811 * want to get it from a zone that is within its dirty
1812 * limit, such that no single zone holds more than its
1813 * proportional share of globally allowed dirty pages.
1814 * The dirty limits take into account the zone's
1815 * lowmem reserves and high watermark so that kswapd
1816 * should be able to balance it without having to
1817 * write pages from its LRU list.
1818 *
1819 * This may look like it could increase pressure on
1820 * lower zones by failing allocations in higher zones
1821 * before they are full. But the pages that do spill
1822 * over are limited as the lower zones are protected
1823 * by this very same mechanism. It should not become
1824 * a practical burden to them.
1825 *
1826 * XXX: For now, allow allocations to potentially
1827 * exceed the per-zone dirty limit in the slowpath
1828 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1829 * which is important when on a NUMA setup the allowed
1830 * zones are together not big enough to reach the
1831 * global limit. The proper fix for these situations
1832 * will require awareness of zones in the
1833 * dirty-throttling and the flusher threads.
1834 */
1835 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1836 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1837 goto this_zone_full;
1838
1839 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1840 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1841 unsigned long mark;
1842 int ret;
1843
1844 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1845 if (zone_watermark_ok(zone, order, mark,
1846 classzone_idx, alloc_flags))
1847 goto try_this_zone;
1848
1849 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1850 /*
1851 * we do zlc_setup if there are multiple nodes
1852 * and before considering the first zone allowed
1853 * by the cpuset.
1854 */
1855 allowednodes = zlc_setup(zonelist, alloc_flags);
1856 zlc_active = 1;
1857 did_zlc_setup = 1;
1858 }
1859
1860 if (zone_reclaim_mode == 0)
1861 goto this_zone_full;
1862
1863 /*
1864 * As we may have just activated ZLC, check if the first
1865 * eligible zone has failed zone_reclaim recently.
1866 */
1867 if (NUMA_BUILD && zlc_active &&
1868 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1869 continue;
1870
1871 ret = zone_reclaim(zone, gfp_mask, order);
1872 switch (ret) {
1873 case ZONE_RECLAIM_NOSCAN:
1874 /* did not scan */
1875 continue;
1876 case ZONE_RECLAIM_FULL:
1877 /* scanned but unreclaimable */
1878 continue;
1879 default:
1880 /* did we reclaim enough */
1881 if (!zone_watermark_ok(zone, order, mark,
1882 classzone_idx, alloc_flags))
1883 goto this_zone_full;
1884 }
1885 }
1886
1887try_this_zone:
1888 page = buffered_rmqueue(preferred_zone, zone, order,
1889 gfp_mask, migratetype);
1890 if (page)
1891 break;
1892this_zone_full:
1893 if (NUMA_BUILD)
1894 zlc_mark_zone_full(zonelist, z);
1895 }
1896
1897 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1898 /* Disable zlc cache for second zonelist scan */
1899 zlc_active = 0;
1900 goto zonelist_scan;
1901 }
1902 return page;
1903}
1904
1905/*
1906 * Large machines with many possible nodes should not always dump per-node
1907 * meminfo in irq context.
1908 */
1909static inline bool should_suppress_show_mem(void)
1910{
1911 bool ret = false;
1912
1913#if NODES_SHIFT > 8
1914 ret = in_interrupt();
1915#endif
1916 return ret;
1917}
1918
1919static DEFINE_RATELIMIT_STATE(nopage_rs,
1920 DEFAULT_RATELIMIT_INTERVAL,
1921 DEFAULT_RATELIMIT_BURST);
1922
1923void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1924{
1925 unsigned int filter = SHOW_MEM_FILTER_NODES;
1926
1927 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1928 debug_guardpage_minorder() > 0)
1929 return;
1930
1931 /*
1932 * This documents exceptions given to allocations in certain
1933 * contexts that are allowed to allocate outside current's set
1934 * of allowed nodes.
1935 */
1936 if (!(gfp_mask & __GFP_NOMEMALLOC))
1937 if (test_thread_flag(TIF_MEMDIE) ||
1938 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1939 filter &= ~SHOW_MEM_FILTER_NODES;
1940 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1941 filter &= ~SHOW_MEM_FILTER_NODES;
1942
1943 if (fmt) {
1944 struct va_format vaf;
1945 va_list args;
1946
1947 va_start(args, fmt);
1948
1949 vaf.fmt = fmt;
1950 vaf.va = &args;
1951
1952 pr_warn("%pV", &vaf);
1953
1954 va_end(args);
1955 }
1956
1957 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1958 current->comm, order, gfp_mask);
1959
1960 dump_stack();
1961 if (!should_suppress_show_mem())
1962 show_mem(filter);
1963}
1964
1965static inline int
1966should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1967 unsigned long did_some_progress,
1968 unsigned long pages_reclaimed)
1969{
1970 /* Do not loop if specifically requested */
1971 if (gfp_mask & __GFP_NORETRY)
1972 return 0;
1973
1974 /* Always retry if specifically requested */
1975 if (gfp_mask & __GFP_NOFAIL)
1976 return 1;
1977
1978 /*
1979 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
1980 * making forward progress without invoking OOM. Suspend also disables
1981 * storage devices so kswapd will not help. Bail if we are suspending.
1982 */
1983 if (!did_some_progress && pm_suspended_storage())
1984 return 0;
1985
1986 /*
1987 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1988 * means __GFP_NOFAIL, but that may not be true in other
1989 * implementations.
1990 */
1991 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1992 return 1;
1993
1994 /*
1995 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1996 * specified, then we retry until we no longer reclaim any pages
1997 * (above), or we've reclaimed an order of pages at least as
1998 * large as the allocation's order. In both cases, if the
1999 * allocation still fails, we stop retrying.
2000 */
2001 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2002 return 1;
2003
2004 return 0;
2005}
2006
2007static inline struct page *
2008__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2009 struct zonelist *zonelist, enum zone_type high_zoneidx,
2010 nodemask_t *nodemask, struct zone *preferred_zone,
2011 int migratetype)
2012{
2013 struct page *page;
2014
2015 /* Acquire the OOM killer lock for the zones in zonelist */
2016 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2017 schedule_timeout_uninterruptible(1);
2018 return NULL;
2019 }
2020
2021 /*
2022 * Go through the zonelist yet one more time, keep very high watermark
2023 * here, this is only to catch a parallel oom killing, we must fail if
2024 * we're still under heavy pressure.
2025 */
2026 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2027 order, zonelist, high_zoneidx,
2028 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2029 preferred_zone, migratetype);
2030 if (page)
2031 goto out;
2032
2033 if (!(gfp_mask & __GFP_NOFAIL)) {
2034 /* The OOM killer will not help higher order allocs */
2035 if (order > PAGE_ALLOC_COSTLY_ORDER)
2036 goto out;
2037 /* The OOM killer does not needlessly kill tasks for lowmem */
2038 if (high_zoneidx < ZONE_NORMAL)
2039 goto out;
2040 /*
2041 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2042 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2043 * The caller should handle page allocation failure by itself if
2044 * it specifies __GFP_THISNODE.
2045 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2046 */
2047 if (gfp_mask & __GFP_THISNODE)
2048 goto out;
2049 }
2050 /* Exhausted what can be done so it's blamo time */
2051 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2052
2053out:
2054 clear_zonelist_oom(zonelist, gfp_mask);
2055 return page;
2056}
2057
2058#ifdef CONFIG_COMPACTION
2059/* Try memory compaction for high-order allocations before reclaim */
2060static struct page *
2061__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2062 struct zonelist *zonelist, enum zone_type high_zoneidx,
2063 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2064 int migratetype, bool sync_migration,
2065 bool *deferred_compaction,
2066 unsigned long *did_some_progress)
2067{
2068 struct page *page;
2069
2070 if (!order)
2071 return NULL;
2072
2073 if (compaction_deferred(preferred_zone, order)) {
2074 *deferred_compaction = true;
2075 return NULL;
2076 }
2077
2078 current->flags |= PF_MEMALLOC;
2079 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2080 nodemask, sync_migration);
2081 current->flags &= ~PF_MEMALLOC;
2082 if (*did_some_progress != COMPACT_SKIPPED) {
2083
2084 /* Page migration frees to the PCP lists but we want merging */
2085 drain_pages(get_cpu());
2086 put_cpu();
2087
2088 page = get_page_from_freelist(gfp_mask, nodemask,
2089 order, zonelist, high_zoneidx,
2090 alloc_flags, preferred_zone,
2091 migratetype);
2092 if (page) {
2093 preferred_zone->compact_considered = 0;
2094 preferred_zone->compact_defer_shift = 0;
2095 if (order >= preferred_zone->compact_order_failed)
2096 preferred_zone->compact_order_failed = order + 1;
2097 count_vm_event(COMPACTSUCCESS);
2098 return page;
2099 }
2100
2101 /*
2102 * It's bad if compaction run occurs and fails.
2103 * The most likely reason is that pages exist,
2104 * but not enough to satisfy watermarks.
2105 */
2106 count_vm_event(COMPACTFAIL);
2107
2108 /*
2109 * As async compaction considers a subset of pageblocks, only
2110 * defer if the failure was a sync compaction failure.
2111 */
2112 if (sync_migration)
2113 defer_compaction(preferred_zone, order);
2114
2115 cond_resched();
2116 }
2117
2118 return NULL;
2119}
2120#else
2121static inline struct page *
2122__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2123 struct zonelist *zonelist, enum zone_type high_zoneidx,
2124 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2125 int migratetype, bool sync_migration,
2126 bool *deferred_compaction,
2127 unsigned long *did_some_progress)
2128{
2129 return NULL;
2130}
2131#endif /* CONFIG_COMPACTION */
2132
2133/* The really slow allocator path where we enter direct reclaim */
2134static inline struct page *
2135__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2136 struct zonelist *zonelist, enum zone_type high_zoneidx,
2137 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2138 int migratetype, unsigned long *did_some_progress)
2139{
2140 struct page *page = NULL;
2141 struct reclaim_state reclaim_state;
2142 bool drained = false;
2143
2144 cond_resched();
2145
2146 /* We now go into synchronous reclaim */
2147 cpuset_memory_pressure_bump();
2148 current->flags |= PF_MEMALLOC;
2149 lockdep_set_current_reclaim_state(gfp_mask);
2150 reclaim_state.reclaimed_slab = 0;
2151 current->reclaim_state = &reclaim_state;
2152
2153 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2154
2155 current->reclaim_state = NULL;
2156 lockdep_clear_current_reclaim_state();
2157 current->flags &= ~PF_MEMALLOC;
2158
2159 cond_resched();
2160
2161 if (unlikely(!(*did_some_progress)))
2162 return NULL;
2163
2164 /* After successful reclaim, reconsider all zones for allocation */
2165 if (NUMA_BUILD)
2166 zlc_clear_zones_full(zonelist);
2167
2168retry:
2169 page = get_page_from_freelist(gfp_mask, nodemask, order,
2170 zonelist, high_zoneidx,
2171 alloc_flags, preferred_zone,
2172 migratetype);
2173
2174 /*
2175 * If an allocation failed after direct reclaim, it could be because
2176 * pages are pinned on the per-cpu lists. Drain them and try again
2177 */
2178 if (!page && !drained) {
2179 drain_all_pages();
2180 drained = true;
2181 goto retry;
2182 }
2183
2184 return page;
2185}
2186
2187/*
2188 * This is called in the allocator slow-path if the allocation request is of
2189 * sufficient urgency to ignore watermarks and take other desperate measures
2190 */
2191static inline struct page *
2192__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2193 struct zonelist *zonelist, enum zone_type high_zoneidx,
2194 nodemask_t *nodemask, struct zone *preferred_zone,
2195 int migratetype)
2196{
2197 struct page *page;
2198
2199 do {
2200 page = get_page_from_freelist(gfp_mask, nodemask, order,
2201 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2202 preferred_zone, migratetype);
2203
2204 if (!page && gfp_mask & __GFP_NOFAIL)
2205 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2206 } while (!page && (gfp_mask & __GFP_NOFAIL));
2207
2208 return page;
2209}
2210
2211static inline
2212void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2213 enum zone_type high_zoneidx,
2214 enum zone_type classzone_idx)
2215{
2216 struct zoneref *z;
2217 struct zone *zone;
2218
2219 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2220 wakeup_kswapd(zone, order, classzone_idx);
2221}
2222
2223static inline int
2224gfp_to_alloc_flags(gfp_t gfp_mask)
2225{
2226 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2227 const gfp_t wait = gfp_mask & __GFP_WAIT;
2228
2229 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2230 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2231
2232 /*
2233 * The caller may dip into page reserves a bit more if the caller
2234 * cannot run direct reclaim, or if the caller has realtime scheduling
2235 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2236 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2237 */
2238 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2239
2240 if (!wait) {
2241 /*
2242 * Not worth trying to allocate harder for
2243 * __GFP_NOMEMALLOC even if it can't schedule.
2244 */
2245 if (!(gfp_mask & __GFP_NOMEMALLOC))
2246 alloc_flags |= ALLOC_HARDER;
2247 /*
2248 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2249 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2250 */
2251 alloc_flags &= ~ALLOC_CPUSET;
2252 } else if (unlikely(rt_task(current)) && !in_interrupt())
2253 alloc_flags |= ALLOC_HARDER;
2254
2255 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2256 if (!in_interrupt() &&
2257 ((current->flags & PF_MEMALLOC) ||
2258 unlikely(test_thread_flag(TIF_MEMDIE))))
2259 alloc_flags |= ALLOC_NO_WATERMARKS;
2260 }
2261
2262 return alloc_flags;
2263}
2264
2265static inline struct page *
2266__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2267 struct zonelist *zonelist, enum zone_type high_zoneidx,
2268 nodemask_t *nodemask, struct zone *preferred_zone,
2269 int migratetype)
2270{
2271 const gfp_t wait = gfp_mask & __GFP_WAIT;
2272 struct page *page = NULL;
2273 int alloc_flags;
2274 unsigned long pages_reclaimed = 0;
2275 unsigned long did_some_progress;
2276 bool sync_migration = false;
2277 bool deferred_compaction = false;
2278
2279 /*
2280 * In the slowpath, we sanity check order to avoid ever trying to
2281 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2282 * be using allocators in order of preference for an area that is
2283 * too large.
2284 */
2285 if (order >= MAX_ORDER) {
2286 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2287 return NULL;
2288 }
2289
2290 /*
2291 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2292 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2293 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2294 * using a larger set of nodes after it has established that the
2295 * allowed per node queues are empty and that nodes are
2296 * over allocated.
2297 */
2298 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2299 goto nopage;
2300
2301restart:
2302 if (!(gfp_mask & __GFP_NO_KSWAPD))
2303 wake_all_kswapd(order, zonelist, high_zoneidx,
2304 zone_idx(preferred_zone));
2305
2306 /*
2307 * OK, we're below the kswapd watermark and have kicked background
2308 * reclaim. Now things get more complex, so set up alloc_flags according
2309 * to how we want to proceed.
2310 */
2311 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2312
2313 /*
2314 * Find the true preferred zone if the allocation is unconstrained by
2315 * cpusets.
2316 */
2317 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2318 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2319 &preferred_zone);
2320
2321rebalance:
2322 /* This is the last chance, in general, before the goto nopage. */
2323 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2324 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2325 preferred_zone, migratetype);
2326 if (page)
2327 goto got_pg;
2328
2329 /* Allocate without watermarks if the context allows */
2330 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2331 page = __alloc_pages_high_priority(gfp_mask, order,
2332 zonelist, high_zoneidx, nodemask,
2333 preferred_zone, migratetype);
2334 if (page)
2335 goto got_pg;
2336 }
2337
2338 /* Atomic allocations - we can't balance anything */
2339 if (!wait)
2340 goto nopage;
2341
2342 /* Avoid recursion of direct reclaim */
2343 if (current->flags & PF_MEMALLOC)
2344 goto nopage;
2345
2346 /* Avoid allocations with no watermarks from looping endlessly */
2347 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2348 goto nopage;
2349
2350 /*
2351 * Try direct compaction. The first pass is asynchronous. Subsequent
2352 * attempts after direct reclaim are synchronous
2353 */
2354 page = __alloc_pages_direct_compact(gfp_mask, order,
2355 zonelist, high_zoneidx,
2356 nodemask,
2357 alloc_flags, preferred_zone,
2358 migratetype, sync_migration,
2359 &deferred_compaction,
2360 &did_some_progress);
2361 if (page)
2362 goto got_pg;
2363 sync_migration = true;
2364
2365 /*
2366 * If compaction is deferred for high-order allocations, it is because
2367 * sync compaction recently failed. In this is the case and the caller
2368 * has requested the system not be heavily disrupted, fail the
2369 * allocation now instead of entering direct reclaim
2370 */
2371 if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
2372 goto nopage;
2373
2374 /* Try direct reclaim and then allocating */
2375 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2376 zonelist, high_zoneidx,
2377 nodemask,
2378 alloc_flags, preferred_zone,
2379 migratetype, &did_some_progress);
2380 if (page)
2381 goto got_pg;
2382
2383 /*
2384 * If we failed to make any progress reclaiming, then we are
2385 * running out of options and have to consider going OOM
2386 */
2387 if (!did_some_progress) {
2388 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2389 if (oom_killer_disabled)
2390 goto nopage;
2391 /* Coredumps can quickly deplete all memory reserves */
2392 if ((current->flags & PF_DUMPCORE) &&
2393 !(gfp_mask & __GFP_NOFAIL))
2394 goto nopage;
2395 page = __alloc_pages_may_oom(gfp_mask, order,
2396 zonelist, high_zoneidx,
2397 nodemask, preferred_zone,
2398 migratetype);
2399 if (page)
2400 goto got_pg;
2401
2402 if (!(gfp_mask & __GFP_NOFAIL)) {
2403 /*
2404 * The oom killer is not called for high-order
2405 * allocations that may fail, so if no progress
2406 * is being made, there are no other options and
2407 * retrying is unlikely to help.
2408 */
2409 if (order > PAGE_ALLOC_COSTLY_ORDER)
2410 goto nopage;
2411 /*
2412 * The oom killer is not called for lowmem
2413 * allocations to prevent needlessly killing
2414 * innocent tasks.
2415 */
2416 if (high_zoneidx < ZONE_NORMAL)
2417 goto nopage;
2418 }
2419
2420 goto restart;
2421 }
2422 }
2423
2424 /* Check if we should retry the allocation */
2425 pages_reclaimed += did_some_progress;
2426 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2427 pages_reclaimed)) {
2428 /* Wait for some write requests to complete then retry */
2429 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2430 goto rebalance;
2431 } else {
2432 /*
2433 * High-order allocations do not necessarily loop after
2434 * direct reclaim and reclaim/compaction depends on compaction
2435 * being called after reclaim so call directly if necessary
2436 */
2437 page = __alloc_pages_direct_compact(gfp_mask, order,
2438 zonelist, high_zoneidx,
2439 nodemask,
2440 alloc_flags, preferred_zone,
2441 migratetype, sync_migration,
2442 &deferred_compaction,
2443 &did_some_progress);
2444 if (page)
2445 goto got_pg;
2446 }
2447
2448nopage:
2449 warn_alloc_failed(gfp_mask, order, NULL);
2450 return page;
2451got_pg:
2452 if (kmemcheck_enabled)
2453 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2454 return page;
2455
2456}
2457
2458/*
2459 * This is the 'heart' of the zoned buddy allocator.
2460 */
2461struct page *
2462__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2463 struct zonelist *zonelist, nodemask_t *nodemask)
2464{
2465 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2466 struct zone *preferred_zone;
2467 struct page *page = NULL;
2468 int migratetype = allocflags_to_migratetype(gfp_mask);
2469 unsigned int cpuset_mems_cookie;
2470
2471 gfp_mask &= gfp_allowed_mask;
2472
2473 lockdep_trace_alloc(gfp_mask);
2474
2475 might_sleep_if(gfp_mask & __GFP_WAIT);
2476
2477 if (should_fail_alloc_page(gfp_mask, order))
2478 return NULL;
2479
2480 /*
2481 * Check the zones suitable for the gfp_mask contain at least one
2482 * valid zone. It's possible to have an empty zonelist as a result
2483 * of GFP_THISNODE and a memoryless node
2484 */
2485 if (unlikely(!zonelist->_zonerefs->zone))
2486 return NULL;
2487
2488retry_cpuset:
2489 cpuset_mems_cookie = get_mems_allowed();
2490
2491 /* The preferred zone is used for statistics later */
2492 first_zones_zonelist(zonelist, high_zoneidx,
2493 nodemask ? : &cpuset_current_mems_allowed,
2494 &preferred_zone);
2495 if (!preferred_zone)
2496 goto out;
2497
2498 /* First allocation attempt */
2499 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2500 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2501 preferred_zone, migratetype);
2502 if (unlikely(!page))
2503 page = __alloc_pages_slowpath(gfp_mask, order,
2504 zonelist, high_zoneidx, nodemask,
2505 preferred_zone, migratetype);
2506
2507 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2508
2509out:
2510 /*
2511 * When updating a task's mems_allowed, it is possible to race with
2512 * parallel threads in such a way that an allocation can fail while
2513 * the mask is being updated. If a page allocation is about to fail,
2514 * check if the cpuset changed during allocation and if so, retry.
2515 */
2516 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2517 goto retry_cpuset;
2518
2519 return page;
2520}
2521EXPORT_SYMBOL(__alloc_pages_nodemask);
2522
2523/*
2524 * Common helper functions.
2525 */
2526unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2527{
2528 struct page *page;
2529
2530 /*
2531 * __get_free_pages() returns a 32-bit address, which cannot represent
2532 * a highmem page
2533 */
2534 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2535
2536 page = alloc_pages(gfp_mask, order);
2537 if (!page)
2538 return 0;
2539 return (unsigned long) page_address(page);
2540}
2541EXPORT_SYMBOL(__get_free_pages);
2542
2543unsigned long get_zeroed_page(gfp_t gfp_mask)
2544{
2545 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2546}
2547EXPORT_SYMBOL(get_zeroed_page);
2548
2549void __free_pages(struct page *page, unsigned int order)
2550{
2551 if (put_page_testzero(page)) {
2552 if (order == 0)
2553 free_hot_cold_page(page, 0);
2554 else
2555 __free_pages_ok(page, order);
2556 }
2557}
2558
2559EXPORT_SYMBOL(__free_pages);
2560
2561void free_pages(unsigned long addr, unsigned int order)
2562{
2563 if (addr != 0) {
2564 VM_BUG_ON(!virt_addr_valid((void *)addr));
2565 __free_pages(virt_to_page((void *)addr), order);
2566 }
2567}
2568
2569EXPORT_SYMBOL(free_pages);
2570
2571static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2572{
2573 if (addr) {
2574 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2575 unsigned long used = addr + PAGE_ALIGN(size);
2576
2577 split_page(virt_to_page((void *)addr), order);
2578 while (used < alloc_end) {
2579 free_page(used);
2580 used += PAGE_SIZE;
2581 }
2582 }
2583 return (void *)addr;
2584}
2585
2586/**
2587 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2588 * @size: the number of bytes to allocate
2589 * @gfp_mask: GFP flags for the allocation
2590 *
2591 * This function is similar to alloc_pages(), except that it allocates the
2592 * minimum number of pages to satisfy the request. alloc_pages() can only
2593 * allocate memory in power-of-two pages.
2594 *
2595 * This function is also limited by MAX_ORDER.
2596 *
2597 * Memory allocated by this function must be released by free_pages_exact().
2598 */
2599void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2600{
2601 unsigned int order = get_order(size);
2602 unsigned long addr;
2603
2604 addr = __get_free_pages(gfp_mask, order);
2605 return make_alloc_exact(addr, order, size);
2606}
2607EXPORT_SYMBOL(alloc_pages_exact);
2608
2609/**
2610 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2611 * pages on a node.
2612 * @nid: the preferred node ID where memory should be allocated
2613 * @size: the number of bytes to allocate
2614 * @gfp_mask: GFP flags for the allocation
2615 *
2616 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2617 * back.
2618 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2619 * but is not exact.
2620 */
2621void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2622{
2623 unsigned order = get_order(size);
2624 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2625 if (!p)
2626 return NULL;
2627 return make_alloc_exact((unsigned long)page_address(p), order, size);
2628}
2629EXPORT_SYMBOL(alloc_pages_exact_nid);
2630
2631/**
2632 * free_pages_exact - release memory allocated via alloc_pages_exact()
2633 * @virt: the value returned by alloc_pages_exact.
2634 * @size: size of allocation, same value as passed to alloc_pages_exact().
2635 *
2636 * Release the memory allocated by a previous call to alloc_pages_exact.
2637 */
2638void free_pages_exact(void *virt, size_t size)
2639{
2640 unsigned long addr = (unsigned long)virt;
2641 unsigned long end = addr + PAGE_ALIGN(size);
2642
2643 while (addr < end) {
2644 free_page(addr);
2645 addr += PAGE_SIZE;
2646 }
2647}
2648EXPORT_SYMBOL(free_pages_exact);
2649
2650static unsigned int nr_free_zone_pages(int offset)
2651{
2652 struct zoneref *z;
2653 struct zone *zone;
2654
2655 /* Just pick one node, since fallback list is circular */
2656 unsigned int sum = 0;
2657
2658 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2659
2660 for_each_zone_zonelist(zone, z, zonelist, offset) {
2661 unsigned long size = zone->present_pages;
2662 unsigned long high = high_wmark_pages(zone);
2663 if (size > high)
2664 sum += size - high;
2665 }
2666
2667 return sum;
2668}
2669
2670/*
2671 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2672 */
2673unsigned int nr_free_buffer_pages(void)
2674{
2675 return nr_free_zone_pages(gfp_zone(GFP_USER));
2676}
2677EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2678
2679/*
2680 * Amount of free RAM allocatable within all zones
2681 */
2682unsigned int nr_free_pagecache_pages(void)
2683{
2684 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2685}
2686
2687static inline void show_node(struct zone *zone)
2688{
2689 if (NUMA_BUILD)
2690 printk("Node %d ", zone_to_nid(zone));
2691}
2692
2693void si_meminfo(struct sysinfo *val)
2694{
2695 val->totalram = totalram_pages;
2696 val->sharedram = 0;
2697 val->freeram = global_page_state(NR_FREE_PAGES);
2698 val->bufferram = nr_blockdev_pages();
2699 val->totalhigh = totalhigh_pages;
2700 val->freehigh = nr_free_highpages();
2701 val->mem_unit = PAGE_SIZE;
2702}
2703
2704EXPORT_SYMBOL(si_meminfo);
2705
2706#ifdef CONFIG_NUMA
2707void si_meminfo_node(struct sysinfo *val, int nid)
2708{
2709 pg_data_t *pgdat = NODE_DATA(nid);
2710
2711 val->totalram = pgdat->node_present_pages;
2712 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2713#ifdef CONFIG_HIGHMEM
2714 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2715 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2716 NR_FREE_PAGES);
2717#else
2718 val->totalhigh = 0;
2719 val->freehigh = 0;
2720#endif
2721 val->mem_unit = PAGE_SIZE;
2722}
2723#endif
2724
2725/*
2726 * Determine whether the node should be displayed or not, depending on whether
2727 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2728 */
2729bool skip_free_areas_node(unsigned int flags, int nid)
2730{
2731 bool ret = false;
2732 unsigned int cpuset_mems_cookie;
2733
2734 if (!(flags & SHOW_MEM_FILTER_NODES))
2735 goto out;
2736
2737 do {
2738 cpuset_mems_cookie = get_mems_allowed();
2739 ret = !node_isset(nid, cpuset_current_mems_allowed);
2740 } while (!put_mems_allowed(cpuset_mems_cookie));
2741out:
2742 return ret;
2743}
2744
2745#define K(x) ((x) << (PAGE_SHIFT-10))
2746
2747/*
2748 * Show free area list (used inside shift_scroll-lock stuff)
2749 * We also calculate the percentage fragmentation. We do this by counting the
2750 * memory on each free list with the exception of the first item on the list.
2751 * Suppresses nodes that are not allowed by current's cpuset if
2752 * SHOW_MEM_FILTER_NODES is passed.
2753 */
2754void show_free_areas(unsigned int filter)
2755{
2756 int cpu;
2757 struct zone *zone;
2758
2759 for_each_populated_zone(zone) {
2760 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2761 continue;
2762 show_node(zone);
2763 printk("%s per-cpu:\n", zone->name);
2764
2765 for_each_online_cpu(cpu) {
2766 struct per_cpu_pageset *pageset;
2767
2768 pageset = per_cpu_ptr(zone->pageset, cpu);
2769
2770 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2771 cpu, pageset->pcp.high,
2772 pageset->pcp.batch, pageset->pcp.count);
2773 }
2774 }
2775
2776 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2777 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2778 " unevictable:%lu"
2779 " dirty:%lu writeback:%lu unstable:%lu\n"
2780 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2781 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2782 global_page_state(NR_ACTIVE_ANON),
2783 global_page_state(NR_INACTIVE_ANON),
2784 global_page_state(NR_ISOLATED_ANON),
2785 global_page_state(NR_ACTIVE_FILE),
2786 global_page_state(NR_INACTIVE_FILE),
2787 global_page_state(NR_ISOLATED_FILE),
2788 global_page_state(NR_UNEVICTABLE),
2789 global_page_state(NR_FILE_DIRTY),
2790 global_page_state(NR_WRITEBACK),
2791 global_page_state(NR_UNSTABLE_NFS),
2792 global_page_state(NR_FREE_PAGES),
2793 global_page_state(NR_SLAB_RECLAIMABLE),
2794 global_page_state(NR_SLAB_UNRECLAIMABLE),
2795 global_page_state(NR_FILE_MAPPED),
2796 global_page_state(NR_SHMEM),
2797 global_page_state(NR_PAGETABLE),
2798 global_page_state(NR_BOUNCE));
2799
2800 for_each_populated_zone(zone) {
2801 int i;
2802
2803 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2804 continue;
2805 show_node(zone);
2806 printk("%s"
2807 " free:%lukB"
2808 " min:%lukB"
2809 " low:%lukB"
2810 " high:%lukB"
2811 " active_anon:%lukB"
2812 " inactive_anon:%lukB"
2813 " active_file:%lukB"
2814 " inactive_file:%lukB"
2815 " unevictable:%lukB"
2816 " isolated(anon):%lukB"
2817 " isolated(file):%lukB"
2818 " present:%lukB"
2819 " mlocked:%lukB"
2820 " dirty:%lukB"
2821 " writeback:%lukB"
2822 " mapped:%lukB"
2823 " shmem:%lukB"
2824 " slab_reclaimable:%lukB"
2825 " slab_unreclaimable:%lukB"
2826 " kernel_stack:%lukB"
2827 " pagetables:%lukB"
2828 " unstable:%lukB"
2829 " bounce:%lukB"
2830 " writeback_tmp:%lukB"
2831 " pages_scanned:%lu"
2832 " all_unreclaimable? %s"
2833 "\n",
2834 zone->name,
2835 K(zone_page_state(zone, NR_FREE_PAGES)),
2836 K(min_wmark_pages(zone)),
2837 K(low_wmark_pages(zone)),
2838 K(high_wmark_pages(zone)),
2839 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2840 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2841 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2842 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2843 K(zone_page_state(zone, NR_UNEVICTABLE)),
2844 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2845 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2846 K(zone->present_pages),
2847 K(zone_page_state(zone, NR_MLOCK)),
2848 K(zone_page_state(zone, NR_FILE_DIRTY)),
2849 K(zone_page_state(zone, NR_WRITEBACK)),
2850 K(zone_page_state(zone, NR_FILE_MAPPED)),
2851 K(zone_page_state(zone, NR_SHMEM)),
2852 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2853 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2854 zone_page_state(zone, NR_KERNEL_STACK) *
2855 THREAD_SIZE / 1024,
2856 K(zone_page_state(zone, NR_PAGETABLE)),
2857 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2858 K(zone_page_state(zone, NR_BOUNCE)),
2859 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2860 zone->pages_scanned,
2861 (zone->all_unreclaimable ? "yes" : "no")
2862 );
2863 printk("lowmem_reserve[]:");
2864 for (i = 0; i < MAX_NR_ZONES; i++)
2865 printk(" %lu", zone->lowmem_reserve[i]);
2866 printk("\n");
2867 }
2868
2869 for_each_populated_zone(zone) {
2870 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2871
2872 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2873 continue;
2874 show_node(zone);
2875 printk("%s: ", zone->name);
2876
2877 spin_lock_irqsave(&zone->lock, flags);
2878 for (order = 0; order < MAX_ORDER; order++) {
2879 nr[order] = zone->free_area[order].nr_free;
2880 total += nr[order] << order;
2881 }
2882 spin_unlock_irqrestore(&zone->lock, flags);
2883 for (order = 0; order < MAX_ORDER; order++)
2884 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2885 printk("= %lukB\n", K(total));
2886 }
2887
2888 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2889
2890 show_swap_cache_info();
2891}
2892
2893static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2894{
2895 zoneref->zone = zone;
2896 zoneref->zone_idx = zone_idx(zone);
2897}
2898
2899/*
2900 * Builds allocation fallback zone lists.
2901 *
2902 * Add all populated zones of a node to the zonelist.
2903 */
2904static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2905 int nr_zones, enum zone_type zone_type)
2906{
2907 struct zone *zone;
2908
2909 BUG_ON(zone_type >= MAX_NR_ZONES);
2910 zone_type++;
2911
2912 do {
2913 zone_type--;
2914 zone = pgdat->node_zones + zone_type;
2915 if (populated_zone(zone)) {
2916 zoneref_set_zone(zone,
2917 &zonelist->_zonerefs[nr_zones++]);
2918 check_highest_zone(zone_type);
2919 }
2920
2921 } while (zone_type);
2922 return nr_zones;
2923}
2924
2925
2926/*
2927 * zonelist_order:
2928 * 0 = automatic detection of better ordering.
2929 * 1 = order by ([node] distance, -zonetype)
2930 * 2 = order by (-zonetype, [node] distance)
2931 *
2932 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2933 * the same zonelist. So only NUMA can configure this param.
2934 */
2935#define ZONELIST_ORDER_DEFAULT 0
2936#define ZONELIST_ORDER_NODE 1
2937#define ZONELIST_ORDER_ZONE 2
2938
2939/* zonelist order in the kernel.
2940 * set_zonelist_order() will set this to NODE or ZONE.
2941 */
2942static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2943static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2944
2945
2946#ifdef CONFIG_NUMA
2947/* The value user specified ....changed by config */
2948static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2949/* string for sysctl */
2950#define NUMA_ZONELIST_ORDER_LEN 16
2951char numa_zonelist_order[16] = "default";
2952
2953/*
2954 * interface for configure zonelist ordering.
2955 * command line option "numa_zonelist_order"
2956 * = "[dD]efault - default, automatic configuration.
2957 * = "[nN]ode - order by node locality, then by zone within node
2958 * = "[zZ]one - order by zone, then by locality within zone
2959 */
2960
2961static int __parse_numa_zonelist_order(char *s)
2962{
2963 if (*s == 'd' || *s == 'D') {
2964 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2965 } else if (*s == 'n' || *s == 'N') {
2966 user_zonelist_order = ZONELIST_ORDER_NODE;
2967 } else if (*s == 'z' || *s == 'Z') {
2968 user_zonelist_order = ZONELIST_ORDER_ZONE;
2969 } else {
2970 printk(KERN_WARNING
2971 "Ignoring invalid numa_zonelist_order value: "
2972 "%s\n", s);
2973 return -EINVAL;
2974 }
2975 return 0;
2976}
2977
2978static __init int setup_numa_zonelist_order(char *s)
2979{
2980 int ret;
2981
2982 if (!s)
2983 return 0;
2984
2985 ret = __parse_numa_zonelist_order(s);
2986 if (ret == 0)
2987 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2988
2989 return ret;
2990}
2991early_param("numa_zonelist_order", setup_numa_zonelist_order);
2992
2993/*
2994 * sysctl handler for numa_zonelist_order
2995 */
2996int numa_zonelist_order_handler(ctl_table *table, int write,
2997 void __user *buffer, size_t *length,
2998 loff_t *ppos)
2999{
3000 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3001 int ret;
3002 static DEFINE_MUTEX(zl_order_mutex);
3003
3004 mutex_lock(&zl_order_mutex);
3005 if (write)
3006 strcpy(saved_string, (char*)table->data);
3007 ret = proc_dostring(table, write, buffer, length, ppos);
3008 if (ret)
3009 goto out;
3010 if (write) {
3011 int oldval = user_zonelist_order;
3012 if (__parse_numa_zonelist_order((char*)table->data)) {
3013 /*
3014 * bogus value. restore saved string
3015 */
3016 strncpy((char*)table->data, saved_string,
3017 NUMA_ZONELIST_ORDER_LEN);
3018 user_zonelist_order = oldval;
3019 } else if (oldval != user_zonelist_order) {
3020 mutex_lock(&zonelists_mutex);
3021 build_all_zonelists(NULL);
3022 mutex_unlock(&zonelists_mutex);
3023 }
3024 }
3025out:
3026 mutex_unlock(&zl_order_mutex);
3027 return ret;
3028}
3029
3030
3031#define MAX_NODE_LOAD (nr_online_nodes)
3032static int node_load[MAX_NUMNODES];
3033
3034/**
3035 * find_next_best_node - find the next node that should appear in a given node's fallback list
3036 * @node: node whose fallback list we're appending
3037 * @used_node_mask: nodemask_t of already used nodes
3038 *
3039 * We use a number of factors to determine which is the next node that should
3040 * appear on a given node's fallback list. The node should not have appeared
3041 * already in @node's fallback list, and it should be the next closest node
3042 * according to the distance array (which contains arbitrary distance values
3043 * from each node to each node in the system), and should also prefer nodes
3044 * with no CPUs, since presumably they'll have very little allocation pressure
3045 * on them otherwise.
3046 * It returns -1 if no node is found.
3047 */
3048static int find_next_best_node(int node, nodemask_t *used_node_mask)
3049{
3050 int n, val;
3051 int min_val = INT_MAX;
3052 int best_node = -1;
3053 const struct cpumask *tmp = cpumask_of_node(0);
3054
3055 /* Use the local node if we haven't already */
3056 if (!node_isset(node, *used_node_mask)) {
3057 node_set(node, *used_node_mask);
3058 return node;
3059 }
3060
3061 for_each_node_state(n, N_HIGH_MEMORY) {
3062
3063 /* Don't want a node to appear more than once */
3064 if (node_isset(n, *used_node_mask))
3065 continue;
3066
3067 /* Use the distance array to find the distance */
3068 val = node_distance(node, n);
3069
3070 /* Penalize nodes under us ("prefer the next node") */
3071 val += (n < node);
3072
3073 /* Give preference to headless and unused nodes */
3074 tmp = cpumask_of_node(n);
3075 if (!cpumask_empty(tmp))
3076 val += PENALTY_FOR_NODE_WITH_CPUS;
3077
3078 /* Slight preference for less loaded node */
3079 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3080 val += node_load[n];
3081
3082 if (val < min_val) {
3083 min_val = val;
3084 best_node = n;
3085 }
3086 }
3087
3088 if (best_node >= 0)
3089 node_set(best_node, *used_node_mask);
3090
3091 return best_node;
3092}
3093
3094
3095/*
3096 * Build zonelists ordered by node and zones within node.
3097 * This results in maximum locality--normal zone overflows into local
3098 * DMA zone, if any--but risks exhausting DMA zone.
3099 */
3100static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3101{
3102 int j;
3103 struct zonelist *zonelist;
3104
3105 zonelist = &pgdat->node_zonelists[0];
3106 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3107 ;
3108 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3109 MAX_NR_ZONES - 1);
3110 zonelist->_zonerefs[j].zone = NULL;
3111 zonelist->_zonerefs[j].zone_idx = 0;
3112}
3113
3114/*
3115 * Build gfp_thisnode zonelists
3116 */
3117static void build_thisnode_zonelists(pg_data_t *pgdat)
3118{
3119 int j;
3120 struct zonelist *zonelist;
3121
3122 zonelist = &pgdat->node_zonelists[1];
3123 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3124 zonelist->_zonerefs[j].zone = NULL;
3125 zonelist->_zonerefs[j].zone_idx = 0;
3126}
3127
3128/*
3129 * Build zonelists ordered by zone and nodes within zones.
3130 * This results in conserving DMA zone[s] until all Normal memory is
3131 * exhausted, but results in overflowing to remote node while memory
3132 * may still exist in local DMA zone.
3133 */
3134static int node_order[MAX_NUMNODES];
3135
3136static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3137{
3138 int pos, j, node;
3139 int zone_type; /* needs to be signed */
3140 struct zone *z;
3141 struct zonelist *zonelist;
3142
3143 zonelist = &pgdat->node_zonelists[0];
3144 pos = 0;
3145 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3146 for (j = 0; j < nr_nodes; j++) {
3147 node = node_order[j];
3148 z = &NODE_DATA(node)->node_zones[zone_type];
3149 if (populated_zone(z)) {
3150 zoneref_set_zone(z,
3151 &zonelist->_zonerefs[pos++]);
3152 check_highest_zone(zone_type);
3153 }
3154 }
3155 }
3156 zonelist->_zonerefs[pos].zone = NULL;
3157 zonelist->_zonerefs[pos].zone_idx = 0;
3158}
3159
3160static int default_zonelist_order(void)
3161{
3162 int nid, zone_type;
3163 unsigned long low_kmem_size,total_size;
3164 struct zone *z;
3165 int average_size;
3166 /*
3167 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3168 * If they are really small and used heavily, the system can fall
3169 * into OOM very easily.
3170 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3171 */
3172 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3173 low_kmem_size = 0;
3174 total_size = 0;
3175 for_each_online_node(nid) {
3176 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3177 z = &NODE_DATA(nid)->node_zones[zone_type];
3178 if (populated_zone(z)) {
3179 if (zone_type < ZONE_NORMAL)
3180 low_kmem_size += z->present_pages;
3181 total_size += z->present_pages;
3182 } else if (zone_type == ZONE_NORMAL) {
3183 /*
3184 * If any node has only lowmem, then node order
3185 * is preferred to allow kernel allocations
3186 * locally; otherwise, they can easily infringe
3187 * on other nodes when there is an abundance of
3188 * lowmem available to allocate from.
3189 */
3190 return ZONELIST_ORDER_NODE;
3191 }
3192 }
3193 }
3194 if (!low_kmem_size || /* there are no DMA area. */
3195 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3196 return ZONELIST_ORDER_NODE;
3197 /*
3198 * look into each node's config.
3199 * If there is a node whose DMA/DMA32 memory is very big area on
3200 * local memory, NODE_ORDER may be suitable.
3201 */
3202 average_size = total_size /
3203 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3204 for_each_online_node(nid) {
3205 low_kmem_size = 0;
3206 total_size = 0;
3207 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3208 z = &NODE_DATA(nid)->node_zones[zone_type];
3209 if (populated_zone(z)) {
3210 if (zone_type < ZONE_NORMAL)
3211 low_kmem_size += z->present_pages;
3212 total_size += z->present_pages;
3213 }
3214 }
3215 if (low_kmem_size &&
3216 total_size > average_size && /* ignore small node */
3217 low_kmem_size > total_size * 70/100)
3218 return ZONELIST_ORDER_NODE;
3219 }
3220 return ZONELIST_ORDER_ZONE;
3221}
3222
3223static void set_zonelist_order(void)
3224{
3225 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3226 current_zonelist_order = default_zonelist_order();
3227 else
3228 current_zonelist_order = user_zonelist_order;
3229}
3230
3231static void build_zonelists(pg_data_t *pgdat)
3232{
3233 int j, node, load;
3234 enum zone_type i;
3235 nodemask_t used_mask;
3236 int local_node, prev_node;
3237 struct zonelist *zonelist;
3238 int order = current_zonelist_order;
3239
3240 /* initialize zonelists */
3241 for (i = 0; i < MAX_ZONELISTS; i++) {
3242 zonelist = pgdat->node_zonelists + i;
3243 zonelist->_zonerefs[0].zone = NULL;
3244 zonelist->_zonerefs[0].zone_idx = 0;
3245 }
3246
3247 /* NUMA-aware ordering of nodes */
3248 local_node = pgdat->node_id;
3249 load = nr_online_nodes;
3250 prev_node = local_node;
3251 nodes_clear(used_mask);
3252
3253 memset(node_order, 0, sizeof(node_order));
3254 j = 0;
3255
3256 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3257 int distance = node_distance(local_node, node);
3258
3259 /*
3260 * If another node is sufficiently far away then it is better
3261 * to reclaim pages in a zone before going off node.
3262 */
3263 if (distance > RECLAIM_DISTANCE)
3264 zone_reclaim_mode = 1;
3265
3266 /*
3267 * We don't want to pressure a particular node.
3268 * So adding penalty to the first node in same
3269 * distance group to make it round-robin.
3270 */
3271 if (distance != node_distance(local_node, prev_node))
3272 node_load[node] = load;
3273
3274 prev_node = node;
3275 load--;
3276 if (order == ZONELIST_ORDER_NODE)
3277 build_zonelists_in_node_order(pgdat, node);
3278 else
3279 node_order[j++] = node; /* remember order */
3280 }
3281
3282 if (order == ZONELIST_ORDER_ZONE) {
3283 /* calculate node order -- i.e., DMA last! */
3284 build_zonelists_in_zone_order(pgdat, j);
3285 }
3286
3287 build_thisnode_zonelists(pgdat);
3288}
3289
3290/* Construct the zonelist performance cache - see further mmzone.h */
3291static void build_zonelist_cache(pg_data_t *pgdat)
3292{
3293 struct zonelist *zonelist;
3294 struct zonelist_cache *zlc;
3295 struct zoneref *z;
3296
3297 zonelist = &pgdat->node_zonelists[0];
3298 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3299 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3300 for (z = zonelist->_zonerefs; z->zone; z++)
3301 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3302}
3303
3304#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3305/*
3306 * Return node id of node used for "local" allocations.
3307 * I.e., first node id of first zone in arg node's generic zonelist.
3308 * Used for initializing percpu 'numa_mem', which is used primarily
3309 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3310 */
3311int local_memory_node(int node)
3312{
3313 struct zone *zone;
3314
3315 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3316 gfp_zone(GFP_KERNEL),
3317 NULL,
3318 &zone);
3319 return zone->node;
3320}
3321#endif
3322
3323#else /* CONFIG_NUMA */
3324
3325static void set_zonelist_order(void)
3326{
3327 current_zonelist_order = ZONELIST_ORDER_ZONE;
3328}
3329
3330static void build_zonelists(pg_data_t *pgdat)
3331{
3332 int node, local_node;
3333 enum zone_type j;
3334 struct zonelist *zonelist;
3335
3336 local_node = pgdat->node_id;
3337
3338 zonelist = &pgdat->node_zonelists[0];
3339 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3340
3341 /*
3342 * Now we build the zonelist so that it contains the zones
3343 * of all the other nodes.
3344 * We don't want to pressure a particular node, so when
3345 * building the zones for node N, we make sure that the
3346 * zones coming right after the local ones are those from
3347 * node N+1 (modulo N)
3348 */
3349 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3350 if (!node_online(node))
3351 continue;
3352 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3353 MAX_NR_ZONES - 1);
3354 }
3355 for (node = 0; node < local_node; node++) {
3356 if (!node_online(node))
3357 continue;
3358 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3359 MAX_NR_ZONES - 1);
3360 }
3361
3362 zonelist->_zonerefs[j].zone = NULL;
3363 zonelist->_zonerefs[j].zone_idx = 0;
3364}
3365
3366/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3367static void build_zonelist_cache(pg_data_t *pgdat)
3368{
3369 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3370}
3371
3372#endif /* CONFIG_NUMA */
3373
3374/*
3375 * Boot pageset table. One per cpu which is going to be used for all
3376 * zones and all nodes. The parameters will be set in such a way
3377 * that an item put on a list will immediately be handed over to
3378 * the buddy list. This is safe since pageset manipulation is done
3379 * with interrupts disabled.
3380 *
3381 * The boot_pagesets must be kept even after bootup is complete for
3382 * unused processors and/or zones. They do play a role for bootstrapping
3383 * hotplugged processors.
3384 *
3385 * zoneinfo_show() and maybe other functions do
3386 * not check if the processor is online before following the pageset pointer.
3387 * Other parts of the kernel may not check if the zone is available.
3388 */
3389static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3390static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3391static void setup_zone_pageset(struct zone *zone);
3392
3393/*
3394 * Global mutex to protect against size modification of zonelists
3395 * as well as to serialize pageset setup for the new populated zone.
3396 */
3397DEFINE_MUTEX(zonelists_mutex);
3398
3399/* return values int ....just for stop_machine() */
3400static __init_refok int __build_all_zonelists(void *data)
3401{
3402 int nid;
3403 int cpu;
3404
3405#ifdef CONFIG_NUMA
3406 memset(node_load, 0, sizeof(node_load));
3407#endif
3408 for_each_online_node(nid) {
3409 pg_data_t *pgdat = NODE_DATA(nid);
3410
3411 build_zonelists(pgdat);
3412 build_zonelist_cache(pgdat);
3413 }
3414
3415 /*
3416 * Initialize the boot_pagesets that are going to be used
3417 * for bootstrapping processors. The real pagesets for
3418 * each zone will be allocated later when the per cpu
3419 * allocator is available.
3420 *
3421 * boot_pagesets are used also for bootstrapping offline
3422 * cpus if the system is already booted because the pagesets
3423 * are needed to initialize allocators on a specific cpu too.
3424 * F.e. the percpu allocator needs the page allocator which
3425 * needs the percpu allocator in order to allocate its pagesets
3426 * (a chicken-egg dilemma).
3427 */
3428 for_each_possible_cpu(cpu) {
3429 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3430
3431#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3432 /*
3433 * We now know the "local memory node" for each node--
3434 * i.e., the node of the first zone in the generic zonelist.
3435 * Set up numa_mem percpu variable for on-line cpus. During
3436 * boot, only the boot cpu should be on-line; we'll init the
3437 * secondary cpus' numa_mem as they come on-line. During
3438 * node/memory hotplug, we'll fixup all on-line cpus.
3439 */
3440 if (cpu_online(cpu))
3441 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3442#endif
3443 }
3444
3445 return 0;
3446}
3447
3448/*
3449 * Called with zonelists_mutex held always
3450 * unless system_state == SYSTEM_BOOTING.
3451 */
3452void __ref build_all_zonelists(void *data)
3453{
3454 set_zonelist_order();
3455
3456 if (system_state == SYSTEM_BOOTING) {
3457 __build_all_zonelists(NULL);
3458 mminit_verify_zonelist();
3459 cpuset_init_current_mems_allowed();
3460 } else {
3461 /* we have to stop all cpus to guarantee there is no user
3462 of zonelist */
3463#ifdef CONFIG_MEMORY_HOTPLUG
3464 if (data)
3465 setup_zone_pageset((struct zone *)data);
3466#endif
3467 stop_machine(__build_all_zonelists, NULL, NULL);
3468 /* cpuset refresh routine should be here */
3469 }
3470 vm_total_pages = nr_free_pagecache_pages();
3471 /*
3472 * Disable grouping by mobility if the number of pages in the
3473 * system is too low to allow the mechanism to work. It would be
3474 * more accurate, but expensive to check per-zone. This check is
3475 * made on memory-hotadd so a system can start with mobility
3476 * disabled and enable it later
3477 */
3478 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3479 page_group_by_mobility_disabled = 1;
3480 else
3481 page_group_by_mobility_disabled = 0;
3482
3483 printk("Built %i zonelists in %s order, mobility grouping %s. "
3484 "Total pages: %ld\n",
3485 nr_online_nodes,
3486 zonelist_order_name[current_zonelist_order],
3487 page_group_by_mobility_disabled ? "off" : "on",
3488 vm_total_pages);
3489#ifdef CONFIG_NUMA
3490 printk("Policy zone: %s\n", zone_names[policy_zone]);
3491#endif
3492}
3493
3494/*
3495 * Helper functions to size the waitqueue hash table.
3496 * Essentially these want to choose hash table sizes sufficiently
3497 * large so that collisions trying to wait on pages are rare.
3498 * But in fact, the number of active page waitqueues on typical
3499 * systems is ridiculously low, less than 200. So this is even
3500 * conservative, even though it seems large.
3501 *
3502 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3503 * waitqueues, i.e. the size of the waitq table given the number of pages.
3504 */
3505#define PAGES_PER_WAITQUEUE 256
3506
3507#ifndef CONFIG_MEMORY_HOTPLUG
3508static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3509{
3510 unsigned long size = 1;
3511
3512 pages /= PAGES_PER_WAITQUEUE;
3513
3514 while (size < pages)
3515 size <<= 1;
3516
3517 /*
3518 * Once we have dozens or even hundreds of threads sleeping
3519 * on IO we've got bigger problems than wait queue collision.
3520 * Limit the size of the wait table to a reasonable size.
3521 */
3522 size = min(size, 4096UL);
3523
3524 return max(size, 4UL);
3525}
3526#else
3527/*
3528 * A zone's size might be changed by hot-add, so it is not possible to determine
3529 * a suitable size for its wait_table. So we use the maximum size now.
3530 *
3531 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3532 *
3533 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3534 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3535 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3536 *
3537 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3538 * or more by the traditional way. (See above). It equals:
3539 *
3540 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3541 * ia64(16K page size) : = ( 8G + 4M)byte.
3542 * powerpc (64K page size) : = (32G +16M)byte.
3543 */
3544static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3545{
3546 return 4096UL;
3547}
3548#endif
3549
3550/*
3551 * This is an integer logarithm so that shifts can be used later
3552 * to extract the more random high bits from the multiplicative
3553 * hash function before the remainder is taken.
3554 */
3555static inline unsigned long wait_table_bits(unsigned long size)
3556{
3557 return ffz(~size);
3558}
3559
3560#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3561
3562/*
3563 * Check if a pageblock contains reserved pages
3564 */
3565static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3566{
3567 unsigned long pfn;
3568
3569 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3570 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3571 return 1;
3572 }
3573 return 0;
3574}
3575
3576/*
3577 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3578 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3579 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3580 * higher will lead to a bigger reserve which will get freed as contiguous
3581 * blocks as reclaim kicks in
3582 */
3583static void setup_zone_migrate_reserve(struct zone *zone)
3584{
3585 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3586 struct page *page;
3587 unsigned long block_migratetype;
3588 int reserve;
3589
3590 /*
3591 * Get the start pfn, end pfn and the number of blocks to reserve
3592 * We have to be careful to be aligned to pageblock_nr_pages to
3593 * make sure that we always check pfn_valid for the first page in
3594 * the block.
3595 */
3596 start_pfn = zone->zone_start_pfn;
3597 end_pfn = start_pfn + zone->spanned_pages;
3598 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3599 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3600 pageblock_order;
3601
3602 /*
3603 * Reserve blocks are generally in place to help high-order atomic
3604 * allocations that are short-lived. A min_free_kbytes value that
3605 * would result in more than 2 reserve blocks for atomic allocations
3606 * is assumed to be in place to help anti-fragmentation for the
3607 * future allocation of hugepages at runtime.
3608 */
3609 reserve = min(2, reserve);
3610
3611 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3612 if (!pfn_valid(pfn))
3613 continue;
3614 page = pfn_to_page(pfn);
3615
3616 /* Watch out for overlapping nodes */
3617 if (page_to_nid(page) != zone_to_nid(zone))
3618 continue;
3619
3620 block_migratetype = get_pageblock_migratetype(page);
3621
3622 /* Only test what is necessary when the reserves are not met */
3623 if (reserve > 0) {
3624 /*
3625 * Blocks with reserved pages will never free, skip
3626 * them.
3627 */
3628 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3629 if (pageblock_is_reserved(pfn, block_end_pfn))
3630 continue;
3631
3632 /* If this block is reserved, account for it */
3633 if (block_migratetype == MIGRATE_RESERVE) {
3634 reserve--;
3635 continue;
3636 }
3637
3638 /* Suitable for reserving if this block is movable */
3639 if (block_migratetype == MIGRATE_MOVABLE) {
3640 set_pageblock_migratetype(page,
3641 MIGRATE_RESERVE);
3642 move_freepages_block(zone, page,
3643 MIGRATE_RESERVE);
3644 reserve--;
3645 continue;
3646 }
3647 }
3648
3649 /*
3650 * If the reserve is met and this is a previous reserved block,
3651 * take it back
3652 */
3653 if (block_migratetype == MIGRATE_RESERVE) {
3654 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3655 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3656 }
3657 }
3658}
3659
3660/*
3661 * Initially all pages are reserved - free ones are freed
3662 * up by free_all_bootmem() once the early boot process is
3663 * done. Non-atomic initialization, single-pass.
3664 */
3665void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3666 unsigned long start_pfn, enum memmap_context context)
3667{
3668 struct page *page;
3669 unsigned long end_pfn = start_pfn + size;
3670 unsigned long pfn;
3671 struct zone *z;
3672
3673 if (highest_memmap_pfn < end_pfn - 1)
3674 highest_memmap_pfn = end_pfn - 1;
3675
3676 z = &NODE_DATA(nid)->node_zones[zone];
3677 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3678 /*
3679 * There can be holes in boot-time mem_map[]s
3680 * handed to this function. They do not
3681 * exist on hotplugged memory.
3682 */
3683 if (context == MEMMAP_EARLY) {
3684 if (!early_pfn_valid(pfn))
3685 continue;
3686 if (!early_pfn_in_nid(pfn, nid))
3687 continue;
3688 }
3689 page = pfn_to_page(pfn);
3690 set_page_links(page, zone, nid, pfn);
3691 mminit_verify_page_links(page, zone, nid, pfn);
3692 init_page_count(page);
3693 reset_page_mapcount(page);
3694 SetPageReserved(page);
3695 /*
3696 * Mark the block movable so that blocks are reserved for
3697 * movable at startup. This will force kernel allocations
3698 * to reserve their blocks rather than leaking throughout
3699 * the address space during boot when many long-lived
3700 * kernel allocations are made. Later some blocks near
3701 * the start are marked MIGRATE_RESERVE by
3702 * setup_zone_migrate_reserve()
3703 *
3704 * bitmap is created for zone's valid pfn range. but memmap
3705 * can be created for invalid pages (for alignment)
3706 * check here not to call set_pageblock_migratetype() against
3707 * pfn out of zone.
3708 */
3709 if ((z->zone_start_pfn <= pfn)
3710 && (pfn < z->zone_start_pfn + z->spanned_pages)
3711 && !(pfn & (pageblock_nr_pages - 1)))
3712 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3713
3714 INIT_LIST_HEAD(&page->lru);
3715#ifdef WANT_PAGE_VIRTUAL
3716 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3717 if (!is_highmem_idx(zone))
3718 set_page_address(page, __va(pfn << PAGE_SHIFT));
3719#endif
3720 }
3721}
3722
3723static void __meminit zone_init_free_lists(struct zone *zone)
3724{
3725 int order, t;
3726 for_each_migratetype_order(order, t) {
3727 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3728 zone->free_area[order].nr_free = 0;
3729 }
3730}
3731
3732#ifndef __HAVE_ARCH_MEMMAP_INIT
3733#define memmap_init(size, nid, zone, start_pfn) \
3734 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3735#endif
3736
3737static int zone_batchsize(struct zone *zone)
3738{
3739#ifdef CONFIG_MMU
3740 int batch;
3741
3742 /*
3743 * The per-cpu-pages pools are set to around 1000th of the
3744 * size of the zone. But no more than 1/2 of a meg.
3745 *
3746 * OK, so we don't know how big the cache is. So guess.
3747 */
3748 batch = zone->present_pages / 1024;
3749 if (batch * PAGE_SIZE > 512 * 1024)
3750 batch = (512 * 1024) / PAGE_SIZE;
3751 batch /= 4; /* We effectively *= 4 below */
3752 if (batch < 1)
3753 batch = 1;
3754
3755 /*
3756 * Clamp the batch to a 2^n - 1 value. Having a power
3757 * of 2 value was found to be more likely to have
3758 * suboptimal cache aliasing properties in some cases.
3759 *
3760 * For example if 2 tasks are alternately allocating
3761 * batches of pages, one task can end up with a lot
3762 * of pages of one half of the possible page colors
3763 * and the other with pages of the other colors.
3764 */
3765 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3766
3767 return batch;
3768
3769#else
3770 /* The deferral and batching of frees should be suppressed under NOMMU
3771 * conditions.
3772 *
3773 * The problem is that NOMMU needs to be able to allocate large chunks
3774 * of contiguous memory as there's no hardware page translation to
3775 * assemble apparent contiguous memory from discontiguous pages.
3776 *
3777 * Queueing large contiguous runs of pages for batching, however,
3778 * causes the pages to actually be freed in smaller chunks. As there
3779 * can be a significant delay between the individual batches being
3780 * recycled, this leads to the once large chunks of space being
3781 * fragmented and becoming unavailable for high-order allocations.
3782 */
3783 return 0;
3784#endif
3785}
3786
3787static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3788{
3789 struct per_cpu_pages *pcp;
3790 int migratetype;
3791
3792 memset(p, 0, sizeof(*p));
3793
3794 pcp = &p->pcp;
3795 pcp->count = 0;
3796 pcp->high = 6 * batch;
3797 pcp->batch = max(1UL, 1 * batch);
3798 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3799 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3800}
3801
3802/*
3803 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3804 * to the value high for the pageset p.
3805 */
3806
3807static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3808 unsigned long high)
3809{
3810 struct per_cpu_pages *pcp;
3811
3812 pcp = &p->pcp;
3813 pcp->high = high;
3814 pcp->batch = max(1UL, high/4);
3815 if ((high/4) > (PAGE_SHIFT * 8))
3816 pcp->batch = PAGE_SHIFT * 8;
3817}
3818
3819static void setup_zone_pageset(struct zone *zone)
3820{
3821 int cpu;
3822
3823 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3824
3825 for_each_possible_cpu(cpu) {
3826 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3827
3828 setup_pageset(pcp, zone_batchsize(zone));
3829
3830 if (percpu_pagelist_fraction)
3831 setup_pagelist_highmark(pcp,
3832 (zone->present_pages /
3833 percpu_pagelist_fraction));
3834 }
3835}
3836
3837/*
3838 * Allocate per cpu pagesets and initialize them.
3839 * Before this call only boot pagesets were available.
3840 */
3841void __init setup_per_cpu_pageset(void)
3842{
3843 struct zone *zone;
3844
3845 for_each_populated_zone(zone)
3846 setup_zone_pageset(zone);
3847}
3848
3849static noinline __init_refok
3850int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3851{
3852 int i;
3853 struct pglist_data *pgdat = zone->zone_pgdat;
3854 size_t alloc_size;
3855
3856 /*
3857 * The per-page waitqueue mechanism uses hashed waitqueues
3858 * per zone.
3859 */
3860 zone->wait_table_hash_nr_entries =
3861 wait_table_hash_nr_entries(zone_size_pages);
3862 zone->wait_table_bits =
3863 wait_table_bits(zone->wait_table_hash_nr_entries);
3864 alloc_size = zone->wait_table_hash_nr_entries
3865 * sizeof(wait_queue_head_t);
3866
3867 if (!slab_is_available()) {
3868 zone->wait_table = (wait_queue_head_t *)
3869 alloc_bootmem_node_nopanic(pgdat, alloc_size);
3870 } else {
3871 /*
3872 * This case means that a zone whose size was 0 gets new memory
3873 * via memory hot-add.
3874 * But it may be the case that a new node was hot-added. In
3875 * this case vmalloc() will not be able to use this new node's
3876 * memory - this wait_table must be initialized to use this new
3877 * node itself as well.
3878 * To use this new node's memory, further consideration will be
3879 * necessary.
3880 */
3881 zone->wait_table = vmalloc(alloc_size);
3882 }
3883 if (!zone->wait_table)
3884 return -ENOMEM;
3885
3886 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3887 init_waitqueue_head(zone->wait_table + i);
3888
3889 return 0;
3890}
3891
3892static int __zone_pcp_update(void *data)
3893{
3894 struct zone *zone = data;
3895 int cpu;
3896 unsigned long batch = zone_batchsize(zone), flags;
3897
3898 for_each_possible_cpu(cpu) {
3899 struct per_cpu_pageset *pset;
3900 struct per_cpu_pages *pcp;
3901
3902 pset = per_cpu_ptr(zone->pageset, cpu);
3903 pcp = &pset->pcp;
3904
3905 local_irq_save(flags);
3906 free_pcppages_bulk(zone, pcp->count, pcp);
3907 setup_pageset(pset, batch);
3908 local_irq_restore(flags);
3909 }
3910 return 0;
3911}
3912
3913void zone_pcp_update(struct zone *zone)
3914{
3915 stop_machine(__zone_pcp_update, zone, NULL);
3916}
3917
3918static __meminit void zone_pcp_init(struct zone *zone)
3919{
3920 /*
3921 * per cpu subsystem is not up at this point. The following code
3922 * relies on the ability of the linker to provide the
3923 * offset of a (static) per cpu variable into the per cpu area.
3924 */
3925 zone->pageset = &boot_pageset;
3926
3927 if (zone->present_pages)
3928 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3929 zone->name, zone->present_pages,
3930 zone_batchsize(zone));
3931}
3932
3933__meminit int init_currently_empty_zone(struct zone *zone,
3934 unsigned long zone_start_pfn,
3935 unsigned long size,
3936 enum memmap_context context)
3937{
3938 struct pglist_data *pgdat = zone->zone_pgdat;
3939 int ret;
3940 ret = zone_wait_table_init(zone, size);
3941 if (ret)
3942 return ret;
3943 pgdat->nr_zones = zone_idx(zone) + 1;
3944
3945 zone->zone_start_pfn = zone_start_pfn;
3946
3947 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3948 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3949 pgdat->node_id,
3950 (unsigned long)zone_idx(zone),
3951 zone_start_pfn, (zone_start_pfn + size));
3952
3953 zone_init_free_lists(zone);
3954
3955 return 0;
3956}
3957
3958#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
3959#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3960/*
3961 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3962 * Architectures may implement their own version but if add_active_range()
3963 * was used and there are no special requirements, this is a convenient
3964 * alternative
3965 */
3966int __meminit __early_pfn_to_nid(unsigned long pfn)
3967{
3968 unsigned long start_pfn, end_pfn;
3969 int i, nid;
3970
3971 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
3972 if (start_pfn <= pfn && pfn < end_pfn)
3973 return nid;
3974 /* This is a memory hole */
3975 return -1;
3976}
3977#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3978
3979int __meminit early_pfn_to_nid(unsigned long pfn)
3980{
3981 int nid;
3982
3983 nid = __early_pfn_to_nid(pfn);
3984 if (nid >= 0)
3985 return nid;
3986 /* just returns 0 */
3987 return 0;
3988}
3989
3990#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3991bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3992{
3993 int nid;
3994
3995 nid = __early_pfn_to_nid(pfn);
3996 if (nid >= 0 && nid != node)
3997 return false;
3998 return true;
3999}
4000#endif
4001
4002/**
4003 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4004 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4005 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4006 *
4007 * If an architecture guarantees that all ranges registered with
4008 * add_active_ranges() contain no holes and may be freed, this
4009 * this function may be used instead of calling free_bootmem() manually.
4010 */
4011void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4012{
4013 unsigned long start_pfn, end_pfn;
4014 int i, this_nid;
4015
4016 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4017 start_pfn = min(start_pfn, max_low_pfn);
4018 end_pfn = min(end_pfn, max_low_pfn);
4019
4020 if (start_pfn < end_pfn)
4021 free_bootmem_node(NODE_DATA(this_nid),
4022 PFN_PHYS(start_pfn),
4023 (end_pfn - start_pfn) << PAGE_SHIFT);
4024 }
4025}
4026
4027/**
4028 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4029 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4030 *
4031 * If an architecture guarantees that all ranges registered with
4032 * add_active_ranges() contain no holes and may be freed, this
4033 * function may be used instead of calling memory_present() manually.
4034 */
4035void __init sparse_memory_present_with_active_regions(int nid)
4036{
4037 unsigned long start_pfn, end_pfn;
4038 int i, this_nid;
4039
4040 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4041 memory_present(this_nid, start_pfn, end_pfn);
4042}
4043
4044/**
4045 * get_pfn_range_for_nid - Return the start and end page frames for a node
4046 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4047 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4048 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4049 *
4050 * It returns the start and end page frame of a node based on information
4051 * provided by an arch calling add_active_range(). If called for a node
4052 * with no available memory, a warning is printed and the start and end
4053 * PFNs will be 0.
4054 */
4055void __meminit get_pfn_range_for_nid(unsigned int nid,
4056 unsigned long *start_pfn, unsigned long *end_pfn)
4057{
4058 unsigned long this_start_pfn, this_end_pfn;
4059 int i;
4060
4061 *start_pfn = -1UL;
4062 *end_pfn = 0;
4063
4064 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4065 *start_pfn = min(*start_pfn, this_start_pfn);
4066 *end_pfn = max(*end_pfn, this_end_pfn);
4067 }
4068
4069 if (*start_pfn == -1UL)
4070 *start_pfn = 0;
4071}
4072
4073/*
4074 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4075 * assumption is made that zones within a node are ordered in monotonic
4076 * increasing memory addresses so that the "highest" populated zone is used
4077 */
4078static void __init find_usable_zone_for_movable(void)
4079{
4080 int zone_index;
4081 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4082 if (zone_index == ZONE_MOVABLE)
4083 continue;
4084
4085 if (arch_zone_highest_possible_pfn[zone_index] >
4086 arch_zone_lowest_possible_pfn[zone_index])
4087 break;
4088 }
4089
4090 VM_BUG_ON(zone_index == -1);
4091 movable_zone = zone_index;
4092}
4093
4094/*
4095 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4096 * because it is sized independent of architecture. Unlike the other zones,
4097 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4098 * in each node depending on the size of each node and how evenly kernelcore
4099 * is distributed. This helper function adjusts the zone ranges
4100 * provided by the architecture for a given node by using the end of the
4101 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4102 * zones within a node are in order of monotonic increases memory addresses
4103 */
4104static void __meminit adjust_zone_range_for_zone_movable(int nid,
4105 unsigned long zone_type,
4106 unsigned long node_start_pfn,
4107 unsigned long node_end_pfn,
4108 unsigned long *zone_start_pfn,
4109 unsigned long *zone_end_pfn)
4110{
4111 /* Only adjust if ZONE_MOVABLE is on this node */
4112 if (zone_movable_pfn[nid]) {
4113 /* Size ZONE_MOVABLE */
4114 if (zone_type == ZONE_MOVABLE) {
4115 *zone_start_pfn = zone_movable_pfn[nid];
4116 *zone_end_pfn = min(node_end_pfn,
4117 arch_zone_highest_possible_pfn[movable_zone]);
4118
4119 /* Adjust for ZONE_MOVABLE starting within this range */
4120 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4121 *zone_end_pfn > zone_movable_pfn[nid]) {
4122 *zone_end_pfn = zone_movable_pfn[nid];
4123
4124 /* Check if this whole range is within ZONE_MOVABLE */
4125 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4126 *zone_start_pfn = *zone_end_pfn;
4127 }
4128}
4129
4130/*
4131 * Return the number of pages a zone spans in a node, including holes
4132 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4133 */
4134static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4135 unsigned long zone_type,
4136 unsigned long *ignored)
4137{
4138 unsigned long node_start_pfn, node_end_pfn;
4139 unsigned long zone_start_pfn, zone_end_pfn;
4140
4141 /* Get the start and end of the node and zone */
4142 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4143 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4144 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4145 adjust_zone_range_for_zone_movable(nid, zone_type,
4146 node_start_pfn, node_end_pfn,
4147 &zone_start_pfn, &zone_end_pfn);
4148
4149 /* Check that this node has pages within the zone's required range */
4150 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4151 return 0;
4152
4153 /* Move the zone boundaries inside the node if necessary */
4154 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4155 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4156
4157 /* Return the spanned pages */
4158 return zone_end_pfn - zone_start_pfn;
4159}
4160
4161/*
4162 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4163 * then all holes in the requested range will be accounted for.
4164 */
4165unsigned long __meminit __absent_pages_in_range(int nid,
4166 unsigned long range_start_pfn,
4167 unsigned long range_end_pfn)
4168{
4169 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4170 unsigned long start_pfn, end_pfn;
4171 int i;
4172
4173 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4174 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4175 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4176 nr_absent -= end_pfn - start_pfn;
4177 }
4178 return nr_absent;
4179}
4180
4181/**
4182 * absent_pages_in_range - Return number of page frames in holes within a range
4183 * @start_pfn: The start PFN to start searching for holes
4184 * @end_pfn: The end PFN to stop searching for holes
4185 *
4186 * It returns the number of pages frames in memory holes within a range.
4187 */
4188unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4189 unsigned long end_pfn)
4190{
4191 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4192}
4193
4194/* Return the number of page frames in holes in a zone on a node */
4195static unsigned long __meminit zone_absent_pages_in_node(int nid,
4196 unsigned long zone_type,
4197 unsigned long *ignored)
4198{
4199 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4200 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4201 unsigned long node_start_pfn, node_end_pfn;
4202 unsigned long zone_start_pfn, zone_end_pfn;
4203
4204 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4205 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4206 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4207
4208 adjust_zone_range_for_zone_movable(nid, zone_type,
4209 node_start_pfn, node_end_pfn,
4210 &zone_start_pfn, &zone_end_pfn);
4211 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4212}
4213
4214#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4215static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4216 unsigned long zone_type,
4217 unsigned long *zones_size)
4218{
4219 return zones_size[zone_type];
4220}
4221
4222static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4223 unsigned long zone_type,
4224 unsigned long *zholes_size)
4225{
4226 if (!zholes_size)
4227 return 0;
4228
4229 return zholes_size[zone_type];
4230}
4231
4232#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4233
4234static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4235 unsigned long *zones_size, unsigned long *zholes_size)
4236{
4237 unsigned long realtotalpages, totalpages = 0;
4238 enum zone_type i;
4239
4240 for (i = 0; i < MAX_NR_ZONES; i++)
4241 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4242 zones_size);
4243 pgdat->node_spanned_pages = totalpages;
4244
4245 realtotalpages = totalpages;
4246 for (i = 0; i < MAX_NR_ZONES; i++)
4247 realtotalpages -=
4248 zone_absent_pages_in_node(pgdat->node_id, i,
4249 zholes_size);
4250 pgdat->node_present_pages = realtotalpages;
4251 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4252 realtotalpages);
4253}
4254
4255#ifndef CONFIG_SPARSEMEM
4256/*
4257 * Calculate the size of the zone->blockflags rounded to an unsigned long
4258 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4259 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4260 * round what is now in bits to nearest long in bits, then return it in
4261 * bytes.
4262 */
4263static unsigned long __init usemap_size(unsigned long zonesize)
4264{
4265 unsigned long usemapsize;
4266
4267 usemapsize = roundup(zonesize, pageblock_nr_pages);
4268 usemapsize = usemapsize >> pageblock_order;
4269 usemapsize *= NR_PAGEBLOCK_BITS;
4270 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4271
4272 return usemapsize / 8;
4273}
4274
4275static void __init setup_usemap(struct pglist_data *pgdat,
4276 struct zone *zone, unsigned long zonesize)
4277{
4278 unsigned long usemapsize = usemap_size(zonesize);
4279 zone->pageblock_flags = NULL;
4280 if (usemapsize)
4281 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4282 usemapsize);
4283}
4284#else
4285static inline void setup_usemap(struct pglist_data *pgdat,
4286 struct zone *zone, unsigned long zonesize) {}
4287#endif /* CONFIG_SPARSEMEM */
4288
4289#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4290
4291/* Return a sensible default order for the pageblock size. */
4292static inline int pageblock_default_order(void)
4293{
4294 if (HPAGE_SHIFT > PAGE_SHIFT)
4295 return HUGETLB_PAGE_ORDER;
4296
4297 return MAX_ORDER-1;
4298}
4299
4300/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4301static inline void __init set_pageblock_order(unsigned int order)
4302{
4303 /* Check that pageblock_nr_pages has not already been setup */
4304 if (pageblock_order)
4305 return;
4306
4307 /*
4308 * Assume the largest contiguous order of interest is a huge page.
4309 * This value may be variable depending on boot parameters on IA64
4310 */
4311 pageblock_order = order;
4312}
4313#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4314
4315/*
4316 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4317 * and pageblock_default_order() are unused as pageblock_order is set
4318 * at compile-time. See include/linux/pageblock-flags.h for the values of
4319 * pageblock_order based on the kernel config
4320 */
4321static inline int pageblock_default_order(unsigned int order)
4322{
4323 return MAX_ORDER-1;
4324}
4325#define set_pageblock_order(x) do {} while (0)
4326
4327#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4328
4329/*
4330 * Set up the zone data structures:
4331 * - mark all pages reserved
4332 * - mark all memory queues empty
4333 * - clear the memory bitmaps
4334 */
4335static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4336 unsigned long *zones_size, unsigned long *zholes_size)
4337{
4338 enum zone_type j;
4339 int nid = pgdat->node_id;
4340 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4341 int ret;
4342
4343 pgdat_resize_init(pgdat);
4344 pgdat->nr_zones = 0;
4345 init_waitqueue_head(&pgdat->kswapd_wait);
4346 pgdat->kswapd_max_order = 0;
4347 pgdat_page_cgroup_init(pgdat);
4348
4349 for (j = 0; j < MAX_NR_ZONES; j++) {
4350 struct zone *zone = pgdat->node_zones + j;
4351 unsigned long size, realsize, memmap_pages;
4352 enum lru_list lru;
4353
4354 size = zone_spanned_pages_in_node(nid, j, zones_size);
4355 realsize = size - zone_absent_pages_in_node(nid, j,
4356 zholes_size);
4357
4358 /*
4359 * Adjust realsize so that it accounts for how much memory
4360 * is used by this zone for memmap. This affects the watermark
4361 * and per-cpu initialisations
4362 */
4363 memmap_pages =
4364 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4365 if (realsize >= memmap_pages) {
4366 realsize -= memmap_pages;
4367 if (memmap_pages)
4368 printk(KERN_DEBUG
4369 " %s zone: %lu pages used for memmap\n",
4370 zone_names[j], memmap_pages);
4371 } else
4372 printk(KERN_WARNING
4373 " %s zone: %lu pages exceeds realsize %lu\n",
4374 zone_names[j], memmap_pages, realsize);
4375
4376 /* Account for reserved pages */
4377 if (j == 0 && realsize > dma_reserve) {
4378 realsize -= dma_reserve;
4379 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4380 zone_names[0], dma_reserve);
4381 }
4382
4383 if (!is_highmem_idx(j))
4384 nr_kernel_pages += realsize;
4385 nr_all_pages += realsize;
4386
4387 zone->spanned_pages = size;
4388 zone->present_pages = realsize;
4389#ifdef CONFIG_NUMA
4390 zone->node = nid;
4391 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4392 / 100;
4393 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4394#endif
4395 zone->name = zone_names[j];
4396 spin_lock_init(&zone->lock);
4397 spin_lock_init(&zone->lru_lock);
4398 zone_seqlock_init(zone);
4399 zone->zone_pgdat = pgdat;
4400
4401 zone_pcp_init(zone);
4402 for_each_lru(lru)
4403 INIT_LIST_HEAD(&zone->lruvec.lists[lru]);
4404 zone->reclaim_stat.recent_rotated[0] = 0;
4405 zone->reclaim_stat.recent_rotated[1] = 0;
4406 zone->reclaim_stat.recent_scanned[0] = 0;
4407 zone->reclaim_stat.recent_scanned[1] = 0;
4408 zap_zone_vm_stats(zone);
4409 zone->flags = 0;
4410 if (!size)
4411 continue;
4412
4413 set_pageblock_order(pageblock_default_order());
4414 setup_usemap(pgdat, zone, size);
4415 ret = init_currently_empty_zone(zone, zone_start_pfn,
4416 size, MEMMAP_EARLY);
4417 BUG_ON(ret);
4418 memmap_init(size, nid, j, zone_start_pfn);
4419 zone_start_pfn += size;
4420 }
4421}
4422
4423static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4424{
4425 /* Skip empty nodes */
4426 if (!pgdat->node_spanned_pages)
4427 return;
4428
4429#ifdef CONFIG_FLAT_NODE_MEM_MAP
4430 /* ia64 gets its own node_mem_map, before this, without bootmem */
4431 if (!pgdat->node_mem_map) {
4432 unsigned long size, start, end;
4433 struct page *map;
4434
4435 /*
4436 * The zone's endpoints aren't required to be MAX_ORDER
4437 * aligned but the node_mem_map endpoints must be in order
4438 * for the buddy allocator to function correctly.
4439 */
4440 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4441 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4442 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4443 size = (end - start) * sizeof(struct page);
4444 map = alloc_remap(pgdat->node_id, size);
4445 if (!map)
4446 map = alloc_bootmem_node_nopanic(pgdat, size);
4447 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4448 }
4449#ifndef CONFIG_NEED_MULTIPLE_NODES
4450 /*
4451 * With no DISCONTIG, the global mem_map is just set as node 0's
4452 */
4453 if (pgdat == NODE_DATA(0)) {
4454 mem_map = NODE_DATA(0)->node_mem_map;
4455#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4456 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4457 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4458#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4459 }
4460#endif
4461#endif /* CONFIG_FLAT_NODE_MEM_MAP */
4462}
4463
4464void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4465 unsigned long node_start_pfn, unsigned long *zholes_size)
4466{
4467 pg_data_t *pgdat = NODE_DATA(nid);
4468
4469 pgdat->node_id = nid;
4470 pgdat->node_start_pfn = node_start_pfn;
4471 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4472
4473 alloc_node_mem_map(pgdat);
4474#ifdef CONFIG_FLAT_NODE_MEM_MAP
4475 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4476 nid, (unsigned long)pgdat,
4477 (unsigned long)pgdat->node_mem_map);
4478#endif
4479
4480 free_area_init_core(pgdat, zones_size, zholes_size);
4481}
4482
4483#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4484
4485#if MAX_NUMNODES > 1
4486/*
4487 * Figure out the number of possible node ids.
4488 */
4489static void __init setup_nr_node_ids(void)
4490{
4491 unsigned int node;
4492 unsigned int highest = 0;
4493
4494 for_each_node_mask(node, node_possible_map)
4495 highest = node;
4496 nr_node_ids = highest + 1;
4497}
4498#else
4499static inline void setup_nr_node_ids(void)
4500{
4501}
4502#endif
4503
4504/**
4505 * node_map_pfn_alignment - determine the maximum internode alignment
4506 *
4507 * This function should be called after node map is populated and sorted.
4508 * It calculates the maximum power of two alignment which can distinguish
4509 * all the nodes.
4510 *
4511 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4512 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4513 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4514 * shifted, 1GiB is enough and this function will indicate so.
4515 *
4516 * This is used to test whether pfn -> nid mapping of the chosen memory
4517 * model has fine enough granularity to avoid incorrect mapping for the
4518 * populated node map.
4519 *
4520 * Returns the determined alignment in pfn's. 0 if there is no alignment
4521 * requirement (single node).
4522 */
4523unsigned long __init node_map_pfn_alignment(void)
4524{
4525 unsigned long accl_mask = 0, last_end = 0;
4526 unsigned long start, end, mask;
4527 int last_nid = -1;
4528 int i, nid;
4529
4530 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4531 if (!start || last_nid < 0 || last_nid == nid) {
4532 last_nid = nid;
4533 last_end = end;
4534 continue;
4535 }
4536
4537 /*
4538 * Start with a mask granular enough to pin-point to the
4539 * start pfn and tick off bits one-by-one until it becomes
4540 * too coarse to separate the current node from the last.
4541 */
4542 mask = ~((1 << __ffs(start)) - 1);
4543 while (mask && last_end <= (start & (mask << 1)))
4544 mask <<= 1;
4545
4546 /* accumulate all internode masks */
4547 accl_mask |= mask;
4548 }
4549
4550 /* convert mask to number of pages */
4551 return ~accl_mask + 1;
4552}
4553
4554/* Find the lowest pfn for a node */
4555static unsigned long __init find_min_pfn_for_node(int nid)
4556{
4557 unsigned long min_pfn = ULONG_MAX;
4558 unsigned long start_pfn;
4559 int i;
4560
4561 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4562 min_pfn = min(min_pfn, start_pfn);
4563
4564 if (min_pfn == ULONG_MAX) {
4565 printk(KERN_WARNING
4566 "Could not find start_pfn for node %d\n", nid);
4567 return 0;
4568 }
4569
4570 return min_pfn;
4571}
4572
4573/**
4574 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4575 *
4576 * It returns the minimum PFN based on information provided via
4577 * add_active_range().
4578 */
4579unsigned long __init find_min_pfn_with_active_regions(void)
4580{
4581 return find_min_pfn_for_node(MAX_NUMNODES);
4582}
4583
4584/*
4585 * early_calculate_totalpages()
4586 * Sum pages in active regions for movable zone.
4587 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4588 */
4589static unsigned long __init early_calculate_totalpages(void)
4590{
4591 unsigned long totalpages = 0;
4592 unsigned long start_pfn, end_pfn;
4593 int i, nid;
4594
4595 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4596 unsigned long pages = end_pfn - start_pfn;
4597
4598 totalpages += pages;
4599 if (pages)
4600 node_set_state(nid, N_HIGH_MEMORY);
4601 }
4602 return totalpages;
4603}
4604
4605/*
4606 * Find the PFN the Movable zone begins in each node. Kernel memory
4607 * is spread evenly between nodes as long as the nodes have enough
4608 * memory. When they don't, some nodes will have more kernelcore than
4609 * others
4610 */
4611static void __init find_zone_movable_pfns_for_nodes(void)
4612{
4613 int i, nid;
4614 unsigned long usable_startpfn;
4615 unsigned long kernelcore_node, kernelcore_remaining;
4616 /* save the state before borrow the nodemask */
4617 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4618 unsigned long totalpages = early_calculate_totalpages();
4619 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4620
4621 /*
4622 * If movablecore was specified, calculate what size of
4623 * kernelcore that corresponds so that memory usable for
4624 * any allocation type is evenly spread. If both kernelcore
4625 * and movablecore are specified, then the value of kernelcore
4626 * will be used for required_kernelcore if it's greater than
4627 * what movablecore would have allowed.
4628 */
4629 if (required_movablecore) {
4630 unsigned long corepages;
4631
4632 /*
4633 * Round-up so that ZONE_MOVABLE is at least as large as what
4634 * was requested by the user
4635 */
4636 required_movablecore =
4637 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4638 corepages = totalpages - required_movablecore;
4639
4640 required_kernelcore = max(required_kernelcore, corepages);
4641 }
4642
4643 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4644 if (!required_kernelcore)
4645 goto out;
4646
4647 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4648 find_usable_zone_for_movable();
4649 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4650
4651restart:
4652 /* Spread kernelcore memory as evenly as possible throughout nodes */
4653 kernelcore_node = required_kernelcore / usable_nodes;
4654 for_each_node_state(nid, N_HIGH_MEMORY) {
4655 unsigned long start_pfn, end_pfn;
4656
4657 /*
4658 * Recalculate kernelcore_node if the division per node
4659 * now exceeds what is necessary to satisfy the requested
4660 * amount of memory for the kernel
4661 */
4662 if (required_kernelcore < kernelcore_node)
4663 kernelcore_node = required_kernelcore / usable_nodes;
4664
4665 /*
4666 * As the map is walked, we track how much memory is usable
4667 * by the kernel using kernelcore_remaining. When it is
4668 * 0, the rest of the node is usable by ZONE_MOVABLE
4669 */
4670 kernelcore_remaining = kernelcore_node;
4671
4672 /* Go through each range of PFNs within this node */
4673 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4674 unsigned long size_pages;
4675
4676 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4677 if (start_pfn >= end_pfn)
4678 continue;
4679
4680 /* Account for what is only usable for kernelcore */
4681 if (start_pfn < usable_startpfn) {
4682 unsigned long kernel_pages;
4683 kernel_pages = min(end_pfn, usable_startpfn)
4684 - start_pfn;
4685
4686 kernelcore_remaining -= min(kernel_pages,
4687 kernelcore_remaining);
4688 required_kernelcore -= min(kernel_pages,
4689 required_kernelcore);
4690
4691 /* Continue if range is now fully accounted */
4692 if (end_pfn <= usable_startpfn) {
4693
4694 /*
4695 * Push zone_movable_pfn to the end so
4696 * that if we have to rebalance
4697 * kernelcore across nodes, we will
4698 * not double account here
4699 */
4700 zone_movable_pfn[nid] = end_pfn;
4701 continue;
4702 }
4703 start_pfn = usable_startpfn;
4704 }
4705
4706 /*
4707 * The usable PFN range for ZONE_MOVABLE is from
4708 * start_pfn->end_pfn. Calculate size_pages as the
4709 * number of pages used as kernelcore
4710 */
4711 size_pages = end_pfn - start_pfn;
4712 if (size_pages > kernelcore_remaining)
4713 size_pages = kernelcore_remaining;
4714 zone_movable_pfn[nid] = start_pfn + size_pages;
4715
4716 /*
4717 * Some kernelcore has been met, update counts and
4718 * break if the kernelcore for this node has been
4719 * satisified
4720 */
4721 required_kernelcore -= min(required_kernelcore,
4722 size_pages);
4723 kernelcore_remaining -= size_pages;
4724 if (!kernelcore_remaining)
4725 break;
4726 }
4727 }
4728
4729 /*
4730 * If there is still required_kernelcore, we do another pass with one
4731 * less node in the count. This will push zone_movable_pfn[nid] further
4732 * along on the nodes that still have memory until kernelcore is
4733 * satisified
4734 */
4735 usable_nodes--;
4736 if (usable_nodes && required_kernelcore > usable_nodes)
4737 goto restart;
4738
4739 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4740 for (nid = 0; nid < MAX_NUMNODES; nid++)
4741 zone_movable_pfn[nid] =
4742 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4743
4744out:
4745 /* restore the node_state */
4746 node_states[N_HIGH_MEMORY] = saved_node_state;
4747}
4748
4749/* Any regular memory on that node ? */
4750static void check_for_regular_memory(pg_data_t *pgdat)
4751{
4752#ifdef CONFIG_HIGHMEM
4753 enum zone_type zone_type;
4754
4755 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4756 struct zone *zone = &pgdat->node_zones[zone_type];
4757 if (zone->present_pages) {
4758 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4759 break;
4760 }
4761 }
4762#endif
4763}
4764
4765/**
4766 * free_area_init_nodes - Initialise all pg_data_t and zone data
4767 * @max_zone_pfn: an array of max PFNs for each zone
4768 *
4769 * This will call free_area_init_node() for each active node in the system.
4770 * Using the page ranges provided by add_active_range(), the size of each
4771 * zone in each node and their holes is calculated. If the maximum PFN
4772 * between two adjacent zones match, it is assumed that the zone is empty.
4773 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4774 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4775 * starts where the previous one ended. For example, ZONE_DMA32 starts
4776 * at arch_max_dma_pfn.
4777 */
4778void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4779{
4780 unsigned long start_pfn, end_pfn;
4781 int i, nid;
4782
4783 /* Record where the zone boundaries are */
4784 memset(arch_zone_lowest_possible_pfn, 0,
4785 sizeof(arch_zone_lowest_possible_pfn));
4786 memset(arch_zone_highest_possible_pfn, 0,
4787 sizeof(arch_zone_highest_possible_pfn));
4788 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4789 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4790 for (i = 1; i < MAX_NR_ZONES; i++) {
4791 if (i == ZONE_MOVABLE)
4792 continue;
4793 arch_zone_lowest_possible_pfn[i] =
4794 arch_zone_highest_possible_pfn[i-1];
4795 arch_zone_highest_possible_pfn[i] =
4796 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4797 }
4798 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4799 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4800
4801 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4802 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4803 find_zone_movable_pfns_for_nodes();
4804
4805 /* Print out the zone ranges */
4806 printk("Zone PFN ranges:\n");
4807 for (i = 0; i < MAX_NR_ZONES; i++) {
4808 if (i == ZONE_MOVABLE)
4809 continue;
4810 printk(" %-8s ", zone_names[i]);
4811 if (arch_zone_lowest_possible_pfn[i] ==
4812 arch_zone_highest_possible_pfn[i])
4813 printk("empty\n");
4814 else
4815 printk("%0#10lx -> %0#10lx\n",
4816 arch_zone_lowest_possible_pfn[i],
4817 arch_zone_highest_possible_pfn[i]);
4818 }
4819
4820 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4821 printk("Movable zone start PFN for each node\n");
4822 for (i = 0; i < MAX_NUMNODES; i++) {
4823 if (zone_movable_pfn[i])
4824 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4825 }
4826
4827 /* Print out the early_node_map[] */
4828 printk("Early memory PFN ranges\n");
4829 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4830 printk(" %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn);
4831
4832 /* Initialise every node */
4833 mminit_verify_pageflags_layout();
4834 setup_nr_node_ids();
4835 for_each_online_node(nid) {
4836 pg_data_t *pgdat = NODE_DATA(nid);
4837 free_area_init_node(nid, NULL,
4838 find_min_pfn_for_node(nid), NULL);
4839
4840 /* Any memory on that node */
4841 if (pgdat->node_present_pages)
4842 node_set_state(nid, N_HIGH_MEMORY);
4843 check_for_regular_memory(pgdat);
4844 }
4845}
4846
4847static int __init cmdline_parse_core(char *p, unsigned long *core)
4848{
4849 unsigned long long coremem;
4850 if (!p)
4851 return -EINVAL;
4852
4853 coremem = memparse(p, &p);
4854 *core = coremem >> PAGE_SHIFT;
4855
4856 /* Paranoid check that UL is enough for the coremem value */
4857 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4858
4859 return 0;
4860}
4861
4862/*
4863 * kernelcore=size sets the amount of memory for use for allocations that
4864 * cannot be reclaimed or migrated.
4865 */
4866static int __init cmdline_parse_kernelcore(char *p)
4867{
4868 return cmdline_parse_core(p, &required_kernelcore);
4869}
4870
4871/*
4872 * movablecore=size sets the amount of memory for use for allocations that
4873 * can be reclaimed or migrated.
4874 */
4875static int __init cmdline_parse_movablecore(char *p)
4876{
4877 return cmdline_parse_core(p, &required_movablecore);
4878}
4879
4880early_param("kernelcore", cmdline_parse_kernelcore);
4881early_param("movablecore", cmdline_parse_movablecore);
4882
4883#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4884
4885/**
4886 * set_dma_reserve - set the specified number of pages reserved in the first zone
4887 * @new_dma_reserve: The number of pages to mark reserved
4888 *
4889 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4890 * In the DMA zone, a significant percentage may be consumed by kernel image
4891 * and other unfreeable allocations which can skew the watermarks badly. This
4892 * function may optionally be used to account for unfreeable pages in the
4893 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4894 * smaller per-cpu batchsize.
4895 */
4896void __init set_dma_reserve(unsigned long new_dma_reserve)
4897{
4898 dma_reserve = new_dma_reserve;
4899}
4900
4901void __init free_area_init(unsigned long *zones_size)
4902{
4903 free_area_init_node(0, zones_size,
4904 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4905}
4906
4907static int page_alloc_cpu_notify(struct notifier_block *self,
4908 unsigned long action, void *hcpu)
4909{
4910 int cpu = (unsigned long)hcpu;
4911
4912 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4913 lru_add_drain_cpu(cpu);
4914 drain_pages(cpu);
4915
4916 /*
4917 * Spill the event counters of the dead processor
4918 * into the current processors event counters.
4919 * This artificially elevates the count of the current
4920 * processor.
4921 */
4922 vm_events_fold_cpu(cpu);
4923
4924 /*
4925 * Zero the differential counters of the dead processor
4926 * so that the vm statistics are consistent.
4927 *
4928 * This is only okay since the processor is dead and cannot
4929 * race with what we are doing.
4930 */
4931 refresh_cpu_vm_stats(cpu);
4932 }
4933 return NOTIFY_OK;
4934}
4935
4936void __init page_alloc_init(void)
4937{
4938 hotcpu_notifier(page_alloc_cpu_notify, 0);
4939}
4940
4941/*
4942 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4943 * or min_free_kbytes changes.
4944 */
4945static void calculate_totalreserve_pages(void)
4946{
4947 struct pglist_data *pgdat;
4948 unsigned long reserve_pages = 0;
4949 enum zone_type i, j;
4950
4951 for_each_online_pgdat(pgdat) {
4952 for (i = 0; i < MAX_NR_ZONES; i++) {
4953 struct zone *zone = pgdat->node_zones + i;
4954 unsigned long max = 0;
4955
4956 /* Find valid and maximum lowmem_reserve in the zone */
4957 for (j = i; j < MAX_NR_ZONES; j++) {
4958 if (zone->lowmem_reserve[j] > max)
4959 max = zone->lowmem_reserve[j];
4960 }
4961
4962 /* we treat the high watermark as reserved pages. */
4963 max += high_wmark_pages(zone);
4964
4965 if (max > zone->present_pages)
4966 max = zone->present_pages;
4967 reserve_pages += max;
4968 /*
4969 * Lowmem reserves are not available to
4970 * GFP_HIGHUSER page cache allocations and
4971 * kswapd tries to balance zones to their high
4972 * watermark. As a result, neither should be
4973 * regarded as dirtyable memory, to prevent a
4974 * situation where reclaim has to clean pages
4975 * in order to balance the zones.
4976 */
4977 zone->dirty_balance_reserve = max;
4978 }
4979 }
4980 dirty_balance_reserve = reserve_pages;
4981 totalreserve_pages = reserve_pages;
4982}
4983
4984/*
4985 * setup_per_zone_lowmem_reserve - called whenever
4986 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4987 * has a correct pages reserved value, so an adequate number of
4988 * pages are left in the zone after a successful __alloc_pages().
4989 */
4990static void setup_per_zone_lowmem_reserve(void)
4991{
4992 struct pglist_data *pgdat;
4993 enum zone_type j, idx;
4994
4995 for_each_online_pgdat(pgdat) {
4996 for (j = 0; j < MAX_NR_ZONES; j++) {
4997 struct zone *zone = pgdat->node_zones + j;
4998 unsigned long present_pages = zone->present_pages;
4999
5000 zone->lowmem_reserve[j] = 0;
5001
5002 idx = j;
5003 while (idx) {
5004 struct zone *lower_zone;
5005
5006 idx--;
5007
5008 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5009 sysctl_lowmem_reserve_ratio[idx] = 1;
5010
5011 lower_zone = pgdat->node_zones + idx;
5012 lower_zone->lowmem_reserve[j] = present_pages /
5013 sysctl_lowmem_reserve_ratio[idx];
5014 present_pages += lower_zone->present_pages;
5015 }
5016 }
5017 }
5018
5019 /* update totalreserve_pages */
5020 calculate_totalreserve_pages();
5021}
5022
5023static void __setup_per_zone_wmarks(void)
5024{
5025 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5026 unsigned long lowmem_pages = 0;
5027 struct zone *zone;
5028 unsigned long flags;
5029
5030 /* Calculate total number of !ZONE_HIGHMEM pages */
5031 for_each_zone(zone) {
5032 if (!is_highmem(zone))
5033 lowmem_pages += zone->present_pages;
5034 }
5035
5036 for_each_zone(zone) {
5037 u64 tmp;
5038
5039 spin_lock_irqsave(&zone->lock, flags);
5040 tmp = (u64)pages_min * zone->present_pages;
5041 do_div(tmp, lowmem_pages);
5042 if (is_highmem(zone)) {
5043 /*
5044 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5045 * need highmem pages, so cap pages_min to a small
5046 * value here.
5047 *
5048 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5049 * deltas controls asynch page reclaim, and so should
5050 * not be capped for highmem.
5051 */
5052 int min_pages;
5053
5054 min_pages = zone->present_pages / 1024;
5055 if (min_pages < SWAP_CLUSTER_MAX)
5056 min_pages = SWAP_CLUSTER_MAX;
5057 if (min_pages > 128)
5058 min_pages = 128;
5059 zone->watermark[WMARK_MIN] = min_pages;
5060 } else {
5061 /*
5062 * If it's a lowmem zone, reserve a number of pages
5063 * proportionate to the zone's size.
5064 */
5065 zone->watermark[WMARK_MIN] = tmp;
5066 }
5067
5068 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5069 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5070 setup_zone_migrate_reserve(zone);
5071 spin_unlock_irqrestore(&zone->lock, flags);
5072 }
5073
5074 /* update totalreserve_pages */
5075 calculate_totalreserve_pages();
5076}
5077
5078/**
5079 * setup_per_zone_wmarks - called when min_free_kbytes changes
5080 * or when memory is hot-{added|removed}
5081 *
5082 * Ensures that the watermark[min,low,high] values for each zone are set
5083 * correctly with respect to min_free_kbytes.
5084 */
5085void setup_per_zone_wmarks(void)
5086{
5087 mutex_lock(&zonelists_mutex);
5088 __setup_per_zone_wmarks();
5089 mutex_unlock(&zonelists_mutex);
5090}
5091
5092/*
5093 * The inactive anon list should be small enough that the VM never has to
5094 * do too much work, but large enough that each inactive page has a chance
5095 * to be referenced again before it is swapped out.
5096 *
5097 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5098 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5099 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5100 * the anonymous pages are kept on the inactive list.
5101 *
5102 * total target max
5103 * memory ratio inactive anon
5104 * -------------------------------------
5105 * 10MB 1 5MB
5106 * 100MB 1 50MB
5107 * 1GB 3 250MB
5108 * 10GB 10 0.9GB
5109 * 100GB 31 3GB
5110 * 1TB 101 10GB
5111 * 10TB 320 32GB
5112 */
5113static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5114{
5115 unsigned int gb, ratio;
5116
5117 /* Zone size in gigabytes */
5118 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5119 if (gb)
5120 ratio = int_sqrt(10 * gb);
5121 else
5122 ratio = 1;
5123
5124 zone->inactive_ratio = ratio;
5125}
5126
5127static void __meminit setup_per_zone_inactive_ratio(void)
5128{
5129 struct zone *zone;
5130
5131 for_each_zone(zone)
5132 calculate_zone_inactive_ratio(zone);
5133}
5134
5135/*
5136 * Initialise min_free_kbytes.
5137 *
5138 * For small machines we want it small (128k min). For large machines
5139 * we want it large (64MB max). But it is not linear, because network
5140 * bandwidth does not increase linearly with machine size. We use
5141 *
5142 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5143 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5144 *
5145 * which yields
5146 *
5147 * 16MB: 512k
5148 * 32MB: 724k
5149 * 64MB: 1024k
5150 * 128MB: 1448k
5151 * 256MB: 2048k
5152 * 512MB: 2896k
5153 * 1024MB: 4096k
5154 * 2048MB: 5792k
5155 * 4096MB: 8192k
5156 * 8192MB: 11584k
5157 * 16384MB: 16384k
5158 */
5159int __meminit init_per_zone_wmark_min(void)
5160{
5161 unsigned long lowmem_kbytes;
5162
5163 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5164
5165 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5166 if (min_free_kbytes < 128)
5167 min_free_kbytes = 128;
5168 if (min_free_kbytes > 65536)
5169 min_free_kbytes = 65536;
5170 setup_per_zone_wmarks();
5171 refresh_zone_stat_thresholds();
5172 setup_per_zone_lowmem_reserve();
5173 setup_per_zone_inactive_ratio();
5174 return 0;
5175}
5176module_init(init_per_zone_wmark_min)
5177
5178/*
5179 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5180 * that we can call two helper functions whenever min_free_kbytes
5181 * changes.
5182 */
5183int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5184 void __user *buffer, size_t *length, loff_t *ppos)
5185{
5186 proc_dointvec(table, write, buffer, length, ppos);
5187 if (write)
5188 setup_per_zone_wmarks();
5189 return 0;
5190}
5191
5192#ifdef CONFIG_NUMA
5193int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5194 void __user *buffer, size_t *length, loff_t *ppos)
5195{
5196 struct zone *zone;
5197 int rc;
5198
5199 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5200 if (rc)
5201 return rc;
5202
5203 for_each_zone(zone)
5204 zone->min_unmapped_pages = (zone->present_pages *
5205 sysctl_min_unmapped_ratio) / 100;
5206 return 0;
5207}
5208
5209int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5210 void __user *buffer, size_t *length, loff_t *ppos)
5211{
5212 struct zone *zone;
5213 int rc;
5214
5215 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5216 if (rc)
5217 return rc;
5218
5219 for_each_zone(zone)
5220 zone->min_slab_pages = (zone->present_pages *
5221 sysctl_min_slab_ratio) / 100;
5222 return 0;
5223}
5224#endif
5225
5226/*
5227 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5228 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5229 * whenever sysctl_lowmem_reserve_ratio changes.
5230 *
5231 * The reserve ratio obviously has absolutely no relation with the
5232 * minimum watermarks. The lowmem reserve ratio can only make sense
5233 * if in function of the boot time zone sizes.
5234 */
5235int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5236 void __user *buffer, size_t *length, loff_t *ppos)
5237{
5238 proc_dointvec_minmax(table, write, buffer, length, ppos);
5239 setup_per_zone_lowmem_reserve();
5240 return 0;
5241}
5242
5243/*
5244 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5245 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5246 * can have before it gets flushed back to buddy allocator.
5247 */
5248
5249int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5250 void __user *buffer, size_t *length, loff_t *ppos)
5251{
5252 struct zone *zone;
5253 unsigned int cpu;
5254 int ret;
5255
5256 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5257 if (!write || (ret < 0))
5258 return ret;
5259 for_each_populated_zone(zone) {
5260 for_each_possible_cpu(cpu) {
5261 unsigned long high;
5262 high = zone->present_pages / percpu_pagelist_fraction;
5263 setup_pagelist_highmark(
5264 per_cpu_ptr(zone->pageset, cpu), high);
5265 }
5266 }
5267 return 0;
5268}
5269
5270int hashdist = HASHDIST_DEFAULT;
5271
5272#ifdef CONFIG_NUMA
5273static int __init set_hashdist(char *str)
5274{
5275 if (!str)
5276 return 0;
5277 hashdist = simple_strtoul(str, &str, 0);
5278 return 1;
5279}
5280__setup("hashdist=", set_hashdist);
5281#endif
5282
5283/*
5284 * allocate a large system hash table from bootmem
5285 * - it is assumed that the hash table must contain an exact power-of-2
5286 * quantity of entries
5287 * - limit is the number of hash buckets, not the total allocation size
5288 */
5289void *__init alloc_large_system_hash(const char *tablename,
5290 unsigned long bucketsize,
5291 unsigned long numentries,
5292 int scale,
5293 int flags,
5294 unsigned int *_hash_shift,
5295 unsigned int *_hash_mask,
5296 unsigned long limit)
5297{
5298 unsigned long long max = limit;
5299 unsigned long log2qty, size;
5300 void *table = NULL;
5301
5302 /* allow the kernel cmdline to have a say */
5303 if (!numentries) {
5304 /* round applicable memory size up to nearest megabyte */
5305 numentries = nr_kernel_pages;
5306 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5307 numentries >>= 20 - PAGE_SHIFT;
5308 numentries <<= 20 - PAGE_SHIFT;
5309
5310 /* limit to 1 bucket per 2^scale bytes of low memory */
5311 if (scale > PAGE_SHIFT)
5312 numentries >>= (scale - PAGE_SHIFT);
5313 else
5314 numentries <<= (PAGE_SHIFT - scale);
5315
5316 /* Make sure we've got at least a 0-order allocation.. */
5317 if (unlikely(flags & HASH_SMALL)) {
5318 /* Makes no sense without HASH_EARLY */
5319 WARN_ON(!(flags & HASH_EARLY));
5320 if (!(numentries >> *_hash_shift)) {
5321 numentries = 1UL << *_hash_shift;
5322 BUG_ON(!numentries);
5323 }
5324 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5325 numentries = PAGE_SIZE / bucketsize;
5326 }
5327 numentries = roundup_pow_of_two(numentries);
5328
5329 /* limit allocation size to 1/16 total memory by default */
5330 if (max == 0) {
5331 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5332 do_div(max, bucketsize);
5333 }
5334 max = min(max, 0x80000000ULL);
5335
5336 if (numentries > max)
5337 numentries = max;
5338
5339 log2qty = ilog2(numentries);
5340
5341 do {
5342 size = bucketsize << log2qty;
5343 if (flags & HASH_EARLY)
5344 table = alloc_bootmem_nopanic(size);
5345 else if (hashdist)
5346 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5347 else {
5348 /*
5349 * If bucketsize is not a power-of-two, we may free
5350 * some pages at the end of hash table which
5351 * alloc_pages_exact() automatically does
5352 */
5353 if (get_order(size) < MAX_ORDER) {
5354 table = alloc_pages_exact(size, GFP_ATOMIC);
5355 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5356 }
5357 }
5358 } while (!table && size > PAGE_SIZE && --log2qty);
5359
5360 if (!table)
5361 panic("Failed to allocate %s hash table\n", tablename);
5362
5363 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5364 tablename,
5365 (1UL << log2qty),
5366 ilog2(size) - PAGE_SHIFT,
5367 size);
5368
5369 if (_hash_shift)
5370 *_hash_shift = log2qty;
5371 if (_hash_mask)
5372 *_hash_mask = (1 << log2qty) - 1;
5373
5374 return table;
5375}
5376
5377/* Return a pointer to the bitmap storing bits affecting a block of pages */
5378static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5379 unsigned long pfn)
5380{
5381#ifdef CONFIG_SPARSEMEM
5382 return __pfn_to_section(pfn)->pageblock_flags;
5383#else
5384 return zone->pageblock_flags;
5385#endif /* CONFIG_SPARSEMEM */
5386}
5387
5388static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5389{
5390#ifdef CONFIG_SPARSEMEM
5391 pfn &= (PAGES_PER_SECTION-1);
5392 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5393#else
5394 pfn = pfn - zone->zone_start_pfn;
5395 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5396#endif /* CONFIG_SPARSEMEM */
5397}
5398
5399/**
5400 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5401 * @page: The page within the block of interest
5402 * @start_bitidx: The first bit of interest to retrieve
5403 * @end_bitidx: The last bit of interest
5404 * returns pageblock_bits flags
5405 */
5406unsigned long get_pageblock_flags_group(struct page *page,
5407 int start_bitidx, int end_bitidx)
5408{
5409 struct zone *zone;
5410 unsigned long *bitmap;
5411 unsigned long pfn, bitidx;
5412 unsigned long flags = 0;
5413 unsigned long value = 1;
5414
5415 zone = page_zone(page);
5416 pfn = page_to_pfn(page);
5417 bitmap = get_pageblock_bitmap(zone, pfn);
5418 bitidx = pfn_to_bitidx(zone, pfn);
5419
5420 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5421 if (test_bit(bitidx + start_bitidx, bitmap))
5422 flags |= value;
5423
5424 return flags;
5425}
5426
5427/**
5428 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5429 * @page: The page within the block of interest
5430 * @start_bitidx: The first bit of interest
5431 * @end_bitidx: The last bit of interest
5432 * @flags: The flags to set
5433 */
5434void set_pageblock_flags_group(struct page *page, unsigned long flags,
5435 int start_bitidx, int end_bitidx)
5436{
5437 struct zone *zone;
5438 unsigned long *bitmap;
5439 unsigned long pfn, bitidx;
5440 unsigned long value = 1;
5441
5442 zone = page_zone(page);
5443 pfn = page_to_pfn(page);
5444 bitmap = get_pageblock_bitmap(zone, pfn);
5445 bitidx = pfn_to_bitidx(zone, pfn);
5446 VM_BUG_ON(pfn < zone->zone_start_pfn);
5447 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5448
5449 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5450 if (flags & value)
5451 __set_bit(bitidx + start_bitidx, bitmap);
5452 else
5453 __clear_bit(bitidx + start_bitidx, bitmap);
5454}
5455
5456/*
5457 * This is designed as sub function...plz see page_isolation.c also.
5458 * set/clear page block's type to be ISOLATE.
5459 * page allocater never alloc memory from ISOLATE block.
5460 */
5461
5462static int
5463__count_immobile_pages(struct zone *zone, struct page *page, int count)
5464{
5465 unsigned long pfn, iter, found;
5466 int mt;
5467
5468 /*
5469 * For avoiding noise data, lru_add_drain_all() should be called
5470 * If ZONE_MOVABLE, the zone never contains immobile pages
5471 */
5472 if (zone_idx(zone) == ZONE_MOVABLE)
5473 return true;
5474 mt = get_pageblock_migratetype(page);
5475 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5476 return true;
5477
5478 pfn = page_to_pfn(page);
5479 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5480 unsigned long check = pfn + iter;
5481
5482 if (!pfn_valid_within(check))
5483 continue;
5484
5485 page = pfn_to_page(check);
5486 if (!page_count(page)) {
5487 if (PageBuddy(page))
5488 iter += (1 << page_order(page)) - 1;
5489 continue;
5490 }
5491 if (!PageLRU(page))
5492 found++;
5493 /*
5494 * If there are RECLAIMABLE pages, we need to check it.
5495 * But now, memory offline itself doesn't call shrink_slab()
5496 * and it still to be fixed.
5497 */
5498 /*
5499 * If the page is not RAM, page_count()should be 0.
5500 * we don't need more check. This is an _used_ not-movable page.
5501 *
5502 * The problematic thing here is PG_reserved pages. PG_reserved
5503 * is set to both of a memory hole page and a _used_ kernel
5504 * page at boot.
5505 */
5506 if (found > count)
5507 return false;
5508 }
5509 return true;
5510}
5511
5512bool is_pageblock_removable_nolock(struct page *page)
5513{
5514 struct zone *zone;
5515 unsigned long pfn;
5516
5517 /*
5518 * We have to be careful here because we are iterating over memory
5519 * sections which are not zone aware so we might end up outside of
5520 * the zone but still within the section.
5521 * We have to take care about the node as well. If the node is offline
5522 * its NODE_DATA will be NULL - see page_zone.
5523 */
5524 if (!node_online(page_to_nid(page)))
5525 return false;
5526
5527 zone = page_zone(page);
5528 pfn = page_to_pfn(page);
5529 if (zone->zone_start_pfn > pfn ||
5530 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5531 return false;
5532
5533 return __count_immobile_pages(zone, page, 0);
5534}
5535
5536int set_migratetype_isolate(struct page *page)
5537{
5538 struct zone *zone;
5539 unsigned long flags, pfn;
5540 struct memory_isolate_notify arg;
5541 int notifier_ret;
5542 int ret = -EBUSY;
5543
5544 zone = page_zone(page);
5545
5546 spin_lock_irqsave(&zone->lock, flags);
5547
5548 pfn = page_to_pfn(page);
5549 arg.start_pfn = pfn;
5550 arg.nr_pages = pageblock_nr_pages;
5551 arg.pages_found = 0;
5552
5553 /*
5554 * It may be possible to isolate a pageblock even if the
5555 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5556 * notifier chain is used by balloon drivers to return the
5557 * number of pages in a range that are held by the balloon
5558 * driver to shrink memory. If all the pages are accounted for
5559 * by balloons, are free, or on the LRU, isolation can continue.
5560 * Later, for example, when memory hotplug notifier runs, these
5561 * pages reported as "can be isolated" should be isolated(freed)
5562 * by the balloon driver through the memory notifier chain.
5563 */
5564 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5565 notifier_ret = notifier_to_errno(notifier_ret);
5566 if (notifier_ret)
5567 goto out;
5568 /*
5569 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5570 * We just check MOVABLE pages.
5571 */
5572 if (__count_immobile_pages(zone, page, arg.pages_found))
5573 ret = 0;
5574
5575 /*
5576 * immobile means "not-on-lru" paes. If immobile is larger than
5577 * removable-by-driver pages reported by notifier, we'll fail.
5578 */
5579
5580out:
5581 if (!ret) {
5582 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5583 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5584 }
5585
5586 spin_unlock_irqrestore(&zone->lock, flags);
5587 if (!ret)
5588 drain_all_pages();
5589 return ret;
5590}
5591
5592void unset_migratetype_isolate(struct page *page, unsigned migratetype)
5593{
5594 struct zone *zone;
5595 unsigned long flags;
5596 zone = page_zone(page);
5597 spin_lock_irqsave(&zone->lock, flags);
5598 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5599 goto out;
5600 set_pageblock_migratetype(page, migratetype);
5601 move_freepages_block(zone, page, migratetype);
5602out:
5603 spin_unlock_irqrestore(&zone->lock, flags);
5604}
5605
5606#ifdef CONFIG_CMA
5607
5608static unsigned long pfn_max_align_down(unsigned long pfn)
5609{
5610 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5611 pageblock_nr_pages) - 1);
5612}
5613
5614static unsigned long pfn_max_align_up(unsigned long pfn)
5615{
5616 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5617 pageblock_nr_pages));
5618}
5619
5620static struct page *
5621__alloc_contig_migrate_alloc(struct page *page, unsigned long private,
5622 int **resultp)
5623{
5624 return alloc_page(GFP_HIGHUSER_MOVABLE);
5625}
5626
5627/* [start, end) must belong to a single zone. */
5628static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
5629{
5630 /* This function is based on compact_zone() from compaction.c. */
5631
5632 unsigned long pfn = start;
5633 unsigned int tries = 0;
5634 int ret = 0;
5635
5636 struct compact_control cc = {
5637 .nr_migratepages = 0,
5638 .order = -1,
5639 .zone = page_zone(pfn_to_page(start)),
5640 .sync = true,
5641 };
5642 INIT_LIST_HEAD(&cc.migratepages);
5643
5644 migrate_prep_local();
5645
5646 while (pfn < end || !list_empty(&cc.migratepages)) {
5647 if (fatal_signal_pending(current)) {
5648 ret = -EINTR;
5649 break;
5650 }
5651
5652 if (list_empty(&cc.migratepages)) {
5653 cc.nr_migratepages = 0;
5654 pfn = isolate_migratepages_range(cc.zone, &cc,
5655 pfn, end);
5656 if (!pfn) {
5657 ret = -EINTR;
5658 break;
5659 }
5660 tries = 0;
5661 } else if (++tries == 5) {
5662 ret = ret < 0 ? ret : -EBUSY;
5663 break;
5664 }
5665
5666 ret = migrate_pages(&cc.migratepages,
5667 __alloc_contig_migrate_alloc,
5668 0, false, true);
5669 }
5670
5671 putback_lru_pages(&cc.migratepages);
5672 return ret > 0 ? 0 : ret;
5673}
5674
5675/**
5676 * alloc_contig_range() -- tries to allocate given range of pages
5677 * @start: start PFN to allocate
5678 * @end: one-past-the-last PFN to allocate
5679 * @migratetype: migratetype of the underlaying pageblocks (either
5680 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5681 * in range must have the same migratetype and it must
5682 * be either of the two.
5683 *
5684 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5685 * aligned, however it's the caller's responsibility to guarantee that
5686 * we are the only thread that changes migrate type of pageblocks the
5687 * pages fall in.
5688 *
5689 * The PFN range must belong to a single zone.
5690 *
5691 * Returns zero on success or negative error code. On success all
5692 * pages which PFN is in [start, end) are allocated for the caller and
5693 * need to be freed with free_contig_range().
5694 */
5695int alloc_contig_range(unsigned long start, unsigned long end,
5696 unsigned migratetype)
5697{
5698 struct zone *zone = page_zone(pfn_to_page(start));
5699 unsigned long outer_start, outer_end;
5700 int ret = 0, order;
5701
5702 /*
5703 * What we do here is we mark all pageblocks in range as
5704 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5705 * have different sizes, and due to the way page allocator
5706 * work, we align the range to biggest of the two pages so
5707 * that page allocator won't try to merge buddies from
5708 * different pageblocks and change MIGRATE_ISOLATE to some
5709 * other migration type.
5710 *
5711 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5712 * migrate the pages from an unaligned range (ie. pages that
5713 * we are interested in). This will put all the pages in
5714 * range back to page allocator as MIGRATE_ISOLATE.
5715 *
5716 * When this is done, we take the pages in range from page
5717 * allocator removing them from the buddy system. This way
5718 * page allocator will never consider using them.
5719 *
5720 * This lets us mark the pageblocks back as
5721 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5722 * aligned range but not in the unaligned, original range are
5723 * put back to page allocator so that buddy can use them.
5724 */
5725
5726 ret = start_isolate_page_range(pfn_max_align_down(start),
5727 pfn_max_align_up(end), migratetype);
5728 if (ret)
5729 goto done;
5730
5731 ret = __alloc_contig_migrate_range(start, end);
5732 if (ret)
5733 goto done;
5734
5735 /*
5736 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5737 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5738 * more, all pages in [start, end) are free in page allocator.
5739 * What we are going to do is to allocate all pages from
5740 * [start, end) (that is remove them from page allocator).
5741 *
5742 * The only problem is that pages at the beginning and at the
5743 * end of interesting range may be not aligned with pages that
5744 * page allocator holds, ie. they can be part of higher order
5745 * pages. Because of this, we reserve the bigger range and
5746 * once this is done free the pages we are not interested in.
5747 *
5748 * We don't have to hold zone->lock here because the pages are
5749 * isolated thus they won't get removed from buddy.
5750 */
5751
5752 lru_add_drain_all();
5753 drain_all_pages();
5754
5755 order = 0;
5756 outer_start = start;
5757 while (!PageBuddy(pfn_to_page(outer_start))) {
5758 if (++order >= MAX_ORDER) {
5759 ret = -EBUSY;
5760 goto done;
5761 }
5762 outer_start &= ~0UL << order;
5763 }
5764
5765 /* Make sure the range is really isolated. */
5766 if (test_pages_isolated(outer_start, end)) {
5767 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5768 outer_start, end);
5769 ret = -EBUSY;
5770 goto done;
5771 }
5772
5773 outer_end = isolate_freepages_range(outer_start, end);
5774 if (!outer_end) {
5775 ret = -EBUSY;
5776 goto done;
5777 }
5778
5779 /* Free head and tail (if any) */
5780 if (start != outer_start)
5781 free_contig_range(outer_start, start - outer_start);
5782 if (end != outer_end)
5783 free_contig_range(end, outer_end - end);
5784
5785done:
5786 undo_isolate_page_range(pfn_max_align_down(start),
5787 pfn_max_align_up(end), migratetype);
5788 return ret;
5789}
5790
5791void free_contig_range(unsigned long pfn, unsigned nr_pages)
5792{
5793 for (; nr_pages--; ++pfn)
5794 __free_page(pfn_to_page(pfn));
5795}
5796#endif
5797
5798#ifdef CONFIG_MEMORY_HOTREMOVE
5799/*
5800 * All pages in the range must be isolated before calling this.
5801 */
5802void
5803__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5804{
5805 struct page *page;
5806 struct zone *zone;
5807 int order, i;
5808 unsigned long pfn;
5809 unsigned long flags;
5810 /* find the first valid pfn */
5811 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5812 if (pfn_valid(pfn))
5813 break;
5814 if (pfn == end_pfn)
5815 return;
5816 zone = page_zone(pfn_to_page(pfn));
5817 spin_lock_irqsave(&zone->lock, flags);
5818 pfn = start_pfn;
5819 while (pfn < end_pfn) {
5820 if (!pfn_valid(pfn)) {
5821 pfn++;
5822 continue;
5823 }
5824 page = pfn_to_page(pfn);
5825 BUG_ON(page_count(page));
5826 BUG_ON(!PageBuddy(page));
5827 order = page_order(page);
5828#ifdef CONFIG_DEBUG_VM
5829 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5830 pfn, 1 << order, end_pfn);
5831#endif
5832 list_del(&page->lru);
5833 rmv_page_order(page);
5834 zone->free_area[order].nr_free--;
5835 __mod_zone_page_state(zone, NR_FREE_PAGES,
5836 - (1UL << order));
5837 for (i = 0; i < (1 << order); i++)
5838 SetPageReserved((page+i));
5839 pfn += (1 << order);
5840 }
5841 spin_unlock_irqrestore(&zone->lock, flags);
5842}
5843#endif
5844
5845#ifdef CONFIG_MEMORY_FAILURE
5846bool is_free_buddy_page(struct page *page)
5847{
5848 struct zone *zone = page_zone(page);
5849 unsigned long pfn = page_to_pfn(page);
5850 unsigned long flags;
5851 int order;
5852
5853 spin_lock_irqsave(&zone->lock, flags);
5854 for (order = 0; order < MAX_ORDER; order++) {
5855 struct page *page_head = page - (pfn & ((1 << order) - 1));
5856
5857 if (PageBuddy(page_head) && page_order(page_head) >= order)
5858 break;
5859 }
5860 spin_unlock_irqrestore(&zone->lock, flags);
5861
5862 return order < MAX_ORDER;
5863}
5864#endif
5865
5866static struct trace_print_flags pageflag_names[] = {
5867 {1UL << PG_locked, "locked" },
5868 {1UL << PG_error, "error" },
5869 {1UL << PG_referenced, "referenced" },
5870 {1UL << PG_uptodate, "uptodate" },
5871 {1UL << PG_dirty, "dirty" },
5872 {1UL << PG_lru, "lru" },
5873 {1UL << PG_active, "active" },
5874 {1UL << PG_slab, "slab" },
5875 {1UL << PG_owner_priv_1, "owner_priv_1" },
5876 {1UL << PG_arch_1, "arch_1" },
5877 {1UL << PG_reserved, "reserved" },
5878 {1UL << PG_private, "private" },
5879 {1UL << PG_private_2, "private_2" },
5880 {1UL << PG_writeback, "writeback" },
5881#ifdef CONFIG_PAGEFLAGS_EXTENDED
5882 {1UL << PG_head, "head" },
5883 {1UL << PG_tail, "tail" },
5884#else
5885 {1UL << PG_compound, "compound" },
5886#endif
5887 {1UL << PG_swapcache, "swapcache" },
5888 {1UL << PG_mappedtodisk, "mappedtodisk" },
5889 {1UL << PG_reclaim, "reclaim" },
5890 {1UL << PG_swapbacked, "swapbacked" },
5891 {1UL << PG_unevictable, "unevictable" },
5892#ifdef CONFIG_MMU
5893 {1UL << PG_mlocked, "mlocked" },
5894#endif
5895#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5896 {1UL << PG_uncached, "uncached" },
5897#endif
5898#ifdef CONFIG_MEMORY_FAILURE
5899 {1UL << PG_hwpoison, "hwpoison" },
5900#endif
5901 {-1UL, NULL },
5902};
5903
5904static void dump_page_flags(unsigned long flags)
5905{
5906 const char *delim = "";
5907 unsigned long mask;
5908 int i;
5909
5910 printk(KERN_ALERT "page flags: %#lx(", flags);
5911
5912 /* remove zone id */
5913 flags &= (1UL << NR_PAGEFLAGS) - 1;
5914
5915 for (i = 0; pageflag_names[i].name && flags; i++) {
5916
5917 mask = pageflag_names[i].mask;
5918 if ((flags & mask) != mask)
5919 continue;
5920
5921 flags &= ~mask;
5922 printk("%s%s", delim, pageflag_names[i].name);
5923 delim = "|";
5924 }
5925
5926 /* check for left over flags */
5927 if (flags)
5928 printk("%s%#lx", delim, flags);
5929
5930 printk(")\n");
5931}
5932
5933void dump_page(struct page *page)
5934{
5935 printk(KERN_ALERT
5936 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5937 page, atomic_read(&page->_count), page_mapcount(page),
5938 page->mapping, page->index);
5939 dump_page_flags(page->flags);
5940 mem_cgroup_print_bad_page(page);
5941}